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Abstract
This work discusses detection of skin diseases in damaged fingerprint images and describes
the solution implemented using image processing techniques.

Abstrakt
Práce se zabývá problematikou detekce kožních onemocnění z poškozeného obrazu otisku
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Chapter 1

Introduction

Human beings have always had a need for a secure world, and with the speed of technology
development in the recent past years this topic is becoming more and more important.
Technology affects almost every corner of our lives: work, home, family and leisure. Our
society has become more mobile, more electronically connected and less place-dependent.
Humans want to have their technological devices, data, bank and other accounts, compa-
nies, cars or other possessions secured. However, traditional representations of identity such
as passwords or cards no longer offer such security. Passwords are easily breakable and can
be forgotten; cards can be stolen or lost. Biometric technologies are based on recognition
of biometric traits of individuals, such as face, speech or fingerprint recognition, and they
represent the most promising way how to provide security and represent identity in our
growing modern world. [19]

Fingerprint-based systems are the most widely used biometric technology. Although
the individuality of fingerprints was well known already in the ancient times, it was not
until 1880 when Henry Faulds published a work that introduced the possibility of using
fingerprints for the purpose of human identification. [7] Since that time, fingerprint tech-
nology has been evolving and nowadays fingerprint recognition systems have been applied
in a variety of areas. [19] They are used not only in forensics for crime purposes but also as
an access method to facilities, computers, mobile phones or electronic banking; as a data
protection method and for civil identification (passports, driver licenses, national IDs), not
to mention applications in government, commercial financial sector, education or health
care. [19] This technology has been well accepted by people and we use it on a daily basis.

However, there is a significant number of people who cannot use fingerprint systems as
easily because their fingertip skin is affected by some kind of skin disease. As these systems
count heavily on the structure of an individual’s fingertip papillary line pattern that posi-
tively determines their identity, people suffering from skin diseases might be discriminated
against as their papillary patterns may be impaired. It is very likely that fingerprint devices
have not been designed to deal with damaged fingerprints, and therefore after scanning the
fingerprint, they usually reject it.

In some cases the condition of the image obtained from the damaged fingerprint is not
even good enough for further processing, but in others the damage is minor and the con-
dition of the fingerprint image should not be an obstacle for papillary lines and minutiae
extraction, and further matching. The challenge now is to recognize the presence of skin
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diseases in fingerprint images, provide sufficient algorithms that will detect them and, if
possible, eliminate their influence on the fingerprint recognition process.

This goal of this thesis is to contribute towards the development of approaches, methods
and algorithms that would eliminate the negative influence skin diseases have on the fin-
gerprint recognition process, by designing and implementing a detector of three particular
skin diseases: atopic eczema, acrodermatitis, psoriasis and verruca vulgaris. The resulting
application will serve as a tool for future research, development and algorithms enhance-
ment.

Chapter 2 gives a brief introduction to fingerprint recognition, in chapter 3 different fin-
gerprint sensing technologies are introduced and chapter 4 describes human skin structure.
In chapter 5, description and analysis of a diseased fingerprint database is given, along with
diseases characteristics and their influences on the fingerprint image. Chapter 6 and 7 talk
about the design approaches and implementation methods and in chapter 8, results and
experiments are summarized.

Throughout this work, two very similar terms are used: papillary lines and ridges. Both
stand for the same thing but papillary lines is used more from the medical point of view
(the physical structure of skin, the whole papillary line pattern), whereas ridges is used
from the biometric and computational point of view, and also in order to distinguish higher
ridges from valleys between them.
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Chapter 2

Introduction to Fingerprint
Recognition

Fingerprint recognition is a not as simple process as it might look. Starting from the ac-
quisition of a fingerprint image, called a sample, there are a number of challenges along the
way. Fingerprint recognition systems are never 100% precise and the quality of their results
sometimes cannot be compared to the work of a forensic expert. However, they bring many
advantages, such as invaluable speed of processing and ease of storage.

There are two types of biometric systems: a verification system or an identification
system [19]. The purpose of the former is to authenticate a person’s identity by comparing
their sample to the one that was captured previously. The latter recognizes a person by
going through the whole database to find a match.

Regardless of whether we want to verify or identify a person, or even capture and store
a sample and data of a completely new person’s identity, in all cases the samples taken are
involved in a similar fingerprint recognition process. The main steps of the process are as
follows: [5]

1. Fingerprint acquisition. For capturing the digital image of a person’s papillary
lines structure, there is a wide range of fingerprint sensors to choose from, plus a
traditional off-line ink or clean fingerprinting method. [19] As the quality of the
sample is very important for the fingerprint recognition, it is necessary to choose a high
quality sensor. [5] Chapter 3 describes the particular fingerprint sensing technologies
in detail.

2. Fingerprint enhancement. After a sample is acquired, pre-processing image-
enhancing steps improve the papillary lines structure for the following image pro-
cessing, classification and matching. However, the enhancement steps differ for every
fingerprint sensor and the results depend both on the environment conditions in which
the sample was captured and on possible skin damage, skin humidity or dryness, or
even dirt present on the finger.

3. Fingerprint classification. Every fingerprint is assigned to one of fingerprint classes
according to its external shape. For this purpose, so called singular points, loop and
delta, are useful. [19] This step speeds up the identification process because after
determining the class, the fingerprint does not have to be compared with an entire
database of fingerprints but only with fingerprints in that particular class. However,
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it is a demanding process, because due to the variability of the fingerprint patterns,
it is often difficult to determine which class the fingerprint belongs to. [19] [5]

4. Minutiae extraction. Minutiae are significant points in the papillary line structure.
The combination of their positions and types is unique for each person and therefore is
used for representing their identity. There are over 150 types of minutiae [19] but all of
them consist of two basic ones (See Figure 2.2): the ridge ending and ridge bifurcation.
This step can be problematic in low-quality fingerprints, for example those affected
by some kind of a skin disease. The whole process of minutiae extraction is displayed
in Figure 2.1.

5. Fingerprint matching. In this step, sets of minutiae from two fingerprint images,
the template and the input, are compared. The result is a number of corresponding
pairs of minutiae. After the comparison it can be stated whether or not the two
fingerprints belong to the same person. [19]

Figure 2.1: The minutiae extraction algorithm. Source: [5]

Figure 2.2: Minutiae types (from left: line ending, bifurcation, double bifurcation, interval,
hook, whorl, crossing and bridge). Source: [5]

The topic of this thesis pertains partially to the second step of the fingerprint recog-
nition process, i.e. fingerprint enhancement. Apart from that, none of the other steps
are involved. In the future, it is hoped that some of the diseased fingerprint images are
enhanced to the extent that the whole pipeline can perform better.
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Chapter 3

Technologies for Fingerprint
Sensing

In order to obtain the structure of a person’s papillary lines in the form of a digital image,
various sensing mechanisms can be used. In the past, samples were acquired using the
so-called “ink-technique” during which fingertips were covered with black ink and pressed
on a paper card. Another similar technique is “clean fingerprinting”, which uses chemicals
instead of ink. [19] These techniques are referred to as off-line fingerprint acquisition. Apart
from that, there is a number of modern live-scan fingerprint readers that allow us to obtain
a sample without the need to use ink.

