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Abstract
Finite state automata are widely used in the field of computer science such as formal
verification, system modelling, and natural language processing. However, the models rep-
resenting the reality are complicated and can be defined upon big alphabets, or even infinite
alphabets, and thus contain a lot of transitions. In these cases, using classical finite state
automata is not very efficient. Symbolic automata are more concise by employing predi-
cates as transition labels. Finite state transducers also have a wide range of application
such as linguistics or formal verification. Symbolic transducers replace classic transition
labels with two predicates, one for input symbols and one for output symbols. The goal of
this thesis is to design a library for letter and symbolic automata and transducers which
will be suitable for fast prototyping.

Abstrakt
Konečné automaty majú široké uplatnenie v informatike, okrem iných vo formálnej ver-
ifikácii, modelovaní systémov a spracovaní prirodzeného jazyka. Avšak modely skutočne
reprezentujúce realitu bývajú veľmi komplikované a môžu byť definované nad veľkými,
v niektorých prípadoch až nekonečnými, abecedami, a teda môžu obsahovať veľký počet
prechodov. V týchto prípadoch nemusí byť je použitie algoritmov na prácu s konečnými
automatmi efektívne. Symbolické automaty poskytujú stručnejší zápis tak, že namiesto
symbolov v prechodoch používajú predikáty. Konečné prevodníky tiež majú široké uplat-
nenie, od ligvistiky až po formálnu verifikáciu. Symbolické prevodníky nahradzujú symboly
dvojicou predikátov — jeden predikát pre vstupné symboly a jeden pre výstupné. Cieľom
tejto práce je návrh knižnice pre klasické a symbolické automaty a prevodníky, ktorá bude
vhodná na rýchle prototypovanie nových algoritmov.
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Chapter 1

Introduction

Finite automata are used in a wide range of applications in computer science, from regular
expressions or formal specification of various languages and protocols to natural language
processing [16]. Further applications are hardware design, formal verification or DNA pro-
cessing. In formal verification, finite automata are used for a representation of system
configurations. In formal specification, they are used to describe a complex process (such
as communication between client and server) in a general, formal and concise way. This
thesis further deals with finite transducers which are also widely used in computer sci-
ence. Transducers have application in natural language processing where they can describe
phonological rules or form translation dictionaries or in formal verification to model sys-
tem behaviour [6, 14, 16].

In many practical applications, large alphabets are used which leads to big number of
transitions and quick increase of computing demands. Furthermore, the common forms of
automata and transducers cannot handle infinite alphabets. In practice, big alphabets are
widely used in natural language processing, where an alphabet must contain all symbols
of a natural language. Languages that derive from Latin alphabet such as English usually
contain less than 30 symbols, but with the use of diacritic, this number can grow to double.
This number further increases in alphabets that have a symbol for every syllable such
as Chinese or Japanese. Even larger alphabets may appear in applications in which the
symbols are words. Electronic dictionaries often have more than 200K words and even this
number is not enough to handle unrestricted texts. Moreover, robust syntactic parsers often
require an infinite alphabet [14]. In these cases, a modification of automata using predicates
instead of elementary symbols can be used. Predicates represent a set of symbols with one
expression and therefore can reduce the number of transitions. This formalism is known as
symbolic automata and transducers. As it will be shown, the most of the operations used
on finite automata are easily generalizable for symbolic automata and transducers. The
main goal of this thesis is to design a library for symbolic automata and transducers which
will be suitable for fast prototyping.

Moreover, the library will provide structure for classic letter automata and some of the
state-of-the-art algorithms for language inclusion checking. Important operations over au-
tomata and transducers, such as minimisation and language inclusion (often used in formal
verification) need the automata to be determinised first, which can exponentially increase
the number of states or transitions. Fortunately, advanced algorithms that allow inclusion
checking without determinization, exist. This thesis employs two heuristics for language
inclusion checking algorithms based on simulations [9] and antichains [5, 10]. Simulations
examine the language preserving relation of each pair of states and then eliminate the states
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which have the same behaviour for every possible input symbol. This allows reducing the
number of states and therefore enables more efficient manipulation with the reduced au-
tomaton. Antichains are mostly used in language inclusion and universality checking which
can be decided by finding counterexamples. The main idea behind antichains is that if we
have not found a counterexample in a small set of automaton states, it is not necessary
to look for a counterexample in a superset of these states. Including more states in the
checked set cannot reduce the accepted language. The superset of an already checked state
widens the accepted language and therefore cannot contain a new counterexample. Formal
definitions and algorithms for simulation and antichains as well as their usage in symbolic
automata can be found in Chapter 4 of this thesis.

Currently, there are more libraries that deal with some form of symbolic automata.
The first ones are AutomataDotNet in C# by Margus Veanes [17], and symbolicautomata
in Java by Loris d’Antoni [7]. While these libraries are efficient and offer many advanced
algorithms, such as determinization, minimization and simulations, they are very complex,
have a slow learning curve, and therefore are not suitable for quick prototyping of new
algorithms. Further, there is the VATA library[4] in C++, which is a high efficient open
source library. VATA offers basic operations, such as union and intersection, and also more
complex ones, such as reduction based on simulation [9] or language inclusion checking
with antichains optimisation [5]. It can also handle tree automata. It is modular and
therefore easily extendible, but since it is written in C++, prototyping in VATA is not easy.
FAdo library[1] is a library for finite automata and regular expressions written in Python.
Unfortunately, it is a prototype, immature and not well documented. Very fast and efficient
library is FSA written in Prolog [2]. FSA offers determinization, minimization, Epsilon
removal and other algorithms, and also supports transducers. Unfortunately, Prolog is not
so widely used and the library is outdated. Therefore, the goal of this thesis is to design
and implement a new library that allows easy and fast prototyping of advanced algorithms
for symbolic automata and symbolic transducers. It should allow easy implementation
of new operations as well as adding new types of predicates. It should be used for fast
implementation and optimisation of advanced algorithms.

