
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

ELECTRONIC CIRCUITS SIMULATION
SIMULACE ELEKTRONICKÝCH OBVODŮ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MICHAL ŽABKA
AUTOR PRÁCE
SUPERVISOR Ing. VÁCLAV ŠÁTEK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
The aim of this bachelor thesis is to introduce the most popular numerical methods for
solving differential equation. Following part describe a electronic circuits and simulation
programs. First part of this thesis is focused on the Taylor series method computation and
its parallel solution. In another chapters, it will be describe the methods for solution of
electronic circuits, the process of designing a model of CMOS inverter, CMOS NAND and
CMOS NOR. The final part of this thesis is focused on simulation in various simulation
programs and evaluation of the effectiveness of individual methods.

Abstrakt
Cílem této bakalářské práce je seznámit se s nejpopularnějšími numerickými metodami pro
výpočet diferenciálních rovnic, elektronických obvodů a simulačních programů. První část
této práce je zaměřena na výpočet s využitím metody Taylorovy řady a jejích paralelních
vlastností. V další kapitole budou popsány metody pro výpočet elektronických obvodů,
proces návrhu modelu CMOS invertoru, CMOS NANDu a CMOS NORu. Závěrečná část
této prace je zaměřena na simulaci těchto obvodů v různých simulačních programech a
shodnocení efektivity jednotlivých metod.

Keywords
Differential equation, Taylor series method, CMOS, inverter, NAND, NOR, Jacobi matrix,
simulation, TKSL, Matlab, SPICE.

Klíčová slova
Diferenciální rovnice, metoda Taylorovy řady, CMOS, invertor, NAND, NOR, Jacobiho
matice, simulace, TKSL, Matlab, SPICE.

Reference
ŽABKA, Michal. Electronic Circuits Simulation. Brno, 2017. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Václav
Šátek, Ph.D.

Electronic Circuits Simulation

Declaration
Hereby I declare that I have developed this bachelor thesis independently under supervision
of Ing. Václav Šátek Ph.D. and all relevant information sources, which were used are cited
and included in the list of references.

. .
Michal Žabka
May 18, 2017

Acknowledgements
I would like to thank Ing. Václav Šátek, Ph.D. for his professional advice, helpfulness and
great patience.

Contents

1 Introduction 5

2 Analytical and numerical solutions of differential equations 6
2.1 Numerical methods . 6

2.1.1 Approximation by Taylor method . 7
2.1.2 Approximation by Euler method . 8
2.1.3 Approximation by Runge-Kutta methods 8

3 Parallel system using Taylor method 10
3.1 Parallel-parallel integrator . 10
3.2 Serial-parallel integrator . 11
3.3 Serial-serial integrator . 13

4 Electric circuits 15
4.1 Electric circuits Equations . 15

4.1.1 Kirchof’s First Law(KCL) . 16
4.1.2 Kirchof’s Second Law(KVL) . 16

4.2 Example . 16

5 Simulation programs 19
5.1 MATLAB . 19
5.2 MAPLE . 19
5.3 TKSL . 20
5.4 SPICE . 20
5.5 DYMOLA . 21

6 Modeling of CMOS technology 22
6.1 CMOS inverter . 22
6.2 CMOS NAND and NOR . 23

7 Experiments 25
7.1 Simulation of inverter in TKSL . 25
7.2 Simulation of NAND in TKSL . 26
7.3 Simulation of NOR in TKSL . 27
7.4 Simulation of inverter in Matlab . 28
7.5 Simulation of NAND in Matlab . 30
7.6 Simulation of NOR in Matlab . 33
7.7 Simulation of inverter in SPICE . 34

1

7.8 Simulation of NAND in SPICE . 34
7.9 Simulation of NOR in SPICE . 35

8 Conclusion 37

Bibliography 38

Appendices 40
List of Appendices . 41

A SPICE figures 42

B MATLAB figures 46

2

List of Figures

3.1 Scheme of the parallel-parallel integrator . 10
3.2 Scheme of the serial-parallel integrator . 12
3.3 Scheme of the serial-serial integrator . 13

4.1 Electric circuit schema . 15
4.2 Electric circuit schema . 16

6.1 CMOS Inverter . 22
6.2 CMOS NAND/NOR . 23

7.1 TKSL Inverter . 25
7.2 TKSL NAND . 26
7.3 TKSL NOR . 27
7.4 Matlab invertor Taylor method . 29
7.5 Matlab NAND Taylor method . 32
7.6 Matlab NAND ODE45 solver . 32
7.7 Spice Inverter . 34
7.8 Spice NAND . 35
7.9 Spice NOR . 36

A.1 Spice Inverter . 42
A.2 Spice NAND . 43
A.3 Spice NAND . 43
A.4 Spice NAND . 44
A.5 Spice NOR . 44
A.6 Spice NOR . 45
A.7 Spice NOR . 45

B.1 Matlab invertor ODE23 for input equal to logical 0 46
B.2 Matlab invertor ODE45 for input equal to logical 0 47
B.3 Matlab invertor Taylor method for input equal to logical 1 47
B.4 Matlab invertor ODE23 for input equal to logical 1 48
B.5 Matlab invertor ODE23 with tolerance for input equal to logical 1 48
B.6 Matlab invertor ODE45 for input equal to logical 1 49
B.7 Matlab invertor ODE45 with tolerance for input equal to logical 1 49

3

List of Tables

7.1 TKSL NAND . 26
7.2 TKSL NOR . 27
7.3 Matlab invertor methods efficiency for input logical 0 29
7.4 Matlab invertor methods efficiency for input logical 1 29
7.5 Matlab NAND methods efficiency for input logical 0 0 31
7.6 Matlab NAND methods efficiency for input logical 0 1 31
7.7 Matlab NAND methods efficiency for input logical 1 0 31
7.8 Matlab NAND methods efficiency for input logical 1 1 31
7.9 Matlab NOR methods efficiency for input logical 0 0 33
7.10 Matlab NOR methods efficiency for input logical 0 1 33
7.11 Matlab NOR methods efficiency for input logical 1 0 34
7.12 Matlab NOR methods efficiency for input logical 1 1 34

4

Chapter 1

Introduction

Simulations on digital systems are very popular nowadays. The advantage is price and
security. With the development of computer systems, calculations of numerical methods
are accelerated. The well-known numerical methods for solving initial value problem are
Euler’s method, Runge-Kutt method and Taylor series method. The efficiency of the Taylor
series computation method and their parallel properties is enhanced. The aim of this thesis
is simulation of CMOS circuit, specifically CMOS inverter, CMOS NAND and CMOS
NOR. Simulation of these circuits is complicated because they are mainly composed of a
transistor. The transistor is an active semiconductor component, which consists of pairs
of PN transitions. Differential equations for describing a transistor are complex and have
many variables. Therefore, these circuits will be rewritten into circuits comprised of DC
source, resistor and capacitor. In this paper I will focus on continuous simulation of these
circuits using the Taylor series method in various simulation environments.

The text is divided into eight chapters. In the first three chapters I will describe nu-
merical methods and their properties. The other two chapters will cover the circuits and
the design of the CMOS circuit. Finally, I will introduce simulation programs and simulate
the designed circuits.

5

Chapter 2

Analytical and numerical solutions
of differential equations

Equations, which except one or more independent variables contains unknown functions
and their derivation, are called differential equations. Generally, the differential equation
can be written as

𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑦,
𝛿𝑦

𝛿𝑥1
,
𝛿𝑦

𝛿𝑥2
, . . . ,

𝛿𝑦

𝛿𝑥𝑛
,
𝛿2𝑦

𝛿𝑥21
,

𝛿2𝑦

𝛿𝑥1𝛿𝑥2
, . . . ,

𝛿2𝑦

𝛿𝑥21
,

𝛿2𝑦

𝛿𝑥1𝛿𝑥𝑛
,
𝛿2𝑦

𝛿𝑥21
, . . . ,

𝛿𝑘𝑦

𝛿𝑥𝑘𝑛
) = 0,

(2.1)
where 𝑦(𝑥1, 𝑥2, . . . , 𝑥𝑛) is unknown function 𝑛 variables. Solution of differential equation
are functions, which with their derivations identically meets this differential equation.

𝑦 = 𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛). (2.2)

Differential equations containing only unknown functions with one independent variable,
their derivations and independent variable itself are called ordinary differential equations.

