
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATIC COMPONENTMETADATA EXTRACTORAND CONSOLIDATOR FOR CONTINUOUSINTEGRATIONAUTOMATICKÝ NÁSTROJ K ZÍSKÁVÁNÍ METADAT KOMPONENT PRO ÚLOHY PRŮBĚŽNÉ
INTEGRACE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. JIŘÍ KULDA
AUTOR PRÁCE
SUPERVISOR Prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
This master thesis focuses on the modification of continuous integration practice within
the Platform team at Red Hat. The result of this thesis is the Metamorph, tool which will
make it possible to unify the continuous integration tools of sub teams under the Platform
team. The theoretical part describes the creation of a continuous integration practice and
explains its benefits. Subsequently, existing CI tools (in the industry) are presented in
detail. The following section demonstrates how continuous integration uses the Jenkins
tool. This master thesis also contains the particulars of existing internal CI solutions at
Red Hat. In the practical part, the design and implementation of tool that was made during
the creation of this master thesis are introduced. In conclusion, the results are tested by
one team at Red Hat and a possible extension is outlined.

Abstrakt
Tato diplomová práce popisuje úpravu průběžné integrace pro Platform tým ve společnosti
Red Hat. Výsledkem práce je nástroj Metamorph, který umožní sjednocení ostatních
nástrojů průběžné integrace pod týmem Platform. Teoretická část popisuje vznik, popis a
přidané hodnoty průběžné integrace. Následně jsou blíže přiblíženy existující nástroje na
trhu. Dále je zde popsáno použití průběžné integrace v nástroji Jenkins. V práci jsou také
dopodrobna popsány existující řešení průběžné integrace ve společnosti Red Hat. Dále je
zde popsán návrh a implementace výše zmíněného nástroje. V závěru jsou výsledky práce
otestovány týmem z firmy Red Hat a nastíněny možnosti rozšíření.

Keywords
Continuous Integration, Jenkins, Red Hat, Metamorph, build, Test Data Management,
integration, Ansible

Klíčová slova
Průběžná integrace, Jenkins, Red Hat, Metamorph, sestavení, Test Data Management,
integrace, Ansible

Reference
KULDA, Jiří. Automatic Component Metadata Extractor and Consolidator for Continu-
ous Integration. Brno, 2017. Master’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Prof. Ing. Tomáš Vojnar, Ph.D.

Automatic Component Metadata Extractor and
Consolidator for Continuous Integration

Declaration
Hereby I declare that this Master’s thesis was prepared as an original author’s work under
the supervision of Mr. Prof. Ing. Tomáš Vojnar, Ph.D. The supplementary information
was provided by Mr. Gowrishankar Rajaiyan. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Jiří Kulda

May 22, 2017

Acknowledgements
I would like to thank Mr. Gowrishankar Rajaiyan for his technical leading of this Master
Thesis. At the same time, I would like to thank Mr. Prof. Ing. Tomáš Vojnar, Ph.D., for
his pedagogical leadership. Last but not least, I would like to thank Ing. Jiří Čanderle for
pointing me to the correct people.

Contents

1 Introduction 3

2 Continuous Integration 4
2.1 What is Continuous Integration . 4
2.2 What is the value of Continuous Integration? 5
2.3 Why Teams avoid Using Continuous Integration? 7
2.4 Existing Continuous Integration Solutions 7

2.4.1 Jenkins . 8
2.4.2 Travis CI . 9
2.4.3 Go CD . 10
2.4.4 TeamCity . 11

2.5 Jenkins Build Job Setup . 11

3 Continuous Integration Implementations at Red Hat Company 14
3.1 Team 1 . 14

3.1.1 Test on build CI . 14
3.1.2 Covscan CI . 16
3.1.3 RPMDiff CI . 16

3.2 Team 2 . 17
3.3 Team 3 . 18
3.4 Platform CI . 19
3.5 Continuous Integration Implementation Summary 19

4 Test Metadata Analysis 20
4.1 Metadata overview . 20
4.2 Existing External Solutions . 21
4.3 Analysis of used metadata storage systems 21
4.4 Unified Test Metadata Format . 23
4.5 Proposed Unification Tool . 24

5 Metamorph 25
5.1 Metamorph Design . 25

5.1.1 Problem Definition . 25
5.1.2 Metamorph Requirements . 25
5.1.3 Metamorph Requirements for Jenkins Jobs 26
5.1.4 Metamorph Benefits . 27
5.1.5 Use Cases . 27
5.1.6 Metamorph Output Format . 28

1

5.1.7 Implementation Design . 29
5.1.8 Interactions With Storage And Metadata 30
5.1.9 Low Level Implementation Design 30
5.1.10 Source Directory Structure and Output Metadata Format 32
5.1.11 ResultsDB Plugin Design . 33
5.1.12 Provision Plugin Design . 36
5.1.13 PDC Plugin Design . 38

5.2 Implementation . 40
5.2.1 Ansible . 40
5.2.2 ResultsDB Plugin Implementation 43
5.2.3 Provision Plugin Implementation . 44
5.2.4 PDC Plugin Implementation . 45
5.2.5 Additional Metamorph Plugins Implementation 46

5.3 Metamorph Testing . 46
5.3.1 Metamorph Testing by Red Hat Teams 47

6 Conclusion 49

Bibliography 51

Appendices 53

A The Contents of The Included Media 54

B Manual 55

C Questionnaire Results 56
C.1 ResultsDB Plugin . 56

C.1.1 resultsDB pros . 56
C.1.2 resultsDB cons . 56
C.1.3 What can be improved in resultsDB plugin 56

C.2 PDC Plugin . 56
C.2.1 PDC pros . 56
C.2.2 PDC cons . 56
C.2.3 What can be improved in PDC plugin 57

C.3 Provision Plugin . 57
C.3.1 Provision pros . 57
C.3.2 Provision cons . 57
C.3.3 What can be improved in Provision plugin 57

C.4 Messagehub Plugin . 57
C.4.1 Messagehub pros . 57
C.4.2 Messagehub cons . 57
C.4.3 What can be improved in Messagehub plugin 57

C.5 Metamorph Tool . 58
C.5.1 Metamorph tool pros . 58
C.5.2 Metamorph tool cons . 58
C.5.3 What can be improved in Metamorph tool 58

2

Chapter 1

Introduction

The aim of this work is to solve a problem which arose at Red Hat. Nowadays, there are
at least twelve different continuous integration tools under the Platform CI team in this
company with one CI server per every team. The problem is how to unify all the existing CI
solutions into one. Resolving this would save Red Hat a lot of money and developers’ work,
as many CI features are developed separately, such as covscan or rpmdiff. The solution of
this problem could be used by multiple teams. Integrating Red Hat continuous integrations
under one project would eliminate duplicated effort so often found in software development.

The purpose of this work is to create a tool which would be the basic building block
for solving the above-mentioned problem. The first tool is a metadata extractor. It will
eliminate the need for every CI solution to depend on concrete metadata and their storage
system. Teams are now focusing on collecting metadata, but they should mainly focus on
how to act on the existing ones.

The rest of this thesis is structured as follows. The second chapter provides continuous
integration introduction information. It explains what CI is, what benefits it has, why your
team should or should not use it, and what the existing CI tools solutions on the market
are.

Continuous integration implementations at Red Hat can be found in Chapter 3. CI
solutions from different teams are described there, with the focus on their implemented
features. Every Jenkins job functionality is explained as well. The documentation of these
solutions is, in fact, the first contribution of this thesis. The last section of the chapter
introduces the Freestyle build job options, which are the key of Jenkins build job and a
small code example of them in the YAML format using the Jenkins Job Builder.

Chapter 4 focuses on metadata analysis used by CI teams. At first, it presents a research
on existing external solutions for metadata storage. It also contains information about Red
Hat teams’ internal metadata storage systems. At the end, there is a proposal for solving
the CI implementations unification problem.

Chapter 5 describes the Metamorph tool and its plugin design, supported with tables
and figures. The tooling implementation can be found here. Ansible language is described
in the implementation as well because of some parts written in this language. The last
part of the chapter focuses on testing, which presents feedback on the proposed solution
gathered from various Red Hat teams.

The last Chapter contains an overall summary of the created solution for CI unification
problem with drafted out future improvements of the implemented tool.

3

Chapter 2

Continuous Integration

The first time the term continuous integration was used is found in the 1994 book by Grady
Bosh, called Object-Oriented Analysis and Design with Applications [3]. He explains that
developing software with the micro-processes functions can be used as an internal type of
continuous integration effort.

A notable step in the evolution of CI occurred within the Extreme Programming
methodology invented by Kent Beck and Ron Jeffries in 1997, where continuous integration
serves as one of the procedure’s pillars. Extreme programming can be described as a prag-
matic approach to program development that emphasizes business results first and takes an
incremental, get-something-started approach to build the product, using continuous testing
and revision. Kent Beck also says that when writing code, you should write tests first so
you know which requirements it will have to pass in order to be labeled as successful.

In year 2000 Martin Fowler described continuous integration as a software development
practice where members of a team integrate their work frequently, usually once a day
per person, resulting in multiple integrations per day. Each integration is verified by an
automated build (including testing) to detect integration errors as quickly as possible [6].

2.1 What is Continuous Integration
The most accurate definition of continuous integration was coined by Martin Fowler in [6].
He implies that there is a greater need to integrate software parts and ensure that software
components work together early and often. Many teams wait with integration until the end
of the whole project, but that can lead into a great number of software quality problems
which are costly and usually dramatically delay the project.

As is explained in article [12], continuous integration organizes development into func-
tional user stories. We can imagine them as smaller chunks of work similar to sprints. The
author of this article also argues that test-driven development is a part of architecture-
based approach, which extends basic agile practices enough to provide both high quality
and project flexibility.

Continuous integration also focuses on getting test results as soon as possible. Normally,
there is a group of developers and another group of quality engineers who are responsible
for software correctness and quality. In smaller projects, when quality engineers detect a
new version of software, they run tests for it and create more tests. This time between code
change and error detection by QE is acceptable in smaller projects, but this approach does
not scale into more complex scenarios. Developers need to have results as soon as possible

4

so they can fix the detected issue in time. Continuous integration can be used to reduce the
time between defect detection and its correction, thus improving overall software quality.

Every time ”continuous“ integration word is used it can be understood as something
which starts once and never stops. This brings up a though that the process is constantly
integrating, which is not a CI environment behavior. Continuous integration shall be de-
scribed rather as ”continual integration“ [14].

Almost every continuous system contains the steps below [14]:

∙ After a change in code, a developer first pushes the code to the source control server.
In between, the CI server on the integration build machine is polling project’s source
code repository changes from the source control server.

∙ When a commit arrives to the source control server, it is detected by the CI server.
Afterwards, the latest version of the project’s repository is polled and then the CI
server executes a build script which integrates the software.

∙ The CI system is generating feedback by sending the results to eligible recipients.

∙ The continuous integration system continues to poll for changes in the source control
repository.

These steps can be seen in Figure 2.1.

Figure 2.1: A CI system and it’s components [14].

2.2 What is the value of Continuous Integration?
The main benefits of continuous integration are an acceleration of development, faster
delivery of new versions, and a reduction of errors. All these are done due to the automation
of as many development parts as possible.

5

It is proven [11] that when people have to be repetitive and perform the same task every
day, they leads to make more and more mistakes. Moreover, their motivation drops as well.
These problems can be mainly solved by introducing the continuous integration system.

Continuous integration prevents the creation of human errors during testing. As we
know, the programmers make mistakes and every tool or procedure which prevents them
from doing so improves software quality.

At the high level, the value of CI is to [14]:

∙ Reduce risks. Project risks can be reduced by integrating many times a day. As long
as there are metrics in place to measure the health of the application, code defects
can be detected sooner and fixed quicker. With this early detection, we are also able
to fix problems faster, because the developer who made this change still knows what
he did and probably how to fix it as soon as possible. The risks that can be reduced
are late defect discovery, low-quality software and the lack of project visibility.

∙ Reduce repetitive processes. By reducing repetitive processes we can save time,
costs and effort. These repetitive processes occur across all project activities such as
building, testing, feedback, and many more. Reducing repetitive manual processes
assures that [18]:

– An ordered process is followed.
– The process runs the same way every time.
– The process will run every time a code is committed to the source control.
– There is the capability to overcome resistance to implement improvements by

using automated mechanisms.

∙ Generate deployable software. For clients and users, this is one of the biggest
assets of the continuous integration approach. In the previous sections, we mainly
speak about improving software quality and reducing risks, but the biggest value is
to have deployable software. By using CI, team members are informed in case of
any problem and are motivated to fix it as soon as possible. After the fix, we have
deployable software again. In case of waiting with integration until the end of the
project, it could occur that the software would be unable to integrate and the whole
project would be delayed. By fixing bugs in a hurry, new defects could be created
and the credibility of the project would go down.

