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Abstract
Creating a software verification tool is a complex task — one must implement source code
parsing, instruction representation, value abstraction, user interface, ... and the analysis
itself. Therefore, we decided to create a static analysis framework to prevent unnecessary
wheel reinventing by an analyses implementers .
We propose a general design of the framework called Angie with a primary focus on usability,
and describe a prototype implementation of the framework, including a model analysis based
on symbolic memory graphs. Angie is implemented in C++ and uses the LLVM toolchain
as the front-end for parsing the source code of analysed programs.

Abstrakt
Tvorba softwarového analyzátoru je komplexní úloha — je nutno implementovat parsování
zdrojového kódu, reprezentaci instrukcí, abstrakci hodnot, uživatelské rozhraní, ... a také
analýzu samu. Abychom předešli zbytečné práci vývojářů analýz, rozhodli jsme se vytvořit
framework pro statickou analýzu programů.
Předkládáme obecný návrh frameworku zvaného Angie s důrazem na jeho použitelnost
a popisujeme prototyp frameworku, včetně modelové analýzy založené na symbolických
paměťových grafech. Angie je implementován v C++ a používá nástroje z kolekce LLVM
pro parsování zdrojového kódu analyzovaných programů.
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Chapter 1

Introduction

As the amount of software critically influencing our lives gradually increases, so rises the
importance of different methods for checking the software for flaws. There are several
well-known historical examples of what a software error can cause from the areas of space
missions or pharmacy, and companies in such fields are still searching for the ultimate
verification and bug-hunting tools. In this paper, out of the broad range of approaches that
such tools can be based on, we are particularly interested in static analysis methods.

A static analyser for languages like C is a complex piece of software. It includes much
more than just the analysis algorithms themselves: it must be able to parse all the details
of the source language, provide a viable abstraction over the language data types and
commands into some intermediate representation, and report results of the analysis in an
acceptable format.

The aim of this thesis is to describe a new software analysis tool, or more precisely a
framework for a family of such tools, inspired by a verifier for low-level C programs with
dynamic linked data structures called Predator1.

Predator is built as a GCC compiler plug-in, on top of the Code Listener2 — an interface
to access an intermediate representation of program from the GNU GCC (default) or LLVM
clang [14] compilers. Its verification loop is based on abstract interpretation instantiated
with Symbolic Memory Graphs [7]. Not only Predator is quite efficient and can handle
many complex program constructions, it is also a multiple-time winner [12, 9, 2] of the heap
memory and memory safety categories in SV-COMP3.

The VeriFIT group — whose member the author is — would like to build on Predator ’s
success and push its usability border even further. However, this is not simple, considering
its complex code-base.

Firstly, the architecture of Predator was designed to a large degree by a single developer
who did not think much of later extensions of the tool and who left the team, and hence it
is difficult to even understand all the details of the tool.

Secondly, Predator (and also the related tool Forester that shares with Predator the
Code Listener infrastructure), is very optimized and any changes to it pose a great challenge
(and use to pose it even to its original author).

Of course, one can start from the scratch — and do so every time when an entirely new
analysis is needed — but doing so is far from optimal. If we consider what has already
been said above about what all needs to be included into a static analysis tool, its is clear

1http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
2http://www.fit.vutbr.cz/research/groups/verifit/tools/code-listener/
3https://sv-comp.sosy-lab.org, International Competition on Software Verification
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that the developer of the analysis will be forced to do a work similar to reinventing the
wheel — by creating a waste number of base modules, like, e.g., front-ends, intermediate
representation, abstraction domains etc.

Therefore, the conclusion has been that not only is a complete re-implementation of
Predator needed, but that the group needs a platform for implementing static analyses —
one that is easy for new developers to build upon. A framework.

The core requirements regarding the framework are listed below.
∙ Handles transforming instructions from a source language into some reasonable inter-

mediate form.
∙ Provides analysis composition capabilities.
∙ Contains components for abstract interpretation support.
∙ Streamlines creating new analyses as much as possible.: it should not require a lengthy

documentation study — or worse, an elaborate revere-engineering — prior starting the
work on “your first analysis”.

∙ Is under a good control of the group.
A work on such a framework, that we call Angie, is currently under way. We hope that

it will make implementing a new program analysis for researchers appealing and simple.
The initial scope for supported input languages should be C with possible extension for
C++ later.

We designed Angie to be modular and not restrictive about the analyses that should
be implemented in it — it is designed to allow combined analyses to be implemented in it.
However, we do not intend to make it super-generic from the start, instead, we let it on the
developers of the analyses to combine them.

We chose LLVM 4 to be the fronted since the LLVM tool-chain has a stable development
and provides us with a way to support many input languages. The first and model analysis
to be implemented in Angie is a shape analysis based on the Symbolic Memory Graphs
originally introduced in Predator, to which we are making improvements allowing for a
more precise abstraction.

We have chosen C++ to be the implementation language because it is one of the most
used ones and because LLVM itself is implemented in it. We are aware of the fact, that
C++ might not be the easiest language to use when implementing static program analysis,
but we hope this choice will prove to be acceptable as students and young researchers with
an existing programming background should be reasonably familiar with the concepts we
use.

We have already successfully implemented an LLVM front-end adapter which wraps
the ever-changing LLVM API, defined an interface for combining abstract value domains,
and created two different versions of an abstract value domain module. The architecture
of Angie is now fairly stable and reflects many hours of discussions regarding the overall
design of the framework.

After this paragraph, chapter Preliminaries introduces the reader to the theory of ab-
stract interpretation and symbolic memory graphs and provides an overview of LLVM
project and the Predator tool. Also, it describes SV-COMP related experiments involving
Predator. After that, a complete design of the framework is presented in an incremental
way. Further, the current state of implementation is summarized, followed by a list of
experiments performed with Angie. Finally, an outline of possible future development is
given.

4See section 2.4 for more information about The LLVM Compiler Infrastructure
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Chapter 2

Preliminaries

2.1 Symbolic Memory Graphs
The following chapter introduces the Symbolic Memory Graphs described in [7].

SMGs (Symbolic Memory Graphs) are a representation of memory — suitable for pro-
grams with pointers and linked-list structures — designed as an abstract domain for use
within abstract interpretation analyses.

2.1.1 Abstract Interpretation

The following text is a slightly shortened version of abstract interpretation description given
in [11].

Abstract interpretation [5] is a theory of a sound approximation of the semantics
of computer programs that, among other applications, allows for constructing
static analyses sound by construction. Abstract interpretation consists in giv-
ing a class of programs a concrete and abstract semantics defined on suitable
concrete and abstract lattice-based domains. These domains are usually linked
by a pair of monotone functions—the so-called abstraction and concretisation,
traditionally denoted 𝛼 and 𝛾, respectively—that form a Galois connection. Pro-
gram statements are modelled as monotone functions, often called as concrete
and abstract transformers1, on the concrete and abstract domains, respectively.
In a more general formulation of abstract interpretation [6], the requirement of
dealing with a Galois connection is lifted, and the analysis is defined in terms of
a concretisation (or, dually, abstraction) function only. This, however, excludes
the possibility of defining best abstract transformers, which can be defined when
using Galois connections (by simply first concretising the input abstract value,
then using the concrete transformer, and finally abstracting the result). Another
consequence of using the more general setting is that there is no easy way of
comparing the precision of abstractions.
In order to be able to use abstract interpretation for analysing programs, one
further needs an operator for accumulation of abstract values2 computed for

1In our work, a concrete transformer corresponds to an instruction and an abstract transformer corre-
sponds to an Operation

2The operator in question is called join, usually denoted ∘
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a single program point via multiple program paths. Moreover, since the abstract
domain is often infinite, one needs the so-called widening operator O that over-
approximates the accumulation operator and that has the property that for
any infinite sequence of abstract values 𝑥0, 𝑥1, ..., the sequence 𝑦0, 𝑦1, ... where
𝑦0 = 𝑥0 and 𝑦𝑖+1 = 𝑦𝑖O𝑥𝑖+1 eventually stabilises. The analysis is then performed
by iterating the abstract transformers over the control flow graph, using the
accumulation operator at program points where several program paths meet,
and applying the widening operator at loop junctions to make the analysis
terminate. Sometimes, the so-called narrowing operator M is also used after
widening to refine its effect.

Moreover, for an informal introduction to abstract interpretation, the author of this
thesis recommends web article called “Abstract Interpretation in a Nutshell”3 and a sum-
marizing work [4], both from the pen of the author of the original paper [5].

2.1.2 Elementary Graph Components

Figure 2.1 contains a simple graph illustrating the elementary components of an SMG,
which are described in the following paragraphs.

Powered by TCPDF (www.tcpdf.org)

Figure 2.1:

SMGs consist of two primary kinds of nodes: objects and values. Objects are memory
nodes which can be further divided into concrete regions and abstract list segments.

Moreover, has-value edges (one of the two types of edges existing in SMGs) connect
object nodes to values and each such edge defines a field — a field represents a value that is
stored in the source object at a given offset.

Values in SMGs are generally one of the unknown, integer and pointer types. Pointer
values play an important role in SMGs, as they “connect” the Objects together — each
pointer value node has one outgoing points-to edge pointing to an object with a given offset.

Nodes and edges in SMGs are labelled with more information then just a source or
target offset, but those attributes were left out from Figure 2.1 for simplicity. An example
is that of object size, field type or target specifier. For complete description of the graph
attributes, please refer to sections 2.1 and 2.2 of [7].

3http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
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2.1.3 Operations Defined Over SMGs

SMG is an abstract representation of a set of concrete memory configurations. Conse-
quently, SMGs are also a part of abstract representations of sets of concrete program con-
figurations, which must also describe the stack, registers, etc.

Based on that fact, SMGs must support abstract interpretation operations entailment-
checking, abstraction, widening and join together with symbolic execution of memory-
related program statements.

In case of SMGs, entailment-checking is implemented using the join operator.
Widening, which accelerates the potential convergence of states towards a fixpoint, is

defined in terms of abstraction operator. Abstraction in SMGs tries to find uninterrupted
sequences of regions forming a linked list satisfying certain conditions and turns them into
one list segment node.

And finally, join which accumulates the abstract contexts into one, attempts to merge
two graphs with the least possible amount of permitted changes.

