
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FAST ANALYSIS OF BORDERS IN IMAGE
RYCHLÁ ANALÝZA HRANIC V OBRAZE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MATEJ KOLESÁR
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Kolesár Matej
Programme: Information Technology
Title: Fast Analysis of Borders in Image
Category: Image Processing
Assignment:

1. Study the problematic of fast analysis of borders in image; focus on modern approaches
based on machine learning.

2. Find and describe existing data sets for learning and evaluation of algorithms of fast analysis
of borders in image.

3. Select suitable methods and experiment with them on suitable data. Discuss the properties
of the solved methods.

4. Identify a suitable real-world problem whose solution is based on fast analysis of borders in
images, collect relevant data and select a suitable method for solving it.

5. Evaluate the proposed solution in the context of the particular problem and discuss the
possibilities and limitations of the selected method.

6. Assess the achieved results and propose possible extensions of the project; create a poster
and a short video for presenting the project.

Recommended literature:
https://arxiv.org/abs/1504.06375v2
Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, Zhijiang Zhang: DeepContour: A Deep
Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection, CVPR 2015
Gedas Bertasius, Jianbo Shi, Lorenzo Torresani: DeepEdge: A Multi-Scale Bifurcated Deep
Network for Top-Down Contour Detection, CVPR 2015
Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, Xiang Bai: Richer Convolutional
Features for Edge Detection, CVPR 2017

Requirements for the first semester:
Items 1 through 3, considerable progress on item 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Herout Adam, prof. Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: November 4, 2019

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/19586/2019/xkoles07 Page 1/1

Abstract
This thesis focuses on the problem of detecting edges in natural images while maintaining
high performance per image. First, the existing approaches are analysed and from them the
relevant information is extracted. This information is then used to design two architectures
that use convolutional neural networks. One architecture is based on RCF and enriches
the output, while the other is a combination of RCF and RCN. This combination provides
better up-sampling and enriches the output even more. Evaluation was performed on the
BSDS500 dataset and the best result was for achieved for the model that combined RCF
and RCN with an ODS score of 0.675.

Abstrakt
Táto práca sa zameriava na problém detekcie hrán v prirodzených obrazoch pri zachovaní
vysokej rýchlosti pre spracovanie obrázku. Najprv sa analyzujú existujúce prístupy a z nich
sa extrahujú príslušné informácie. Táto informácia sa potom použije na navrhnutie dvoch
architektúr, ktoré používajú konvolučné neurónové siete. Jedna architektúra je založená na
RCF a obohacuje výstup, zatiaľ čo druhá je kombináciou RCF a RCN. Táto kombinácia
poskytuje lepšie vzorkovanie a ešte viac obohacuje výstup. Vyhodnotenie sa uskutočnilo na
dátovej sade BSDS500 a najlepší výsledok sa dosiahol pre model, ktorý kombinoval RCF a
RCN so skóre ODS 0,675.

Keywords
neural network, machine learning, convolution neural network, edge detection

Klíčová slova
neurónové siete, strojové učenie, konvolučné neurónové siete, detekcia hraníc

Reference
KOLESÁR, Matej. Fast Analysis of Borders in Image. Brno, 2020. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor prof. Ing. Adam
Herout, Ph.D.

Rozšířený abstrakt

Úvod

Detekcia hraníc v obraze je jedným zo základných problémov pri spracovaní obrazu. Z tohto
hľadiska je veľmi dôležité aby navrhnuté metódy boli rýchle a precízne. Väčšina nových
metód používa konvolučné neurónové siete pre detekciu hraníc. V tejto práci budú analy-
zované staršie aj novšie prístupy pre detekciu hraníc v obraze. Výsledkom je navrhnutie 2
nových architektúr založených na konvolučných neurónových sieťach.

Analýza existujúcich algoritmických metód

Prvé riešenia, ktoré sa zaoberali týmto spôsobom, boli riešené matematickým prístupom.
Tieto metódy navrhli algoritmy, ktoré boli založené na identifikovaní časti obrazov, kde
sa výrazne mení hodnota intenzity pixlov. Tieto riešenia majú značnú výhodu ak sa na
výsledok pozeráme z hľadiska rýchlosti, ale majú aj veľa obmedzení. Tieto obmedzenia sú
spôsobené tým, že obrázky nie sú bezchybné a zmena hodnoty intenzity pre pixel nemusí
znamenať, že na danej sekcii v obraze existuje hranica. Medzi najznámejšie algoritmy patria
napríklad Sobel operátor, Prewitt operátor a Canny Edge detector.

Konvolučné neurónové siete

Konvolučné neurónové siete sú špeciálnym druhom neurónových sietí, ktoré sú založené na
tradičných neurónovych sieťach. Boli navrhnuté pre rozpoznávanie dvojrozmerných obra-
zových vzorov priamo z pixelov obrázkov s minimálnym predspracovaním. Konvolučné
neurónové siete tento problém riešia tým spôsobom, že extrahujú príznaky z recepčných
poli neurónov. Následne je obrázok spracovávaný sieťou, ktorá optimalizuje interné váhy
pre jednotlivé vrstvy s cieľom dosiahnuť čo najlepšiu presnosť. Významnou časťou kon-
volučných neurónových sietí sú konvolučné vrstvy. Tieto vrstvy obsahujú neuróny, ktoré sú
napojené na vstupný obrázok, kde spracovávajú isté okolie na obrázku. Spracované okolie
je výstup pre daný neurón a je spojené s ostatnými výstupmi neurónov, ktoré spracovávali
inú časť obrázku. Konvolúcia je definovaná ako matematická operácia medzi dvoma funkci-
ami a pri spracovaní obrazu sa používa diskrétny model tejto operácie. Konvolučné vrstvy
môžu mať na vstupe výstup inej konvolučnej vrstvy a vďaka tejto vlastnosti je možné ich
reťaziť a optimalizovávať výstup.

Najúspešnejšie modely konvolučných neurónových sietí, ktoré sa presadili v oblasti de-
tekcie hrán, sú architektúry založené na VGG16 modeli medzi ktoré patrí HED a RCF. Ďalší
model, ktorý dosahoval dobré výsledky, bol model RCN, ktorý je založený na resnet101 ar-
chitektúre. Existuje veľa ďalších architektúr, ktoré dosiahli dobré výsledky, ale v tejto práci
sa zameráme hlavne na modely HED, RCF a RCN. Tieto modely využívajú to, že pri spra-
covávaní obrazu sa generuje výstup pre každú konvolučnú vrstvu. Snaha týchto modelov
je využiť výstupy konvolučných vrstiev a spájať ich do jedného finálneho obrazu. Tieto
výstupy sú oddelené do osobitných sekcií a spájané až vo finálnej fáze.

Implementácia a návrh siete

Pre úspešne navrhnutie detektoru je potrebných veľa vecí. Základom je zaobstarať datasety,
na ktorých by prebiehalo trénovanie a overovanie. Pre tento účel sa použili existujúce

datasety BSDS500, PASCAl-VOC a NYU Depth V2, ktoré boli modifikované, aby odpovedali
vstupu pre architektúry. Po preskúmaní existujúcich riešení boli navrhnuté 2 nové architek-
túry, ktoré využívajú časti existujúcich riešení a snažia sa zlepšiť výsledky. Prvá architek-
túra je založená na RCF a hlavnou zmenou je pridanie vrstiev, ktoré spájajú výsledky medzi
sekciami RCF modelu. Tieto výsledky sú používané pre vytvorenie finálneho obrázku, ale
nie sú posielané na výstup. Originálne medzivýsledky, ktoré vznikli pred spojením, sú
posielané na výstup. To je hlavne z dôvodu, že trvá dlhú dobu, kým sa dosiahnu výsledky,
ktoré sú použiteľné a stratová funkcia nebola schopná správne vyhodnocovať výsledky, aby
sa zlepšovali. Druhá architektúra má založený základ na RCF, ktorý bol pozmenený v
počte konvolučných vrstiev a zároveň pridáva bloky z architektúry RCN do danej architek-
túry. Výhoda tejto modifikácie je zvýšenie parametrov, na ktorých sa učí daná sieť. Zároveň
bloky prevzaté z RCN boli navrhnuté tak, aby pri zväčšovaní obrázkov, ktoré boli zmenšené
pri prechode navrhnutou sieťou, bola dosiahnutá najlepšia kvalita a nedošlo k degradácii
výstupu. Trénovanie navrhnutých modelov prebiehalo na Google Colab, kde je poskytnutá
možnosť GPU akcelerácie, ktorá urýchli trénovanie architektúr.

