
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

REMOTE DEPLOYMENT OF INFISPECTOR
VZDÁLENÉ NASAZENÍ INFISPECTORU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MAREK ČÍŽ
AUTOR PRÁCE
SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
The InfiSpector is an application that provides graphical representation of JGroups commu-
nication happening between nodes in an Infinispan cluster. We want to separate InfiSpector
application from its infrastructure and let users spend time by focusing on using InfiSpector,
making conclusions from data provided by InfiSpector, not setting up its working infras-
tructure. In order to make use and access to InfiSpector easier and quicker, we want to
deploy InfiSpector to a cloud service. Cloud service is Internet-based computing that allows
users to share computing resources (e.g. servers, storage, applications and services) and
data through the Internet. Cloud is also easy to access. As a cloud service was chosen
Openshift. Openshift has many tools for easy development, quick deployment, and many
tools for running an application. It also allows to have a free user account for everybody.
There is also description of how to configure back-end of the InfiSpector in this thesis. Next
step is Openshift description, including its overview and configuration files necessary for
InfiSpector deployment, development, and running.

Abstrakt
InfiSpector je aplikace, která graficky zobrazuje komunikaci mezi uzly Infinispan serverů.
Chceme oddělit infrastrukturu InfiSpectoru od aplikace jako takové. Důsledkem oddělení
infrastury InfiSpectoru od samotné aplikace je přenesení veškeré starosti a správy InfiSpec-
toru z uživatele na vzdálenou internetovou službu, kde bude aplikace běžet na vzdáleném
serveru. Uživatel se ke vzdálenému serveru již jen připojí, uživateli odpadne nutnost in-
stalovat aplikaci na svém zařízení, a tak se může místo konfigurace InfiSpectoru soustředit
na jeho využívání. Vzdálená internetová služba umožňuje jejímu uživateli sdílet výpočetní
prostředky, například servery a aplikace. Vzdálená internetová služba umožňuje i využivání
externích internetových uložišť pro vzdálené uložení dat. Tím, že je vzdálená internetová
služba volně přístupná na internetu, je i dobře přístupná z každého počítače nebo tele-
fonu s přístupem na internet. Pro InfiSpector byla zvolena na základě výzkumu vzdálená
internetová služba zvaná Openshift, umožňující spravovat, vyvíjet a provozovat aplikace.
Openshift navíc nabízí testovací účet zdarma pro každého vývojáře.
V bakalářské práci se nachází i popis, přehled a nastavení souborů nejen pro části InfiSpec-
toru zajišťující správu a zpracování dat, ale i pro nasazení, vývoj a provoz InfiSpectoru na
vzdálené internetové službě Openshift.

Keywords
InfiSpector, Infinispan, Docker, Openshift, Zookeeper, Kafka, Druid, Cloud.

Klíčová slova
InfiSpector, Infinispan, Docker, Openshift, Zookeeper, Kafka, Druid, Cloud.

Reference
ČÍŽ, Marek. Remote Deployment of InfiSpector. Brno, 2017. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Lengál Ondřej.

Remote Deployment of InfiSpector

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Ondřej Lengál, Ph.D. The supplementary information was provided
by Mgr. Tomáš Sýkora. All the relevant information sources, which were used during
preparation of this thesis, are properly cited and included in the list of references.

. .
Marek Číž

May 15, 2017

Acknowledgements
I would like to thank Ing. Ondřej Lengál, Ph.D. for accepting and leading my bachelor’s
thesis and providing useful advices. Also, special thanks to Mgr. Tomáš Sýkora for all the
help and consultations. Without him, this thesis could never be done.

Contents

1 Introduction 3

2 Infinispan 6

3 InfiSpector 7
3.1 Architecture of InfiSpector . 7

3.1.1 Zookeeper . 8
3.1.2 Kafka . 8
3.1.3 Druid . 9
3.1.4 InfiSpector Node.js application . 11

4 Docker 12
4.1 Docker engine . 12
4.2 Docker architecture . 12

4.2.1 Containers . 12
4.3 Dockerfile . 13

4.3.1 Instructions in Dockerfile . 14

5 Openshift 15
5.1 Openshift account . 15
5.2 Architecture of Openshift . 15

5.2.1 Pod . 16
5.2.2 Service . 16
5.2.3 Route . 16
5.2.4 Image streams . 16
5.2.5 Templates . 16
5.2.6 Deployments . 17
5.2.7 Images . 17
5.2.8 Project . 18

5.3 Client . 18
5.3.1 Openshift versus Amazon Web Services 18
5.3.2 Installing Openshift client . 19
5.3.3 Useful OC commands . 19

6 InfiSpector infrastructure in Openshift 21
6.1 InfiSpector architecture in Openshift . 21

1

7 InfiSpector deployment in Openshift 24
7.1 Zookeeper configuration . 25
7.2 Kafka configuration . 25
7.3 Docker operations . 27

7.3.1 Zookeeper Dockerfile . 27
7.3.2 Kafka Dockerfile . 28
7.3.3 Druid Dockerfile . 29
7.3.4 Building Dockerfiles . 30

7.4 Openshift operations . 31
7.5 Openshift registry . 31
7.6 Templates . 33

7.6.1 Kafka template with Zookeeper . 33
7.6.2 Kafka service with Zookeeper . 33
7.6.3 Druid template . 34
7.6.4 Druid service . 34
7.6.5 InfiSpector template and service . 34

7.7 Running InfiSpector backend applications 35

8 Optimal working Openshift solution for InfiSpector 37
8.1 Future directions . 37

9 Conclusion 39

Bibliography 40

Appendices 42

A Dockefiles 43
A.1 Kafka Dockerfile . 43
A.2 Druid Dockerfile . 43

B Openshift 45
B.1 Openshift client commands . 45
B.2 Templates . 47

B.2.1 Kafka and Zookeeper template . 47
B.2.2 Druid template . 49

B.3 Services . 50
B.3.1 Kafka and Zookeeper services . 50
B.3.2 Druid service . 50

B.4 Routes . 51
B.4.1 InfiSpector route . 51

B.5 Kafka and Zookeeper configuration . 51

2

Chapter 1

Introduction

Nowadays, the trend to use cloud computing is increasing. Cloud computing provides
service to users via Internet from cloud computing servers. Cloud servers provide easy,
quick, and scalable access to services, computing resources, and applications. Consider the
following example. A small company runs an e-commerce website. To run and administer a
website, it needs to buy hardware for servers, which are expensive. Enough resources have
to be bought to smoothly run the website with a 45 % reserve for occasional workload peaks.
The company’s analyst says that they need more expensive hardware resources, because
on Christmas and Easter, the website will be occupied by more than 350 % of current
computing capacity of servers, eventually crashing, which will have the consequence of the
company losing paying customers. There are two options how to solve this issue. The first
option is to buy more expensive servers, which will be fully utilized only a few days in a
year, and the second option is to rent remote cloud computing resources. Cloud resources
will scale with actual website needs, the company will pay only for the used resources, and
cloud servers are also maintenance-free with their own administrator.

Another common issue in the enterprise environment is explained in following paragraph.
Suppose, there are a few high capacity databases in a company. The number of requests
from users to the website is not permanent and workload peaks are high, therefore the
database is not satisfying all the users requests in an acceptable time. The consequence
of a high database response time, and therefore a high website response time, is a loss of
paying customers. To get rid of a high response time of databases, there are two prospective
solutions. The first solution is to buy more hardware for databases, which are expensive
and slow. Another, and more elegant solution, is to get servers with large random access
memory capacity (referred to as RAM) [16] instead of databases. The RAM servers are
cheaper and faster than databases. But how can the RAM servers work as a database? The
RAM servers load all data from the databases into their memory and communicate through
the application server with the website, which is the same application server as was used
in the case of using only databases without the RAM servers. The communication between
the application server and the RAM servers is fast, therefore the website can quickly handle
all user requests. Databases are expensive and slow, but store data permanently. On the
contrary, the RAM servers distributed cache system is relatively cheap and fast, but looses
all the data it stores after cutting off an energy supply. The ideal solution is to get a few
databases with high data storage capacity and set up a cluster of RAM servers.

RAM servers have to be orchestrated by a tool to do their job correctly. One of these
tools is Infinispan, which is a tool for managing RAM cache serves, data grids, and data
store platform. An Infinispan cluster can be helpful as a distributed cache system or a high-

3

performance NoSQL data store. New servers can be used to create an Infinispan cluster. In
the case of the distributed RAM cache Infinispan system, Infinispan cluster nodes are set
up on all RAM servers, and Infinispan cluster loads all the data from the database to its
RAM. Infinispan cluster consists of Infinispan cluster nodes, each of which is a RAM server.
The nodes are interconnected with each other. The data is distributed through nodes and
does not have to be consistent. Consider the example of storing the user data. The user’s
name is stored in node_1 and the user’s address is stored in node_2. When the application
server asks nodes for the user’s data, interconnected nodes send the complex user’s data
back to the application server which sends the user’s data to the user on a website[7].

InfiSpector is an official part of Infinispan or, more precisely, the Infinispan management
console, through which a user can monitor communication and data flow between the
nodes in Infinispan cluster. Infinispan management console has also a graphical interface.
InfiSpector is listening to the communication between Infinispan nodes in a cluster. The
main purpose of InfiSpector is to graphically represent JGroups communication happening
between Infinispan nodes in a cluster, to help users and developers better understand what
is happening inside Infinispan during data replication or distribution. In order to make
the use and access to InfiSpector easier and quicker, InfiSpector is being deployed to the
cloud [19].

The aim of this thesis is to explore the way how to deploy InfiSpector to a cloud
service. The secondary goal of this thesis is to familiarize Infinispan community, especially
developers, with InfiSpector tool, how to set up InfiSpector backend, deploy InfiSpector on
a cloud service and make a guide how to deploy complex application on the Openshift cloud
service.

This thesis is dealing with general knowledge of the data store platform Infinispan,
InfiSpector tool, its architecture and backend configuration including the following: the
orchestration tool Zookeeper, the messaging stream Kafka, the NoSQL database Druid, the
container platform Docker, the cloud container platform Openshift Online, its advantages
and disadvantages, configuration settings, implementation, integration, and optimization
with given computational resources of Openshift Online.

4

Figure 1.1: Diagram of Infinispan cluster architecture and all system composition [7].

5

Chapter 2

Infinispan

Red Hat Infinispan (referred to as Infinispan) is a JBoss [8] grid and data store platform.
It is a scalable, open–source, fully transactional tool written in Java, whitch can be used
as a distributed cache system, high-performance NoSQL data store, key–value store.