Besides these operations, SMG has also a defined read/write reinterpretation operator,
which can synthesize new fields and handles access to overlapping fields. Note, that any
abstract object has to be concretized before being accessed.

2.1.4 Example of SMG with List Segment

Figure 2.2: Standard memory view [top] and an abstract–SMG view [bottom]

Figure 2.2 shows4 an example of SMG corresponding to linux-like double linked list.
The list consists of head and no-less than 2 elements - first and last. Head of the list is
represented by a region in the left part of the graph. It has two pointer value fields, one at
offset 0, second at offset size(ptr). Both corresponding points-to edges are pointing to the
useful part of the list represented by 2+ DLS — the first and last element.

2.2 Predator
“Predator is a tool for automated formal verification of sequential C programs operating
with pointers and linked lists” is the the description of Predator at its home-page5.

Moreover, analysis performed by predator is sound and handles well all kinds of linked-
list (circular, nested, and/or shared), address alignment, block operations, etc.

4First label of each edge denotes a source/target offset of has-value/points-to edges, respectively. More-
over, hfo/nfo/pfo stand for head/next-ptr/prev-ptr field offset

5http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
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2.2.1 Tool Overview

Predator itself has been through a lot of development, but its analysis is built on SMGs
for quite some time. The structure of Predator could be divided into 3 main parts: the
front-end comprising of a GCC compiler and CodeListener [8] adapter, the interpretation
kernel with support for some of C Standard library functions, and the SMG algorithms.

The CodeListener infrastructure for operating over GCC (and possibly also other C-
langauge compilers) internal representation is well tested, stable and is also used by another
analysis tool called Forester.

Unfortunately, with regards to possible extensions of the tool, the interpretation kernel
and SMG algorithms are closely coupled and the primary source of documentation is the
source code with automatically generated Doxygen files, which makes getting to know
Predator quite hard. Angie, like Predator, has a separate module for input pre-processing,
but unlike it, the interpretation kernel of Angie is independent of the abstraction providers
used in analyses.

As for other limitations, the most notable long-lasting weaknesses of Predator is its
limited ability to treat non-pointer data.

2.2.2 Implementation

The implementation of SMGs in Predator does not match the description given in [7] ex-
actly — there are some improvements that are only suggested in the paper, some algorithms
are merged, and some technicalities are not covered in the paper at all. An example of dif-
ferences we can give is that Predator supports concrete integers to a compile-configured
boundary, provides a limited support for integer intervals and uses copy-on-write when
creating derived SMGs. The latest versions of Predator also support emitting SV-COMP6

error witness XML files.
Predator is implemented as a GCC plugin and its primary ouputs are GCC-formated

warnings and files with graph plots. The simplest way to analyse a C source code file with
Predator is to use a supplied script which invokes GCC with necessary parameters.

Predator comes with an extensive collection of test inputs, ranging from simple artificial
examples and regression tests to a complex samples coming from complex applications. The
author of this thesis have not found any particular C-language construct that would cause
Predator crash during his experiments with the tool.

2.2.3 SV-COMP

SV-COMP7 is a competition of software verification tools with goal to support and promote
successful and stable verification tools. The tools competes in different categories and tries
to verify relatively large sets of C programs. Both former and present VeriFIT members
have contributed with various tools every year since the start of the competition.

2.2.4 Predator Hunting Party

Predator-HP8 (Predator Hunting Party) is a modification of Predator developed originally
for the 2015 edition of SV-COMP [12]. The motivation for creating Predator-HP was to

6Software Verification Competition
7https://sv-comp.sosy-lab.org/
8http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp/
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refine the final verdict of the tool and prevent the tool from producing unnecessary false
alarms.

Predator-HP is effectively a bundle of several instances of Predator with different con-
figurations. Whole Predator-HP is controlled by a set of shell and Python scripts and its
latest configuration is one ”verifier“, two ”DFS Hunters“ and one ”BFS hunter“.

∙ prover or verifier – Predator with all abstractions enabled, performing sound shape
analysis. It could produce false alarms due to its use of abstraction and so the results
are accepted only when it proves a program correct.

∙ DFS hunters – Predators reporting only errors, running without any list abstractions,
but still with limited precision of arithmetic instructions and, most importantly, with
different bounds on the depth of the state space search. For SV-COMP’15, there
were 3 DFS hunters with limits of 400, 700 and 1000 GIMPLE9 instructions. For
SV-COMP’16 and ’17, we used 2 DFS hunters with limits of 200 and 1000 GIMPLE
instructions.

∙ BFS hunter – As for abstractions used, the BFS hunter is the same as the DFS hunter.
Difference is that, while both the prover and the DFS hunter are performing DFS,
BFS hunter obviously performs BFS which is more suitable for programs with deep
yet narrow state space.

2.3 Predator-HP and SV-COMP Competition Contributions
The author of this thesis has participated in preparation and tuning of Predator-HP for
SV-COMP’16 [9] as a part of getting to know Predator. The obtained configuration was
however, used in SV-COMP’17 [10] without a major change.

We have created a set of scripts for running Predator-HP with all available test-cases
and calculated overall score. Due to the penalization false-alarms, the score was almost
halved compared to previous years. We identified approximately 10 problematic test-cases,
discovered a weakness in the original shell script for translating output of Predator for the
purpose of SV-COMP and optimized the Predator-HP configuration to improve results of
Predator-HP for the competition.

Some of the test-cases triggered the prototype of interval abstraction in Predator, which
caused a false alarm later during the analysis. We have been able to filter out most of these
specific cases via a small modification of Predator which stops the analysis with unknown
verification verdict. Unfortunately, this was not the case with the last two remaining false-
alarm cases, which were also caused by sometimes faulty interval abstraction in Predator
[2].

Modifications made to Predator-HP include:
∙ Predator now returns unknown result when performing operations over faulty interval

abstraction domain,
∙ addition of new command line parameter to switch ”uninitialized value“ between note

and warning,
∙ addition of debugging code to discover maximum state space depth reached,
∙ consolidation of verifier/BFS/DFS code base.

9An instruction of intermediate representation used in GCC
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2.3.1 Optimizing Predator-HP Configuration

The parameters chosen for SV-COMP’15 edition of Predator Hunting Party were rather ex-
perimental, and were questioned several times. We have decided to make a proper research
regarding the optimal configurations of the tool for SV-COMP’16.

Based on the Predators configuration, correct-true results can be primarily returned
by the prover or sometimes by the BFS hunter(when it finishes searching the whole state
space without finding any problems), so there are not many options for tuning the tool for
test-cases with no errors.

We have executed multiple runs of different predator configurations with all test-cases
congaing an error, measuring the time and maximum reached depth. The set of Predators
used was: prover, DFS hunters with depth limits granulary rising up to 2000, unbounded
DFS hunter and BFS hunter.

During the experiments, we have discovered another weakness in Predator SV-COMP
script that was greatly decreasing performance for longer running test-cases. After fixing
it, we were able to terminate Predator up to 30% faster for long running tasks.

Based on the results, we have changed the composition of Predator-HP as mentioned
earlier in the description of Predator-HP, and compared the new set-up of Predator-HP
with the previous one using Benchexec10.

2.3.2 The Analysis Results

Based on the benchmarking described above, we were able to draw several conclusions.

∙ In over 80% the program error can be found in the limit of 200 instructions. This
makes DFS hunter with limit of 200 instructions a perfect candidate, capable of
analysing many test-cases and saving computation time.

∙ In about 96% of cases, meaning all but four programs, the error can be found within
the limit of 1000 instructions.

∙ The difference in run-time of DFS-900/1000 hunter and DFS-400 and DFS-700 hunters
for the relevant cases is not big enough to cover up for the increased computation time
consumption with more parallel hunters.

∙ In the remaining cases, the error might be much, much deeper in the state-space and
so adding another DFS hunter with higher limit would not make any sense.

∙ There exist test-cases where DFS hunters return appropriate results, but BFS hunter
does not - the state space of such test-cases is too broad.

∙ In some cases, the witness may be quite long, but the search space is narrow, so an
error can still be found by the BFS hunter

There were also some programs both proved correct by the verifier but not the BFS
hunter and proved correct by the BFS hunter but not the verifier.

Figure 2.3 shows how the different configurations of Predator were able to cope with
different test-cases.

10A tool for reliable benchmarking of verification tools used in SV-COMP https://github.com/sosy-
lab/benchexec
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Figure 2.3: Distribution of true/false/unknown/timeout results for different configurations
of Predator

2.3.3 Summary and Results of SV-COMP 2016

The final results of the SV-COMP’16 are published on the competition website http://
sv-comp.sosy-lab.org/2016/results/results-verified/ [2]. After the reorganization
of categories which happened before SV-COMP’16, Predator-HP attended the competition
only in the category ”Heap Data Structures“. Results for the category were:

1. PredatorHP with 298 points and 1100s of cpu time.

2. CPA-Seq with 234 points and 4100s of cpu time.

3. Cascade with 197 points and 9900s of cpu time.

The maximum score for the category was 382 points. The score calculation description
is available online at http://sv-comp.sosy-lab.org/2016/rules.php. We have not only
managed to repeat our victory in ”Heap“ catogry from previous years but also to improve
our total computation time in the competition. Described optimization technique can be
used for example with automatic verification in continuous/regress testing scenarios.

For completeness, we can note that Predator-HP won a gold medal in SV-COMP’17
too.
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2.4 LLVM
In this section, we will first cover the LLVM project, its purpose and some of the tools of
the project and then give a description of the LLVM intermediate representation (IR): its
representations, specifics of SSA-based11 form and list of important instructions.

2.4.1 LLVM Compiler Infrastructure Project

The LLVM compiler infrastructure project “is a collection of modular and reusable compiler
and toolchain technologies” [http://llvm.org/] written mainly in C++.

The LLVM Core module defines and works with intermediate code representation known
as LLVM IR and provides both target-independent optimizations and target-specific code-
generators.

Clang — defined in a context of the LLVM project — is than a swiss-army-knife style
compiler front-end, focused not only on fast compilation but also on reusability of its com-
ponents. Clang can be used to built a static analyser12, to power an IDE auto-completion
and documentation features13,14,15, to check validity of doxygen comments16 , and many
more.

