
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

REIMPLEMENTATION OF COREDATA IN C++
OBJEKTOVÁ DATABÁZE TYPU COREDATA PRO C++

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MICHAL HORNICKÝ
AUTOR PRÁCE
SUPERVISOR Ing. MARTIN HRUBÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
Core Data is important component of software ecosystems on Apple’s platforms. The main
shortcoming of Core Data is the limited number of platforms, on which it can be utilized.
This bachelor’s thesis documents the process of analysis of Core Data, subsequent design
and implementation of CoreStore library. Implemented library is written in C++, and aims
to provide functionality of Core Data on other platforms.

Abstrakt
Core Data je kľučovou súčastou softvérových ekosystémov na platformách od firmy Apple.
Hlavný nedostatok Core Data je obmendzené množstvo platforiem, na ktorých je možné túto
knižnicu využívať. Táto bakalárska práca sa zaoberá analýzou tejto knižnice, a následným
návrhom a implementáciou knižnice CoreStore, ktorej gólom je poskytovať funkcionalitu
Core Data pre aplikácie vyvíjane v programovacom jazyku C++.

Keywords
Object database, Core Data, Apple, C++, SQLite

Klíčová slova
Objektová databáza, Core Data, Apple, C++, SQLite

Reference
HORNICKÝ, Michal. Reimplementation of CoreData in C++. Brno, 2017. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Hrubý Martin.

Reimplementation of CoreData in C++

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Martin Hrubý, Ph.D. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Michal Hornický

May 14, 2017

Acknowledgements
I would like to thank Ing. Martin Hrubý, Ph.D., the supervisor of this thesis, for extremely
valuable feedback provided during frequent meetings.

Contents

1 Introduction 3

2 Current state 4

2.1 Core Data . 5

2.1.1 Core Data stack . 5

2.1.2 Core Data usage . 8

3 System Design 10

3.1 Component definitions . 10

3.2 Object lifetime . 14

3.3 Core functions . 16

3.3.1 ObjectContext functions . 16

4 Implementation 22

4.1 Core implementation . 22

4.1.1 Project structure . 25

4.1.2 External dependencies . 26

4.2 Database interface . 27

4.2.1 Persistent Store and extendability 27

4.2.2 SQlitePersistentStore . 27

4.3 Examples and usage . 28

4.3.1 Class and EntityModel definition . 28

1

4.3.2 Common usage patterns . 29

4.3.3 Example application . 30

5 Testing and verification 32

5.1 Testing . 32

5.2 System performance . 33

6 Conclusion 36

Bibliography 37

Appendices 38

A Object modification algorithms 39

B Measured performance data 46

2

Chapter 1

Introduction

Apart from processing data, most software requires a simple way to store structured data.
Apple’s Core Data aims to solve this problem. Core Data is object graph persistence and
management framework, working very much like Object-oriented database for Objective-C
runtime. It provides an easy way for applications to store highly object-oriented data. It
also provides methods for effectively managing this data and very powerful query system.
However, its requirements limit its usability. It requires the Objective-C runtime, and
only works on Apple platforms. The goal of this thesis is to provide an open-source
alternative, which does not require the heavy Objective-C runtime and is not tied to the
specific operating system. The implementation language is C++, which can run on a wide
variety of platforms, and its runtime library is much smaller.

The product of this thesis is design and implementation of CoreStore library. It roughly
follows the design of Core Data, while adapting Core Data concepts to C++ ecosystem. It’s
implemented using modern C++, and should be easy to incorporate into existing software.

This thesis consists of four chapters. The first chapter describes Core Data and its
structure. The second chapter describes design of CoreStore library. The third chapter more
closely describes actual library implementation, and explains how the concepts specified in
Chapter 2 were translated into working, ergonomic C++ code. It also aims to show basic
usage patterns of implemented library. The last chapter deals with verification and testing
of the implementation. The library was thoroughly tested, and this Chapter explains how
actual testing was performed. It also presents the measured performance of implementation.

Throughout this thesis, several terms that might not be familiar to the reader are
used. The meaning of most of these terms is the same as it is in Core Data or similar
database systems. The term User is used in the following sense: User is a programmer,
that uses CoreStore library in his/her software, in order to persist some data across multiple
executions of developed software.

3

Chapter 2

Current state

Most frequently used database systems are based on the relational data model. This model
is based on the mathematical concept of relation and uses tables with columns and rows to
store data[5]. This abstraction does not directly map to objects in object-oriented languages.
This gap is commonly solved by introducing object-relational1 mapping(ORM) layer into
developed software. Object-relational mappers serve as translation layer. This translation
layer provides tools for modelling object-oriented data structures, and internally translates
created object-oriented model into the relational data model.

Object-oriented databases provide abstractions better suited for modelling
object-oriented data. They model data as a set of objects belonging to specific class. Each
object can be uniquely identified and contains attributes and references to other objects.
This abstraction maps directly to object-oriented programming languages and therefore is
better suited for modelling object-oriented data[7]. Object oriented databases are
commonly very tightly integrated with one language/runtime, and use hosting language
constructs for performing individual actions.

These are some object-oriented databases that were at evaluated during the design of
the CoreStore library.

ObjectDatabase++ - Is object-oriented database management system for C++ and
C#, designed for easy embeddability into existing code, and server usage with
minimal maintenance. It provides support for multi-process transactions, and
interesting indexing methods.

Objectivity/DB - Is multi-language object database, supporting C++, C#, Java or
Python. It is designed as distributed database solution, with highreliability
guarantees with high data throughput. It supports multiple platforms and is
arguably most popular object-oriented database in the enterprise context.

ObjectStore - Is Object-oriented database for C++, that heavily integrates into C++
language, allowing the creation of database object by using an overloaded new

1https://en.wikipedia.org/wiki/Object-relational_mapping

4

operator, and dynamic loading of object by trapping pointer exceptions. It is used
heavily in many fields, including telecomunications, GIS2 and government services.

Core Data - Is object oriented database for Objective-C runtime developed by Apple Inc.
that served as basis of this thesis. Its structure is explained in following section.

2.1 Core Data

Apple’s Core Data is an object graph and persistence framework developed for their
macOS and iOS platforms. It could be classified as ORM, but it more closely resembles
object oriented database. It provides tools for storing complex object graphs into a
persistent medium. It also provides abstractions for detailed management of individual
object lifetimes, monitoring changes to these objects, validating of values stored in them
and efficient integration with user interfaces. Other capabilities include effective data
migrations after changes to the data model, that can be automatic or manual. One of the
most powerful features of Core Data is extremely sophisticated query capability.
Programmer working with Core Data can perform complex queries against persistent
storage medium, and have the user interface dynamically updated based on changes in
object graph[2].

2.1.1 Core Data stack

This section aims to examine Core Data stack in terms of its components. Each component
has one specific purpose in this system. Figure 2.1 shows what position in this stack several
of the most important components occupy.

Figure 2.1: Core Data stack 3

2https://en.wikipedia.org/wiki/Geographic_information_system
2Image retrieved from: https://blog.codecentric.de/en/2014/11/concurrency-coredata/

5

https://blog.codecentric.de/en/2014/11/concurrency-coredata/

NSManagedObjectModel

This class contains detailed data model. It consists of collection of entity models
(NSEntityDescrition). It is created from a .mom file, which is bundled with an
application, and contains data model in XML format. It provides methods for retrieving
individual entity models.

NSEntityDescription

Contains metadata associated with one particular entity - it name, attributes and
relationships. It also contains references to NSEntityDescriptions of derived and deriving
classes.

NSPersistentStoreCoordinator

This component serves as an intermediate layer between NSManagedObjectContext and
NSPersistentStore. It groups different persistent stores, and presents an interface to
NSManagedObjectContext so that multiple persistent stores can appear as single one.
This component allows for storing multiple objects within single object graph in multiple
persistent stores.

NSPersistentStore

This component presents an interface to storage medium. The medium can have different
forms based on speed, concurrency and safety requirements. It has an interface for loading
and saving information to persistent medium, and heavily uses object-oriented class
hierarchy. Provided store types include: XML, Binary, SQLite, in-memory. XML
persistent store uses XML files to persist objects. This type of store does not provide
exceptional performance. Binary persistent store serializes objects into binary format and
stores them as files. This store provides acceptable performance and has small storage
requirements. The SQLite persistent store uses SQLite database to store objects. It
provides acceptable performance and very fast queries.The in-memory persistent store is
fastest of all persistent stores, but it does not persist data across multiple executions of an
application.