Chapter 2 contains theoretical background for the thesis. Various algorithms for sym-
bolic automata are described in Chapter 3. Efficient algorithms for automata are discussed
in Chapter 4. Existing libraries for automata are introduced in Chapter 5. The design of
created library is described in Chapter 6. Implementation details of symbolic automata
library can be found in Chapter 7. Chapter 8 contains data from the experimental eval-
uation of created library. Summarization and possibilities for future work can be found
in Chapter 9.
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Chapter 2

Preliminaries

This chapter contains theoretical background for this thesis. First, languages and classic
finite automata will be defined, then predicates and operations over them. After the def-
inition of predicates, symbolic automata and transducers are introduced. Proofs are not
given but can be found in the referenced literature [8, 10, 12, 15, 16].

2.1 Languages
Let Σ be an 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 - a finite, nonempty set of symbols. Common examples of alphabets
include the binary alpabet (Σ = {0, 1}) or an alphabet of lowercase letters (Σ = {𝑎, 𝑏, ..., 𝑧}).

A word or a 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤 over Σ of length 𝑛 is a finite sequence of symbols 𝑤 = 𝑎1 · · · 𝑎𝑛,
where ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑎𝑖 ∈ Σ. An empty word is denoted as 𝜀, such that 𝜀 ̸∈ Σ and its
length is 0. We define concatenation as an associative binary operation on words over Σ
represented by the symbol · such that for two words 𝑢 = 𝑎1 · · · 𝑎𝑛 and 𝑣 = 𝑏1 · · · 𝑏𝑚 over
Σ it holds that 𝜀 · 𝑢 = 𝑢 · 𝜀 = 𝑢 and 𝑢 · 𝑣 = 𝑎1 · · · 𝑎𝑛𝑏1 · · · 𝑏𝑚. Some strings from binary
alphabet Σ = {0, 1} are for example 00, 110 and their concatenation is 00110.

Σ* represents a set of all strings over Σ including the empty word. A 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝐿 ⊆ Σ*

is a set of strings where all strings are chosen from Σ*. A language over binary alphabet is
for example 𝐿 = {0, 01, 10, 11, 111}.

When 𝐿 = Σ*, then 𝐿 is called the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 over Σ.

2.2 Finite automata
In this section, a definition of finite automata is given and special types of finite automata
are described. The section further deals with operations over automata and algorithms for
automata processing.

2.2.1 Nondeterministic finite automaton

A 𝑛𝑜𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛 (𝑁𝐹𝐴) is a tuple 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿), where:

∙ Σ is a finite alphabet

∙ 𝑄 is a finite set of states

∙ 𝐼 ⊆ 𝑄 is a nonempty set of initial states
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Figure 2.1: Nondeterministic finite automaton

∙ 𝐹 ⊆ 𝑄 is a set of final states

∙ 𝛿 is a partial function 𝑄×Σ→ 2𝑄. If 𝑞 ∈ 𝛿(𝑝, 𝑎) we use 𝑝
𝑎−→ 𝑞 to denote the transition

from the state 𝑝 to the state 𝑞 with the label 𝑎.

An example of NFA A is shown in Figure 2.1. In this case, Σ = {𝑎, 𝑏}, 𝑄 = {𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4},
𝐼 = {𝑝0}, 𝐹 = {𝑝2, 𝑝3}, 𝛿 = {(𝑝0, 𝑎, {𝑝1, 𝑝2}), (𝑝1, 𝑏, {𝑝3}), (𝑝2, 𝑏, {𝑝4}), (𝑝3, 𝑎, {𝑝0}),
(𝑝3, 𝑏, {𝑝4}), (𝑝4, 𝑎, {𝑝3})}. Note two nondeterministic transitions from 𝑝0. I.e., it cannot
be deterministically decided whether to go to state 𝑝1 or 𝑝2 from state 𝑝0 under 𝑎.

2.2.2 Deterministic finite automaton

A 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑓𝑖𝑛𝑖𝑡𝑒 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛 (𝐷𝐹𝐴) is a special case of an NFA, where |𝐼| = 1 and
𝛿 is a partial function 𝑄 × Σ → 𝑄, i.e, if 𝛿(𝑝, 𝑎) = 𝑞, then DFA cannot contain another
transition where 𝛿(𝑝, 𝑎) = 𝑞′ such that 𝑞 ̸= 𝑞′. A DFA is a tuple 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿), where:

∙ Σ is an alphabet

∙ 𝑄 is a finite set of states

∙ 𝐼 ⊆ 𝑄 is a set of initial states where |𝐼| = 1

∙ 𝐹 ⊆ 𝑄 is a set of final states

∙ 𝛿 ⊆ 𝑄× Σ→ 𝑄 is a partial function; we use 𝑝
𝑎−→ 𝑞 to denote that 𝛿(𝑝, 𝑎) = 𝑞

Informally, a DFA must have exactly one initial state and cannot contain more tran-
sitions from one state labelled with the same symbol. An example of DFA A is shown
in Figure 2.2.