Why use Infinispan? Databases are expensive and cannot respond to a high amount of
requests from application servers in a short period of time. Infinispan can be used to solve
these problems. Infinispan cluster data grid can load databases data into its cache me-
mory and communicate directly with application servers. Its cluster nodes communication
contain a flow of loaded data and system communication. System communication consists
of heartbeat messages [7], which are checking whether nodes have an active status, which
means that the current node is turned on and communicating with others. Another system
message type is checking if nodes are fully functional and if nodes have free space to load
or store data from external source [7].

Infinispan distributed cache system is a good solution, when there is an application or
a need for fast reading from slow databases. An Infinispan cluster can load all data from
database in its RAM [16] cache cluster and satisfy a need for a fast communication with
database or satisfy a high amount of requests from an application server.

InfiSpector tool is monitoring the communication between Infinispan cluster nodes in-
cluding both real data flow and system messages. InfiSpector supports data injection both
from real-time Infinispan Javascript client and from saved logs. Infinispan communica-
tion data are injected into InfiSpector through Kafka messaging stream, which is in-depth
described in the Section 3.1.2 or directly to the Druid database.

6

Chapter 3

InfiSpector

InfiSpector is a portmanteau of the words Infinispan and Inspector. InfiSpector is meant
to graphically represent JGroups communication happening between Infinispan nodes in a
cluster to help users and especially developers better understand what is happening inside
during data replication or distribution. InfiSpector should be able to process big data logs
from Infinispan cluster communication. InfiSpector should be separated into its application
part, its infrastructure and let users save time by focusing on Infinispan cluster problems
using InfiSpector, making conclusions from data provided by it and not spend time setting
up InfiSpector working infrastructure instead.

The main objectives of InfiSpector are to provide a convenient web console UI and
graphically represent cluster communication between Infinispan nodes [19].

3.1 Architecture of InfiSpector
InfiSpector backend stands for the server part of InfiSpector, especially for a Node.js server,
which is listening on port 3000, and for Druid API, which calls a Druid NoSQL database.
The backend is communicating with the frontend via Representational state transfer (re-
ferred as to REST) application programming interface. The REST service provides a
standardized and uniform communication interface between web services and the Inter-
net [15].

The Infinispan JavaScript client is a library allowing the back-end to communicate with
an Infinispan server cluster (written in Java) through JavaScript. The backend is transfering
data from Infinispan and makes calls to get cache statistic logs, which InfiSpector graphically
represents to a user. The diagram of the InfiSpector architecture is shown in Figure 3.1.

7

Figure 3.1: Diagram of InfiSpector architecture taken from InfiSpector [20].

3.1.1 Zookeeper

Apache Zookeeper is a centralized service for orchestration of synchronization, naming,
information, and group services that are used by various applications [2].

In InfiSpector, Zookeeper orchestrates Kafka and Druid into a working cluster. Zookeeper
extracts main functionality of various services such as naming, configuration management,
synchronization, and group services into a simple, unified interface, so that user does not
have to code every single service from scratch. The interface and protocols are easily
adjustable for specific needs. Using Zookeeper in projects is simple. Zookeeper allows dis-
tributed services to cooperate through a shared namespace that is designed like a standard
file system. A namespace contains data registers (Znodes), which are like directories and
files. Znodes differ from files, because they are not meant for storage. Zookeeper data
are kept in-memory, therefore accessing the data has a low latency and high performance.
These facts lead us to the conclusion that Zookeeper can be used in large, distributed
systems and is fast in “read-dominant” workloads such as processing InfiSpector’s logs.

Zookeeper is intended to be replicated over multiple hosts, but servers that run Zookeeper
have to be connected to each other and keep in a persistent store an in-memory image of
the state, transaction logs, and snapshots. One of the servers is the leader. When other
Zookeeper servers (called followers) start up, they are connected to the leader. When a new
leader is set up, the followers connect to it using the TCP protocol.

3.1.2 Kafka

Apache Kafka is a distributed streaming platform capable of recording process streams,
storing streams of records, and publishing streams of records. Kafka is connecting appli-
cations through real-time data pipes, which allows Kafka to operate with data during its
transportation too [1].

Kafka works as a cluster consisting of one or more servers. It stores streams of data
records in categories named as topics using key-value pairs. These pairs can be superstruc-

8

Figure 3.2: A diagram of replicated Zookeeper servers with a leader [2].

tured with timestamp as a key-value-timestamp triad [1]. Triads are useful when Kafka has
to communicate with a NoSQL database such as Druid, which is used in the InfiSpector
infrastructure, because Druid is sorting data using timestamps. Each topic in cluster has
a log consisting of different partitions that store data using multiple consumers, which are
subscribed to topics. Partitions are structured, ordered and cannot be changed.

Kafka, same as Zookeeper, connects with servers and clients via TCP [13]. The main
Kafka client is written in Java, but there are also available Kafka clients written in other
languages such as C/C++, PHP, or Python [1].

Architecture of Kafka

Kafka consists of 4 essential API. Every single one of them can be replicated several times
to satisfy requirements given by an application. A diagram of an example of a Kafka cluster
is shown in Figure 3.3.

• Producer API allows an application to show stream of records from Kafka cluster for
a chosen number of topics.

• Consumer API makes topics and processes available to an application.

• Connector API builds and runs reusable consumers or producers that connect Kafka
topics to applications.

• Stream API allows an application to turn input streams with one or more topics into
output streams with one or more topics [1].

3.1.3 Druid

SQL servers and databases have been the preferred databases for over 20 years. The
increased need to process very high volumes of different data types in a short period of
time led developers to develop a type of data store that is capable of storing unstructured
data, key-value pairs, graph databases, column family stores, and document databases at
scale. NoSQL data stores are good for storing nested data and offer flexibility as not every
record needs to store the same properties and do not need to present all data for an object
in a single record [14].

Druid is a fast, scalable, open source NoSQL data store designed for analytic queries on
event data, capable of working with big data. Druid’s trick consists in data indexing. The

9

Figure 3.3: Diagram of Kafka cluster [1].

data set is composed of 3 different column components, which are stored separately. The
first components are timestamp columns. A timestamp is the main component of a NoSQL
databases, especially Druid, which can query or process billions of entries in a second,
sorted by a timestamp. Metric columns are usually numeric values used in aggregations
like computing the count, sum, or mean. Dimension columns are used in filtering data and
contain events represented by strings.

Druid can intake data in real-time ingestion, which is described in the roadmap [4] and
as batch ingestion.

Druid splits data into units known as segments. Segments are split implicitly by time
and contain compact and sorted data [4].

Architecture of Druid

A Druid cluster contains these 4 different types of nodes:

• Broker nodes serve as a tool for applications and clients to get queried data from a
Druid. A Broker node also knows the distribution of segments and files (e.g. files in
the JSON format [9]) in a data store, therefore a Broker node can parse given queries,
find out sub-results in a data store, and put them together to form the final result,
which is shown as an answer to the querying application or client.

• Historical nodes interconnect units in a Druid cluster. A cooperation of Historical
nodes is based on a distributed computing architecture, where every node is self
sufficient, independent, and no nodes share memory or disk storage. This solution

10

is known as the Shared nothing architecture [4]. Historical nodes download segments
locally and are able to do queries upon these immutable segments.

• Coordinator nodes are organizing segments on Historical nodes by telling Historical
nodes, when to move segments to load balance, delete loaded segments or load new
segments.

• Real-time nodes can be run as a standalone unit and used for real-time processing,
which is all-embracing name of processes like handling segments off to historical nodes,
creating segments (indexing the data), and ingesting data. In a Druid cluster, real-
time processing can be done by using real-time nodes or using an indexing service.
Real-time nodes use Zookeeper to monitor metadata storage [4].

3.1.4 InfiSpector Node.js application

InfiSpector application engine is the Node.js Javascript server, which is designed to build
scalable applications running on a network. Node.js server uses the event loop instead of
a classic library. The event loop allows Node.js server to perform non-blocking input and
output operations, which do not end by the deadlock. Deadlock is a state of a system, when
all subsystems are locked and waiting for some other subsystem to release a lock, which is
never going to happen. Operations from a different processes are added to the event loop
poll queue, where operations are waiting to be eventually executed [10].

HTTP [5] is the main communication protocol in a Node.js servers. InfiSpector front–
end is communicating with a Node.js server via HTTP Rest calls [15] on the port 8080,
which offers web services.

11

Chapter 4

Docker

Docker is an open platform for developing, shipping, and running applications. It enables
to separate applications from the infrastructure, so that software can be delivered quickly.
By taking an advantage of Docker’s methodologies for shipping, testing, and deploying code
quickly, a user can significantly reduce the delay between writing code and running the code
in a production.

Docker provides the ability to package and run an application in a loosely isolated
environment called a container. The isolation and security allow to run many containers
simultaneously on a given host. Because of the lightweight nature of containers, a user can
run more containers on a given hardware combination than using virtual machines [3].

4.1 Docker engine
The Docker engine is a client-server application. One of Docker engine main components
is the Docker engine server. The Docker engine server is a type of long-running program
called the daemon process. Another main component is the REST API [15], which specifies
interfaces that programs can use to talk to Docker daemon and instruct Docker daemon
what to do. The last component is a Command line interface client (CLI). Docker daemon
is communicating with the CLI through REST API, using direct commands, or scripts.
The CLI creates, manages, and deletes images, containers, networks, and data volumes [3].

4.2 Docker architecture
Docker is based on the client-server architecture. A Docker daemon is active on a host
machine and communicates with a user through client using the REST API [15]. Both the
client and the daemon can be run on the same machine or from a cloud. Docker composed
of: containers, images, which serve as read-only templates for containers, registries, which
are libraries of images and services, which allows Docker nodes to cooperate and work
together.

4.2.1 Containers

Docker containers can be understood as lightweight virtual machines that share the re-
sources of a Docker host. Docker containers are a secured and isolated platform and every
single container is built from an image. Containers can be controlled from Docker API
using CLI commands. For example:

12

$ docker start | run | delete | move | stop | rm

Containers can be also inspected using the docker inspect command in the CLI. The
output in the JSON format [3].

Running a container

To run anything in Docker, its environment has to be set up. Firstly, an installation of
Docker Engine has to be done. A good guide for various systems is on the official Docker
documentation website1.

Containers can be run in a data center, a cloud, a local host, or on virtual machines.
Containers are portable, lightweight, and fast, and multiple containers can run simultane-
ously on the same physical computing machine. A container is started using the API or
the CLI.

After a user runs a container, the Docker engine executes the following steps in given
order: Pulls the image. Docker image open database is called Docker hub2. In Docker hub
can be found a long list of both official and adjusted or personalized images. A Docker
image can be cloned from Docker hub by executing the pull command in the CLI, unless
the image already exists on the local host. For example: pulling Zookeeper personalized
for InfiSpector:

$ docker pull mciz/zookeeper -docker - InfiSpector

Then Docker engine creates a new container, mounts a read-write layer, network, IP
address, executes /bin/bash executables command.