Fingerprint scanners can be either single-finger or multi-finger. As the name suggests,
only one finger can be scanned at a time using a single-finger scanner, whereas multi-
finger scanners usually allow us to scan four fingers at once. The former are typically used
in commercial and personal applications, while the latter in forensic or other large-scale
applications. [19]

The general structure of a fingerprint scanner consists of a sensor that reads the ridge
pattern of the finger and an A/D converter that converts the analog signal to the digital
form. An interface module then communicates with external devices, such as a computer.
[19] In this chapter, various types of sensing technologies are introduced and short descrip-
tions of their functioning are provided.

3.1 Inked and Clean Fingerprinting
Historically, the inked fingerprinting method was naturally used first, as at the time of
the initial development of the modern scientific fingerprint technique in the late nineteenth
century [19], no electronic devices existed yet.

“Clean fingerprinting” is a similar method, in which a finger is soaked into a non-
aggressive skin-sensitive chemical. After the chemical touches a special paper, a fingerprint
papillary structure appears. The resulting fingerprints are usually rather high-quality.

In the past, fingerprints were recognized and compared manually and, after the acqui-
sition, inked impressions of papillary structures were stored in dactyloscopic cards. Fortu-
nately, these methods have been largely replaced by modern digital technologies.
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3.2 Optical Technology
Optical sensors are based on a relatively simple principle. When the finger touches the
protective glass surface of the top of the sensor, the left side of the finger is illuminated.
And since the ridges touch the glass, while the valleys remain at a distance, the side
illumination causes the ridges to be distinguished from the valleys and makes it possible
for an integrated CMOS (Complementary Metal–Oxide–Semiconductor)or CCD (Charge-
Coupled Device) camera to acquire the image of the fingerprint. [7] [19] [5]

3.3 Electro-Optical Technology
By touching an electro-optical sensor with a finger, two separate layers are connected and
this connection causes fluorescent radiation. This radiation can be detected using an inte-
grated camera that generates a digital fingerprint image. [7]

3.4 Capacitive Technology
A capacitive sensor constitutes of a matrix of small micro-capacitor conductive plates [19].
The density of the plates is higher than the density of papillary lines [7] and therefore when
a finger touches the sensor, it acts as the other plate of each micro-capacitor and allows the
creation of small electrical charges. The capacitance differences are used for the fingerprint
image acquisition. [5]

3.5 Thermal Technology
Thermal sensors are based on the thermal radiation of human skin. Because ridges, being
in contact with the sensor, have a higher temperature than valleys, which are at a distance
from its surface [19], it is possible to acquire their image using a thermal sensor made of
pyro-electric material. [5]

3.6 Pressure Sensitive Technology
Pressure sensitive sensors, also known as piezoelectric sensors [19], have a surface made of
a non-conductive dielectric material (gel) which generates a small current when a finger is
pressed on the sensor. The value of the current depends on the pressure, therefore pressures
from ridges and valleys result in different amounts of current. [19] [5]

3.7 E-Field Technology
E-field sensors are able to acquire a high-quality fingerprint image from below the skin
surface layer, which means less problems with wet or dry skin, or even diseases or other
skin damage. [5] It is based on generating radio-frequency that creates an electric field from
a ring around the sensing area. [5]
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3.8 Ultrasonic Technology
Ultrasound sensing is based on sending acoustic signals to the fingertip surface and captur-
ing the echo signal that bounces back. [19] This signal is afterwards used to compute the
distance of ridges and valleys from the sensor. A great advantage of this technology is that
it is able to capture the subsurface of the finger skin and therefore it is resilient to grease,
dirt, etc. [5] [19] Although ultrasound sensors provide high-quality images, they are not yet
widely used because of their high cost and large size. [5]
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Chapter 4

Skin Structure

During the process of fingerprint recognition, since we work with the surface of human skin,
it is important to be familiar with the basics of our skin structure.

Skin is an important body part with a number of functions essential to the proper
functioning of our bodies. It serves as a communicator between the outside environment
and the brain, it is able to feel touch, pain, pressure, hot and cold, it functions as a heat
regulator, absorbs ultraviolet rays and protects us against them. Through skin, waste
products are also eliminated and sweat is secreted onto its surface. [5] [12]

The skin is divided into three layers: epidermis (the outer layer), dermis and the sub-
cutaneous tissue (fat layer) [12] [22].

4.1 Epidermis
Epidermis is the outer layer of skin and its primary function is therefore to form a barrier
against the outside environment. It is constantly being regenerated. [22] [5]

4.2 Dermis
Dermis is a soft cushion of connective tissue directly below the epidermis. It is responsible
for the skin’s structural integrity, elasticity and resilience. In this layer, wrinkles are devel-
oped and also papillary lines are formed here. [5] It consists of collagen and elastic fibers
[9]. It contains blood vessels and nerves, but no fat cells [9].

4.3 Subcutaneous Tissue
Subcutaneous tissue is a layer of fat cells below the dermis. It provides insulation and
emergency energy supply. Its function is to protect the body from cold and trauma. [5]
[22]

4.4 Influence of Skin Diseases on the Skin
There is a large number of skin diseases that affect the skin in some way. Generally
speaking, these diseases can be classified into three groups: diseases causing histopathologic
changes of the epidermis and dermis, diseases causing skin discoloration and diseases causing
histopathologic changes in the junction of the epidermis and dermis.
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Figure 4.1: Skin structure. Source: [12]

Diseases from the first group cause problems to all types of fingerprint scanners because
they affect both the color and the internal structure of the epidermis and dermis. [3] Once
the papillary line structure has changed, it is difficult to recognize the original pattern and
therefore often impossible to determine a person’s identity. Among diseases in this group
are for instance hand eczema, dyshidrosis, systemic sclerosis or Raynaud’s phenomenon. [3]

Diseases that cause skin discoloration are problematic for optical scanners and also for
those scanners that support liveness detection based on the color of human skin. It is
the least problematic group. A typical representative is for example hand, foot and mouth
disease.

Diseases causing histopathological changes in the junction between epidermis and dermis
also belong to the first group. However, the diseases from the third group also cause
problems to ultrasonic scanners, because the ultrasound waves can penetrate under the
epidermis. Therefore, their fingerprint sensing process is only affected by skin diseases that
attack dermis as well. [3] Typical representatives are for instance hand eczema, verruca
vulgaris or psoriasis.
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Chapter 5

Diseased Fingerprint Database

This thesis builds upon previous research that has been done at the Faculty of Information
Technology, Brno University of Technology. In particular, the acquisition of a diseased
fingerprint database, database analysis and primary research concerning possible methods
for detecting damaged fingerprint areas. [3], [1], [6]

The acquired database contains over 2,000 fingerprint images from patients suffering
from various kinds of skin diseases. In total, 12 particular skin diseases were obtained.
[3] The database was thoroughly analyzed in order to find any common features in the
damage caused by the diseases. Features that were found were classified into 5 categories
that are later used for the disease detection itself. [1] In this chapter, a detailed description
about the process of acquisition and analysis is given, as well as characteristics of each
skin disease from the database and characteristics the specific influence they have on the
resulting fingerprint images.