2.2.3 Run of a finite automaton

A 𝑟𝑢𝑛 of an NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) from a state 𝑞 over a word 𝑤 = 𝑎1 · · · 𝑎𝑛 is a sequence
𝑟 = 𝑞0 · · · 𝑞𝑛, where 0 ≤ 𝑖 ≤ 𝑛 and 𝑞𝑖 ∈ 𝑄 such that 𝑞0 = 𝑞 and 𝑞𝑖

𝑎𝑖+1−−−→ 𝑞𝑖+1 ∈ 𝛿.
The run 𝑟 is called 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 if 𝑞𝑛 ∈ 𝐹 . A word 𝑤 ∈ Σ* is called 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 if there

exists an accepting run from some initial state over 𝑤.
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Figure 2.2: Deterministic finite automaton

An 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 state 𝑞 of an NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) is a state for which there is no
run 𝑟 = 𝑞0 · · · 𝑞 of 𝐴 over a word 𝑤 ∈ Σ* such that 𝑞0 ∈ 𝐼. Informally, it is a state that
cannot be reached starting from any initial state.

A 𝑢𝑠𝑒𝑙𝑒𝑠𝑠 or 𝑛𝑜𝑛𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 state 𝑞 of an NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) is a state such that
there is no accepting run 𝑟 = 𝑞 · · · 𝑞𝑛 of 𝐴 over a word 𝑤 ∈ Σ*. Informally, it is a state from
which no final state can be reached.

2.2.4 Language of a finite automaton

Consider an NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿). The 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 of a state 𝑞 ∈ 𝑄 is defined as

𝐿𝐴(𝑞) = {𝑤 ∈ Σ* | there exists an accepting run of 𝐴 from 𝑞 over 𝑤}

Given a pair of states 𝑝, 𝑞 ∈ 𝑄 of an NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿), these states are language
equivalent if:

∀𝑤 ∈ Σ* : A run from 𝑝 over 𝑤 is accepting⇔ A run from 𝑞 over 𝑤 is accepting.

The language of a set of states 𝑅 ⊆ 𝑄 is defined as 𝐿𝐴(𝑅) =
⋃︀

𝑞∈𝑅 𝐿𝐴(𝑞). The language
of an NFA 𝐴 is defined as 𝐿𝐴 = 𝐿𝐴(𝐼).

2.2.5 Complete DFA

DFA 𝐴 = (Σ, 𝑄𝐶 , 𝐼𝐶 , 𝐹𝐶 , 𝛿𝐶) is 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 iff for any 𝑝 ∈ 𝑄𝐶 and every 𝑎 ∈ Σ exists 𝑞 ∈ 𝑄𝐶

such that 𝑝
𝑎−→ 𝑞 ∈ 𝛿𝐶 . Every DFA can be transformed into a complete DFA in two

simple steps:

∙ add a new state to 𝑄, for example 𝑠𝑖𝑛𝑘 /∈ 𝑄, as a nonterminating state

∙ for every (𝑞, 𝑎) ∈ 𝑄× Σ which is not defined in 𝛿 add transition 𝑞
𝑎−→ 𝑠𝑖𝑛𝑘 to 𝛿

2.2.6 Well–specified DFA

𝑊𝑒𝑙𝑙 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 DFA 𝐴 = (Σ, 𝑄𝐶 , 𝐼𝐶 , 𝐹𝐶 , 𝛿𝐶) is DFA where:

∙ Q has no unreachable state

∙ Q has at most one nonterminating state
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2.2.7 Minimal DFA

𝑀𝑖𝑛𝑖𝑚𝑎𝑙 DFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) is a complete DFA where:

∙ there are no unreachable states

∙ there is at most one nonterminating state

∙ there are no two language equivalent states

2.2.8 Finite automata operations

In this section, operations over finite automata are described. In the algorithms, 𝑚𝑎𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒
𝑄′ denotes a set of states 𝑄′ ⊆ 𝑄.

Intersection

Intersection of two NFA 𝐴 = (Σ, 𝑄𝐴, 𝐼𝐴, 𝐹𝐴, 𝛿𝐴) and 𝐵 = (Σ, 𝑄𝐵, 𝐼𝐵, 𝐹𝐵, 𝛿𝐵)

𝐴 ∩𝐵 = (Σ, 𝑄𝐴 ×𝑄𝐵, 𝐼𝐴 × 𝐼𝐵, 𝐹𝐴 × 𝐹𝐵, 𝛿)

where 𝛿 is defined as

𝛿 = {(𝑝1, 𝑞1)
𝑎−→ (𝑝2, 𝑞2)|𝑝1

𝑎−→ 𝑝2 ∈ 𝛿𝐴 ∧ 𝑞1
𝑎−→ 𝑞2 ∈ 𝛿𝐵}

The construction yields an automaton with language 𝐿𝐴∩𝐵 = 𝐿𝐴 ∩ 𝐿𝐵

Union

Union of two NFA 𝐴 = (Σ, 𝑄𝐴, 𝐼𝐴, 𝐹𝐴, 𝛿𝐴) and 𝐵 = (Σ, 𝑄𝐵, 𝐼𝐵, 𝐹𝐵, 𝛿𝐵) is defined as

𝐴 ∪𝐵 = (Σ, 𝑄𝐴 ∪𝑄𝐵, 𝐼𝐴 ∪ 𝐼𝐵, 𝐹𝐴 ∪ 𝐹𝐵, 𝛿𝐴 ∪ 𝛿𝐵)

The construction yields an automaton with language 𝐿𝐴∪𝐵 = 𝐿𝐴 ∪ 𝐿𝐵

Determinization

The determinization algorithm transforms any NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) into a language
equivalent DFA 𝐴𝐷 = (Σ, 𝑄𝐷, 𝐼𝐷, 𝐹𝐷, 𝛿𝐷). Algorithm 1 determinizing NFA is called
𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛. An NFA may have different runs on a word 𝑤 that use differ-
ent transitions and therefore may lead to different states. A DFA must have at most one
run on a word 𝑤.