NSManagedObjectContext

This is the most important component in Core Data. The programmer mainly interacts with
this component. Its primary responsibility is to manage a collection of NSManagedObjects
that constitute an object graph. Each managed object in this context must be unique,
with respect to its Id. NSManagedObjectContext controls object lifetime, allowing it to
load and unload(fault) objects on demand and perform validation of objects and their

6

attributes/relationships. It is also responsible for proper handling of relationships and
ensuring consistency of inverse relationships[1].

Figure 2.2: Example inverse relationship4

Figure 2.2 shows simple data model with an inverse relationship. In this model, entity
User has a relationship with entity Note named User.notes. This relationship is mirrored
by relationship from Note to User named Note.user. These 2 relationships denote same
information from 2 different places. In simple ORM, updating one relationship would
require a manual update of inverse relationship, or one relationship to be dynamically
generated from the other one. In Core Data it is NSManagedObjectContext’s job to ensure
these types of relationships are kept consistent. By removing one object from User.notes,
the removed object should also have its Note.user set to null. Core Data ensures this
consistency only when inverse relationships are constructed and marked as such in data
model editor.

NSManagedObjectId

Is unique identifier of NSManagedObject in its NSManagedObjectContext. It contains fields
that identify NSPersistentStore in which this object is stored, NSEntityDescription to which
object belongs, and unique per-instance identification. NSManagedObjectId must be unique.

NSManagedObject

This class is the root of the persistable class hierarchy. It contains several attributes
crucial for Core Data. These attributes include NSManagedObjectId and reference to
NSManagedObjectContext. Object values can be retrieved and modified by
setValue:forKey and getValue:forKey methods. Upon the first retrieval of an object from
the persistent store, this object does not contain its attributes or relationships - it is in
the fault state. Actual values are loaded only on demand. This can be altered by using
fetch request with eager loading of object attributes and specific relationships.

4Image retrieved from: https://cocoapods.org/pods/Sync

7

https://cocoapods.org/pods/Sync

2.1.2 Core Data usage

Probably the first step of integrating Core Data into an application is the creation of data
model. For this purpose, Apple provides graphical editor, that is included with XCode
integrated development environment. After data model is created, it is stored in
.xcdatamodel or .xcdatamodeld file. The latter allows for storing multiple data models,
and versioning of these models. This file is compiled into mom or momd file, that is
included with software, and is loaded during execution time into an instance of
NSManagedObjectModel class. NSManagedObjectModel is then in turn used to create core
component of Core Data stack: NSManagedObjectContext

guard let modelURL = NSBundle.mainBundle().URLForResource("DataModel",
withExtension:"momd") else {→˓

fatalError("Error loading model from bundle")
}
guard let mom = NSManagedObjectModel(contentsOfURL: modelURL) else {

fatalError("Error initializing mom from: \(modelURL)")
}
let psc = NSPersistentStoreCoordinator(managedObjectModel: mom)
managedObjectContext = NSManagedObjectContext(concurrencyType:

.MainQueueConcurrencyType)→˓

managedObjectContext.persistentStoreCoordinator = psc
let urls =

NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory,
inDomains: .UserDomainMask)

→˓

→˓

let docURL = urls[urls.endIndex-1]
let storeURL = docURL.URLByAppendingPathComponent("DataModel.sqlite")
do {

try psc.addPersistentStoreWithType(NSSQLiteStoreType, configuration:
nil, URL: storeURL, options: nil)→˓

} catch {
fatalError("Error migrating store: \(error)")

}

Listing 1: Creation of Core Data stack in swift

Code listing 1 shows initialization of Core Data stack. The first step in this process is
the loading of .momd file and creation of NSManagedObjectModel. Then, new
NSManagedObjectContext is created, and NSPersistentStoreCoordinator is attached to
this context. The last step is creation of NSPersistentStore, and attachment of this store
to NSPersistentStoreCoordinator. In this example, the data model is loaded from
application resources, and the database is created in document directory.

8

let employee =
NSEntityDescription.insertNewObjectForEntityForName("Employee",
inManagedObjectContext: managedObjectContext) as! EmployeeMO

→˓

→˓

Listing 2: Creating new persistent object in swift

Code listing 2 shows the creation of new managed object in Core Data. This action
requires NSEntityDescription of the entity, to which created object should belong.
NSEntityDescription is provided internally, based on first argument provided to
insertNewObjectForEntityName.

let employeesFetch = NSFetchRequest(entityName: "Employee")
employeesFetch.predicate = NSPredicate(format: "firstName == %@", "Trevor")
do {

let fetchedEmployees = try moc.executeFetchRequest(employeesFetch) as!
[AAAEmployeeMO]→˓

} catch {
fatalError("Failed to fetch employees: \(error)")

}

Listing 3: Fetching objects, and filtering

Code listing 3 shows creation of fetch request, application of predicate to this request,
and then execution of created fetch request on NSManagedObjectContext.

9

Chapter 3

System Design

This chapter describes conceptual design of CoreStore library. Components and algorithms
defined in this section were inspired by their counterparts in Core Data, and adapted to for
easier implementation in C++. Designed library does not provide all functionality found
in Core Data. It can properly manage, save and query for objects in an object graph. It
does not, however, support some of the advanced features of Core Data, such as change
notification and undo/redo management.

3.1 Component definitions

This section defines individual components of CoreStore stack. Each component is defined
as a tuple of attributes and implemented as C++ class. Each component provides a specific
set of functionality, some of which is described later in this thesis.

ObjectContext - (Store, DatabaseModel, Prototypes, Cached, ToSave, ToDelete)

Store - Instance of PersistentStore class, used to interface with persistent store
DBModel - Instance of DatabaseModel, which itself is set of EntityModels, must

conform to Algorithm 1.
Prototypes - Set containing instances of entity prototypes(For each storable class one

instance)
Cached - set of cached Objects
ToSave - set of references to objects, which were modified/added, and must be

saved, 𝑇𝑜𝑆𝑎𝑣𝑒 ⊆ 𝐶𝑎𝑐ℎ𝑒𝑑

ToDelete - set of ObjectIds, that reference objects, which must be deleted, ∀𝑖𝑑 ∈
𝑇𝑜𝐷𝑒𝑙𝑒𝑡𝑒 : @𝑜 ∈ 𝐶𝑎𝑐ℎ𝑒𝑑 : 𝑜.𝐼𝑑 = 𝑖𝑑

ObjectContext is most important part of CoreStore stack. This component is solely
responsible for managing object graph. Almost all actions, the user might want to perform

10

are implemented as methods on this class. It contains multiple sets of objects, which are
implemented as C++ maps with ObjectId as key for fast search.

During creation of ObjectContext, user must provide list of persistable classes and
PersistentStore that will be associated with this context throughout its lifetime. List of
provided objects, which represent persistable classes/entities, is checked for consistency (
specified in Algorithm 1). After data model is verified to be valid, provided PersistentStore
is initialized. Provided persistent store is responsible for creating and maintaining its
internal metadata structures.

During runtime, the purpose of ObjectContext is to serve as a repository of objects. It
holds storable objects, tracks deleted and modified objects. It also provides methods for
querying the persistent store for a specific set of objects, based on their class and optionally
a predicate.

Changes to objects are not saved immediately. ObjectContext holds set of modified
objects(ToSave), and set of deleted objects(ToDelete). When save method is invoked
ObjectContext will save all objects from the ToSave set, and delete all objects from the
ToDelete set of its persistent store. This action is also performed upon the destruction of
ObjectContext.

No persistable object is allowed to outlive this component. If persistable object outlives
ObjectContext, it is considered in an implicit error state, and all actions on this object will
throw an exception since this is a serious mistake on user’s part. Objects in the Detached
state have limited capabilities.

ObjectId - (EntityId,InstanceId)

EntityId - Name of the Entity/Class to which this object belongs
InstanceId - String describing specific instance of this object

ObjectId is a unique identifier of an object attached to one ObjectContext. It provides
identification of Entity to which object belongs for purposes of retrieving EntityModel, and
identification of a specific instance of an object.

In future, this class could be extended to contain identification of persistent store,
in which the identified object is stored for multi-store capabilities. This functionality is
provided by NSPersistentStoreCoordinator in Core Data. Every ObjectId is generated by
persistent store, and upon detachment can no longer be used. Subsequent attachments to
same or different ObjectContexts will require the generation of new ObjectId to prevent a
collision. This ensures one of the primary invariants in this system, which is uniqueness of
ObjectId in one ObjectContext.