5.1 Database Acquisition
In cooperation with medical experts, a database of diseased fingerprint images was collected.
For these reasons special dactyloscopic capturing stations have been designed. The stations
were equipped with the following components: [3]

∙ laptop with a capturing application installed

∙ set of electronic dactyloscopic sensors

– Sagem MSO 300 (optical sensor)
– UPEK EikonTouch 500 (capacitative)
– UPEK Eikon II Fingerprint Reader (capacitative)
– TBS 3D Enroll Series 2011(optical multi-spectral)
– digital microscope DinoLite Pro

∙ dactyloscopic card and special ink

∙ laboratory stand with boss and clamp for microscope

Using this capturing station, it was possible to collect 2,165 fingerprints from 44 patients
who were affected by various kinds of skin diseases. [1]
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Figure 5.1: One of the capturing stations. Source: [3]

5.2 Database Analysis
The raw diseased fingerprint database was first analyzed in order to provide a solid founda-
tion for future research. For every particular disease, common signs among all fingerprint
images affected by this disease were found and a general description of each disease and its
influences was defined. Based on these descriptions and sets of common signs and their fre-
quencies, the diseased fingerprint images were classified into 5 categories. These categories
are later used in the actual detection of the damaged areas in a fingerprint image and they
help to divide the large detection task into smaller bearable parts. [1]

Most of the fingerprint images come from a dactyloscopic card. The numbers of finger-
prints of each disease is displayed in table 5.1.

Table 5.1: Database content.
Disease No. of fingerprints

in the DB Percentages [%] No. of patients

Fingertip eczema 1,107 51.132 17
Psoriasis vulgaris 326 15.058 9
Dyshidrotic eczema 247 11.409 4
Hyperkeratotic eczema 118 5.450 2
Verruca vulgaris 96 4.434 4
Scleroderma 50 2.310 1
Acrodermatitis continua 40 1.848 1
Colagenosis 36 1.663 1
Raynaud’s phenomenon 9 0.416 1
Effusion of fingers 35 1.617 1
Cut wound 18 0.831 2
“Unknown” disease 83 3.834 1
Total 2,165 44

By observing and comparing the fingerprint images, 12 common features were defined.
7 of them are local features:

∙ straight lines (SL),
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∙ a grid (G),

∙ small papillary lines disruptions (PLD),

∙ small “cheetah” spots (CS),

∙ larger round/oblong spots (ROS),

∙ large irregular spots (IS) and

∙ dark places (DP).

The other 5 were global image patterns:

∙ blurriness of (parts of) the image (B),

∙ a significantly high contrast of the image (HC),

∙ the entire fingerprint area affected (EA),

∙ total deformation of the fingerprint image (TD) and

∙ a significantly high quality and healthy fingerprint (HQ).

For every disease its image features were counted (see tables 5.2 and 5.3). Fingerprint images
obtained from optical scanners were excluded as their character is significantly dissimilar to
the others. The actual number of images taken into account is stated in the column “sum”.

Table 5.2: Local features of damaged fingerprint images.
Percentages of particular features [%]

Disease SL G PLD CS ROS IS DP Sum
Fingertip eczema 72.03 24.65 15.91 12.24 32.34 16.61 15.73 572
Psoriasis vulgaris 40.37 6.42 2.75 12.84 48.17 32.57 62.84 218
Dyshidrotic eczema 63.11 7.38 14.75 18.03 78.69 29.51 32.79 122
Hyperkeratotic eczema 3.92 0 66.67 15.69 74.51 3.92 5.88 51
Verruca vulgaris 3.17 0 14.29 12.7 74.6 0 25.4 63
Scleroderma 0 0 0 0 0 0 30.43 23
Acrodermatitis continua 14.29 0 0 85.71 60 14.29 65.71 35
Colagenosis 100 78.13 0 0 15.63 0 25 32
Raynaud’s phenomenon 0 0 100 0 0 0 0 8
Effusion of fingers 10 0 73.33 43.33 63.33 6.67 13.33 30
Cut wound 93.75 0 0 0 18.75 0 12.5 16
“Unknown” disease 100 86.67 0 0 76.67 30 73.33 30

5.3 Characteristics of Present Diseases
This section gives an overview of all the diseases present in the database, their characteristics
and description of their influence on resulting fingerprint images. [1] For detailed description
of skin diseases mentioned in this thesis, please refer to [14], [24] and [12]. This thesis deals
with the detection of four of them: atopic eczema, acrodermatitis, psoriasis vulgaris and
verruca vulgaris.
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Table 5.3: Global features of damaged fingerprint images.
Percentages of particular features [%]

Disease B HC EA TD HQ Sum
Fingertip eczema 18,01 21,5 40,38 36,36 29,02 572
Psoriasis vulgaris 34,86 27,06 61,93 58,72 18,35 218
Dyshidrotic eczema 30,33 30,33 31,97 29,51 9,84 122
Hyperkeratotic eczema 31,37 29,41 9,8 0 37,25 51
Verruca vulgaris 19,05 80,95 7,94 7,94 76,19 63
Scleroderma 0 0 0 0 100 23
Acrodermatitis continua 48,57 25,71 100 100 0 35
Colagenosis 9,38 40,63 0 0 25 32
Raynaud’s phenomenon 0 0 0 0 100 8
Effusion of fingers 23,33 16,67 40 16,67 3,33 30
Cut wound 37,5 68,75 0 0 50 16
“Unknown” disease 30 20 90 83,33 0 30

5.3.1 Fingertip eczema

Fingertip eczema is a very dry, inflammatory, non-infectious disease which occurs on the
palmar surface or the fingertips. The skin becomes cracked and scaly, and usually starts
peeling off which results in exposition of red and tender skin surfaces. [14] [12] [24]

Figure 5.2: Fingertip eczema. Source: database and [12].

As the number of fingerprints with fingertip eczema in the database is large, a wide
range of typical features was observed. There are two groups of these fingerprints: (i) less
and (ii) more severely damaged. In the first group of fingerprints, occurrence of thin lines
of different directions was typical. These lines often connect or cross each other. In some
cases, small round white spots were present, and in others, occasional dark areas make the
papillary lines partially unreadable. However, overall, papillary lines of fingerprints of the
first group are generally very well readable and it is possible to remove the influence of the
disease from the fingerprint.

In the second group, the damage is more severe. Fingerprints are usually almost com-
pletely damaged, straight lines cover the entire fingerprint area and create grids by crossing
each other. The background is darker and large irregular spots can be seen. As the papillary
lines cannot be seen at all, this type of damage is by no means recoverable.
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5.3.2 Psoriasis vulgaris

Psoriasis is a common, chronic and inflammatory disease of the skin which is often indis-
tinguishable from a serious form of hand eczema. It is characterized by dry and scaling
plaques covered with dry scales that peel in layers. [14] [12]

The vast majority of fingerprints affected by psoriasis are completely damaged. Papillary
lines are mostly unreadable. The most frequent feature is a large irregular dark spot
bounded by a white border. Apart from this feature, the presence of larger dark areas or
thick lines is also common, as well as round and oblong spots.

Figure 5.3: Psoriasis vulgaris. Source: database and [12].