Experimenty

Po navrhnutí boli na modeli prevádzané experimenty s cieľom vylepšenia kvality. Jeden
zo základných parametrov, ktoré ovplyvňujú výsledok, je miera učenia, ktorá sa stanoví
pre sieť. Experimenty nám ukázali, že aj s vysokou mierou učenia na začiatku je možné
natrénovať detektor ak sa miera učenia upraví po začiatočných epochoch. Ďalší faktor hrala
stratová funkcia. Testovanie stratovej funkcie umožnilo vybrať funkciu, ktorá produkovala
najlepšiu kvalitu.

Záver

Boli navrhnuté 2 nové typy architektúr. Aj keď sa nepodarilo vylepšiť kvalitu detekcie od
originálnych modelov, úspech nastal z hľadiska rýchlosti. Siete sú rýchlejšie alebo porov-
nateľné pre najlepšie prípady. Do budúcna je možnosť túto prácu zlepšiť, a to hlavne
zameraním na vylepšenie kvality hraníc, ktoré identifikujú detektory.

Fast Analysis of Borders in Image

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by Matej
Kolesár under the supervision of prof.Ing. Adama Herouta, Ph.D. I mentioned all publica-
tions and sources that this thesis was based on.

. .
Matej Kolesár
May 28, 2020

Acknowledgements
I would like to thank my supervisor prof. Ing. Adamu Heroutovi, Ph.D for all the recom-
mendations and approaches that he gave me that made this work possible.

Contents

1 Introduction 3

2 Algorithmic Approach to Edge Detection 4
2.1 Edge Definition . 4
2.2 Historic Approaches to Edge Detection . 5
2.3 First Order Derivative Methods . 5
2.4 Second Order Derivative Methods . 7

3 Convolutional Neural Networks and Their use in Edge Detection 9
3.1 Convolutional Neural Networks . 9
3.2 VGG16 . 12
3.3 Holistically-Nested Edge Detection . 13
3.4 Richer Convolution Features . 14
3.5 Deep Edge . 15
3.6 RefineContourNet . 15

4 Quality Evaluation Metrics 18
4.1 Non-Maxima Suppression . 19
4.2 Cross-Validation Definition . 19

5 Existing Datasets 21
5.1 BSDS500 . 21
5.2 PASCAL VOC . 22
5.3 NYU-Depth V2 . 22

6 Design and Implementation of the Edge Detector 23
6.1 Implementation Tools . 23
6.2 Analysis of Existing Edge Detectors . 24
6.3 Implementation of the Edge Detector . 25

7 Experiments and Evaluation 31
7.1 Experiments . 31
7.2 Quality Performance . 32
7.3 Cross-Validation . 34

8 Conclusion 37

Bibliography 38

1

A Manual 41

B Poster 44

2

Chapter 1

Introduction

Edge detection represents one of the essential processes in image segmentation. Edges play
an essential role as important information about the image is encapsulated in the edges.
Since edge detection is used as the base for other classification tasks, it is important to
produce high quality edges at a fast speed.

There are many different approaches when it comes to analyzing this issue. One category
of methods consists of solving this problem using algorithmic solutions. The well-known
solutions in this field are usually older approaches that are fairly fast and accurate, but only
under certain conditions. These conditions make the detectors produce lower quality edges.
The other category of approaches became popular in the recent years and consists of using
artificial intelligence. The best results were achieved when using convolutional neural net-
works. These networks are not perfect but when compared to the algorithmic approaches,
they produce better quality results and do not have as many limitations. Although there
are several limitations present, these are usually solved with the datasets that are used to
train the network and are one of the deciding factors that determines how the network
performs.

The objective of this thesis is to present the existing solutions that solve above-mentioned
issues, analyse advantages and disadvantages of various methods and propose new ap-
proaches that use convolutional neural network to solve this problem. The structure of
this document is outlined as follows: Chapter 2 analyses the algorithmic approaches that
were mainly used in the past. Chapter 3 examines the architecture of convolutional neural
networks and the proposed types of networks used for edge detection. Chapter 4 covers the
metrics used for evaluation of the designed models. Chapter 5 introduces some of the well
known datasets used for edge detection. Chapter 6 analyses the advantages and disadvan-
tages of existing neural networks and proposes improvements. Chapter 7 experiments with
the proposed solutions and evaluates them.

3

Chapter 2

Algorithmic Approach to Edge
Detection

Edge detection [16] comprises of various mathematical approaches that are used for iden-
tification of specific points linked to rapid changes of brightness in a digital image. The
points that are associated with the rapid brightness changes are typically organized into a
set of edges. Edge detection is a fundamental tool in image processing, machine vision and
computer vision and it is particularly essential in the areas of feature detection and feature
extraction as some of the most critical information is encapsulated in edges.

2.1 Edge Definition
Nowadays, although there are many definitions of edges, the majority of the explanations
only look at the issue from a mathematical standpoint. These definitions include the change
of the gradient or an abrupt change of intensity values in the image. However, this creates
a problem when taking into consideration the fact that not all of these changes must mean
there is an edge. For example, if there is an abrupt change of color intensity on the same
object, it can be mistakenly identified as an edge. In general, all algorithmic approaches use
one of these methods to detect edges, leading to possible problems. The change of gradients
must not mean that an edge was detected and thus, in images where many gradients change,
a high amount of false edges can be detected.

The above-explained issue represents a problem between identification of the difference
between edge detection and object edge detection. Although both of these notions have
many characteristics in common, there are important differences. These differences can be
seen in Figure 2.1.

∙ Edge detection identifies changes in image intensity. These changes can occur in
the same object and usually produce more complex edge maps.

∙ Object edge detection finds the closed shape of an object and can be used to
determine the shape of an object. As this type of detection only focuses on finding
closed shaped object the images are much clearer and less complex.

4

Figure 2.1: Difference between edge detection (left) and object edge detection (right). In
the right image, object shapes can be identified where as to in the left image more edges
are displayed. [25]

2.2 Historic Approaches to Edge Detection
Despite that there are many existing strategies for edge recognition, the majority of them
can be categorized into two groups. The first group is based on approximation of the max-
imum of first derivatives. The most known approaches that belong to this category include
Roberts operator [29], Prewitt operator [28], Sobel operator [34] and Canny edge detector
[9]. The second group is focused on the detection of the zero-crossing of second deriva-
tives. The most known approaches are the Laplacian of Gaussian [21] and the Difference
of Gaussian [6].

2.3 First Order Derivative Methods
The first order methods used for edge recognition [29] are gradient focused. A gradient is
a vector, whose segments measure how quickly pixel values are changing with distance in
the horizontal and vertical direction. First order methods take the first derivative of the
intensity value across the image and find the points where the derivative is at maximum.
Generally, the first order derivative operators are very sensitive to noise and produce thicker
edges.

Robert operator

Robert operator [29] represents a first order method that focuses on gradients by computing
the sum between diagonally adjacent pixels. The image is convolved with two 2× 2 masks.
You can seen the representation of these masks in Equation (2.1).

𝐷𝑥 =

[︂
1 0
−0 −1

]︂
𝐷𝑦 =

[︂
0 1
−1 0

]︂
(2.1)

Sobel Operator

The Sobel operator [34] [29] uses intensity values in a 3×3 neighborhood around each image
pixel in order to approximate the corresponding image gradient. It uses an isotropic 3× 3
mask consisting of only integer values. It provides two separate masks: one for detecting

5

edges in a horizontal direction and another one for detecting edges in a vertical direction.
The Equation (2.2) represents the matrix. The left matrix represents the vertical direction
and the right matrix represents horizontal .

𝐷𝑥 =

⎡⎣1 0 −1
2 0 −2
1 −0 −1

⎤⎦ 𝐷𝑦 =

⎡⎣ 1 2 1
0 0 0
−1 −2 −1

⎤⎦ (2.2)

Prewitt Operator

The Prewitt operator [28] [29] calculates edges by using difference between corresponding
pixel intensities of an image. Similar to the Sobel operator mentioned in section 2.3, it
consists of two derivative masks used for horizontal and vertical direction. This can be
seen in the Equation (2.3) where the left matrix represents vertical direction and the right
matrix represents horizontal direction.

𝐷𝑥 =

⎡⎣ 1 1 1
0 0 0
−1 −1 −1

⎤⎦ 𝐷𝑦 =

⎡⎣−1 0 1
−1 0 1
−1 0 1

⎤⎦ (2.3)

Canny Edge

The Canny edge detector [9] represents a multiple stage algorithm to detect edges in an
image. There are two key parameters: an upper threshold and a lower threshold. The
upper threshold is used to mark edges that are certainly edges. The lower threshold is used
to find areas that are only a piece of an edge. The algorithm consists of 4 different stages
that process the image:

1. Blurring – as most algorithmic edge detectors are prone to noise, there is a need to
smooth the image. This is usually performed by blurring the image using a Gaussian
blur.