In powerset construction algorithm, we create macrostates 𝑄′ ⊆ 𝑄 of NFA that become
states of the resulting DFA. At line 2 of the pseudocode, we initialize a queue 𝑊 with the
first macrostate representing the initial states of the NFA. Then we inspect the macrostates
𝑄′ ∈𝑊 while 𝑊 is not empty. Intuitively, if at least one 𝑞 ∈ 𝑄′ is a final state of the NFA,
the macrostate 𝑄′ will be the final state of the DFA (lines 6–8 of the pseudocode). For
every 𝑄′ we compute its transition over the symbol 𝑎 by uniting right-handed sides of the
transitions 𝛿(𝑞, 𝑎) for each 𝑞 ∈ 𝑄′ (line 10 in the pseudocode). If the resulting macrostate
𝑄′′ was not yet processed, we add it to the queue 𝑊 for further inspection (lines 11–13 of
the pseudocode).
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Algorithm 1: Algorithm for determinization of NFA
Input: NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿)
Output: DFA 𝐴𝐷 = (Σ, 𝑄𝐷, 𝐼𝐷, 𝐹𝐷, 𝛿𝐷) where 𝐿𝐷 = 𝐿𝐴

1 𝑄𝐷, 𝛿𝐷, 𝐹𝐷 ← ∅;
2 𝒲 = {𝐼};
3 while 𝒲 ≠ ∅ do
4 pick 𝑄′ from 𝒲;
5 add 𝑄′ to 𝑄𝐷;
6 if 𝑄′ ∩ 𝐹 ̸= ∅ then
7 add 𝑄′ to 𝐹𝐷;
8 end
9 for 𝑎 ∈ Σ do

10 𝑄′′ ←
⋃︀

𝑞∈𝑄′
𝛿(𝑞, 𝑎);

11 if 𝑄′′ /∈ 𝑄𝐷 then
12 add 𝑄′′ to 𝒲;
13 end
14 add (𝑄′, 𝑎,𝑄′′) to 𝛿𝐷;
15 end
16 end

Complement

Complement of a complete DFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) is defined as

𝐴𝐶 = (Σ, 𝑄, 𝐼,𝑄− 𝐹, 𝛿)

The construction yields an automaton with language 𝐿𝐴𝐶
= Σ* − 𝐿𝐴

Minimization

Minimization transforms DFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) into a language equivalent minimal DFA.
The idea of the transformation is to split states into equivalence classes according to
language equivalence relation. The algorithm for this transformation is called 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 and can be found in Algorithm 2. After computing language partition we merge
the states of each equivalence class into a macrostate. If all states in the equivalence
class are final states of the original DFA, this macrostate is final in the resulting minimal
DFA. There is a transition (𝐵, 𝑎,𝐵′) from macrostate 𝐵 to 𝐵′ if there exists a transition
𝛿(𝑞, 𝑎) = 𝑞′, such that 𝑞 ∈ 𝐵, 𝑞′ ∈ 𝐵′.

2.3 Regular Languages
A language 𝐿 is 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 if there exists an NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) that 𝐿 = 𝐿𝐴.

2.3.1 Closure Properties

Regular languages are closed under an operation if the operation on some regular languages
always results in a regular language.

Let 𝐿1 and 𝐿2 b regular languages. Closure properties of these languages are following:
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Algorithm 2: Algorithm for language partition
Input: DFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿)
Output: language partition 𝑃

1 if 𝐹 = ∅ or 𝑄− 𝐹 = ∅ then
2 return {𝑄};
3 else
4 𝑃 ← {𝐹,𝑄− 𝐹};
5 end
6 𝒲 ← {(𝑎,𝑚𝑖𝑛{𝐹,𝑄− 𝑓}}|𝑎 ∈ Σ;
7 while 𝒲 ≠ ∅ do
8 pick (𝑎,𝐵′) from 𝒲;
9 for 𝐵 ∈ 𝑃 split by (𝑎,𝐵′) do

10 replace 𝐵 by 𝐵0 and 𝐵1 in 𝑃 ;
11 for 𝑏 ∈ Σ do
12 if (𝑏, 𝐵) ∈ 𝒲 then
13 replace (𝑏, 𝐵) by (𝑏, 𝐵0) and (𝑏, 𝐵1) in 𝒲;
14 else
15 add (𝑏,𝑚𝑖𝑛{𝐵0, 𝐵1}) to 𝒲;
16 end
17 end
18 end
19 end

∙ Union: 𝐿 = 𝐿1 ∪ 𝐿2.

∙ Intersection: 𝐿 = 𝐿1 ∩ 𝐿2.

∙ Complement: 𝐿 = 𝐿1.

∙ Difference: 𝐿 = 𝐿1 − 𝐿2.

∙ Reversal: 𝐿 = {𝑎1 . . . 𝑎𝑛 ∈ Σ* | 𝑦 = 𝑎𝑛 . . . 𝑎1 ∈ 𝐿}.