11

Object - (Id,State,Values,Context)

Id - ObjectId of this object
State - ObjectState in which the object currently is

Values - Set of pairs(Name,Value), where Value might be primitive language value
or single/multiple references to other objects, each 𝑛𝑎𝑚𝑒 must be unique,
∀(𝑛1, 𝑣1) ∈ 𝑉 𝑎𝑙𝑢𝑒𝑠,@(𝑛2, 𝑣2) ∈ 𝑉 𝑎𝑙𝑢𝑒𝑠 : 𝑛1 = 𝑛2 ∧ 𝑣1 ̸= 𝑣2

Context - Reference to context to which the object is currently attached

This component represents a persistable object in the system. It has a unique identifier,
its current state, storage for persistable values and reference to ObjectContext, to which
object is attached. This object is implemented as a pure virtual base class, from which all
storable classes must be derived.

State of the object is only manipulated by its context. Action that requires modification
of object’s state might be initiated by the user on an object, eg: reading attribute, but is
always carried out by context, since each state requires also a change in internal state of
the context. This is one of the reasons, that object manipulation outside context is very
limited, and object can’t outlive its context while remaining in a valid state.

ObjectState - ∈ {New,Fault,Loaded,Modified,Detached,Error}
o = instance of Object

New - o.Context ̸= null, @𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡(o)
Fault - o.Context ̸= null, o.Values = ∅, ∃𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡(o)

Loaded - o.Context ̸= null, o.Values = Persistent(o)
Modified - o.Context ̸= null, o.Values ̸= Persistent(o)
Detached - o.Context = null

Error - Special state that only occurs if Object outlives its ObjectContext

Defines what state object is in, and what actions may be performed on this object. This
restriction of possible actions only applies to primitive functions of ObjectContext. Some
of these primitive functions are private to ObjectContext, and are used in public functions
that perform validation of object’s state and may invoke several other functions, to get to
the desired state eg. detachObject not only detaches the object from its context but it also

12

loads this object if it is in the Fault state. Error state has a special purpose. This state
cannot be reached by normal actions, and object can’t leave this state.

AttributeModel - (Name,AttributeType)

Name - Name of the attribute
AttributeType - type of the attribute

AttributeModel stores necessary metadata associated with an attribute. This
component may be duplicated in the system but is not modified at any point in time, so
this duplication will not create any inconsistencies. This duplication is also present for
RelationshipModel.

RelationshipModel - (EntityName,Name,RelationType,TargetEntity,TargetName)

EntityName - Name of entity, on which this relationship was defined
Name - Name of the relationship

RelationType - type of the relationship, one of {ToMany,ToOne}
TargetEntity - name of entity that is target of this relationship
TargetName - name of inverse relationship

RelationshipModel stores metadata associated with a single relationship. Since this
component is used to generate names of tables used to store relationships, it must contain
names of both source, and target entities. It also contains the name of inverse
RelationshipModel, that can be found in target EntityModel.

EntityModel - (Name,Attributes,Relationships)

Name - Name of entity, referenced by ObjectId.EntityId
Attributes - set of AttributeModel

Relationships - set of RelationModel

This component is most important part of data model definition. Each persistable class
must override createModel function, which returns EntityModel of that class.

EntityModel holds set of attribute and relationship models. These sets contain
definitions of all storable attributes and relationships for this class and all classes from
which this class is derived from. Inheriting of attribute and relationship models is crucial
for correct handling of inheritance hierarchies in the object-oriented data model.

Both Attributes and Relationships are implemented as C++ maps. The name of each
element is the key into the map. This name must also be unique between these two sets,
and cannot repeat in inheritance hierarchies.

13

3.2 Object lifetime

This section describes object lifetime. By this term, author means the set of states which
an object can occupy, how an object can transition between these states, and what changes
to the object and its context will be performed by these transitions.

new Object Detached New context.CreateNew()

Loaded

Modified

Fault

Attach

Unload

Load

Save

ModifySave

Modify

Modify

Detach

Detach

Detach

Figure 3.1: Object lifetime

14

States
Actions New Fault Loaded Modified Detached

Save X → 𝐿𝑜𝑎𝑑𝑒𝑑 × X X → 𝐿𝑜𝑎𝑑𝑒𝑑 ×
Load × X → 𝐿𝑜𝑎𝑑𝑒𝑑 X X → 𝐿𝑜𝑎𝑑𝑒𝑑 ×

Unload × × X → 𝐹𝑎𝑢𝑙𝑡 X → 𝐹𝑎𝑢𝑙𝑡 ×
Detach X → 𝐷𝑒𝑡𝑎𝑐ℎ𝑒𝑑 × X → 𝐷𝑒𝑡𝑎𝑐ℎ𝑒𝑑 X → 𝐷𝑒𝑡𝑎𝑐ℎ𝑒𝑑 ×
Attach × × × × X → 𝑁𝑒𝑤

R. Attribute X × X X X
R.Relation X × X X ×

W. Attribute X × X → 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 X X
W. Relation X × X → 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 X ×

R. Attribute = Read attribute
W. Attribute = Write/modify attribute
X → 𝑆𝑡𝑎𝑡𝑒 = Operation can proceed, object will be in 𝑆𝑡𝑎𝑡𝑒 after operation
X = Operation can proceed, and won’t change state
× = Operation can’t proceed, however, there might be compound functions, which perform
multiple transitions to perform specified operation.

Table 3.1: State transitions

Figure 3.1 presents a state diagram, which describes the lifetime of an object. It shows
which particular primitive actions must be executed in order to get an object from one state
to another. Table 3.1 contains a more detailed view of which actions can be performed in
which states, and how they affect the state of an object.

Since requiring the exact sequence of actions from user in order to get an object into the
specific state would pose serious usability problem, most of these actions are implemented
as private functions. These private functions are in turn used by more complex public
functions, which perform validation and modify object state as necessary. Thanks to this
division, primitive functions are easily defined, and the user still has an intuitive interface
to use.

Definition 1 (Map Notation) Throughout this document notation map[n] will be used.
It denotes insertion/retrieval from standard map/dictionary object. This notation is used
on Object.values field, and EntityModel.attributes and EntityModel.relationships. While
Object.values is defined as a set of pairs with unique first element in each pair and other
fields are defined as sets of elements, where each element has a unique name, All of these
fields are implemented as C++ maps. In the case of Object.values the first element of stored
pair is used as a key, and in other cases, the name field is used as a key for lookup/insertion.

Definition 2 (EntityModel notation) Throughout following algorithms, the
EM(Object,ObjectContext) notation will be used. This notation denotes retrieval of
correct EntityModel for object o. This model is obtained by searching ObjectContext’s
DatabaseModel, and looking for EntityModel that has same Name as o.Id.EntityId.

15

EM(o,oc) = EntityModel e: e ∈ oc ∧ e.Name = o.Id.EntityId . Shorter variant
may be used: EM(o) = EM(o,o.Context).

3.3 Core functions

This section presents detailed definitions of some of the core functions in order to exactly
define most important parts of designed system. Implementation aims to follow these
definitions as closely as possible while translating concepts presented here into an effective
C++ code.

3.3.1 ObjectContext functions

ObjectContext is the main building block of the system. Its responsibilities include
tracking and managing object state, creating new objects and persisting them using
provided instance of PersistentStore.

These are primary functions available on ObjectContext that manage object lifetime
& state. Function definitions are roughly split into two categories. Functions following
naming convention functionInternal perform only primitive actions and are private to class
on which they are implemented. Other functions might perform more complex actions, and
are public - available to the user.

Input : DatabaseModel model
forall EntityModel e ∈ model do

forall RelationModel r ∈ e do
if ∃ EntityModel ie: ie ∈ model ∧ ie.Name = r.TargetEntity then

if ∃ RelationModel ir: ir ∈ ie.Relationships ∧ ir.Name = r.TargetName
then

continue;
else

return false;
end

else
return false;

end
end

end
return true;

Algorithm 1: DatabaseModel.isValid()

Algorithm 1 defines a predicate that verifies whether data model is valid. This predicate
is checked upon the construction of ObjectContext, and if the created DatabaseModel fails
this predicate, construction of ObjectContext is not permitted. The purpose of this predicate
is to check, whether all relationships in data model have valid inverse relationships.