2. Finding gradients – gradient magnitudes and directions are calculated at every
single pixel in the image. The magnitude of the gradient at a pixel determines if it
can be classified as an edge.

3. Non-maximum suppression – only local maxima are defined as edges. This step
also thins the generated edges.

4. Edge tracking by hysteresis – the pixels found are then divided by the thresholds.
If the pixel intensity is greater than the upper threshold, there is a certainty that there
is an edge. In case the intensity level is below the lower threshold, it can be concluded
that these are non-edges. The values, which lie in between these two thresholds are
only a piece of an edge based on their connectivity. If they are connected to an upper
threshold pixel, they are considered edges.

The final image after all stages are applied, can be seen in Figure 2.2.

6

Figure 2.2: Canny edge detector applied on an image. As can be seen in the image it is
dependent on changes of the pixel intensity and as such does not manage the detect the
outline of the penguin [5].

2.4 Second Order Derivative Methods

Laplacian of Gaussian

As the name suggests, Laplacian of Gaussian (LoG) [21] is an image detector that consists
of two main parts: the Laplacian and the Gaussian. A Laplacian operator [36] is an edge
detector used to calculate the second derivatives of an image. This method monitors the
rate at which the first derivatives change and afterwards calculates if the change in adjacent
pixel values originated from an edge. Since the input image is represented as a set of discrete
pixels, there is a need to have a discrete convolution kernel that can approximate the second
derivatives in the definition of the Laplacian. Two commonly used small matrices are shown
in Equation 2.4. The values in these matrices can be inverted as it makes no difference in
the end result.

𝐷𝑥 =

⎡⎣ 0 −1 0
−1 4 −1
0 −1 0

⎤⎦ 𝐷𝑦 =

⎡⎣−1 −1 −1
−1 8 −1
−1 −1 −1

⎤⎦ (2.4)

Before the Laplacian is applied, there is a need to apply the Gaussian filter to smooth
the image. The Gaussian is defined as:

𝐺(𝑖, 𝑗) =
1

𝜎
√
2𝜋

𝑒−
1
2
(𝑖

2+𝑗2

𝜎2), (2.5)

where 𝜎 represents the standard deviation.
The final LoG detector is then defined as:

𝐿𝑜𝐺 =
𝑖2 + 𝑗2 − 2𝜎2

𝜎4
𝑒−

1
2
(𝑖

2+𝑗2

𝜎2). (2.6)

Difference of Gaussians

The Difference of Gaussians (DoG) [6] performs edge detection by performing a Gaussian
blur on an image at a specified standard deviation. The resulting image is a blurred version
of the original image. The detector then performs another blur, which is slightly weaker
than the previous one, resulting in an image, which is less blurred than the previous image.

7

The final image is then calculated by replacing each pixel with the difference between the
two blurred images and detecting when the values cross zero. The resulting zero cross-
ings are focused at edges or areas of pixels that have some variation in their surrounding
neighborhood.

8

Chapter 3

Convolutional Neural Networks
and Their use in Edge Detection

There is a large number of various approaches covering the topic of edge detection. A
modern approach to edge detection is to use artificial intelligence. The best results in the
area were achieved using the concept of convolutional neural networks (CNN) that have
the ability to learn thousands of features. The main difference between neural networks
and CNN is that CNN expect the input to represent an image. This is a major change as
it impacts the parameters that can be changed in the network.

CNNs [8] [27] utilize local spatial correlation by enforcing a local connectivity pattern
between neurons located in adjacent layers. As such, the contributions of concealed units
in layer 𝑚 are from a subset of units in layer 𝑚 − 1 units that have spatially connected
open fields.

There are many different approaches that can detect edges using CNN with the most
successful ones being patch focused and end to end detection (HED, RCF).

3.1 Convolutional Neural Networks
Numerous differences between traditional neural networks and convolutional neural net-
works (CNN) can be observed. The focus is going to be on the layers that are specific to
CNN and that are used in the implementation.

Convolutional Layer

Convolutional layer [27] extracts the features of an image while preserving the relationship
between pixels in the image. Convolution is a mathematical operation between the given
input and a filter. In most cases, the filter is represented by a 𝑛×𝑛 matrix. The definition
of convolution can be seen in the Equation (3.1):

𝑓(𝑡) * 𝑔(𝑡) =
∫︁ −∞

∞
𝑓(𝒯)𝑔(𝑡− 𝒯) (3.1)

In the area of neural networks, this operation is performed by sliding the filter across
the input image. When the filter overlaps with the pixels in the image, the above specified
operation is called, resulting in a feature map.

There are many different parameters that can be specified. The most important ones
include:

9

1. Filter – is represented by a 𝑚 × 𝑛 matrix. The depth of the filter is not specified as
it corresponds to the depth of the image.

2. Stride – represents the number of pixels the filter is moved across the image. This
majorly influences the output dimension of the image.

3. Padding – As can be see in Figure 3.1, after the operation is performed, the height
and weight of the image is reduced. This is a problem as it puts a limit on the number
of convolution layers if we are dealing with small images or have a large number of
convolution layers. To overcome this limitation, padding is used. In order to retain
the same size of the image, multiple columns and rows are added. Their value is in
most cases 0, unless it is specified otherwise.

=*
1 0

1 0

0

0

8

0

0

1 1 1 1 1 1

1 1 1 1 1 1

2 2 2 2 2 2

2 2 2 2 2 2

3 3 3 3 3 3

3 3 3 3 3 3
1

Figure 3.1: Convolution applied over image. No padding leads to reduction of the matrix
size

Batch Normalization

Batch normalization [18] is a method that is used during the training of very deep neural
networks. It standardizes the inputs to a layer for each mini-batch. This has a significant
impact on the training of the networks.

Input Layer

The input layer [27] represents the main difference between standard neural network and
CNN, as the input is expected to be an image. The image, which is represented by a tensor
is given to the input layer. A tensor is defined as 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑖𝑚𝑎𝑔𝑒𝑠 * 𝑖𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ *
𝑖𝑚𝑎𝑔𝑒_ℎ𝑒𝑖𝑔ℎ𝑡*𝑐𝑜𝑙𝑜𝑟_𝑑𝑒𝑝𝑡ℎ. One of the distinct characteristics of input layers is that they
are the first layer of the network and they have no set of weighted inputs. Their main
function is to send the image to the next layer.

Pooling Layer

Pooling layers [22] are utilized to lessen the dimensions of feature maps. This is performed
by decreasing the quantity of parameters that artificial intelligence needs to learn, leading
to a decrease in the amount of calculation in the system.

The pooling layer condenses the features present in a neighbourhood of the feature
map created by a convolution layer. In this way, further computations are performed on
condensed features rather than highlighted features created by the convolution layer.

10

There are three main types of pooling layers:

1. Max Pooling – selects the maximum value from the selected neighborhood of the
feature map covered by the filter. In this way, the output after max-pooling creates
a feature map containing the most noticeable features of the previous feature map.

2. Average Pooling – as the name suggests, it creates the average value in the selected
neighborhood.

3. Global Pooling – composes all values into a single value. In most cases, global pooling
is combined with either average or max pooling.

Concatenation Layer

This layer takes a specified number of input tensors and concatenates them together. This is
done by specifying an axis on which the operation should occur. An important prerequisite
is that all input tensors must have the same dimensions and same kernel layer depth.

Activation Function

The activation function [26] determines the output of a neuron in a network depending on
the given input. It depends on the weight of the neuron and is influenced by bias. Some of
the widely used activation functions include for example sigmoid and ReLU.

∙ Sigmoid [26] – a sigmoid function is bounded by an upper limit of 1 and a lower limit
of 0. Due to the existence of these limits, the optimum use of this function is often in
neural networks where there is a need to predict the probability of an output. Sigmoid
is defined in the Equation (3.2):

𝑆(𝑋) =
𝑒𝑥

𝑒𝑥 + 1
(3.2)

∙ ReLU [26] – a ReLU function is separated into two parts. The first part covers
cases when x is lower than 0, which leads to the result of 0. The second part covers
situations when x greater than 0, which results in the value always being positive.
This can be seen in the Equation (3.3):

𝑓(𝑥) = max(0, 𝑥) =

{︃
𝑥𝑖, 𝑥𝑖 ≥ 0

0, 𝑥𝑖 < 0.
(3.3)

Loss Functions

The loss function [1] specifies how the neural network penalizes the deviation between
the predicted output and the actual output of the image during training. Common loss
functions include cross entropy and pixel error.