∙ Concatenation: 𝐿 ·𝐾 = {𝑥 · 𝑦 | 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝐾}.

The first three operations (union, intersection and complement) can be done using
finite automata representation for given regular language. A description of these operations
over finite automata can be found in Section 2.2.8. The detailed descriptions, proofs and
algorithms for the other operations can be found in the referenced literature [8, 12].

2.3.2 Decidability

A problem about regular language is decidable if there is such an algorithm that for every
regular language answers the problem 𝑦𝑒𝑠 or 𝑛𝑜.

Decidable problems for regular languages are:

∙ 𝐸𝑚𝑝𝑡𝑖𝑛𝑒𝑠𝑠 problem: Is language 𝐿 empty?

∙ 𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 problem: Does a particular string 𝑤 belong to language 𝐿?
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∙ 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 problem: Does language 𝐿1 describe the same language as language 𝐿2?

∙ 𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑛𝑒𝑠𝑠 problem: Is language 𝐿 infinite?

∙ 𝐹𝑖𝑛𝑖𝑡𝑒𝑛𝑒𝑠𝑠 problem: Is language 𝐿 finite?

∙ 𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 problem: Is 𝐿1 ⊆ 𝐿2?

∙ 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦 problem: Is 𝐿 = Σ*?

2.4 Finite transducer
𝐹𝑖𝑛𝑖𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟𝑠 differ from finite automata in transition labels. While finite automata
labels contain only one input symbol, finite transducers have input and also output symbols.
Therefore, transducers have two alphabets — one for input symbols and one for output
symbols. Finite transducers can be informally described as translators which for an input
symbol generate an output symbol.

A 𝑛𝑜𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑓𝑖𝑛𝑖𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟 (𝑁𝐹𝑇 ) is a tuple 𝑇 = (Σ,Ω, 𝑄, 𝐼, 𝐹, 𝛿), where:

∙ Σ is an input alphabet

∙ Ω is an output alphabet

∙ 𝑄 is a finite set of states

∙ 𝐼 ⊆ 𝑄 is a nonempty set of initial states

∙ 𝐹 ⊆ 𝑄 is a set of final states

∙ 𝛿 ⊆ 𝑄× (Σ : Ω)×𝑄 is the transition relation. We use 𝑝
𝑎:𝑏−−→ 𝑞 to denote that there is

a transition from the state 𝑝 to the state 𝑞 under the input symbol 𝑎 and the output
symbol 𝑏.

An example of a nondeterministic finite transducer is shown in Figure 2.3.
A 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑓𝑖𝑛𝑖𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟 (𝐷𝐹𝑇 ) must have exactly one initial state and

cannot contain more transitions from one state under the same input symbol.

Figure 2.3: Nondeterministic finite transducer
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2.4.1 Translation of a finite transducer

A 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 of a finite state transducer 𝑀 = (Σ,Ω, 𝑄, 𝐼, 𝐹, 𝛿) is a string 𝑣𝑝𝑢 where
𝑝 ∈ 𝑄, 𝑢 in Σ* and 𝑣 ∈ Ω*.

Let 𝑣𝑝𝑥𝑢 and 𝑣𝑦𝑞𝑢 be two configurations of transducer 𝑀 = (Σ,Ω, 𝑄, 𝐼, 𝐹, 𝛿) where
𝑝, 𝑞 ∈ 𝑄, 𝑥, 𝑢 in Σ* and 𝑣, 𝑦 ∈ Ω*. The transducer M makes a 𝑚𝑜𝑣𝑒 from 𝑣𝑝𝑥𝑢 to 𝑣𝑦𝑞𝑢
according to transition 𝑟 written as 𝑣𝑝𝑥𝑢 ⊢ 𝑣𝑦𝑞𝑢[𝑟] or simply 𝑣𝑝𝑥𝑢 ⊢ 𝑣𝑦𝑞𝑢. Informally,
the transition 𝑟 changes the current state from 𝑝 to 𝑞 and rewrites the input symbol 𝑥 to
output symbol 𝑦. We use ⊢* to denote a sequence of consecutive moves.

A translation 𝑇 (𝑀) of a finite transducer is:

𝑇 (𝑀) = {(𝑥, 𝑦) : 𝑠𝑥 ⊢* 𝑦𝑓, 𝑥 ∈ Σ*, 𝑦 ∈ Ω*, 𝑓 ∈ 𝐹}

An input language corresponding to 𝑇 (𝑀) is:

𝐿𝐼(𝑀) = {𝑥 : (𝑥, 𝑦) ∈ 𝑇 (𝑀) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 ∈ Ω*}

An output language corresponding to 𝑇 (𝑀) is:

𝐿𝑂(𝑀) = {𝑦 : (𝑥, 𝑦) ∈ 𝑇 (𝑀) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ Σ*}

2.4.2 Application of a finite transducer

Besides input string, a finite transducer can be applied on a finite automaton. In this
operation, instead of changing an input symbol to an output symbol, the transducer changes
the symbols in the automata transitions. An example of the application is in Figure 2.4. The
Figure shows an input automaton and a transducer, below them is the output automaton.

Figure 2.4: Application of a finite transducer
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2.5 Predicates
A 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝜋 is a formula representing a subset of Σ. Π is a set of predicates such that
for each element 𝑎 ∈ Σ, ∃𝜋 ∈ Π : 𝜋 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 {𝑎} and Π is effectively closed under
Boolean operations.

