
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

GENERIC CONFIGURATION INTERFACE FORVIRTUALMACHINES
OBECNÉ KONFIGURAČNÍ ROZHRANÍ PRO VIRTUÁLNÍ STROJE

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MARTIN KRAJŇÁK
AUTOR PRÁCE
SUPERVISOR Ing. VLADIMÍR BARTÍK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
The aim of this work is to document the development process of configuration dialogs for
oVirt entities. Main focus is placed on virtual machine dialog as it has plenty of depen-
dencies related to each other. The work also describes communication with oVirt engine
through REST API and experimentally ManageIQ REST API. Dialogs are created using
modern Javascript frameworks React, Redux and Redux-Saga to secure proper content and
state management in every possible situation. The development work done by this thesis
should improve the code base, user-experience and speed up execution of basic tasks.

Abstrakt
Cieľom tejto práce je dokumentácia procesu vývoja dialógov, slúžiacich na konfiguráciu en-
tít oVirt-u. Práca sa sústreďuje na dialóg konfigurujúci virtuálne stroje, keďže disponujú
veľkým počtom závislostí, ktoré sa vzájomne ovplyvňujú. Práca taktiež popisuje komu-
nikáciu so systémom oVirt prebiehajúcu prostredníctom REST API a experimentálne aj
ManageIQ REST API. Dialógy sú tvorené pomocou moderných Javascriptových nástrojov
React, Redux a Redux-Saga, ktoré zabezpečujú správnosť ich obsahu a správu ich stavov
v každej možnej situácii. Vývojová časť tejto práce by mala zlepšiť úroveň kódu, prácu
pouzívateľa a zrýchliť vykonavánie základných úloh.

Keywords
oVirt, React, Redux, Redux-saga, Javascript, REST API, ManageIQ, PatternFly, configu-
ration dialog.

Klíčová slova
oVirt, React, Redux, Redux-saga, Javascript, REST API, ManageIQ, PatternFly, konfigu-
račný dialóg.

Reference
KRAJŇÁK, Martin. Generic Configuration Interface for Virtual Machines. Brno, 2017.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Bartík Vladimír.

Generic Configuration Interface for Virtual Ma-
chines

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Mr Ing. Vladimír Bartík, Ph.D. All the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

. .
Martin Krajňák

May 16, 2017

Acknowledgements
I would like to thank my advisor Ing. Vladimír Bartík, Ph.D. for advices provided during
writing of this thesis. My thanks also belong to Ing. Tomáš Jelínek for providing technical
guidance and lead with implementation and documentation of this work. I would also like
to thank Mgr. Martin Beták for help with better understanding of Javascript. Finally
I would like to thank my family and friends for all the support.

Contents

1 Introduction 3

2 oVirt 4
2.1 oVirt engine . 4

2.1.1 Administration portal . 4
2.1.2 User Portal . 4
2.1.3 REST API . 5

2.2 oVirt node . 5
2.3 oVirt Entities . 6

3 ManageIQ 7
3.1 Discovery . 8
3.2 Operational management . 8
3.3 Self-service . 8
3.4 Compliance . 9

4 Javascript Technologies 10
4.1 React . 10

4.1.1 JSX . 11
4.2 Redux . 11
4.3 Redux-saga . 11

4.3.1 Saga middleware and sagas . 12
4.3.2 Effect creators . 12
4.3.3 Saga helper functions . 13

4.4 Redux-devtools . 13
4.5 ImmutableJS . 14
4.6 PatternFly . 14

5 Proposed solution 15
5.1 Comunication Layer . 15
5.2 oVirt API . 16
5.3 ManageIQ API . 17
5.4 ManageIQ implementation . 17

5.4.1 oVirt entities . 18
5.5 Sagas . 19
5.6 React components . 22

5.6.1 Stateless components . 22
5.6.2 Stateful components . 24

1

5.7 Patternfly integration and design . 25
5.8 Testing and verification . 26

6 Alternative solution 28

7 Conclusion and future development 29

Bibliography 31

Appendices 34

A Complete oVirt virtual machine dialog dependency graph 35

B Installation guide 39
B.1 Prerequisites . 39
B.2 oVirt API variant installation - Linux . 39
B.3 ManageIQ API variant installation - Linux 40

C Contents of attached CD 41

2

Chapter 1

Introduction

Virtualization has become very important and powerful tool used in various technology sec-
tors. There are plenty of usecases including testing, learning and development. Availability
and improvement of open source technologies is making this area even more competitive.
As datacenters grow, there are several aspects that need to be considered when choos-
ing the most suitable solution. Reasons and advantages why are businesses implementing
virtualization solutions are growing [25].

oVirt[15] provides complete stack of management functions allowing to control and
monitor the whole realm of virtual datacenters. The presence of rich RESTful API, even
allows us to build our own custom tools such as moVirt [13] and Ansible [1]. The project
will also try to integrate a secondary backend solution provided by ManageIQ project that
should provide REST API on the similar level.

Nowadays, the internet is being overwhelmed by modern single page applications created
by advanced Javascript frameworks. This paper is written around the project, which makes
effort to build similar application for oVirt. Main focus will be placed on dialogs as they
administrate big entities like virtual machines and templates. Each of those entities has
huge number of fields that might be in relation with one another. The challenge is to make
dialogs quick, responsive and force them to always provide valid data. Regarding data
validity there are two specials cases. The first case represents fact, that many of fields can
be preconfigured from templates. The other one is a case when we need to edit particular
entity, so it is crucial to display data belonging to right entity, which needs to be edited.
This points to the fact, that dependency handling and excellent state management based
on decision made by user can influence the data in one or few other fields.

Redux is technology designed especially for state management of React [18] applica-
tions. There are some recommendations not to use Redux [20] to manage state of dialogs.
Configuration dialogs of oVirt entities can contain up to 62 fields as shown in Appendix A.
Verifying data throughout whole configuration process, field after field, via technologies
like jQuery can lead to pretty complex code. This is the reason why thoroughly designed
solution for state management is required. But in this case, the problem is so complex that
it is necessary to know the values in various fields to make sure that user is selecting valid
data. A template belonging only to the certain cluster provides good example.

React allows us to create a presentional part of application. Similiarly like Redux, React
itself has mechanisms to manage state of components, but as our application expands, large
number of components may cause problems which lead to birth of Redux. This project is
developed with open source spirit and so is the project design delivered by Patternfly [16]
library of elements.

3

Chapter 2

oVirt

oVirt is an open source virtualization management tool that provides centralized manage-
ment of virtual datacenters, hosts, virtual machines, storage and networking infrastructure.
oVirt platform consists of two main parts – an oVirt engine and one or more oVirt nodes.

2.1 oVirt engine
oVirt engine is a Java application running as web service and represents the part where
all management features resides. The service is communicating directly to VDSM (Virtual
Desktop and Server Manager) allowing the users to deploy, start, stop, migrate and mon-
itor virtual machines. It comes with advanced management features for virtual machine
lifecycle, storage, networking and live migration. oVirt engine stores all the information
about virtual machines, virtual networks and storages in PostgreSQL [17] database. User
interaction with the engine can be achieved via built-in web application for users and ad-
ministrators. External application like ManageIQ and moVirt manage data centers via
provided REST API. An overview of oVirt architecture is described in Figure 2.1.

2.1.1 Administration portal

Administration portal, also called Power user portal, is web based tool with ability to man-
age all available resources with user management. Administrator can grant and revoke user
permissions and monitor data center via provided dashboards with graphs and statistics.

2.1.2 User Portal

More suited for end users is User Portal as it targets basic virtual machine management and
access to virtual consoles secured by protocols SPICE [24] and VNC [28]. A user has only
access to virtual machines and resources which was allocated to him by an administrator.
Based on permissions provided by the administrator, the user has access either to Basic
User Portal or Power User Portal. The basic variant does not contain any dialogs at all,
only basic operations with assigned virtual machines.