1. Cross Entropy – measures the loss of a model whose output is a probability between
0 and 1. A very good model should have a very small value of the loss function. In an
ideal case, the magnitude for a perfect model should approach values close to zero.

11

2. Pixel Error – this loss function measures the differences between output pixel values
in an image. An advantage of this function is that it facilitates understanding of
changes on a pixel level. However, there are also some drawbacks to it. The main
issue is that the loss function scans the image in a pixel by pixel basis which degrades
the quality of the results.

3.2 VGG16
The VGG16 [33] model is one of the most popular models in the category of convolutional
neural networks. Most of the models that are focused on edge detection use this model as
a baseline from which they expand further.

The input into the model is of fixed size 224 × 224 RGB image. The image is then
passed into the convolutional layers, that use filters of size 3× 3. The convolutional layers
use a wide range of filter from 64 to 512. The pooling is done by 5 max-pooling layers.
Max-pooling is performed over a 2× 2 pixel window with stride 2.

Three fully-connected layers follow after the last pooling layers. The first two layers
have 4096 channels and the third layer performs 1000 way classification and contains 1000
channels. The final layer is the soft-max layer that produces the final result. All hidden
layers use the ReLU activation function. This architecture can be seen in Figure 3.2.

Figure 3.2: VGG 16 architecture [19].

12

3.3 Holistically-Nested Edge Detection
Holistically-Nested Edge Detection [35] (HED) is one of the most successful convolutional
neural networks for edge detection. As many other networks, its core is based on VGG16
3.2. The main modification is that after the last pooling layers only the convolutional
layers are kept and the fully connected layers are cut off. Before every pooling layer, a side
branch is added where the result is saved. This produces 5 side outputs and all of them
are attached to a sigmoid activation function and a cross entropy loss. All side outputs are
upscaled to the original size. After all 5 outputs are produced, they are combined into one
image. This architecture can be seen in Figure 3.3

3×3-64 conv

2×2 pool

3×3-128 conv

1×1-1 conv loss/sigmoid

concat

stage 1

stage 2

stage 3

stage 4

image

3×3-64 conv

3×3-128 conv

3×3-256 conv

3×3-256 conv

3×3-256 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

2×2 pool

2×2 pool

2×2 pool

stage 5

deconv

fusion

deconv

deconv

deconv

1×1-1 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

loss/sigmoid

loss/sigmoid

loss/sigmoid

loss/sigmoid

1×1-1 convloss/sigmoid

Figure 3.3: Illustration of the HED architecture [24]. After each pooling layer, a branch
that captures the side output is attached. These side outputs are then combined into one
image.

13

3.4 Richer Convolution Features
The Richer Convolution Features (RCF) [24] model is inspired by HED model. It adapts
the HED architecture by enriching the side outputs. The first stage takes an input image of
fixed size 𝑛× 𝑛, augments it with user predefined modifications and sends it to the hidden
layers. The hidden layers are mostly composed of convolution layers. The main difference
from HED is that after each convolution layer, a side output is generated. Afterwards,
the side output goes into two directions. The first one follows the HED architecture and
it is given to the subsequent convolutional layers. The second one takes the image into a
1 × 1 kernel size convolution layer with 21 filters. Afterwards, all these side outputs in a
given stage are combined into one image. Then the combined side outputs are upsampled
and evaluated on a cross-entropy loss function. This process repeats for every stage of
the architecture which produces 5 side outputs. Stages are separated by pooling layer
which halves the size of the image. The subsequent convolution layer after the pooling
layer doubles the filter size of the layer. Only stages 4 and 5 do not increase the filter
size. After the above mentioned process is finished, the side outputs are stored and fused
(concatenated) into one image. The complete architecture can be seen in Figure 3.4.

3×3-64 conv

2×2 pool

3×3-128 conv

1×1-21 conv

1×1-1 conv loss/sigmoid

concat

stage 1

stage 2

stage 3

stage 4

Image

∑

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

3×3-64 conv

3×3-128 conv

3×3-256 conv

3×3-256 conv

3×3-256 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

loss/sigmoid

loss/sigmoid

loss/sigmoid

loss/sigmoid

loss/sigmoid

2×2 pool

2×2 pool

2×2 pool

stage 5

deconv

fusion

∑

∑

∑

∑

deconv

deconv

deconv

Figure 3.4: RCF architecture [24] is similar to the HED architecture except for the fact
that side outputs are saved after every convolution layer. Afterwards, they are combined
with other side outputs in their stage to create one image. This produces 5 side outputs
that are combined into one image.

14

Many different architectures were tested with the best result being with a ResNet101
backend. However, the result was achieved at the cost of a significant performance decrease.

3.5 Deep Edge
The Deep Edge [7] model, compared to other CNN models, has a specific point in the data
augmentation. It selects candidate points using the Canny Edge detector that is explained in
section 2.3. Afterwards, a set of patches is extracted with the candidate points being in the
extracted patch. The KNet [10] neural networks is used. KNet consists of 5 convolutional
layers and 3 fully connected layers. Only the convolutional layers are used for the purpose of
edge detection. Afterwards, there is a regression and classification branch. The comparison
shows that the regression branch produces worse results than the classification branch. The
model representation 3.5 shows that after the candidate edges are extracted, they are scaled
into 4 different sizes and given to the network to process. The special characteristic of this
model is that 3 types of pooling layers are used: max, average, and center pooling. The best
result is achieved from combination of all pooling types. After the edge map is predicted,
a threshold with the probability of 0.5 is applied to produce the final edge map. From the
pooling layers, a surprising discovery is that max pooling, which is the most used type in
different edge detectors, produced the lowest performance.

|{z} |{z}
Fixed Weights Learned Weights

Classification Branch

Regression Branch

}

}

Figure 3.5: Deep edge architecture [7]. Candidate points are extracted from the canny edge
model, then 4 patches at different scales are sent into the network.

3.6 RefineContourNet
All previously mentioned architectures rely heavily on down sampling the image with op-
erations like pooling or convolution and then later upsampling the down sized images into
their original size. RefineNet [23] proposes an architecture that is based on ResNet101 [15]

15

and is able to combine high-level segmentation with low-level features to produce high-
resolution segmentation map. RefineContourNet [20] takes this architecture and modifies
it. Three different block architectures are taken from the original RefineNet and those are
Residual Convolution Unit (RCU), Multi-Resolution Fusion (MRF) and ChainedResidual
Pooling (CRP). The RCU block is composed of two convolutional layers that enrich the
network with more parameters. The MRF block takes 2 inputs, adjusts the dimensions
by performing convolution and adjusts the size of the image by upsampling the smaller
one and combining the 2 images. The CRP block consists of two pooling layers that help
to extract more details from the image. After each pooling layer, a convolutional layer is
applied. Afterwards, the results are combined with the original input. The architecture of
these blocks can be seen in Figure 3.6.

The final architecture then arranges the blocks in the ResNet101 style, which from a
certain point of view, is similar to RCF. There are 4 stages that produce side outputs. The
last layer in the architecture applies the block operations on the image and then proceeds
to give the image to the previous side output, where it is combined with the side output
generated in the layer. This is repeated until the first stage is reached. The final architecture
can be seen in Figure 3.6.

A major drawback of this model is that it uses ResNet101 as the backbone and even
with pre-trained weights, it impacts the speed of the network due to the size of the network.

16

Figure 3.6: RefineContourNet architecture [20]. The whole RefineContourNet architecture
with all blocks is at the top. RB represents the refine block from ResNet101. In the bottom
part, the architecture of the block can be seen. Left represents the RCU block, middle
MRF block and right is CRP block.

17

Chapter 4

Quality Evaluation Metrics

Classification is a very complex procedure and an essential component is assessing the qual-
ity of the results. Therefore, it is necessary to define several frequently occurring categories
that are commonly used. The relevant terms include true positives, true negatives, false
positives, and false negatives [31]. These terms help to facilitate a comparison of the various
outputs of a detector.

∙ True positive (tp) – the model correctly predicts a pixel as an edge

∙ True negative (tn) – the model correctly predicts a pixel that is not an edge

∙ False positive (fp) – the model predicts a pixel as an edge, when it is not an edge

∙ False negative (fn) – the model predicts a pixel as not an edge, when it is an edge

The measure that is used for evaluation is the F-measure. It consists of 2 values that
are precision and recall.