16

All subsequent algorithms in this thesis assume that this predicate is satisfied - data
model is valid.

Input : ObjectContext oc, Object o
Before : o.State = Detached
After : o.Context = oc, o.State = New
if o.State ̸= Detached then

return false;
end
if ∃ EntityModel e = EM(o,oc) then

o.Id.InstanceId = oc.Store.generateInstanceId(e);
o.context = oc;
oc.Cached = oc.Cached ∪ {o};
oc.ToSave = oc.ToSave ∪ {o};
o.State = New;
return true;

else
return false;

end
Algorithm 2: ObjectContext.attachObject

Algorithm 2 describes function is used for attaching objects to ObjectContext. By
attaching an object to context, the context takes ownership of this object, will manage its
state and will persist it into database when requested or upon destruction of said
ObjectContext. Attached object retains its values, but it will have its ObjectId reset in
order to avoid collisions.

17

Input : ObjectContext oc, Object o
Before : o.Context = oc, o.State ̸= Detached
After : o.Context = null,o.State = Detached
if o.Context ̸= oc then

return false;
end
if o.State = Fault then

oc.loadObjectInternal(o,EM(o));
end
forall RelationModel r ∈ EM(o).Relationships do

if r.type = ToMany then
o.clearObjects(r.name);

else
o.setValue(r.name,null);

end
end
oc.Cached = oc.Cached ∖ {o} ;
oc.ToSave = oc.ToSave ∖ {o};
oc.ToDelete = oc.ToDelete ∪ {o.Id } ;
o.Context = null;
o.State = Detached;
return true;

Algorithm 3: ObjectContext.detachobject

Algorithm 3 defines a function that detaches an object from ObjectContext. In order
to preserve consistency of object graph, detached object’s relationships are cleared. Its
persistent record will be deleted on next ObjectContext.save(). This function also loads
object if it was in the Fault state, since detached object with no values would not provide
any useful functionality.

Input : ObjectContext oc, Object o
Before : o.Context = oc,o.State = Fault
After : o.State = Loaded
if o.Context ̸= oc then

return false;
end
if o.State = Loaded then

return true;
end
return oc.LoadObjectInternal(o,EM(o,oc));

Algorithm 4: ObjectContext.loadObject

18

Before : o.Context = oc,o.State = Fault
After : o.State = Loaded
Input : ObjectContext: oc, Object o, EntityModel e
o.Values = oc.Store.loadAttributes(o.Id,e);
forall RelationModel r ∈ e.Relationships do

if r.Type = ToMany then
var ids = store.fetchToManyRelationIds(o.Id,r);
o.Values[r.Name] = { o.getObject(id) : id ∈ ids };

else
o.Values[r.Name] = oc.getObject(oc.Store.fetchToOneRelationId(o.Id,r));

end
end
o.State = Loaded;
return true;

Algorithm 5: ObjectContext.loadObjectInternal()

Algorithms 4 and 5 define functions for loading object attributes and relationships.
This moves an object from Fault state into the Loaded state. This function is divided into
private and public parts. TheloadObjectInternal is private and it does all the actual work,
loading attributes and relationships, and is used in several other public functions, including
loadObject.The loadObject function does all necessary checks of arguments. It does not need
to check whether the object’s EntityModel is part of ObjectContext.DBModel to which the
object is attached because in this condition is checked at the time of creation of the object.

Input : ObjectContext oc, Object o
After : o.State = Loaded, o.Context = oc
if o.State = Fault ∨ o.State = New then

oc.saveObject(o);
end
o.Values = ∅;
o.State = Fault;

Algorithm 6: ObjectContext.unloadObject()

Algorithm 6 defines a function for unloading object attributes, the inverse of previous
2 functions. It saves modified objects, and then simply removes all values. This function is
needed during ObjectContext destruction. Since Objects with relationships in our system
form a cyclic graph by definition and are stored using reference counted pointers, it is
necessary to unload all objects before destroying ObjectContext. This action clears all
reference cycles and allows automatic deallocation of all objects.

19

Input : ObjectContext oc, Object o
Before : o.State = New ∨ o.State = Modified
After : o.State = Loaded
var EntityModel e = EM(o);
oc.Store.saveObjectAttributes(o,e);
forall RelationModel r ∈ e.Relationships do

if r.type = ToMany then
oc.storeToManyRelation(o,r,e);

else
oc.storeToOneRelation(o,r,e)

end
end
o.State = Loaded;
oc.ToSave = oc.ToSave ∖ {o};

Algorithm 7: ObjectContext.saveObject()

Algorithm 7 defines function used for saving object attributes and relationships into the
persistent store. By performing this action we ensure that all attributes and relationships
are properly stored in the persistent store and library will be able to retrieve them on
subsequent executions of software.

Input : ObjectContext: oc, ObjectID oid
After : ∃ Object o ∈ oc.Cached ∧ o.Id = oid
if ∃ Object o; o ∈ oc.Cached ∧ o.Id = oid then

return o
else

if oc.Store.idExists(oid) then
var Object p: p ∈ oc.Prototypes ∧ p.Id.EntityId = oid.EntityId;
var Object o = p.clone();
o.Id = oid;
oc.Cached = oc.Cached ∪ {o};
return o

end
end
return null

Algorithm 8: ObjectContext.getObject()

Algorithm 8 defines a function for getting an object from ObjectContext based on its
Id. This functions first checks ObjectContext’s cache for already loaded objects. If it finds
an object with matching Id, it simply returns it. If searched object is not cached, the

20

ObjectContext verifies that the object exists in the persistent store, and returns new object
created by cloning the prototype from same entity/class.

Input : ObjectContext: oc
After : oc.ToSave = ∅ ∧ oc.ToDelete = ∅
forall ObjectId oid ∈ oc.ToDelete do

EntityModel e: e ∈ oc.Model ∧ e.Name = oid.EntityId;
forall RelationModel r ∈ e.Relationships do

if r.Type = ToMany then
oc.Store.deleteToManyRelation(oid,r,e);

else
oc.Store.deleteToOneRelation(oid,r,e);

end
end
oc.Store.deleteObjectAttributes(oid,e);

end
oc.ToDelete = ∅;
forall Object o ∈ oc.ToSave do

oc.saveObject(o);
end
oc.ToSave = ∅;

Algorithm 9: ObjectContext.save()

Algorithm 9 defines a function that saves all changes performed on ObjectContext into
its persistent store. This function first deletes all objects that were detached from the
ObjectContext, and then saves all objects that were modified. Then it clears sets that hold
this information,

While most of the functions in this chapter return their result as boolean value or object
pointer, depending on the type of function, This is not reflected in actual implementation.
In functions for retrieving EntityModel, C++ Exceptions are used. These types of errors
cannot be resolved within the system and usually mean that programmer made a mistake,
and would be simply propagated up the call stack, and exceptions denote this behavior
perfectly. Raw SQL calls in SQLitePersistentStore also use exceptions. Since system cannot
solve database errors internally, returning them as exceptions to application code seemed
like the best solution.

This chapter only shows core algorithms for managing objects, that are implemented
on ObjectContext. Additional algorithms that define management of values on individual
objects can be found in Appendix A.

21

Chapter 4

Implementation

This chapter describes how components and concepts specified in the previous chapter
were implemented in C++.The project uses C++ language with C++11 standard, the
C++14 standard was not chosen because it would not provide meaningful improvements
to development process or the implemented library. The earlier standard (C++03) was not
chosen because smart pointers were first introduced with C++11, and they are a crucial
part of the current design of the system. Without smart pointers, the implementation
would be much more complex.

Since Core Data operates on objective-C runtime, it does not have to deal with many
low-level issues. CoreStore however only relies on C++ runtime which is much smaller and
therefore must explicitly implement features that are implicit in objective-C runtime. One
example is the prevention of memory leaks. Core Data can make use of automatic reference
counting, but CoreStore must rely on manual memory management, usage of RAII1 and
smart pointers.

While CoreStore does not implement all functionality found in Core Data, it implements
Core functionality for persisting objects, and managing object graph.

4.1 Core implementation

Each component if the system is implemented as C++ class containing necessary
attributes and implementing necessary methods. Inheritance is used to provide
extendability of some components. Since the implementation of core components is pretty
straightforward, this section does not contain detailed explanations of component
implementations. Instead, this section contains detailed explanations of more
complex/interesting parts of the implementation.