4

POSTGRE

moVirt

admin/user

SPICE

VNC

VDSM VDSM VDSM VDSM

libvirtlibvirt libvirtlibvirt

oVirt Nodes

Backend

Rest API
Web

Admin

User

Portal

oVirt Engine

Figure 2.1: oVirt architecture [19]

2.1.3 REST API

External applications may influence datacenter management thanks to RESTful API. oVirt
REST API supports both XML and JSON formats and it makes a crucial part for devel-
opment of this project. One of the demonstrations of RESP API utilization is an Android
application moVirt that allows users to manage and monitor datacenters from a smart-
phone.

2.2 oVirt node
Resources managed by oVirt engine belongs to one or more oVirt nodes, which are basi-
cally servers running Red Hat Enterprise Linux (RHEL), Fedora or CentOS with enabled
KVM [10] hypervisor and VDSM daemon. The VDSM deamon is an application written
in Python that has control over all available resources including storage, networking and
virtual machines. VDSM-Hooks [27] allow to extend the VDSM functionality by a custom
script which can be executed at certain lifecycle events of virtual machine. Management of
virtual machines lifecycles and collection of statistics is possible via libvirt [11]. VDSM is
also responsible for reporting all actions to engine.

5

2.3 oVirt Entities
Data managed by oVirt are structured to objects known as entities. Next few sections are
focused on explanation of oVirt entities important for this thesis.

Cluster is logical group of hosts that are sharing the same storage domain and have
the same CPU architecture or CPU family.

Template represents a copy of virtual machine. The presence of this entity is very
valuable, especially in cases when users need to repeatedly create bigger amount of virtual
machines with the same or similar properties. Template also holds the information about
hardware and software configurations of derived virtual machine.
There are two possibilities how virtual machines can be created from templates:

1. Thin provisioned has an advantage that data storage of the virtual machine is just
a thin copy so it saves disk resources. On the other hand, there is also disadvantage
in a CPU capacity needed to manage disk diffs. Also once a new virtual machine is
created by this method, template cannot be removed while the virtual machine exists
in the environment.

2. Clone provisioned is case where whole disks are being copied from the template,
so this method requires additional disc capacity. A virtual machine created this way
is independent on template, therefore it can be removed at any time.

Virtual Machine can be explained as an actual computer system running in an em-
ulated environment and providing as much functionality as the actual physical computer
would provide.

Host is a physical computer with installed hypervisor which has the ability to run
multiple virtual machines on this host. oVirt usually has multiple host machines that are
able to run as many virtual machines as the resources allow.

6

Chapter 3

ManageIQ

ManageIQ is an open source cloud management tool able to manage environments of dif-
ferent sizes, as shown in Figure 3.1. With support for platforms like oVirt, Open Stack,
Kubernetes, Amazon Web Services, Google Cloud Platform, Microsoft Azure and many
more allows users to control multiple technologies such as virtual machines, public clouds
and containers from multiple vendors in a single web application. Application itself is writ-
ten in Ruby and it provides multiple forms of deployment, including virtual machine image
and docker container.

From oVirt perspective ManageIQ can perform only basic tasks compared to tasks
that are performable by web tools from oVirt. The advantage is that users have data
from every platform in one place with almost same amount of options as provided by each
underlying tool. On the contrary, the disadvantage may be the fact that users have to
distinguish between products of various vendors which can become complicated, especially
when managing big amount of entities. This project will focus on a research of ManageIQ
API from oVirt perspective and try to integrate it on similar level as oVirt API. Next
sections are focused on ManageIQ architecture and are based on Gert Jansens article [30].

oVirt OpenStackvmware

ManageIQ

Figure 3.1: ManageIQ architecture overview [12]

7

3.1 Discovery
All platforms supported by ManageIQ are providing APIs. By integrating these API func-
tions, ManageIQ can scan the environment and discover all virtual machines, hypervisors,
containers, storages, networks and all the others resources. Discovered data of entities and
its relations are stored in the Virtual Management Database (VMDB).

After initial setup ManageIQ listens to events that are indicating changes and use them
to refresh the VMDB. This way ManageIQ VMDB has always almost up to date data. It
also features an option to make a full re-scan, which is also scheduled every 24-hours. Data
are presented to user via web interface. For oVirt instance displayed content are list of
clusters, templates, virtual machines and all related attributes.

3.2 Operational management
Since API of various platforms allow us to control some of entities actions. Not all of
the actions are covered, the goals is to be able to do main management features through
ManageIQ. In case of oVirt entities user is able to create, edit virtual, clone and migrate
virtual machines also perform basic tasks like power on, power off and reboot.

ManageIQ tracks the changes and can display reports about changes made to entities
over time. It tracks attributes like discs, memory but in some cases it can track even
software versions. Attribute changes can be compared to entities of same type or to entity
itself from earlier time.

Resource management and monitoring is another advantage. ManageIQ provides vari-
ous utilization charts of metrics like CPU, memory or disk with prediction when will these
resources run out of the capacity.

ManageIQ can help even in financial area. Users can assign certain cost values to
resources like virtual machine memory and disk, so ManageIQ can provide report with
costs of whole system or of certain group of users.

3.3 Self-service
This feature allows administrators to create catalog of requests that can be ordered by
users. It saves a lot of time for administrators and also for users as virtual machines and
applications are delivered faster. Administrators can create a collection of service items
represented as a service bundle. Each item represent an entity which ManageIQ knows how
to create for example a virtual machine or container.

Some of the services may require an input from users. For this purpose, administrators
can create dialogs via integrated dialog editor. Once the service bundle and dialogs are
created, the service bundle needs to be associated with an entry point which defines how
this resource (virtual machine or container) will be provided. After completion of this
process, the service bundle can be inserted in the service catalog where it can be ordered
by users. Once service is deployed, users can start and stop virtual machine and have
an access to consoles. Every service also has a lifetime which is set by administrators.
The lifetime option is important because services are automatically terminated upon their
lifetime expiration. Users are notified about expiration via email and they might have an
option to extend services.

8

3.4 Compliance
With ManageIQ administrators also have a tool for enforcing policies to discovered entities.
When user deploy his own system via self-service, administrators have at least some amount
of control given back.

But ManageIQ give the administrators even bigger power with SmartState Analyses
(SSA) technology which allows to define rules for content of virtual machines, hypervisors
and containers. SSA has capabilities to discover configurations, logs, package databases
and store them directly to VMDB. SSA is implemented agent-less, it access the disks
of systems via platform-specific APIs, usually snapshots or backup APIs. Disks cannot be
safely mounted by Linux kernel, so ManageIQ implements its own Ruby-based read-only file
system that access disks from user space. The big advantage of agent-less implementation
resides in the fact that guests are not required to be cooperative so SSA works even on
virtual machines which are currently shut down.

9

Chapter 4

Javascript Technologies

4.1 React
React is an open source Javacript library dedicated to user interfaces. Application is divided
to simpler components and each one of them is managing its own state. Components
are built with emphasis on re-usability. Features like component nesting and conditional
rendering [4] allow us to make user interface modular and easier to maintain.

There are two types of React components [18]:

1. Stateless components have no state management, they usually receive data through
props and return what will actually be rendered on a page. The best way to define
them might be via ES6 arrow functions [2] but React.Component class with render()
function only provides also a possible solution.

2. Stateful components provide the full state management with an option to use
component life-cycle methods. Any change of state will cause re-invoking of render()
method and update of data presented on page. Every component of this kind should
also define its initial state in a constructor that is compulsory. Life-cycle of statefull
components is controlled by life-cycle functions which are called on certain events
(component update) in a specific order.

Typical React work-flow is to create a stateful component containing multiple state-
less components and pass them required data via props. A good practice is to define
PropTypes which provide constrain for values passed through props. React also allows to
define DefaultProps which will be used in case that required value is not passed via props
but they are not as required as PropTypes. The state of application is manage by stateful
components. Any update of the state may cause that props are changed and the update
is pushed to underlying stateless components, thus they are forced to re-render. Stateless
components are not capable of any logic but the are able to trigger some events directly to
the stateful parent. The parent can define a callback function which is passed to underlying
components as a prop. Every event triggered from the stateless component will result in
a call of the function passed from the parent.