5.3.3 Dyshidrotic eczema

Also known as pompholyx, this disease is a variant of hand and foot dermatitis that makes
skin extremely dry. Its typical features are itching vesicles and scales located on the palms
and sides of fingers. [12]

Figure 5.4: Dyshidrotic eczema. Source: database and [24].

Fingerprint images damaged by dyshidrotic eczema are generally covered with irregu-
lar blurred shapes with no specific form. Another typical feature is a thick line. These
fingerprints were divided into two groups, according to how severe the damage is.

In the first group of less severely affected fingerprints, the entire area of a fingerprint
is often covered, but papillary lines remain visible. Papillary lines are usually disrupted at
multiple places and irregular blurred white spots may appear.

Fingerprints in the second group are seriously damaged and cannot be repaired. The
image area is typically covered by thicker lines in combination with large blurred white
spots. Papillary lines are not sufficiently visible.
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5.3.4 Hyperkeratotic eczema

A chronic form of hand eczema characterized by the occurrence of orange and brown scales
with cracks between them. [14] [12]

Only one third to one half of the fingerprint area is usually affected. Sometimes, only the
papillary lines are multiply disrupted. In other cases however, papillary lines are distorted
and their direction is difficult to determine. Small to medium round spots are likely to be
present.

Figure 5.5: Hyperkeratotic eczema. Source: database and [12].

5.3.5 Verruca vulgaris (warts)

This is a very common skin disease, characterized by the presence of stiff elevated bumps
on the skin surface. They grow in size which is in average about 5 mm but can reach up
to more than 1 cm. On their surface, tiny black dots may appear. [14] [12] The influence
of this disease on the fingerprint images is minor and easily removable.

Typically, 1 to 4 round white spots occur, sometimes with black dots in their center.

Figure 5.6: Verruca vulgaris. Source: database and [12].

5.3.6 Systemic scleroderma

Scleroderma is characterized by the appearance of hard, smooth and ivory-colored areas.
In the early stage, affected areas are red and swollen; later, they become completely

immobile and lose their natural peaked contour. [14] [12] The fingerprints in the database
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did not show any signs of damage. It can be therefore concluded that the number of acquired
fingerprints was not sufficient to describe the disease’s influence on fingerprint images.

Figure 5.7: Systemic scleroderma. Source: database and [12].

5.3.7 Acrodermatitis continua

Also known as acrodermatitis continua of Hallopeau or dermatitis repens, this disease is a
chronic inflammatory disease of the hands and feet, and one of the less frequent types of
psoriasis vulgaris. The outbreak of the disease is accompanied by asymmetric formation of
pustules of the fingertips, and continues with eruption of fresh pustules with hyperkeratotis
and crusting. As the disease progresses, nails can even float away. [14]

Fingerprint images are typical for the occurrence of small round spots that look like a
cheetah skin and cover usually the whole fingerprint area. Larger oblong or round spots
occur as well and straight lines or cracks are also not uncommon. Papillary lines cannot be
recognized at all, and the original structure of the fingerprint is completely covered. Larger
dark areas are often present and the spots can be blurred together. Almost in all cases, the
fingerprint image is completely damaged and cannot be repaired.

Figure 5.8: Acrodermatitis continua. Source: database and [24].

5.3.8 Colagenosis

Colagenosis is a connective tissue and inflammatory autoimmune disease. [11] The only
typical feature of fingerprints with this disease is thin lines crossing each other. Under
these lines, papillary lines are well visible.
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Figure 5.9: Colagenosis. Source: database.

5.3.9 Raynaud’s phenomenon

A vascular skin disease that often accompanies an associated disease (most often sclero-
derma). The fingers have sequential discolorations: they first become pale and cold, then
white, blue and finally red. This is caused by constrictions of the small arteries and arteri-
oles in fingers. [14] [12]

As Raynaud’s phenomenon causes discoloration only, fingerprints in the database are
always healthy and undamaged.

Figure 5.10: Raynaud’s phenomenon. Source: database and [15].

5.3.10 Effusion of fingers

Although being stated as a disease in the database, effusion of fingers is only a syndrome
which manifests itself by a strong swelling. It is one of the symptoms of systemic sclero-
derma, for instance.

Papillary lines are typically disrupted in many places, and small to medium spots are
present. In general, papillary lines are clearly visible. Sometimes, however, white spots
make them unreadable.

5.3.11 Cut wounds

A cut wound typically cause either a straight line in a fingerprint image or a more blurred
white area. The damage is minor and should not be difficult to remove.
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5.3.12 “Unknown” disease

Fingerprints of this unnamed disease are totally covered with lines of different thickness
and length and are therefore unreadable. They are very much alike those with fingertip
eczema.

Figure 5.11: Effusion of fingers, cut wound and “unknown” disease. Source: database.

5.4 Classification of Damaged Fingerprint Images
Based on the analysis of the database, the diseased fingerprint images were classified into
5 basic feature classes. Such classification is supposed to help access each type of dam-
age individually and facilitate the detection process. For each disease detector a different
combination of features to detect is chosen, which helps differentiating between signs of
particular diseases and correctly determining the type of disease present in the fingerprint
image.

Straight lines and grids
Fingertip eczema, cut wound, colagenosis, dyshidrotic eczema, “unknown” disease.

Figure 5.12: Example of fingerprint images with straight lines or grids. Source: database.

Small papillary lines disruptions
In this case, papillary lines are disrupted at multiple places but no significant damage is
present. Representatives are: dyshidrotic eczema, hyperkeratotic eczema, effusion of fingers
and fingertip eczema.
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Small “cheetah” spots
The only representative of this group is acrodermatitis.

Figure 5.13: Examples of papillary lines disruptions and “cheetah” spots. Source: database.

Round/Oblong spots
Although round or oblong spots occur in most diseases, typical representatives with a sig-
nificant amount of them are: verruca vulgaris, effusion of fingers, and psoriasis.

Figure 5.14: Example of fingerprint images with white spots. Source: database.

Large irregular spots
Psoriasis and severe form of fingertip eczema often cause extreme damage to the fingerprint
and one of their features are also large spots of irregular shapes.

Figure 5.15: Example of fingerprint images with irregular spots. Source: database.

Also, diseases were classified into 3 categories according to the seriousness of the damage:
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1. Minor damage: verruca vulgaris, Raynaud’s phenomenon, cut wound, scleroderma.

2. Medium damage: mild form of fingertip eczema, mild form of dyshidrotic eczema,
hyperkeratotic eczema, effusion of fingers, colagenosis.

3. Major damage (unrecoverable): acrodermatitis, severe form of fingertip eczema,
severe form of dyshidrotic eczema, psoriasis, “unknown” disease.
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Chapter 6

Application Design

Based on the database analysis, an application capable of detecting four types of skin
diseases from fingerprint samples was designed and implemented. The program consists of
two main parts, a Detector and a Classifier, and provides a graphical user interface (GUI).
In this chapter, the description of the application design is covered and explained in more
detail.

6.1 Application Goals
Because the main objective of this work is to develop a detector of skin diseases, the re-
sulting application’s primary function is the ability to classify an image according to the
specific features found during the detection process. The program outputs a suggestion of a
disease that most likely matches the characteristics of the input image and which therefore
could be the disease the patient might possibly suffer from.