∙ Enable better project visibility. Making effective decisions and implementing
new improvements without real or recent data to support them is fairly difficult.
Continuous integration systems can provide just-in-time information about the recent
build status and quality metrics. The system is able to notice trends in success or
failure build, because of frequent integration. A CI system is therefore efficient at
providing regular data about software quality, which can be used to support decisions
and project management.

∙ Establish greater product confidence. Continuous integration provides clear
information, which component build is tested or not. With a CI system, we know
that the result is a functionally testable product. One of the advantages of CI system
is having fast feedback. That brings a big confidence to developers and other team
members in pushing parts of code because in case of any problem they will have the
feedback as soon as possible.

6

2.3 Why Teams avoid Using Continuous Integration?
As was described in Section 2.2, continuous integration systems have many benefits, yet
many teams still avoid them. What is the reason? It is often a combination of concerns
such as [14]:

∙ Increased overhead in maintaining the CI system. Many teams are discouraged
by believing that the continuous integration system maintenance will be too difficult.
When teams want to avoid using CI, they need to manage manual processes instead.
Therefore they have two options only. Manage the CI system or be controlled by the
manual processes. Working on a continuous integration system maintenance is worth
trying because of the benefits which it brings. CI is the most suitable solution for
multiplatform projects, yet some teams often resist to use it.

∙ Too many changes. A continuous integration system may feel big and robust,
which can make teams think that too much implementation would need to be done
for them to switch their project to CI. At the beginning when nobody is used to the
new system yet, it is better to start slowly adding tests and test builds on daily basis.
Once everyone becomes accustomed to the new practice, the build frequency can be
raised.

∙ Too many failed builds. This mainly occurs when a developer does not run local
tests and builds before committing the code to source control repository. The problem
can be caused by anything, but if the project is using a CI system, the developer will
be notified about the broken build as soon as possible.

∙ Additional hardware/software costs. A continuous integration system usually
requires an extra machine on which it will be launched. It is a nominal expense,
but when it is compared to the cost of searching a problem later in the development
lifecycle, the acquisition is well worth it.

∙ Developers should be performing these activities anyway. Some developer
activities are similar to the ones which are performed under a continuous integration
system. Therefore many managers thus mistakenly assume that there is no need
for CI since it should be done by developers. That is not true. Developers tries to
perform these activities more effectively. On the other hand, CI system ensures that
these activities are performed in a clean environment, after a commit and with fast
feedback.

2.4 Existing Continuous Integration Solutions
Nowadays there are many continuous integration tools on the market, some of them are
widely used. Every project which chooses to use a CI system faces the task of selecting the
right continuous integration tool. That is even more true for first timers. The simplest way
to create a CI system is to use a script, but this approach is not very recommended and
can only be used in special cases.

In the sections below, four continuous integration tools are described. Figure 2.2 shows
interest in each of the chosen CI tools. As can be seen, the most searched tool is Jenkins.
Reasons for that are described below. Simultaneously, a discussion about their pros, cons
or their features is presented

7

0

20

40

60

80

100

120

Interest over time

Travis CI

Jenkins

Go CD

TeamCity

Time

N
um

be
r

of
 s

ea
rc

he
s

Figure 2.2: Interest in the chosen CI systems on the web [14].

2.4.1 Jenkins

Jenkins is the leading open source continuous integration tool. Jenkins is written in the Java
language and it originated as a part of Hudson when Oracle bought Sun Microsystems. It
is a server-based system running in a servlet container, such as Apache Tomcat. It supports
SCM tools including AccuRev, CVS, Subversion, Git, Mercurial, and many more. It can
also execute Apache Ant and Apache Maven based projects. Jenkins is published under the
MIT license, so it is free to use and distribute. Its main features are [9]:

∙ Easy installation. A simple execution of java -jar jenkins.war is sufficient. No
additional install action, no database needed. It is possible to use an installer or a
native package as well.

∙ Easy configuration. Mainly by friendly web GUI.

∙ Rich plugin ecosystem. Jenkins integrates virtually every build tool or SCM which
exists.

∙ Extensibility. It is easy to create new Jenkins plugins, because most Jenkins parts
can be extended or modified. This provides rich possibilities to customize Jenkins
exactly to fit every team needs.

8

∙ Distributed builds. No problem with building on various operating systems.

One of Jenkins’ known disadvantages is its web GUI because its transparency for beginner
users. Despite this perceived flaw, Jenkins creators present it as one of its features. The
web GUI quality was discussed with at least 10 developers and 5 quality engineers at Red
Hat and their feedback was collected by a questionnaire. The results can be seen in Figure
2.3. The Figure shows that a majority of respondents replied that it is not friendly, which
supports information founded on Jenkins forums. Part of the respondents were members
of a CI team who works with Jenkins on daily basis and they replied that it is friendly.
Thus, Jenkins web GUI is not good for people who work with Jenkins occasionally.

Jenkins is the main continuous integration solution used in Red Hat and therefore the
thesis concentrate on it.

Jenkins web GUI

Good Bad

Figure 2.3: How friendly the Jenkins web GUI is.

The most remarkable feature of Jenkins is the number of plugins it offers. There are
more than 1000 of them. This advantage really extends Jenkins’ capabilities and provides
extra plugin integrations for teams which are using Jenkins [17].

2.4.2 Travis CI

Travis is an open source service free for all open source projects hosted on Github1. It is
configured using .travis.yml, which contain testing plan [2]. Github have big integration
with Travis CI which provides automatic notification after a commit or a pull request

1https://github.com/

9

https://github.com/

status. Compared to Jenkins, the Travis CI web GUI is very friendly, clean and easy to
navigate.

The Travis CI ’s main features are:

∙ Configuration file with code.

∙ Running tests in parallel.

∙ Support for Linux and Mac.

∙ Great API and command line tool.

∙ Clean virtual machine for every build.

Travis CI supports a wide range of programming languages. Thanks to Travis doc-
umentation2, it is very easy to setup a CI system for a chosen programming language.
Running more than one job concurrently can be done after acquiring monthly subscription
plans.

According to Ben Dougherty’s article [5], the biggest Travis CI disadvantage is the low
variety of reporting given standard test output formats like JUnit.

2.4.3 Go CD

Go was created and then open sourced by the ThoughtWorks company. Excluding the com-
mercial support that ThoughtWorks offers, Go is free of charge. As the previous continuous
integration tools, Go CD is also supported on multiple platforms. Go CD is under the
Apache license, so it is free with a paid support.

The Go CD main features are:

∙ Promote trusted artifacts. Go CD makes it easy to pass once-built binaries be-
tween stages. This leads to know exactly what’s being deployed.

∙ Deploy any version, any time. It allows to deploy any known good version of
application to wherever you like.

∙ Eliminate bottlenecks. By providing trivial parallel execution across pipelines,
platform, versions, etc.

∙ Plugins. A big number of plugins already available. One can also write his own need
be.

∙ Keep configuration tidy. The possibility to reuse pipeline configurations via Go
CD’s template system.

CI pipeline is a deployment process break up into stages. Usually contain steps which
provides binaries, testing, manual checks and deployment. The benefit of CI pipeline is
that they can be done in parallel and provide increasing confidence [7].

The major change compared to Jenkins is the pipeline concept. Jenkins and Go CD
pipelines are difficult to compare, because their differing concepts. On the other hand,
Jenkins pipelines are somewhat simplistic [1]. Go CD’s pipelines are designed from scratch
to eliminate build process bottlenecks with the parallel execution of tasks.

2https://docs.travis-ci.com/user/getting-started/

10

https://docs.travis-ci.com/user/getting-started/

2.4.4 TeamCity

TeamCity is an adult continuous integration server, developed in the labs of the JetBrains
company. The JetBrains company offers an extended family of integrated development
environments for various programming languages such as Java, Python, PHP, C++ and
many more. TeamCity is Java-based like Jenkins. The TeamCity server is the primary
component, but the main way to administer its users, agents, or projects is via a browser-
hosted interface.

The main TeamCity features are:

∙ Start saving your time from day one. TeamCity has essentials you need to get
started in a matter of minutes on various platforms.

∙ Extend as you go. A large number of plugins to use with the possibility to create
new ones.

∙ All-around customer support. Extensive customer support base with various
channels, forums and comprehensive online documentation.

∙ Rely on scalable architecture. Start free with a small base. In case of power need,
simply expand server capacities.

∙ Integrate and deploy continuously. The continuous integration server has encom-
passed all the features from a mature continuous deployment platform. Nowadays, it
is a solution for both.

In comparison to the Jenkins web GUI, TeamCity is very clear and friendly. It provides
important information for team members and for stakeholders. It displays build progress,
drill down details, and history information on the projects and configurations. Another
advantage is the TeamCity tray application, which notifies on events such as the statuses
of recent builds. Notifications are stored in trays instead of emails [13].

TeamCity looks like a perfect CI solution, but it has some cons as well. If a team needs
only to checkout, build a project, and afterwards see the status of a build, TeamCity is
too complex, and they will have to pay for it. Moreover, if the team has 50+ members,
they will not be able to acquire it — it will be too expensive. Many existing continuous
integration tools are open-sourced; not TeamCity. If JetBrains (the company that makes
TeamCity) decides to stop a team support, the team is on its own. No big forums and no
tweakers [10].

2.5 Jenkins Build Job Setup
Continuous integration using Jenkins is managed by its jobs. This section introduces general
information and configuration of these jobs with the provided example.

For every continuous integration server, build jobs are the construction cells. A build
job’s responsibility is to compile, test, deploy, or do anything else which is needed. The
variety of build job forms is very wide.

Build jobs for software projects are usually sorted into logical sequences. For example,
the first build job will run unit testing. If it passes, the next job is run. The next build
job can execute long running integration tests, run collection of code quality metrics, or
generate technical documentation. Once all the build jobs in a sequence pass, it is possible
to bundle the project and deploy it to a test server.

11

Creating a new build job in Jenkins is very simple. One just selects ”New Item“ in the
menu. Jenkins supports several build jobs which appear after selecting New Item. They
are:

∙ Freestyle software project. A general build job, provides huge flexibility.

∙ Maven project. A build job specially adapted to Maven projects.

∙ Monitor an external job. A build job which monitors a non-interactive process.

∙ Multiconfiguration job. A build job able to run in different configurations.

The most usable and flexible build job is the Freestyle software project, which can fit to
almost every project [16].

Every Freestyle software project build job has several options [16]. These options allow
to set up every build job to match almost all needs of a project. The main important
options are:

∙ Parameters3. This option which provides the ability to specify build job parameters.
You can choose between many types, such as bool for boolean parameter, choice
type, which is a single selection parameter, validating-string to validate given string
parameter, and many more. Some parameter types need additional Jenkins plugins,
therefore it is needed to check whether the Jenkins server supports them.

∙ SCM4. Allows s to specify the source code locations of various projects. It is also
possible to pass an empty value to the scm value. This enables other jobs to override
this value. SCM specifies repositories for git, mercurial, Visualworks Smalltalk Store
repository, and many more. Same as the Parameters option, some of the SCM options
need additional plugins to be installed.

∙ Triggers5. After configuring the above two options, it is important to set up the
Triggers option to tell Jenkins when to kick off a build. There are three main ways
how to start a build job. It can be by starting a build job after another finished job,
launch a build job in periodical intervals, or poll SCM for changes [16].
For all scheduling tasks, Jenkins uses a cron-style syntax, consisting of five fields
separated by white space (MINUTE HOUR DOM MONTH DOW).

∙ Builders6. Builders option is the basic building block which lets Jenkins know how
to build a project. In a Freestyle build, it is possible to have many build steps or none
if its need to. You can execute an Ant, Maven and CMake targets, but there is a
shell option for more specific builds. Some well known build tools can be integrated,
or additional plugins can be installed [16].

∙ Publishers7. The last option in Freestyle build job is Publishers. This option close
ups build job behaviour and its purpose is to report build results, archive some of
generated artefacts or to notify people about the build results.

3http://docs.openstack.org/infra/jenkins-job-builder/parameters.html
4http://docs.openstack.org/infra/jenkins-job-builder/scm.html
5http://docs.openstack.org/infra/jenkins-job-builder/triggers.html
6http://docs.openstack.org/infra/jenkins-job-builder/builders.html
7http://docs.openstack.org/infra/jenkins-job-builder/publishers.html

12

http://docs.openstack.org/infra/jenkins-job-builder/parameters.html
http://docs.openstack.org/infra/jenkins-job-builder/scm.html
http://docs.openstack.org/infra/jenkins-job-builder/triggers.html
http://docs.openstack.org/infra/jenkins-job-builder/builders.html
http://docs.openstack.org/infra/jenkins-job-builder/publishers.html

Reporting test results should not be about failed tests only, but also about how many
of them were executed, how long they have run and so on.
Jenkins provides a support for email notifications and the only thing to be done to
use it is to manually select receivers email addresses.