10

4.1.1 JSX

JSX [9] is an Javascript extension recommended to be used with React. The implementation
looks like actual HTML with the dynamic data from React variables. JSX has series of
advantages:

∙ faster writing of HTML templates and better understanding of what content will
actually be rendered

∙ code is optimized before compilation, so it has better run-time performance

∙ it is type-safe, so there is significant amount of error detected during compilation
One of the possible limitations of JSX might be the fact that some of attributes are

in namespace collision with Javascript. Therefore HTML attributes like class and for
must be replaced with JSX attributes className and htmlFor. The modern web browsers
are able to warn programmer when this kind of mistake is made with warning message in
developer tools console.

4.2 Redux
In the world of single page web applications requirements to manage state have become
increasingly complicated. As application gains more complexity, more user interface ele-
ments and complicated API calls, it might be very easy to end up in the loop of events and
callbacks. An effort to correct this state may lead to even more conditional event handling,
thus created flaws are even harder to reveal.

Redux is represented as a read-only tree of states called store. Every piece of data
in store is describing the current state of application. The only way to change the state
is to dispatch an action. Actions are predefined pure functions, therefore every change is
predictable.

Actions are processed by pure functions called reducers. Reducer takes the current state
and the action and returns a new state without mutation of the previous state. Because re-
ducers and actions are pure functions, we are able to achieve the specific state by dispatching
right actions in the right order. To conclude, Redux is based on three principles [26]:

1. single store of truth – the whole application state is stored within single tree

2. store is read-only – the only way to make a change is to dispatch an object describing
the change (action)

3. changes are made by pure functions – reducers

4.3 Redux-saga
Redux-saga [22] is a library providing functions for React/Redux applications which makes
asynchronous actions like fetching data from external resources easier and better. Saga
acts like separate thread which is responsible purely for side effects. Redux-saga is a Redux
middleware, so the thread can be started, paused and canceled via actions dispatched from
application. It has also access to the data stored in the Redux store and can dispatch
actions to influence it. The implementation is much easier thanks to the ES6 generator
functions which make them easier to write and read because the code acts exactly like
synchronous Javascript.

11

4.3.1 Saga middleware and sagas

The sagas are connected to the Redux store through the saga middleware. The middle-
ware has to be created before the store and applied to it via applymiddleware() function.
After middleware application phase and successful creation of the Redux store, the mid-
dleware can run sagas dynamically by invoking middleware.run() method with saga as
an argument. The middleware will go through the generator and execute all the yielded
effects.

Sagas are functions which return a generator object. The saga-library provides also
various effects which allows us to start other sagas. In the first iteration, the middleware
invokes the next() method to retrieve the next effect. The yielded effect will be executed
by the middleware according to effects API which specifies how will the middleware execute
the sagas. While the effect is being executed, the generator is suspended. After receiving
the result of the execution, the generator will call again the next(result) with the re-
sult as an argument. This process of the effects execution is repeated until the generator
is terminated normally or by throwing some error. Saga can also be canceled either by
effects or manually. Effect’s executions which result in an error will cause invocation of
throw(error) method of the generator. Also if the currently executed yield instruction
is wrapped inside a try/catch/finally block and an error appears, the catch block will
be executed followed by corresponding finally block.[21]

4.3.2 Effect creators

The following functions do not perform any executions and each one of them returns a plain
Javascript object. The execution is performed by the middleware which examines the effect
description and performs appropriate actions.

take(pattern) creates an effect that instructs the middleware to wait until the action
with desired pattern is dispatched to the store. The pattern is interpreted be the following
rules:

∙ no arguments or pattern equals to a ’*’ means that all actions are suitable and every
dispatched action is matched

∙ in case that the pattern argument is a function, an incoming action has to be evaluated
by the given function as true

∙ when pattern is a string, it has to match action.type

∙ in case that the pattern is an array, there are two possible cases:

– incoming action has to match all the predicates if the pattern is the array of
functions

– it has to match all the strings in case of string array

The middleware also comes with a way to terminate all the sagas blocked on take effect
which can be done by dispatching a special action END. Exceptions are sagas that have, in
that particular moment, forked tasks. These sagas have to wait for children to end their
tasks before terminating themselves.

put(action) creates an effect which instructs the middleware to dispatch a provided
action to the store. The effect is non-blocking and the saga will not receive any thrown

12

error feedback from a reducer. On the other hand put.resolve(action) is a variant of
the effect which will wait until a promise returned from reducer is resolved.

call(fn, ...args) creates an effect that instructs the middleware to call the fn func-
tion with provided args. The passed function can be both generator function or normal
function. The middleware will not only run the function but it also examines the result.
The result can be a promise, an iterator function or a value. All three cases have different
behavior:

∙ iterator object (generator) – a parent generator is paused until the child generator
finishes its task, the parent generator is resumed with the value returned by the child

∙ promise – a generator is suspended until the promise is resolved or rejected

∙ value – the middleware returns value back to saga so it can continue its execution

fork(fn, ...args) behaves similarly as call with one difference, the operation is non-
bloking. So the middleware will not wait until the fn is resolved and it will continue in
generator execution as soon as fn is invoked.

4.3.3 Saga helper functions

Saga helpers are functions built on top of the action creators described above, mainly fork
and take.

takeEvery is a helper function that spawns a saga on each action dispatched to the
store that matches certain pattern. It allows to write concurrent actions handled as many
times as action was dispatched. Therefore a new saga is started by each action, even though
previous sagas have not ended yet. There is no guarantee that sagas will be terminated in
the same order in which they have been started.

takeLatest also spawns a saga each time an action with a certain pattern is dispatched,
with one major difference. The previously started sagas which has not been terminated yet,
are automatically canceled. So if saga is listening for an action with a certain pattern and
user triggers the action multiple times, an old request is obsoleted by a new one. Of course
this is only true in case that the old request has not been finished yet.

throttle listens to dispatched actions and spawn sagas when the action is received.
After receiving the first action it will hold the execution of incoming action by certain time.
Actions that have been received during given time are placed in a sliding buffer which means
that the only most recent action will be kept. This is particularly useful in cases when we
want to prevent our server from being flooded by requests.

4.4 Redux-devtools
As application state grows, it may become pretty unclear which actions are being dis-
patched, when and how are they affecting the state. Using the Javascript console as a tool
for debugging these actions might be confusing and even misleading.

Redux-devtools comes as a web browser extension. The installed extension is accessible
via button in the extension area of the browser and the icon automatically glows when the
custom middleware is detected in loaded application. The extension menu allows program-
mers to display a new window with the content of the store. The content is showing the
current state of the application, with attached list of dispatched actions sorted chronologi-
cally from the start of the application. Programmers are allowed to go through every single

13

action dispatched from the initial application state to the current state. Since reducers are
pure functions, applying the series of actions to the state will always yield the same result.
The application basically becomes a movie which can be rewinded back and forth. Data
in the store are visible in every moment from the beginning of the application. Every dis-
patched action also comes with a diff describing what exactly was changed by dispatching
the given action. There is also an option to view application states as an oriented graph
and move through its paths. Rewinding the application back and forth also allow easier
examination of actions that cause UI changes.

The requirements for this tools are composed from the npm package which need to be
included in the project and the mentioned browser extension available for both Chrome and
Firefox. Additionally, the custom middleware has to be created and applied to the store.

4.5 ImmutableJS
ImmutableJS [7] is library providing several data structures, including List, Stack, Map,
OrderedMap, Set, OrderedSet and Record. Once any instances of these structures are
created they will provide persistent and immutable data. The only way to make a change
is to yield new updated copy. Usage of immutable data structures makes the application
state predictable and provide the assurance that changes are being made only in intended
modules. In case of Redux changes of application state are handled by reducers where
Immutable objects help to prevent mutation of the state.

4.6 PatternFly
Group of designers and open source enthusiasts have gathered together and created a set of
practices for building user interfaces of enterprise web applications. Patternfly features color
combinations, icons, dashboards, interactive widgets, pop-up windows, notifications, charts
and many more components that can be included in modern web applications. The library is
available either as npm [14] or yarn [29] package. Patternfly website [16] provides a showcase
of all components and related code with documentation. More complex components require
installation of dedicated modules and jQuery for proper functionality.