Apart from the obvious main emphasis of the program, the application possesses other
sub-goals that logically follow the major one:

1. To extract all damaged areas from the fingerprint sample.

2. To distinguish between healthy, partially damaged and unrecoverable fingerprints.

3. To visualize the whole detection process.

The goals were achieved by designing and implementing a GUI application, whose two
main building blocks are going to be discussed in the following section.

6.2 Application Design Overview
As mentioned above, the application consists of the Detector and the Classifier. Both of
them use many smaller supporting parts of the program, for instance algorithms for image
preprocessing and normalizing the fingerprint sample.

The task of the Detector is to extract the damaged image areas, to record their prop-
erties, such as size, shape and location, and assign their type, if possible. Along with the
detection process, the Detector calculates an estimated overall extent of damage in a fin-
gerprint image (in percentages) and provides graphical feedback by visualizing the global
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distribution of damage in the sample using a color scale.

The classification process of the Classifier itself is dependent on the number and types
of disease features provided by the Detector. The decision is made based on a set of rules
that resulted from the database analysis and the final result is shown to the user in the
GUI.

6.2.1 Detector Design

Since there is a wide range of possible types of damage that could occur in a fingerprint
image, the Detector consists of a number of sub-detectors, each for a different type of
damage.

∙ White Spots Detector

∙ Lines Detector

∙ “Cheetah” Spots Detector

∙ Papillary Lines Disruptions Detector

∙ Orientation Field Discontinuity Detector

∙ Histogram Detector

Each of them includes a preprocessing part and a features extraction part. The ex-
traction is based on three distinct methods: Flood Fill (for the first four detectors), Block
Orientation Field and Histogram Analysis. The specific behavior of the methods is ex-
plained in Chapter 7 (Implementation).

The Detector outputs a list of extracted features and their properties, which are later
used in the classification process.

6.2.2 Classifier Design

The Classifier is a single class which implements the decision rules. It requires a vector of
features extracted by the Detector and outputs the resulting disease.

The whole application design is graphically displayed in Figure 6.1.

6.3 Classes
The class design is based on the MVC (Model-View-Controller) design pattern [8], as
it is a program with frontend and backend parts. The Model is represented by detec-
tors (BlackSpotDetector, WhiteSpotDetector, OrientationsDetector and Histogram-
Detector) and the Classifier class, the View is represented by MainWindow,
and the class PipelineMaster stands for the Controller.

Since the detectors share the same design, they all inherit from an abstract class
AbstractDetector. In this manner, it is ensured that the detectors will have the same
interface.
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Figure 6.1: Application high-level design. Fx stands for sets of extracted features from each
method and SMx stands for StatusMap, a data structure holding the information about
the extent of damage in the image that serves for visualizing purposes.

PipelineMaster takes care of managing the whole detection and classification process,
transmitting the input parameters from the GUI and retrieving the results.

There is a number of important supporting classes. To mention the most significant ones,
FloodFill encapsulates the algorithm of the same name, Histogram provides methods for
histogram analysis, BckgrExtractor separates the fingerprint area from the background,
as the name suggests, and StatusMapper ensures a correct connection of the detection
results together. There are also classes created for the purpose of storing and keeping data
only: StatusMap, DamagedArea, Peak and Step. BasicOperations groups elementary
image processing algorithms and Normalizer contains algorithms for the normalization of
a fingerprint. An overview of a simplified class design is given in Figure 6.2.

6.3.1 Data Flow

From the design point of view, it is important to determine the inputs and outputs of
particular classes and describe the data flow in the application.
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Figure 6.2: Simplified application class design.

A fingerprint image is the input given by the user through the GUI. PipelineMaster
takes this image and passes it into the main pipeline and in the end it retrieves the following
outputs: a suggested disease, an estimated percentage of the overall extent of damage, a
vector of extracted features and their attributes, the visualization of the overall damage in
the form of a StatusMap, and a vector of intermediate steps to be shown to the user.

The detectors require a normalized fingerprint image as an input, and they output a
vector of detected features, a vector of intermediate steps and a StatusMap, which keeps
the information about the extent of damage of each pixel.

The joined extracted features go into the Classifier whose output is the suggested
disease.

6.4 Graphical User Interface and Application Usage
The application was designed with a graphical interface that allows the user to load a
fingerprint image or a whole folder of images that he can easily scan back and forth using
buttons. The GUI displays a number of tabs, the first of them contains some settings so
that the detection process could be adjusted. The “Run” button starts the process and
before it displays the final results in the “Final” tab, such as the percentage of damage, the
suggested disease and visualized disease features, it also shows the process’ intermediate
steps, including preprocessing and all the methods.

The GUI also enables the user to save the results to his personal computer.
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Figure 6.3: Screenshot of the application.

Figure 6.4: Screenshot of the application.
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Chapter 7

Implementation

The application was developed in C++ and Qt 3.5.1 (open source), using the Computer
Vision library OpenCV, version 2.4.11 (BSD licence).

In this chapter, the specific algorithms used in the disease detector along with their
advantages and shortcomings will be discussed, as well as the core methods essential for
the program’s functionality and data structures used to store and keep important data
throughout the process.

7.1 Detector
There are three major algorithms that are used for the detection part: Block Orientation
Field, Histogram Analysis and Flood Fill. Their combination provides valuable information
about the fingerprint quality and character of the possible disease.

The Detector uses a few special data structures. The first of them is cv::Mat, a data
type implemented in OpenCV used for storing images [10], in other words a matrix of
numerical values. The program makes use of this data type not only for keeping the
processed images themselves, but also for storing the intermediate steps and StatusMaps.

A StatusMap is a data structure that is used for the visualization of the extent of
damage in the fingerprint. It consists of an 𝑛×𝑚 matrix (cv::Mat), where 𝑛 is the number
of columns and 𝑚 is the number of rows. Both 𝑛 and 𝑚 are always smaller than the width
and height of the input image so that the visualization can capture the global extent of
damage in 𝑤 × 𝑤 subfields of the image. The values of this matrix are between -1 and 1.
Negative values stand for background, 0 stands for a healthy area and positive values imply
a damaged area, with 1 being the most damaged.

𝑥 =

⎧⎪⎨⎪⎩
(−1; 0) if if the subfield belongs to background,
0 if the subfield belongs to a healthy area
(0; 1) if the subfield is damaged

(7.1)

Another essential data structure is the Feature. It is used to store the signs of diseases
extracted from the image and consists of a feature type, location of the first pixel, size and
the exact pixels belonging to that particular area. It is used both for storing the detection
results and visualizing them.
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7.1.1 Block Orientation Field

The computation of block orientation field is commonly used in the fingerprint recognition
process for the purposes of estimating the ridges direction and classifying the fingerprint
image into one of the several fingerprint classes [19] [13] [4]. Because a typical finger-
print pattern consists of alternating dark and white lines, this information can be easily
processed by a gradient operator that estimates the image gradient for each pixel. This
low-level information is gathered and averaged for each 𝑤×𝑤 block in the image [17]. The
transformation can result in a relatively smooth and continual image of the ridges direction
estimates – for a healthy fingerprint of course - see Figure 7.1 on the left.