4.3 Dockerfile
When there is a need of creating a new image or updating an existing one, user can update
images to Docker hub by the following CLI command:
$ docker commit

and build the image in a localhost environment by CLI command:
$ docker build

A User can also use an automated build using a Dockerfile, where all needed instructions
and commands for assembling an image automatically are stored. For example, building
Docker image from Dockerfile, which is stored in the current directory (“ . ” means that
Dockerfile is in current directory). Docker daemon is running all inner actions of building
the image [3]:
$ docker build .

InfiSpector’s Dockerfiles are available on Docker hub3.
Docker hub enables easy update of Dockerfiles. It also supports link to a hosted reposi-

tory service, which links Docker hub repositories to GitHub4. GitHub is a web cloud service
that allows developers who use the git tool [6] to store their projects. When a git reposi-
tory is updated on GitHub, the update action triggers another action in Docker hub, which

1https://docs.docker.com/engine/installation
2https://hub.docker.com/
3https://hub.docker.com/u/mciz/
4https://github.com/

13

updates its linked repository, and therefore stored Dockerfile in Docker hub. This service
is not necessary, but highly recommended, because it is useful and saves a lot of time.

4.3.1 Instructions in Dockerfile

This is not an enumeration of Dockerfile instructions (in Dockerfile, an instruction has the
meaning of a CLI command), but only of those instructions that are being used in InfiS-
pector’s Dockerfiles. Instructions in a Dockerfile are not case-sensitive, but the convention
is to type them in uppercase.

The list of the used instructions is the following:

• FROM has to be the first instruction in Dockerfile. FROM determines the base image
for a new personalized image.

• MAINTAINER sets the author of an image.

• USER sets user name for RUN and CMD instructions.

• ENV sets environment variable.

• EXPOSE informs Docker on which ports is a container listening.

• RUN will execute any commands and commit the results.

• WORKDIR sets the working directory for the COPY, ADD, RUN, and CMD instructions.

• COPY <src> <dest> copies files from <src> path and paste them to <dest> path.
Regular expressions for choosing files and paths can be used too.

• VOLUME sets a mount point. The RUN instruction initializes the mount point with
any existing data within the base image.

• CMD provides defaults for an executing container.

14

Chapter 5

Openshift

Red Hat’s Openshift Online (referred as to Openshift) is a scalable cloud platform adapted
for application hosting and application development, enabling to manage applications from
a command line or a web client. There are various versions of Openshift. The newest stable
version is 1.2, but special branch of Openshift (NextGen) for developers with limited access
is being used.

5.1 Openshift account
Anybody can try Openshift Online platform for only one month trial version, nevertheless
Red Hat granted special long term access for developers, allowing them to work with the
newest Openshift features. Openshift NextGen is still in development, and can be consid-
ered a bleeding edge technology, which means that unlike stable versions, a lot of features
may not be working correctly. The next consequence of a bleeding edge technology project
is also its deprecated documentation. A big improvement recently done by Red Hat de-
velopers is Openshift web client console, which allows users to manage Openshift cluster,
applications, and allows users to have the overview over all units in Openshift cluster [11].
Openshift NextGen has lots of bugs, but also a great potential to become a favourite, high-
performance, worldwide platform, which can compete with the tuned giants like Amazon
Web Services or Microsoft Azure.

5.2 Architecture of Openshift
Openshift is a layered system using Docker container images with the same purpose, as is
Docker using Docker container images inside its own environment. A thorough description
of Docker can be found in Section 4.2.1.

The Kubernetes tool manages the whole Openshift cluster, and containers in multiple
hosts. The Kubernetes and Docker have an alike architecture and principles. Openshift
Online has many new features. Openshift can do an application management at a scale,
handling images, source code, and deployment.

Openshift is based on small units cooperating together, and running the Kubernetes
cluster, where are stored objects, data, and relations. The objects are communicating via
the REST APIs [15], using controllers for reading and managing the APIs. The whole
Openshift principle is similar to Docker engine. User commands the client, which sends

15

REST API calls to the controllers, which process requests, and synchronize the system to
satisfy user’s requirements [11].

5.2.1 Pod

A pod is an important part of Openshift similar to a Docker container. It is the smallest
computing unit that can be deployed and managed. A pod can contain one ore more Docker
containers. For a full use of Openshift scalability, every pod should have only one Docker
container. Each pod has its own IP address, and therefore access to all ports provided by
Openshift system.

The major difference between Docker containers and pods is that Pods have a lifecycle,
which means that pods are set up with a running Docker container, and after stopping
or deleting the Docker container, all associated pods are cancelled. With a new run of a
Docker container, all pods are recreated [11].

5.2.2 Service

Services are the Kubernetes tool to balance an internal load. Services are the REST [15]
objects. Services are used to allow pods to cooperate and communicate with each other.
Services are used also for setting up the communication to the cluster’s outside “world”.
They allocate IP addresses and ports in Openshift both internally and externally. When a
pod is cancelled after fulfilling its purpose, and in the future is recreated, services can be set
to allocate the same port and IP address, to recreate the pod with the same settings [11].

5.2.3 Route

Routes are the way how to expose a service by giving it an externally reachable hostname
like www.InfiSpector.io. Routes behave like external clients that are mapping services
over Internet protocols (HTTP, HTTPS, TLS, WebSockets) [5].

5.2.4 Image streams

An image stream can be used in an application deployment to automatically create a new
version of the image stored in Openshift registry. An image stream’s purpose and function-
ality is similar to the Docker image repository [3]. An image stream is a virtual environment
for the following: Docker images pushed to Openshift registry, Docker images from external
registries, or other image streams. When an application obtains an alert that there is a
change in the image stream, application triggers a new deployment. At start, a new version
of an application deployment image is created, then the deployment is built, and the new
version of the application deployment is automatically assigned to the application [11].

5.2.5 Templates

A template can be used to create every permitted object in Openshift. An object can be
parameterized within a project.

There are two templates in InfiSpector backend for Druid and Kafka, written and defined
in the YAML format, which is a human-readable data serialization language [18].

The following list explains the basic structures in a template:

16

• Description can be used for searching for a template through Openshift web console.
Description also shows information about the template, template tags, and application
related programming language.

• Labels are included into each object that is created from a template. Labels are
assigned in the object metadata. Labels are an extension of a tag. For example, if
pods are tagged with labels, a service can easily find and interconnect all pods with
the same label.

• Parameters allow both users and templates set environmental variables and config-
urations values of Openshift objects. Values are updated whenever the parameter is
referenced in Openshift, which is being done directly as a string value in the form
${name of the parameter} [11]. Parameters can be also used for gathering user’s
passwords in registrations, because parameter’s values can be assigned also by regu-
lar expressions [12]. There is the example of obtaining the value of user’s password
using the regular expression in the YAML form:

parameters :
− name : PASSWORD

d e s c r i p t i o n : "The random user password "
generate : exp r e s s i on
from : " [a−zA−Z0−9]{12}"

5.2.6 Deployments

Configuration of a deployment sets required state of an application. In InfiSpector case,
there are deployments for Zookeeper, Kafka, Druid, and for Node.js InfiSpector application.

The deployment system provides a configuration template for running applications with
replication scaling and automation in applying application updates. When the configuration
for a deployment is created, a replication controller is set up too by Openshift. A repli-
cation controller is a tool for orchestrating a whole deployment and a replication of a new
application, or replicating already deployed application due to scaling purposes. In every
update of a deployment configuration, the old replication controller is terminated, and right
after termination of the old controller, the new controller is created from a pod template.

5.2.7 Images

An image is a binary that includes all of the requirements necessary for running a single
container in a pod, as well as metadata describing image’s requirements. Containers in
pods are also limited by given hardware resources, which can be increased or decreased if
there is a need to do so. During application development, a single image name can refer
to many versions of the same image over time. To distinguish these versions every image
version has its own unique indentifier, and therefore older versions of the image can be
reused.

Openshift images are in their substance Docker images identified by tags and uploaded
to Openshift registry. A cluster of images tagged by the same label is called an image
stream.

17

5.2.8 Project

Openshift Project (referred to as Project) provides the environment for an application de-
velopment, deployment, and management. In Openshift Online DevPreview (referred to as
Openshift DevPreview) account, where InfiSpector is deployed, it is permitted to have only
one project at given time. Having more projects simultaneously is available in the paid
Openshift Enterprise version. A project is the main tool to access resources through web
graphical client or terminal client (called OC). Every Project detaches the user’s content. A
Project is described by a unique identifier, which is the project name. An optional attribute
visible both in the web console and the OC is description, which provides more detailed
information about project. A Project sets its own set of:

• Objects are functional parts of Openshift and can be declared with templates, e.g.
services, routes, pods, containers, deployments, or images.

• Service accounts act automatically with the access to the project objects.

• Policies are rules and restrictions for the users over objects.

• Constraints are limits for each object. Constraints can be set in special configuration
file, which is described in more detail in Section 8.

A list of projects can be displayed in the OC by the command:

$ oc get p r o j e c t s

Present project is displayed by command:

$ oc get p r o j e c t

Present project can be accessed by command:

$ oc p r o j e c t <name o f pro j e c t >

5.3 Client
Openshift client serves as a tool for handling and managing Openshift a command line.

5.3.1 Openshift versus Amazon Web Services

There are a lot of cloud computing services providers, for example Amazon or Red Hat. The
Amazon Web Services platform(referred to as AWS) is one of the best cloud platforms for
developing and running applications and projects. AWS is a sophisticated platform allowing
to deploy and develop applications based on almost every commonly used technology. It
has a good support, a large user base and a lot of templates for quick setups.

InfiSpector was firstly meant to be deployed on AWS, but the free computational re-
sources offered to students were unsatisfactory. InfiSpector deployment to AWS was not
possible under given circumstances.

After the cloud services providers research, Red Hat Openshift Online NextGen (referred
to as Openshift) was chosen. Red Hat granted a free one year account to Openshift Preview,
which is developer version of Openshift Online Enterprise. That was the main reason for
picking Openshift over other platforms. Special one year free developer account is not

18

ordinary offer on the Red Hat webpage1. It was granted because of InfiSpector is an official
project of Red Hat laboratory. Common length of free trial version for Openshift is one
month. Your account is being deleted after one month of trial version, but user can apply
for another one month trial account. Openshift is a fast growing, great platform with big
further potential, which provides tools for developing, deployment and running applications,
but right now it is in a developing phase and its documentation is not actual and partially
deprecated. There are important actions, which are not described in documentation or
documentation is outdated or invalid. For example, in documentation is a possibility to
deploy application from Docker hub using only Dockerfile and configuration files, which
cannot be done. Application has to be build locally by Docker, tagged in Openshift client
and pushed to Openshift registry to upload an image.