1https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

22

Object storage

Probably the most important implementation detail is storage of persistable objects. Every
persistable object in the system is stored using shared pointer. Shared pointer uses reference
counting, which ensures memory safety, and shared access to the storable object. When
a persistable object is attached to ObjectContext, this ObjectContext takes ownership of
this object. The ObjectContext responsible for storing this object, managing its state, and
ultimately deallocation. Providing these function while preserving memory safety would be
nearly impossible without usage of smart pointers.

However, using shared pointer for this task introduced another problem. Object graph,
which library managing, could be thought of as simple graph, where objects are nodes,
and references between them are edges. Since designed system requires inverse references
in case of relationships, this means that this graph will contain cycles. Reference cycles
pose a serious problem for reference counting implementations. If we are using standard
shared pointers, without any weak pointers to break the cycle, objects managed will never
be deallocated.

This is solved by unloading all objects attached to context before context deallocation.
Unloading object removes all its attributes and relationships, breaking all reference cycles.
Then, upon the destruction of ObjectContext, the last reference to every object is removed,
and it is deallocated safely. If user retains a reference to object even after the destruction
of its context, this object is not deallocated, and accessing it will not cause a segmentation
fault. However, in the context of this system, this action is illegal, and upon the destruction
of ObjectContext, all attached objects transition to Error state. If the user accesses object
in Error state, an exception will be thrown.

Generic Value type

Since Core Data is implemented in a language that provides high-level object-oriented
features, such as a common root of inheritance (NSObject). It can be used to implement
highly generic algorithms and store any attribute values. In C++, no such root of object
hierarchy exists. One solution would be to allocate every value on the heap, and store only
a void pointer to this value, but this approach would be very unsafe, and prone to mistakes.
Another approach is to create a union of all storable types, with information about which
type is stored in this union alongside. However, storing classes inside union is not allowed.

Ultimately, chosen solution was to create Value class to provide storage for all needed
value types. The implementation consists of several classes. Value provides interface for
querying stored value type and performing proper casting. Value contains a pointer to
ValueHolder, that is allocated on the heap at the time of creation. ValueHolder is a pure
virtual class, that declares utility methods and overloaded equality and comparison
operators. ValueHolderImpl is template class that is derived from ValueHolder, and its
template argument denotes what type is stored inside. There are specialized
implementations of ValueHolderImpl for strings and numeric types.

23

Value contains multiple constructors, one for each storable type, which allocate
ValueHolderImpl with desired type parameter.

Value
ValueHolder* holder

ValueHolder

ValueHolderImpl<T>

ValueHolderImpl<int64_t> ValueHolderImpl<string>

implements

specializes
specializes

Figure 4.1: Value type hierarchy

Figure 4.1 shows how types used in Value implementation interact.

Value storage and access

All attributes and relationships of an object are stored in one std::map, using generic value
type that is specified in section 4.1. The user defines attributes and relationships, by adding
them to EntityModel in pure virtual method createModel, that must be implemented on
all persistable classes. With this approach, read and write access is provided through
getValue and setValue methods on objects. However, these methods require the name of
an attribute in the form of a string, and values must be provided in form of a Value type.
This is not the most ergonomic way to read and write object attributes/relationships. To
provide ergonomic access to object attributes and relationships, accessors must be created.
Automatic generation of these methods by macros is explained in subsection 4.3.1.

Predicates

The system provides a method for querying persistent store for specific objects based on
predicates. Predicates are implemented using simple class hierarchy. There are specific
implementations for simple attribute predicates, expressing equality or specific ordering,
and compound predicates for chaining multiple other predicates using logical operators.
All predicates are derived from Predicate class and override methods on this class.

Primitive and compound predicates can be created by invoking static methods on
Predicate class. In addition to this method, compound predicates can also be created by
utilizing overloaded logical operators:

24

// Simple predicate
Predicate::eq("Name","Peter");
// Compound predicate using static method
Predicate::And(Predicate::gt("age",10),Predicate::lt("age",20);
// or using overloaded "and" operator
Predicate::gt("age",10) && Predicate::lt("age",20);

Listing 4: Predicate creation

This system requires compound predicates to hold references to their sub-predicates.
To ensure memory safety and prevent any memory leaks, all predicates created by static
methods or operator overloading are created as std::unique_ptr<Predicate>. By this
design, compound predicates own their sub-predicates, while allowing for polymorphic
dispatch. Predicates can be used in two ways.They can be used to generate SQLite query,
that is then executed on a database, or they can be directly evaluated against objects.
This evaluation is performed inside evaluate method defined o Predicate class.

This creates a predicate tree, which is then used by SQLitePersistentStore to generate
SQL query, or is evaluated on individual objects to determine whether objects satisfy the
predicate.

There are several limitations to this system. Currently, the system only supports
attribute predicates and compound predicates. Relationship predicates were not
implemented. Queries based on predicates can only look up objects belonging to one
Entity at time. These limitations were accepted because in the current state generated
SQL only needs to read values from one table, which greatly simplifies SQL generation
code, and implementing extended features would provide limited benefit.

4.1.1 Project structure

The project uses CMake build system. This system was chosen because it is currently
de-facto standard build system for C++ projects, and is heavily used in many open source
projects. CMake configuration files are also easier to write and maintain compared to make
configuration files, while providing cross-platform compatibility[4].

25

Directory Subdirectory Contains

include+src

core Implementation of core library classes
model Implementation of data model definition classes
query Implementation of Predicate classes
sqlite Implementation of SQLitePersistentStore

include value Implementation of generic value type
deps Third party dependencies

example Example applications
test Implementation of test cases

Table 4.1: Directory structure

Table 4.1 shows directory structure of the implementation.The implementation itself is
divided into specific components, close components sharing common directory in include
and src.The include directory contains all header files. It also contains CoreStore.h file,
which itself includes all header files necessary for the use of this library. User only needs to
include CoreStore.h file.

If user wants to build CoreStore library, he only needs to create makefiles by executing
cmake <CoreStore library directory>. This action will create makefiles in current
directory, which can be used to build the library. CMake is configured to generate specific
targets for library, example application, test application and install target, which will
install header files and build library into appropriate system directories. These specific
targets can be built/run using make <target>. More information can be found in
README file included with the library.

4.1.2 External dependencies

Implementation depends on several other projects. Since C++ ecosystem does not have
any widely used dependency management system, these dependencies are included with the
library, in the deps directory.

SQLite3 wrapper

Since the reference implementation of PersistentStore depends on SQLite, it was
necessary to interface with this technology. While SQLite provides C API, interfacing
with it directly from SQLitePersistentStore would add additional complexity. In order to
seamlessly interface with SQLite, a small C++ wrapper was included. It provides
abstractions built on SQLite C API, and presents set of classes that can be used to safely
execute queries, while properly managing memory[3].

SQLite itself is not included in any way. Since most platforms provide their own
distribution, with header and library in common directories, its inclusion will probably be
automatic.

26

GoogleTest framework

Another included dependency is a framework for testing from Google[6]. It was used to
implement a suite of test cases for at least partially verifying correctness of the library
implementation. The testing process is specified in chapter 5.

4.2 Database interface

4.2.1 Persistent Store and extendability

Library implementation is conceptually separated into several parts. PersistentStore
belongs to the core part of the library. This is pure virtual class used as an interface into
persistent store, which is probably some kind of database. By creating a derived class
from PersistentStore, user can create interfaces into other kinds of persistent stores. The
reference implementation of persistent store is SQLitePersistentStore, which uses SQLite
database as its persistent storage medium.

Every class deriving from the PersistentStore has to implement aset of methods.
There are management methods used to initialize database(applyModel), work with
database transactions if supported(beginTransaction,commitTransaction), that are used
for performance reasons. And there are methods for reading and writing data into
persistent storage. These methods are divided into methods working with attribute
values(fetch/storeObjectattributes), and methods working with relationships
(fetch/storeToOneRelationship, fetch/storeToManyRelationships).

User-implemented persistent stores can be plugged-in directly, without requiring
modifications to other parts of the library, by simply providing them during
ObjectContext creation.

4.2.2 SQlitePersistentStore

As part of the assignment was to write an implementation of PersistentStore, that will
interface to SQLite[8] database. This implementation is SqlitePersistentStore. The
implementation process of this class heavily influenced design of PersistentStore interface.
It stores each entity, and each relationship pair as a separate table. This persistent store
uses monotonically increasing integer as the instance Id for ObjectIDs it generates.