𝑓(𝑥, 𝑦, 𝑦′, 𝑦′′, . . . , 𝑦(𝑘)) = 0. (2.3)

Differential equations containing unknown functions with more independent variables, their
derivations and independent variables itself are called partial differential equations.

𝑓(𝑥, 𝑦, 𝑧, 𝑧𝑥, 𝑧𝑦, 𝑧𝑥𝑥, 𝑧𝑦𝑦, 𝑧𝑥𝑦, . . .) = 0. (2.4)

Order of differential equation is given by the highest derivation in the differential equation.
Degree of differential equation is given by the highest power function and their derivations
in the differential equation. First degree differential equations are called linear differential
equations [5].

2.1 Numerical methods
Finding the analytical solution of large sets of differential equations is complex sometimes
impossible. Currently it is increasingly being used numerical solution. The numerical
solution of the ordinary differential equation with the initial condition

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (2.5)

6

is consider as sequence of values

[𝑦(𝑥0) = 𝑦0, [𝑦(𝑥1) = 𝑦1], . . . [𝑦(𝑥𝑁) = 𝑦𝑁] (2.6)

These numbers approximate the values of the exact analytical solution 𝑦(𝑥0) , 𝑦(𝑥1) , . . . , 𝑦(𝑥𝑁)
in points 𝑥0, 𝑥1, . . . , 𝑥𝑁 . We usually choose an equidistant network, ie. 𝑥𝑖 − 𝑥𝑖−1 = ℎ; 𝑖 =
1, 2, . . . , 𝑁. Number ℎ is called an integration step. Function values between the selected
points can be determined either by interpolation from surrounding calculated points or
by re-applying the numerical method using smaller integration step. The calculation is
iterative. The numerical solution 𝑦𝑖 in point 𝑥𝑖 is calculated from the previous value of nu-
merical solution 𝑦𝑖−1. This applies to one-step methods. There are also multi-step methods,
which are using 𝑘 previous solutions 𝑦𝑖−1, 𝑦𝑖−2, . . . , 𝑦𝑖−𝑘 to calculate actual solution. Using
multi-step methods it is problematic in the first steps of the calculation, when we still do
not have a sufficient number of previous values. To start the calculation it is necessary to
use one of the one-step methods. Differential equations of higher orders must be converted
to a system of ordinary first-order differential equations. The following methods may be
used to realize this conversion:

∙ the method of decreasing the order of derivation - simpler but requires the right side
of the equation with no input derivatives

∙ the method of gradual integration - it also manages the equations with the derivatives
on the right side

Both methods use the modification of the equation and the implementation of auxiliary
variables. They are usable even on systems of higher order equations - just repeat the
procedure for each given equation[10].

2.1.1 Approximation by Taylor method

If we approximate the function 𝑓 differentiable at 𝑥0 in a small neighborhood 𝑈(𝑥0) by
linear polynomial functions (first degree) 𝑇1(𝑥), we use the function whose graph is tangent
to graph of the function 𝑓 at the point [𝑥0, 𝑓(𝑥0)], in other words, we want to make the point
𝑥0 match the function and value of the first derivative of the function 𝑓 and polynomial 𝑇1.
If the function 𝑓 is 𝑛 times differentiable, we can improve the precision of approximation in
a small neighborhood of a point 𝑥0, by using a polynomial of 𝑛-th degree 𝑇𝑛, after which
we will require to make the point 𝑥0 coincided with the function 𝑓 to the 𝑛-th derivative
[11] [12].

Basic formula is:

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑦′𝑖 +
ℎ2

2!
𝑦′′𝑖 + ... +

ℎ𝑛

𝑛!
𝑦
(𝑛)
𝑖 (2.7)

Effective calculation for linear ODE is achieved by calculation first derivation and other
derivations are calculated as derivation of previous step.

𝑦′𝑖 = 𝑎 𝑦𝑖 (2.8)

𝑦′′𝑖 = 𝑎 𝑦′𝑖 = 𝑎2 𝑦𝑖 (2.9)

𝑦′′′𝑖 = 𝑎 𝑦′′𝑖 = 𝑎3 𝑦𝑖 (2.10)

7

𝑦
(𝑛)
𝑖 = 𝑎𝑛 𝑦𝑖 (2.11)

Calculation of whole Taylor series is achieved by formula below:

𝐷𝑌 0 = 𝑦𝑖

𝐷𝑌 1 = ℎ 𝑦′𝑖 = ℎ 𝑎 𝑦𝑖 = ℎ 𝑎𝐷𝑌 0

𝐷𝑌 2 =
ℎ2

2
𝑦′𝑖 =

ℎ2

2
𝑎2 𝑦𝑖 =

ℎ

2
𝑎𝐷𝑌 1

𝐷𝑌 3 =
ℎ

3
𝑎𝐷𝑌 2

...

𝐷𝑌 𝑛 =
ℎ

𝑛
𝑎𝐷𝑌𝑛−1

2.1.2 Approximation by Euler method

The most popular numerical methods for solving initial value problem

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (2.12)

are called finite difference methods. Approximate values are obtained for the solution at a
set of grid points.

𝑥0 < 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 (2.13)
and the approximate value at each 𝑥𝑛 is obtained by using some of the values obtained in
previous steps. We begin with a simple but computationally inefficient method attributed
to Leonhard Euler [2]. Euler method is defined by:

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛) 𝑛 = 0, 1, 2, · · · (2.14)

where ℎ is equal to step size. The result of the method may be more accurate by shortening
the calculation step ℎ. From a certain value, however, a rounding error will begin to occur,
and further shortening will only increase the error.

2.1.3 Approximation by Runge-Kutta methods

Euler’s method gave us one possible approach for solving differential equations numerically.
The problem with Euler method is that you have to use a small interval size to obtain
stable result. The Runge-Kutta method produces a better result in fewer steps.

Second order Runge-Kutta method

The Second Order Runge-Kutta algorithm is using an estimate for the derivative at the
midpoint of the interval between 𝑦𝑛 and 𝑦𝑛+1 would result in a better approximation for
the function at 𝑦𝑛+1, than would using the derivative at 𝑦𝑛 (i.e., Euler method).

𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛) (2.15)

𝑘2 = ℎ𝑓(𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1
2

) (2.16)

𝑦𝑛+1 = 𝑦𝑛 + 𝑘2 (2.17)

8

Fourth order Runge-Kutta method

The most commonly used method is Runge-Kutta fourth order method. Based on Taylor
series and takes into account the members of the higher orders. The necessary derivative of
the function 𝑓(𝑥0, 𝑦0) calculate a more complex differential method using other auxiliary
points between adjacent nodes in the network.

𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛) (2.18)

𝑘2 = ℎ𝑓(𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1
2

) (2.19)

𝑘2 = ℎ𝑓(𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2
2

) (2.20)

𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3) (2.21)

𝑦𝑛+1 = 𝑦𝑛 +
𝑘1
6

+
𝑘2
3

+
𝑘3
3

+
𝑘4
6

(2.22)

9

Chapter 3

Parallel system using Taylor
method

Numerical calculation of differential equations by Taylor series uses two basic operations:
multiplication in the term (𝐷𝑌 𝑝𝑖) and addition(iterative calculation 𝑦𝑖+1). These two
basic operations can be performed in series or in parallel. Similarly, communication between
processors can be solved serially or in parallel [10].

3.1 Parallel-parallel integrator
Multiplication is realized in a parallel multiplier and addition is realized in a parallel adder.
Block diagram is shown on the Fig. 3.1. The symbol of the integrator is marked with a
dashed lines.