When used as a C/C++ compiler in a standard command line mode, clang driver
module comes into place, serving as an umbrella for both libclang and llvm libraries and
controls the compilation, optimizations and code-generation phases. Clang can be set to
compile not to native code but only to LLVM code - more about LLVM as a language in
next subsection.

LLVM binary distribution also contains other usefull tools, some of those are:
∙ opt - transforms LLVM code using desired transformation passes
∙ llc - compiles LLVM code into native machine code
∙ lldbg - LLVM native debugger
The LLVM project major version work cycle is 6 months long, with no guarantees of

C++ API stability between major version changes. There is also a more stable C API,
used for bindings to other programing languages (for example Python). The source code is
available under a permissive software license.

2.4.2 LLVM as a Language and the Intermediate Representation

LLVM also stands for the LLVM assembly language, also known as LLVM assembly, LLVM
IR language, LLVM bitcode or sometimes anachronistically LLVM bytecode. LLVM, in this
context, is a Static Single Assignment based representation of a computer code, suitable
for optimizations [1]. LLVM can take three forms in the LLVM toolchain:

∙ object form in the memory of LLVM family tool which can manipulated using an
API, called an LLVM IR or just IR

∙ textual form / assembly language representation, as described in the language refer-
ence [1], typically using an .ll file extensions

∙ Binary form, called a LLVM bitcode17, typically using an .bc file extension
11Static Single Assignment
12http://clang-analyzer.llvm.org/
13http://codelite.org/LiteEditor/ClangIntegration41#toc2
14https://github.com/Rip-Rip/clang_complete
15https://github.com/justmao945/vim-clang
16http://llvm.org/devmtg/2012-11/Gribenko_CommentParsing.pdf
17http://llvm.org/docs/BitCodeFormat.html#overview
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Quote from [1], Introduction section:

It aims to be a “universal IR” of sorts, by being at a low enough level that
high-level ideas may be cleanly mapped to it (similar to how microprocessors
are “universal IR’s”, allowing many source languages to be mapped to them).

For a list of possible reasons, why prefer LLVM infrastructure, over (for example) GCC,
the author suggests to read the article [13].

We will further refer to both the LLVM as an assembly-like language and LLVM as an
in-memory IR as to LLVM IR. That will allows us to distinguish the language from LLVM
as a set of libraries.

2.4.3 Important Concepts and instructions of LLVM IR

We will now describe the basic concepts and instructions of LLVM IR.

Memory Access and Allocation

The only instructions operating directly on memory are load/store load and store in-
struction. Operands of these instructions must by of first-class type or pointers to such
a values. First-class types are essentially all types except for void, opaque types and
target(machine)-specific types.

The only memory allocation instruction directly known to LLVM is alloca , operating
on function’s stack frame. Front-ends usually generate one alloca for every local automatic
variable.

Most allocas representing local automatic variables can be optimized out together
with all their connected stores and loads, emitting phi instructions in case the memory was
stored to on multiple paths in the control flow graph (phi is an instruction specific to SSA
form and is explained in the Control Instructions block ). Note that the code containing
stores and loads is only in a partial SSA form18. This process is also called lowering of
memory to registers.

The getelementptr instruction — shortened as GEP — computes the pointer to an ele-
ment of an aggregate using the base pointer and N indices to the aggregate type, as explained
on the example below. Note that when an aggregate variable is transformed from memory
to register using the aforementioned lowering process, GEP instructions preceding the loads
and stores are replaced with extractelement and insertelement instructions.

GEP is quite complex and has its own documentation webpage19 in the LLVM project
docs, where more details can be found. We now present a simple example of load/store and
GEP addressing generated for struct member access in Figure 2.4.

Integer Arithmetic

LLVM IR instructions covering integer arithmetic include two’s complement integer arith-
metic instructions add/sub/mul and the signed/unsigned variants of instructions computing
quotient and remainder sdiv/udiv/srem/urem.

18A code that does not use only SSA registers but also accesses the memory is no longer really ”single
assignment“ as memory can we written-to repeatedly. Such a code is sometimes refereed to as code in a
partial SSA form

19http://llvm.org/docs/GetElementPtr.html
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Figure 2.4: Excerpt of code: memory access and allocation in C and LLVM IR, side by side

The integer representation of LLVM type system is signless as opposed to the C-language
family type systems, and uses the two’s complement modulo arithmetic integer represen-
tation. To express the different behaviour of sign/unsigned types in the C-language family
(and other languages), LLVM IR has a set of instruction flags/keywords stating whether a
singed or unsigned overflow of an integer operation leads to an undefined value.

Note that the C standard defines unsigned arithmetic in terms of two’s complement
modular arithmetic, which is the arithmetic model used in LLVM IR, so no flags like those
mentioned above are generated for these operations.

Further, the and/or/xor instructions provide standard bitwise operations in LLVM IR.
Shift instructions produce undefined values if the number of bits shifted is equal to or larger
than the size of shifted type. The left shift supports the same overflow flags as do the basic
integer arithmetic instructions, while the right arithmetic and logical shift do not.

Control Instructions

We start with the br — a branching instruction that can be either unconditional — has one
target, it is effectively a jump — or conditional — has two targets. The type of the control
value is a one-bit wide integer. A switch is then a generalization of the br instruction and
is defined in terms of value-target pairs (4, blockA; 5, blockB) where the type of all values
in pairs and the control value must match.

Subprogram control instructions, i.e. mainly call, ret (and also invoke and others,
when exception handling is supported), are following the usual semantics — the control is
transferred onto the called code and returned to the following instruction in the calling
code. The type of the return value of the call instruction matches the signature of the
called function.

The operand of the ret instruction is linked to the resulting value of the calling instruc-
tion upon return. Call arguments are linked to the formal parameters of the function being
called upon the call in the same way.

Finally, phi is an instruction specific to the SSA form and allows elimination of memory
allocation and access while retaining the option of having multiple paths in the program
affecting the same program variable. The result of a phi instruction call is one of its value
operands, selected based on the previous program location on the current execution path.
For more details, see [20]. phi instructions cannot be realized directly on most of the current
hardware, and their behaviour is typically replicated by usage of the same physical register
or the same memory location in all paths of the program, or using a switch-like instruction.

20https://en.wikipedia.org/wiki/Static_single_assignment_form
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Conversion Instructions

Conversion instructions can be divided into two categories based on their effect on the
underlaying data: no-ops and data-conversions.

No-op cast instructions change only the type of operands and include, e.g., conversions
from pointers to integers (of the same bit width) or pointer casts.

Data-converting instructions cover integer to floating pointer conversions, integer trun-
cations and extensions, etc.

Others

Other LLVM IR instructions include floating point instructions — these generally reflect
the design of their integer counterparts. As LLVM IR is also modelling some higher-level
language constructions, it also provides instructions for thread-safety (atomic operations,
memory barriers,...), exception handling (which is conceptually different on different ABIs),
various intrinsic functions, flags and metadata kinds.

Finally, LLVM IR supports usage of constexpr — constant value expressions — as operands
of instructions. Such an expressions are usually generated during optimizations to make
the resulting IR code smaller, but they can easily unwrapped into separate instructions to
simplify the instruction set.

2.5 Other tools and frameworks
This sections lists some of the existing projects devoted to development of software verifi-
cation tools and frameworks.

∙ CPAchecker21 is a platform for software verification written in Java and based on
the idea of Configurable Program Analysis (CPA). It allows for composition of anal-
ysis and one of the supported analyses is even a simplified version of the analysis
implemented in Predator (so far without a support for abstraction). Unfortunately,
CPAchecker forces developers of the analyses to be used within it to accept the ap-
proach of CPA which may sometimes be restricting.

∙ Ultimate22 is also written in Java, uses a dialect of Boogie23 for intermediate repre-
sentation, and concentrates on analyses implemented in
an automata-theoretic way. The latter is again somewhat restricting.

∙ Frama-C 24 is one of the most known plug-in based platform for C analysers, it oper-
ates on CIL—the C Intermediate Language25 and is written in OCaml as many others
research verification tools. Here, the use of CIL is not much aligned with the latest
development in the world of major compilers such as those of LLVM26 family.

∙ Infer abstract interpretation framework27 is a recent addition to the Infer static anal-
ysis tool, originally intended for bi-adductive analysis of programs with dynamic data

21https://cpachecker.sosy-lab.org/
22http://monteverdi.informatik.uni-freiburg.de/ultimate/
23https://github.com/boogie-org/boogie
24https://frama-c.com/
25https://people.eecs.berkeley.edu/~necula/cil/
26http://llvm.org/
27http://fbinfer.com/docs/absint-framework.html
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structures based on separation logic. This framework could be an alternative option
for implementing a new SMG-based tool. However, after discussions in the VertiFIT
group, it was decided to have our tool actively under the control of the group. Like
Frama-C, Infer is implemented in OCaml.

In our framework, we would like to rely on a major compiler infrastructure, and we
would like to be as little restricting in terms of the kind of analyses supported as possible.

Because we decided to build on LLVM, we would like to mention two further recent
tools that also use the LLVM tool-chain as their front-end and also compete in SV-COMP:

∙ Symbiotic28 is a verifier based on symbolic execution written in C++.

∙ DiVinE29 is also written in C++, focuses on verification of concurrent programs,
features a virtual machine interpreting the LLVM bitcode, debugger displaying the
program in LLVM assembly language and others.

None of the above two tools, however, can be viewed as an infrastructure.

28https://github.com/staticafi/symbiotic/
29https://divine.fi.muni.cz/
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Chapter 3

Towards Framework for Static
Analysis

This chapter presents the design of Angie framework from a top-down perspective.
We first identify the three main phases of a program analysis process and place the key

Angie parts into the individual analysis phases. As the next step, we introduce the reader
to our concept of an abstract interpretation loop.

After that, we give a detailed description of Angie in three bigger blocks.

∙ Input Program Pre-processing covers the transformation of C source code to an Angie
internal representation.

∙ ValueContainer demonstrates an Angie component for representation of values in
abstract domains.

∙ Analysis Itself focuses on interpretation-related parts of Angie and presents the final
abstract interpretation loop.