A Jenkins job configuration can be created through GUI or via the YAML files. The
Freestyle software project job in the YAML format can be seen in Example 2.1. This example
shows an eDeploy unit tests configuration. It contains options explained before. This job
first clones edeploy repository hosted on github, provided by SCM option. The triggers
options provides information that Jenkins will execute this job hourly. The job behaviour
is controlled by shell commands in builders option. The final option is publishers, which
collates junit test results, pylint static analysis violations or sends a notification email to
relevant recipients. Thanks to the YAML format, Jenkins jobs can be easily created and
shared between other CI teams.

1 - job:
2 name: eDeploy -UnitTests -YAML
3 description : ’Do not edit this job through the web!’
4 project -type: freestyle
5 block - downstream : false
6 scm:
7 - git:
8 skip -tag: false
9 url: git@github .com: enovance / edeploy .git

10 triggers :
11 - pollscm : ’@hourly ’
12 builders :
13 - shell: |
14 git clean -dxf
15 sloccount --duplicates --wide --details . > sloccount .sc
16 find . -name test *. py|xargs nosetests --with -xunit || :
17 rm -f pylint .log
18 for f in ‘find . -name *. py|egrep -v ’^./ tests /’‘; do
19 pylint --output - format = parseable $f >> pylint .log
20 done || :
21 python /usr/local/ python2 .7/ dist - packages / clonedigger .py:
22 publishers :
23 - warnings :
24 workspace -file - scanners :
25 - file - pattern : pyflakes .log
26 scanner : PyFlakes
27 - junit:
28 results : nosetests .xml
29 - sloccount :
30 pattern : sloccount .sc
31 - violations :
32 cpd:
33 pattern : output .xml
34 pylint :
35 pattern : pylint .log
36 - email:
37 recipients : devops@mycompany .com

Listing 2.1: eDeploy Unit tests configuration in the YAML format.

13

Chapter 3

Continuous Integration
Implementations at Red Hat
Company

This chapter will explain how three chosen teams at Red Hat are using Jenkins for their
continuous integration. The workflows will be first presented through the CI pipeline designs
the teams are using, followed by a deep analysis of each job. The identifications and
descriptions of these processes are an important part of this thesis. The teams’ names are
kept confidential as per Red Hat request, but it does not affect the content of this work.
New metadata format is proposed at the end of this Chapter.

3.1 Team 1
The continuous integration design for this team is in Figure 3.1. As can be seen, it is
divided into three main behaviour parts: test on build, covscan, and RPMDiff. These parts
are described in detail in the subsections below. That leaves us with just one job to describe
here.

The Component setup job is used as a simple component registration. A new component
adding to CI, must be done by manual configuration of the Component setup job which
expects the component and package collection name. After that it is needed to choose
which behaviours (Test on build, Covscan or RPMDiff) should be activated for this com-
ponent: whether it will be the Test on build part only or covscan or some combination of
all the three behaviours. After this job is built, the Listeners and Dispatchers jobs for the
chosen behaviours are uploaded to Jenkins server. When this is all done, the component is
successfully registered and can be tested by the continuous integration framework designed
by Team 1.

3.1.1 Test on build CI

Test on build behaviour is the most common part of the whole continuous integration. The
purpose of this part is to provision a new machine with a clean operating system, setup a
machine environment, run tests, send the results of the tests, and tear down the provisioned
machine.

This behaviour part contains five Jenkins jobs:

14

Figure 3.1: Team 1 continuous integration design using the Jenkins tool.

∙ Listener. This job gets automatically triggered whenever a component is successfully
built in a building system. Its only job is to extract the build task ID from the CI
message. The Listener ’s action is to trigger a component dispatcher job for the given
build task.

∙ Dispatcher. The Dispatcher ’s job is automatically triggered by the Listener job,
or it can be run manually through the Jenkins web GUI; build task IDs, however,
need to be inserted manually. The basic purpose of this job is to create or update the
Provision, Runtest and Teardown jobs on the Jenkins server for a given build target
and task ID. After that, the Dispatcher job will trigger the Provision job. The newest
job configuration is polled from team 1’s CI repository, where it is stored in the YAML
format. Therefore, by using Jenkins Job Builder, it is easy to update them.

15

∙ Provision. Provison is the first job in the Provision, Runtest and Teardown pipeline.
Its main purpose is to provision a new machine for a given build target. After that,
this job downloads the metadata for the Runtest job, such as the test case, notification
metadata, machine information, etc. The Provision job is triggered by the Dispatcher
job and it should not be manually triggered. It should always be automatically
triggered by the Dispatcher job. If the Provision job succeeds, it triggers the Runtest
job. If it fails, it triggers the Teardown job.

∙ Runtest. The main purpose of this job is to run tests on the provisioned machine
and send results to relevant recipients. However, at the beginning, this job sets up the
machine environment. That includes installation of a given component, setting up
repositories and setting up the testing tool. After a successful machine environment
setup, tests are executed. When this step is done, test results are sent to relevant
notifiers, who had been gathered in the Provision job. At the end, Runtest job will
trigger the Teardown job.

∙ Teardown. The last remaining step is to clean all provisioned resources. This is
done by the Teardown job. After that, the entire Test on build pipeline is done.

3.1.2 Covscan CI

Team 1 CI solution contains a Covscan feature for the component. The Covscan stands for
coverity scan static analysis, whose the purpose is to run static analysis over every line of
the code. Covscan CI jobs are:

∙ Devtools Listener. This listener job is common with the RPMDiff CI part. The
behavior is similar to the Listener job in Test on build part. It is automatically
triggered after a successful build in the building system, but since this listener is
common for more than one job, it includes a decision mechanism which chooses which
dispatcher should be triggered.

∙ Covscan Dispatcher. It expects a build task ID as an input and is automatically
triggered by the Devtools Listener. Covscan dispatcher ’s purpose is, again, similar
to Test on builds Dispatcher job, which is only the Covscan job actualization. After
that, the Covscan plugin is triggered.

∙ Covscan. The Covscan job is the closest to the Runtest job in the Test on build
part. The only exception is that is does not set up any machine environment, because
it does not have any. It only runs the configured covscan tool, which performs the
coverity scan. When the coverity scan is complete, Covscan results are sent to the
relevant notifiers.

3.1.3 RPMDiff CI

The purpose of this feature is to search for differences between two RPM packages. The
design of this feature is very similar to the Covscan CI, but it uses different jobs such as:

∙ Devtools Listener. This listener job is common with the Covscan CI part and has
been described above.

16

∙ RPMDiff Dispatcher. It is really similar to other described dispatchers (Test on
build or Covscan), with the difference that it actualizes and triggers the RPMDiff
plugin only. It can be run manually or automatically.

∙ RPMDiff. This job runs the RPMDiff tool only, which does the comparison. After
its behavior is complete, it reports the results. At the end, RPMDiff results are
inserted into a notification template and sent to relevant notifiers.

3.2 Team 2
The continuous integration solution of Team 2 was based on Team 1’s solution as can be
seen in Figure 3.2. The Covscan CI and the RPMDiff are not supported for this team.
Test on build CI remains, with the little change.

The main difference is that Dispatcher job triggers a Tier1 job instead of the Provision
job. This represents a future preparation for higher tier jobs. It means that the Tier1 job
is similar to the Dispatcher job in Test on build CI of Team 1. Another difference is that
the Tier1 job triggers multiple Provision jobs for a single component, which is a specific
behavior for Team 2.

The remaining jobs are not described, because their functionality is the same as in team
1’s CI.

Figure 3.2: Team 2 continuous integration design using the Jenkins tool.

17

3.3 Team 3
Team number 3 is fully integrated into the Platform CI team, and their solution is called
MVP1. Even though this solution is merged into shared Platform CI team solution it is
used by Team 3 only. The design of MVP is quite different and can be seen in Figure 3.3.
It contains two jobs:

∙ Trigger. This job behaves similarly to the Listener job used in Team 1 Example 3.1.
It is automatically triggered by a CI message from a successful component build in
the building system. As a benefit, the Trigger job can also be triggered manually.
When the Trigger receives the CI message, it extracts the build task ID. After this
extraction, the build task is validated. If the validation is successful, it triggers
a Component-MVP job.

∙ Component-MVP. This is the main job of the whole CI functionality. The Compo-
nent in Component-MVP job’s name is replaced by the name of the actual component,
for example httpd, curl, cups, kernel, etc. It is triggered by the Trigger job. The be-
havior of this job is fairly simple. It only runs a configured beaker command, nothing
else. Subsequently, Beaker creates an appropriate machine, sets it up and runs tests
on it. In other words, everything is handled by Beaker tooling. At the end, the
Trigger job gathers the test results and sends them to the xUnit reporter or Jenkins
Dashboard.

Figure 3.3: Team 3 continuous integration design using the Jenkins tool.

In this solution, there is no Component setup job for component registration. The
registration is done by jenkins-jobs.sh script. As a component configuration the sample_
job.yaml file is used. Created configuration file can be tested by the jenkins-jobs.sh
test. If the test does not find any problems, then component registration is fulfilled by
jenkins-jobs.sh update command execution, which will upload component configuration
to the Jenkins server.

1https://github.com/RHQE/platform-ci/tree/master/MVP

18

https://github.com/RHQE/platform-ci/tree/master/MVP

3.4 Platform CI
The last solution described is the open source Platform CI 2 project. This project was
created with a desire to create a unified solution for all Platform teams in Red Hat. By
the time it reached one year of its existence, the MVP and Staging branch CI had been
developed. As we know from previous sections, the MVP is too specific, so only one team
can use it. That is why this section is focused on the Staging branch CI.

Purpose of staging branch is to test future git branches from which new versions of Red
Hat Enterprise Linux will be build. Design of staging branch can be seen in Figure 3.4. It
consists of these jobs:

∙ Component setup. A similar registration job for components as is in Team 1 and
2’s solutions.

∙ Commit dispatcher. The Dispatcher job which is automatically triggered by a CI
message. After that, it updates the component’s Build branch job.

∙ Build branch. This job is triggered by the Commit dispatcher job. Its purpose is
to tell the building system to create a scratch build of this branch. If the build is
finished successfully, the other CI teams can react to a CI message which is created
after the building process.

Figure 3.4: Platform Staging branch CI design using Jenkins tool.

Staging branch test is done by trying to create a component build from the selected
branch. If the component build is successful, a CI message is posted on messagebus, which
is listened to by other CI solutions. Therefore the CI message created by the component
build will start Team 1, Team 2 and Team 3 CI behaviour.

3.5 Continuous Integration Implementation Summary
Staging branch test is done by trying to create a component build from the selected branch.
If the component build is successful, a CI message is posted on messagebus, which is listened
to by other CI solutions. Therefore the CI message created by the component build will
start Team 1, Team 2 and Team 3 CI behaviour.

2https://github.com/RHQE/platform-ci/

19

https://github.com/RHQE/platform-ci/

Chapter 4

Test Metadata Analysis

The Platform team is taking care of Red Hat Enterprise Linux development and testing.
This team contains of several smaller teams, three of whom took part in the previous Chap-
ter. The unification on continuous integration jobs would be difficult because of specific
behaviours described in Chapter 4. On the other hand, teams could be unified on the
level of metadata they are using. The problem is that every team is using multiple storage
systems for metadata. This Chapter brings an analysis of the storage systems used in Red
Hat’s teams. It also suggests possibilities of new storage systems and metadata formats.
For better understanding, the metadata types are described in this Chapter.

4.1 Metadata overview
In this text, the term metadata is used several times. However, it has various meanings
that are described below:

∙ Test job metadata. It consists of all metadata needed for CI job execution. For
example job name, build number or job url.

∙ Test provision metadata. To run a test, we need to provision correct testing
environment, install and setup software under the test, and install and setup the
testing framework. All these steps could be done in multiple ways and need specific
metadata describing how to do it for the given test. Examples include the number of
resources, resource type or resource credentials.

∙ Test run metadata. When the testing environment is provisioned, it is needed to
know how the test shall be executed. Will it be test harness, test framework, test
dependencies or test configurations.

∙ Test result metadata. The point of running a test is to get its results and the
resulting test artefacts. For instance, pass or fail information together with structured
or unstructured logs. It is simply aggregated data of all run jobs with information
where and how the results should be achieved.

∙ Test report metadata. Where to publish the results and what type of results need
to be published. For example quality engineer owner, developer owner or results url.