Figure 3.1: Scheme of the parallel-parallel integrator

10

The importance of individual blocks:
RV Result register
RD Multiplication register
MPX Multiplexor
SUM Parallel adder
MULT Parallel multiplier

Integrator function: the cycle is initiated by storing the value 𝑦𝑖 in the RD and RV register.
The value 𝑓(𝑦𝑖) is displayed at the input, which is the output value of the element that
is connected at the beginning of integrator. The integration step size is set to ℎ. Multipli-
cation (from the multiplier MULT) of these two inputs is copied to register RD and at the
same time adding to register RD. Thus, in RD is a value of 𝐷𝑌 1 and in RV is a subtotal
of 𝑦𝑖 + 𝐷𝑌 1. In the next step, 𝑓(𝐷𝑌 1) and integration step ℎ/2 appear at the input.
Their multiplying is calculated by 𝐷𝑌 2, which is stored again in the RD sum with RV. The
entire cycle is repeated until the desired accuracy or the maximum number of iterations is
reached, yielding 𝑦𝑖+1. This type of integrator is the fastest type, the calculation time of
one member of the Taylor series is:

𝑡𝑃𝑃 = 𝜏𝑛𝑎𝑠 + 𝜏𝑠𝑒𝑐 + 𝜏𝑠𝑖𝑡 (3.1)

Therefore, it is given by the sum of the time of the multiplication of 𝜏𝑛𝑎𝑠 and the addition
of 𝜏𝑠𝑒𝑐, or even the delay of the signals in the 𝜏𝑠𝑖𝑡 interconnection network. However,
at the expense of the greatest complexity of engagement, which has the biggest share
combination multiplier. Another criterion is the number of inputs and outputs that is
directly proportional to the parallel data bus width.

3.2 Serial-parallel integrator
In this variation, the multiplication is performed by a sequencing method based on the both
multiplication algorithm. However addition is performed in parallel in one step as shown
on Fig. 3.2.

11

Figure 3.2: Scheme of the serial-parallel integrator

The importance of individual blocks:
RV Result register
MPX Multiplexor
SUM Parallel adder
ACC Accumulator
SR Shift register
BNEG Controlled-negation circuit (for sequence multiplication)

The principle of calculating the serial-parallel integrator is as follows: 𝑌𝑖 is stored in the RV
and SR register. The integration step input has a value ℎ, MPX is switched to a path from
the block control negation BNEG. The calculation 𝑦𝑖+1 then proceeds as follows: first, the
accumulator ACC is reset, the least significant bit 𝑓(𝑦𝑖) is prepared at the input. This
bit determines whether the multiplier from the RN register will be added to the ACC accu-
mulator, subtracted (a negative form of the multiplier is created - the second complement)
or whether it will be ignored (set to zero). The result of the adder is written into the
ACC and the entire accumulator and shift register SR is then shifted by one position on
the right side. This procedure is repeated until the last bit from 𝑓(𝑦𝑖) is received and
then processed. Using this the multiplication of ℎ and 𝑓(𝑦𝑖) is reached. The result of the
multiplication is stored in the shift register SR. The multiplexer switches from BNEG to
RV and the multiplier result 𝐷𝑌 𝑝 (stored in ACC) is added to the value stored in the result
register RV and stored in the ACC and then into the RV. The entire cycle is repeated until
the required accuracy or the maximum number of iterations is reached 𝑦𝑖+1.

The advantage of this approach is the small number of required wiring interface outlets,
as data are inputting and outputting in series. If we want to refine the calculation by
increasing the number of bits on which the numbers are displayed, then, unlike the previous
variant, nothing changes in the total connection, ”only“ changes the width of the registers,
adder and extends the sequence of the control signals but the integrator interface, as well

12

as the interconnection network, will be retained. A disadvantage compared to the previous
variant is a slowdown because multiplication is carried out in 𝑛 steps (𝑛 = number of
number bits). Calculation time of one member of the Taylor series is:

𝑡𝑆𝑃 = 𝜏𝑛𝑎𝑠 + 𝜏𝑠𝑒𝑐 + 𝜏𝑠𝑖𝑡

𝑡𝑆𝑃 = 𝑛·𝜏𝑠𝑒𝑐 + 𝜏𝑠𝑒𝑐 + 𝜏𝑠𝑖𝑡 (3.2)

Therefore, is given by the sum of the multiplication time (which is actually in the
addition steps 𝑛·𝜏𝑠𝑒𝑐) and the addition of the result 𝜏𝑠𝑒𝑐 of the multiplication result to the
previous overall result or the delay of the signals in the 𝜏𝑠𝑖𝑡 interconnection network. There
is a possibility to optimize this integrator variant by using multiple bits overwriting at once
(Booth’s transcription with radix 4 or 8). To intermediate result of multiplication is added
a multiple of the integration step, which is determined by the transcription of the input bit
group. This allows you to reduce the number of steps required to multiply. In this variant,
it is not enough just to create a positive and negative value for the multiplier. There must
be a circuit that will create a 2 or 4-bit trans-coding at the same time.

3.3 Serial-serial integrator
This variant is based on the principle of a serial-parallel integrator. Unlike the previous
variant, it performs sequentially not only the multiplication but also the addition operation.
See Fig. 3.3.

Figure 3.3: Scheme of the serial-serial integrator

13

The importance of individual blocks:
MPX Multiplexor
SUM Parallel adder
ACC Accumulator
RV Result shift register
SR Output shift register
CO flip-flop for transfer preservation

The function is as follows: First, ACC is reset, 𝑦𝑖 is inserted into the RV. The CO transfer
retention circuit is reset. The multiplexer MPX is set to the ACC path. At the integrator
input, the least significant bit 𝑓(𝑦𝑖) appears, and the individual bits of the integration
step, starting with the least significant bit, appear gradually on the serial input of the
integration step. This sequence is added to the accumulator in series, depending on the
integrator input value. When the intersection calculation is completed, a more significant
bit𝑓(𝑦𝑖) is set at the input and the output register SR is shifted at the same time. The
whole procedure is repeated until the last (most significant) bit 𝑓(𝑦𝑖) appears at the inte-
grator input. After the multiplication operation is completed, the value stored in the ACC
(𝐷𝑌 𝑝) is stored in the SR output register and added in series to the value stored in the
result register. This variant again has less connection requirements, but the price, which in
this case is the number of cycles that are needed for the whole calculation (and therefore
time), is given by an exponential relation.

𝑡𝑆𝑆 = 𝜏𝑛𝑎𝑠 + 𝜏𝑠𝑒𝑐 + 𝜏𝑠𝑖𝑡

𝑡𝑆𝑆 = 𝑛·𝑛·𝜏𝑠𝑒𝑐 + 𝑛·𝜏𝑠𝑒𝑐 + 𝜏𝑠𝑖𝑡

𝑡𝑆𝑆 = 𝑛2·𝜏𝑠𝑒𝑐 + 𝑛·𝜏𝑠𝑒𝑐 + 𝜏𝑠𝑖𝑡 (3.3)

𝜏𝑠𝑒𝑐 in this version is the addition time of a full one-bit adder, 𝑛 is the number of bits
on which both multiplier and multiplication values are stored. More information can be
found in [10].

14

Chapter 4

Electric circuits

The main point of this thesis is modeling and solving electric circuits. Electronic circuits are
integral parts of nearly all of the technological advancement in our lives today. Television,
radio, phones and computers. An electric circuits are often schematically represented as
4.1.

Figure 4.1: Electric circuit schema

Where R, L, G, C are per unit length quantities defined as follows:

∙ R : series resistance per unit length, for both conductors, in Ω/𝑚.
∙ L : series inductance per unit length, for both conductors, in 𝐻/𝑚.
∙ G : shunt conductance per unit length, in 𝑆/𝑚.
∙ C : shunt capacitance per unit length, in 𝐹/𝑚.

The parameters need to be calculated or estimated before any model can be built.
Conductance G is ignored in short circuit studies because the inductance of the line is the
dominant value.

4.1 Electric circuits Equations
In complex circuits, we can not simply use Ohm’s Law alone to find the voltages or currents
circulating within the circuit. For these types of calculations we need certain rules which
allow us to obtain the circuit equations and for this we can use Kirchof’s Circuit Law.

15

Kirchof’s Circuit Law are a set of rules or laws which deal with the conservation of
current and voltage within Electrical Circuits. These two rules are commonly known as:
Kirchof’s Circuit Laws with one of Kirchof’s laws dealing with the current owing around
a closed circuit, Kirchof’s Current Law(KCL) while the other law deals with the voltage
sources present in a closed circuit, Kirchof’s Voltage Law(KVL).

4.1.1 Kirchof’s First Law(KCL)

Kirchof’s Current Law or KCL, states that the ”total current or charge entering a junction
or node is exactly equal to the charge leaving the node as it has no other place to go except
to leave, as no charge is lost within the node“. In other words the algebraic sum of all the
currents entering and leaving a node must be equal to zero, 𝐼(𝑒𝑥𝑖𝑡𝑖𝑛𝑔) + 𝐼(𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔) = 0.
This idea by Kirchof’s is commonly known as the Conservation of Charge.