A Note on Colour Code Used in Diagrams

Unless stated otherwise, figures used in this chapter use the following colour coding to
describe the level of dependency of framework component on user-supplied (e.g. provided
by a user of the framework) code.

∙ Green means no dependency on user-supplied code
∙ Yellow means that component depends on a user-defined type, meaning that such a

component must be able to accept polymorphic objects. That dependency can be
either reference to an object of such type or an instance of the object directly.

∙ Orange marks a user supplied component realizing an interface defined in framework.
∙ Red stands for completely user-defined and framework-independent code.

In case the component is not a part of framework code but an accompanying script or
application, the semantics is yellow for “configured by the tool” and red for ”fully indepen-
dent”.
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3.1 Some Introductory Notes

3.1.1 Simplified View of Static Analysis Tool

The view of the static analysis tool structure can be simplified to three components, as
shown in the Figure 3.1.

Figure 3.1: Simplified view of static analysis tool.

Regardless of the form of the analysed program, is is usually not suitable for direct
analysis. Because of that, the first step is conversion to a designated intermediate repre-
sentation. After that, one or more analyses sequentially are run, passing results from one
to another. Some analyses also do a pre-run of auxiliary analyses for the purpose of code
annotation or further transformation. Both during and after the analysis, results are serial-
ized into the desired format, which could be a structured error trace, invariant annotations
of input program or a plain textual log.

3.1.2 Basic Abstract Interpretation Analysis Loop

Angie is a static analysis framework, designed primarily to aid implementing abstract in-
terpretation analyses of C programs. Algorithm 1 shows — a slightly rephrased abstract
interpretation loop, which is written in a more imperative view than often viewed and that
is a conceptual base for analysis implemented in Angie.

3.1.3 Important Components of Angie Framework

Analysis built using the Angie framework then relies on the following important compo-
nents: CfgNode, Operation, ValueContainer, State and StateManager. Their place in
the the basic tool model can be seen in Figure 3.2 and their data dependency diagram is
shown for illustration on Figure 3.3.

Figure 3.2: Static analysis tool, Angie-based.
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Input: CFG
Output: labelled CFG where each location is labelled by a set of abstract states

that overapproximate the concrete states reachable in the CFG
Data: worklist of abstract states. Abstract state is also called a symbolic

configuration of program, constisting of symbolic state of memory, registers
and program counter (pointing to the next program location)

Result: abstract state space of the analysed program has ben explored
1 Initialize worklist by inserting initial state, tied to the first program location;
2 while Worklist is not empty do
3 Fetch and remove an abstract state 𝑠1 from worklist;
4 Compute the set 𝑆2 of successors of 𝑠1;
5 foreach 𝑠2 ∈ 𝑆2 do
6 Let 𝑆 be the set of abstract states curently associated with location 𝑠2.𝑙𝑜𝑐 ;
7 if 𝑠2 is not covered(entailed) by any abstract state curently in 𝑆 then
8 Add 𝑠2 to 𝑆 possibly joining it with some element(s) already in 𝑆,

possibly applying widening/abstraction too;
9 Add 𝑠2 (or emelement obtained from it by abstraction/widening/join)

into the worklist and eliminate from worklist elements covered by the
newly added state;

10 end
11 end
12 end

Algorithm 1: Abstract interpretation analysis loop

Figure 3.3: Data dependency diagram of important analysis components.

CfgNode is an Angie variant of program statement (in fact, CfgNode is more granular
and corresponds to single IR statement), Operation is then an abstract counterpart of
instruction type (binary arithmetic instruction vs subtraction). These two will be described
more in the following section.

ValueContainer is designed to represent a set of values in a certain abstract domain
(like integer intervals or polyhedra), State is an abstract program state and StateManager
is black-box that serves as list of CfgNode-associated states and a smart global worklist (it
triggers entailment checking, join and/or widening operations when necessary).
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3.2 Input Program Pre-processing
Pre-processing of the input program consists of two main steps:

∙ a transformation of the input program into an intermediate representation and
∙ a pre-analysis which labels the intermediate representation with some auxiliary infor-

mation such as liveness of variables.
While implementation of those two steps is generally re-usable across a wider range of

analyses, for some analyses, it might be beneficial or even necessary to further pre-process
the intermediate representation in a way more tailored to the given analysis.

Examples of such analysis-specific pre-processing steps are:
∙ inserting meta-instructions, like abstraction or widening, to accelerate the execution

of loops (so analysis does not have to detected loop-points repeatedly),
∙ replacing call instructions for a set of (standard library) functions by special instruc-

tions (like malloc, free, floor, ...) to make the analysis structure clearer and for per-
formance reasons too (prevent repeated string queries when comparing the function
name with a list of known external functions),

∙ removing unnecessary instructions, e.g. instructions ignored by some analysis.
Angie uses an LLVM-based compiler front-end to first compile the source code of the

input program into the LLVM intermediate representation (further referred to as LLVM IR),
which is then transformed into the Angie intermediate representation (Angie IR). Angie IR
retains many of the LLVM IR properties and acts as a thin wrapper insulating the analysis
developer from changes of LLVM breaking even its API. Note however, that although Angie
IR is highly influenced by the LLVM IR, other front-ends besides LLVM-based ones could
be used, provided that an appropriate front-end module emitting Angie IR is supplied for
them.

As mentioned before, the compilation into the LLVM IR is carried out by an external
component (compiler), therefore it is not further elaborated in this chapter. Now, we will
first introduce the notions of the Operation concept and the CfgNode component that we
will use to represent CFGs. Later, we will provide a description of LLVM and Angie IR.
Finally, we will describe our algorithm for transforming LLVM IR into Angie IR.

3.2.1 Operation

Operation in Angie denotes a function which
∙ takes zero or more arguments,
∙ can be applied to an abstract state of a program — which is referred to simply as a

State in this work,
∙ results in a set of new States1.
Note that while a word instruction in the context of LLVM IR refers to a concrete

instance of a certain instruction type (at a specific location in a program, with a set of
assigned arguments), an Angie Operation is a loosely specified abstract counterpart to
a set of instruction kinds (Operation ”Binary Arithmetic Operation“ is a counterpart to
LLVM instructions like add, sub, ...)

1Although it might not be obvious, it is generally possible for one of the resulting states to be completely
equal to the original one, for example with an infinite single-instruction loop. Operation forbids this, and
resulting states has to differ from the source one — such a difference could be a number of generation of the
state or a list of predecessors.
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3.2.2 LLVM IR as a CFG

The left part of Figure 3.4 shows a simplified excerpt of LLVM IR in the form of traditional
control flow graph (CFG): the code is organised into so called basic blocks with edges leading
in only to the first instruction of the block and leading out only from the last instruction
of the block. The entry and exit blocks are exceptions since they have only outgoing or
incoming edges. The right part of the figure illustrates the role of CfgNode and is further
elaborated on in the following subsection.

Figure 3.4: An excerpt of LLVM IR in the form of traditional CFG (left) and the corre-
sponding simplified CFG consisting of CfgNodes (right).

Not all analysis, however, benefit from the usage of basic blocks. That is why, in
Angie, we decided to simplify the representation and define CFGs on the level of particular
operations. For the same reasons, we support only at most two node successors in our graph,
eliminating switch instruction. For the rest of the thesis, we will refer to this simplified
form of CFG as simply CFG.

3.2.3 CfgNode

We define a CfgNode as a node of our CFG, effectively representing program location at
the level of Angie IR. Every instruction in the front-end IR is mapped to one CfgNode and
vice versa — in other words, we set a bijection between the front-end IR and Angie IR on
the level of instructions and CfgNodes, respectively.

Figure 3.4 demonstrates the transformation: for every basic block 𝑏 within front-end IR,
every outgoing edge 𝑒1 is transformed for Angie IR into edge 𝑒2 leading from last CfgNode
𝑐𝑙𝑎𝑠𝑡 created from the block 𝑏 to first CfgNode 𝑐𝑓𝑖𝑟𝑠𝑡 created from the block 𝑒1.target.

To ease the navigation in the graph, we also define backlinks: links to all predecessors
of the node (these are not shown on Figure 3.4).

The right side of Figure 3.5 shows a data dependency diagram of CfgNode, where all
the important Angie components are depicted as separate blocks. CfgNode is then a tuple
consisting of an Operation, a list of arguments, a list of States found that are reachable at
this CfgNode (as described in Algorithm 1), a list of successor nodes and a list of predecessor
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Figure 3.5: A list of properties of CfgNode component (left) and a data dependency diagram
of CfgNode (right).

nodes. Also, note that the association between CfgNodes and States is circular — a CfgNode
has its associated States, and a State has its one associated CfgNode.

The right side of Figure 3.4 shows a CFG consisting solely of CfgNodes, corresponding
to the original LLVM IR CFG on the left side. Each node is depicted as a tuple of an
Operation (bold) and transformed instruction arguments (inside square brackets). The
types of arguments are specified in the angle brackets. The connection of each CfgNode
and its associated States is implemented by a StateManager component (described more
in further sections) in the proposed design. However it is simplified in the figure to a direct
dotted line, placed in the right-most section.

The left side of Figure 3.5 shows a list of methods of a CfgNode component — the imple-
mentation of these is not important, but we except them to be simple get accessors. Get-
Operation, GetArguments, GetStateManager retrieve the data associated with the location
represented by the CfgNode, GetPredecessors all predecessor nodes, GetSuccessor retrieves
the single successor node if the node is non-branching and its GetSuccessorTrue/False coun-
terparts do the same for branching nodes. GetSourceCodeInfo returns an object that can
be used to query information about the related front-end IR and source code (source code
file name, row, column, etc.).

3.2.4 FrontendId

Apart from constant and global values, all values in LLVM IR are identified by the in-
structions that created them.2 During our transformation from the LLVM IR to the Angie
IR (described in the next subsection), each encountered non-void instruction as well as all
operands of all instructions (void or not) are assigned an opaque unique identifier3 called
FrontendId, to be used in the Angie IR. Note that instruction operands in LLVM can
be of many kinds, not only values, but also types, metadata, etc. Hoewever, we only
assign FrontendIds to values and — as a special exception — to functions. Nevertheless,

2In fact, in LLVM C++ design, identity/equivalence of values is based on object (pointer) equality.
Also, the Instruction class is a subclass of Value and its instances are used directly as operands. It is thus
impossible to separate the concept of instruction’s return value and the instruction itself, because they are
the same object in LLVM.