20

4.2 Existing External Solutions
The first step was to find an ideal storage system that would tend to the needs of all teams.
According to article [15], the best solution should be a type of Test Data Management.
Other storage choices are text files, spreadsheets, Relational database management system,
XML or Application configuration files, according to the mentioned article.Xqual1 website
provides plenty of information comparing existing Test Data Management tools and each
one’s pros and cons. The Xqual page compares existing Test data management systems,
discussing whether they provide properties such as Integrated bug-tracking system, Manual
testing, Automated testing drivers, Unit testing, and many more. The best free Test data
management system, according to the article, is XStudio from XQual company. Still,
this solution provides only management properties without any automated test execution
support. A tool that combines management and automated test support is Expecco from
Exept Software AG, but it is commercial. The analysis shows that there is no existing
solution which would solve all Red Hat teams’s problems.

4.3 Analysis of used metadata storage systems
The second part of this master thesis is focused on the usage of metadata storage systems in
the described Red Hat teams. Tables 4.2 and 4.1 map metadata types to storage systems.
Lists of metadata types are shown in the left column in both tables. Storage systems are
shown in the first row in both tables.

git type4 Jenkins pytest jjb yaml git type5 github git type6 PDC Beaker

Execution record

Team1

Team2 1 1

Team3

Test ownership

Team1

Team2 1 1

Team3

Dependency (Test)

Team1

Team2

Team3 1 1

PEPA Rules
Team1 2

Team2

Deployment source
Team1 1

Team2

Environment Requirements

Team1 1

Team2

Table 4.1: Metadata x Storage for each team.
1http://www.xqual.com/qa/tools.html

21

http://www.xqual.com/qa/tools.html

Table 4.2 shows that TCMS is the most used tool for storing metadata. The least
used storage systems are wiki, git type3, github, Jenkins, pytest, jjb yaml, PDC and Beaker
according to Tables 4.2 and 4.1. Interesting fact is that the tables contain seven different
types of git (git type 1 up to type 6 plus github) storage. If all gits were unified, then git
storage would be the most used storage system.

TCMS git type1 UNKNOWN Polarion Makefile git type2 wiki git type 3

Execution record

Team1 1

Team2 1

Team3 1 1

Timeout (Test)
Team1 2 2

Team2 2

Test ownership

Team1 1 1

Team2

Team3 1 1

Dependency (Test)

Team1 1

Team2 1 1

Team3

Component relation

Team1 1

Team2 1

Team3 1

Relevancy
Team1 2

Team2 2

PEPA Rules
Team1 2

Team2 2

HW Requirements

Team1 1

Team2 1

Team3 1

Execution order (Test)

Team1 1

Team2 1

Team3 2

Test existence record
Team1 1

Team2 1

CI Tier

Team1 1

Team2 1

Team3 1

Static parameters (Test)
Team1 1

Team2 1

EWA rules
Team1

Team2 2

Test status Team1 1

Deployment source
Team1

Team2 1

Environment Requirements
Team1

Team2 1

Destructivity
Team1 1

Team2 1

Team1 Internal Tier
Team1 1

Team2 1

Table 4.2: Metadata x Storage for each team.

22

4.4 Unified Test Metadata Format
According to previous sections, we know that git system is the most used metadata storing
solution. Every continuous integration team stores their test metadata differently. There-
fore a new CI test metadata format needed to be created. The main requirement was to
have a metadata format which would be easy to create, process and easy to read. To achieve
this requirements, the yaml format was chosen. Yaml is a human-readable data serializa-
tion language which is commonly used for configuration files. This is a good presumption,
but it needs to be provided with a human readable format. The proposed unified format
for storing CI test metadata can be seen in Listing 4.1.

1 Owner : Jiri Kulda jkulda@redhat .com
2 Version : 1.0
3 Type: Sanity
4 TestTime : 480m
5 Requires :
6 - openscap
7 - openscap -utils
8 - libxml2 -devel
9 - rpm -devel

10 - libgcrypt -devel
11 - pcre -devel
12 - python -devel
13 - libxslt -devel
14 - libacl -devel
15 - libcap -devel
16 - libnl -devel
17 Environment :
18 SRPM: http :// some/ server /with/ package .srpm
19 Description :
20 Simple test description
21 Relevancy : |
22 distro != rhel -5: False
23 distro < rhel -5.9 && arch != x86_64 : False
24 component == java -1.8.0 - openjdk : path/to/java/jdk
25 Dependencies :
26 - /path/to/ metadata
27 name: important data

Listing 4.1: Unified format for storing CI test metadata.

Above CI test metadata format contains these values:

∙ Owner. Name and email address of test owner. Can be used as a test report metadata.

∙ Version. Test version. Used for test result metadata.

∙ Type. Test type such as Sanity, Smoke, Black box tests, etc. Mainly used for test
result metadata.

∙ TestTime. Test running limit. If this limit is reached, the test should be terminated
with fail status and CI system should send relevant information to test owner and
component owner. Part of test run metadata.

∙ Requires. Contain list of packages which need to be installed before test execution.
Important part of test provision metadata.

23

∙ Environment. Needed test environment rpm packages. Important part of test provi-
sion metadata.

∙ Description. Few lines length test description. Can be used in test report metadata.

∙ Relevancy. Information whether this test is relevant for specific operating system
distribution. The test would not be executed if the provisioned distribution would
not satisfy Relevancy section. Very important for test run metadata.

∙ Dependencies. Contains list of other test metadata files which are needed for test
execution. Part of test run or test provision metadata.

4.5 Proposed Unification Tool
The proposed unified format for CI test metadata provides a possibility to unify all git
storage systems across all teams. However, according to test metadata analysis in Section
4.3, CI teams use a large palette of storage systems. Another problem is that every CI team
is using a different approach to retrieve their test metadata (because of different storage).
It is thus difficult to create a unified CI framework solution which would be suitable for
multiple QE teams.

To solve this problem, an automated tool needs to be created that would feed the needed
test metadata into Jenkins and/or other tools as appropriate. After this tool creation, it is
possible to design and implement new job plugins without the metadata storage dependency.
This tool is described in the next chapter in more detail.

24

Chapter 5

Metamorph

Metamorph is a tool which will be transforming the acquired metadata from storage systems
to a machine readable format. The name Metamorph was created from the word metamor-
phosis, which represents the transformation from an egg to a butterfly. Metamorph tooling
will provide such a transformation to get metadata from storage systems for the purpose of
new CI tool solution. Metamorph will be responsible for converting existing raw metadata
to a format that can be parsed by other CI tools. It can also be defined as a one time
metadata carrier in the CI pipeline.

This chapter will provide deep information about the Metamorph tool design. This
design will be presented using high and low level diagrams. Implementation of this tool will
be described in the second part of the chapter. The last section contain the Metamorph
testing information.

5.1 Metamorph Design

5.1.1 Problem Definition

Every team stores their test metadata in a different storage system (seen Analysis 4.3). The
problem is that every CI team is using different approaches to retrieve their test metadata
because of different storage systems or data formats. Therefore it is difficult to create a
unified continuous integration tool which can be suitable for multiple QE teams.

To solve this problem, we shall create a tool (Metamorph) which will extract metadata
from any existing metadata storage system as appropriate and then append the metadata to
a file which is then passed on to other parts of the pipeline for further actions based on the
metadata in it. With this in place, it is possible to design and implement new plugins with-
out a CI test dependency focused on the type of the storage system. The Metamorph’s core
responsibility is to append respective metadata to metamorph.json (default if not config-
ured) in a standard format throughout the pipeline where necessary. Continous integration
pipeline was described in Subsection 2.4.3.

5.1.2 Metamorph Requirements

This section contains most of Metamorph tool requirements. These requirements were
obtained through discussions with QE teams representatives for continuous integration.
General requirements of Metamorph are:

∙ Accept raw metadata in the YAML format.

25

∙ Query TCMS for metadata.

∙ Create and append metadata to metamorph.json.

∙ Be available as a Python library.

∙ Ansible modules for created plugins so that one can have desired tasks in his playbook.

∙ Inform if a component build should be tier tagged or not.

∙ Be able to support custom workflows e.g. ”for package XY, I want to run only tests
on s390x as my package exists only on s390x“.

Metamorph quality standard requirements are:

∙ to have Unit tests,

∙ to have CI setup,

∙ to have up-to-date documentation,

∙ to follow PEP8 Python standards.

5.1.3 Metamorph Requirements for Jenkins Jobs

This subsection describes the Metamorph requirements for common Jenkins jobs used in
continuous integration.

Listener Job

The purpose of this job is to subscribe to CI messagebus and launch a Jenkins job when
a matching CI message is received. The contents of the message is stored in an environment
variable named CI_MESSAGE. Listener job requirements are:

∙ The listener should provide a way to extract message contents from the environment
variable and dump it into metamorph.json.

∙ Offer a possibility to specify the output file as desired and default to metamorph.json
if not configured.

Dispatcher Job

The purpose of the dispatcher job is to decide which jobs will be executed based on the CI
message. Requirements for Dispatcher job are:

∙ Load metamorph.json using Ansible playbook.

∙ Extract and return individual message fields from metamorph.json for any further
user actions.

∙ Extract and return multiple message fields from metamorph.json for further user
actions.

∙ Fetch raw metadata from the above provided storage source and data type.

26

∙ Create a mapping file in the Metamorph for linch-pin1 provisioning tool.

∙ Retrieve the image name from Product Definition Center2 for the given component.

Provision Job

The purpose of this job is to provision a new machine for a given build target. The
requirement is to be able to provision resources using linch-pin with metamorph.json as
an input.

5.1.4 Metamorph Benefits

This subsection contains a list of benefits which Metamorph will bring. General benefits
are:

∙ Common tooling between teams in Red Hat CI to perform actions based on metadata.

∙ Increased collaboration between teams.

∙ Metadata footprints at any given point in the continuous integration pipeline.

∙ Common tooling for Red Hat distributions (if they have a common metadata schema).
Values for other Red Hat teams are:

∙ Quality engineering. Teams can benefit by reusing the Metamorph plugins instead
of developing and maintaining their own to get metadata. If they use Metamorph
in their infrastructure, it will be easy to restart a job in their continuous integration
pipeline in case of an infrastructure failure. In general, any other services can be
offered/deployed easily.

∙ Developers. Developers can use metadata provided by Metamorph and feed it into
their local continuous integration, thereby enabling them to run specific tests and not
worry about any of the provisioning or test run metadata.

∙ Team1. Metamorph can be the sole interface for Team1 tooling.

∙ Team2. All the metadata could be stored in Test Run templates, which may help in
triggering.

∙ Platform CI. Specific sections of metadata could be published in the message bus in
a consistent way for all on-board teams for any further actions.

5.1.5 Use Cases

Metamorph use cases are shown in Figure 5.1. The general use case is to run Metamorph
at the beginning of a continuous integration job. It will aggregate metadata from various
storage systems. Afterwards, it will append the metadata to existing metamorph.json or
it will create a new metamorph.json file. The new metamorph.json file will be shared
between jobs in the CI pipeline. Appending new metadata to existing ones is valuable
because afterwards these metadata will be shared as well. Sharing metadata is a major
benefit because multiple CI jobs can use the same metadata and so there is no need to
gather them again and waste valuable time.

1http://sexysexypenguins.com/posts/introducing-linch-pin/
2https://pdc.fedoraproject.org/

27

http://sexysexypenguins.com/posts/introducing-linch-pin/
https://pdc.fedoraproject.org/

Figure 5.1: Metamorph tooling usage.

Storage Systems Automatic Analysis Use Case

Metamorph expects a component name and type of storage (git, resultsDB, PDC, ...). With
this knowledge, the tool will automatically know how to gather all needed test metadata
from the given storage. Therefore, Metamorph would need to store as many as possible
storage systems internal metadata mappings. However, some teams are using the same
storage systems, so there would not be a big need to create a specific solution for each Red
Hat CI team.

Given Repository Analysis Use Case

Metamorph will expect a path to a test repository and type. It could be git, resultsDB,
PDC or anything else, and, from this repository, the test metadata file will be created. The
difference between the given repository analysis and the storage system automatic analysis is
that the storage system automatic analysis is gathering metadata related with a specific job
name. On the other hand, given repository analysis is searching for any possible metadata
in the provided repository. The algorithm will mainly search for configuration files and
parse data from them.

5.1.6 Metamorph Output Format

The Metamorph metadata output will be used by different CI jobs and therefore it needs
to be formatted in some data-interchange language. The JSON 3 format was chosen for the
Metamorph project because first of all it is really easy for machines to parse and generate.

3http://www.json.org/

28

http://www.json.org/

Other benefits are human readability and language independent format which is close to
the C programming family.