Precision [31] represents the fraction of relevant instances among the retrieved instances
and is represented in the following Equation (4.1):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
(4.1)

Recall [31] represents the fraction of the total amount of relevant instances that were
actually retrieved and is defined in Equation (4.2):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
(4.2)

Both the precision and recall represent an essential input in calculating the F-measure.
F-measure reaches its best value at 1 and worst at 0. The calculation of the F-measure
value can be seen in the Equation (4.3). R represents the recall value and P represent the
value of the precision.

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑃𝑅

𝑃 +𝑅
(4.3)

Given an edge probability map, a threshold is needed to produce the binary edge map.
The threshold can be set using three alternative approaches:

1. ODS [5] – a fixed threshold is set for every picture in the training set

18

2. OIS [5] – every picture has its own threshold that is used for evaluation

3. AP [5] – average precision (AP), is a metric used for evaluation of classification de-
tectors. It defines the average value of the maximal values for precision for a value of
recall. First, there is need for interpolation of the precision-recall curve. Afterwards,
the maximum value for every recall is averaged as can be seen in Figure 4.1.

0.0 0.1 0.2 0.3 0.4 0.5
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
e
ci
si
o
n

Interpolation
precission

Figure 4.1: Precision-recall example with interpolated AP curve.

In order to apply the terms defined in this chapter in the context of this thesis, the
toolkit from Structured Edge Detection Toolbox [12] is used. It defines a margin distance
between the pixels in the actual ground truth and the predicted edge map. This ensures
that some pixels are counted as edge even if location is not completely identical.

4.1 Non-Maxima Suppression
Non-maxima suppression [9] is a very important part of edge detection. After its application
on an image, it can thin the edges, thus producing better results. This solves the problem
that most detectors have with producing edges that are thicker than the original expected
edges in the ground truth.

4.2 Cross-Validation Definition
Cross-Validation [30] is a method that is used to evaluate the model that is trained on one
dataset to see how it would perform on another dataset. This helps to generalize the model
quality on different types of images. It also helps to identify weak and strong points in the
classification.

There are many approaches to cross validation such as Hold-out, Resubstitution, k-fold
cross-validation and many more. Each of these has its own pros and cons. The focus will be

19

on Hold-out validation. This approach separates the data into independent subsets, which
prevents overfitting but also reduces the dataset size as the images used for testing and
training are independent.

20

Chapter 5

Existing Datasets

5.1 BSDS500
The Berkeley Segmentation Dataset and Benchmark (BSDS500) [5] is a dataset which is
focused on edge detection. It is the primary dataset used for all benchmarks and evaluations.
The dataset consists of 500 images of which 300 are supposed to be used for validation
and training and the remaining 200 are for testing purposes. All images were manually
annotated by humans and each image is segmented by five different subjects on average to
create the ground truth. As can be seen in Figure 5.1, there are three different types of
ground truth all hand-drawn by humans. The difference between what some people count
as edges can be perfectly seen when comparing the images.

Figure 5.1: Examples from the BSDS500 dataset [5]. Upper left represents the original
image, the other three images are the hand drawn ground truth.

21

5.2 PASCAL VOC
The Pascal Visual Objects Classes (VOC) [13] dataset is mainly used for object detection.
The VOC dataset consists of annotated photographs collected from websites, the main
one being flickr website. A new dataset with ground truth annotations was released be-
tween 2005-2012, with the last update containing 20 different classes with 11.530 annotated
images. Examples of these annotations and original images can be seen in Figure 5.2.

Figure 5.2: PASCAL VOC [13] examples. This dataset is focused on object detection

5.3 NYU-Depth V2
The NYU-Depth V2 [25] data set is comprised of video sequences from a variety of indoor
scenes. It consists of 1.449 RGB images and depth images. The ground truth that repre-
sents the objects in an image is modified and edge maps are extracted and can be seen in
Figure 5.3.

Figure 5.3: NYU-Depth V2 [25] dataset with modified depth ground truth to edge maps.

22

Chapter 6

Design and Implementation of the
Edge Detector

This chapter is focused on analyzing existing CNN architectures, extracting the strong
points of each architecture and proposing an architecture for new detection. It also mentions
the implementation tools.

6.1 Implementation Tools

Keras

Keras [4] is a neural networks library written in Python. It is a part of Tensorflow. Keras
is comprised of various implementations of commonly used neural network parts such as
layers, activation functions, loss functions, optimizers, and many other tools that operate
with images.

Compared to some of the other standard neural networks, it supports other additional
layers used in convolution neural networks such as pooling, convolution and dropout.

Google Colab

The main environment used for development is Google Colab [3]. Google Colab is a free
cloud service with the option of GPU acceleration. The neural net is implemented using
Python version 3.7.1. Responsible for the training of the model is the framework tensorflow-
gpu version 1.15, in which Keras is included. The environment provides many different types
of graphic cards that are randomly assigned and can be used for training purpose. It also
provides the option to use Jupyter notebooks, but that option is not used as loading a lot
of external dependencies is required.

GPU Acceleration

GPU Acceleration [17] is the use of a graphics processing unit (GPU) along with a computer
processing unit (CPU) in order to accelerate highly complicated calculations. As a result,
while sequential calculations are performed in the CPU, highly complicated calculations
are computed in parallel in the GPU.

23

Matlab

Matlab (Matrix Laboratory) [2] is a programming environment for algorithm development,
numerical computation visualization, and data analysis. Matlab is used to evaluate the
performance of the implemented neural network using Structured Edge Detection Toolbox
[12]. The publicly available implementation along with the needed toolkit [12] [37] [11] is
used to evaluate the detector as the same code is used in the official evaluation provided
by the other models.

6.2 Analysis of Existing Edge Detectors
One of the fastest ways to detect edges is using Canny Edge. It provides an algorithmic
solution based on mathematical equations. Even though its execution time is fast, it has
problems with the quality of the identified images as explained in chapter 2.3. There is
also a need to set the double threshold and that proves to be difficult when working with
a variety of different images where multiple configurations are needed.

Compared to algorithmic approaches, neural networks produce edge maps with higher
quality. Moreover, the decrease in speed observed when using these approaches can be
negligible in certain architectures. The most notable results are achieved by using the RCF
and RCN architectures. RCF is based on HED and it modifies the side outputs for more
precise results. RCF focuses on the point that all layers produce a side output that can be
used for edge detection. This proposes the idea that combining multiple images produces a
higher quality of edge maps than a single edge map at the end of the neural networks even
if the other generated outputs are of lower quality. The side outputs pick up cues that can
be missing in the final image and thus their combination with other output increases the
chance that they appear in the final image and are not lost in some of the hidden layers.

The Deep Edge model stands out from other models due to its data augmentation
that applies the Canny edge algorithm to select candidate edge points. This significantly
decreases the training phase as the model only needs 50 epochs. The only problem is that
it is too dependent on the Canny edge algorithm, which is not perfect and suffers many
limitations. Although there are some modifications possible to the original Canny edge
detector, they do not increase the quality enough for this to be a consideration.

Another option for modification is proposed in the pooling layer since the Deep Edge
model experimented with using average pooling instead of max pooling with good results.
However, this proves to be useful only if the input image is segmented into multiple candi-
date edge points. This point was proven in the HED architecture where this was explored
in the original paper.

Pooling method Model ODS

Average pooling HED [35] .741
Deep Edge [7] .730

Max pooling HED [35] .782
Deep Edge [7] .690

Table 6.1: Measurements from the original HED and Deep edge model. Average pooling
only improved the quality in the Deep Edge model. All other models used max pooling to
get better results.

24

The RCN model proposed multi-level upsampling with concatenation of images along
the way. This increased the quality of the final image. It also proposed three types of
blocks, which if looked at from a certain perspective, encapsulate the idea of RCF as
they add multiple side outputs together. These blocks increase the number of learnable
parameters in the networks. They also serve as upsampling layers.

6.3 Implementation of the Edge Detector
In order to completely implement a functioning edge detector, several essential building
blocks are needed. First, the data from the datasets needs to be processed and an architec-
ture for the networks must be designed. Afterwards, the models need to be evaluated using
the same metrics as other existing models, which is necessary for comparison purposes.

The first step is to convert all the labels from the different datasets to a usable ground-
truth. This format is chosen to be the ground-truth that occurs in the BSDS500 dataset.
The NYU-depth dataset contains only depth ground truth in which the only highlighted
parts are objects not edges. As such, although this dataset cannot be used for training like
the BSDS500, it can be used with the same purpose as PASCAl-VOC for cross-validation.