3Such an identifier can be obtained for example (i) from the pointer identity of the original value or (ii)
using a map between LLVM API objects and assigned Angie IR FrontendIds
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only a small set of Operations (in particular call, invoke) use these specially crafted
FrontendIds as arguments.

3.2.5 The Transformation Process

The Diagram in Figure 3.6 outlines the process of front-end IR parsing—so called Angie
front-end adapter. The parser is responsible for transformation of the input front-end IR
(in our case LLVM) into Angie structures — e.g. it constructs the Angie IR.

Figure 3.6: ”Call graph“ of the front-end adapter

Apart from modules, functions, basic blocks, and instructions parsers, where the names
are suggesting their basic functionality, there are also the CfgNode constructor and
CfgNode linker. The former uses information obtained from the Instruction type
parser to construct a new CfgNode. The former then deals with linking the CfgNodes
together and manages the bijective mapping between basic blocks and CfgNodes4.

The parsing starts on the level of a translation unit—a module. A module is generally
a set of functions and their accompanying meta-data (the visibility, entry-point, ...).

Every function 𝑓 in a module is processed by the Function parser which passes the
entry basic block and all remaining blocks of 𝑓 to Basic block parser. The Function
parser also creates a FunctionHandle object for every function and inserts it into map of
functions called FunctionMapper (described more in analysis Subsection).

4More precisely, between each basic block 𝑏 and the CfgNode 𝑐 created for the entry instruction of 𝑏
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The Basic block parser sequentially processes the instructions in the block using
the interconnected Instruction type parser, Arguments parser, and the Metadata
parser of Instruction parsing block, and then it returns the entry CfgNode generated
for the block.

Before we look more in-depth into the Instruction parsing block, we will now describe
the operational principle of the whole parser. The Function parser together with the
Basic block parser perform a breadth-first traversal5 of the input CFG consisting of basic
blocks. Whenever a second basic block of a neighbouring pair is parsed, their respective
exit and entry CfgNodes are linked together (as described and visualised in Section 3.2.3).

Now, let us go back to the Instruction parsing block. The role of the Instruction
type parser is to produce an appropriate Operation based on the type front-end instruc-
tion. Every analysis has to supply an OperationFactory which provides an appropriate
implementation of the selected Operation.

The Arguments parser then processes the instruction (again) together with its operand-
s/arguments and turns them into a set of arguments and/or special flags for the selected
Operation. For example, a binary arithmetic operation, BinOp, has two flag fields: one
specifying the particular arithmetic operation and one controlling signed/unsigned and
overflow/underflow modes. Also, if a constant operand is encountered, it is queued for later
processing in the Constant linker.

The Metadata parser reads basic block boundaries, debug info, and other metadata
from front-end IR. Note that a special metadata trap has been implemented for the Angie
prototype, so that any marked LLVM IR instruction can switch the tool to debugger upon
interpretation — more information can be found in Section 4.7.

After our CFG has been finalized, the initial State for the analysis has to be constructed.
Since the description of most analysis-related components is given in the following sections,
we only describe OperationFactory and ValueMapper now.

OperationFactory is an abstract-factory6 for creating Operations implemented for a
particular analysis. Since it allows to create all possible Operations, its list of methods is
too long for direct inclusion.

ValueMapper provides a mapping from FrontendIds of SSA registers to ValueIds.
The problem is that main’s formal parameters or globals in commonly generated LLVM

IR do not have any point of definition in the CFG — they are only turned into FrontendIds
during the aforementioned parts of the transformation. Consequently, when an analysis
would encounter these FrontendIds in place of arguments, there would be no values assigned
to them and a fatal error would follow (another example of breaking the SSA form of the
code).

To solve this problem, we introduce the Entry point constructor and Constant
linker to construct an initial State for the analysis and assign values to these problematic
FrontendIds.

In particular the Entry point constructor creates a dummy entry point function that
(i) provides values for main’s formal parameters and (ii) initializes module’s static data.

The Constant linker then parses the LLVM IR representation of constants and globals
and inserts it into the ValueContainer in the initial State.

5Breadth-first traversal is not the only option of LLVM CFG traversal, but is the most generic one. The
straightforward way would be to sequentially process all blocks of a function using an LLVM iterator and
to let the CfgNode linker handle the rest.

6Abstract-factory is a design pattern
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3.3 ValueContainer
ValueContainer is a component for storing and manipulating representations of abstract
values used during an analysis. We will demonstrate the properties of ValueContainer on
a series of examples and sumup the important information at the end of the section.

The examples are conceived such that we present a C code fragments assumed to be
analysed, followed by a C++ code fragment corresponding to code that an analyser in
Angie would perform when analysing the code.

3.3.1 Variables vs. Values and the ValueId

While C variables are repeatedly assignable, values are immutable — once a certain abstract
value has been obtained, its representation can be refined, but the value itself cannot be
changed. We will illustrate the concept of values on the short code fragment in Algorithm
2 that consist of a variable definition and two assignments to that variable.

1 int32_t myVar; // definition of variable
2 myVar = 4; // assigned
3 myVar = 6; // re - assigned

Algorithm 2: A C fragment with a variable being re-assigned

Now, the C++ pseudo-code in Algorithm 3 creates two independent values as if we try
to interpret the preceding C code fragment within Angie. We explain the code in more
detail bellow.

1 ValueContainer vc; // initialize new ValueContainer
2 ValueId myVar4 = vc. CreateConstantValue (Integer , size: 32b, value: 4);
3 ValueId myVar6 = vc. CreateConstantValue (Integer , size: 32b, value: 6);

Algorithm 3: ValueContainer: values are immutable

After an initialization on line 1, a representation for a 32 bit constant integer of value
4 is created inside the ValueContainer on line 2. Also, a ValueId is returned from the
call — it identifies the created value across the calls to ValueContainers7 (an alternative
name for it would be a value handle). After that, a value of the same type representing a
constant of 6 is created on line 3. At this point, the analyser created two independent values
which it could one-by-one assigned to a single memory location representing a variable to
complete the interpretation.

3.3.2 Unknown Value and its Refinement

We now continue with an example of C source code shown in Algorithm 4 containing a
conditional statement and analyse it from the point of view of variables and values.

Variable 𝑥 on line 1 is volatile, which means that every read emits a potentially different
value. Variable 𝑓𝑖𝑥𝑒𝑑_𝑥 on line 2 contains a ”freezed“ value of 𝑥 at the time of its read on
line 2. From the analyser point of view, the concrete semantics of this value is unknown.

7One value can have multiple representations, one per an existing ValueContainer, and thus the ValueId
must be a globally unique identifier. More about that later in this sec.
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1 volatile int32_t x;
2 int32_t fixed_x = x; // obtain an unknown value
3 if ( fixed_x >= 10) {
4 // point A, value is known to be >= 10
5 } else {
6 // point B, value is known to be < 10
7 }

Algorithm 4: An example of C source code with an unknown value which can be refined
during an analysis

Because the values are of type int32_t8, it can be represented in the integer interval
domain as [−231, 231 − 1]. The program condition based on an integer comparison on line
3 leads to a branching of the execution. As a result, the integer interval representation of
the value assigned to 𝑓𝑖𝑥𝑒𝑑_𝑥 can be refined to [10, 231− 1] at point A, and to [−231, 9] at
point B.

An analysis run of the preceding C code would correspond to the C++ pseudo-code in
Algorithm 5 which constructs and refines an unknown value accordingly.

1 IntervalValueContainer vc; // initialize new IntervalValueContainer
2 ValueId fixed_x = vc. CreateValue (Integer , size: 32b);
3 ValueId const10 = vc. CreateConstantValue (Integer , size: 32b, value: 10);
4 // if (!( vc.IsCmp(fixed_x , const10 , CmpFlags :: Lesser ) == tribool :: true))
5 vc. Assume (fixed_x , const10 , CmpFlags :: GreaterOrEqual );

Algorithm 5: ValueContainer: unknown value and its refinement

A default representation for a 32 bit unknown integer value is created inside the ValueContainer
on line 2. After that, a constant value of 10 is created on line 3. Finally, the value 𝑓𝑖𝑥𝑒𝑑_𝑥
is refined9 on line 5 – as if the control of program reached the line 4 of the C-code in the
Algorithm 4 (point A).

Note that this (and all the other) pseudo-code only focuses on the aspects of ValueContainer —
in the case of full analysis attempting to reach the point A, a tribool10 query similar to
that placed in comment on line 5 would have been executed against the ValueContainer.

A Note on Terms Regarding Unknown Values

Although the terms unknown value, indeterminate value, undef and others come from
different backgrounds, they refer to a similar concept: an abstract value originating from
an undefined behaviour11. However, they are understood differently in their respective
backgrounds12.

For example, in LLVM, the established “undef” can yield a different value upon every
read – a property that has both advantages and disadvantages for analyses and optimiza-
tions. To broaden the possibilities of the compiler, the community invented “poison” values

8Assuming that the architecture supports integer at least 32 bits wide.
9shortened for readability, the full form would be: the value identified by the ValueId 𝑓𝑖𝑥𝑒𝑑_𝑥 repre-

sented in the ValueContainer 𝑣𝑐 is refined.
10tribool is a type capable of holding values true, false, indeterminate
11http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
12http://sunfishcode.github.io/blog/2014/07/14/undef-introduction.html
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with a different semantics13. To further complicate the matter, LLVM is a live project
and there are ongoing discussions about what is the ideal variant of the ”unknown value“
concept to be used in the LLVM IR14.

For now, it suffices to say that unknown value in the context of ValueContainer behaves
as any other value: once created, it can not be changed, just refined when one knows more
about it during program execution. This is, as we have seen, an unknown integer can be
verified to an integer ≥ 10 and later, e.g., to an integer ∈ [10, 10]. Moreover, once we test
it, e.g., to be equal to 5, it will stay 5 for the further execution of the analysed program
(unlike the LLVM “undef” which corresponds more to an unknown value generator).