4.1.2 Kirchof’s Second Law(KVL)

Kirchof’s Voltage Law or KVL, states that ”in any closed loop network, the total voltage
around the loop is equal to the sum of all the voltage drops within the same loop“ which is
also equal to zero. In other words the algebraic sum of all voltages within the loop must
be equal to zero. This idea by Kirchof’s is known as the Conservation of Energy.

4.2 Example
Consider a simple parallel RL circuit with one voltage source, one resistor and one inductor
as shown in Figure 4.2.
Parameters will be :
𝑈 = 1𝑉
𝑅 = 1Ω
𝐿 = 1𝐻

Figure 4.2: Electric circuit schema

Basic formula for describing RL circuit by differential equation is:

𝑖′ =
1

𝐿
𝑈𝐿 𝑖(0) = 0 (4.1)

16

Using Kirchof’s second law we found 𝑈𝐿

𝑖 * 𝑅 + 𝑈𝐿 − 𝑈 = 0 (4.2)

𝑈𝐿 = 𝑈 − 𝑖 * 𝑅 (4.3)

then we put into formula

𝑖′ =
1

𝐿
𝑈 − 𝑖 * 𝑅 (4.4)

𝑑𝑖

𝑑𝑡
=

1

𝐿
𝑈 − 𝑖 * 𝑅 (4.5)

𝑑𝑖

𝑈 − 𝑖 * 𝑅
=

1

𝐿
𝑑𝑡 (4.6)

1
𝐿 (−𝑅) 𝑑𝑖

𝑈 − 𝑖 * 𝑅
=

1

𝐿
𝑑𝑡 (4.7)

integrate equation

−1

𝐿
𝑙𝑛(𝑈 − 𝑖 * 𝑅) =

1

𝐿
𝑑𝑡 (4.8)

𝑙𝑛(𝑈 − 𝑖 * 𝑅) =
−𝑅

𝐿
𝑡 (4.9)

𝑙𝑛(𝑈 − 𝑖 * 𝑅) = 𝑙𝑛𝑒
−𝑅
𝐿

𝑡 + 𝑙𝑛𝐾 (4.10)

we logarithm both side

𝑈 − 𝑖 * 𝑅 = 𝐾𝑒
−𝑅
𝐿

𝑡 (4.11)

𝑖 * 𝑅 = 𝑈 − 𝐾𝑒
−𝑅
𝐿

𝑡 (4.12)

general solution

𝑖 = 1 − 𝐾𝑒𝑡 (4.13)

0 = 1 − 𝐾𝑒0 (4.14)

𝐾 = 1 (4.15)

particular solution

𝑖 = 1 − 𝑒−𝑡 (4.16)

Taylor series

𝑒𝑡 = 1 +
𝑡

1!
+

𝑡2

2!
+

𝑡3

3!
· · · +

𝑡𝑛

𝑛!
(4.17)

17

For 𝑡 = 1

𝑖 = 𝑒−𝑡 (4.18)

𝑖 = 1 − (1 − 1 +
12

2!
+

13

3!
+

14

4!
+

15

5!
+

16

6!
+

17

7!
+

18

8!
+

19

9!
+

110

10!
(4.19)

𝑖 = 0.632120536 (4.20)

18

Chapter 5

Simulation programs

There are numbers of software packages in the market such as Multisim, SPICE etc. which
are excellent for the students to learn about simulation of electrical circuits. However,
deeper understanding of the circuits can be promoted if students were writing their own
code in environment like MATLAB or MAPLE and then simulate the circuit in Simulink
to analyze the circuit behavior. This chapter will discuss several softwares, which may be
used for simulation and solving diferential equations.

5.1 MATLAB
MATLAB is a numeric computation software for engineering and scientific calculations. The
name MATLAB stands for MATRIX LABORATORY. MATLAB is primarily a tool for ma-
trix computations. MATLAB software is receiving phenomenal attention from engineering
and scientific communities. MATLAB avoids the awkward compilation often encountered
in traditional languages such as C++, JAVA etc. Furthermore it provides an opportunity
for easy debugging, easy to execute workspace, and uses the built in library functions which
avoids hundreds of programming statements. Also, provides the convenience of Graphical
User Interface (GUI) design tools as well as scientific modelling platform without laborious
programming.

Matlab is very useful for doing numerical computations with matrices and vectors. It
can also display information graphically. The best way to learn what Matlab can do is to
work through some examples at the computer.

The main reason for using MATLAB in this thesis is that we can use it to analyze motion
of an engineering system. To do this, we always need to solve a differential equation. MAT-
LAB has powerful numerical methods to solve differential equations called ODE(ordinary
differential equation)[3] [17] [14] [1].

5.2 MAPLE
MapleSimTM is a modeling environment for creating and simulating complex multidomain
physical systems. It allows us to build component diagrams that represent physical systems
in a graphical form. Using both symbolic and numeric approaches, MapleSim automatically
generates model equations from a component diagram and runs high-fidelity simulations.
We can use MapleSim to build models that integrate components from various engineering
fields into a complete system. MapleSim features a library of over 300 modeling compo-

19

nents, including electrical and thermal devices, sensors and sources, signal blocks. We can
also create custom components to suit our modeling and simulation needs. MapleSim uses
the advanced symbolic and numeric capabilities of MapleTM to generate the mathematical
models that simulate the behavior of a physical system. We can, therefore, apply simplifica-
tion techniques to equations to create concise and numerically efficient models. MapleSim
provides various pre-built templates in the form of Maple work sheets for viewing model
equations and performing advanced analysis tasks, such as parameter optimization. To
analyze our model and present our simulation results in an interactive format, we can use
Maple features such as embedded components, plotting tools and document creation tools.
We can also translate our models into C code and work with them in other applications and
tools, including applications that allow us to perform real-time simulation. In MapleSim,
all the calculations are performed automatically. We only need to draw the circuit and pro-
vide the component parameters. These principles can be applied equally to all engineering
domains in MapleSim and allow us to connect components in one domain with components
in others easily [15].

5.3 TKSL
System TKSL is simulation language for computing differential equations (initial value
problems). All calculations are based on differential equations and are solved using Taylor
series method. The system allows numerical solution. Entry is a system of differential
equations. The program is designed for environments MSDOS.
TKSL / 386 is programmed in Pascal, and it is already on powerful computers being
inadequate. Program TKSL / C was created one Faculty of information Technology in
Brno. It is written in C ++ thus be the final solution could be used on Microsoft Windows
operating systems. Also solves the problems and some of the original version [13].

5.4 SPICE
SPICE program analyze a circuit based on a text-file description of the circuit’s components
and connections. By itself, SPICE does not require a graphic interface and demands little
in system resources. It is also very reliable. SPICE is fairly easy to use for simple circuits,
and its non-graphic interface actually lends itself toward the analysis of circuits that can
be difficult to draw. Graphics may look more attractive, but abstracted interfaces (text)
are actually more efficient.

SPICE is a general-purpose circuit simulation program for nonlinear dc, nonlinear tran-
sient and linear ac analyses. Circuits may contain resistors, capacitors, inductors, mutual
inductors, independent voltage and current sources, four types of dependent sources, trans-
mission lines and the four most common semiconductor devices: diodes, BJT’s, JFET’s
and MOSFET’s.

SPICE has built-in models for the semiconductor devices and the user need to specify
only the pertinent model parameter values. The model for the BJT is based on the integral
charge model of Gummel and Poon. If the Gummel-Poon parameters are not specified, the
model reduces to the simpler Ebers-Moll model. In either case, charge storage effects, ohmic
resistances and a current-dependent output conductance may be included. The diode model
can be used for either junction diodes or Schottky barrier diodes. The JFET model is based
on the FET model of Shichman and Hodges. Three MOSFET models are implemented.

20

MOS1 is described by a square-law I-V characteristic MOS2 is an analytical model while
MOS3 is a semi-empirical model. Both MOS2 and MOS3 include second-order effects
such as channel length modulation, subthreshold conduction, scattering limited velocity
saturation, small size effects and charge-controlled capacitances[16].

5.5 DYMOLA
Dymola is modeling and simulation tool suitable for modeling of various kinds of physical
systems. It supports hierarchical model composition, libraries of truly reusable components,
connectors and composite connections. Model libraries are available in many engineering
domains. Dymola uses a new modeling methodology based on object orientation and equa-
tions. [6] [7].