We will further use predicates 𝑖𝑛 and 𝑛𝑜𝑡_𝑖𝑛 inspired by a Prolog library FSA [2]. The
semantics of these predicates is:

∙ 𝑖𝑛{𝑎1, 𝑎2, . . . , 𝑎𝑖} represents a subset {𝑎1, 𝑎2, . . . , 𝑎𝑖} ∈ Σ

∙ 𝑛𝑜𝑡_𝑖𝑛{𝑎1, 𝑎2, . . . , 𝑎𝑖} represents a subset Σ− {𝑎1, 𝑎2, . . . , 𝑎𝑖}

2.5.1 Operations over predicates

Predicates must support conjunction, disjunction and complement since these operations
are required for the algorithms described in Chapter 3. The semantics of conjunction and
disjunction of 𝑖𝑛 and 𝑛𝑜𝑡_𝑖𝑛 predicates can be found in Table 2.1 and Table 2.2 and the
complement in Table 2.3.

Table 2.1: Conjunction of predicates
x y x ∧ y

𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑖𝑛{𝑏0, 𝑏1, . . . , 𝑏𝑚} 𝑖𝑛{{𝑎0, 𝑎1, . . . , 𝑎𝑛} ∩ {𝑏0, 𝑏1, . . . , 𝑏𝑚}}
𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑛𝑜𝑡_𝑖𝑛{𝑏0, 𝑏1, . . . , 𝑏𝑚} 𝑖𝑛{{𝑎0, 𝑎1, . . . , 𝑎𝑛} − {𝑏0, 𝑏1, . . . , 𝑏𝑚}}

𝑛𝑜𝑡_𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑖𝑛{𝑏0, 𝑏1, . . . , 𝑏𝑚} 𝑖𝑛{{𝑏0, 𝑏1, . . . , 𝑏𝑚} − {𝑎0, 𝑎1, . . . , 𝑎𝑛}}
𝑛𝑜𝑡_𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑛𝑜𝑡_𝑖𝑛{𝑏0, 𝑏1, . . . , 𝑏𝑚} 𝑛𝑜𝑡_𝑖𝑛{{𝑎0, 𝑎1, . . . , 𝑎𝑛} ∪ {𝑏0, 𝑏1, . . . , 𝑏𝑚}}

Table 2.2: Disjunction of predicates
x y x ∨ y

𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑖𝑛{𝑏0, 𝑏1, . . . , 𝑏𝑚} 𝑖𝑛{{𝑎0, 𝑎1, . . . , 𝑎𝑛} ∪ {𝑏0, 𝑏1, . . . , 𝑏𝑚}}
𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑛𝑜𝑡_𝑖𝑛{𝑏0, 𝑏1, . . . , 𝑏𝑚} 𝑛𝑜𝑡_𝑖𝑛{{𝑏0, 𝑏1, . . . , 𝑏𝑚} − {𝑎0, 𝑎1, . . . , 𝑎𝑛}}

𝑛𝑜𝑡_𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑖𝑛{𝑏0, 𝑏1, . . . , 𝑏𝑚} 𝑛𝑜𝑡_𝑖𝑛{{𝑎0, 𝑎1, . . . , 𝑎𝑛} − {𝑏0, 𝑏1, . . . , 𝑏𝑚}}
𝑛𝑜𝑡_𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑛𝑜𝑡_𝑖𝑛{𝑏0, 𝑏1, . . . , 𝑏𝑚} 𝑛𝑜𝑡_𝑖𝑛{{𝑎0, 𝑎1, . . . , 𝑎𝑛} ∩ {𝑏0, 𝑏1, . . . , 𝑏𝑚}}

Table 2.3: Complement of predicates
x ¬ x

𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑛𝑜𝑡_𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛}
𝑛𝑜𝑡_𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛} 𝑖𝑛{𝑎0, 𝑎1, . . . , 𝑎𝑛}

2.6 Symbolic automata
A 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛 A is a tuple 𝐴 = (Σ, 𝑄, 𝐼, 𝐹,Π, 𝛿), where:

∙ Σ is an alphabet

∙ 𝑄 is a finite set of states
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∙ 𝐼 ⊆ 𝑄 is a nonempty set of initial states

∙ 𝐹 ⊆ 𝑄 is a set of final states

∙ Π is a set of predicates over Σ

∙ 𝛿 ⊆ 𝑄× (Π ∪ {𝜀})×𝑄 is the transition relation.

An example of SA A with predicates 𝑖𝑛 and 𝑛𝑜𝑡_𝑖𝑛 introduced in Section 2.5 is shown
in Figure 2.5.

Every SA with a finite alphabet can be transformed into a NFA in two steps:

∙ remove Π

∙ for each transition 𝑝
𝜋−→ 𝑞 ∈ 𝛿:

– create a transition 𝑝
𝑎−→ 𝑞 for every 𝑎 ∈ 𝜋

Since every SA can be transformed into NFA, the closure and decidability properties
of symbolic automata are the same as finite automata (described in Section 2.3.1 and
Section 2.3.2). Also, every operation applicable on finite automata can be used on symbolic
automata after transformation to a finite automaton. The transformation can be usually
avoided because most of the algorithms for finite automata can be modified to a variation
for symbolic automata. The modified algorithms will be described in Chapter 3.

Figure 2.5: Symbolic automaton

2.7 Symbolic transducers
A 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟 A is a tuple 𝐴 = (Σ,Ω, 𝑄, 𝐼, 𝐹,Π, 𝛿), where:

∙ Σ is an input alphabet

∙ Ω is an output alphabet

∙ 𝑄 is a finite set of states

∙ 𝐼 ⊆ 𝑄 is a nonempty set of initial states
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∙ 𝐹 ⊆ 𝑄 is a set of final states

∙ Π is a set of predicates over Σ

∙ 𝛿 ⊆ 𝑄× (Π ∪ {𝜀})× (Π ∪ {𝜀})×𝑄 is the transition relation.