5.1.7 Implementation Design

The Metamorph tool should be easy to run and be system independent. Because of its
focus on particular storage systems, Metamorph would need to be developed in a form of
plugins where one plugin will match one storage system.

How Metamorph should interact with storage systems can be seen in Figure 5.2. The top
half of the figure describes Metamorph interaction with two storage systems. A continuous
integration job will execute (request arrow) the Metamorph tool to get metadata from PDC
and resultsDB storage systems. Metamorph then launches each metadata storage plugin
to handle the metadata extraction. The tooling plugin extracts metadata from storage
systems and appends the gathered metadata with an existing metamorph.json file in the
JSON format. This file is returned (the return JSON arrow) to the continuous integration
job. The bottom half of the figure is similar to the top half. The difference is that, in the
bottom half, a Metamorph plugin searches for report and results metadata, but the top half
can be used for provision, run or job metadata. In this part, results metadata are taken
more as simple data than metadata because it will mainly contain data about the result
itself and not the result test metadata. An advantage of this logic is that all plugins are

Figure 5.2: Metamorph tooling implementation usage.

29

independent of each other, so it is possible to run them in parallel and save valuable time.

5.1.8 Interactions With Storage And Metadata

This subsection describes how Metamorph will interact with different storage systems in
both use cases.

Storage System Automatic Analysis Use Case

Metamorph will expect name (typically build name), type of storage (git, resultsDB, PDC,
...) and data format (Makefie, YAML ...) or only name with extraction metadata type
(provision metadata, job run metadata, ...). With this knowledge the tool will automatically
know how to gather all needed test metadata. There are multiple ways how this information
can be passed to the Metamorph.

∙ Have this information sent through the message bus as part of the initial CI_MESSAGE.

∙ Have the component register with Metamorph. Configuration would need to be carried
in Metamorph repository. For e.g., in metamorph/mappings file.

∙ Have the job/task owner provide it as a command-line arguments in the form of name
(typically build name), storage (for e.g., TCMS, git, etc) and data format (for e.g.,
YAML, etc) and run modules provided by the respective team.

∙ Have only name provided. In case that no storage type is selected, Metamorph will
run all plugins as default. This approach would get big amount of metadata but it
would also take some time. Therefore it is not recommended.

∙ Same as above, but with only name and extraction metadata type (provision meta-
data, job run metadata, ...).

Given Repository Analysis Use Case

In this approach, Metamorph will expect a path to repository/storage and files which con-
tain important metadata. The tooling will need to have some internal file recognition to
recognize file types. Some ways how to pass all information to Metamorph can be seen
below.

∙ Have the job/task owner provide it as command-line arguments containing only path
to repository/storage. The tooling will recognize type of repository/storage and ac-
cording to internal mapping it will know which files contain metadata and how to
extract them. For git repository, it can be Makefile or a specific YAML file which will
contain them.

∙ Similar as above, but with a provided list of important files. Internal mapping would
need to be still needed, but not as big.

∙ Same as above with metadata extraction information provided.

5.1.9 Low Level Implementation Design

The low level implementation design of Metamorph which can be seen in Figure 5.3 is
divided into two main classes: Metamorph (green color) and MetamorphPlugin (blue color).

30

Figure 5.3: Low level implementation design.

MetamorphPlugin Class

The purpose of this class is to provide a unified interface for other plugins, which will
inherit from this class. Inherited classes will contain logic to extract metadata from specific
metadata storage types, e.g. PDC, resultsDB or Messagehub plugin. The MetamorphPlugin
class contain:

∙ plugins_output. It is a static class variable which contain data from selected plug-
ins. If some plugin finishes gathering metadata from specific storage, it appends data
into this variable. When all plugins finish their jobs, metamorph.json will be created
from this variable.

∙ get_plugin_data(). This method will be automatically executed for every selected
plugin. The main logic of every plugin will be implemented in this method. After
this method execution, the extracted metadata should be present in plugins_output
variable.

∙ supportive_methods(). This method is here to explain that MetamorphPlugin
will also contain methods which can be used by inherited plugins. The intention is
to use shared common methods across plugins and not to implement new ones again.
Simply, use what is already created. For example, it can be a method for querying
api interface, which would be useful for PDC and resultsDB plugins.

Metamorph Class

The Metamorph class will contain a decision logic based on input arguments. The main pur-
pose is to run selected plugins by given input and collate their data through plugins_output
variable. The Metamorph class contain:

∙ argument_mappings. This argument mapping will be mainly used for Metamorph
execution by provided metadata type (provision, job run, ...). Plugins will be executed
by these mappings. There are two ways how to do this mapping.

– Every storage plugin inherited from the MetamorphPlugin will contain a variable
which will indicate the type of metadata provided in it. This approach can be

31

executed without any internal mappings. Simply run all the tooling plugins and
if their type matches the needed metadata type, then execute plugin behavior.

– The second way is to have an internal mapping which can be seen in the Listing
5.1. The listing shows that to get provision metadata, plugins morph_dispatcher
and morph_pdc will be executed. The same logic will be used for remaining
metadata types. The disadvantage of this approach is that, after every plugin
creation, argument_mapping must be changed to support the new plugin.

∙ parse_arguments(). Specified input options in argparse format.

∙ store_plugins_result(). Method for storing plugins result. This method can cre-
ate and also append data to existing metamorph.json files.

1 {
2 "provision - metadata ": [" morph_dispatcher ", " morph_pdc "]
3 "run - metadata ": [" morph_tcms ", " morph_pdc "]
4 "report - metadata ": ...
5 ...
6 }

Listing 5.1: Metamorph argument mapping example.

5.1.10 Source Directory Structure and Output Metadata Format

The whole project design is focused on implementation in the Python language. With this
focus, a specific directory structure was created as one can see in Listing 5.2. The provided
example contains a structure with double metamorph directories. This design is needed for
the Metamorph installation. All files in the metamorph/metamorph/ and metamorph/bin/
folders are installed into site-packages/metamorph folder in running system. Afterwards,
Metamorph plugins can be imported or executed.

1 metamorph / README .md # Metamorph documentation
2 metamorph / metamorph /lib/ # common libraries
3 metamorph /bin/ metamorph # Metamorph executable file
4 metamorph / metamorph /etc/ # configuration files
5 metamorph /docs/ # documentation using sphinx
6 metamorph /tests/ # nosetests
7 metamorph / outputs / # default location for outputs
8 metamorph / ex_schemas / # Example schemas
9 metamorph / metamorph / library / # Ansible modules

10 metamorph / metamorph / plugins / # Metamorph plugins
11 metamorph / metamorph / plugins / morph_pdc .py
12 metamorph / metamorph / plugins / morph_tcms .py
13 metamorph / metamorph / plugins / morph_polarion .py
14 metamorph / metamorph / plugins / morph_yaml .py
15 metamorph / metamorph / plugins / morph_makefile .py
16 metamorph / metamorph / mappings / # mappings for component metadata
17 metamorph / metamorph / mappings / yaml_mappings .{ json|yaml}
18 metamorph / metamorph / mapping / tcms_mappings .{ json|yaml}
19 metamorph / metamorph .py # Contains Metamorph class
20 metamorph / metamorph_plugin .py # Contains MetamorphPlugin class
21 metamorph /setup.py # Python setup script

Listing 5.2: Metamorph source directory structure.

32

For the output, the JSON format was chosen in Section 5.1.6. An Example of a simple
metamorph.json can be seen in Listing 5.3 in the JSON format. The first field is named
metamorph. Every metadata file created by Metamorph tool will begin with this name. This
field contain data from existing plugins, for example resultsDB or PDC. The first plugin
value will always be results followed by extracted metadata.

1 {
2 " metamorph ":
3 {
4 "pdc":
5 {
6 " results ": {..}
7 },
8 " resultsdb ":
9 {

10 " results ": {..}
11 }
12 ...
13 }
14 }

Listing 5.3: metamorph.json output structure.

5.1.11 ResultsDB Plugin Design

All components that are successfully tested by CI system need to be tagged with specific
release-tierX tag. Tagging a build is easy if the use case is common, however, for complex
use cases there is no easy solution that would enable users to tag a component build. In
this purpose Metamorph can help to collate all the results and optionally return boolean
for the given NVR (name-version-release format) and test tier. Most of the required data
is sent to resultsDB as part of CI_metrics data collection.

ResultsDB Plugin Use Cases

ResultsDB plugin use cases of this plugin is to provide possibility to tag component builds
in complex use case. ResultsDB plugin use cases are:

∙ Common use case. Component is tested only in one continuous integration job. At
the end of this job, it is simple to check if all tests were successful or not.

∙ Complex use case. There exist multiple continuous integration jobs for one com-
ponent. At the end of one job, it is impossible to say whether the component build
should be tagged or not. It is difficult because at end of CI job, only one job test
results are present. The results data need to be stored in a database which can
be queried by Metamorph based on certain parameters provided by the component
metadata.

ResultsDB Plugin Overview

Teams that are using Jenkins as their CI system would have to install Jenkins Multijob
Plugin4 and then in their JJB configuration add all of their respective jobs to this tier

4https://wiki.jenkins-ci.org/display/JENKINS/Multijob+Plugin

33

multijob. For consistency, job name can be kept as release-tierX, where X is 0,1,2,3 or
provide list of respective tier jobs. The tier multijob can be configured to be triggered off
messagebus or any of its upstream job. Metamorph would be executed as a post-build step,
which would get all the job names added to release-tierX and query resultsDB. The data
returned from resultsDB will be then collated to metamorph.json file with tier tag field
containing boolean information.

The described process can be seen in Figure 5.4. A whole multijob pipeline starts
by a component build, which is represented as CI_message information from Component
builder. After component testing, test results are sent to resultsDB storage system. Meta-
morph as a build step is waiting until needed test results are present in the storage. Test
data from all jobs are collated in Metamorph tool and provided via metamorph.json. CI
system decides if to tag a component build upon provided results. If all tests are successful,
then component build is tagged with release-tierX tag.

Figure 5.4: ResultsDB plugin design.

ResultsDB Requirements

To make resultsDB plugin work, CI jobs must start sending the following data to resultsDB:

∙ job name,

∙ job build number,

∙ job build status,

∙ job build URL,

∙ component NVR that is being tested,

34

∙ test tier number.

Metamorph tool requirements are:

∙ Need a way to get all runtest job names for the given component and tier.

∙ Need a way to get all P-R-T (all-in-one) job names for the given component and tier.

∙ Query resultsDB for the Jenkins job build status for the given NVR and test tier.

∙ Collate the results to return boolean.

ResultsDB Output

An example of a JSON output from the resultsDB plugin can be seen in Listing 5.4. The
main pieces of information in this format are:

∙ ci_tier. The testing tier number.

∙ nvr. Tested component name in name-version-release format.

∙ tier_tag. Aggregated boolean value of queried job names. It indicates whether a
component build should be tagged or not.

∙ job_name. List of job names results for given component and test tier.

1 {
2 " resultsdb ": {
3 " results ": {
4 "tier": {
5 " ci_tier ": int ,
6 "nvr": string (256) ,
7 " job_name ": [
8 {
9 " jobname ": [

10 {
11 " build_url ": anyURI ,
12 " build_number ": int ,
13 " build_status ": string (64)
14 }
15]
16 }
17],
18 " tier_tag ": boolean
19 }
20 }
21 }
22 }

Listing 5.4: Resultsdb metadata output.

35

5.1.12 Provision Plugin Design

Every testing environment needs to be successfully provisioned by provision tooling. Some
teams have hard coded provision topology files that contain needed metadata for provision-
ing tool. Linch-pin is new provision tooling which enables to provision systems in different
environments such as LibVirt, Duffy, GCE, and more. This tooling can be very useful for
CI teams. Therefore a new topology file for linch-pin is needed. Metamorph can help with
this task by collating metadata from different storage systems and creating correct topology
files for linch-pin provisioner. Provision plugin is the most important plugin.

Provision Plugin Use Case

The main goal of this plugin is to automatically provide linch-pin topology file.
Metamorph will collate data from various storage systems to satisfy needed fields in

topology file. The topology file will be sent to linch-pin to provision the wanted system.
Metamorph provision plugin will also provide credentials file for successful provisioning.

Provision Plugin Overview

Teams would need to create configuration files per system in their git repositories. A unified
configuration format would need to be created which CI teams could easily follow. Meta-
morph tool would expect git repository and path to system configuration file in provided
repository. Provision plugin would then collate data from configuration file and from other
storage systems. Topology and credentials file will be the result of the collation process.
These two files are necessary for linch-pin provisioner.

Figure 5.5 shows above described behavior. The figure also describes testing environ-
ment creation. After successful system creation, accessing credentials are sent to following
plugin.

Figure 5.5: Provision plugin design.