Figure 7.1: Examples of block orientation images (left: healthy fingerprint, right: finger-
print affected by a skin disease).

If we try to compute the block orientation field for a damaged or a partially damaged
fingerprint however, we can easily recognize with the naked eye which areas contain possible
damage, because the orientation field in these areas will be discontinuous, as displayed in
Figure 7.1 on the right. Exceptions to this are the peripheral areas and deltas and cores.
These discontinuities can be detected by scanning the field for differences in direction angles.

In the program’s pipeline, a gradient-based method of block orientation field computa-
tion is used [17] [23]. Its steps are as follows [17]:

1. Compute the gradients 𝜕𝑥 and 𝜕𝑦 for each pixel at (𝑖, 𝑗) using a gradient operator. In
this case a simple Sobel operator was used.

2. Divide the original image into 𝑤 × 𝑤 blocks.

3. Compute the estimation 𝜃(𝑖, 𝑗) of the ridge orientation for every image block centered
at (𝑖, 𝑗) using the Equations 7.2, 7.3 and 7.4:

𝑣𝑥 =

𝑢=𝑖+𝑤
2∑︁

𝑢=𝑖−𝑤
2

𝑣=𝑗+𝑤
2∑︁

𝑣=𝑗−𝑤
2

2𝜕𝑥(𝑢, 𝑣)𝜕𝑦(𝑢, 𝑣) (7.2)
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𝑣𝑦 =

𝑢=𝑖+𝑤
2∑︁

𝑢=𝑖−𝑤
2

𝑣=𝑗+𝑤
2∑︁

𝑣=𝑗−𝑤
2

𝜕2
𝑥(𝑢, 𝑣)𝜕

2
𝑦(𝑢, 𝑣) (7.3)

𝜃(𝑖, 𝑗) =
1

2
tan−1(

𝑣𝑦(𝑖, 𝑗)

𝑣𝑥(𝑖, 𝑗)
) (7.4)

The resulting block orientation field is afterwards analyzed for any discontinuities that
may occur. The analysis is done using a row-wise and column-wise scanning approach that
reveals areas of possible damage in the fingerprint. Neighboring blocks’ directions are com-
pared and a block is marked as a discontinuity if |𝜃(𝑖, 𝑗) − 𝜃(𝑖, 𝑗 + 1)| > 45 ∘, where both
estimations 𝜃(𝑖, 𝑗) and 𝜃(𝑖, 𝑗 + 1) have a value between 0 ∘ and 180 ∘

Sometimes, the method detects single discontinuities that may be erroneous, and on the
other hand, under different circumstances, one unmarked block may appear in the midst
of discontinuous blocks. In order to make the algorithm as accurate as possible, although
mistakes never disappear completely, these cases are taken into account. The algorithm
handles them by copying the properties of their neighboring blocks (marking the single
ones either as alright or as a discontinuity, depending on the neighborhood). Example de-
tection is shown in Figure 7.2.

Figure 7.2: Damaged area detected using the orientation field.

The advantage of this method is that it is already a part of the standard fingerprint
recognition pipeline, so the algorithm can be easily implemented into existing methods.
Also, it provides a fairly accurate estimate of the fingerprint damage in the sample. How-
ever, it is not always able to detect local damages, such as spots or lines. For this reason
we use the Flood Fill algorithm. Before that one is explained, however, let’s take a look at
how analyzing histograms from image subfields can be used to obtain useful information
about damage.
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7.1.2 Histogram Analysis

This method is based on the presumption that a quality fingerprint image consists of equally
distributed ridges and valleys. If we assume that ridges are roughly the same dark color
while valleys are light-colored, a histogram computed from each subfield of the fingerprint’s
area should ideally consist of two peaks of approximately the same height and one valley
between them. The transition between the peaks and the valley should be smooth, as dis-
played in Figure 7.3, and the peaks’ height difference vary slightly according to the width
of ridges in the image. This shape is called bimodal.

Figure 7.3: An ideal bimodal histogram.

On the other hand, the intensity distribution in a fingerprint image part that belongs
to a damaged area is not always as equal as in the quality one. Thus, if a histogram is
computed for this subfield, it is very likely that it will not have the ideal bimodal appearance
as described above. Experiments showed that the majority of damaged areas break the rules
of the bimodal histogram. The lower the quality, the less the histogram resembles the ideal
one. A non-bimodal histogram always implies a damaged or low-quality area.

At the same time, however, there is a certain percentage of damaged areas whose his-
tograms still fall into the valid category. A damaged subfield therefore does not necessarily
imply a non-bimodal histogram. This is due to the fact that a histogram is a measure for
the distribution of intensities only and it does not take into account the pattern or neigh-
borhoods of pixels. Figure 7.4 shows examples of invalid histograms.

Figure 7.4: Examples of invalid histograms.

The steps of the algorithm are as follows:

1. Divide the image into 𝑤 × 𝑤 blocks (ROIs = regions of interest), according to the
desired resolution.

2. For each ROI, compute a histogram.
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3. Check if the histogram is valid.

(a) Find all peaks and valleys of the histogram.
(b) If 𝑝𝑒𝑎𝑘𝑠 == 2 and 𝑣𝑎𝑙𝑙𝑒𝑦𝑠 == 1, histogram is valid, so continue with 3c. Oth-

erwise quit because the histogram is invalid.
(c) Check the heights and distances of the peaks and valleys. If the histogram passes

the validity tests, it is valid, otherwise it is invalid.

The following tests have been implemented. The decision parameters have been chosen
based on experiments and testing. 𝜋 stands for the number of pixels in the ROI.

∙ Peak height test: The dark peak must be between 0.003𝜌 and 0.025𝜌, and the bright
peak must be between 0.004𝜌 and 0.042𝜌.

∙ Valley height test: The valley has to be lower than 0.0065𝜌.

∙ The difference between peak heights: It has to be between 0.004𝜌 and 0.25𝜌.

∙ The height difference of the valley and the lower peak: It must be greater than
0.0017𝜌.

∙ The distance of the valley from the lower peak: It must be larger than 0.002𝜌.

Figure 7.5 shows an example output of this method, along with the particular histograms
that were being analyzed. Red background implies an invalid histogram, green means valid
and blue stands for background.

Figure 7.5: Histogram Analysis result with particular histograms.
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Since the Histogram Analysis method is an experimental one, its results are not always
accurate. The major drawback of this method is its inability to cope with low-quality,
especially dark, images. By implementing appropriate preprocessing steps, the method’s
performance and accuracy can be improved.

Although the method can never find all damaged areas, Histogram Analysis is able to
detect many areas the Block Orientation Field method might have omitted. The sets of
damaged areas detected from these two methods are never identical, therefore the Histogram
Analysis method is extremely valuable for the final determination of healthy areas.

7.1.3 Flood Fill

Flood Fill is a very well known algorithm used for graphical purposes [2] and is especially
handy for detecting and filling connected single-colored areas of an image. This character-
istics was used in the application in order to find local features of damaged fingerprints,
such as straight lines or spots.

For the detection of such features, the Hough transform [10] was initially used, but it was
later rejected for its inaccuracy. Flood Fill turned out to be far more exact and appropriate.