3.3.3 Operations over Values

So far, we have obtained values in two ways: (i) creating a new unknown value without any
information except for its type or (ii) creating a new value using a constant, again, with
a given type. However, we usually use some existing values as operands to an operation
to obtain a new value as a result. The code in Algorithm 6 shows an example sequence of
operations which can be immediately evaluated to a constant (in contrast to lazy-evaluation,
explained later). The ValueContainer in this example is able to handle constant bit-vectors
and all operations involving identity.

Note, that we use only a few operations supported by the ValueContainer interface in
this example — a digram of the complete interface can be found in Appendix B .

1 ValueContainer vc; // initialize new ValueContainer
2 ValueId myVar = vc. CreateValue (Integer , size: 32b);
3 ValueId eq = vc.Cmp(x, x, CmpFlags :: Equal); // size: 1, value: 1
4 ValueId notEq = vc. BitNot (eq); // size: 1, value: 0
5 ValueId notnotEq = vc. BitNot (notEq); // size: 1, value: 1
6 tribool test = vc.IsEq(eq , notnotEq ); // true

Algorithm 6: ValueContainer: a sequence of immediately evaluated operations

Unsupported Operations and Over-approximation

If a particular implementation of ValueContainer does not support some of the operations
provided by the ValueContainer’s interface, it can simply generate an unknown value —
this is a valid although not very useful behaviour leading to an over-approximation. We
will now show an example of that behaviour.

In particular, Algorithm 7 shows a bitwise negation of an unknown value, followed by a
branch on a condition that the original unknown value is equal to zero. The code fragment
utilizes a hypothetical 4 bit-wide integer type int4_t.

1 int4_t myVar; // define uninit . var myVar
2 int4_t notMyVar = ~myVar; // define / assign a bitwise negation of myVar to

notMyVar
3 if (! myVar) { /* something */ } // if myVar == 0b0000

Algorithm 7: C fragment with bitwise negation and branch on condition

13https://youtu.be/_-3Iiads1EM?t=3m40s
14http://lists.llvm.org/pipermail/llvm-dev/2016-October/106182.html
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The C++ pseudo-code in Algorithm 8 contains a sequence of commands that could be
executed to interpret the C code from Algorithm 7.

1 ValueContainer vc; // initialize new ValueContainer
2 ValueId myVar = vc. CreateValue (Integer , size: 4b); // value: 0b????
3 ValueId notMyVar = vc. BitNot (myVar); // value: 0b????
4 // if (!vs. IsTrue (myVar)) -> can we take the branch ? we presume yes
5 vc. AssumeFalse (myVar); // myVar === 0b0000 , notMyVar ??? 0b1111

Algorithm 8: ValueContainer: a sequence of commands interpreting code from Alg. 7

Considering again a hypothetical ValueContainer capable of working with bit-vectors,
a 4 bit-wide unknown integer is created on line 2 of Algorithm 8 and its bitwise negation
later on line 3. The command AssumeFalse on line 5 can be read as “assume that all the
bits are zero” which effectively refines 𝑚𝑦𝑉 𝑎𝑟 to one possible value at this point.

Now, the status of 𝑛𝑜𝑡𝑀𝑦𝑉 𝑎𝑟 depends on whether the used ValueContainer supports
operation 𝐵𝑖𝑡𝑁𝑜𝑡 (i) only for constant bit-vectors or (ii) for all bit-vectors.

In the former case , 𝑛𝑜𝑡𝑀𝑦𝑉 𝑎𝑟 is an unknown value after both lines 3 and 5, which
is a legal result of unsupported operation. From the analyser point of view, it could be
any of the 16 possible concrete values representable by a 4 bit-wide integer, leading to an
over-approximation.

In the latter case, 𝑛𝑜𝑡𝑀𝑦𝑉 𝑎𝑟 is an unknown value after line 3, but the ValueContainer
internally maintains its relation with 𝑚𝑦𝑉 𝑎𝑟. Then, 𝑛𝑜𝑡𝑀𝑦𝑉 𝑎𝑟 is refined to only possible
value of 0b1111 on line 5 as a result of 𝑚𝑦𝑉 𝑎𝑟’s refinement. The price for this precision is
a higher complexity of the ValueContainer implementation15.

Lazy vs. Eager Evaluation

In the previous example, 𝑛𝑜𝑡𝑀𝑦𝑉 𝑎𝑟 was either unknown or lazily evaluated based on other
values (𝑚𝑦𝑉 𝑎𝑟) represented inside the same ValueContainer. Third option would be to
do an eager evaluation: at every point, generate all possible “concrete” states in order not
to loose precision/information.

An example of eager evaluation with the C code from previous example (Algorithm 7)
would be splitting the abstract state into 16 new states, where 𝑚𝑦𝑉 𝑎𝑟 and 𝑛𝑜𝑡𝑀𝑦𝑉 𝑎𝑟 are
always a pair of concrete values — it could be done both while interpreting line 1 and line
2. Then, only the state where 𝑚𝑦𝑉 𝑎𝑟 == 0𝑏0000 and 𝑛𝑜𝑡𝑀𝑦𝑉 𝑎𝑟 == 0𝑏1111 would follow
the execution path taking the branch on line 3.

Although the eager evaluation method essentially eliminates the advantages of abstract
interpretation and generally leads to a state explosion, it can be useful in cases where the
lazy evaluation is not possible and the loss of precision would be more troublesome for the
analysis. Moreover, one can also use only several concrete states (e.g., randomly) turning
the analyser into a testing tool.

3.3.4 Using Multiple ValueContainers to Represent a Single Value

Sometimes, the analysis will compute a set of constrains that are not representable in a single
supported value domain (implemented as a ValueContainer), but could be represented
using two separate value domains.

15Typical way to implement this would be an tree structure, or a direct utilization of an SMT solver.
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An example of such a situation is shown on Algorithm 9: the code evaluates a set of
constraints 𝑥 ∈ [10,∞], 𝑦 ∈ [10,∞], 𝑥 ̸= 𝑦 using an integer interval domain and equality
domain (supports equality and non-equality).

1 IntervalValueContainer vcInt;
2 EqualityValueContainer vcEq;
3
4 ValueId x = ValueId . GetNext (); // an alternative way to obtain ValueId
5 ValueId y = ValueId . GetNext ();
6 vcIntr . CreateValue (Integer , size: 32b, x);
7 vcIntr . CreateValue (Integer , size: 32b, y);
8 vcEq. CreateValue (x);
9 vcEq. CreateValue (y);

10 ValueId const10 = vcIntr . CreateConstantValue (Integer , size: 32b, value:
10);

11
12 vcIntr . Assume (x, const10 , CmpFlags :: GreaterOrEqual );
13 vcIntr . Assume (y, const10 , CmpFlags :: GreaterOrEqual );
14 vcIntr . Assume (x, y, CmpFlags :: NotEqual ); // no effect !
15 vcEq. Assume (x, const10 , CmpFlags :: GreaterOrEqual ); // no effect !
16 vcEq. Assume (y, const10 , CmpFlags :: GreaterOrEqual ); // no effect !
17 vcEq. Assume (x, y, CmpFlags :: NotEqual );

Algorithm 9: ValueContainer: multiple containers

The downside of this method is that all queries must be executed against all involved
ValueContainers separately.

3.3.5 Composition of ValueContainers

After using multiple ValueContainers separately, the next logical step is to create com-
posite ValueContainer to form a multi-domain representation component. The idea is to
provide instruments for semi-automatic construction of composite ValueContainers. Such
a composite container works effectively as direct product of its sub-containers as disclosed
in more details bellow.

The set of possible concrete values for an abstract value 𝑉𝑐𝑜𝑚𝑝 in composite container
𝑐𝑐𝑜𝑚𝑝 is an intersection of all possible values 𝑉𝑛 across all the sub-containers 𝑐𝑛. All oper-
ations are applied to all sub-containers. When querying (IsCmp, IsEq, etc.) the composite
container, the first determinate result from sub-queries is returned.

It is of course also possible to implement a new composite ValueContainer manually
and optimize based on the specific nature of the used sub-containers — leading to the so
called reduced product known in abstract interpretation.

3.3.6 Wrap-up

In the context of ValueContainer, we define abstract values as in following text.
When there is no other information about a value except for its type (e.g. integer,

32 bits wide), we call it an unknown value. The representation of an unknown value can
be refined and it can be refined as much as the abstract domain allows — for example, an
integer interval domain enables us to refine a value to one possible integer, while doing
so for floating-point interval values would be rather complex. Once a representation of an
unknown value has been refined, it should no longer be called an unknown value (just an
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abstract value). When a value is generated manually from a constant or is a result of an
immediate evaluation to a constant, it falls into the constant values category. Constant val-
ues and abstract values refined to one possible value belong to the concrete values category
(e.g., we consider an integer interval [5, 5] to be a concrete value).

Values in an analysis are identified by ValueId. ValueId is an identifier that is globally
unique. As we can try to represent one value in different abstract domains, we can represent
one value in different ValueContainers.
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3.4 Analysis Itself
In this section, we start with the relations between different identifiers and mappings of
Angie, and continue with description of StateManager and other remaining components.
Later, we present a new version of analysis loop for abstract interpretation. The algorithm
itself has been already presented in the begging of this chapter (see Algorithm 1).

3.4.1 Identifiers linking the Angie IR with Front-end entities

We will now revise, with a help of Figure 3.7, some of the already introduced components
in order to make the connections between different Angie components more obvious.

Figure 3.7: Diagram of Angie identifiers and mappings

FrontendId is issued to every entity coming from front-end IR that requires addressing,
like values and functions.

FunctionHandle constits of the entry CfgNode of a function, a list of its formal param-
eters (FrontendIds and types), and other implementation-specific info, like function name
etc.

FunctionMapper is then a bijective mapping between ValueIds assigned to functions
and FunctionHandles.

The ValueIds identifies the values represented inside the ValueContainers.
ValueMapper provides a mapping from FrontendIds of values to ValueIds and also some

advanced functionality for dead value analysis and monitoring, which will be described later
in this section

3.4.2 StateManager

Whenever a new state is generated during an analysis, many actions has to be carried out
(see Algorithm 1). In order to simplify applying those actions, we propose a component
named StateManager which allows to manage them all in a single place. StateManager
provides two functionalities:
(i) TakeNewState — to take a newly generated state, check if it is not covered by other
states and if not, register it with the CFG and add it to the worklist
(ii) FetchNextState — to retrieve a next state from the internal managed worklist.
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For the StateManager to do all the necessary steps from Algorithm 1 for the function-
ality number (i), it has to be provided with an analysis-supplied entailment-checking, join,
widening and abstraction meta-operations. Meta-operation here stand for an operation
that is not an abstract counterpart of some concrete instruction and usually is applied to
multiple States at once.