14

Chapter 5

Proposed solution

Work done by this project becomes a part of an open source project oVirt Web UI. The goal
of this project is to build a new version of Basic User Portal 2.1.2 which is now written as
GWT [5] application. The current version of Basic User Portal does not contain an option
to edit or create virtual machines, these features belong only to Administration portal and
Power User Portal. One of the main goals of this project is to introduce them also to
Basic User Portal. The performance speed of current dialogs implemented in current oVirt
solutions is insufficient. The state of dialog fields require an update almost after every
change made by a user. The update itself can take up to few seconds and the experience for
users working with the application on daily basis can be frustrating and counterproductive.
The current concept, in which are dialogs developed, also prone to bugs which are caused
by a phenomenon called callback hell [3]. The main reason why is this phenomenon hard
to avoid in this implementation is a big amount of dialog properties which are in very
close relation to each other and may influence one another. From long time perspective,
maintaining the code base can be very hard and may cause bugs by creating unwanted
loops between callbacks. The solution of this problem should be provided by ES6 generator
functions implemented by the saga middleware.

Important fact is to realize that purpose of the application is to provide a tool that
will be able to communicate with oVirt engine as well as the information about stored
entities and a way to manage them. Application will not be able to work standalone and
will depend on engine data. For development process we have been granted access to an
oVirt instance used by oVirt developers in Red Hat.

Our application will try to solve this problem by fetching as much data as possible right
from the start with shallow updates scheduled for every minute. With all required data
saved in Redux store, we can take advantage of proposed technologies and manage the state
of dialogs.

5.1 Comunication Layer
This solution implements two possible backends oVirt REST API and ManageIQ REST
API. Manage IQ integration of REST API has only been implemented as a proof of concept
demonstrating the possibility of porting the oVirt Web UI to communicate with ManageIQ.
Reasons behind this approach are few problems which disallowed us to implement the same
level of functionality as we were able to implement with API provided by oVirt engine.
To maintain the transparency between them, layers providing operations against API are

15

developed as separate modules. Each module implements functions needed to fetch or alter
the data.

Both APIs have similarities and operations against APIs are handled in both modules
by jQuery.ajax()[8] call for HTTP asynchronous request. Request has to have proper
header including Authorization and Accept fields.

1 $. ajax (ur l , {
2 ’type’ : ’GET’ ,
3 ’Accept’ : ’application/json’ ,
4 ’Authorization’ : ’Basic YWRtaW46c21hcnR2bQ==’ ,
5 }) . then (data => Promise . r e s o l v e (data))

Code sample 5.1: Fetching data from ManageIQ with Basic Authentication

Recommended authentication method for both platforms is an authentication via token.
A secondary option allows the use of Basic authentication for development purposes, where
the password in only encoded by Base64 as shown in 5.1. Accept field will use in our case
application/json value because it is more suitable data format for Javacript than XML.
Modules use several kinds of HTTP protocol methods:

∙ GET method to obtain list of entities or one specific resource e.g. virtual machines,
templates, clusters,

∙ POST method is handling case when the user wants to create new entity or resource,

∙ PUT to update resource,

∙ DELETE to delete data,

∙ OPTION used by ManageIQ, explained in section 5.3,

Important part of the communication modules is to convert entities obtained from API
to internal form understandable for front-end. Both network operations and conversions
are implemented in ovirtapi.js module. Virtual machine is represented like an object
with data stored as its properties. Several entities of the same kind are inserted inside list.
The module is implemented as the class which can be imported and instantiated in any
other module.

5.2 oVirt API
Every oVirt instance offers RESP API as one of the several ways to manage virtual data
centers. An entry point to API is the url https://<hostaddress>/api showing which
data are available with their addresses. The listed url https://<hostaddress>/api/vms
provides the list of all virtual machines. Obtaining these resources requires sending a HTTP
GET request to the given url. Additionally, to make sure that we have an access to full
contents of virtual machine properties, it is required to adjust the header of the request by
adding the field All-content: true.

Every entity has an unique ID. This ID can be used to access or edit one particular
resource identified by the given ID. Internally we also have to pay attention to the type
of entity because the ID itself is not enough to address a particular resource. We have

16

to classify the resource before we make a request. Example for a request would be the
request to edit a virtual machine. The request has to contain altered data the virtual
machine in JSON format. Data are delivered using the HTTP PUT method to the url
https://<hostaddress>/api/vms/<vmid>.

Since there are policies and restrictions for certain data, oVirt engine may deny our
request and answer it with an error message. We will be taking advantage of these mes-
sages, mainly because they are very descriptive about what is exactly wrong with our data.
Messages will be forwarded to frontend and shown to the user. Messages are in some cases
very specific, for example a mistake in a virtual machine’s name would lead to the error
message with description about restrictions regarding virtual machine naming policy.

5.3 ManageIQ API
As described in Chaper 3, ManageIQ is quite different project which take an advantage
of oVirt API in order to manage oVirt data centers. Because each one of the man-
agement tools has its own API, ManageIQ converting data to its own, unified repre-
sentation. The resources provided by ManageIQ should contain all retrieved data from
underlying management tools. Main entry point of API can be accessed via the url
https://<hostaddress>/api. Similarly to oVirt REST API, it contains data in JSON
format with basic information about all accessible entities and their addresses.

5.4 ManageIQ implementation
This section is dedicated to the problems encountered during the implementation process
of ManageIQ backend module. The work also includes communication with developers of
ManageIQ project, testing and verification of patches which were experimental and unap-
proved at that time.

The same-origin policy [23] is an important security concept implemented in web browsers.
Basically, it disallows the document or script to use resource that comes from another ori-
gin. Website has a different origin if it comes with different protocol, url or port. The
intention of policy is to prevent a malicious website from reading the confidential informa-
tion from other websites. It also prevents the application from reading the data that might
be offered by other website. A banking application with sensitive data is an good example
demonstrating the purpose of this policy. Security is very important, but our application
requires the data from ManageIQ API that are definitely not coming from the same origin
as our application.

Thankfully HTTP protocol implements The Cross-Origin Resource Sharing(CORS) [6]
mechanism to alleviate the same-origin policy. Therefore Javascript is able to read REST
API data served from a different origin. The CORS mechanism should be fully automatic
without any need to alter the request headers. Any request from client which desires the
cross-origin communication via GET, POST, HEAD method automatically includes the Origin
field in header that describes the origin of a client. The server will evaluate the clients
request and will either allow it or disallow it. If the first case is true, then the server will
respond with requested resources and also include Access-Control-Allow-Origin field in
response header. This does not mean that we can access the data, there is still a second
part of evaluation which is made by the browser. The Access-Control-Allow-Origin has
to be to present in the response header and must match with the request’s Origin field.

17

If those two do not match, browser will disallow our application to read the data. The
Access-Control-Allow-Origin might contain * as a value, which means that everyone is
able to access given resource but it is considered a bad practice.

There is one more complication to mechanism described above. If we make a request that
is not considered simple, the web browser will make a preflight request. This request will ba-
sically ask if the application is allowed to access given resource, without actually performing
it. Actual request is sent after the preflight has succeeded. Request is considered simple, if
the client is making any of GET, POST, HEAD methods and content type is one of the following
application/x-www-form-urlencoded, multipart/form-data, or text/plain. Also the
fields in header are limited to Accept, Accept-Language, Content-Language. Because we
need the Content-type filed to be set to application/json and the Authorization field,
our requests are not considered simple. Therefore, every one of them requires a individual
preflight request. Preflights are messages which use OPTION method and the server response
contains list of allowed actions for the application which sent the given preflight.

The routine described above should not cause any problems but the server part of the
routine was not implemented properly by ManageIQ. The response headers sent by the
server did not contain Access-Control-Allow-Origin field, therefore any time a request
was made by the client, the server did send an answer, however provided data were blocked
by the web browser. This problem was reported as an issue1 to ManageIQ Github page
and the patch solving the issue was delivered shortly. After patch application, problem was
solved only partially because preflight requests were working only for the top level entities.
So we were able to fetch the list of virtual machines but we were unable to fetch the data
of any particular machine.