36

Provision Plugin Requirements

For proper working, provision plugin needs these data from git repository:

∙ system configuration

∙ additional metadata which are not present in configurations

∙ path to credentials file

Metamorph tool requirements are:

∙ Need a way to clone given repository and create topology yaml according to configu-
ration file.

∙ Same as above but with added metadata file path and metadata location.

∙ Query other storage systems to get additional information.

∙ Collate the results to topology and credentials yaml.

Provision Plugin Output

Topology yaml generated by provision plugin is seen in Listing 5.5. The generated output
for linch-pin provisioner is divided into three sections.

First section contains general information such as topology name, site and resource
groups. Site field contains information of testing environment configuration file name.

Second section is slightly more important than the previous one. Contains information
about name of environment for testing which is stored in resource_group_name. Another
important field is assoc_creds which holds credentials for yaml file name.

The last part contains future system specifications. This is the most important part.
Almost all data are collected from system configuration file, but for example image must
be provided by an external storage system. The count value is gathered from additional
metadata file.

1 topology_name : " component_name_topo "
2 site: " site_name "
3 resource_groups :
4 -
5 resource_group_name : " resource_name "
6 res_group_type : " resource_type "
7 res_defs :
8 -
9 res_name : " component_name_inst "

10 flavor : "m1.small"
11 res_type : " os_server "
12 image: " image_name "
13 count: 1
14 keypair : " keypair name"
15 networks :
16 - " list_of_netforks "
17 assoc_creds : " credentials .yaml"

Listing 5.5: Provision metadata output.

Linch-pin provisioner needs topology.yaml and credentials.yaml which can be seen in
Listing 5.6. This is example credentials output for openstack system. Without this file,
linch-pin would not have sufficient rights to provision testing environment.

37

1 endpoint : http :// example .com :5000/ v2 .0/
2 project : example
3 username : example
4 password : example

Listing 5.6: Openstack credentials output.

5.1.13 PDC Plugin Design

All plugins need some kind of metadata. As a side note, many continuous integration
teams are collecting metadata on their own. Most of the needed metadata is stored in
Product Definition Center5. It is a web application with Rest API interface. This tooling
is automatically filled with data from existing processes, which enables to develop better
tooling without metadata dependency. Metamorph can be used as user friendly interface
to get needed metadata from the PDC tool.

PDC Plugin Use Case

PDC plugin’s goal is to provide wide metadata stored in Product Definition Center. To do
that, Metamorph comes with three use cases:

∙ Wide metadata use case. Product Definition Center API will be queried to get
as big as possible metadata output. This can be used by teams to explore what they
can use from PDC and how these data will be provided.

∙ Single data use case. Metamorph PDC plugin will be queried to get one specific
type Product Definition Center data. For example, it can be recipients information
or components releases.

∙ Metadata type use case. PDC plugin can be queried with metadata type such as
test job, test provision or test run metadata argument. User can use it by their needs
without any deep knowledge of Product Definition Center data types. This use case
can save a lot of time for plugins that need multiple Product Definition Center data
types, but not all of them.

PDC Plugin Overview

To support this plugin, every continuous integration job should adjust its behavior to
expect metamorph.json file with metadata information. Afterwards PDC plugin can be
used as the first or the last build step in their job behavior. Metamorph plugin will need
to create argument mapping to support all use cases. Simultaneously, Product Definition
Center data types would need to be divided into metadata type groups that could be easily
queried afterwards.

Figure 5.6 shows how PDC plugin can be used. The figure contains three different
continuous integration jobs. CI job stands for a general continuous integration job which
needs single specific metadata from PDC plugin. On the other hand, Provision and Runtest
jobs are executing Metamorph tooling to get type specific metadata such as provision or
test run metadata.

5https://pdc.fedoraproject.org/

38

https://pdc.fedoraproject.org/

Figure 5.6: PDC plugin design.

PDC Plugin Output

PDC plugin output is in JSON format. The output can be seen in Listing 5.7. The
example shows all metadata types provided by Product Definition Center. As provision
type, metadata can be considered rpms and rpm-mapping where rpm-mapping provides
information about type of system which needs to be tested (Workstation, Server, ...).
release-component-contacts can be used as report metadata. This type of metadata
is often managed by the CI team by themselves and they need to maintain this information
up to date.

1 "pdc": {
2 " results ": {
3 "release -component - contacts ": [...] ,
4 "release - components ": [...] ,
5 "release -component - relationships ": [...] ,
6 "global -component - contacts ": [...] ,
7 "rpms": [...] ,
8 "global - components ": [...] ,
9 "bugzilla - components ": [...] ,

10 "rpm - mapping ": {...}}}

Listing 5.7: PDC metadata output.

39

5.2 Implementation
This section contains implementation details about the Metamorph tool. The first sub-
section describes the Ansible automation tool. The Ansible tool is described here because
every plugin has also a duplicate version for Ansible. The next subsections deeply describe
the implementation of Metamorph plugins.

5.2.1 Ansible

Ansible is an unique automation tool which supports deployment and orchestration. This
tool is mainly used as a remote administrator through the SSH. Ansible is very easy to
run on various platforms because of its system requirements. It can run on Linux servers
with the python2.4 support only. It does not require any other expensive tooling to be
installed. The output of this tool is the JSON format, which is the same output format
used in the Metamorph tool. Ansible logic is divided into Ansible playbooks and Ansible
modules, where playbooks are written in the YAML format and modules are programming
language independent.

Ansible history is quite short. The tool was developed by Michael DeHaan, who is
the author of Cobbler6 provisioning server and a co-author of Func framework for remote
administration [4]. Before the Ansible, Linux admins had to run different tools such as
Puppet, Chef, Fabric or Capistrano to automate their configurations and software deploy-
ment. The big load of Linux admins tool was Michael DeHaan’s key motive to create a new
tooling which would support their needs. An interesting fact is that Michael DeHaan was
a Red Hat employee at the time he was working on Cobbler or Func, but he left to create
the Ansible tool. When Ansible started to be famous, Red Hat bought the Ansible and
Michael DeHaan became a Red Hat employee again.

Even though the starting point of the Ansible was to make sysadmins’ lives easier, the
Ansible can be used by developers, release engineers, IT managers, or just anyone who
wants to manage their environments. This tool can be used for small system setups or for
maintaining enterprise environments with hundreds of instances. All Ansible communica-
tions are using SSH. The SSH is one of the most used open source components. Therefore
security risks are at minimum.

”Ansible“ name comes from the Rocannon’s World book written by Ursula K. Le Guin
and it stands for a ”communication device which allows for a light speed transportation“.

Ansible Playbooks

Ansible playbooks can be easily described as configuration files. Playbooks are written
in the YAML format, which is trying not to be a programming language but more of
a configuration or a process. Configuration files were designed to be human readable and
intuitive. Playbook’s behavior is done by mapping a group of hosts to predefined roles.
Roles are represented as tasks in the Ansible playbooks. Tasks are simple Ansible modules’
executions.

A simple Ansible playbook can be seen in Listing 5.8 below. The purpose of this play-
book is to have a working Apache server on webserver system. This is done by execution
of three Ansible modules - yum, template and service - which installs, configures and starts
Apache server. At the end, Apache is restarted by handlers.

6http://cobbler.github.io/

40

http://cobbler.github.io/

1 ---
2 - hosts: webservers
3 vars:
4 http_port : 80
5 max_clients : 200
6 remote_user : root
7 tasks:
8 - name: ensure apache is at the latest version
9 yum:

10 name: httpd
11 state : latest
12 - name: write the apache config file
13 template :
14 src: /srv/httpd.j2
15 dest: /etc/httpd.conf
16 notify :
17 - restart apache
18 - name: ensure apache is running
19 service :
20 name: httpd
21 state : started
22 handlers :
23 - name: restart apache
24 service :
25 name: httpd
26 state : restarted

Listing 5.8: Ansible playbook example.

Ansible playbooks mainly contain these fields:

∙ hosts. Is a list of one or more groups of environment systems divided by columns.
SSH will connect to a system which is provided in the host field with given variables.
Variables examples can be seen in Listing 5.8 in vars section. Another important
field in hosts section is remote_user. This field contains the name of the user who
will be logged in the remote system.

∙ tasks. Every hosts contains a list of tasks. Tasks are executed one after another in
all systems matched in hosts field. A next task is executed after the successful finish
of the previous one. The main benefit is that on every host, the same amount of
tasks will be executed with the same directives. Ansible playbooks are running tasks
from up to down and if one task for a single host fails, this host is taken out from
playbook execution. Tasks are generally Ansible modules, but it is also possible to
run them from shell command. On the other hand, shell command execution is not
very recommended if it is not a simple command like chmod or something similar.
Every task should also have a name field, which would contain short descriptions of
task behavior. Tasks variables are listed below task names, such as name or state in
Listing 5.8 in service task section. Tasks also contain a remote_user field to execute
a special task under a different user who is specified in the hosts section.

∙ handlers. Ansible modules should have idempotent behavior, but it can occur that
they do not have it. For this reason, playbooks have a Handlers section, which is
a simple event system used mostly as a response to a change. If a module is not

41

idempotent, then notify field is needed to specify the particular task. It can be
seen in Listing 5.8 in the template task. Handlers are tasks that are executed after
finished tasks. They are executed only once, regardless of the number of handlers
notifications.

Generally, playbook names are play.yaml, and they are executed with ansible-playbook
play.yaml command [8].

Ansible Modules

Ansible modules are performing actions in the Ansible language. Modules can be executed
in the command line by ansible commands or in playbooks. Ansible has a broad base of
modules to choose from. Therefore there is no need to create new modules. A new playbook
creation from existing ones should solve many problems that could occur. On the other
hand, if someone wants to create an Ansible module, it is possible and easy. An Ansible
module is basically a normal programming language code (Python, Java, etc) with an extra
import.

What are the challenges for Ansible beginners? New Ansible users have common prob-
lems with passing arguments to modules. There are two ways to solve this. The first
solution was described in the previous subsection - by playbooks. The other way to do it
is to pass them as a command line arguments in the following format: ’key=value’.

1 #!/ usr/bin/ python
2 from ansible . module_utils .basic import AnsibleModule
3

4 def can_reach (module , host , port , timeout):
5 nc_path = module . get_bin_path (’nc’, required =True)
6 args = [nc_path , "-z", "-w", str(timeout),
7 host , str(port)]
8 (rc , stdout , stderr) = module . run_command (args)
9 return rc == 0

10

11 def main ():
12 module = AnsibleModule (
13 argument_spec =dict(
14 host=dict(required =True),
15 port=dict(required =True , type=’int ’),
16 timeout =dict(required =False , type=’int ’, default =3)),
17 supports_check_mode =True)
18

19 host = module . params [’host ’]
20 port = module . params [’port ’]
21 timeout = module . params [’timeout ’]
22 if can_reach (module , host , port , timeout):
23 module . exit_json (changed =False)
24 else:
25 msg = "Could not reach {0}:{1} ". format (host , port)
26 module . fail_json (msg=msg)
27

28 main ()

Listing 5.9: Python example of Ansible module

42

In this document, the most important question is how to implement Ansible modules in
the Python programming language. Metamorph plugins are developed in Python, but every
plugin also has a module that provides the same behavior while supporting Ansible. An
example of such Python module can be seen in Listing 5.9. Some interesting parts in the
code example are:

∙ line 2. Python import of AnsibleModule class. This class needs to be imported in
every Ansible module written in Python.

∙ line 5. This line shows how easy it is to get an external program path by the method
from AnsibleModule class.

∙ line 8. An execution of a program that was gathered in line 5 with additional
arguments. This line could be normally done by subprocess.Pyopen class in pure
Python.

∙ lines 12 - 17. These lines contain a module creation. Input arguments are configured
by dictionary. Even though it is a new argument configuration, it is quite similar to
argparse format, which is mostly used to parse input arguments in Python. Hence it
is easy to setup input arguments for Ansible modules. Line 17 says that this module
supports check mode for handlers in playbooks.

∙ line 19. Accessing input parameters. In pure Python, input parameters would be
passed as argparse object variables, but AnsibleModule supports them in dictionary
type.

∙ line 23. This line shows python ”return“ example in Ansible. In this case, it is only
informing that nothing changes, but it can also send output data.

∙ line 26. An example of failed output with custom message.

Developing Ansible modules can be really easy and powerful, because nothing more would
be needed to know for a new Python Ansible module creation. An Ansible module is a key
part in Ansible language [8].

5.2.2 ResultsDB Plugin Implementation

The design and purpose of this plugin was deeply explained in previous sections. This
section is focusing on implementation details of this plugin. ResultsDB plugin implemen-
tation is in morph_resultsdb.py file. Similar code can be found in resultsdb.py Ansible
module.