The functionality for retrieving next state for processing depends greatly on the actual
implementation and settings — it could be a simple DFS (stack) or BFS (queue) solution
or a more elaborate one using priorities etc.

Model case of StateManager in action is given in the following example.

A successor state 𝑠2 for previously existing state 𝑠1 is created. The program
counter of 𝑠2 points to a location 𝑠2.loc and there is already a state 𝑠3 registered
with the location 𝑠2.loc.
Upon the request to process new state, the StateManager performs the entailment-
check on 𝑠2 with regards to 𝑠3. The result is that 𝑠2 is not covered by 𝑠3, so 𝑠2
is registered with the location 𝑠2.loc and inserted into the worklist.
The StateManager implementation in question uses stack (DFS) for the under-
lying worklist — when the analysis asks for a new state to process, 𝑠2 is returned
as the last one inserted.

The interface of StateManager is in the left part of Figure 3.8.

Figure 3.8: An interface of StateManager (left) and ValueMapper (right)

3.4.3 ValueMapper in Details and the Liveness Analysis

Because of the scope-less nature of intermediate representation used in Angie16, the analy-
sis does not get any “free” liveness information about the SSA registers. That is a critical
problem for loops — while the variables in the original scoped code could be at least auto-
matically “killed” at the end of each loop iteration, it is not possible in Angie IR without
previously performing liveness analysis on the CFG. Fortunately, the liveness analysis for
code in SSA form only requires two passes trough the CFG [3].

ValueMapper, in fact, represents a configuration of SSA registers of the analysis state,
which makes it the best component to monitor and control the liveness of values (SSA
registers).

We propose an in interface — shown in the right part of Figure 3.8 — with methods
∙ Assign — registers ValueId with the FrontendId,
∙ GetValue — reads the associated ValueId,
∙ and Purge — unregistered any SSA registers (FrontendId) not alive at the current

program location and triggers implantation-defined actions in other sub-components
of State.

16Angie IR is based on LLVM IR — both are in partial SSA form, see Section 2.4
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The method Purge is excepted to be used before an abstraction is attempted. Also,
Purge will be triggered internally whenever a FrontendId would have been re-assigned
(e.g. in loops). Note that this feature has not been yet implemented in any form and its
design might need to be changed.

3.4.4 State

State is an implementation of abstract program configuration (state) in Angie. It con-
nects together a set of information consisting of program location, its State predecessors,
the configuration of SSA registers (identified by FrontendIds), the current state of used
ValueContainers, call stack and any analysis-specific representation of some aspect of the
interpreted program (like memory, file descriptors, etc.).

The enumeration of primary properties of a State interface are shown on Figure ??,
while the description is given in following text.

Figure 3.9: State interface

The ComputeSucessors method allows for implementation-defined process of obtaining
successors States, making the interface of State generic enough to work with other loops
beside abstract-interpretation-based.

The implementation of ComputeSucessors for abstract interpretation would be follow-
ing:

Retrieve the associated CfgNode 𝑐 for the state 𝑠 with 𝑠.GetCfgNode(). Then
retrieve the Operation 𝑜 to be performed via 𝑐.GetOperation() together with
the necessary arguments 𝐴 via 𝑐.GetArguments().
Execute 𝑜 with 𝑠 and 𝐴. The result is a set of newly computed States 𝑆𝑠𝑢𝑐𝑐

which is returned to the caller of ComputeSucessors.

GetPredecessors returns the list of States this state originated from (in case of join-
formed State, there might a multiple of them)

GetCfgNode returns an equivalent of program counter, the next CfgNode to be inter-
preted

Clone will make a deep clone of the state which can be modified. Cloning and modyfing
the state is the preferred way to create successors.

GetGeneration is for determining the generation number of the state (initial state has
0 and the number grows by 1 with every successor generation).

GetValueMapping retrieves the current ValueMapper.
GetCallStack gives access to the current abstract call stack.
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Finally, an example showing most of the described methods in use is given in Algo-
rithm 10. Since an arithmetic operation on the level of Angie IR does not have any side-
effects, we can implement it without any analysis-specific tools, just using ValueMapper
and ValueContainer.

1 CfgNode toExecute = oldState . GetCfgNode ()
2 Operation op = toExecute . GetOperation ();
3 OperArg args = toExecute . GetArguments ();
4
5 op. Execute (oldState , args); // op is an OperationBinaryArtihmeticOp
6 ... // begin: implementation of OperationBinaryArtihmeticOp . Execute
7 State newState = oldState .Clone ();
8 // here , some code setting new program counter in newState , etc.
9

10 ValueMapper mapper = newState . GetValueMapper ();
11 ValueContainer vc = newState . GetInnerValueContainer ();
12
13 BinaryOpOptions opts = args. GetOptions ();
14 Type type = args. GetOperand (0).type;
15 ValueId lhs = mapper . GetValue (args. GetOperand (0).id);
16 ValueId rhs = mapper . GetValue (args. GetOperand (1).id);
17 ValueId retVal = vc.BinOp(lhs , rhs , type , opts);
18
19 mapper . Assign (args. GetTarget ().id , retVal );
20 return Vector <State *>}{ newState };
21 ... // end: implementation of OperationBinaryArtihmeticOp . Execute

Algorithm 10: Complete code of an Operation

3.4.5 Angie Analysis Loop

An analysis loop from Algorithm 1 decomposed into the presented Angie components is
shown in Algorithm 11.

Input: Angie IR CFG
Output: labelled CFG where each CfgNode is labelled by a set of States governed

by a StateManager
Data: StateManager governed worklist of States containg only the initial state 𝑠0
Result: abstract state space of the analysed program has ben explored

1 while not StateManager.IsWorklistEmpty() do
2 State 𝑠𝑜𝑙𝑑 ← StateManager.GetState();
3 list of States 𝑆𝑛𝑒𝑤 ← 𝑠𝑜𝑙𝑑.ComputeSuccessors();
4 foreach 𝑠𝑛𝑒𝑤 ∈ 𝑆𝑛𝑒𝑤 do
5 StateManager.TakeNewState(𝑠𝑛𝑒𝑤);
6 end
7 end

Algorithm 11: Angie analysis loop

Note that the ProcessNewState could also be reworked so it consumes a list of states
instead of one in a time, potential improving efficiency for some meta-operations.

The shown design of control loop enables different kinds of analyses, as long as they
provide implementations of StateManager and State’s ComputeSucessors.
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3.4.6 Inter-procedural Analysis

During a standard native execution of programs, function calls and returns are translated
into a series of stack-memory and registers writes and reads followed by a jump. The
machine registers are copied onto the stack either by the caller or the callee, and the rest
of program variables is implicitly implemented on a stack frame of the active function.

The described techniques provide the running application with:
∙ separation of variable sets during recursion (direct or indirect),
∙ a place for return value,
∙ a place for return jump address.
The so-called variable set corresponds to Angie’s mapping of FrontendIds (SSA regis-

ters and constants) to abstract values implemented by the ValueMapper and the program
address would translate to a CfgNode.

There are two components supporting procedural programs in Angie. The first is
a StackFrame, consisting of ValueMapper, FrontendId of function-call result value and
CfgNode of return location. The second is then a CallStack, a list of StackFrames with
an interface to access the top-most stack frame.
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Chapter 4

Implementation and Experiments

The prototype implementation of Angie is currently hosted on GitHub Git repository and
is targeting C++ 14 and is tested with a minimum of GCC 4.9 / MSVC 2015.

The repository has working continuous integration hooks, stable master branch, unsta-
ble feature and develop branches, and contains all the information (dependencies, install
instructions) necessary to get the prototype working. The source code is provided under
the GNU LGPL licence v3+.

The code is written with regards to C++ Core Guidelines and arranged into many
source and header files. Unfortunately, due to an excessive use of templates in the analysis
code, most of the analysis-connected code is being compiled into single module. Project
management and compilation is implemented via CMake.1

Most currently used third party libraries (exception is, for example, Google Test) are
header-only. One of those, Range-v32, is worth mentioning - it is based on the current
version of Ranges and Concepts drafts for Technical Specifications3. It allows non-owning
selection, transformation and also generator views to be constructed as single objects using
functional-like syntax, enabling easy-to read constructs and re-use of algorithms similar to
<functional>4.

4.1 Common Basic Components
Amongst the common components used through-out Angie, which can be found in files
{General, Definition, Exceptions, Type, IdImpl, ValueId}.hpp, belong FrontendId, ValueId,
all kinds of exceptions, OperArg, OperationArgs and Type. Various flags and kinds enums,
using aliases, and macros are also defined in the mentioned files, particularly in General.hpp
Various utilities for file operations etc. are placed in OsUtils module.

FrontendId, ValueId are adhering to the presented design and are implemented —
together with other Ids used in Angie — using IdImpl template.

OperArg and OperationArgs implement a mechanism for passing generic arguments to
Operations. OperationArgs class can be legally converted to one of more specific types,
based on the executed Operations.

1A semi-informal set of guidelines for writing C++ maintained by Bjarne Stroustrup & Herb Sutter,
published at https://github.com/isocpp/CppCoreGuidelines

2https://github.com/ericniebler/range-v3
3TS are papers for features that are proposed to be merged in one of the next ISO C++ standards.
4A part of C++ standard library containing standard algorithm functions working with iterators
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As for Type, Angie contains two implementations of types. The LLVM-based is designed
to be used during standard operation of Angie — it translates the request between the
analysis and the front-end without creating any intermediate type systems. The second
one is implemented without any external dependencies and is designed for experiments and
testing of abstract domains — an activity which generally does not need working LLVM.
The implementations can be switched using the TYPE_KIND define.

4.2 ValueContainers
IValueContainer (the interface for ValueContainers) is implemented in file Values.hpp.
Many methods of the interface are implemented using their more generic counterparts con-
tained in the same interface and many other methods are implemented using NEI (not
implemented exception) — that allows the developers of ValueContainers to implement
only the necessary minimum first, test it with simple analysis and then finish the imple-
mentation, potentially optimizing the work of container.