Modelica is a high-level declarative language for describing mathematical behavior. It is
typically applied to engineering systems and can be used to easily describe the behavior of
different types of engineering components (e.g.,resistors, clutches, etc.). These components
can be combined into subsystems, systems or even architectures. Modelica is compelling
for several reasons. First and foremost, it is technically very capable. By using complex
algorithms behind the scenes, Modelica compilers allow engineers to focus on high-level
mathematical descriptions of component behavior and get high performance simulation
capability in return without having to be deeply knowledgeable about complex topics like
differential-algebraic equations, symbolic manipulation, numeric solvers, code generation,
post-processing, etc.. The key to Modelica’s technical success is the support for a wide
range of modeling formalism that allow the description of both continuous and discrete
behavior framed in the context of hybrid differential-algebraic equations. The language
supports both causal (often used for control system design) and acausal (often used in
creating schematic oriented physical designs) approaches within the same model. Finally,
another compelling aspect of Modelica is the fact that it was designed from the start as
an open language. The specification is freely available and tool vendors are encouraged to
support the import and export of Modelica (without being compelled to pay). Modelica
is really an ideal language for modeling the behavior of engineering systems in nearly any
engineering domain. It seamlessly supports both physical design and control design in a
single language. It is also multi-domain so it does not impose any artificial boundaries that
restrict its use to select engineering domains or systems. The result is that it provides a
complete set of capabilities for building lumped system models of nearly any engineering
system [6] [7].

21

Chapter 6

Modeling of CMOS technology

This chapter is based on [9] [4]. Complementary metal–oxide–semiconductor is a technol-
ogy for constructing integrated circuits. CMOS is used in most very large scale integrated
(VLSI) or ultra-large scale integrated (ULSI) circuit chips. The term ”VLSI“ is generally
associated with chips containing thousands or millions of metal oxide semiconductor field
effect transistors (MOSFETs). The term ”ULSI“ is generally associated with chips contain-
ing billions, or more, MOSFETs. We will describe how to solve CMOS logic circuit using
the capacitor substitution which leads to the system of differential equations that can be
solved numerically.

6.1 CMOS inverter
The scheme of CMOS inverter (Fig. 6.1 left) presents an electronic circuit. The function of
this scheme is feasible to be demonstrated by means of an electric circuit (Fig. 6.1 middle).
Further it is possible to substitute each transistor with a pair of resistor-capacitor as shown
in Fig. 6.1 (right).

Figure 6.1: CMOS Inverter

If input 𝐴 is logical one (e.g. 3.3 V for recent CMOS transistors but the value is
dependent on an application), then the p-type transistor (upper one) is closed while the
n-type transistor is open - it is simulated by high 𝑅𝐴 = 1010Ω and low 𝑅𝐴 = 1Ω. Fol-
lowing differential equations for this regular electric circuit can be constructed (parameters
𝑈 = 3.3𝑉 ;𝑅𝑖 = 1Ω;𝐶1 = 𝐶2 = 5𝜇𝐹 ;𝑅𝐴;𝑅𝐴 ∈ {1, 1010}Ω; capacitor 𝐶1 is precharged).

22

𝑖 =
1

𝑅𝑖
· (𝑈 − 𝑢𝐶1 − 𝑢𝐶2) (6.1)

𝑢′𝐶1
=

1

𝐶1
· (𝑖− 1

𝑅𝐴

· 𝑢𝐶1) , 𝑢𝐶1(0) = 3.3 (6.2)

𝑢′𝐶2
=

1

𝐶2
· (𝑖− 1

𝑅𝐴
· 𝑢𝐶1) , 𝑢𝐶2(0) = 0 (6.3)

6.2 CMOS NAND and NOR
Transformation of CMOS NAND and NOR can be done similarly. NAND is shown in Fig.
2 (left), NOR is presented in Fig. 2 (right). Capacitors 𝐶12, resp. 𝐶34 already consist of
capacitors 𝐶1 and 𝐶2 (parallel capacitors), resp. 𝐶3 and 𝐶4, therefore 𝐶12 = 𝐶1 + 𝐶2 and
𝐶34 = 𝐶3 + 𝐶4.

Figure 6.2: CMOS NAND/NOR

The left circuit (Fig. 6.2) is described by the following equations (parameters 𝑈 =
3.3𝑉 ;𝑅𝑖 = 1Ω;𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 5𝜇𝐹 ;𝐶12 = 𝐶1 + 𝐶2;𝑅𝐴, 𝑅𝐴, 𝑅𝐵, 𝑅𝐵 ∈ {1, 1010}Ω;
capacitor 𝐶12 is precharged)

𝑖 = 1
1

𝑅𝑖
· (𝑈 − 𝑢𝐶12 − 𝑢𝐶1 − 𝑢𝐶2) (6.4)

𝑢′𝐶12
=

1

𝐶12
· (𝑖−

𝑅𝐴 + 𝑅𝐵

𝑅𝐴 ·𝑅𝐵

· 𝑢𝐶12) , 𝑢𝐶12(0) = 3.3 (6.5)

𝑢′𝐶3
=

1

𝐶3
· (𝑖− 1

𝑅𝐴
· 𝑢𝐶3) , 𝑢𝐶3(0) = 0 (6.6)

𝑢′𝐶4
=

1

𝐶4
· (𝑖− 1

𝑅𝐵
· 𝑢𝐶4) , 𝑢𝐶4(0) = 0 (6.7)

The right circuit (Fig. 6.2) is described by the following equations (parameters are the
same as for the left one, capacity 𝐶34 = 𝐶3+𝐶4, capacitors 𝐶1 and 𝐶2 are half-precharged).

23

𝑖 = 1
1

𝑅𝑖
· (𝑈 − 𝑢𝐶1 − 𝑢𝐶2 − 𝑢𝐶34) (6.8)

𝑢′𝐶1
=

1

𝐶1
· (𝑖− 1

𝑅𝐴

· 𝑢𝐶1) , 𝑢𝐶1(0) = 1.65 (6.9)

𝑢′𝐶2
=

1

𝐶2
· (𝑖− 1

𝑅𝐵

· 𝑢𝐶1) , 𝑢𝐶2(0) = 1.65 (6.10)

𝑢′𝐶34
=

1

𝐶34
· (𝑖− 𝑅𝐴 + 𝑅𝐵

𝑅𝐴 ·𝑅𝐵
· 𝑢𝐶34) , 𝑢𝐶34(0) = 0 (6.11)

24

Chapter 7

Experiments

7.1 Simulation of inverter in TKSL
𝑇𝑚𝑎𝑥 for simulation is set to 1𝑚𝑠. Input 𝐴 is set to logical 1 for interval 𝑡 =< 0; 0.5)𝑚𝑠
and to logical 0 for interval 𝑡 =< 0.5, 1 > 𝑚𝑠. Therefore output 𝑂𝑈𝑇 has for first interval
very small value which indicates logical 0 and value close to 3.3 which indicates logical 1
for second interval. 𝑂𝑅𝐷 is 10. See Fig. 7.1.

Figure 7.1: TKSL Inverter

25

7.2 Simulation of NAND in TKSL
This section will be about simulation of NAND circuit in TKSL. 𝑇𝑚𝑎𝑥 is equal to 1ms.
Values close to 0 equals to logical 0, values close to 3.3 equals to logical 1. Result of figure
7.2 is shown in table below:

t A B OUT
0 - 0.24 0 0 1
0.25 - 0.49 0 1 1
0.5 - 0.74 1 0 1
0.75 - 1 1 1 0

Table 7.1: TKSL NAND

Figure 7.2: TKSL NAND

26

7.3 Simulation of NOR in TKSL
Now we change equations to simulate NOR circuit. 𝑇𝑚𝑎𝑥 is equal to 1ms. Values close to
0 equals to logical 0, values close to 3.3 equals to logical 1. Result of Fig. 7.3 is shown in
table below:

t A B OUT
0 - 0.24 0 0 1
0.25 - 0.49 0 1 0
0.5 - 0.74 1 0 0
0.75 - 1 1 1 0

Table 7.2: TKSL NOR

Figure 7.3: TKSL NOR

27

7.4 Simulation of inverter in Matlab
This section will be focused on different methods used for solving differential equation in
Matlab. System of differential equations can be presented as:

𝑦′1 = 𝑎11 𝑦1 + 𝑎12 𝑦2 + 𝑏1 𝑦1(0) = 𝑦10 (7.1)

𝑦′2 = 𝑎21 𝑦1 + 𝑎22 𝑦2 + 𝑏2 𝑦2(0) = 𝑦20 (7.2)

These two differential equations can be put into matrix and vectors as shown below:

𝑦⃗ =

⎛⎝ 𝑦1

𝑦2

⎞⎠ , ⃗𝑦(0) =

⎛⎝ ⃗𝑦1(0)

⃗𝑦2(0)

⎞⎠ , 𝐴 =

⎛⎝ 𝑎11 𝑎12

𝑎21 𝑎22

⎞⎠ , 𝑏⃗ =

⎛⎝ 𝑏1

𝑏2

⎞⎠ (7.3)

where 𝐴 is Jacobian matrix of constants and 𝑏⃗ is vector of constants.
Second derivative 𝑦′′ using first derivative 𝑦′ calculated in previous step is shown below:

𝑦′′1 = 𝑎11 𝑦
′
1 + 𝑎12 𝑦

′
2 = 𝑎11 (𝑎11 𝑦2 + 𝑎12 𝑦2 + 𝑏1) + 𝑎12 (𝑎21 𝑦1 + 𝑎22 𝑦2 + 𝑏2) (7.4)

𝑦′′2 = 𝑎21 𝑦
′
1 + 𝑎22 𝑦

′
2 = 𝑎21 (𝑎11 𝑦2 + 𝑎12 𝑦2 + 𝑏1) + 𝑎22 (𝑎21 𝑦1 + 𝑎22 𝑦2 + 𝑏2) (7.5)

𝑦⃗ (𝑛) = 𝐴 . 𝑦⃗ 𝑛−1 −−→
𝐷𝑌 (𝑛) =

ℎ

𝑛
. 𝐴 .

−−→
𝐷𝑌 𝑛−1 (7.6)

𝑢′𝑐1 =
1

𝐶1
(

1

𝑅1
(𝑈 − 𝑢𝑐1 − 𝑢𝑐2) −

1

𝑅𝑖
𝑢𝑐1) (7.7)

𝑢′𝑐2 =
1

𝐶2
(

1

𝑅2
(𝑈 − 𝑢𝑐1 − 𝑢𝑐2) −

1

𝑅𝑖
𝑢𝑐2) (7.8)

𝐴 =

⎛⎝− 1
𝐶1 𝑅1

− 1
𝐶1 𝑅𝑖

− 1
𝐶1 𝑅1

− 1
𝐶2 𝑅1

− 1
𝐶2 𝑅1

− 1
𝐶2 𝑅𝑖

⎞⎠ , 𝑏⃗ =

⎛⎝ 𝑈
𝐶1 𝑅1

𝑈
𝐶2 𝑅2

⎞⎠ (7.9)

𝑈 ′
𝑐 = 𝐴𝑢𝑐 + 𝑏⃗ (7.10)

Matrix 7.9 was used as input into solving methods. We have chosen five solving methods:
ORD23 solver, ORD23 solver with absolute tolerance equal to 1−10, ORD45 solver, ORD45
solver with absolute tolerance equal to 1−10 and Taylor series method implemented in
explicitTaylorLinear.m [8]. 𝑅𝐴 is set as 1010, which is equal to logical 0. Therefore output
must be around 3.3, which is equal to logical 1. Taylor series method computation is shown
in Fig. 7.4.

28

Figure 7.4: Matlab invertor Taylor method

When 𝑂𝑈𝑇 is equal to logical 1, ODE solvers are producing very similar graphs as we
can see in Fig. B.1 and Fig. B.2.

Comparison between efficiency of each method is shown in table 7.3.

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.010863 65 X
ODE23 0.013446 225 3.73883e-07
ODE23 Tolerance 1e-10 2.217596 4056 3.18265e-11
ODE45 0.018998 657 3.57374e-07
ODE45 Tolerance 1e-10 0.33462 1521 9.03322e-12

Table 7.3: Matlab invertor methods efficiency for input logical 0

We can see that if we choose ODE method with specified absolute tolerance elapse time
of method is increased as well as number of steps, but accuracy of calculation is better.
This apply to all simulations.

When we set 𝑅𝐴 to 1, which equal to logical 1. Therefore output must be very small
number around 0, which is equal to logical 0. Computation is shown in Fig. B.3,B.4,B.5,B.6,B.7.

Efficiency of methods is shown in table 7.4.

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.011316 33 X
ODE23 0.011989 189 5.70239e-07
ODE23 Tolerance 1e-10 0.33499 209 2.67532e-11
ODE45 0.020541 621 5.10708e-07
ODE45 Tolerance 1e-10 0.182838 633 6.81423e-11

Table 7.4: Matlab invertor methods efficiency for input logical 1

29

We can see for Taylor method 𝑂𝑅𝐷𝐸𝑅 = 33, which is higher than 𝑂𝑅𝐷𝐸𝑅 = 10 from
TKSL simulation. Differences between number of steps from ODE solvers with absolute
toleration and without is smaller than in table 7.3.

7.5 Simulation of NAND in Matlab
In this section we will simulate CMOS NAND. For this purpose we will need three differ-
ential equation. We can use following formula:

𝑦′1 = 𝑎11 𝑦1 + 𝑎12 𝑦2 + 𝑎13 𝑦3 + 𝑏1 𝑦1(0) = 𝑦10 (7.11)

𝑦′2 = 𝑎21 𝑦1 + 𝑎22 𝑦2 + 𝑎23 𝑦3 + 𝑏2 𝑦2(0) = 𝑦20 (7.12)

𝑦′3 = 𝑎31 𝑦1 + 𝑎32 𝑦2 + 𝑎33 𝑦3 + 𝑏3 𝑦3(0) = 𝑦30 (7.13)

𝑦⃗ =

⎛⎜⎜⎜⎝
𝑦1

𝑦2

𝑦3

⎞⎟⎟⎟⎠ , ⃗𝑦(0) =

⎛⎜⎜⎜⎜⎝
⃗𝑦1(0)

⃗𝑦2(0)

⃗𝑦3(0)

⎞⎟⎟⎟⎟⎠ , 𝐴 =

⎛⎜⎜⎜⎝
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎞⎟⎟⎟⎠ , 𝑏⃗ =

⎛⎜⎜⎜⎝
𝑏1

𝑏2

𝑏3

⎞⎟⎟⎟⎠ (7.14)

We use equations to describe NAND circuit from previous chapter and put it into
formula.

𝑢′𝑐12 =
1

𝐶12
(

1

𝑅𝑖
(𝑈 − 𝑢𝑐12 − 𝑢𝑐3 − 𝑢𝑐4) −

𝑅𝐴 + 𝑅𝐵̄

𝑅𝐴.𝑅𝐵̄

. 𝑈𝑐12) (7.15)

𝑢′𝑐3 =
1

𝐶3
(

1

𝑅𝑖
(𝑈 − 𝑢𝑐12 − 𝑢𝑐3 − 𝑢𝑐4) −

1

𝑅𝐴
𝑈𝑐3) (7.16)

𝑢′𝑐4 =
1

𝐶4
(

1

𝑅𝑖
(𝑈 − 𝑢𝑐12 − 𝑢𝑐3 − 𝑢𝑐4) −

1

𝑅𝐵
𝑈𝑐4) (7.17)

then we write Jacobian matrix 𝐴.