It uses C++ standard streams to create SQL statement strings. It does not however
serialize any data into these strings. Only the table and column names are serialized. Any
occurrence of raw data is replaced with a ? wildcard. And after preparing the generated
string into a statement, actual data is bound to this statement using sqlite binding functions.

27

4.3 Examples and usage

This section contains a number of small examples, whichh illustrate, how implemented
library can be used, and how common problems are solved. This section also contains
detailed information about example application, that was implemented as part of this thesis.

4.3.1 Class and EntityModel definition

To define storable class, user must create class that inherits from Object class, define several
utility methods, define createModel method that returns EntityModel of the class and
create accesors to retrieve and modify object attributes/relationships. All these task can
be completed by utilizing several macros defined in common.h header file.

class Person: public cs::Object{
DERIVE_CLASS(Person);

virtual EntityModel createModel() const override {
auto e = EntityModel("Person");
ATTRIBUTE(e, firstName, AttributeType::String);
ATTRIBUTE(e, lastName, AttributeType::String);
ATTRIBUTE(e, salary, AttributeType::Double)

RELATION_ONE(e, boss, Person, subordinates);
RELATION_MANY(e, subordinates, Person, boss);
return e;

}
ACCESSORS(string,firstName);
ACCESSORS(string,lastName);
ACCESSORS(double,salary);
ACCESORS_TO_ONE(Person,boss);
ACCESSORS_TO_MANY(Person,subordinates);

}

Listing 5: Example persistable class

Code listing 5 shows example class that uses several macros. DERIVE_CLASS is used
to create several basic methods including clone method, which is used in class prototypes
to create new objects from given class. The ATTRIBUTE and RELATION macros are
used to add attributes/relationships to EntityModel of a class. ACCESSORS macros are
used to define accessors to these attributes and relationships.

Generated accessors wrap low-level methods like getValue, setValue, and also perform
checking and casting of values. Since relationships are stored as std::shared_ptr<Object>
type, they require casting into shared pointers of specific derived classes.

28

Neither library design nor implementation currently allow modification of data model.
Core Data provides this functionality by multiple Data model versions and data migrations
between them. There is currently no such feature in CoreStore, and this area is one of the
primary targets for future improvements.

4.3.2 Common usage patterns

This section shows most usage of library classes to perform most common actions like:
initialization of library, creation, retrieval of objects and other.

ContextConfiguration config = ContextConfiguration()
.withStore(new SQLitePersistentStore("./people.db",false))
.withClass(new Person);

auto context = new ObjectContext(config);

Listing 6: ObjectContext creation

Code listing 6 shows the creation of ObjectContext. ObjectContext creation requires
ContextConfiguration, which contains all necessary information about the created context.
It contains reference to PersistentStore that will be used, and set of classes that constitute
data model. All methods on ContextConfiguration return reference to itself, allowing easy
chaining of multiple method calls. This was inspired by Fluent interface2 and Builder3

patterns.

// Creates shared_ptr<Person>
context->createNewObject<Person>();
// Creates shared_ptr<Object>
context->createNewObject("Person");
// Creating Person* and attaching
auto person = shared_ptr<Person>(new Person());
person = context->attachObject<Person>(person);

Listing 7: Creating new Object

Code listing 7 shows multiple ways to create new Object attached to ObjectContext.
createNewObject is included in 2 variants. One accepts string argument, denoting name of
entity, to which the created object should belong. another accepts type argument. Several
ObjectContext methods are implemented in this way. Methods accepting type parameter
always expect and return shared pointers to the derived type, while methods that expect
string argument, expect and return a pointer to Object type.

2https://en.wikipedia.org/wiki/Fluent_interface
3https://en.wikipedia.org/wiki/Builder_pattern

29

// returns std::vector<shared_ptr<Person>>
context->getAll<Person>(Predicate::gt("salary",30000.0));
// returns std::vector<shared_ptr<Object>>
context->getAll("Person",Predicate::gt("salary",30000.0));

Listing 8: Object retrieval with predicate

Code listing 8 shows how user can query for objects from PersistentStore based on
predicates. This method is also implemented in 2 variants, providing static, and runtime
way to define what entity is queried.

// Saves all modified and deleted objects
context->save();
// Does the same + unloads all objects.
context->unload();

Listing 9: Object retrieval with predicate

Code listing 9 shows saving of changes performed on ObjectContext. All changes are
kept in-memory, until user decides to save modified values, or ObjectContext is destroyed.
At the point of destruction of ObjectContext, all changes are automatically saved.

4.3.3 Example application

Part of thesis assignment was to write a small application that would show capabilities of
implemented library. Implemented application is extremely simple bank database system,
containing a small number of entities, and providing command line interface. Application
implementation can be found in example directory and can be built and run using make
cs_example.

Data model

The example application uses very simple data model. This model contains just 3 entities:
Person, Account and Transaction. These 3 entities are sufficient to model simple accounting
system. All entities contain a minimal number of attributes. Following diagram shows what
attributes and relationships this data model contains.

30

owner
1

accounts
0..*

source
0..1

outgoing
0..*

target
0..1

incoming
0..*

Person

firstName : string
lastName : string

Account

amount : double

Transaction

amount : double

Figure 4.2: Example application data model

Figure 4.2 shows example application data model. In this data model entities Person
and Account fill their standard roles, while entity Transaction carries more information.
The Transaction entity is used to denote usual transaction from account to account, but it
is also used to denote withdrawals and deposits to accounts. If particular Transaction does
not have source, it is assumed to be deposit, and if it does not have target it is assumed to
be a withdrawal.

Application usage

The application provides simple a command line interface using Request-Response style of
communication. These are commands and their respective subcommands that can be used
to communicate with the application.

Command Subcommand Description
help Shows list of available commands
save Saves changes to database
quit Saves changes and exits the application

show

people Shows list of all people in database
accounts Shows list of all accounts in database

transactions Shows list of all transactions in database
<ID> Shows information about particular object

create
person Creates new person object
account Creates new Account object

transaction Creates new transaction object
seed Seeds database with example data

Table 4.2: Example application commands

The application communicates using standard input and output. Application excepts
commands, subcommands and their respective arguments written into the standard input,
separated by spaces, and confirmed by line ending character (\n). Application then
responds in similar fashion, writing its output to the standard output stream, and ending
with one empty line.

While this application may not provide a lot of functionality or ergonomic interface, It
shows basic CoreStore concepts used in a realistic setting.

31

Chapter 5

Testing and verification

This chapter outlines evaluation process of implemented library. Library was evaluated
using 2 main approaches. Testing was performed to ensure implementation correctness,
and performance measurements were performed to ensure library performance.

5.1 Testing

Part of provided source code is a small test case library consisting of 20 test cases. The
project uses GoogleTest[6] framework for managing tests. Most of the tests were
implemented using in-memory SQLite database as a persistent storage medium. Tests
focus on proving correctness according to system design (specified in chapter 3), while
also trying to uncover all errors that could leave the system in undefined state or even
crash the hosting application.

Following table shows what part of the system individual test cases targeted, upon which
fixture were they based. The concept of a fixture is presented by GoogleTest framework,
and is used to create basic structure for individual test cases.

Test number Fixture Target
1

SingleContext

Creation of Data model
2-4 Primitive operations on objects
5-9 Object linking & lifetime
10 ObjectContext lifetime
11 Persistent Storage

12-16 Predicates and queries using them
17-19 MultiContext Multiple context management

20 InvalidContext Creation of context with invalid data model

Table 5.1: Focus area of individual test cases

32

All tests followed a similar structure. The test environment is prepared by GoogleTest
with a simple macro invocation. In actual test case body, a sequence of actions is
executed, and correct resulting state of the system is verified. Since implemented library
consists of several highly dependent components, attempting to unit test each individual
component proved very difficult. Because of this difficulty, another testing approach was
chosen. Library was tested as a whole, with each test case focusing on verifying a specific
property of implementation. Each test performs small actions on ObjectContext and then
verifies whether the context remains in valid state, and all actions were completed
successfully.

Following code listing shows test case number 6 as an example.