ValueContainerV1 is an experimental implementation5 of integer interval combined
with simple binary relational abstraction domain.

ValuesZ3.hpp contains an incomplete proof-of-concept implementation of Z36 SMT
solver adapter for ValueContainer interface, using the bit-vector theory as backing for inte-
ger representation. The C++ interface is based on using a single Z3 context for storing all
Z3 objects (variables, expressions) and creating a new solver for every query. The container
creates the representations of values directly in a Z3 context, while it also creates a local
database of constraints created. When a query is to be processed by the container, it first
uses to local database to fill a newly created solvers with appropriate existing expressions
(constraints), then it inserts the condition to be tested and checks the satisfiability of the
expression set.

4.3 Front-end Adapter and Related Components
CfgNode, Operation, OperationFactory, ValueMapper and FunctionMapper components —
which are used by both front-end adapter and analysis loop — are implemented in files
{ICfgNode, IOperation, FrontendValueMapper}.hpp and related .cpp files.

The interface of CfgNode component is implemented in the ICfgNode abstract class,
with one exception: instead of GetOperation, ICfgNode provides an Execute method
which executes the Operation with OperationArgs stored inside the node.

The abstract class CfgNodes provides a basis for implementation of CfgNode as pointer-
based, separately allocated nodes. The full implementations of ICfgNode in the Angie pro-
totype are front-end specific due to the need to access debugging/source code information.

The basic functionality of ValueMapper is implemented in Mapper class. The value life
control functionality is not implemented in the prototype as the necessary liveness analysis,
which is a prerequisite, is not implemented either.

5VCv1 has been implemented by Michal Charvát under the supervision of the author & the supervisor
of thesis. His contributions are clearly marked in the source code and can be tracked in the source code
repository.

6https://github.com/Z3Prover/z3
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The algorithms parsing the LLVM IR into Angie IR are implemented in files {Llvm-
Frontend, LlvmGlobals}.{hpp, cpp}. The individual parsers / parsing blocks (visualised in
Figure 3.6) are implemented in functions with corresponding name.

4.4 Analysis Loop, State and StateManager
State, StateManager and the analysis loop implemented in the prototype slightly differ
from their models described in the design chapter. Moreover, to minimize amount of boil-
erplate code in implementations of Operation shown in Algorithm 10, the Angie prototype
provides various templates in file Operations.hpp.

The most notable difference, except for different method names, is that the ComputeSuccessors
method (Figure 3.9) is not a part of the IState interface in the prototype implementation —
instead, its functionality is implemented partly in the analysis loop (retrieving the CfgNode)
and partly in mentioned templates for Operations. Also, CreateSuccessor replaces the
Clone method in the prototype and the CallStack is not implemented as a part of the
framework.

Further, the State component is implemented in three layers, (i) an interface IState,
(ii) abstract class State providing basic implementation and (iii) analysis-specific class.

4.5 Proof-of-concept Analysis
The forward null analysis (ForwardNullAnalysis.hpp) is a proof-of-concept analysis: it does
not have a complete support for inter-procedural analysis and comes only with a limited
representation of stack. It is mainly capable of identifying null dereferences in a scope of
one function.

However, thanks to its simplicity, it demonstrates how to implement a new analysis
in Angie: one must create an analysis-specific implementation of State together, approx-
imately 8 Operations and an OperationFactory. The rest of Operations (mainly those
without side-effects) are implemented in a generic way in Operations.hpp.

4.6 SMG-based Analysis
The main experimental analysis in the Angie prototype is implemented in file Memory-
GraphAnalysis.hpp and various other files prefixed with Smg. Amongst the important fea-
tures of this analysis belongs symbolic memory graph representation of memory, full support
for intra-procedural analysis and Operations implementing malloc and free C Standard Li-
brary functions.

The analysis is able to detected null pointer dereference, invalid pointer dereference,
invalid free and supports a subset of Predator intrinsic functions and comes with an exper-
imental SMG plotting support.

However, the implementation of symbolic memory graphs is limited to regions only
and has only partial support for data reinterpretation (partially overlapping values do not
affect each other), which might lead to incorrect analysis. Nevertheless, the emphasis was
put on the development of essential graph structures and algorithms, to allow for easy
implementation of maintainable abstraction algorithms.

38



4.6.1 Modifications to the Structure of SMGs

The structures implementing the SMGs differs in some basic aspects from the one presented
in [7].

Firstly, there are generally two options of implementing the connections between SMG
entities in C++: either storage containers like vector together with the use of identifiers, or
separate allocation of entities with the use of pointers — we opted for identifiers, because
they do work well with copy-on-write and are more suitable for deep-cloning of graphs.

One of the major differences is the elimination of value nodes as separate entities. Since
the ValueContainer is a preferred way of representation of scalar values in Angie, the SMG
values can be simplified to only a ValueId. Moreover, the target specifier of points-to-edges
is replaced by a special wrapper nodes, or ports, that identify the particular kind of access
to the target Object. These modifications enabled us to merge the original separate has-
value edge, value node and points-to edge into a single tuple of source object ID, source
offset, ValueId of the value, target object ID and target offset, where the type of value is
for pointer-values is just a generic pointer.

4.7 Usage
The prototype itself accepts an input in the form of LLVM IR files (either binary or text)
and prints all detected errors on standard output. Also, printing of the interpreted LLVM
IR instructions can be switched on for debugging purposes. The LLVM IR files can be
obtained from C source files using the accompanying script.

For more enhanced debugging experience, it is possible to insert special trap into the
input LLVM IR which triggers a software breakpoint in the tool upon interpretation. The
trap has a form of a special metadata node angie.debugbreak and its use is shown in
Figure 4.1

%7 = alloca %struct.main_struct_s, align 4
%8 = alloca %struct.main_struct_s, align 4, !angie.debugbreak !{}

Figure 4.1: Example of debugging trap placed in LLVM IR text file

4.8 Experiments
Apart from the experiments with the original Predator tool, which we performed to get
acquainted with the tool and to optimize it for the SV-COMP. While the former experiments
were presented in Chapter 2, we are now going to describe our experiments with the Angie
platform.

The implementation comes with two sets of small examples which focus on various
features of the framework and the analyses. Further, the prototype was also tested on a
part of Predator test-suite.

4.8.1 Basic examples

The first set 01_mincase consists of 6 small examples of 2 errors (dereferencing null pointer
and dereferencing uninitialized pointer) and also a potentially dangerous use of an unini-
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tialized value. Examples 1 to 4 do not emit any branches in the LLVM IR, which makes
them very useful for an initial analysis experiments. Examples 5 and 6 then add branching
and function calls, respectively. A filtered output of example 5 analysis is shown in Figure
4.2

$ ../tmp/angie.exe -f 01_mincase_05_all_conditional.ll
ex2/01_mincase_05_all_conditional.c:22:12
Error: Program tried to dereference a null pointer.
ex2/01_mincase_05_all_conditional.c:27:12
Error: Program tried to dereference an invalid location.

Figure 4.2: Filtered output of prototype implementation running SMG-based analysis

4.8.2 Heap examples

The second set 02_heap comprises of 4 examples focused on heap allocation and pointer
manipulation, targeting the experimental SMG-based analysis. While the first 3 examples
contain loops with a limited number of iterations, the number of iterations is an unknown
value in the example 4 and the tool never terminates because of the missing abstraction.
Also note that example number 3 (doubly linked list constructions) comes with a variant
plotting the internal graph representation during the analysis.

4.8.3 Predator test-suite

The prototype was also put through a testing with a set of 224 tests from Predator test-suite
(namely from directory tests/predator-regre in Predator repository) and a time-limit
of 5s (discovered experimentally).

Out of all the examples, the tool did not terminate in 103 cases, exited on an internal
exception in 83 cases, did not detect any errors in 27 cases, and detected some error in 17
cases.

Some of the 103 tests which did not terminate appears to be finite but did not terminate
even with increased time (test-0014, 0016, ...), but most contain in infinite loop (0001, 0004,
00013, 0047, ...).

Most of the 83 cases of internal exception were caused by failure to compile the test
(total 20), missing external (stdlib) function (total 21) or unsupported instruction phi or
memcpy (total 24). Other cases include incomplete support for global variables, unsup-
ported constant type or cast instruction. Note that the phi instructions (generated usually
from C ternary operator) could be replaced with the transformation passes described in
[15].

The cases with errors detected included a few false alarms, due to imprecise ValueCon-
tainer operations (non-equality edges, 0025) or due to missing aliasing/data-reinterpretation
support (0075, 0076).

Finally, out of the 27 test that supposedly do not contain any error, the analyser missed
only two errors of out-of-bounds dereference (0009, 0077).

Considering the current state of the implementation, we find the amount of correctly
analysed test-cases a success.
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Chapter 5

Conclusion

Nowadays the world has a high demand for a software whose correctness and proper op-
eration is a question of life and death. This being a fact, a program verification methods
have become a very important area of research.

To improve the conditions for developers of new program analysers, we are working
on a framework for static analyses called Angie. We have presented a complete design of
the framework in an incremental way, followed by a description of the current state of the
implementation.

As for the future development, we hope to get the implementation in compliance with
the current design proposal, improve the existing implementations of value domain repre-
sentations and to extend the support of LLVM intrinsic functions and C Standard Library
functions. Also, creating a working liveness analysis and other progress towards working
abstraction in symbolic memory graphs would be a reasonable courses of action.
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Appendix A

Storage medium

The accompanying medium contains electronic version of this report and source code files
of Angie including a version control repository.
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Appendix B

ValueContainer Interface

IValueContainer

Adding constraints

Query methods

Create value

Binary Unary

Two's complementBitwise opsBit shift

IsNeq

TruncateInt

IsZero

Rem

BitNot

Div
ExtendInt

Cmp

AssumeTrue

BinOp

CreateConstIntVal

AssumeFalse

CreateVal

Assume

IsUnknown

IsEq

IsCmp

IsTrue

GetZero

IsFalse

GetAbstractionStatus

SubBitXor

Mul

Add

BitOrShR

BitAndShL
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