5.3.2 Installing Openshift client

In order to run Openshift client tool on a user’s local machine in a terminal, three prere-
quisities have to be satisfied. First of the compulsory requirements is to have established
GitHub account2, have Git3 set up, and authenticate to the Openshift account with the
GitHub account. Secondly, the user has to be able to access a running instance of Openshift
Online. Lastly, the instance has to be pre-configured by a cluster administrator or directly
from the image stream or the template.

After fulfilling the prerequisities, client installation differs on each operation system, but
the core of the installation is similar. The PATH to an unpacked archive with Openshift
client (referred to as OC) binaries has to be added to operation system PATHS. For Linux,
downloaded tar.gz archive unpack to the folder and move OC binary on PATH. Archive
can be unpacked by command from Linux terminal:

$ ta r −xf <packed_archive>

To verify correctness of latest steps, run in terminal:

$ echo $PATH

First command in OC should be:

$ oc l o g i n

Which sets up OC and establishes a session to an Openshift server with credencials and
configuration files [11]. Configuration files can be accessed by OC command:

$ oc c o n f i g view

5.3.3 Useful OC commands

Here is a list of the useful OC commands. The commands are divided into 7 groups:
basic, build and deploy, application management, troubleshooting and debugging, advanced,
settings, other [11]. This is a listing of a selection of useful CLI commands. The rest of the
CLI commands is in Section B.1.

• $ oc --help

1Red Hat Openshift website: https://www.openshift.com
2https://github.com
3https://git-scm.com/

19

Displays useful commands in terminal.

• $ oc new - project <project_name >

Sets up a new project with given name.

• $ oc new -app <app_name >

Sets up a new application with given name.

• $ oc status

Shows an overview of the current project.

• $ oc describe <object >

This command shows details of a specific resource or group of resources. For example,
internal substeps in a pod deployment can be monitored.

• $ oc edit <object >

Edits a object on the server. It is used mainly for quick small fixes.

20

Chapter 6

InfiSpector infrastructure in
Openshift

This chapter describes implementation of the InfiSpector architecture in Openshift, espe-
cially its architecture and configuration files of the InfiSpector backend.

6.1 InfiSpector architecture in Openshift
The core an InfiSpector application deployed in Openshift Online are 3 pods, one for each
Kafka, Druid, and InfiSpector. There is no solitary Zookeeper pod because the Kafka
distribution contains its own Zookeeper server, and due to optimization both Kafka and
Zookeeper containers run in a single Kafka pod. More information about optimizations of
InfiSpector deployment can be found in Chapter 8. The whole InfiSpector architecture is
shown in Figure 6.1.

The Kafka pod is generated from Kafka, as described in Section 7.6. Kafka pod con-
tains:

• Kafka container, where Kafka application is running.

• Zookeeper container, where Zookeeper application is running.

• Kafka service communicating with the port 9092, which exposes Kafka container to
an internal access within pods or containers in Openshift.

• Kafka service communicating with the port 2181, which exposes Zookeeper container
to an internal access within pods or containers in Openshift.

• Kafka route exposing Kafka pod via the port 9092 to the Infinispan data communi-
cation outside Openshift.

Another pod is the Druid pod, which is generated from Druid template. Druid pod
contains:

• Druid container, where Druid database is running.

• Druid service communicating with the port 8084, which exposes Druid container to
an internal access within pods or containers in Openshift.

21

• InfiSpector_Druid_sample_data.json file, which is only for testing purposes, and con-
tains sample data from Kafka in the JSON format.

The last pod is the InfiSpector pod, which is generated from Openshift built–in
Node.js template and InfiSpector source code from InfiSpector GitHub repository1. In-
fiSpector pod contains:

• InfiSpector container, where InfiSpector application is running.

• InfiSpector service communicating with the port 8080, which exposes InfiSpector con-
tainer to an internal access within pods or containers in Openshift.

• InfiSpector route exposing InfiSpector pod by the port 8080, to InfiSpector web page
outside Openshift.

1https://github.com/infinispan/infispector

22

Figure 6.1: Diagram of InfiSpector architecture in Openshift

23

Chapter 7

InfiSpector deployment in
Openshift

This chapter is the core of this Bachelor’s thesis and describes implementation of InfiSpector
backend configuration files including its Dockerfiles, templates, services, and routes.

The Openshift Online NextGen, which is the version of Openshift, where
InfiSpector is deployed, is still in development, and is being developed quickly.
Therefore documentation, guides, quickstarts, and tools can differ in a near
future.

Deploying an application using templates is the recommended way, how to deploy an
application in Openshift. To use a template, there is a need to have an uploaded image of
the application or the parts of the application in Openshift registry.

There are two options how get an image ready to be processed by the template. The
first option is to deploy an application by the Source to image (S2I) method. S2I comes
handy when the user is an application developer and has access to the source code of the
application. To deploy an application by S2I, there is a need to have the source code of the
application. After processing the source code using S2I, the output of S2I is the wanted
image, which can be further used by the application template to make a deployment. S2I
also stores the image in Openshift registry automatically. InfiSpector uses the S2I to create
the Node.js application. The second option is to use Dockerfiles of Kafka, Druid, and
Zookeeper directly, but this method is deprecated and no longer supported. Openshift is
still in development, which is the reason why Openshift documentation is inconsistent. In
November 2016, the use of Dockerfiles directly was a quite easy solution. There was a simple
guide in Openshift documentation how to deploy an application directly by Dockerfiles, so
the Dockerfiles method was chosen as a solution in InfiSpector deployment. Despite the
fact that direct deployment by using only Dockerfiles was still in Openshift documentation,
it was no longer supported by Openshift. Nowadays, the application deployment using
Dockerfiles is supported by Openshift with the condition that Openshift registry is being
used in the process.

The complexity of the application backend deployment process depends on many factors,
for example, on size of the application, the number of tools being used in the development
process and the interconnection of the tools, how many requirements for scalability, opti-
mization and speed the application has.

For a good cooperation of Zookeeper, Kafka, Druid, and InfiSpector Node.js application,
there is a need for a deeper configuration, because applications downloaded by Dockerfiles

24

are from official repositories, and therefore blank without any configuration. Configura-
tion files for Zookeeper, Kafka, and Druid are enclosed in Dockerfiles. InfiSpector Node.js
application is not being built from Dockerfiles, but directly from a source code in InfiSpec-
tor GitHub repository1, so there is no need to make the configuration file for InfiSpector
Node.js application.

7.1 Zookeeper configuration
In InfiSpector, Zookeeper version 3.4.6 is being used in InfiSpector, which is accessible from
official Apache Zookeeper distribution page2.

First, for using configuration file, copy zoo.cfg to zoo_sample.cfg that is situated in
folder zookeeper-version/conf and these parameters has been set for InfiSpector’s needs:

• tickTime is used to do heartbeats and the minimum session timeout will be twice the
tickTime. The tickTime unit is in milliseconds. The tickTime is set to 2000 value.

• initLimit is number of ticks seen as a maximal time limit when a follower is connected
to a leader during initialization. It is set to 10, which corresponds to 20 seconds
(maximal time limit = initLimit * tickTime).

• syncLimit is the number of ticks that can pass between sending a request from a
follower to a leader and getting an acknowledgement. SyncLimit can be represented
in time too. The pattern for syncLimit is similar to initLimit (syncLimit time = syn-
cLimit * tickTime). SyncLimit is set to 5, which corresponds to 10 seconds.

• dataDir is a path to the folder to store in-memory data, transaction logs and database
updates. The dataDir folder path value is set to /tmp/zookeeper.

• clientPort is the port for client connections on the Internet. In InfiSpector’s Zookeeper
the clientPort is set to 2181.

• maxClientCnxns is not obligatory. The MaxClinetCnxns stands for maximum number
of client connections. The MaxClinetCnxns is not set in InfiSpector so far.

The Zookeeper single server with the configuration set in zoo_sample.cfg can be run
from terminal using the command:
$ bash zookeeper -3.4.6/ bin/ zkServer .sh start

7.2 Kafka configuration
First, Zookeeper server should be started, because Kafka needs Zookeeper for its proper
running. There are 2 possible ways how to start Zookeeper server. One is to start the
Zookeeper server provided by Kafka: kafka-version/bin/zookeeper-server-start.sh
config/zookeeper.properties, the second one is to start the Zookeeper server from
Zookeeper itself. We are using Java client with Scala [17] version 2.11 and Kafka version
0.8.2.2, which is accessible from the official Apache Kafka download page mirror3.

1https://github.com/infinispan/infispector
2http://www-us.apache.org/dist/zookeeper
3http://mirror.nexcess.net/apache/kafka/0.8.2.2/

25

In configuration files, which can be found in config folder - kafka_2.11-0.8.2.2/
config, are 7 configuration files with the .properties suffix. For InfiSpector purposes,
there is a need to adjust the following files with the .properties suffix. Other files can be
set up with default values.

• zookeeper.properties is a configuration file for the definition of the interconnection
Kafka with Zookeeper. The port for TCP protocol communication has to be set
using the clientPort variable, the set value 2181 is the same as was set in Zookeeper
zoo_sample.cfg file, and it is the value of 2181. The variable dataDir has to be
assigned with the same value as was set in Zookeeper too, and it is the value of
/tmp/zookeeper. The variable maxClientCnxns can be set as value 0.

• server.properties is dictating basic settings of Kafka severs. Server.properties
is divided into 6 parts: Server Basics, Socket Server Settings, Log Basics, Log Flush
Policy, Log Retention Policy and Zookeeper. For InfiSpector’s needs almost all vari-
ables are set to the default values, except the following variables: In section Socket
Server Settings the variable port has to be set for future communication via TCP.
The communication will take place between a NoSQL database Druid and with In-
finispan servers. The port variable has to be set to the same value 9092 as in the
file servis.properties. In the section Zookeeper, the variable zookeeper.connect
has to be set with the value localhost:2181. The localhost stands for Internet
protocol (called IP) address with value of 127.0.0.1 (referred to as localhost) and
the port 2181 is the port number, which has to be identical with the value of pa-
rameter in zoo_sample.cfg Zookeeper configuration file, and therefore identical in
zookeeper.properties Kafka configuration file.

• producer.properties is coordinating streams of records. In the Producer Basics
part set value of the variable metadata.broker.list to localhost:9092. The port
value 9092 stands for the port for TCP connection, its value has to be the same as the
value of port in servis.properties. Variable metadata.broker.list is setting a list
of brokers, which are collecting data from the whole cluster in format host1:port1,
host2:port2, etc.. If a big data are processed, compression for all generated data
by Kafka can be set as none or gzip [1] in the variable compression.codec.