This problem can also be solved on client side but it is considered a bad practice
that should be used only during development. The solution requires to completely dis-
able web browser security, thus no more preflight requests and no more same-origin policy
enforcement. Since I believe that this problem will be solved by ManageIQ team in the
future as a temporary solution I decided to disable it on Chromium browser by running
it with–disable-web-security –user-data-dir parameters. Afterwards I was able to
access all the entities.

5.4.1 oVirt entities

After solving initial problem, everything was ready to fully integrate the application with
ManageIQ. Initial research has shown that ManageIQ REST API provides only very small
fraction of the information compared to oVirt REST API. Basic task like creating a virtual
machine requires at least the information about clusters, templates, operating systems and
optionally about virtual machines. Data of mentioned entities are accessible, unfortunately
the list of operating systems is not available.

When it comes to individual entities, they include the references to the original url from
which it was given resource obtained. Most of the fields contains url to oVirt API, some of
the fields has different names but hold the same data. This leads us to the conclusion that
these fields might have some internal purpose but for us are unusable.

The only useful fields belonging to cluster entities are name and id. Templates consists
only from id, name and cluster. They lack important fields about memory, cpu, operating
system and many more. In case of virtual machine, ids and names are consistent, however
fields like template and memory differs from machine to machine. The most interesting was

1https://github.com/ManageIQ/manageiq/pull/14368

18

cluster field which holds only the url of the original oVirt API resource. This pointed to
the fact that it was not possible to determine which virtual machine belongs to the specific
cluster. Also some of the very important resources like operating systems and important
CPU and memory fields were completely missing.

There were also several unsuccessful attempts to create a virtual machine. From our
point of view it looked like POST requests are handled be ManageIQ in the same way as
GET requests. The received responses supported this claim because the response code was
always 400 OK with list of resources instead of 401 created. In the end, from all the
available actions, we were able to perform only start and stop of the virtual machine.

Performance and speed is also not quite sufficient compared to oVirt API. The way
virtual machines are arranged looks inappropriate. Lets say we want to download a list of
all vms and all data for oVirt entities. Consider that ManageIQ also contains big number
of virtual machine which belongs to different vendors. First GET to /api/vms will get us
only the list of virtual machines with urls and ids of every single machine. So to get data
of each virtual machine we need to make GET requests repeatedly for every machine with
included preflight request. Only after downloading the virtual machine contents we can
examine the vendor field and determine if machine belongs to oVirt. If not, we have just
made the useless request and we must drop the data and proceed to the next machine.
Tests on our local ManageIQ instance with around 100 virtual machines shows that only
fetching virtual machines lasts up to 10 seconds. Compared to oVirt API, Manage IQ is
much slower considering that it contains less data than oVirt API.

Result of this research shows that the oVirt segment of ManageIQ REST API is not
yet ready for integration. The small part that was implemented and tested is not ready
for integration with external applications. It misses key actions and crucial data required
for management of oVirt data centers. We also have to mention the issue with wrong
response headers for OPTION method which has not been fixed yet. Another imperfection
is probably missing vendor field in the list of entities which may result in downloading
useless data.

5.5 Sagas
The interconnection between proposed API modules, Redux store and React components
is made by Redux-Saga middleware. Right after the start of the application, the created
sagaMiddleware is applied to the store which means that from now on, it can properly run
our sagas. The sagas are generator functions which allow us to make the code look more
synchronous and prevent the creation of callback hell. The difference between generator
functions and classic callbacks is that generators remain paused until the effect is resolved
which is the main advantage for the callback hell prevention.

All created sagas are focused in a separate module sagas.js. Since we need to use more
than one saga and running multiple sagas by the middleware might be quite unefficient,
we will make one main rootSaga. The rootSaga is also a generator function which yields
the list of saga helper functions takeEvery and takeLatest. Those helper functions map
every created saga to the specific action. Consequently, these functions allow us to spawn
one of the predefined sagas by dispatching an action. The behavior of spawned sagas also
depends on the kind of provided helper function as described in 4.3.1. Dispatching an action
is not the only way to spawn a saga but it has certain advantages which are suitable for
the Redux workflow. Generally, it is much easier for debugging through Redux-devtools
because it shows order of actions which spawn generators one by one.

19

Figure 5.1: Application architecture

With all generators prepared and rootSaga running by the middleware, the application
execution can continue. Assuming that we are using the development mode and we are
logged in, the application will start with fetching the data from the oVirt engine. The
process begins by calling login generator which will go step by step through series of gen-
erators fetching lists of all clusters, templates and virtual machines. Each one of mentioned
generators are using local API instance that provides methods for fetching the data and
their conversion to internal representation. Upon successful data retrieval and conversion,
the data is being continuously dispatched to the store via specific actions. Those actions
are processed by the corresponding reducers and saved to the Redux store. Part of this
workflow is displayed on Figure 5.1.

Now, that the application has all the necessary data and we are able to see the list of vir-
tual machines ready for user interaction. The user can click on the Add virtual machine but-
ton located above the list of virtual machine which triggers an action SHOW_BLANK_DIALOG
caught by the rootSaga and spaws showAddNewVm saga. This saga will dispatch another
set of actions required to open the dialog and several actions which will make sure that the
dialog is initialized with empty values. There are also exceptions to this rule, for example
some fields are set from the default template named Blank.

Furthermore, the Code Sample 5.5 explaines initiation of dialog that serves for editing
virtual machines. Similarly like the Add virtual machine dialog, the dialog can be opened
by the action from the user. In this case, the user has to click on the pencil button located
either in the list of virtual machines or in the virtual machine detail window accessible after

20

selecting any virtual machine from the list. Both of these options dispatch the same action
which spawns the saga shown in the code sample. The saga is showing how we utilize
generator functions within the project. In the beginning, the saga is provided with the
action composed from a message type and a payload. The message type is in this case the
string value SHOW_EDIT_VM which causes that the helper function defined in the rootSaga
will spawn the showEditVm saga. The payload contains the data of virtual machine that is
being edited.

The first effect of the saga will make sure that we have the most recent data of the
virtual machine by refreshing informations about the virtual machine. The yield keyword
provides an assurance that the saga will be paused until the effect is resolved. Therefore
the saga will continue only after the most recent informations about the virtual machine
are fetched from the engine an stored in the Redux store. Since the Redux is the single
store of truth, the next step of the saga will lead to a selection of the virtual machine’s
data from the Redux store. These data are picked by a custom function written in the
dedicated Selectors.js module. The function will deliver the data from the store based
on the provided virtual machine id.

The next step updates the dialog type which has to be done before opening the dialog.
There are few things which might be rendered or initiated differently based on dialogType
value from the Redux store.

The remaining sequence of effects is passing through the properties of the virtual ma-
chine object selected from the Redux store. Properties are picked and dispatched to the
different part of the Redux store which is responsible for state of the dialog. It is necessary
to keep the right execution order because by changing some dialog fields we may trigger a
change to several others. For example, changing the cluster will also cause the change of
the template to the default value Blank. This is another case serving as a demonstration
of the asset provided by generator functions because the saga is paused until the effect is
resolved. Just note that as described in 4.3.2, the put effect is non-blocking and it won’t
wait for result of the effect. Since the generator is only making the plain updates to the
store, all that matters is the sequence in which updates are dispatched. After updating all
the dialog fields, the generator dispatches the last action which will open the dialog. The
generator has ended and the dialog is shown and ready to handle the user input. The Code
Sample 5.6 does not contain all the code from real generator because the intent is only to
provide demonstration of Redux-saga workflow.