TEST_F(SingleContextFixture,ObjectDetachedManipulation){
auto o = context->createNewObject<TestObject>();
ASSERT_TRUE(context->detachObject<TestObject>(o));

// Attribute manipulation should work
ASSERT_TRUE(o->set_strVal("Name"));
ASSERT_EQ(o->get_strVal(),"Name");

// Relationship manipulation should work
ASSERT_FALSE(o->set_parent(o));
ASSERT_EQ(o->get_parent(), nullptr);

}

Listing 10: Sample test: detached object modification

In this test, a new object is created, and immediately detached from its ObjectContext.
Then, the correctness of attributes and relationships is verified.

After creating a test suite, code coverage of this test suite was also measured using lcov
tool. Measured coverage is above 90% of all lines of source code in the implementation.
Using the lcov tool during implementation of test case library discovered very poor coverage
of code dealing with predicates. This issue was fixed by writing more tests to specifically
target valid behavior of predicates, and queries using them.

Testing process began during implementation and continued until completion of
implementation. During this process author’s multiple mistakes were uncovered, and
subsequently corrected.

5.2 System performance

After completion of implementation and conclusion of the testing process, library
performance was measured. Since library will serve as a object-oriented database, most
important performance characteristic is the speed of performing individual actions such as

33

loading or storing objects. This aspect of implementation was measured using a simple
application, which is implemented in examples/performance.cpp. The application
repeatedly executed a set of very simple tasks on increasing number of objects, measured
time spent performing these actions, and printed results in human readable format to
standard output.

Performance measurements were performed on Thinkpad T460 laptop with, 256 GB
Sata3 SSD, 16GB 1600MHz RAM and Intel i5 6200U CPU running Linux 4.10.
Measurement on this platform should be reflective of real word performance of
implemented library. Following chart shows execution time for most important actions:

102 103 104 105 106

10−2

10−1

100

101

102

103

104

105

106

107

64
.3

m
s

64
.6

m
s

11
7
.2

m
s

58
2
.7

m
s 5.
6

s

5.
6

m
s

20
.0

m
s 14
9
.1

m
s 1
.6

s

1
6.
7

s

1
9
.1

m
s

44
.8

m
s 37
5
.5

m
s 5
.4

s

71
.2

s

13
.7

m
s

35
.5

m
s 29
9
.0

m
s 3.
1

s

32
.6

s

6.
6
·1
0−

1
m

s

2
.9

m
s

33
.0

m
s 39

5
.3

m
s 4.
5

s

Number of objects

Ex
ec

ut
io

n
tim

e
[m

s]

Creation Modification Save Load Query

Figure 5.1: Core actions performance

Figure 5.1 presents measured execution time of core actions on a logarithmic chart.
Measured values show approximately linear growth of execution time for larger number of
objects. However, for a small number of objects, actions like Save or Load do not show
linear growth. For example, saving 100 objects took 19.1 ms, and saving 1000 objects took
44.8 ms, while expected time for 1000 objects is 191 ms. This could be caused by overhead
of creating and compiling SQLite query and overhead of SQLite transaction. These actions
are executed only once per action, and could result in constant increase of execution time.
This increase would be very significant part of measured times for small number of objects,
but would be insignificant for large number of objects.

34

Library throughput for individual actions was calculated from measured times using
this simple formula

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑎𝑐𝑡𝑖𝑜𝑛 =

∑︀
𝑖∑︀

𝑖 𝑡𝑖𝑚𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖)
; 𝑖 = 100, 1000, ..., 106

Calculated values for each measured action along with individual action descriptions
are shown below.

Action Throughput Description
Create 152.2 Create new objects
Modify 52.4 Modify one attribute and relationship on all objects

Save 11.2 Save objects into persistent store
Load 24.1 Load objects from persistent store

Query DB 396.7 Query SQLite database for objects with predicate
Query Live 163.0 Query SQLite database and reevaluate predicate on all

objects, Corresponds to Query in earlier chart
Detach 53.2 Detach objects from their ObjectContext

Save detached 73.4 Save objectContext with detached objects, deleting them
from SQLite database

Table 5.2: Action throughput and description

Table 5.2 shows throughput of individual actions in thousands of objects per second.

This table and Figure 5.1 were created from extended set of measured values. These
values can be found in Appendix B.

35

Chapter 6

Conclusion

Object oriented databases are a powerful tool for persisting data. Apple’s Core Data is
exceptional object oriented database, that provides a lot of useful functionality. The goal of
this thesis was to bring its functionality into the C++ ecosystem in form of a library. For
achieving this goal, Core data was evaluated in detail, analyzed in terms of its components
and interactions between them. Based on information obtained during analysis, CoreStore
library was designed and implemented.

After implementation was complete, it was evaluated using multiple techniques. Testing
was performed to ensure implementation conforms to library design and does not contain
critical defects. Few example applications were created to showcase library’s capabilities,
and whole codebase was packaged using CMake tool for easy distribution and compilation.

The performance of implemented library was measured. Implemented library achieved
competitive performance, being able to process several thousands of objects per second.

While implementation achieves remarkable performance, and some degree of correctness
thanks to profiling and testing, there are still areas, in which it falls short. One area is
data model creation and handling. A graphical editor used to create data model would
be a useful addition. Usage of graphical editor could also help with issue of data model
upgrades. Current implementation does not allow for modification of data model after
database file was created. Apart from this issue, the library probably contains many more
small usability issues, that will require extended user testing to uncover and correct.

36

Bibliography

[1] Apple Inc.: NSManagedObjectContext reference.
Retrieved from:
https://developer.apple.com/reference/coredata/nsmanagedobjectcontext

[2] Apple Inc.: Core Data Programming Guide. Sep 2016.
Retrieved from: https://developer.apple.com/library/content/documentation/
Cocoa/Conceptual/CoreData/

[3] Beer, D.: Lightweight SQLite3 wrapper for C++.
Retrieved from: http://dlbeer.co.nz/oss/sqlite.html

[4] Cmake developers: Cmake Build system.
Retrieved from: https://cmake.org/

[5] Codd, E. F.: A Relational Model of Data for Large Shared Data Banks. Commun.
ACM. vol. 13, no. 6. June 1970. ISSN 0001-0782. doi:10.1145/362384.362685.
Retrieved from: http://doi.acm.org/10.1145/362384.362685

[6] Google Inc.: GoogleTest testing framework.
Retrieved from: https://github.com/google/googletest

[7] Hughes, J. G.: Object-Oriented Databases (Prentice-Hall International Series in
Computer Science). Prentice Hall. 1993. ISBN 0136298745.

[8] SQLite consortium: Sqlite embeddable database engine.
Retrieved from: https://www.sqlite.org/

37

https://developer.apple.com/reference/coredata/nsmanagedobjectcontext
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/
http://dlbeer.co.nz/oss/sqlite.html
https://cmake.org/
http://doi.acm.org/10.1145/362384.362685
https://github.com/google/googletest
https://www.sqlite.org/

Appendices

38

Appendix A

Object modification algorithms

Due to length of primary part of this thesis. Algorithms defining managment of object
values are specified in this appendix.

These algorithms describe functions implemented on Object class, and they mostly define
how said object manipulates it’s internal state for safe update and retrieval of it’s attributes
and relationships. These functions also implement logic needed to keep inverse relationships
synchronized, and load object from fault state if needed.

Input : Object o
if o.State = Error then

throw exception(”Object outlived it’s Context“);
end
if o.State = Fault then

o.Context.loadObject(o);
end

Algorithm 10: Object.ensureLoaded()

Algorithm 10 is called at the start of almost every function that manipulates object
values. It ensures that all objects are properly loaded into memory. It’s second purpose is
to notify programmers about object outliving its context. Since this is very serious error,
this methods throws an exception, instead of silently failing to perform any actions on this
object.

39

Input : Object o,name n
o.ensureLoaded();
if ∃ o.Values[n] then

return o.Values[n];
else

if o.State == New ∧ n ∈ EM(o).Attributes ∨ n ∈ EM(o).Relationships
then

o.Values[n] = getDefaultValue(EM(o),n);
return o.Values[n];

else
return o.getValueForUndefined(n)

end
end

Algorithm 11: Object.getValue()

Algorithm 11 defines function used for retrieving primitive value or references to related
objects. If value is not found in Object’s internal value map, algorithm first tries to find
AttributeModel or RelationModel with provided name. If it exists, it uses helper method to
generate default value for provided name, and returns it. If it does not exist, virtual method
getValueForUndefined is called, that in it’s default implementation throws an exception, but
can be used to extend Object’s functionality.