• consumer.properties file is looking after settings of communication with Zookeeper,
and the applications connected to Kafka. The variable zookeeper.connect has to
be set with pair: Internet protocol (IP) and the port number for TCP protocol con-
nection. The value of the IP address can be set to localhost, and its port value has
to be set as 2181, which is the same port value as was set in Zookeeper configuration
file.

Druid configuration

In InfiSpector is being used only one Real-time standalone node, not the whole Druid
cluster.

Specification file of configuration is in InfiSpector InfiSpectorDruid.spec and path to
the file is: InfiSpector/kafka_druid_infrasctructure/InfiSpectorDruid.spec. The
InfiSpectorDruid.spec is written in a JSON format. The InfiSpectorDruid.spec has
many sections. In the ioConfig section are set ports, addresses, other parameters for data

26

transfer, and connection to Zookeeper and Kafka. In the tuningConfig section are set types
of a node (Real-time), size of memory, and rejection policy.

7.3 Docker operations
To make InfiSpector application backend deployment possible, Kafka, Druid, and Zookeeper
Dockerfiles, Docker and Openshift registry has to be used in the process.

7.3.1 Zookeeper Dockerfile

Zookeeper Dockerfile sets the local environment that Docker daemon needs for creating
Zookeeper image and afterwards the container. InfiSpector’s Dockerfile for Zookeeper can
be found at Docker hub4.

• FROM is set as the source base image jboss/base-jdk (Java version 7), because it
contains the image used as a base for JBoss community images that require the Java
Development Kit, which Zookeeper requires too.
Instruction: FROM jboss/base-jdk:7

• USER is set as a root user at the beginning. The root user is required for updating the
base image, installing utilities, and changing access permissions of files and folders.
Instruction: USER root
After installing and changing access permissions, a user have to be switched to the
non-root user jboss, because Openshift prohibits Dockerfiles, which has to execute
the CMD instruction as the root user.
Instruction: USER jboss
There were issues with the Openshift non-root setting, because this issue is not prop-
erly described in the Openshift documentation5. There is only one working solution,
which was advised by Openshift community6.

• ENV sets the environmental variable ZOOKEEPER_VERSION to 3.4.6 value, which is used
in InfiSpector. The environmental variables, which are set in Docker, are included
and used in Openshift automatically as well.
Instruction: ENV ZOOKEEPER_VERSION 3.4.6

• EXPOSE sets communication on the ports 2181 for Zookeeper, 2888 for Kafka, 3888
for Druid cluster, and 8084 for the real-time standalone Druid node.
Instruction: EXPOSE 2181 2888 3888 8084

• RUN occurs three times in the Zookeper’s Dockerfile. The first occurrence is executing
chain of commands, which downloads and prepares Zookeeper, the updates base image
system, and copies Zookeeper and its configuration file to auxiliary folders.
The second RUN command changes the access permissions to 755, which is the Unix
system octal encoding for granted permission to read, write, and execute files. Then
bash runs Zookeeper’s start.sh bash script, which starts the Zookeeper server in a
foreground.

4https://hub.docker.com/r/mciz/zookeeper-docker-infispector/
5https://www.openshift.com/
6https://stackoverflow.com/questions/41148127/openshift-online-zookeeper-from-dockerfile-pod-crash-

loop-back-off

27

Instruction: RUN chmod 755 /opt/zookeeper/bin/run.sh
The last RUN command changes permission for the user jboss to regular group read
and write, because Openshift prohibits Dockerfiles, which has to execute the
CMD instruction as the root user..
Instruction: RUN chown -R jboss:0 /opt/zookeeper
&& chmod -R g+rw /opt/zookeeper

• WORKDIR sets current working directory to /opt/zookeeper.
Instruction: WORKDIR /opt/zookeeper

• COPY instruction copies bash script run.sh, which runs started zookeeper server, to
bin folder.
Instruction: run.sh ./bin/

• VOLUME sets the mount point to the folder /opt/zookeeper/conf.
Instruction: VOLUME [”/opt/zookeeper/conf”]

• CMD is executing the bash script run.sh, which runs Zookeeper’s server in foreground.
Instruction: CMD [”/opt/zookeeper/bin/run.sh”]

7.3.2 Kafka Dockerfile

Kafka Dockerfile sets the local environment that Docker daemon needs for creating Kafka
image and afterwards the container. InfiSpector’s Dockerfile for Kafka can be found at
Docker hub 7.

• FROM is set as the source base image openjdk:8-jre-alpine (Java version 8). Kafka
has a different base image than Zookeeper, because of the performance testing, where
was found that openjdk:8-jre-alpine (Java version 8) is well suited for Kafka. The
Alpine8 image is a minimal Linux distribution designed with containers in a mind.
Instruction: FROM openjdk:8-jre-alpine

• USER is set as root at the beginning. The root user is required for updating the base
image, installing utilities and changing the access permissions of files and folders.
Instruction: USER root
After installing and changing access permissions, a user have to be switched to the
non-root user (jboss), because Openshift prohibits Dockerfiles, which has to execute
the CMD instruction as the root user.
Instruction: USER jboss
There were issues with Openshift non-root setting, because this issue is not properly
described in Openshift documentation9. This only working solution solution was
advised by the Openshift community10.

• ENV sets the environmental variables SCALA_VERSION to 2.11 and
KAFKA_VERSION to 0.8.2.2 values, which are used in InfiSpector. The environmental
variables that are set in Docker are included and used in Openshift automatically as

7https://hub.docker.com/r/mciz/kafka-docker-infispector/
8https://hub.docker.com/_alpine/
9https://www.openshift.com/

10https://stackoverflow.com/questions/41148127/openshift-online-zookeeper-from-dockerfile-pod-crash-
loop-back-off

28

well. There are also the auxiliary ENV variables for SCALA, Kafka, and for Kafka
main directory. The last but not least, the ENV variable ADVERTISED_HOSTNAME to
127.0.0.1 for setting the Kafka’s internal server IP address.
Example instruction: ENV KAFKA_VERSION 3.4.6

• EXPOSE is set to communicate on ports 2181 for Zookeeper, 2888 for Kafka, 3888 for
Druid cluster, and 8084 for real-time standalone Druid node.
Instruction: EXPOSE 2181 2888 3888 8084

• RUN occurs two times in Kafka’s Dockerfile. The first occurrence is executing chain
of commands, which downloads and prepares Kafka, updates the base image system,
and copies Kafka to auxiliary folders.
The second RUN command changes permissions for the user jboss to regular group
read and write permission, because Openshift has prohibited Dockerfiles sup-
porting CMD with root user.
Instruction: RUN chown -R jboss:0 /opt/kafka && chmod -R g+rw /opt/kafka

• WORKDIR sets current working directory to /opt/kafka.
Instruction: WORKDIR /opt/kafka

• VOLUME sets mount point to folder /opt/kafka/bin.
Instruction: VOLUME [”/opt/kafka/bin”]

• CMD is executing Kafka’s internal server script kafka-server-start.sh for running
Kafka with configuration set in file server.properties.
Instruction: CMD [”opt/kafka/bin/kafka-server-start.sh”,
”opt/kafka/config/server.properties”]

7.3.3 Druid Dockerfile

Druid Dockerfile sets the local environment that Docker daemon needs for creating Druid
image and afterwards the container. InfiSpector’s Dockerfile for Druid can be found at
Docker hub11.

This Dockerfile is similar to Kafka’s and Zookeeper’s Dockerfile, therefore only differ-
ences and important instructions will be described.

• FROM is set as the source base image progrium/busybox, which is Linux lightweight
distribution, which is the base for minimal Linux distribution Alpine used in Kafka’s
Dockerfile 7.3.2.
Instruction: FROM progrium/busybox

• USER - both the root and the jboss users are applied.

• EXPOSE is set to communicate on ports 2181 for Druid, 2888 for Kafka, 3888 for Druid
cluster, and 8084 for the real-time standalone Druid node.
Instruction: EXPOSE 2181 2888 3888 8084

• COPY instruction copies specification file InfiSpectorDruid.spec to the config folder.
Instruction: COPY InfiSpectorDruid.spec /opt/druid/config

11https://hub.docker.com/r/mciz/druid-docker-infispector/

29

• VOLUME sets mount point to folder /opt/Druid/bin.
Instruction: VOLUME [”/opt/Druid/bin”]

• CMD is executing Java command to run a real-time standalone Druid node with detailed
configuration in the specification file InfiSpectorDruid.spec.
Instruction:

CMD [’’java ’’, ’’-Xmx512m ’’, ’’-Duser. timezone =UTC ’’, ’’-
Dfile. encoding =UTF -8’’, ’’-Ddruid . realtime . specFile =/
opt/druid/ config / InfiSpectorDruid .spec ’’, ’’-classpath
’’, ’’config / _common : config / realtime :lib/*’’, ’’io.
druid.cli.Main server ’’, ’’realtime ’’]

7.3.4 Building Dockerfiles

Firstly, Docker and also Docker daemon have to be active and running in the local machine.
Secondly, Dockerfiles for Kafka, Druid and Zookeeper have to be available in a file system of
the local machine. It is recommended, to have Dockerfiles in the root folder of the project.
The next step is to build Kafka, Druid, and Zookeeper images from Dockerfiles in the local
machine by Docker. Build Kafka image with Docker command:

$ docker build -t kafka: latest .

There is the analysis of Docker command for building Kafka image: docker build is the
part which tells Docker daemon to build Docker image, -t kafka:latest informs Docker
daemon that the built image will be called kafka and the version of Kafka image is being
called latest. The last Docker command argument is the dot informing Docker daemon
that Kafka Dockerfile is in the root directory of the project. After the execution of Docker
command in terminal, Docker daemon starts to execute Kafka Dockerfile instructions in a
given order.

Similar commands are being executed for the Druid and Zookeeper Dockerfiles. All the
three above mentioned applications have their own solitary folders, where their Dockerfiles
are being stored:

$ docker build -t zookeeper : latest <path to Zookeeper
Dockerfile >

$ docker build -t druid: latest <path to Druid Dockerfile >

The Docker images created by the Docker build command are now stored in a local
machine in Docker registry tool. Now, built Docker images in Docker registry has to be
transported into Openshift registry tool. To check if InfiSpector backend is built and stored
in Docker registry properly can be seen after executing the command:

$ docker images

The Docker images command lists all built and pulled Docker images in the local
machine. There are significant columns in the Docker images listing: Repository, which
represents concrete names of images. Tag column displays version of built images, for

30

example, latest, v2, and 2.0. Image ID stands for the image’s unique indentifier in Docker.
Created is showing the date of images creation, pulling, or the last update. The last column
size informs about the size of the images. If building process of the Kafka, Druid and
Zookeeper images was successful, Docker images listing should be showing at least 4 images.
The first image is the CentOS12 system, which delivers environment for Java applications
(Druid, Kafka, Zookeeper), other images should be images for support InfiSpector backend
environment.