𝐴 =

⎛⎜⎜⎜⎜⎝
− 1

𝐶12 𝑅𝑖
− 𝑅𝐴+𝑅𝐵̄

𝐶12.𝑅𝐴.𝑅𝐵̄
− 1

𝐶12 𝑅𝑖
− 1

𝐶12 𝑅𝑖

− 1
𝐶3 𝑅𝑖

− 1
𝐶3 𝑅𝑖

− 1
𝐶3 𝑅𝐴

− 1
𝐶3 𝑅𝑖

− 1
𝐶4 𝑅𝑖

− 1
𝐶4 𝑅𝑖

− 1
𝐶4𝑅𝑖

− 1
𝐶4 𝑅𝐵

⎞⎟⎟⎟⎟⎠ , 𝑏⃗ =

⎛⎜⎜⎜⎝
𝑢

𝐶12 𝑅𝑖

𝑢
𝐶3 𝑅𝑖

𝑢
𝐶4 𝑅𝑖

⎞⎟⎟⎟⎠
(7.18)

NAND circuit has two logical inputs 𝑅𝐴 and 𝑅𝐵. Setting resistors to 1010 is equal to
logical 0 and to 1 is equal to logical 1. This give us four combinations. Efficiency of our
solvers is described in tables below:

30

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.007699 65 X
ODE23 0.015746 236 6.10705e-07
ODE23 Tolerance 1e-10 2.898517 3789 7.37961e-11
ODE45 0.021694 697 1.86033e-07
ODE45 Tolerance 1e-10 0.464563 1521 8.08953e-11

Table 7.5: Matlab NAND methods efficiency for input logical 0 0

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.012599 65 X
ODE23 0.025384 260 1.14415e-06
ODE23 Tolerance 1e-10 3.175594 4164 6.39933e-12
ODE45 0.027306 769 1.20005e-07
ODE45 Tolerance 1e-10 0.495461 1609 1.03735e-11

Table 7.6: Matlab NAND methods efficiency for input logical 0 1

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.015629 65 X
ODE23 0.023419 260 1.14415e-06
ODE23 Tolerance 1e-10 3.312756 4164 2.97056e-11
ODE45 0.032606 769 1.20005e-07
ODE45 Tolerance 1e-10 0.473937 1609 2.61093e-11

Table 7.7: Matlab NAND methods efficiency for input logical 1 0

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.016928 65 X
ODE23 0.017443 249 1.46182e-06
ODE23 Tolerance 1e-10 0.445404 267 3.1655e-11
ODE45 0.026271 797 6.11117e-08
ODE45 Tolerance 1e-10 0.282186 809 5.1099e-12

Table 7.8: Matlab NAND methods efficiency for input logical 1 1

In Tab. 7.8 we can see that setting up tolerance for solver does not have big impact on
number of steps, but still better accuracy of approximation. Taylor series approximation
for input 𝑅𝐴 = 1, 𝑅𝐵 = 1 we can see in Fig. 7.5

31

Figure 7.5: Matlab NAND Taylor method

ODE45 solution for same input values, is shown in Fig.7.6.

Figure 7.6: Matlab NAND ODE45 solver

32

7.6 Simulation of NOR in Matlab
In this section we will use again formula with three differential equations as in previous
section. To describe NOR circuit we need following equations.

𝑢′𝑐1 =
1

𝐶1
(

1

𝑅𝑖
(𝑈 − 𝑢𝑐1 − 𝑢𝑐2 − 𝑢𝑐34) −

1

𝑅𝐴

𝑈𝑐1) (7.19)

𝑢′𝑐2 =
1

𝐶2
(

1

𝑅𝑖
(𝑈 − 𝑢𝑐1 − 𝑢𝑐2 − 𝑢𝑐34) −

1

𝑅𝐵̄

𝑈𝑐2) (7.20)

𝑢′𝑐34 =
1

𝐶34
(

1

𝑅𝑖
(𝑈 − 𝑢𝑐1 − 𝑢𝑐2 − 𝑢𝑐34) −

𝑅𝐴 + 𝑅𝐵

𝑅𝐴.𝑅𝐵
. 𝑈𝑐34) (7.21)

then we write Jacobian matrix 𝐴.

𝐴 =

⎛⎜⎜⎜⎜⎝
− 1

𝐶1 𝑅𝑖
− 1

𝐶1 . 𝑅𝐴
− 1

𝐶1 𝑅𝑖
− 1

𝐶1 𝑅𝑖

− 1
𝐶2 𝑅𝑖

− 1
𝐶2 𝑅𝑖

− 1
𝐶2 𝑅𝐵̄

− 1
𝐶2 𝑅𝑖

− 1
𝐶34 𝑅𝑖

− 1
𝐶34 𝑅𝑖

− 1
𝐶34𝑅𝑖

− 𝑅𝐴+𝑅𝐵
𝐶34 𝑅𝐴 𝑅𝐵

⎞⎟⎟⎟⎟⎠ , 𝑏⃗ =

⎛⎜⎜⎜⎝
𝑢

𝐶1 𝑅𝑖

𝑢
𝐶2 𝑅𝑖

𝑢
𝐶34 𝑅𝑖

⎞⎟⎟⎟⎠
(7.22)

We use same simulation logic as in NAND. Efficiency is shown in tables below:

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.013517 65 X
ODE23 0.017232 281 3.85254e-07
ODE23 Tolerance 1e-10 3.088210 3837 1.77844e-11
ODE45 0.034101 833 2.16721e-08
ODE45 Tolerance 1e-10 0.454832 1521 1.73772e-12

Table 7.9: Matlab NOR methods efficiency for input logical 0 0

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.012141 65 X
ODE23 0.016074 260 2.29293e-07
ODE23 Tolerance 1e-10 2.818410 3642 5.40116e-14
ODE45 0.026815 769 1.99429e-08
ODE45 Tolerance 1e-10 0.427478 1537 1.73707e-12

Table 7.10: Matlab NOR methods efficiency for input logical 0 1

33

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.014111 65 X
ODE23 0.016369 260 2.29293e-07
ODE23 Tolerance 1e-10 2.850956 3642 5.40575e-14
ODE45 0.030344 769 1.99429e-08
ODE45 Tolerance 1e-10 0.436918 1537 1.73703e-12

Table 7.11: Matlab NOR methods efficiency for input logical 1 0

Method Elapsed time [s] Number of steps Absolute error in last step
towards Taylor method

Taylor 0.012575 33 X
ODE23 0.014002 201 5.61782e-07
ODE23 Tolerance 1e-10 0.399256 222 7.0787e-11
ODE45 0.022746 657 5.05691e-08
ODE45 Tolerance 1e-10 0.215437 673 9.18822e-12

Table 7.12: Matlab NOR methods efficiency for input logical 1 1

7.7 Simulation of inverter in SPICE
Simulation in SPICE by operating point. When input 𝐴 is equal to logical 0(𝑅𝐴 = 100𝐺Ω)
then output 𝑂𝑈𝑇 is equal to logical 1(𝑉 (𝑜𝑢𝑡) = 3.3𝑉) as shown in figure 7.7. When
input 𝐴 is equal to logical 1(𝑅𝐴 = 1Ω) then output 𝑂𝑈𝑇 is equal to logical 0(𝑉 (𝑜𝑢𝑡) =
3.3−11𝑉) as shown in figure A.1.

Figure 7.7: Spice Inverter

7.8 Simulation of NAND in SPICE
Simulation in SPICE by operating point. When input 𝐴 is equal to logical 0(𝑅𝐴 =
100𝐺Ω) and input 𝐵 is equal to logical 0(𝑅𝐵 = 100𝐺Ω) then output 𝑂𝑈𝑇 is equal

34

to logical 1(𝑉 (𝑜𝑢𝑡) = 3.3𝑉) as shown in figure 7.8. When input 𝐴 is equal to logical
0(𝑅𝐴 = 100𝐺Ω) and input 𝐵 is equal to logical 1(𝑅𝐵 = 1Ω) then output 𝑂𝑈𝑇 is equal
to logical 1(𝑉 (𝑜𝑢𝑡) = 3.3𝑉) as shown in figure A.2. When input 𝐴 is equal to logical
1(𝑅𝐴 = 1Ω) and input 𝐵 is equal to logical 0(𝑅𝐵 = 100𝐺Ω) then output 𝑂𝑈𝑇 is equal
to logical 1(𝑉 (𝑜𝑢𝑡) = 3.3𝑉) as shown in figure A.3. When input 𝐴 is equal to logical
1(𝑅𝐴 = 1Ω) and input 𝐵 is equal to logical 1(𝑅𝐵 = 1Ω) then output 𝑂𝑈𝑇 is equal to
logical 0(𝑉 (𝑜𝑢𝑡) = 1.32−10𝑉) as shown in figure A.4.