A special case of a transition is 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦. Identity takes a symbol from the set represented
by the input predicate and copies it on the output. In the case of 𝑖𝑛 and 𝑛𝑜𝑡_𝑖𝑛 predicates
it is denoted by @ in front of the predicate.

An example of a symbolic transducer is shown in Figure 2.6. Transition from 𝑝0 to
𝑝1, 𝑝0

𝑖𝑛{𝑎,𝑏}:𝑖𝑛{𝑎,𝑏}−−−−−−−−−→ 𝑝1 would be represented as these 4 transitions in classic transducer:
𝑝0

𝑎:𝑎−−→ 𝑝1, 𝑝0
𝑎:𝑏−−→ 𝑝1, 𝑝0

𝑏:𝑎−−→ 𝑝1, 𝑝0
𝑏:𝑏−→ 𝑝1. The syntax of identity can be seen in the

transition from 𝑝0 to 𝑝2 : 𝑝0
@𝑖𝑛{𝑎,𝑏}:@𝑖𝑛{𝑎,𝑏}−−−−−−−−−−−→ 𝑝2. In the classic transducer, it would be

represented by the transitions 𝑝0
𝑎:𝑎−−→ 𝑝2 and 𝑝0

𝑏:𝑏−→ 𝑝2.
Symbolic transducers allow more concise representation on finite transducers. Since

symbolic transducers can be transformed to classic finite transducers by creating transi-
tions for each pair of symbols represented by input and output predicates, most opera-
tions applicable on finite transducers can be applied on symbolic transducers as well. The
transformation can be avoided, because algorithms can usually be generalised to work on
symbolic transducers as in the case of symbolic automata. The modifications of some of
the algorithms is discussed in Chapter 3.

Figure 2.6: Symbolic finite transducer
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Chapter 3

Algorithms for symbolic automata
and transducers

This chapter describes various algorithms for symbolic automata and transducers. The
most of the algorithms are generalised to work with predicates instead of letters [6, 16].

Symbolic automata are more general variant of finite automata. However, the algo-
rithms for finite automata are also applicable on symbolic automata. In the worst case,
the algorithms would expand symbolic automata to ordinary finite automata then perform
the desired operation and transform the resulting automata back to symbolic form. For-
tunately, this process is not necessary for most of the algorithms. As will be shown, most
of the algorithms can be generalised and work directly with symbolic automata. The same
holds for symbolic transducers.

3.1 Intersection
In the case of classic finite automata, the intersection of two NFA 𝐴 = (Σ, 𝑄𝐴, 𝐼𝐴, 𝐹𝐴, 𝛿𝐴)
and 𝐵 = (Σ, 𝑄𝐵, 𝐼𝐵, 𝐹𝐵, 𝛿𝐵) is defined as:

𝐴 ∩𝐵 = (Σ, 𝑄𝐴 ×𝑄𝐵, 𝐼𝐴 × 𝐼𝐵, 𝐹𝐴 × 𝐹𝐵, 𝛿)

where 𝛿 is defined as:

𝛿 = {(𝑝1, 𝑞1)
𝑎−→ (𝑝2, 𝑞2)|𝑝1

𝑎−→ 𝑝2 ∈ 𝛿𝐴 ∧ 𝑞1
𝑎−→ 𝑞2 ∈ 𝛿𝐵}

The same approach can be used for symbolic automata, but instead of requiring the
symbol 𝑎 ∈ Σ to be the same in both of the automata, we consider a conjunction of the
corresponding predicates in 𝐴 and 𝐵, as shown below. For symbolic transducers we consider
a component-wise conjunction of both the input predicates and the output predicates.

𝛿 = {(𝑝1, 𝑞1)
𝜋𝐴∧𝜋𝐵−−−−→ (𝑝2, 𝑞2)|𝑝1

𝜋𝐴−−→ 𝑝2 ∈ 𝛿𝐴 ∧ 𝑞1
𝜋𝐵−−→ 𝑞2 ∈ 𝛿𝐵}

3.2 Union
Union of symbolic automata can be computed the same way as for classical finite automata
which was described in Section 2.2.8.

𝐴 ∪𝐵 = (Σ, 𝑄𝐴 ∪𝑄𝐵, 𝐼𝐴 ∪ 𝐼𝐵, 𝐹𝐴 ∪ 𝐹𝐵,Π𝐴 ∪Π𝐵,Π𝐴 ∪Π𝐵, 𝛿𝐴 ∪ 𝛿𝐵)
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3.3 Determinization
In determinization algorithm for classic finite automata described in Section 2.2.8, we use
macrostates. Each macrostate is a set in the resulting deterministic machine. To compute
transitions leaving a macrostate 𝑄′, we unite right-handed sides of the transitions 𝛿(𝑞, 𝑎)
for each 𝑞 ∈ 𝑄′.

In the case of symbolic automata, predicates of transitions leaving the given macrostate
might represent non-disjoint sets. This situation cannot happen in deterministic automata
and thus we must create disjoint predicates. E.g., for transitions labelled with predicates
𝜋1 and 𝜋2, we the transitions labelled with following predicates: 𝜋1 ∧ 𝜋2, 𝜋1 ∧ 𝜋2, 𝜋1 ∧ 𝜋2.
This process is called 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 for a macrostate and can be found in
Algorithm 3.