1 function* showEditVm (ac t i on) {
2 yield fetchSingleVm (getSingleVm ({vmId : ac t i on . payload .vm. get (’id’) }))
3 const vm = yield S e l e c t o r s . getVmById (ac t i on . payload .vm. get (’id’))
4 . . .
5 yield put (updateDialogType (’edit’))
6 const c l u s t e r = S e l e c t o r s . getClusterById (vm. get (’cluster’) . get (’id’))
7 yield put (updateCluster (c l u s t e r))
8 . . .
9 yield put (updateTemplate (template))

10 yield put (updateVmName(vm. get (’name’)))
11 yield put (updateVmDescription (vm. get (’description’)))
12 . . .
13 yield put (openVmDialog ())
14 }

Code sample 5.2: Saga responsible for initiating and showing the Edit VM dialog

21

5.6 React components
The work described to this point of the thesis is from user perspective practically invisi-
ble. The part that must handle user interaction will be implemented in React with state
management interconnected to Redux.

Dialogs, which are we building have up to 62 fields representing a virtual machine and
its properties. Since oVirt has been adding new features on relatively regular basis we need
to provide easy way to include new fields when required. The key to keep dialog modular
is to design sub-components which will allow us to easily add or remove fields. To achieve
this goal we build standalone React components for every type of data we have to handle
inside the dialog.

5.6.1 Stateless components

LabeledTextField is a component designed to obtain text input from users. The input in
this case may be represented either as a number or as text.

The variant dedicated to the numerical values can be initiated from a parent component
by setting prop type to number. As shown in Figure 5.2, the field has arrows which allows
users to move numerical value by a certain step. The default step is 1 but I have included
dedicated prop step that allow us to configure this value. The minimal value achievable by
clicking on arrows can also be restricted by prop min. Those two props are especially useful
in case of virtual machine’s memory where we can make sure that the value will not be
negative and we can set step for example to 256MB which is a more convenient increment
value for memory. The arrow buttons might also act as a hint pointing to a fact that the
field requires a numerical value, especially when filling less known fields.

Figure 5.2: LabeledTextField number variant

LabeledSelect component provides users with a restricted list of values but only one
value can be selected at time. In this component I have included two possible widgets with
different features and look. The type of widget can be configured via selectClass prop.

The first, classic widget provides users with simple list of the options with default option
pre-selected. This representation is suitable for cases when the list of options is short.

The other widget gives us different look and adds the type-ahead functionality (Figure
5.3). Users can simply start typing the desired option and if it is available, they can select
it. The biggest advantage of the type-ahead functionality comes with bigger lists of data
where the values may be found much quicker compared to classic widget. On the other hand
there is a little disadvantage from the user perspective. Considering that user is able to
type any value, I have implemented a verification process which checks if the value is really
listed as an option. If not, user is notified via notification bubble with warning message
specifying which field is wrong even before the data has been sent.

Alert can display a red rectangle window with an error message inside. This component
provides a transparent and simple demonstration of conditional rendering in React. The
only prop passed from parent is the message itself. If the message contain an empty string,
which is also the initial state, Alert is rendered only as empty <div∖> without content or
style. The error messages are in this case often result of failed REST API call. The errors

22

Figure 5.3: LabeledSelect example with demonstration of type-ahead functionality

are being detected by saga-middleware by examining the code from the server response. As
soon as the error is detected, saga will dispatch an action with an update which contains
the error message provided by the server. The message is processed by the corresponding
reducer and store is updated. The update is broadcasted to React components which
subscribed to updated part of store. In other words error message is displayed to a user
immediately after the server response is received without any delays as shown in Figure 5.4.

Figure 5.4: Error message from API displayed by error

LabeledSwitch is an component dedicated to representation of boolean values. Like
the previous components, it consists of two parts. A modern looking switch button (Figure
5.5) which clearly describes two of possible states on or off and a label describing the feature
which can be turned on or off. The component implementation is not adjusted to React yet,
so we had to use the jQuery in the same manner like we used in case of the LabeledSelect
component. Similarly we had to use componentDidMount life-cycle method to initialize the
component via custom method bootstrapSwitch(). Also the onChange callback within
the React component cannot be used for triggering updates to the Redux store. The
solution for correct detection and distribution of the changes made by users was the custom
callback via jQuery triggered by switchChange.bootstrapSwitch event. But compared
to the LabeledText, the behavior was slightly different because we were not able to access
proper state of the switch button via ref prop like we did in case of the other components.
The value provided by the ref was true even though the switch was turned off. To solve
this particular problem I had to examine the code of the widget itself and I discovered that
the state is passed as an argument for every triggered switchChange.bootstrapSwitch
event. This discovery allowed us to properly change the implemented callback which now
can dispatch the state of the component right to the store.

Figure 5.5: LabaledSwitch for Smart card option

23

5.6.2 Stateful components

AddVmDialog is a React component that implements the dialog representing a virtual ma-
chine and its configurable properties. The component can be used either to create or to
edit a virtual machine. The dialog variant is determined by a value from the Redux store.
The create virtual machine variant renders most of the fields empty, except special cases
like cluster field where the pre-selected cluster is always the first cluster provided by the
connected oVirt engine. Other fields like template, operating system, memory and cpu
number are taken from the Blank template which is the default template for every cluster.
The second variant is pre-filled with values from the virtual machine which is about to be
edited as shown in the Figure 5.6.

This dialog component is where we take an advantage of all the previously mentioned
reusable sub-components. The difference between the AddVmDialog and previously de-
scribed components is the fact that component is stateful whereas the others were stateless.
This means that the component is created as a class which inherits from React.Component.
Usage of a stateful variant is allowing us to use the life-cycle methods for proper sub-
component initialization via jQuery. The component also needs to read the data from the
sub-components which is achievable through ref attributes supported only by the stateful
components.

The sub-components are placed in AddVmDialog’s render() method with all required
props initiated for each one of them. Since components are reusable they have multiple
options configurable via props. Not all props are required to be used, only those which
suit our current need. The props also come with the certain restrictions. Each of the sub-
components defines its own .propType section with data type restriction and definition,
which is describing whether the prop is or is not required. Optional props may acquire
default values, e.g. the placeholder prop is by default set to the same value as the label
prop as long as it is not overwritten from parent.

The communication between the parent component is achieved through callbacks passed
to sub-components via certain attributes (props). Those attributes are ref and onChange.
The ref callback is a pure function which store the input of the dialog field to a class
property of the parent component. As an suitable example we can use the cluster field
where callback function is defined by following statement: (input) => {this.cluster =
input}. Therefore the parent component is able to access the value of the cluster field by
calling this.cluster.value. The onChange callback defines a function which will be called
when change event occurs. In conclusion, these callbacks allow us to catch the change event
in dialog field, read the data provided by ref and pass the obtained value to the Redux
store.

The sub-component’s props are not used only as callbacks. The props are also used to
carry values which are supposed to be rendered by sub-components. This apply primarily
to default values, placeholders and labels. The dialog is also using the props to configure
the sub-components.

The special case is LabeledSelect where the list of values rendered to user is passed via
prop. To properly describe the problem I will be using the example which is implemented in
the project. The dialog has the field which represents the list of templates. Each template
depends on certain cluster (template Blank is an exception). In our dialog we know exactly
which cluster is selected because we have this information stored in Redux store. Since
we want to provide valid data in every possible situation, it is necessary to render only
the list of templates which applies to the selected cluster. This is achieved by a pure

24

function which compares the id of the selected cluster with cluster id stored in every loaded
template. Afterwards, the filtered list of templates is sorted and sent to the LabeledSelect
component.

The dialog always renders the data stored in Redux store in section addVmDialog. This
is achieved by mapping the props of our dialog to the Redux store inside the connect()
method provided by react-redux library.

editTemplateDialog is the second stateful React entity implemented in this project.
The purpose of the dialog is to choose from the list of the templates provided by oVirt
engine and to edit few properties of single selected template. The implementation of this
dialog has less fields but serves as a demonstration of transparency provided by designed
React components. The result is in another valuable functionality brought to the oVirt
Web UI project.

5.7 Patternfly integration and design
All React components and HTML related content are using styles provided by Pattern-
fly. The library itself is accessible via dedicated npm module which needs to be included
to gain access to styles and widgets. Not all widgets are included by default, the more
complicated widgets that are implemented in Javascript and require jQuery have its own
npm module which need to be included separately. In our project we have included few ad-
ditional modules. A bootstrap-combobox module which implements the LabeledSelect
type-ahead functionality and a bootstrap-select module used by simpler variant of the
LabeledSelect. The last included module is bootstrap-switch and it provides the foun-
dation for the switch button used in the LabeledSwitch component.