This plugin requires three arguments: --resultsdb-api-url, --test-tier, and the
name of component in NVR format. The last argument can be passed to plugin in three
ways. The simplest way is to use --nvr. The second option is to send exported data from
CI message to resultsDB plugin through --ci-message argument. The last way to pass
a component name is to use an environmental variable and pass it through --env-variable
argument. Continuous integration job names or different metadata output can be passed
to resultsDB plugin as well. An argument configuration is formatted using argparse, and it
is placed in parse_args function.

Class ResultsDBApi contains plugin behavior. The key method in this class is get_test_
tier_status_metadata. This method executes other methods to get metadata from re-
sultsDB and to collate the data to provide information about whether the component build

43

should be tagged or not. The method is divided into two halfs. The first half controls
metadata extraction and aggregation when CI job names are provided. The second half
manages extraction and aggregation as well for cases when CI job names are not provided.
The result of this method is a dictionary, where keys are job names and their values are
lists of resultsDB extracted results for this jobs’ names. Other methods in this class are:

∙ get_resulstdb_data. This method was created to manage metadata extraction from
resultsDB. It was created to support both plugin use cases with or without provided
job names. The main core of the method is in while loop. Every loop launches
query_resultsdb method to get resultsDB metadata and appends them into output
list. If a problem occurs during the metadata extraction method, behavior will be
stopped for one minute and then it will attempt to download metadata again. This
behavior can repeat several times, but for maximum of two hours.

∙ query_resultsdb. From its name it can be presumed that this method was created
for querying resultsDB. This method is using requests library for querying and it
automatically checks query status. If an error occurs, query_resultsdb method tries
to query resultsDB after one minute. If the error does not disappear after three
attempts, an exception is raised.

∙ format_result. Another important method in resultsDBApi class was created to
aggregate results from get_test_tier_status_metadata. It checks every job result.
If one contains the FAILED variable, then tier_tag variable is set to false. Simulta-
neously, it formats plugin output. Afterwards, the result of this method is exported
to metadata.json file.

5.2.3 Provision Plugin Implementation

Provision logic is implemented in morph_provision.py as pure Python. This method does
not have Ansible modules, because it is blocked by extra storage which should provide the
name of topology image.

Provision plugin expects two parameters by default. First parameter --git-repo re-
quires git repository path for further cloning. The --osp-config parameter expects path to
system configuration file in the provided git repository. Information provided by these pa-
rameters is needed for linch-pin topology creation. On the other hand, some of the informa-
tion are not present in configuration file, therefore --metadata-file and --metadata-loc
were created for this purpose. --metadata-file expects filename which contains addi-
tional topology metadata. The biggest struggle here was to find a way to provide metadata
location in the provided file. Listing 5.10 solves this problem by new format support which
can be seen in help part.

1 metadata . add_argument (
2 "--metadata -loc",
3 action =’append ’,
4 type= lambda kv: kv.split("=", 1),
5 help=’Usage --metadata -loc metadata =path ,to , metadata ’)

Listing 5.10: File metadata location parsing

Provision class provides the Provision plugin logic described in previous sections. The
method managing provision metadata extraction is named get_provision_metadata. At

44

the beginning, this method clones git repository and creates a general topology file. After-
wards, it sets provisioner credentials. Topology file adjusted by specified metadata is man-
aged by this method as well. At the end, this method returns linch-pin topology file.
Provision class contains more methods, such as:

∙ clone_git_repository. The purpose of this method is to clone a given repository.
The method behavior starts by repository name extraction from its path. For correct
git cloning, the GitPython library was chosen. This method does not return any-
thing, but after its completion the cloned repository can be found in current working
directory.

∙ get_metadata_from_location. Metadata extraction and provision topology adjust-
ment is driven by this method. The first half of this method performs metadata
extraction, which is done by get_metadata_from_location method. The second
half updates provision topology file by the extracted metadata.

∙ setup_topology_by_osp_config. General linch-pin topology creation is managed
in this method. Topology file is adjusted by extracted metadata from system config-
uration file.

5.2.4 PDC Plugin Implementation

The purpose of this plugin is to get as much metadata information as possible from the
Product Definition Center. The implementation of PDC plugin is held in morph_pdc.py
python file and pdc.py Ansible module.

PDC plugin requires only two information components in NVR format provided by
--component-nvr parameter, and Product Definition Center API url provided by --pdc-api
-url parameter. In case of any problems with API url certificate, the --ca-cert parameter
can be used to specify the correct certificate for url verification.

Class PDCApi provides this plugin behavior. Product Definition Center metadata ex-
traction is managed by get_pdc_metadata_by_component_name method. At first, compo-
nent name, version and release are extracted from the NVR format. Product Definition
Center api options are then updated with the extracted information. The options infor-
mation are held in an internal dictionary, which can be seen in Listing 5.11. It is really
easy to add or support another PDC option because of this concept. Product Definition
Center metadata extraction is driven by foreach and while loop. The foreach loops over
pdc_name_mapping dictionary from Listing 5.11 and sets up PDC api url with provided
options. Adjusted url is then processed in the while loop, which is inserted in the foreach
loop. The second loop manages Product Definition Center metadata extraction by api url
query and then its appending into output pdc_metadata dictionary.

1 pdc_name_mapping = {
2 "bugzilla - components ": {"name": ’{}’},
3 "global - components ": {"name": ’{}’},
4 "release -component - contacts ": {" component ": ’^{}$’},
5 "release -component - relationship ": {" from_component_name ": ’{}’},
6 "release - components ": {"name": ’{}’},
7 "rpms": {"name": ’^{}$’, " version ": ’{}’, " release ": ’{}’},
8 "global -component - contacts ": {" component ": ’^{}$’}
9 }

Listing 5.11: Product Definition Center options mapping.

45

The PDCApi class contains other supportive methods from which the most interesting are:

∙ get_rpm_mappings. This method manages metadata extraction from rpm-mapping
Product Definition Center option. This option can not be inserted in Listing 5.11
dictionary, because it needs parameters that are present in these options. Therefore
these parameters need to be extracted from the queried metadata. The result of this
method is an rpm_mappings dictionary containing the extracted metadata.

∙ get_release_ids. The purpose of this method is to extract Linux distribution release
IDs for given component. The get_release_ids extracts component releases from
release-components Product Definition Center metadata. Extracted releases are then
tested with rpms metadata and correct release IDs are then returned. This method
is very important for get_rpm_mappings method.

5.2.5 Additional Metamorph Plugins Implementation

Messagehub Plugin

The Messagehub plugin’s purpose is to listen to information bus which contains messages
about component builds. These messages have metadata important for other plugins. Plu-
gin implementations are held in morph_messagehub.py and messagehub.py files.

This plugin can be executed in two different ways. The first case is to sniff for messages
on information bus. Parameters --user, --password and --host are required for this
case. If these parameters are present, messagebus_run method is executed to manage
message sniffing. Messages are extracted from information bus by configured object from
CIListener class, which inherits from stom.ConnectionListener class. After message
extraction, the metadata are then stored in metamorph.json file. The second case needs
--env-variable parameter that expects the name of the environmental variable containing
CI message. If this case is chosen, then method env_run is executed to manage message
extraction from the given environmental variable. The result is stored in metamorph.json
file.

Message Data Extractor Plugin

The purpose of this plugin is to extract important metadata from CI message. The ex-
tracted metadata should satisfy other Metamorph tool plugins. That means other plugins
can be executed automatically without any internal mapping or other metadata. The imple-
mentation of Message Data Extractor plugin are in morph_message_data_extractor.py
and message_data_extractor.py files.

Plugin behavior is occupied in MessageDataExtractor class, where method get_ci_me-
ssage_data manages CI message metadata extraction. At the beginning, it is checked
whether given CI message type is supported. If yes, it is probable that it will contain
the needed metadata. The important metadata which will be extracted are component
name, component build version, release, target and owner. These metadata are then stored
in metamorph.json file.

5.3 Metamorph Testing
When developing the Metamorph tool, we used the Test Driven Development process. This
process ensures that almost every method in each Metamorph plugin class has its own

46

dedicated test. Therefore if someone changes its behavior, these tests should detect it.
The Metamorph tool git repository is hosted on Github7. The benefit of Github hosting
is that it has a very good support with Travis CI which was explained in Subsection 2.4.2.
This continuous integration tool helps to develop the Metamorph tool in the best possible
quality.

Metamorph tests can be found in the tests/metamorph_tests.py file. This file contains
more than thirty tests for all Metamorph plugins. Unittest8 was chosen as the testing
framework because of its test automation support, aggregation support for various tests,
and its independence.

5.3.1 Metamorph Testing by Red Hat Teams

The created Metamorph plugins were tested by one Red Hat CI team and several members
of the Red Hat development teams. The tool was tested in one meeting where all Meta-
morph plugins were explained. Feedback from the people who tested the tool was collected
by a questionnaire with the following questions for each plugin: what are the plugin ad-
vantages, disadvantages or how it can be improved. The obtained results are summarized
below and the questionnaire can be found in appendices.

ResultsDB Plugin

This plugin was evaluated as a really good part of Metamorph and metadata provided
by this tool are really valuable for the Red Hat CI team. On the other hand, a bug was
found in the ResultsDB plugin idea. The problem is that, in the moment of querying, the
resultsDB plugin does not know whether resultsDB contains all testing results or just a few.
Therefore some orchestrator would need to be created to provide this information. Anyway,
the propped approach still brings a better solution than the Red Hat CI team have, so they
will use it, but the bug needs to be fixed in a new Metamorph version.

∙ pros. Ability to get test tier results for multiple jobs.

∙ cons. None found except the mentioned bug.

∙ improvements. Possibility to provide advanced resultsDB querying and inform users
that results are stored in metamorph.json file.

PDC Plugin

This plugin was also well received by the testing team. They see a broad usage for this
tool to get test run metadata or test report metadata. On the other hand, old information
about component owner was found in Product Definition Center metadata. Because of this
knowledge, an issue was created for Product Definition Center to actualize their data and
to provide information which metadata are up to date.

∙ pros. Testing team sees PDC plugin pros in improving lots of things in CI use case
and in gathering valuable information from Product Definition Center.

∙ cons. Plugin cons were not found.
7https://github.com/RHQE/metamorph
8https://docs.python.org/3/library/unittest.html

47

https://github.com/RHQE/metamorph
https://docs.python.org/3/library/unittest.html

∙ improvements. Provide better possibility to query Product Definition Center and
inform that information are stored in metamorph.json file.

Provision Plugin

This plugin brings a possibility to use linch-pin provisioner and its features. On the other
hand, it is out of scope of the testing team because of various changes which would need
to be implemented to support this plugin. However, they would like to use it in the future
when this plugin will be completed (missing image support).

∙ pros. Easier way to use linch-pin.

∙ cons. Testing team cannot use it right now.

∙ improvements. Needs to improve the PDC plugin to provide feedback on what
it is doing.

Messagehub Plugin

This plugin brought a big discussion about its purpose. The Red Hat CI team is using
the Jenkins plugin to do a similar job, and at the beginning, they did not see any point
of it. After a discussion, they agreed that it could be useful for them, because the Jenkins
plugin has blackouts and it is difficult to prevent them. On the other hand, if they use the
Messagehub plugin, they can control the code and then avoid blackouts.

∙ pros. The benefits are filtering and transformation of metadata.

∙ cons. Does not allow to work in daemon mode.

∙ improvements. Improve plugin input.

Metamorph Tool Overall

The testing team rated this tool as a benefit, because they really need something like it.
On the other hand, they suggested that the created plugins should be improved and have
added support for new metadata storage systems.

∙ pros. This type of tool is needed.

∙ cons. Implemented Ansible modules are hard to debug and there is no uniform way
how to execute Metamorph from the command line.

∙ improvements. Metamorph tool could use existing internal tool design to solve
future implementation problems.

48

Chapter 6

Conclusion

The aim of this Master Thesis was to analyze existing continuous integration solutions
in Red Hat Czech, then create and test a solution that could support the unification process.

As a part of working on the above goal we studied and presented the technologies used
in Red Hat company. We then conducted a research on continuous integration solutions
and metadata analysis which the Red Hat teams are using. The results of this research are
documented in Chapter 4. They were used as basis for designing the Metamorph tool. The
designed tool was implemented and tested.

Tables 4.2 and 4.1 show where continuous integration teams store their metadata. Be-
cause of this research, a new format for storing metadata was created, as can be seen
in Example 4.1. This research brings yet another conclusion, which is a tool that will be
able to get metadata from various storage systems when needed. This tool was named
Metamorph. From the beginning of this tool creation, it was thoroughly discussed with
Red Hat managers and principal quality engineers. According to them, Metamorph is the
key for Platform CI teams unification. The implementation process was lengthy, because
every Metamorph plugin has to have a design document, and the implementation can start
only after its approval. Another element which slowed down the whole process was that
some of the storage systems were not documented (an extensive analysis of the Product
Definition Center was needed to know which metadata are relevant for the CI teams) or
did not support some options for querying (pull requests were needed to create which en-
ables to query resultsDB by job names and ci tier). Because of these reasons, Metamorph
tool contains only five plugins. On the other hand, every plugin has an Ansible module.