The Flood Fill algorithm has three parameters: a target color, a replacement color and
a start pixel. It is based on examining the color of all pixels in the 4- or 8-neighborhood
of the start pixel and changing the color of those pixels that have the target color to the
replacement color. Using of either recursion, or stack/queue, the colored pixels become the
next start pixels and the process is repeated. In the end, the entire single-colored area is
filled.

The basic recursive FloodFill method steps are explained below:

if 𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑜𝑙𝑜𝑟 == 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑙𝑜𝑟 then
return;

end
if 𝑠𝑡𝑎𝑟𝑡𝑃 𝑖𝑥𝑒𝑙 has a different color than 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐶𝑜𝑙𝑜𝑟 then

return;
end
Call FloodFill on the pixel above the 𝑠𝑡𝑎𝑟𝑡𝑃 𝑖𝑥𝑒𝑙;
Call FloodFill on the pixel below the 𝑠𝑡𝑎𝑟𝑡𝑃 𝑖𝑥𝑒𝑙;
Call FloodFill on the pixel on the right of the 𝑠𝑡𝑎𝑟𝑡𝑃 𝑖𝑥𝑒𝑙;
Call FloodFill on the pixel on the left of the 𝑠𝑡𝑎𝑟𝑡𝑃 𝑖𝑥𝑒𝑙;

In our case, for better memory management, the Scanline Flood Fill algorithm [2] is
used. This one is extended by a stack and differs from its basic version by a reduced space
and time complexity, which is achieved by filling whole lines instead of single pixels. Also, it
is able to retrieve all points belonging to the area and store them later in the Feature class.

When Flood Fill is used for a fingerprint image, the sample first needs to be preprocessed
in order to obtain a black and white image that can be used as an input for the algorithm.
The preprocessing steps are tricky because they heavily depend on the image quality, as
well as the type of sensor used for the acquisition. In this implementation, all algorithms
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are tailored for our internal fingerprint database, in particular for the fingerprints from
dactyloscopic cards.

The preprocessing steps consist of contrast and brightness adjustment, a series of di-
lations, erosions, closing and opening operators, combined with fingerprint area detection
according to [18], Gaussian blur and thresholding [21] [16].

Figure 7.6: Extraction of straight white lines.

There are four types of features the Flood Fill algorithm is programmed to detect: large
white spots, thick white lines, small “cheetah” spots and papillary lines disruptions (for ex-
planation of the groups, see section 5.4).

Aside from the algorithm, the FloodFill class also enables us to set parameters that
closely specify how big the filled areas should be and what shape they should have. The
shape’s determination is based on the ratio between the longer and the shorter side of the
area’s bounding rectangle: if it is below 1.8, it is considered round, and if it is over 2.3, it
is considered oblong. Others are not taken into account. Thanks to the parameters, it is
possible to tailor the results for different detectors. Details are showed in Table 7.1.

Table 7.1: Flood Fill parameters.
Detector Target color Min. size Max. size Shape
White Spots white 500 20,000 round
Lines D. white 500 12,000 oblong
“Cheetah” Spots black 100 400 round
Disruptions black 200 600 oblong

7.1.4 Methods Merging Using a Status Map

All three of the above-described methods detect a different kind of damage in the image
and only Flood Fill provides logically structured results that can be used in classification.
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However, connecting the three methods together results in a surprisingly accurate descrip-
tion of the extent of damage in an entire area of a fingerprint image.

At the end of each detection process, every image pixel is assigned a value between -1
and 1. Negative values stand for background, 0 means a healthy area and positive values
indicate damage. The higher the value, the more damaged the area to which the pixel
belongs, as explained in section 7.1.

The challenge was to connect these three output matrices together into a so-called
StatusMap which would give a good overview of the damage state every 𝑤 × 𝑤 block of
pixels.

For the purpose of a correct merge, all method’s output pixel values were limited to non-
negative. The information about background is stored separately using BackgroundExtractor.
This extraction method marks pixels -1 (background), or 1 (fingerprint area) and produces
a fourth matrix of pixel values.

This is the description of the StatusMap merging process:

1. Choose the resolution of the resulting StatusMap.

2. Get the three output matrices and a background matrix.

3. For each matrix, compute a generalized block matrix (=StatusMap) that will store
the average pixel values from 𝑤 × 𝑤 blocks: 𝑚1,𝑚2,𝑚3 and 𝑏𝑐𝑘𝑔𝑟.

4. Assign a weight to each method, according to the desired output: 𝑤1, 𝑤2, 𝑤3. It is
possible to choose the weights in the GUI. Default values are: Orientation Field 2,
Histogram Analysis 1 and Flood Fill 3.

5. For each block, compute its damage index. Damage index is a weighted mean of
𝑚1,𝑚2 and 𝑚3, masked by the value of the 𝑏𝑐𝑘𝑔𝑟 matrix.

𝑑𝑎𝑚𝑎𝑔𝑒𝐼𝑛𝑑𝑒𝑥(𝑖, 𝑗) = 𝑏𝑐𝑘𝑔𝑟(𝑖, 𝑗) * 𝑤1*𝑚1(𝑖,𝑗)+𝑤2*𝑚2(𝑖,𝑗)+𝑤3*𝑚3(𝑖,𝑗)
𝑤1+𝑤2+𝑤3

6. 𝑑𝑎𝑚𝑎𝑔𝑒𝐼𝑛𝑑𝑒𝑥 now represents the extent of damage in each image block. Negative
values are background, zero means a healthy area and positive values indicate damage,
as described above.

The resulting StatusMap gives a very good overview of the damage.

7.1.5 Damage Percentage

From the final StatusMap values, a damage percentage can be calculated. The computation
also takes into account the different damage indexes. The percentage is shown to the user
in the GUI.
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Figure 7.7: Example of a final StatusMap.

7.2 Classifier
The Classifier decides based on features extracted by the Flood Fill algorithm and classifies
the fingerprint image, according to the features’ numbers, sizes and shapes into one of these
6 categories: Acrodermatitis, Atopic Eczema, Psoriasis, Verruca Vulgaris, Unknown disease
or Healthy.

In order to determine the decision rules, a script that counted the numbers and types of
detected features from the whole database for each disease was implemented. Medians and
standard deviations of these numerical values were used to support the Classifier’s decision
- see Table 7.2.

Table 7.2: Statistics of features extracted from each disease.
Acrodermatitis Atopic eczema Psoriasis Verruca vulgaris

med. std.dev. med. std.dev. med. std.dev. med. std.dev.
white sp. 5 3.97 5 4.31 8 5.35 1 3.02
lines 2 1.84 3 3.06 4 2.65 1 1.63
cheetah sp. 47 42.70 29 17.50 21 19.61 18 10.90
disruptions 7 8.37 17 19.80 8 9.22 15 39.76

Given the normal probability distribution, it is supposed that the majority of values are
going to be one standard deviation away from median. Then, a significant amount of values
will lay two standard deviations away from median and almost no values will be farther.
These characteristics are used in order to compute an estimated likelihood that a certain
set of features belong to a particular disease.