7.4 Openshift operations
The next step in the InfiSpector application backend deployment is a cooperation with
Openshift. The Openshift Online client (CLI) is being used for communication with Open-
shift and also for Openshift managing from a terminal. To get logged in CLI, the Openshift
Online web console has to be used to generate the unique token, which serves as an iden-
tification of a user in Openshift system. But for logging into the Openshift Online web
console, a GitHub account has to be set up and confirmed by Red Hat. After logging into
web console with the GitHub account, the drop–down menu in the top right hand corner
of the web console should be opened, which is symbolized by the down arrow next to the
user’s name. Then the Command Line Tools from the drop–down menu should be chosen.
In the Command Line Tools page, the first Openshift command specimen with clickable
part –token=...click to show token... can be found under the introduction text. To get
the token, command part ...click to show token... should be clicked. After clicking on it,
the Openshift Online web console generates the whole oc login command, which should be
copied and executed in a terminal in a local machine:

$ oc login https :// api. preview . openshift .com
--token =... click to show token ...

Finally, user is now logged into Openshift by the CLI in a terminal. Now, a new
project has to be set up from the CLI command line or the web console, but using CLI is
recommended, because executing a command in a CLI has higher priority and also better
functionality than clicking a button in the web console. Openshift is still in a development
phase and some functions are not working properly, especially in the web console, for
example, clicking the button Delete the deployment in the web console shows the message
of terminating of the specific deployment. In the reality, the chosen deployment is never
going to be terminated, but a simple command in a CLI terminates the specific deployment
immediately.

Every application developed or deployed in Openshift, has to have at least one project
established. The new project especially for InfiSpector can be set up by the command:

$ oc new - project InfiSpector

7.5 Openshift registry
The Openshift registry is a scalable tool for storing and distributing Docker images. Open-
shift registry is a tool based on Docker registry tool [3].

12https://www.centos.org/

31

Openshift is manipulating with the internal Docker registry. In the case of InfiSpector,
Docker formatted images were built in a local machine, pushed into the Docker registry,
which is running also in a local machine by active Docker daemon, and then pushed built
images from Docker registry to Openshift registry by Docker itself.

When the environment for using the Openshift registry is prepared by both Docker
and Openshift, Docker can be granted to have an access to Openshift registry after the
authentication in the CLI by the command:
$ docker login -u ‘oc whoami ‘ -p ‘oc whoami -t‘

registry . preview . openshift .com

The next step is to tag the images. The tagging has 2 parts. The first part of the tagging
is adding a unique Image ID of the chosen image in the Docker registry in a local machine.
The second part is adding the future path in Openshift registry in the form: <Openshift
registry url>/<project name>/<image name>. To find out what is the value Image ID of
Kafka image, use the docker images command:
$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
druid latest 4229 d43c709c 3 weeks ago 675 MB
zookeeper latest 934 d12924de8 3 weeks ago 175 MB
kafka latest 22 bb463f6f63 3 weeks ago 422 MB
centos latest 98 d35105a391 6 weeks ago 193 MB

$ docker tag 22 bb463f6f63 registry . preview . openshift .com/Infi
Spector /kafka

The same operations, which have been done at Kafka image tagging, do tagging for
both the Druid Docker image and the Zookeeper Docker image:
$ docker tag 4229 d43c709c registry . preview . openshift .com/Infi

Spector /druid

$ docker tag 934 d12924de8 registry . preview . openshift .com/Infi
Spector / zookeeper

The next step is to upload the tagged images to the Openshift registry by executing the
commands:
$ docker push registry . preview . openshift .com/Infi

Spector /kafka

$ docker push registry . preview . openshift .com/Infi
Spector /druid

$ docker push registry . preview . openshift .com/Infi
Spector / zookeeper

The Docker images, which are pushed into the Openshift registry, are saved as image
streams. A verification if all the images were pushed from the Docker registry to the

32

Openshift registry successfully can be done by Openshift image streams listing executed by
the CLI command:

$ oc get is

NAME DOCKER REPO TAGS
druid 172.30.47.227:5000/ InfiSpector /druid latest
zookeeper 172.30.47.227:5000/ InfiSpector / zookeeper latest
kafka 172.30.47.227:5000/ InfiSpector /kafka latest

7.6 Templates
A template describes a composition of Openshift objects, their metadata and settings. Ob-
jects are generated or updated from a template, but the object update progresses differently.
Every created object in Openshift that has to be updated is terminated and recreated with
updated settings.

A template can be written in both the JSON and the YAML form [18]. In InfiSpec-
tor, templates are written in the YAML form and they are stored in InfiSpector GitHub
repository13. For InfiSpector Node.js application is a template created in the Openshift
web console from the built-in Node.js template, but for Kafka, Zookeeper, and Druid are
templates created by hand.

7.6.1 Kafka template with Zookeeper

Kafka template stores every setting, which is needed to create both Kafka and Zookeeper
Openshift applications.

Kafka, in its own official distribution, has a built-in Zookeeper server, which
is used instead of a solitary Zookeeper server due to an optimization.

The complete Kafka template in the YAML form can be found in Section B.2.1. Here
is the listing, which describes only the most important parts of the Kafka template:

• Metadata provides a general description and contains the name of the Kafka template.

• Parameters provides information about Kafka Openshift registry image and the prefix
for the each of Kafka object created by the Kafka template.

• Objects is the listing of all objects, which are created from the Kafka template, their
deployment configuration, names, number of replicas, and containers. There are two
containers in the Kafka template: Zookeeper and Kafka container. In the Kafka
template are specified container’s names, commands for starting servers with their
arguments, and ports, through which are containers exposed to other containers or
pods in the project.

7.6.2 Kafka service with Zookeeper

Services are assigned an IP address and a port pair, when they are accessed. Due to an
optimization, Kafka and Zookeeper containers are in the same pod and have their own
service.

13https://github.com/infinispan/infispector

33

The complete Kafka service in the YAML form can be found in Section B.3.1. There is
the listing describing Kafka service:

• Metadata provides a general description and contains the name of the Kafka service.

• Spec describes information about the ports, through which are containers exposed to
other containers or pods in InfiSpector. The port for the Kafka container has value
9092 and for the Zookeeper container has value 2181.

• Selector specifies, which Kafka service is linked with the Kafka deployment, which
is created from Kafka template.

7.6.3 Druid template

Druid template stores every setting which is needed to create Druid Openshift application.
The complete Druid template in the YAML form can be found in Section B.2.2. There

is the listing describing only the most important parts of the Druid template:

• Metadata provides a general description and and contains the name of Druid template.

• Parameters provides information about the Druid Openshift registry image and the
prefix for the each of object created by the Druid template.

• Objects is the listing of all objects, which are created from the Druid template,
their deployment configuration, names, number of replicas, and containers. There
is one Druid container generated from the Druid template. In the Druid template
are specified container’s name, commands for starting the standalone realtime Druid
server with its arguments, and ports, through which is container exposed to other
containers or pods in the project.

7.6.4 Druid service

The complete Druid service in the YAML form can be found in Section B.3.2. There is the
listing describing the Druid service:

• Metadata provides a general description and contains the name of the Druid service.

• Spec describes information about the ports, through which are containers exposed to
other containers or pods in InfiSpector. The port for Druid container has value 9092
and for Zookeeper container has the value 2181.

• Selector specifies that Druid service is linked with Druid deployment, which is cre-
ated from the Druid template.

7.6.5 InfiSpector template and service

The InfiSpector template differs from other templates, because the InfiSpector template was
created in Openshift web console from the built-in Javascript Node.js Openshift template
by the following: Firstly ,the Openshift web console has to be set up and user should
be navigated through creation of a new Openshift project. Clicking the “Add to project”
button in the top of the Openshift web console page, the catalog of Openshift built-in
templates is opened. Then the Javascript template should be picked and user should

34

continued through the Node.js builds source code by clicking the “select” button. Lastly, a
name of the template and also application name should be filled and added link to GitHub
repository with application source code. In InfiSpector case is the GitHub link InfiSpector
GitHub repository14.

Using the Openshift web console is easier solution when an application source is a source
code, not a Docker image. InfiSpector service was created automatically during the process
of creating the InfiSpector template.

InfiSpector route

The InfiSpector route exposes the provisional non–secured InfiSpector domain15 hostname
InfiSpector4.InfiSpector.44fs.preview.openshiftapps.com, which is reachable from
outside of Openshift by external clients. The provisional domain hostname will be
different in every deployment update.

The complete InfiSpector route in the YAML form can be found in Section B.4.1. There
is the listing describing the most important parts of the InfiSpector route:

• Metadata provides a general description, namespace, labels, and the name of InfiS-
pector route.

• Spec is showing InfiSpector domain hostname and service, which are exposed by
the InfiSpector domain hostname and the port, which is paired with the InfiSpector
domain hostname with the value 8080.

7.7 Running InfiSpector backend applications
The current situation in InfiSpector is that there are pushed Docker images of the InfiSpec-
tor backend applications into the Openshift registry, InfiSpector is set up in Openshift and
all Openshift configuration and template files in the YAML form for InfiSpector backend
applications are already prepared and pushed into the InfiSpector GitHub repository.

The next step is to add YAML files into Openshift. For easier manipulation with
templates, services, and potential routes YAML files were merged into the one configuration
YAML file each for Druid, Kafka, and InfiSpector. The final merged configuration file for
Kafka and Zookeeper tool is shown in Section B.5.

For adding the final merged configuration file from InfiSpector GitHub repository to the
Openshift InfiSpector, the specific CLI command should be used:

$ oc create -f https :// raw. githubusercontent .com/ InfiSpector /\
path/to/ merged / configuration /file/kafka - config .yaml

$ oc create -f https :// raw. githubusercontent .com/ InfiSpector /\
path/to/ merged / configuration /file/druid - config .yaml

$ oc create -f https :// raw. githubusercontent .com/ InfiSpector /\
path/to/route/ configuration /file/ InfiSpector -route.yaml

14https://github.com/infinispan/infispector
15https://tools.ietf.org/html/rfc1034

35

Because the InfiSpector Node.js application template was created from a built-in Node.js
Openshift template, which created also InfiSpector service, so only the InfiSpector route
was added from the GitHub to Openshift InfiSpector project. Additionally, InfiSpector
Node.js application is also deployed and already running which was arranged by Openshift
automatically after InfiSpector Node.js template creation in Openshift web console.