To extract the edges from the NYU dataset, other methods like RCF 3.4 proposed to
use a simple edge detector as the image is separated into highlighted parts and thus even
algorithmic detector like Canny Edge, that suffers from lighting conditions, can produce
high quality edges that can be used as ground truth. The result can be seen in Figure 6.1.

Figure 6.1: Left original image, middle object highlighted ground truth, left transformed
edge ground truth.

For the parsing of the data, cv2 is used to read each image from the datasets. Each
image and ground truth is resized to the same size that corresponds to the required size
that the neural network expects. One of the few problems with cv2 is that it uses BGR
color model instead of the usual RGB that is more commonly used in images. Due to this
issue, a conversion is needed. A very important step is to augment the data for later use.
This enhances the results as it changes the original images and therefore in a way increases
the existing dataset. Each augmentation has a chance of occurring with the possibility of
multiple effects being applied to one image. Augmentation is used for on the BSDS500
dataset due to the low number of training images.

Several augmentations were applied during testing. However, not all of them had a
positive effect. It is important to note that although multiple effects can be applied to the
image, some are mutually exclusive. The augmentations used are listed below:

∙ Gaussian blur – applying this is used to reduce image noise and detail.

25

∙ Gamma correction – changes the light conditions by making light areas darker and
dark areas lighter.

∙ Brightness change – changes the light conditions. If increased, brightness of all
areas is lighter, if decreased, all areas are darker.

∙ Gaussian noise – adds noise to the image. This is specially done after the detector
had problems detecting edges in images that contained noise.

∙ Rotation – rotate the image along with the ground truth.

Design of the Edge Detector

One of the findings from section 6.2 is that although side outputs increase the quality of the
image, the choice of side outputs is materially important. After comparing HED and RCF,
the result that is first observed is that the first side output in HED produced a much lower
quality,than the side output in RCF. The difference is in the concatenation of the images
from all convolution layers instead of just one image. After a comparison with the other
layers, it is observed that an increase in convolution layers before generating the image
should improve the quality of the first layer. As such, the increase should also be applied
to the second and third layer since the best results are observed on the fourth layer. The
fifth layer produces edge with lower quality, however, it highlights part of the edges, which
are usually also captured by the other layers. Therefore, the overall quality of final image
should not be impacted severely as the issues linked to the fifth layer are mediated by the
functionality of layers one to four.

The other important part is the concatenation of the side outputs. RCF proved that
rather than ignoring the generated side outputs, the concatenation of unused convolution
results improved the quality. As such, there should be a consideration to link the con-
catenated side outputs with other layers to produce more precise results instead of just
combining them in separate layers.

A very important factor was deciding the learning rate of the model. In the first
convolution layers, there is no problem even with higher learning rates (i.e. 1𝑒−2, 1𝑒−1).
However, in the lower levels in architectures like HED and RCF, where the number of filters
is increased from 64 to 512, a high learning rates stops the detector from picking up small
details and produces side outputs with no values as can be seen in Figure 6.2.

According to these identified points, there are 2 architectures that are designed and
evaluated. One is based on RCF and the other one is inspired by RCN.

RCF Based Achitecture

The first architecture is based on RCF and tries to propose modifications that would improve
the quality. In the original RCF, the side outputs were combined into one final image as the
final step and they were all combined at once. The proposed change is to slowly add them
to the previous layer, introducing a dependency on the layers. This is performed on the
basis that the results from the last stage should increase the quality of the previous stage.
This dependency is introduced between all stages. All side outputs that are generated this
way are still evaluated by the loss function and added to a final image. The 5 original
outputs are still given to a convolution layer with a sigmoid activation that evaluates the
network with the loss function. The reason that the concatenated outputs are not evaluated

26

Figure 6.2: Example of how a high learning rates stops the detector from identifying edges
under certain conditions (i.e. large filters). Left is lower number of filter while right is
higher number of filters and both were trained under the same learning rate.

is that the lower levels take a fairly long time to reach a sufficient quality and evaluating
the concatenated results proved to be very difficult.

3x3- N conv 3x3- N conv

3x3- N conv 3x3- N conv

3x3- N conv 3x3- N conv

∑

Conv block

Conv Block - 64

Conv Block - 256

Conv Block - 128

Conv Block - 512

Conv Block - 512

∑

∑

∑

∑

∑ ∑

∑

∑

∑

∑

Max-Pooling 2x2

Max-Pooling 2x2

Max-Pooling 2x2

Max-Pooling 2x2

Figure 6.3: RCF based architecture.

27

RefineContourNet Based Architecture

The second architecture combines RCF and RCN. It takes the results found from RCF and
combines them with the advantages proposed in RCN. The 5th layer from RCF is removed
as the quality that it produced is too low, and in this type of architecture that relies on
previous results, it would have a severe impact. The remaining 4 layers first produce the
side outputs in the standard RCF form. Afterwards, for each stage, the RCU, MRF, CRP
blocks are used that originate from the RefineNet architecture. An example of these block
can be seen in 6.5. The last stage takes the produced side output, applies the RCU, MRF
and CRP blocks on it and gives it to the previous layer. That layer repeats the process
with the only difference being that the MRF block takes the input that was gotten from
the next layer and combines it with the output it currently has in the MRF block. This is
performed until the first layer is reached that generates the final image. The advantages of
this approach are multiple. As it produces only 1 output image, the input requirements are
lower than the original RCF architecture that needed multiple ground truths for validation
purposes and evaluation of the side output results.

Configuration of the Detector while Training and Testing

To configure parameters for training and testing, the file config.json is used. There are
many parameters that can be configured in this file that change the training process of the
network.

One of the most important ones are:

∙ Batch size – defines the number of images that will be given to the network at a
single time.

∙ Epochs – the number of epochs that the model will take to train.

∙ Learning rate – defines the value that adjusts the weights of our network.

∙ Dataset path – expects a file that contains the location of images and their corre-
sponding ground truth. This parameter can be set for training directory and valida-
tion directory.

∙ Data augmentation – disable/enable data augmentation.

The training phase is a very cost-heavy process and is performed using Google Co-
lab which provides the option of GPU acceleration that increases the execution speed
significantly. One part that is important and is not included in the configuration file
are the settings of the Keras callback functions. The callback functions used include
ReduceLROnPlateau, ModelCheckpoint, LearningRateScheduler and EarlyStopping.

∙ ReduceLROnPlateau – reduces the learning rate when the loss function stagnates.
In this callback function, it is defined how many epochs the function has to wait
before the changes of the learning rate are applied. The learning rate changes by a
predefined factor.

∙ ModelCheckpoint saves the best result of the model according to the loss function.
It is defined how often the save occurs and what to save as there is an option to only
save the model weights.

28

3×3-64 conv

2×2 pool

3×3-128 conv

1×1-21 conv

1×1-1 conv

stage 1

stage 2

stage 3

stage 4

image

∑

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

3×3-64 conv

3×3-128 conv

3×3-256 conv

3×3-256 conv

3×3-256 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

2×2 pool

2×2 pool

deconv
∑

∑

∑

deconv

deconv RCU MRF CRP

RCU

deconv

RCU

RCU

MRF CRP

RCU

deconv

MRF CRP

4 x RCU

RCU

deconv
MRF 2 x CRP

1×1-1 convOutput

Figure 6.4: Architecture based on RCF and RCN. 4 stages generate side outputs.

Figure 6.5: RCU, MRF and CRP blocks taken from RefineNet countour [20].

∙ LearningRateScheduler is similar to ReduceLROnPlateau as it impacts the learn-
ing rate with the difference that ReduceLROnPlateau reduces the learning rate when
no improvements are made while this function changes the learning rate after a certain
number of epochs is reached. The learning rate is user-defined.

29

∙ EarlyStopping occurs if the model did not have any improvements in a certain
period. This value should always be defined much higher than ReduceLROnPlateau
or LearningRateScheduler because if the learning rate is too small, it takes the model
a long time to show improvements.

30

Chapter 7

Experiments and Evaluation

7.1 Experiments
The experiments are performed by measuring the performance of the designed edge de-
tectors using the ODS, OIS and AP metrics. For both proposed architectures, the loss
function is observed and the output results are analyzed. This helps to optimize some
of the hyper-parameters (i.e. learning rate). Afterwards, the models are compared using
cross-validation with the datasets mentioned in section 5. The negative results are also
analyzed and solutions to improve them are proposed. The proposed models are refered to
as RCF (For RCF based architecture) and RCN (For RCF and RCN based architecture).