Input : Object: o,Name n,Value v
After : o.State = Modified ∨ o.State = New
o.ensureLoaded();
if ∃ AttributeModel a : a = EM(o).Attribues[n] ∧ type(v) = a.Type then

o.Values[n] = v;
o.markModified();
return true;

else
if ∃ RelationModel r : r = EM(o).Relationships[n] then

var EntityModel iem: iem ∈ o.Context.Model[r.TargetEntity];
var RelationModel im: im ∈ iem.Relationships[r.TargetName];
if o.Context = null then

return false;
end
o.markModified();
if r.Type = ToOne then

<setRelationshipToOne(r,v)>
else

<setRelationshipToMany(r,v)>
end

else
return o.setValueForUndefined(n,v)

end
end

Algorithm 12: Object.setValue()

40

Input : Object o, RelationshipModel r,Value v
var Object old = o.Values[n];
var Object replace = v as Object;
if old = breplace then

return true;
end
if (replace ̸= null ∧ replace.Context ̸= o.Context) then

return false;
end
o.Values[n] = replace;
if im.Type = ToOne then

if old ̸= null then
old.setValueInternal(im.Name,null);

end
if replace ̸= null then

var replaceInverse = replace.Values[im.Name];
if replaceInverse ̸= null then

replaceInverse.setValueInternal(r.Name,null);
end
replace.setValueInternal(im.Name,o);

end
else

if old ̸= null then
old.removeObjectInternal(im.Name,o);

end
if replace ̸= null then

replace.insertObjectInternal(im.Name,o);
end

end
return true;

Algorithm 13: OsetRelationshipToOne

41

Input : Object o, RelationshipModel r,Value v
var Objects old = o.Values[n] as set of Objects;
var Objects replace = v as set Objects;
if old = replace then

return true;
end
o.Values[n] = replace;
if im.Type = ToOne then

forall oldObj ∈ old do
oldObj.setValueInternal(im.Name,null);

end
forall replaceObj ∈ replace do

var replaceInverse = replaceObj.Values[im.Name];
if replaceInverse ̸= null then

replaceInverse.setValueInternal(r.Name,null);
end
replaceObj.setValueInternal(im.Name,o);

end
else

forall oldObj ∈ old do
oldObj.removeObjectInternal(im.Name,o);

end
forall replaceObj ∈ replace do

replaceObj.insertObjectInternal(im.Name,o);
end

end
return true;

Algorithm 14: setRelationshipToMany

Algorithms 13 and 14, are not specific functions implemented on object. They are
simply parts of algorithm 12, which were extracted due to long length of this function.

Input : Object o, Name n, Value v
o.ensureLoaded();
o.Values[n] = v;
o.markModified();

Algorithm 15: Object.setValueInternal()

Algorithms 12 and 15 define functions for modifying object values. Function
setValueInternal simply loads object if needed, modifies it’s internal value map, and
marks object as modified. Function setValue is more complex. If provided name refers to
an attribute, it behaves as setValueInternal. However, if the provided value refers to
relationship behavior is more complex. This function loads old value stored under said
name. If inverse relationship type is ToMany, it removes object on which is this function
called from inverse relationship on old objects, and inserts it into inverse relationship on
new objects. If inverse relationship type is ToOne, it sets this inverse relationship on old
object to null, and on new object, sets inverse value to this. This function calls other

42

internal functions such as setValueInternal,insertObjectInternal, by using internal
functions that do not perform linking of inverse relationships, this avoids creating infinite
cycles. One critical condition is that both target object and object inserted into
relationship are from same context.

Input : Object o, Name n, Object v
o.ensureLoaded();
var Objects objs = o.getValue(n);
objs = objs ∪ {v};
o.markModified();

Algorithm 16: Object.InsertObjectInternal

Input : Object: o,Name n,Object i
Before : o.Context ̸= null
After : o.State = Modified ∧ i.State = Modified
var EntityModel e = EM(o);
o.ensureLoaded();
if i = null ∨ o.Context = null ∨ i.Context ̸= o.Context then

return false;
end
if ∃ RelationModel r : r = EM(o).Relationships[n] ∧ r.Type = ToMany then

var EntityModel iem: iem ∈ o.Context.Model[r.TargetEntity];
var RelationModel im: im ∈ iem.Relationships[r.TargetName];
if im.Type = ToOne then

var old = i.getValueInternal(im.Name);
if old ̸= null then

old.removeObjectInternal(name,i);
end
i.setValueInternal(im.Name,o);

else
i.insertObjectInternal(im.Name,o);

end
o.insertObjectInternal(n,i) return true;

end
return false;

Algorithm 17: Object.insertObject

Algorithms 16 and 17 define functions for inserting new objects into ToMany
relationships. insertObjectInternal as similar functions defined before, do not perform any
verification of inputs, and simply perform core action of inserting new object into internal
collection holding objects in relationship. insertObject on the other hand does perform

43

verification, and performs linking of inverse relationships, keeping integrity of the object
graph. The condition of storing only objects from one ObjectContext is also verified.

Input : Object o, Name n, Object v
o.ensureLoaded();
var Objects objs = o.getValue(n);
objs = objs ∖ {v};
o.markModified();

Algorithm 18: Object.RemoveObjectInternal

Input : Object: o,Name n,Object i
Before : o.Context ̸= null
After : o.State = Modified ∧ i.State = Modified
o.ensureLoaded();
if i = null ∨ o.Context = null ∨ i.Context ̸= o.Context then

return false;
end
if ∃ RelationModel r : r = EM(o).Relationships[n] ∧ r.Type = ToMany then

var EntityModel iem: iem ∈ o.Context.Model[r.TargetEntity];
var RelationModel im: im ∈ iem.Relationships[r.TargetName];
if i ∈ o.Values[n] then

if im.Type = ToOne then
i.setValueInternal(im.Name,null);

else
i.removeObjectInternal(im.Name,o);

end
o.removeObjectInternal(n,i);
return true;

end
end
return false;

Algorithm 19: Object.removeObject

44

Algorithms 18 and 19 are relatively straightforward inverses of previous algorithms.
They perform removing of objects from ToMany relationships, while preserving integrity of
object graph by modifying inverse relationships.

Input : Object: o
Before : o.State ̸= Fault
After : o.State = Modified ∨ o.State = New ∧ o ∈ o.Context.ToSave
if o.Conext = null then

return false;
end
o.Context.toSave = o.Context.ToSave ∪ { o };
if o.State = Loaded then

o.State = Modified;
end
return true;

Algorithm 20: Object.markModified()

Function defined in Algorithm 20 is invoked during during all functions that modify
object values. This function inserts modified objects into ToSave set set in their respective
ObjectContext, ensuring all changes will be properly saved.

45

Appendix B

Measured performance data

Following table shows raw measured data. This dataset was obtained by running example
application specified in examples/performance.cpp. First row contain number of objects
that were used to measure durations of individual actions, and subsequent rows contain
execution times in milliseconds. Exact meaning of individual actions is best explained by
source code of the application used to perform the measurement.

COUNT 100 1000 10000 100000 1000000

CREATE 6.43 · 101 6.46 · 101 1.17 · 102 5.83 · 102 5.60 · 103
MODIFY 5.63 · 100 2.00 · 101 1.49 · 102 1.57 · 103 1.67 · 104

LOAD 1.37 · 101 3.55 · 101 2.99 · 102 3.06 · 103 3.26 · 104
QUERY 3.80 · 10−1 1.32 · 100 1.32 · 101 1.64 · 102 1.95 · 103

QUERY-MOD 6.60 · 10−1 2.93 · 100 3.30 · 101 3.95 · 102 4.45 · 103
DETACH 3.11 · 100 1.25 · 101 1.42 · 102 1.65 · 103 1.71 · 104

SAVE-DEL 9.50 · 100 1.88 · 101 1.54 · 102 1.42 · 103 1.27 · 104

46

	Introduction
	Current state
	Core Data
	Core Data stack
	Core Data usage

	System Design
	Component definitions
	Object lifetime
	Core functions
	ObjectContext functions

	Implementation
	Core implementation
	Project structure
	External dependencies

	Database interface
	Persistent Store and extendability
	SQlitePersistentStore

	Examples and usage
	Class and EntityModel definition
	Common usage patterns
	Example application

	Testing and verification
	Testing
	System performance

	Conclusion
	Bibliography
	Appendices
	Object modification algorithms
	Measured performance data