Figure 7.8: Spice NAND

7.9 Simulation of NOR in SPICE
Simulation in SPICE by operating point. When input 𝐴 is equal to logical 0(𝑅𝐴 =
100𝐺Ω) and input 𝐵 is equal to logical 0(𝑅𝐵 = 100𝐺Ω) then output 𝑂𝑈𝑇 is equal
to logical 1(𝑉 (𝑜𝑢𝑡) = 3.3𝑉) as shown in figure 7.9. When input 𝐴 is equal to logical
0(𝑅𝐴 = 100𝐺Ω) and input 𝐵 is equal to logical 1(𝑅𝐵 = 1Ω) then output 𝑂𝑈𝑇 is equal
to logical 0(𝑉 (𝑜𝑢𝑡) = 3.3−11𝑉) as shown in figure A.5. When input 𝐴 is equal to logical
1(𝑅𝐴 = 1Ω) and input 𝐵 is equal to logical 0(𝑅𝐵 = 100𝐺Ω) then output 𝑂𝑈𝑇 is equal
to logical 0(𝑉 (𝑜𝑢𝑡) = 3.3−11𝑉) as shown in figure A.6. When input 𝐴 is equal to logical
1(𝑅𝐴 = 1Ω) and input 𝐵 is equal to logical 1(𝑅𝐵 = 1Ω) then output 𝑂𝑈𝑇 is equal to
logical 0(𝑉 (𝑜𝑢𝑡) = 8.25−12𝑉) as shown in figure A.4.

35

Figure 7.9: Spice NOR

36

Chapter 8

Conclusion

This thesis is consist of two parts, theoretical and practical. In the first part of this thesis,
the numerical solutions of differential equations was described, with special effort of Taylor
method, Euler method and Runge-Kutta method. The Taylor method was described more
detailed. It includes the parallel-parallel integrator, serial-parallel integrator and serial-
serial integrator. In the end of the theoretical part, it was introduced the basic theory
around the simulation programs, together with several applications which may be used for
simulation and solving differential equations.

The chapter 6 describe the CMOS logic circuits and its solution, which is based on the
capacitor substitution. This solution leads to the system of differential equations, which
can be solved numerically.

In the final chapter, the experiments was described. TKSL, Matlab and Spice software
were used for the simulation. The circuits, which were simulated, includes NAND, NOR
and inverter. The efficiency of the simulation was presented using tables which compare
elapsed time, number of step and absolute error for each method.

37

Bibliography

[1] mathworks - Choose an ODE Solver.
http://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html.
2010-06-10.

[2] Atkinson, K. E.: An introduction to numerical analysis. University of Iowa. second
edition. 1989. ISBN 0-471-62489-6. 595 pp.
Retrieved from:
http://www.asd-co.com/files/educational/Kendall%20Atkinson-An%
20Introduction%20to%20Numerical%20Analysis-Wiley%20(1989).pdf

[3] Attia, J.: Electronics and circuit analysis usiong Matlab. Department of Electrical
Engineering - Prairie View A&M University. 1999. ISBN 0-8493-1176-4. 386 pp.

[4] Baker, J.: CMOS Circuit Design, Layout, and Simulation. Canada. third edition.
2010. ISBN 978-0-470-88132-3. 966 pp.
Retrieved from:
https://www.u-cursos.cl/usuario/9553d43f5ccbf1cca06cc02562b4005e/
mi_blog/r/CMOS_Circuit_Design__Layout__and_Simulation__3rd_Edition.pdf

[5] Bartsch, H.: Matematické vzorce. Academia. 2009. ISBN 80-200-1448-9.

[6] Dymola: Dynamic Modeling Laboratory - Getting started with Dymola. vol. 1.
Scheelevägen 27,Sweden. April 2016. 93 pp.
Retrieved from: http://www.Dymola.com

[7] FREDRIKSSON, E.; FÜHRER, C.: Modelica and Dymola Introduction. Lund
University. 2016-11-08. 52 pp.

[8] Kocina, F.; Satek, V.; Kunovsky, J.: Taylor Series Based Solution of Linear ODE
Systems and MATLAB Solvers Comparison. November 17, 2015: page 2.

[9] Kocina, F.; Satek, V.; Kunovsky, J.; et al.: Modeling VLSI Circuit Using Taylor
Series. November 17, 2015: page 4.

[10] Kraus, M.: Paralelni vypocetni architektury zalozene na numericke integraci. VUTBR
- Department of inteligent systems, Ph.D. Thesis. 2013. 146 pp.

[11] Krupková, V.: Matematická analýza pro předmět IMA na FIT, FEKT VUT v Brně.
2008.

[12] KUNOVSKY, J.: MODERN TAYLOR SERIES METHOD. Bozetechova 2, 612 66
Brno, The Czech Republic. first edition. 1994. 115 pp.. habilitation work.

38

http://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
http://www.asd-co.com/files/educational/Kendall%20Atkinson-An%20Introduction%20to%20Numerical%20Analysis-Wiley%20(1989).pdf
http://www.asd-co.com/files/educational/Kendall%20Atkinson-An%20Introduction%20to%20Numerical%20Analysis-Wiley%20(1989).pdf
https://www.u-cursos.cl/usuario/9553d43f5ccbf1cca06cc02562b4005e/mi_blog/r/CMOS_Circuit_Design__Layout__and_Simulation__3rd_Edition.pdf
https://www.u-cursos.cl/usuario/9553d43f5ccbf1cca06cc02562b4005e/mi_blog/r/CMOS_Circuit_Design__Layout__and_Simulation__3rd_Edition.pdf
http://www.Dymola.com

[13] Kunovsky, J.: TKSL High Performance Computing. 2002.
Retrieved from: http://www.fit.vutbr.cz/kunovsky/TKSL/tkslc.html

[14] MathWoks: MATLAB - The Language Of Technical Computing. [online].
2016-MAR-03.
Retrieved from: http://www.mathworks.com/index.html?s_tid=gn_logo

[15] Monagan, M. B.; Geddes, K. O.; Heal, K. M.; et al.: Maple 10 Programming Guide.
Waterloo ON, Canada: Maplesoft. 2005.

[16] Murthy, A.: A Simpli ed Introduction to Circuit Simulation using SPICE OPUS.
College of Engineering, Mysore. 17th September 2004. ISBN 0- 07-021152-3. 61 pp.

[17] Young, T.; Mohlenkamp, M. J.: Introduction to Numerical Methods and Matlab
Programming for Engineers. Department of Mathematics Ohio University. forth
edition. May 5, 2015. 180 pp.
Retrieved from: https://www.math.ohiou.edu/courses/math3600/book.pdf

39

http://www.fit.vutbr.cz/ kunovsky/TKSL/tkslc.html
http://www.mathworks.com/index.html?s_tid=gn_logo
https://www.math.ohiou.edu/courses/math3600/book.pdf

Appendices

40

List of Appendices

A SPICE figures 42

B MATLAB figures 46

41

Appendix A

SPICE figures

Figure A.1: Spice Inverter

42

Figure A.2: Spice NAND

Figure A.3: Spice NAND

43

Figure A.4: Spice NAND

Figure A.5: Spice NOR

44

Figure A.6: Spice NOR

Figure A.7: Spice NOR

45

Appendix B

MATLAB figures

Figure B.1: Matlab invertor ODE23 for input equal to logical 0

46

Figure B.2: Matlab invertor ODE45 for input equal to logical 0

Figure B.3: Matlab invertor Taylor method for input equal to logical 1

47

Figure B.4: Matlab invertor ODE23 for input equal to logical 1

Figure B.5: Matlab invertor ODE23 with tolerance for input equal to logical 1

48

Figure B.6: Matlab invertor ODE45 for input equal to logical 1

Figure B.7: Matlab invertor ODE45 with tolerance for input equal to logical 1

49

	Introduction
	Analytical and numerical solutions of differential equations
	Numerical methods
	Approximation by Taylor method
	Approximation by Euler method
	Approximation by Runge-Kutta methods

	Parallel system using Taylor method
	Parallel-parallel integrator
	Serial-parallel integrator
	Serial-serial integrator

	Electric circuits
	Electric circuits Equations
	Kirchof's First Law(KCL)
	Kirchof's Second Law(KVL)

	Example

	Simulation programs
	MATLAB
	MAPLE
	TKSL
	SPICE
	DYMOLA

	Modeling of CMOS technology
	CMOS inverter
	CMOS NAND and NOR

	Experiments
	Simulation of inverter in TKSL
	Simulation of NAND in TKSL
	Simulation of NOR in TKSL
	Simulation of inverter in Matlab
	Simulation of NAND in Matlab
	Simulation of NOR in Matlab
	Simulation of inverter in SPICE
	Simulation of NAND in SPICE
	Simulation of NOR in SPICE

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	SPICE figures
	MATLAB figures