On top of that, Metamorph tool design was created to understand how Metamorph
plugins should cooperate and be executed. Unfortunately, this design document is still
in development process, but one principal quality engineer said it was exactly what we
need for the future of this tool.

The Test Driven Development process was chosen as the development process for the
Metamorph tool. Therefore almost all methods were tested and it brought better quality
for implementation. The tool functionality was tested by Travis CI after every commit and
on internal Red Hat Jenkins. Every plugin had to be acknowledged by code review, which
brought more readable and easy to use code and there is Metamorph documentation is
sphinx format which describes plugins execution and usage. Furthermore, the Metamorph
plugins were tested by one CI team and one development team and their feedback was
collected by a questionnaire. The results say that some plugins have to improved to support
their needs, but the respondents all agreed that Metamorph tool is something really needed.

49

Metamorph tool’s advantage is that plugin results can be easily shared between con-
tinuous integration jobs. Also, because of created Ansible modules, it is possible to run
plugins on different hosts, which brings big flexibility to CI use cases.

For the future, the following improvements of Metamorph are planned such as easy
execution of the created plugins from one place. This step should allow one to spread
Metamorph into other CI teams. The improved tooling design is already in review process
and it will be the next implementation step.

Another key step is to improve Metamorph plugins according to the collected feedback
and try to modify them to fit the described needs. This approach can motivate engineers
to create new plugins by themselves. This would be a key moment for Metamorph as an open
source tool, because that would result in a community developing new plugins.

In the future, Metamorph should support more storage systems, such as TCMS or CDN,
to provide more metadata. On the other hand, better communication with other teams will
be needed as well to modify the tool exactly to their needs.

50

Bibliography

[1] ABS: Continuous Delivery Pipelines: GoCD vs Jenkins. June 2014. [Online; visited
28.12.2016].
Retrieved from: https:
//highops.com/insights/continuous-delivery-pipelines-gocd-vs-jenkins

[2] Basu, S.: Travis-CI: What, Why, How. September 2013. [Online; visited 28.12.2016].
Retrieved from:
https://code.tutsplus.com/tutorials/travis-ci-what-why-how--net-34771

[3] Booch, G.: Objected-Oriented analysis and design. ADDISION-WESLEY. 1994.
ISBN 0-8053-5340-2.

[4] Cloud, C.: An Interview with Ansible Author Michael DeHaan. April 2012. [Online;
visited 8.5.2017].
Retrieved from: http://www.coloandcloud.com/editorial/an-interview-with-
ansible-author-michael-dehaan/

[5] Dougherty, B.: Bamboo vs. Travis CI vs. Circle CI vs. Codeship. November 2016.
[Online; visited 28.12.2016].
Retrieved from: https://www.itcentralstation.com/product_reviews/travis-
ci-review-32073-by-ben-dougherty

[6] Fowler, M.: Continuous Integration. September 2000. [Online; visited 26.12.2016].
Retrieved from:
http://www.martinfowler.com/articles/originalContinuousIntegration.html

[7] Fowler, M.: Deployment Pipeline. May 2013. [Online; visited 15.05.2017].
Retrieved from: https://martinfowler.com/bliki/DeploymentPipeline.html

[8] Hochstein, L.: Ansible Up and Running. Oreilly. 2015. ISBN ISBN 978-1-491-91532-5.

[9] Kawaguchi, K.: Meet Jenkins. November 2013. [Online; visited 28.12.2016].
Retrieved from: https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins

[10] Neokrates: Choosing continuous integration (CI) tool. Comparison. April 2010.
[Online; visited 28.12.2016].
Retrieved from: http://www.thinkplexx.com/learn/article/build-chain/ci

[11] Nikola Banovic, F. C. J. M., Tofi Buzali; Dey, A. K.: Modeling and Understanding
Human Routine Behavior. ACM. 2016. ISBN ISBN 978-1-4503-3362-7.

51

https://highops.com/insights/continuous-delivery-pipelines-gocd-vs-jenkins
https://highops.com/insights/continuous-delivery-pipelines-gocd-vs-jenkins
https://code.tutsplus.com/tutorials/travis-ci-what-why-how--net-34771
http://www.coloandcloud.com/editorial/an-interview-with-ansible-author-michael-dehaan/
http://www.coloandcloud.com/editorial/an-interview-with-ansible-author-michael-dehaan/
https://www.itcentralstation.com/product_reviews/travis-ci-review-32073-by-ben-dougherty
https://www.itcentralstation.com/product_reviews/travis-ci-review-32073-by-ben-dougherty
http://www.martinfowler.com/articles/originalContinuousIntegration.html
https://martinfowler.com/bliki/DeploymentPipeline.html
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
http://www.thinkplexx.com/learn/article/build-chain/ci

[12] Novoseltseva, E.: Top benefits of continuous integration. December 2015. [Online;
visited 26.12.2016].
Retrieved from:
https://apiumtech.com/blog/top-benefits-of-continuous-integration-2/

[13] Ritchie, S.: TeamCity vs Jenkins: Which is the Better Continuous Integration (CI)
Server. November 2012. [Online; visited 28.12.2016].
Retrieved from: https://www.excella.com/insights/teamcity-vs-jenkins-
better-continuous-integration-server

[14] with S. Matyas, P. M. D.; Glover, A.: Continuous Integration: Improving software
quality and reducing risks. Pearson Education. 2007. ISBN 978-81-317-2291-6.

[15] Singh, I. P.: What is the best place to store test data for your automated tests?
March 2010. [Online; visited 5.1.2017].
Retrieved from: http://inderpsingh.blogspot.cz/2010/03/what-is-best-place-
to-store-test-data.html

[16] Smart, J. F.: Jenkins: The definite guide. O’Reilly. 2011. ISBN 978-1-449-30535-2.

[17] Tikhanski, D.: Jenkins vs. Other Open Source Continuous Integration Servers.
January 2016. [Online; visited 28.12.2016].
Retrieved from: https://www.blazemeter.com/blog/jenkins-vs-other-open-
source-continuous-integration-servers

[18] Weiss, M.: The benefits of continuous integration. April 2013. [Online; visited
26.12.2016].
Retrieved from:
https://blog.codeship.com/benefits-of-continuous-integration/

52

https://apiumtech.com/blog/top-benefits-of-continuous-integration-2/
https://www.excella.com/insights/teamcity-vs-jenkins-better-continuous-integration-server
https://www.excella.com/insights/teamcity-vs-jenkins-better-continuous-integration-server
http://inderpsingh.blogspot.cz/2010/03/what-is-best-place-to-store-test-data.html
http://inderpsingh.blogspot.cz/2010/03/what-is-best-place-to-store-test-data.html
https://www.blazemeter.com/blog/jenkins-vs-other-open-source-continuous-integration-servers
https://www.blazemeter.com/blog/jenkins-vs-other-open-source-continuous-integration-servers
https://blog.codeship.com/benefits-of-continuous-integration/

Appendices

53

Appendix A

The Contents of The Included
Media

The CD directory structure is:

∙ Metamorph. The Metamorph tool source code with documentation.

∙ Thesis. The LATEX and PDF Master Thesis sources.

∙ license.txt. Project license file.

54

Appendix B

Manual

This chapter describes how to install and execute the Metamorph tool. The tool is imple-
mented in the Python and Ansible language.

∙ Requirements. The Metamorph tool source codes can be found in enclosed CD or
Github1 repository. The tool requirements are listed in metamorph\requirements.txt.
The Metamorph is implemented in the pure Python, therefore support of the python
2.7 or higher is required.

∙ installation. Installation of the Metamorph is really easy. It is installed by python
setup.py install command, where setup.py file can be found in Metamorph repos-
itory.

∙ Execution. Execution of Metamorph plugins is described in index.rst file in
metamorph\docs repository. The file contain guidlines for easy Metamorph plugin
execution.

1https://github.com/RHQE/metamorph

55

https://github.com/RHQE/metamorph

Appendix C

Questionnaire Results

C.1 ResultsDB Plugin

C.1.1 resultsDB pros

∙ good start, but api need to be defined

∙ For our automation tool we will be using ResultsDB plugin to query tier1 test status
where multiple jobs provide results.

C.1.2 resultsDB cons

∙ none

∙ none found

C.1.3 What can be improved in resultsDB plugin

∙ We would need advanced querying of resultsDB, which does not provide such an API
by itself.

∙ When ran from the command line, it might be nice to have indication that some
output is being written to metamorph.json

C.2 PDC Plugin

C.2.1 PDC pros

∙ Using PDC will improve a lot of things in CI, I hope this plugin will be usable for CI
use case

∙ The PDC plugin of metamorph provides a convenient way how to query Product
Definition Center and gather valuable information for tested package used in testing.

C.2.2 PDC cons

∙ none

∙ good start, but api need to be defined

56

C.2.3 What can be improved in PDC plugin

∙ api to get value / list of some variables, not only json

∙ It would be advised to have more option for querying.

C.3 Provision Plugin

C.3.1 Provision pros

∙ easier to use linchpin

∙ The provision plugin makes it possible to directly generate LinchPin Provisioner con-
figuration files according to queried data.

C.3.2 Provision cons

∙ none

∙ no use for our CI now

C.3.3 What can be improved in Provision plugin

∙ When ran from the command line, it might be nice to include some feedback as to
what is going on...as it is, I have no idea what was performed (without reading the
source code).

∙ Support for all systems provided by linch-pin

C.4 Messagehub Plugin

C.4.1 Messagehub pros

∙ filtering, transformation of metadata

∙ Filter how many messages it will download

C.4.2 Messagehub cons

∙ strange input, I would prefer message, not listening on message bus itself

∙ Missing daemon use case

C.4.3 What can be improved in Messagehub plugin

∙ type of input

∙ Add daemon use case. Afterwards this plugin can be used in our CI.

57

C.5 Metamorph Tool

C.5.1 Metamorph tool pros

∙ We need to have such tool because of too many different sources/format of metadata

∙ Provided metadata in unified format.

C.5.2 Metamorph tool cons

∙ ansible modules - hard to debug; json for sharing data between modules?

∙ There is currently not easy/uniform way how to run the metamorph tool from com-
mand line.

C.5.3 What can be improved in Metamorph tool

∙ rewrite it to use internal tool design for better debugging, logging and integration
with CI

∙ The metamorph could reuse the existing internal tool design frame

58

	Introduction
	Continuous Integration
	What is Continuous Integration
	What is the value of Continuous Integration?
	Why Teams avoid Using Continuous Integration?
	Existing Continuous Integration Solutions
	Jenkins
	Travis CI
	Go CD
	TeamCity

	Jenkins Build Job Setup

	Continuous Integration Implementations at Red Hat Company
	Team 1
	Test on build CI
	Covscan CI
	RPMDiff CI

	Team 2
	Team 3
	Platform CI
	Continuous Integration Implementation Summary

	Test Metadata Analysis
	Metadata overview
	Existing External Solutions
	Analysis of used metadata storage systems
	Unified Test Metadata Format
	Proposed Unification Tool

	Metamorph
	Metamorph Design
	Problem Definition
	Metamorph Requirements
	Metamorph Requirements for Jenkins Jobs
	Metamorph Benefits
	Use Cases
	Metamorph Output Format
	Implementation Design
	Interactions With Storage And Metadata
	Low Level Implementation Design
	Source Directory Structure and Output Metadata Format
	ResultsDB Plugin Design
	Provision Plugin Design
	PDC Plugin Design

	Implementation
	Ansible
	ResultsDB Plugin Implementation
	Provision Plugin Implementation
	PDC Plugin Implementation
	Additional Metamorph Plugins Implementation

	Metamorph Testing
	Metamorph Testing by Red Hat Teams

	Conclusion
	Bibliography
	Appendices
	The Contents of The Included Media
	Manual
	Questionnaire Results
	ResultsDB Plugin
	resultsDB pros
	resultsDB cons
	What can be improved in resultsDB plugin

	PDC Plugin
	PDC pros
	PDC cons
	What can be improved in PDC plugin

	Provision Plugin
	Provision pros
	Provision cons
	What can be improved in Provision plugin

	Messagehub Plugin
	Messagehub pros
	Messagehub cons
	What can be improved in Messagehub plugin

	Metamorph Tool
	Metamorph tool pros
	Metamorph tool cons
	What can be improved in Metamorph tool