As mentioned in section 6.3, the choice of the correct learning rate plays an essential
role. In many of the studied models, the learning rate is set to 1𝑒− 6 or even lower. As a
result of this, the edge detector is fairly slow when training. The approach attempted is to
slowly increase the learning rate and see if it produces desirable results even with a faster
learning rate.

On the RCF architecture, the slow learning rate greatly impacted the first side output.
As there are too few parameters to learn and a combination of multiple images is used, it
took a fairly long time for this layer to pick up edges. Upon an increase of the learning
rate, it managed to pick up more edges but at the cost of subsequent layers producing
worse results. This issue could be solved by adding a scheduler. The addition proved to
be helpful as the learning rate could be set high for the first 50 epochs, which helped the
first layer detection. Afterwards, the learning rate was reduced to a lower level to optimize
other layers.

The RCN architecture does not have problems even with higher learning rates as the
block taken from RCN provided a larger number of parameters to learn in the early stages.
The high learning rate helped the detector to quickly identify edges but with minimal
improvements after a certain number of epochs was reached. To solve this, a lower learning
rate was applied using the keras in-build callback function ReduceLROnPlateau. If the
quality did not improve for 50 epochs, then the learning rate was multiplied by a factor of
0.2. This was repeated until the minimal set learning rate is reached (1e-7).

Another important aspect is the choice of the correct loss function for evaluation. There
were 2 types of loss functions that were considered and experimented with: cross-entropy
loss and pixel error. The best results were obtained from the cross-entropy loss and the
detectors that were training using this loss function produced edges of higher quality. The
main problem with the pixel error was that it produced edge maps where the object outlines

31

could be identified but the edges were not undisturbed. The cross entropy loss produced
smooth edges in comparison that can be seen in 7.1.

Figure 7.1: Difference between the quality of the loss functions. Left is pixel error, right is
cross-entropy. Both were used and experimented on using the proposed RCN structure.

0 20 40 60 80 100
Epochs

0.0205

0.0210

0.0215

0.0220

0.0225

Lo
ss

Figure 7.2: Cross-entropy loss function on the RCF model. Only the first 100 epochs are
displayed because after them in improved in very small amounts.

Figure 7.2 displays how the loss function changed while training the model. Only the
first 100 epochs are displayed as the loss function did not change significantly for the rest
of the training. The reason the loss function does not change very drastically is the result
of the set learning rate. During the first epoch the loss function started around the value
of 3 but the end result 0.0225 at the end.

7.2 Quality Performance
This chapter is focused on evaluating the detectors with the best quality. When evaluat-
ing using the ODS, OIS and AP metric on the BSDS500 dataset, the recommended split
was used (200 test images). All images are resized to correspond to the ground truth in

32

BSDS500. This produces slight problems when evaluating the results as there can be some
issues when resizing the images. Despite that, this was also performed in other works and
the quality drop is expected to be negligible.

Figure 7.3: Results of the edge detectors, from left original image, ground truth, Own RCF
based model, Own RCN based model.

The Figure 7.3 represents the results over the BSDS500 dataset. The RCN based model
model produces more complex edges but suffers from limitations which can be seen in the
last row of the image where the main outline of the ground truth is present in the image
but there are many other edges although not as sharp when compared to the tiger seen in
the image. The RCF based detector performs better from this standpoint as it does not
detect as many edges as RCN based but at the cost of the quality of the detected edges.
The best example of this behaviour is in the last row where it identifies the outline a stripes
of the tiger but it is hard to identify what object it represents when looking at it with a
human eye.

33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

[F=.80] Human
[F=.62] Own RCN

Figure 7.4: Precision recall curve for RCN (left) and RCF (right) model.

The Graph 7.4 represent the precision-recall curve that is used to evaluate the ODS,
OIS and AP metrics. The results can be seen in Table 7.1 with the comparison of other
methods.

Method ODS OIS AP
Human .80 .80 -
Deep Edge [7] .753 .772 .807
HED [35] .782 .804 .833
RCF [24] 0.806 0.823 -
Deep Contour[32] .756 .773 .797
Canny [9] .600 .640 .580
N4-fields [14] 0.753 0.769 -
RCN [20] .823 .838 .853
OWN MODEL RCF 0.675 0.700 0.584
OWN MODEL RCN 0.619 0.649 0.535

Table 7.1: Performance of different models on the BSDS500 dataset

7.3 Cross-Validation
A very important factor is how the detector behaves on different types of data. For this pur-
pose, the PASCAL VOC and NYU depth V2 datasets were used. These datasets specialize
in object detection, compared to the BSDS500 dataset that is focused on edge detection
and as such the predicted edge maps are expected to be more complex than the ground
truths.

34

NYU depth V2

The NYU depth dataset is compromised of indoor images with a large amount of objects
in each image. The ground truth that it expects are only the object outlines. As such
the quality compared to the ground truth is relatively low. Figure 7.5 shows the results of

Figure 7.5: Results over the NYU depth V2 dataset. From left original image, ground
truth, Own RCF based model, Own RCN based model.

the detectors over some examples of the dataset. The RCF based detector performs better
than the RCN based detector when comparing these images. It still detects too many edges
when compared to the ground truth. The RCN based model does not perform very good
as it identifies too many edges and is too precise. This problem is expected as it also was
a problem on the BSDS500 dataset.

35

PASCAL VOC

The PASCAL VOC dataset is focused on object detection. The ground truths contain 20
different classes that can be be found.

Figure 7.6: Results over the PASCAL VOC dataset. From left original image, ground truth,
Own RCF based model, Own RCN based model.

The observed results are similar to the ones that were seen in the NYU depth V2 dataset.
The RCF based detector seems to perform better as the edges are not as complex. The
RCN based detector identifies too many edges and as such the results do not correspond to
the ground truth.

36

Chapter 8

Conclusion

The goal of this thesis was to analyze existing edge detectors that use convolutional neural
networks with the objective of designing a new detector that would either improve the
quality or speed of the edge detection.

Altogether, two architectures were designed that were focused on edge detection. The
first one modified the existing richer convolutional features (RCF) architecture with en-
riching the output. The side layers are combined in between stages to optimize the result.
The second one combines the architecture of RCF and combines it with blocks that are
part of RefineContourNet (RCN). This increases the number of learning parameters for the
image and as such, should increase the quality. The designed models were trained using
Google Colab with GPU acceleration. Existing datasets are used and augmented data is
given to the models during training. Experiments were done on these models to improve
the quality and afterwards the models were evaluated. The best result was produced from
the architecture inspired from the combination of RCF and RCN with an ODS score of
0.675. Although the designed models did not manage to surpass the existing architectures
in the quality of the detected edges, they managed to improve speed thanks to their smaller
size.

Future improvements could definitely be made as the quality of the detected edges could
improve with the consideration of using pre-trained weights of small architectures as the
backbone and enriching them with the goal of better edge quality with the smallest drop
in speed. Another option is the use of different datasets as only one dataset was used that
specialized on edge detection.

37

Bibliography

[1] Natural Language Processing with Deep Learning [online]. [cit. 2020-04-22]. Available
at: https:
//web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture4.pdf.

[2] MATLAB - MathWorks - MATLAB & Simulink [online]. The MathWorks, Inc., 2019
[cit. 2020-05-22]. Available at:
https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab.

[3] Welcome To Colaboratory - Colaboratory [online]. 2019 [cit. 2020-05-22]. Available at:
https://colab.research.google.com/.

[4] Keras: the Python deep learning API [online]. 2020 [cit. 2020-05-22]. Available at:
https://keras.io/.

[5] Arbelaez, P., Maire, M., Fowlkes, C. and Malik, J. Contour Detection and
Hierarchical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
Washington, DC, USA: IEEE Computer Society. may 2011, vol. 33, no. 5,
p. 898–916. DOI: 10.1109/TPAMI.2010.161. ISSN 0162-8828. Available at:
http://dx.doi.org/10.1109/TPAMI.2010.161.

[6] Assirati, L., Silva, N. R. da, Berton, L., A. Lopes, A. de and Bruno, O. M.
Performing edge detection by difference of Gaussians using q-Gaussian kernels. 2013.
DOI: 10.1088/1742-6596/490/1/012020.

[7] Bertasius, G., Shi, J. and Torresani, L. DeepEdge: A Multi-Scale Bifurcated
Deep Network for Top-Down Contour Detection. 2014.

[8] Bhanu, B. and Kumar, A. Deep Learning for Biometrics. Springer International
Publishing, 2017. 219-225 p. Advances in Computer Vision and Pattern Recognition.
ISBN 9783319616575.