The combination of React and jQuery is the source of multiple implementation prob-
lems in front-end. As user is going through dialogs fields, they have to reflect choices
he has already made. List of options in LabeledSelect component has to be properly
re-rendered e.g. when needed. In order to re-render component which is using jQuery
we have to use of the React life-cycle methods, to be specific componentDidMount() and
componentDidUpdate() method. Every component using jQuery has a specific method
which need to be called initially for component to properly render and work. These meth-
ods must be called from mentioned life-cycle. Thanks to this whenever user make a choice,
Redux store will be update. If this change apply to part of store mapped to React com-
ponent that is using jQuery, componentDidUpdate() is called and widget has a new list of
values. Determine the method which initiate the jQuery work-flow in case of type-ahead
variant of LabeledSelect wasn’t simple. But we took advantage of a fact that Patternfly
is an open source project, so we had to go through the code where we were able to find the
right combobox() method, which initializes the component properly.

Styles for simple widgets like buttons or headings are added by providing HTML element
with attribute class or className in case of JSX. List of classes with demonstrations can
be found on Patternfly website[16].

25

5.8 Testing and verification
The application was tested continuously during the whole development process. The Redux-
devtools extension have been used primarily for testing reducers, actions and the content
of the Redux store with occasional help from the developer console. The testing pro-
cess included manual execution of certain scenarios, including opening and closing dialogs,
switching values of certain fields and sending the data to the engine. The extension also
served as a verification tool for sagas. Since sagas were dispatching actions, the extension
allowed us to check the proper order of actions, their payloads and changes made by them
to the store.

Another part of testing process was to verify data that should be created or updated
by dialogs. In this case, verification process was in the beginning as simple as checking the
return code from HTTP protocol. But as we were adding more fields after field to dialogs,
it was required to verify every altered value. The main verification tools were the already
implemented oVirt solutions. We started with the Administration Portal and moved to
the REST API, where we were able to simply open a web page containing data of virtual
machine stored as XML and verify changed data by simply refreshing the web page. After
every successful change made to the oVirt engine, the generator will fetch updated data
and store them in the Redux store. Therefore we were able to determine if the fresh data
fetched from the oVirt engine include the change we made through the Redux-devtools
extension or by examining the data shown by the editVM dialog.

26

Figure 5.6: Dialog for editing virtual machines

27

Chapter 6

Alternative solution

This chapter describes a possible alternative solution that was proposed and tested during
the development of the thesis. This solution uses all the previously mentioned technologies
with small difference in state management.

Most of the content of generator functions located in sagas.js module was moved
to stateful React components. Operations which remained in sagas were used only for
asynchronous network operations and conversion to internal format. Both dependency
handling and state management were completely moved to the addVmDialog. Dialogs
weren’t dispatching any of changes to the Redux store, the state of dialogs was handled
exclusively by the React component. The dependency handling was provided by internal
functions inside the component. Dialogs were capable only of a couple changes to the Redux
store. These changes were closing the dialog and sending an actual request with the data
from the dialog fields.

The burden that was placed on the Redux store was decreased because the actions
weren’t dispatched as often as in the proposed solution. The alternative solution provided
suitable results at time but there was a concern that with increasing amount of dialog fields,
it might lead to creation of the callback hell. The main reason behind this concern is a need
to dynamically fetch the additional resources during the work with the dialogs. Therefore
I decided to use the approach with generator functions which offer a secure way to enforce
the execution order of callbacks and callback hell prevention.

28

Chapter 7

Conclusion and future development

The goal of this thesis was to design and implement a generic configuration interface for
virtual machines and embed it to the oVirt Web Admin. The development focus is being
shifted to oVirt Web UI project with a chance that current oVirt web based tools might
be obsoleted in future by this project. For this particular reason the proposed solution was
embedded to the oVirt Web UI instead.

The solution has mapped all properties of the virtual machine which is the biggest entity
from the configuration standpoint. All dependencies and constraints were documented to
the graph (Appendix A) that will possibly help with the project development in the future.
The only alternative source of data shown in graph is the source code of the oVirt engine.

The implemented back-end module is able to download list of virtual machines, tem-
plates and clusters. The module also includes methods for conversion of these entities to
their individual internal representations. Furthermore, it contains methods for creating and
editing virtual machines and also other methods which mostly secure the communication
with the oVirt engine.

The thesis has also made a small research by experimentally implementing an alternative
back-end module which uses the ManageIQ’s REST API instead of the oVirt’s REST API.
The result of research has proven that the ManageIQ’s REST API is not on the same level
as the oVirt’s REST API. Additionally, the research lead to a discovery of the bug caused
by the wrong CORS implementation. This discovery might help to improve the ManageIQ
project in the future. The arrangement of oVirt entities provided by the ManageIQ REST
API is not ideal and can negatively influence the performance of external application by
downloading useless data. Since the API is missing some key entities and actions, the
application was ported only in read-only mode. The read-only mode can only display the
list of available virtual machines and requires disabling browser security.

I also experimented with the alternative solution for state management of dialogs secured
only by React itself, without Redux. Even though the Redux is not recommended to be
used for state management of the dialogs, our dialogs are unique and we have proven that
it is possible and also very important for solving the callback hell which have caused many
problems in the previous dialog implementation. The solution of the callback hell has
been achieved through ES6 generator functions. The proposed callback hell solution is
demonstrated on the implemented virtual machine dialog with 23 fields.

The final results include multiple dialogs. Probably the most important dialog is able
to create a new virtual machine and warn about possible errors which appeared during this
process. The second dialog allows the user to edit parameters of previously created virtual

29

machines. The last of created dialogs offers a possibility to change parameters of templates
managed by the oVirt engine.

The proposed React components also have some flaws. General flaw in components is
caused by usage of jQuery which should be avoided in React. The Patterfly have already
identified the problem and started a custom project which should provide components
designed especially for React without jQuery as additional dependency1. Another minor
issue might be the user experience flaw caused by the proposed combo box solution which
requires additional click to cancel the previously selected value before selecting a new value
from the list. The problem was also identified on Github page2 of component but the
solution has not been included in upstream yet. The proposed solution only removes the
X button which appears when the value is selected in the widget. The change can be
done manually in source code of the component but it would lead to another problem with
distribution of altered npm package.

The implementation side of this thesis has also tried to keep touch with an upstream
project3. The smaller patch with few dialog fields, React components and most of the back-
end infrastructure has been included in adjusted form. The development of oVirt Web UI
project continues and one of the first versions is available as a preview in oVirt 4.1. The
future development should divide dialog to smaller sections and implement the remaining
dialog fields.

1https://github.com/patternfly/patternfly-react
2https://github.com/danielfarrell/bootstrap-combobox/issues/149
3https://github.com/oVirt/ovirt-web-ui

30

Bibliography

[1] Ansible module for oVirt/RHEVM. [Online; visited 10.04.2017].
Retrieved from: http://docs.ansible.com/ansible/ovirt_module.html

[2] Arrow functions, Mozilla developer network. [Online; visited 17.04.2017].
Retrieved from: https://developer.mozilla.org/en/docs/Web/JavaScript/
Reference/Functions/Arrow_functions

[3] Callback hell. [Online; visited 08.05.2017].
Retrieved from: http://callbackhell.com/

[4] Condition rendering. [Online; visited 17.04.2017].
Retrieved from:
https://facebook.github.io/react/docs/conditional-rendering.html

[5] GWT overview. [Online; visited 19.04.2017].
Retrieved from: http://www.gwtproject.org/overview.html

[6] HTTP access control (CORS). [Online; visited 19.04.2017] Last change April 18,
2017.
Retrieved from:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

[7] Immutable documentation. [Online; visited 14.04.2017].
Retrieved from: https://facebook.github.io/immutable-js/

[8] jQuery documentation, ajax. [Online; visited 19.04.2017].
Retrieved from: http://api.jquery.com/jquery.ajax/