The next step is to build and deploy Kafka with Zookeeper and Druid templates into
running Openshift applications. Everything is prepared, so only execution of the specific
CLI commands for the new applications creation remains:

$ oc new -app kafka

$ oc new -app druid

The progress of deploying both Kafka and Druid applications can be tracked by the
Openshift CLI commands:

to show the list of the pods in Openshift
$ oc get pods

NAME READY STATUS RESTARTS
kafka -1- bdd89 2/2 Running 3
druid -3-9 bkld 1/1 Running 1
InfiSpector4 -2-4 mm9m 1/1 Running 1
InfiSpector4 -2- build 0/1 Completed 0

to look deeply in the specific pod
$ oc describe pod kafka -1- bdd89

After checking the listing above, it is obvious that the Kafka pod with Zookeeper, the
Druid pod, and the InfiSpector pod are running without errors. The Remote deployment
of InfiSpector to Openshift Online is completed successfully.

36

Chapter 8

Optimal working Openshift
solution for InfiSpector

Openshift Online NextGen Preview account (called account), which was granted as a free
account for a one year duration by Red Hat, for the Remote Deployment of InfiSpector to
Openshift Online purposes, has limited resources.

The account is allowed to have only one project at the same time, in addition, the
account has only limited resources that are limited to four cores of CPU and two GiB
of a memory. Each of four containers in the InfiSpector deployment occupies one CPU
core, therefore InfiSpector is using every CPU core that Openshift offers. The Zookeeper
container is using maximally 307 MiB, the Kafka container is using maximally 307 MiB,
the Druid container is using up to 512 MiB, and the InfiSpector container is using up
to 512 MiB. All containers in total are using up to 1638 MiB of a memory. Loading
InfiSpector Node.js web page is slow, because of the low memory resources assigned to the
container with InfiSpector. Despite the fact that there are still 362 MiB of a free memory
in the Openshift that free memory cannot be assigned to anything. If the 362 MiB of a
free memory are being used, whole Openshift project collapses in the next re–deployment.
New supporting deployment nodes, which are automatically created in every deployment,
demands at least 350 MiB for their running.

In the first project plan, there was the solitary Zookeeper pod, to enable Zookeeper to
scale. Because of a lack of a memory, the Zookeeper solitary pod was terminated. Instead
of the Zookeeper solitary pod was used a container with Kafka’s built–in Zookeeper server
inside the Kafka pod.

8.1 Future directions
There are the following issues and implements in the InfiSpector remote deployment in
Openshift that can be fixed in the near future:

• Implement environmental variables to the Dockerfiles, to easily change versions of
tools in the future.

• The input data to InfiSpector should flow through Kafka, then be transported to
Druid, and finally be delivered to InfiSpector Node.js server which is communicating
with the front–end. Because of the issue with setting up secured binary route from

37

Openshift, data are injected to InfiSpector in the JSON file right into Druid database.
So one of the future directions is to put secured Kafka’s route into operation.

• Change the domain InfiSpector generated name, because the hostname
InfiSpector4.InfiSpector.44fs.preview.openshiftapps.com generated by Open-
shift1 is not practical, and this name is changing after every deployment.

• InfiSpector should be able to process a large amount of data, e.g. 18 TiB of Infinispan
cluster logs, but with current computational resources, the scaling, and therefore faster
data processing, is almost impossible, so a goal is to get more computational resources
in Openshift Online, switch from Openshift Online to Openshift Online Enterprise, or
install and run Openshift locally on a server or a computer. Openshift running locally
has the same functionalities as Openshift Online, but the computational resources can
be increased.

1https://tools.ietf.org/html/rfc1034

38

Chapter 9

Conclusion

The aim of this Bachelor’s thesis is to deploy InfiSpector tool to a cloud environment
and provide easy deployment of new versions of InfiSpector during its development. The
secondary goal of this thesis is to familiarize Infinispan community, especially developers
with InfiSpector tool, how to set up InfiSpector backend, deploy InfiSpector on a cloud
service, and make a guide how to deploy complex application on Openshift cloud service.

After the research and comparison of cloud environments, Openshift Online containers
application combined with Docker tool were chosen as the most suitable way for running
and developing InfiSpector tool cloud infrastructure.

The theoretical background of Infinispan cache cluster, Docker with Dockerfiles, and
Openshift has been studied and applied in practice.

The way how to deploy InfiSpector to Openshift was discussed with the InfiSpector
community. InfiSpector deployment to Openshift was successfully done. Working Docker-
files, Docker images and their application setting of InfiSpector backend applications has
been created and successfully pushed into Openshift registry. Openshift templates, services
and routes for InfiSpector backend has been created, deployed and are running.

Despite the fact that a working InfiSpector deployment to Openshift was successfully
performed, InfiSpector backend functionality is not complete. Openshift Online did not
offer as much resources and admin privileges as was needed for putting InfiSpector fully
into operation which caused two issues. The first issue is that Openshift cannot process big
data logs, because of the Openshift Online computational limitation that does not allow
InfiSpector to scale accordingly. Second issue is that the secured binary Kafka route which
allows external sources to send data into InfiSpector, is not functional due to Openshift
Online admin privileges restriction. Now, InfiSpector data input is a JSON format docu-
ment that is injected into Druid instead of Kafka. Both issues can be solved by installing
and running Openshift Online on a local machine, or switching from Openshift Online to
Openshift Online Enterprise.

The outcome of this thesis as a part of the official distribution of InfiSpector was in-
troduced at DevConf 2017, and will be presented in Red Hat as a part of the Red Hat
Laboratory at FIT conference in May 2017.

39

Bibliography

[1] Apache Software Foundation: Kafka. [Online; visited: 25.11.2016].
Retrieved from: https://kafka.apache.org/

[2] Apache Software Foundation: Zookeeper. [Online; visited: 25.11.2016].
Retrieved from: https://zookeeper.apache.org/

[3] Docker community: Docker. [Online; visited: 25.11.2016].
Retrieved from: https://docs.docker.com/

[4] Druid community: Druid.io. [Online; visited: 25.12.2016].
Retrieved from: http://druid.io

[5] Electronit frontier foundation community: HTTPS Everywhere. [Online; visited:
15.4.2017].
Retrieved from: https://www.eff.org/https-everywhere/faq

[6] Git community: Git distributed even if your workflow isn’t. [Online; visited:
15.4.2017].
Retrieved from: https://git-scm.com/

[7] Infinispan community: Infinispan. [Online; visited: 25.11.2016].
Retrieved from: http://infinispan.org/

[8] JBoss community: JBoss organization. [Online; visited: 15.4.2017].
Retrieved from: http://www.jboss.org/

[9] JSON community: Introducing JSON. [Online; visited: 15.4.2017].
Retrieved from: http://www.json.org/

[10] Node.js Foundation: Node.js docs. [Online; visited: 15.4.2017].
Retrieved from: https://nodejs.org/en/docs/

[11] Openshift community: Openshift. [Online; visited: 1.1.2017].
Retrieved from: https://docs.openshift.org/latest/welcome/index.html

[12] Aho, A. V.: Algorithms for finding patterns in strings. [Online; visited: 20.4.2017].
Retrieved from: http://infolab.stanford.edu/~ullman/focs/ch10.pdf

[13] Christoff, J.: The Transmission Control Protocol. [Online; visited: 15.4.2017].
Retrieved from: http://condor.depaul.edu/jkristof/technotes/tcp.html

40

https://kafka.apache.org/
https://zookeeper.apache.org/
https://docs.docker.com/
http://druid.io
https://www.eff.org/https-everywhere/faq
https://git-scm.com/
http://infinispan.org/
http://www.jboss.org/
http://www.json.org/
https://nodejs.org/en/docs/
https://docs.openshift.org/latest/welcome/index.html
http://infolab.stanford.edu/~ullman/focs/ch10.pdf
http://condor.depaul.edu/jkristof/technotes/tcp.html

[14] Edlich, S.: NoSQL DEFINITION: Next Generation Databases mostly addressing
some of the points: being non-relational, distributed, open-source and horizontally
scalable. [Online; visited: 15.4.2017].
Retrieved from: http://nosql-database.org/

[15] Fielding, R. T.: Architectural Styles and the Design of Network-based Software
Architectures. [Online; visited: 25.12.2016].
Retrieved from: http:
//www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

[16] Johnston, C.: New hard drive write method packs in one terabit per inch. [Online;
visited: 15.4.2017].
Retrieved from: https://arstechnica.com/science/2010/05/new-hard-drive-
write-method-packs-in-one-terabyte-per-inch/

[17] Odersky, M.: Scala. [Online; visited: 15.4.2017].
Retrieved from: https://www.scala-lang.org/

[18] Oren Ben-Kiki, C. E.: YAML Ain’t Markup Language. [Online; visited: 20.4.2017].
Retrieved from: http://www.yaml.org/spec/1.2/spec.html

[19] Sýkora, T.: Infispector. [Online; visited: 25.11.2016].
Retrieved from: http://research.redhat.com/projects/infispector/

[20] Sýkora, T.: Infispector on github. [Online; visited: 25.11.2016].
Retrieved from:
https://github.com/infinispan/infispector/blob/master/README.md

41

http://nosql-database.org/
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://arstechnica.com/science/2010/05/new-hard-drive-write-method-packs-in-one-terabyte-per-inch/
https://arstechnica.com/science/2010/05/new-hard-drive-write-method-packs-in-one-terabyte-per-inch/
https://www.scala-lang.org/
http://www.yaml.org/spec/1.2/spec.html
http://research.redhat.com/projects/infispector/
https://github.com/infinispan/infispector/blob/master/README.md

Appendices

42

Appendix A

Dockefiles

A.1 Kafka Dockerfile

FROM centos
MAINTAINER mciz

ENV DRUID_VERSION 0.8.3
RUN mkdir -p /opt/kafka/ \

&& cd /opt/kafka/ \
&& yum -y install java -1.8.0 - openjdk - headless tar \
&& curl -s https :// www. mirrorservice .org /\
sites/ftp. apache .org/ \
kafka /0.10.1.1/ kafka_2 .11 -0.10.1.1. tgz | \
tar -xz --strip - components =1 \
&& yum clean all

RUN chmod -R a=u /opt/kafka

WORKDIR /opt/

2181 is zookeeper , 9092 is kafka , 3888 is druid ,
8084 is realtime druid
EXPOSE 2181 2888 3888 9092

A.2 Druid Dockerfile

FROM centos
MAINTAINER mciz

ENV DRUID_VERSION 0.8.3
RUN yum -y install java -1.8.0 - openjdk - headless tar \

&& yum clean all

RUN mkdir -p /opt/druid/ \

43

&& cd /opt/druid/ \
&& curl -s http :// static .druid.io/ artifacts / \
releases / \
druid - $DRUID_VERSION -bin.tar.gz | \
tar -xz --strip - components =1 \

&& yum clean all

COPY infispectorDruid .spec /opt/druid/ config /
COPY sampleMessages .json /opt/druid/

RUN chmod -R a=u /opt/druid/
WORKDIR /opt/druid/

2181 is zookeeper , 9092 is kafka , 3888 is druid ,
8084 is realtime druid
EXPOSE 2181 3888 9092 8084

44

Appendix B

Openshift

B.1 Openshift client commands
Basic commands

• $ oc --help

Displays useful commands in terminal.