The classification algorithm steps are as follows:

1. For each disease do:

(a) For each extracted feature type, compute its likelihood that it could belong to
a particular disease class. 𝑑𝑖𝑠𝑡 means the distance of a certain feature’s number
from the median and exact value in the third case is computed using direct
proportion.
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𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.9 if 𝑑𝑖𝑠𝑡 < 2

3𝜎

0.85 if 𝑑𝑖𝑠𝑡 > 2
3𝜎 and 𝑑𝑖𝑠𝑡 ≤ 𝜎

⟨0.8, 0.1⟩ if 𝑑𝑖𝑠𝑡 > 𝜎 and 𝑑𝑖𝑠𝑡 ≤ 3𝜎

0.05 if 𝑑𝑖𝑠𝑡 > 3𝜎 OR if 𝑚𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is not met

(b) Calculate the final disease likelihood using weighted mean of all previous likeli-
hoods.

2. Classify the image into the disease class with the highest likelihood.

The required minimal condition 𝑚𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 for each disease, as well as conditions
for a healthy fingerprint or an unknown disease, are listed here:

∙ Acrodermatitis: more than 40 “cheetah” spots.

∙ Atopic eczema: more than 4 lines, 2 “cheetah” spots and 3 disruptions.

∙ Psoriasis: more than 3 white spots, 2 lines, 10 “cheetah” spots and 2 disruptions.

∙ Verruca vulgaris: more than 1 white spot.

∙ Unknown: provided that all disease likelihoods are less than 40%.

∙ Healthy: provided that the damage percentage is lower than 10% and the image had
not been classified as verruca vulgaris.
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Chapter 8

Experiments and Results

8.1 Damage Localizer Results
Each of the three detection methods separately provides interesting outputs, but it is their
connection that makes the resulting application so notable. Thanks to the connection, very
satisfactory results have been achieved for locating the damaged areas.

Figure 8.1: Example of the pipeline of StatusMaps and the final distribution of damage in
the image (Atopic eczema). Green color marks the healthy areas, blue color highlights the
background and for the damaged areas a scale from yellow to red is used. Yellow stands
for minor damage, whereas red implies extremely damaged places.

Figure 8.2: Damage detection results. Green color marks the healthy areas, blue color
highlights the background and for the damaged areas a scale from yellow to red is used.
Yellow stands for minor damage, whereas red implies extremely damaged places.
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Table 8.1: Rejected and accepted samples.
TP FN FP TN

Acrodermatitis 12 18 103 478
Atopic eczema 134 289 25 163
Verruca vulgaris 23 17 314 257
Total 611 611 611 611

Table 8.2: Classifier accuracy measures.
FAR FRR F1 ACC

Acrodermatitis 0.1394 0.6667 0.1655 0.8347
Atopic eczema 0.1968 0.7021 0.4300 0.4533
Psoriasis 0.3408 0.7373 0.1956 0.5827
Verruca vulgaris 0.2329 0.5000 0.2073 0.7496

8.2 Classifier Accuracy
The Classifier itself is ready to be further extended and improved. It relies on the detection
results. So far, the following accuracy measures have been computed: FAR (False Accept
Rate) and FRR (False Reject Rate) [20], ACC (accuracy) and F1 score [20] - see Table 8.2.

611 fingerprint images from dactyloscopic cards from the database were used for the
test. Table 8.1 shows the numbers of fingerprint images that were correctly/incorrectly
classified. TP (True Positives) = number of positives that were correctly accepted, FN
(False Negatives) = number of negatives that were incorrectly rejected, FP (False Positives)
= number of positives that were incorrectly accepted and TN (True Negatives) = number
of negatives that were correctly rejected.

The classification accuracy reached high values for for acrodermatitis (83.5%) and ver-
ruca vulgaris recognition (75.0%), whereas it was lower for atopic eczema (45.3% ) and
psoriasis (58.3%). Better performance could be gained by improving the classification de-
cision rules, as well as coming up with new types of features detection.

8.3 Possible Extensions and Enhancements
The three methods introduced in this work provide a very good foundation for future re-
search and have great potential be further extended, so that they can serve in real-world
applications.

Skin disease detection using image recognition algorithms is a complex task, however.
What is more, this is a completely new and unique project, so there are no existing detection
methods yet. Therefore, the procedures described in this Bachelor’s thesis can undoubtedly
be further enhanced so that in the future the detection and classification pipeline performs
even better.

The major areas in which the program could be enhanced are:

39



∙ Damage removal: The greatest potential lies in using these methods to create a
program that would automatically remove the damage found in the fingerprint and
leave only the healthy parts.

∙ Damage repair: In some cases, it would be possible to even repair some of the
damaged areas (e.g. connect ridges, disrupted by a crack in the skin).

∙ Histogram analysis: There is a big chance to improve the histogram validation
process and extend the results from bare “damaged/healthy” to a more precise decimal
scale from 0 to 1. This could be done by upgrading the validity tests, as well as by
enriching the algorithm with some statistical calculations.

∙ Histogram analysis preprocessing: By improving the preprocessing steps so that
the input images have roughly the same input properties (contrast, brightness), the
method will perform well also on lower-quality, especially dark, images.

∙ Flood fill: The preprocessing steps can be further refined to reach better results.

∙ Speed: The detection algorithms can be optimized so that the pipeline runs faster.

∙ Other sensors: So far, the application was tested on samples from dactyloscopic
cards only. The algorithms can be adapted to other types of sensors as well.
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Chapter 9

Conclusion

This thesis deals with the detection of skin diseases from fingerprint images. The goal was
to design and develop methods that would locate the damaged areas from the fingerprint
image, and based on their specific properties, determine the possible type of disease present
in the fingerprint image. This objective was met and a classifier for 4 types of skin diseases
was developed: acrodermatitis, atopic eczema, psoriasis and verruca vulgaris.

Before the methods were designed, the faculty’s database of fingerprint images affected
by skin disease was thoroughly analyzed and, based on this foundation, possible algorithms
for damaged area detection were tested, including the Hough detection for lines and circles,
which was rejected for its inaccuracy. In the end, the following methods were implemented:
Detection from Block Orientation Field, Histogram Analysis Method and the Flood Fill
Method. The best results were achieved by connecting the methods together using a spe-
cial data structure, StatusMap.

The Classifier makes decisions based on statistics that resulted from testing the algo-
rithms on the whole fingerprint database. Using the methods described in this work, the
program reached an accuracy of 83.5% for acrodermatitis, 45.3% for atopic eczema, 58.3%
for psoriasis and 75.0% for verruca vulgaris.

The resulting program is a GUI application that enables the user to load an image, ad-
just the processing pipeline, and view and save the results. It can be used as an analytical
tool for future researchers.

There is a great potential for improvements and enhancements, and it is assumed that
the research will continue. There are opportunities for the results of this research to be
used in real-life applications in the future, such as medical applications or programs for
police and security purposes.
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Appendices
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Appendix A

Experimental results

Figure A.1: Experimental results: atopic eczema.
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Figure A.2: Experimental results: verruca vulgaris.
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Figure A.3: Experimental results: atopic eczema.
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Figure A.4: Experimental results: acrodermatitis.
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Figure A.5: Experimental results: verruca vulgaris.
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Figure A.6: Experimental results: psoriasis.
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