[9] JSX documentation. [Online; visited 17.04.2017].
Retrieved from: https://facebook.github.io/react/docs/introducing-jsx.html

[10] Kernel Virtual Machine. [Online; visited 17.04.2017].
Retrieved from: https://www.linux-kvm.org/page/Main_Page

[11] libvirt wiki. [Online; visited 18.04.2017].
Retrieved from: https://wiki.libvirt.org/page/FAQ#What_is_libvirt.3F

[12] ManageIQ architecture overview and supported platforms. [Online; visited 17.04.2017].
Retrieved from: http:
//blog.octo.com/wp-content/uploads/2016/06/cmpbigpicture-1024x671.png

[13] moVirt documentation. [Online; visited 10.04.2017].
Retrieved from: https://www.ovirt.org/develop/projects/project-movirt/

31

http://docs.ansible.com/ansible/ovirt_module.html
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions
http://callbackhell.com/
https://facebook.github.io/react/docs/conditional-rendering.html
http://www.gwtproject.org/overview.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://facebook.github.io/immutable-js/
http://api.jquery.com/jquery.ajax/
https://facebook.github.io/react/docs/introducing-jsx.html
https://www.linux-kvm.org/page/Main_Page
https://wiki.libvirt.org/page/FAQ#What_is_libvirt.3F
http://blog.octo.com/wp-content/uploads/2016/06/cmpbigpicture-1024x671.png
http://blog.octo.com/wp-content/uploads/2016/06/cmpbigpicture-1024x671.png
https://www.ovirt.org/develop/projects/project-movirt/

[14] Npm website. [Online; visited 17.04.2017].
Retrieved from: https://www.npmjs.com/

[15] Ovirt documentation. [Online; visited 10.04.2017].
Retrieved from: https://www.ovirt.org/

[16] Patternfly documentation. [Online; visited 10.04.2017].
Retrieved from: https://www.patternfly.org/pattern-library/

[17] PostreSQL. [Online; visited 17.04.2017].
Retrieved from: https://www.postgresql.org/about/

[18] ReactJS documentation. [Online; visited 05.04.2017].
Retrieved from: https://facebook.github.io/react/

[19] Red Hat Enterprise Virtualization Platform Overview. [Online; visited 16.04.2017].
Last change Jun 5, 2014.
Retrieved from: https://access.redhat.com/documentation/en-US/
Red_Hat_Enterprise_Virtualization/3.5/html-single/Administration_Guide/
index.html

[20] Redux documentation. [Online; visited 10.04.2017].
Retrieved from: http://redux.js.org/

[21] Redux-saga API reference. [Online; visited 27.04.2017].
Retrieved from: https://redux-saga.js.org/docs/api/index.html

[22] Redux-saga documentation. [Online; visited 14.04.2017].
Retrieved from: https://redux-saga.github.io/redux-saga/index.html

[23] Same-origin policy. [Online; visited 19.04.2017] Last change September 28, 2016.
Retrieved from:
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

[24] SPICE homepage. [Online; visited 10.04.2017].
Retrieved from: https://www.spice-space.org/

[25] Top 10 benefits of server virtualization. [Online; visited 17.04.2017]. Last change
November 2, 2011.
Retrieved from:
http://www.infoworld.com/article/2621446/server-virtualization/server-
virtualization-top-10-benefits-of-server-virtualization.html

[26] Tree principles of Redux. [Online; visited 18.04.2017].
Retrieved from: http://redux.js.org/docs/introduction/ThreePrinciples.html

[27] VDSM-Hooks. [Online; visited 18.04.2017].
Retrieved from: http://www.ovirt.org/develop/developer-guide/vdsm/hooks/

[28] VNC documentation. [Online; visited 10.04.2017].
Retrieved from: http://www.hep.phy.cam.ac.uk/vnc_docs/howitworks.html

[29] Yarn website. [Online; visited 17.04.2017].
Retrieved from: https://yarnpkg.com/en/

32

https://www.npmjs.com/
https://www.ovirt.org/
https://www.patternfly.org/pattern-library/
https://www.postgresql.org/about/
https://facebook.github.io/react/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Virtualization/3.5/html-single/Administration_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Virtualization/3.5/html-single/Administration_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Virtualization/3.5/html-single/Administration_Guide/index.html
http://redux.js.org/
https://redux-saga.js.org/docs/api/index.html
https://redux-saga.github.io/redux-saga/index.html
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.spice-space.org/
http://www.infoworld.com/article/2621446/server-virtualization/server-virtualization-top-10-benefits-of-server-virtualization.html
http://www.infoworld.com/article/2621446/server-virtualization/server-virtualization-top-10-benefits-of-server-virtualization.html
http://redux.js.org/docs/introduction/ThreePrinciples.html
http://www.ovirt.org/develop/developer-guide/vdsm/hooks/
http://www.hep.phy.cam.ac.uk/vnc_docs/howitworks.html
https://yarnpkg.com/en/

[30] Jansen, G.: Managing heterogeneous environments with ManageIQ. [Online; visited
13.04.2017].
Retrieved from: https://lwn.net/Articles/680060/

33

https://lwn.net/Articles/680060/

Appendices

34

Appendix A

Complete oVirt virtual machine
dialog dependency graph

35

36

37

38

Appendix B

Installation guide

B.1 Prerequisites
Application should be started via development mode with the engine url as the parameter
with following prerequisites:

1. A running oVirt engine, with configured hosts, disks and networks.

2. A ManageIQ instance running and configured to manage the oVirt engine (ManageIQ
variant - read only mode)

B.2 oVirt API variant installation - Linux
1. Copy and unzip the contents of the attached CD

2. Open a terminal

3. Make sure that you are in correct folder (oVirt API): cd ovirt-web-ui-miq

4. Make sure npm is installed: dnf install npm

5. Install yarn: npm install yarn

6. Install all project dependencies: yarn install

7. Run oVirt-web-ui: ENGINE_URL=https://engine_address yarn start (change the
url to your oVirt engine)

8. Firefox window should automatically open with application, if not, the url should be
displayed in the output of terminal window

39

B.3 ManageIQ API variant installation - Linux
The ManageIQ variant is accessible only via Google Chrome and it is required to run it from
terminal with parameters –disable-web-security -user-data-dir. These parameters
will disable all the security.

1. Copy and unzip the contents of the attached CD

2. Open a terminal

3. Make sure that you are in correct folder (ManageIQ API): cd ovirt-web-ui-miq

4. Make sure npm is installed: dnf install npm

5. Install yarn: npm install yarn

6. Install and update all required project dependencies: yarn install

7. Run oVirt-web-ui: ENGINE_URL=https://engine_address yarn start (change the
url to your oVirt engine)

8. From another terminal window/tab run google-chrome –disable-web-security
-user-data-dir and type the url and port of the app (usually localhost:3000)

40

Appendix C

Contents of attached CD

1. bachelor-thesis.zip – folder containing the git repository with pdf, LATEX sources
and images used in documentation

2. ovirt-web-ui.zip – folder containing the git repository with sources and implemen-
tation

3. ovirt-web-ui-miq.zip – folder containing the git repository with sources and imple-
mentation of ManageIQ backend

41

	Introduction
	oVirt
	oVirt engine
	Administration portal
	User Portal
	REST API

	oVirt node
	oVirt Entities

	ManageIQ
	Discovery
	Operational management
	Self-service
	Compliance

	Javascript Technologies
	React
	JSX

	Redux
	Redux-saga
	Saga middleware and sagas
	Effect creators
	Saga helper functions

	Redux-devtools
	ImmutableJS
	PatternFly

	Proposed solution
	Comunication Layer
	oVirt API
	ManageIQ API
	ManageIQ implementation
	oVirt entities

	Sagas
	React components
	Stateless components
	Stateful components

	Patternfly integration and design
	Testing and verification

	Alternative solution
	Conclusion and future development
	Bibliography
	Appendices
	Complete oVirt virtual machine dialog dependency graph
	Installation guide
	Prerequisites
	oVirt API variant installation - Linux
	ManageIQ API variant installation - Linux

	Contents of attached CD