[9] Canny, J. A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence. 1986, PAMI-8, no. 6, p. 679–698.

[10] Cui, Q., Gao, B., Bian, J., Qiu, S. and Liu, T.-Y. KNET: A General Framework
for Learning Word Embedding using Morphological Knowledge. 2014.

[11] Dollár, P. and Zitnick, C. L. Structured Forests for Fast Edge Detection.
In: ICCV. 2013.

[12] Dollár, P. and Zitnick, C. L. Fast Edge Detection Using Structured Forests.
ArXiv. 2014.

38

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture4.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture4.pdf
https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
https://colab.research.google.com/
https://keras.io/
http://dx.doi.org/10.1109/TPAMI.2010.161

[13] Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J.
et al. The Pascal Visual Object Classes Challenge: A Retrospective. International
Journal of Computer Vision. january 2015, vol. 111, no. 1, p. 98–136.

[14] Ganin, Y. and Lempitsky, V. 𝑁4-Fields: Neural Network Nearest Neighbor Fields
for Image Transforms. 2014.

[15] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. 2015.

[16] Hlavsa, Z. et al. Digital Image Processing and Analysis: Human and Computer
Vision Applications with CVIPtools. 2nd ed. CRC Press, 2010. 140-144 p. ISBN
978-1-4398-0205-2.

[17] Holloway, J., Kannan, V., Zhang, Y., Chandler, D. and Sohoni, S. GPU
Acceleration of the Most Apparent Distortion Image Quality Assessment Algorithm.
Journal of Imaging. september 2018, vol. 4, p. 111. DOI: 10.3390/jimaging4100111.

[18] Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015.

[19] Kamilaris, A. and Prenafeta Boldú, F. A review of the use of convolutional
neural networks in agriculture. The Journal of Agricultural Science. june 2018,
p. 1–11. DOI: 10.1017/S0021859618000436.

[20] Kelm, A. P., Rao, V. S. and Zoelzer, U. Object Contour and Edge Detection with
RefineContourNet. 2019. DOI: 10.1007/978-3-030-29888-3_20.

[21] Kong, H., Cinar Akakin, H. and Sarma, S. A Generalized Laplacian of Gaussian
Filter for Blob Detection and Its Applications. Cybernetics, IEEE Transactions on.
january 2013, vol. 43, p. 1719–1733. DOI: 10.1109/TSMCB.2012.2228639.

[22] Lee, C.-Y., Gallagher, P. W. and Tu, Z. Generalizing Pooling Functions in
Convolutional Neural Networks: Mixed, Gated, and Tree. In: Gretton, A.
and Robert, C. C., ed. Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics. Cadiz, Spain: PMLR, 09–11 May 2016, vol. 51,
p. 464–472. Proceedings of Machine Learning Research. Available at:
http://proceedings.mlr.press/v51/lee16a.html.

[23] Lin, G., Milan, A., Shen, C. and Reid, I. RefineNet: Multi-Path Refinement
Networks for High-Resolution Semantic Segmentation. 2016.

[24] Liu, Y., Cheng, M.-M., Hu, X., Wang, K. and Bai, X. Richer Convolutional
Features for Edge Detection. 2016.

[25] Nathan Silberman, P. K. and Fergus, R. Indoor Segmentation and Support
Inference from RGBD Images. In: ECCV. 2012.

[26] Nwankpa, C., Ijomah, W., Gachagan, A. and Marshall, S. Activation
Functions: Comparison of trends in Practice and Research for Deep Learning. 2018.

[27] O’Shea, K. and Nash, R. An Introduction to Convolutional Neural Networks. 2015.

[28] Prewitt, J. M. S. Object enhancement and extraction. In:. 1970.

39

http://proceedings.mlr.press/v51/lee16a.html

[29] Rashmi and Saxena, R. Algorithm and Technique on Various Edge Detection : A
Survey. Signal & Image Processing : An International Journal. june 2013, vol. 4,
p. 65–75. DOI: 10.5121/sipij.2013.4306.

[30] Refaeilzadeh, P., Tang, L. and Liu, H. Cross-Validation. Encyclopedia of database
systems. Springer: New York. 2009, vol. 5.

[31] Saito, T. and Rehmsmeier, M. The PrecisionRecall Plot Is More Informative than
the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PloS
one. march 2015, vol. 10, p. e0118432. DOI: 10.1371/journal.pone.0118432.

[32] Shen, W., Wang, X., Wang, Y., Bai, X. and Zhang, Z. DeepContour: A Deep
Convolutional Feature Learned by Positive-sharing Loss for Contour Detection. June
2015. DOI: 10.1109/CVPR.2015.7299024.

[33] Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2014.

[34] Sobel, I. An Isotropic 3x3 Image Gradient Operator. Presentation at Stanford A.I.
Project 1968. february 2014.

[35] Xie, S. and Tu, Z. Holistically-Nested Edge Detection. 2015.

[36] Yasiran, S., Jumaat, A., Malek, A., Hashim, F., Nasrir, N. et al.
Microcalcifications segmentation using three edge detection techniques. In:.
November 2012, p. 207–211. DOI: 10.1109/ICEDSA.2012.6507798. ISBN
978-1-4673-2162-4.

[37] Zitnick, C. L. and Dollár, P. Edge Boxes: Locating Object Proposals from Edges.
In: ECCV. 2014.

40

Appendix A

Manual

This manual displays the expected project structure and needed prerequisites. As the
implementation environment was google colab the manual is going to be focused on the
settings on this environment.

Project Structure
This is the recommended project structure:

Figure A.1: Structure of the directory

Scripts description:

∙ config.json – Configuration file

∙ main.py – used for training

∙ eval.py – runs the saved weights in config file on image set

∙ data_processing.py – contains generators that supply the images for training

41

∙ model.py – contains the RCF based model

∙ rcn_model.py – contains the RCN based model

Folder explanation: The eval folder contains 2 subfolders. One stores the results for RCN
based model. The other one stores the results for the RCF based model. Model folders
contains the model weights that are saved during training.

config.json explanation:

∙ image_x and image_y – set input dimension for RGB image

∙ image_gt_y and image_gt_y – set input dimension for ground truth

∙ image_channels – defines number of image channels for both images and ground
truths

∙ epochs – number of epochs for training

∙ batch_size – batch size for one epoch

∙ length – number of rows taken from list file. Must at most be equal to the length of
images in a list file

∙ val_length – number of rows that will be read from validation list

∙ path – specifies path to the list file for the dataset

∙ path_val – specifies path to the validation list file for the dataset

∙ model – RCN or RCF, sets which model will be used

∙ learning_rate – set the learning rate for training

∙ best_res_rcn – path to stored weights for rcn model

∙ best_res_rcf – path to stored weights for rcf model

∙ use_weight – 1 or 0, sets if weights should be loaded.

∙ base_path – defines the base path to the dataset. Can be used in combination with
list file.

∙ eval_image – path to test images

∙ eval_gt – path to corresponding test groundtruth

∙ enable_augmentation – 1 or 0, defines if augmentation should be used

42

Project Settings
The first important part is to install the correct version of keras. This is done by running
the command !pip install tensorflow-gpu==1.15 in a Jupyter notebook. For training
purpose it is recommended to enable the GPU usage. To set this setting got to Runtime in
the menu. Then select Change runtime type and choose GPU in the drop down menu for
hardware acceleration. All other dependencies (Openccv..) are already included in colab
and do not need installation.

To run the training phase of the program you just need to execute the script main.py. It
automatically parses the config file. It does not take any parameters. To use the pre-trained
weights and generate images for evaluation use eval.py

43

Appendix B

Poster

Figure B.1: Poster A2 format

44

	Introduction
	Algorithmic Approach to Edge Detection
	Edge Definition
	Historic Approaches to Edge Detection
	First Order Derivative Methods
	Second Order Derivative Methods

	Convolutional Neural Networks and Their use in Edge Detection
	Convolutional Neural Networks
	VGG16
	Holistically-Nested Edge Detection
	Richer Convolution Features
	Deep Edge
	RefineContourNet

	Quality Evaluation Metrics
	Non-Maxima Suppression
	Cross-Validation Definition

	Existing Datasets
	BSDS500
	PASCAL VOC
	NYU-Depth V2

	Design and Implementation of the Edge Detector
	Implementation Tools
	Analysis of Existing Edge Detectors
	Implementation of the Edge Detector

	Experiments and Evaluation
	Experiments
	Quality Performance
	Cross-Validation

	Conclusion
	Bibliography
	Manual
	Poster