• $ oc login

Logs in to a server or a cluster.

• $ oc projects

Displays existing projects.

• $ oc project <project_name >

Switches to selected project.

• $ oc new - project <project_name >

Sets up a new project with given name.

• $ oc new -app <app_name >

Sets up a new application with given name.

• $ oc status

Shows an overview of the current project.

• $ oc explain <command_or_object >

Shows documentation of resources.

• $ oc types <object >

Shows an introduction to concepts and types.

45

Build and Deploy commands

• $ oc new -build <object >

Creates a new build configuration.

• $ oc tag <image >

Tags existing images, including docker images into image streams.

• $ oc import -image <image_name >

Imports images from a Docker registry.

• $ oc start -build <object >

Starts a new build.

• $ oc cancel -build <object >

Cancels running, pending or new builds.

• $ oc deploy <deployment_name >

Starts or cancels deployment.

Application Management commands

• $ oc get <project_or_object >

This is a useful command, which displays one or many resources: Pods, projects,
services, routes, etc.

• $ oc describe <objectt >

This is also a useful command, which shows details of a specific resource or group of
resources. For example, internal substeps in pod deployment could be monitored.

• $ oc edit <object >

Edits a resource on the server. It is used mainly for quick small fixes. Solving big
problems is not recommended.

• $ oc set <object >

Helps set specific features on objects 5.2.8.

• $ oc label <object_or_group_of_objects >

Changes label on a group of resources.

• $ oc delete <object >

Deletes one or more resources. For deleting all resources of one type, use delimeter
–all.

46

• $ oc expose <app >

Exposes a replicated application as a service or route, if it is not have been already
done separately in Dockerfile, service or route before.

• $ oc scale <deployment >
Adjust the amount of total replicated pods.

Troubleshooting and Debugging commands

• $ oc logs <object >

Prints the object’s logs.

Settings commands

• $ oc logout

Terminates the actual server session.

• $ oc whoami

Echoes name of the actual user. A must have command at uploading images to
Openshift registry 5.2.7.

B.2 Templates

B.2.1 Kafka and Zookeeper template

- apiVersion : v1
kind: Template
metadata :

name: kafka
annotations :

description : 1-pod Apache Kafka + ZooKeeper
tags: messaging ,streaming ,kafka

parameters :
- name: NAME

description : Name prefix for each object created
required : true
value: kafka

- name: IMAGE
description : Image with Apache Kafka and Apache ZooKeeper
required : true
value: 172.30.47.227:5000/ InfiSpector /kafka

- name: VOLUME_CAPACITY
description : Persistent volume capacity per pod
required : true

47

value: 256 Mi
objects :
- apiVersion : v1

kind: DeploymentConfig
metadata :

name: ${NAME}
spec:

replicas : 1
selector :

deploymentconfig : ${NAME}
template :

metadata :
labels :

deploymentconfig : ${NAME}
spec:

containers :
- name: apache - zookeeper

image: ${IMAGE}
command :
- kafka/bin/zookeeper -server -start.sh
args:
- kafka/ config / zookeeper . properties
volumeMounts :
- mountPath : /kafka/tmp/ zookeeper

name: zookeeper
ports:
- containerPort : 2181

- name: kafka
image: ${IMAGE}
command :
- kafka/bin/kafka -server -start.sh
args:
- kafka/ config / server . properties
- --override
- advertised .host.name=${NAME}
- --override
- zookeeper . connect =kafka
volumeMounts :
- mountPath : /kafka/tmp/kafka -logs

name: kafka -logs
ports:
- containerPort : 9092

volumes :
- name: kafka -logs

emptyDir : {}
- name: zookeeper

emptyDir : {}

48

B.2.2 Druid template

- apiVersion : v1
kind: Template
metadata :

name: druid -solo
annotations :

description : 1-pod Druid
tags: messaging , db , NoSQL , database , druid

parameters :
- name: NAME

description : Name prefix for each object created
required : true
value: druid -solo

- name: IMAGE
description : Image with Druid
required : true
value: 172.30.47.227:5000/ InfiSpector /druid -is

- name: VOLUME_CAPACITY
description : Persistent volume capacity per pod
required : true
value: 256 Mi

objects :
- apiVersion : v1

kind: DeploymentConfig
metadata :

name: ${NAME}
spec:

replicas : 1
selector :

deploymentconfig : ${NAME}
template :

metadata :
labels :

deploymentconfig : ${NAME}
spec:

containers :
- name: druid

image: ${IMAGE}
command :
- java
args:
- -Xmx256m
- -XX: MaxDirectMemorySize =200000000
- -Ddruid .zk. service .host=kafka
- -Duser. timezone =UTC

49

- -Dfile. encoding =UTF -8
- -Ddruid . realtime . specFile =/ opt/druid/ config /

infispectorDruid .spec
- -classpath
- "/ opt/druid/ config / _common :/ opt/druid/ config /

realtime :/ opt/druid/lib /*"
- io.druid.cli.Main
- server
- realtime
volumeMounts :
- mountPath : /tmp/druid -logs

name: druid -logs
ports:
- containerPort : 8084

volumes :
- name: druid -logs

emptyDir : {}

B.3 Services

B.3.1 Kafka and Zookeeper services

- apiVersion : v1
kind: Service
metadata :

name: ${NAME}
spec:

ports:
- name: kafka

port: 9092
- name: zookeeper

port: 2181
selector :

deploymentconfig : ${NAME}

B.3.2 Druid service

- apiVersion : v1
kind: Service
metadata :

name: ${NAME}
spec:

ports:
- name: druid

port: 8084
selector :

deploymentconfig : ${NAME}

50

B.4 Routes

B.4.1 InfiSpector route

ap iVers ion : v1
kind : Route
metadata :

name : I n f i S p e c t o r r 4
namespace : I n f i S p e c t o r
s e l f L i n k : / oapi /v1/namespaces/ I n f i S p e c t o r / route s /\
I n f i S p e c t o r 4
uid : a71c297c−1f8e −11e7−b3b6−0e3d364e19a5
re sourceVer s i on : ’1114541183 ’
creationTimestamp : ’2017−04−12T14 : 4 5 : 2 0 Z ’
l a b e l s :

app : i n f i s p e c t o r 4
annotat ions :

o p e n s h i f t . i o / generated−by : OpenShiftWebConsole
o p e n s h i f t . i o / host . generated : ’ true ’

spec :
host : i n f i s p e c t o r 4 −I n f i S p e c t o r . 44 f s . preview . \
opensh i f tapps . com
to :

kind : S e rv i c e
name : i n f i s p e c t o r 4
weight : 100

port :
ta rge tPor t : 8080− tcp

wi ldca rdPo l i cy : None
s t a tu s :

i n g r e s s :
− host : i n f i s p e c t o r 4 −I n f i S p e c t o r . 44 f s . preview . opensh i f tapps . com

routerName : route r
c o n d i t i o n s :
− type : Admitted

s t a tu s : ’ True ’
l a s tTrans i t i onTime : ’2017−04−12T14 : 4 5 : 2 0 Z ’

w i ldca rdPo l i cy : None

B.5 Kafka and Zookeeper configuration

kind: List
apiVersion : v1
metadata : {}

items:

- apiVersion : v1

51

kind: Template
metadata :

name: kafka
annotations :

description : 1-pod Apache Kafka + ZooKeeper
tags: messaging ,streaming ,kafka

parameters :
- name: NAME

description : Name prefix for each object created
required : true
value: kafka

- name: IMAGE
description : Image with Apache Kafka and Apache ZooKeeper
required : true
value: 172.30.47.227:5000/ InfiSpector /kafka -is

- name: VOLUME_CAPACITY
description : Persistent volume capacity per pod
required : true
value: 256 Mi

objects :
- apiVersion : v1

kind: DeploymentConfig
metadata :

name: ${NAME}
spec:

replicas : 1
selector :

deploymentconfig : ${NAME}
template :

metadata :
labels :

deploymentconfig : ${NAME}
spec:

containers :
- name: apache - zookeeper

image: ${IMAGE}
command :
- kafka/bin/zookeeper -server -start.sh
args:
- kafka/ config / zookeeper . properties
volumeMounts :
- mountPath : /kafka/tmp/ zookeeper

name: zookeeper
ports:
- containerPort : 2181

- name: kafka
image: ${IMAGE}
command :

52

- kafka/bin/kafka -server -start.sh
args:
- kafka/ config / server . properties
- --override
- advertised .host.name=${NAME}
- --override
- zookeeper . connect =kafka
volumeMounts :
- mountPath : /kafka/tmp/kafka -logs

name: kafka -logs
ports:
- containerPort : 9092

volumes :
- name: kafka -logs

emptyDir : {}
- name: zookeeper

emptyDir : {}
- apiVersion : v1

kind: Service
metadata :

name: ${NAME}
spec:

ports:
- name: kafka

port: 9092
- name: zookeeper

port: 2181
selector :

deploymentconfig : ${NAME}

53

	Introduction
	Infinispan
	InfiSpector
	Architecture of InfiSpector
	Zookeeper
	Kafka
	Druid
	InfiSpector Node.js application

	Docker
	Docker engine
	Docker architecture
	Containers

	Dockerfile
	Instructions in Dockerfile

	Openshift
	Openshift account
	Architecture of Openshift
	Pod
	Service
	Route
	Image streams
	Templates
	Deployments
	Images
	Project

	Client
	Openshift versus Amazon Web Services
	Installing Openshift client
	Useful OC commands

	InfiSpector infrastructure in Openshift
	InfiSpector architecture in Openshift

	InfiSpector deployment in Openshift
	Zookeeper configuration
	Kafka configuration
	Docker operations
	Zookeeper Dockerfile
	Kafka Dockerfile
	Druid Dockerfile
	Building Dockerfiles

	Openshift operations
	Openshift registry
	Templates
	Kafka template with Zookeeper
	Kafka service with Zookeeper
	Druid template
	Druid service
	InfiSpector template and service

	Running InfiSpector backend applications

	Optimal working Openshift solution for InfiSpector
	Future directions

	Conclusion
	Bibliography
	Appendices
	Dockefiles
	Kafka Dockerfile
	Druid Dockerfile

	Openshift
	Openshift client commands
	Templates
	Kafka and Zookeeper template
	Druid template

	Services
	Kafka and Zookeeper services
	Druid service

	Routes
	InfiSpector route

	Kafka and Zookeeper configuration