Algorithm 3: Getting exclusive predicates for a macrostate
Input: NSA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹,Π, 𝛿), macrostate 𝑄′ ∈ 2𝑄

Output: Exclusive predicates for 𝑄′

1 Π𝑒 ← ∅;
2 for each 𝑞 ∈ 𝑄′ do
3 Π′ = {𝜋|(𝑞, 𝜋) ∈ 𝛿};
4 𝐶 ← disjoint sets representing Π′;
5 Π𝑒 = Π𝑒 ∪ 𝐶;
6 end
7 return Π𝑒

After computing the exclusive predicates, we compute transitions leaving a macrostate
𝑄′ by uniting right-handed sides of the transitions 𝛿(𝑞, 𝜋) for each 𝑞 ∈ 𝑄′ and each 𝜋 ∈ Π𝑒

(lines 10-11 in Algorithm 4).

3.4 Minimization
In Hopcroft’s minimization algorithm [11], we repeatedly refine subsets of states by refining
sets of states to equivalence classes of language equivalence relation. The algorithm ends
when such a pair no longer exists. The number of states is minimal in the resulting automa-
ton. The algorithm for minimization of classic finite automata was given in Section 2.2.8.

However, in the case of symbolic auomata, the resulting automaton might not be min-
imal in the number of transitions, because the same transition can be expressed in multi-
ple ways. E.g., a transition 𝑝0

𝑖𝑛{𝑎,𝑏,𝑐}−−−−−→ 𝑝1 could also be represented by two transitions:
𝑝0

𝑖𝑛{𝑎,𝑏}−−−−→ 𝑝1 and 𝑝0
𝑖𝑛{𝑐}−−−→ 𝑝1. Therefore, as the final step of minimization, we must per-

form a 𝑐𝑙𝑒𝑎𝑛𝑢𝑝 that joins all transitions from state 𝑝 to state 𝑞 into one, which is done by
uniting all transition predicates leading from 𝑝 to 𝑞. After this, the resulting automaton
will be minimal in the number of transitions. An example of cleanup is shown in Figure
3.1. On the left are the transitions before cleanup and on the right after cleanup.
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Algorithm 4: Algorithm for determinization of SA
Input: NSA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹,Π, 𝛿)
Output: DSA 𝐴𝐷 = (Σ, 𝑄𝐷, 𝐼𝐷, 𝐹𝐷,Π, 𝛿𝐷) where 𝐿𝐷 = 𝐿𝐴

1 𝑄𝐷, 𝛿𝐷, 𝐹𝐷 ← ∅;
2 𝒲 = {𝐼};
3 while 𝒲 ̸= ∅ do
4 pick 𝑄′ from 𝒲;
5 add 𝑄′ to 𝑄𝐷;
6 if 𝑄′ ∩ 𝐹 ̸= ∅ then
7 add 𝑄′ to 𝐹𝐷;
8 end
9 Π𝑒 ← get exclusive predicates for 𝑄′;

10 for 𝜋 ∈ Π𝑒 do
11 𝑄′′ ←

⋃︀
𝑞∈𝑄′

𝛿(𝑞, 𝜋);

12 if 𝑄′′ /∈ 𝑄𝐷 then
13 add 𝑄′′ to 𝒲;
14 end
15 add (𝑄′, 𝜋,𝑄′′) to 𝛿𝐷;
16 end
17 end

Figure 3.1: Minimization cleanup
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3.5 Optimization
Previous algorithms requiring non-overlapping predicates overlap produce a lot of their
combinations. Therefore the resulting automata might significantly grow in the number of
transitions. This can be avoided by using simple optimisations.

3.5.1 Satisfiability

A predicate 𝑃 is 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒, when it does not represent an empty set. Unsatisfiable
transitions can be removed from the automaton because they will never be used.

An example of unsatisfiable predicate is 𝑖𝑛{𝑎, 𝑏} ∧ 𝑖𝑛{𝑐, 𝑑}. A transition labelled with
this predicate will never be used because a symbol that is in set {𝑎, 𝑏} and also in set {𝑐, 𝑑}
does not exist. Thus, this transition can be removed from the automaton without changing
the language of an automaton.

3.5.2 Removing useless states

This optimisation is not dependent on the use of predicates and can be used in classic
finite automata as well. 𝑈𝑠𝑒𝑙𝑒𝑠𝑠 𝑠𝑡𝑎𝑡𝑒𝑠 are the states, from which no final state can be
reached. All useless states can be removed from the automaton without changing the
accepted language. All transitions 𝑝

𝑎−→ 𝑞 where 𝑝 is a useless state can also be removed.
The algorithm for removing useless states is the same as in the case of classic finite automata.
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Chapter 4

Efficient algorithms for automata
and transducers

In this chapter we describe efficient algorithms for automata manipulation. This thesis
covers only the basics, more complex proofs and theories can be found in the referenced
literature [9, 10, 14].

In many finite and symbolic automata operations, it is efficient to work with a minimised
version of the automaton. However, the naive minimisation algorithm determinizes the
automaton first. Determinization is in the worst cases inefficient because the size of the
automaton can exponentially increase. To avoid this increase, NFA can use equivalence or
simulation relations for states reduction. A reduction based on simulations usually yields
an automaton smaller than minimal DFA but the resulting automaton is not deterministic.

4.1 Reduction and equivalence
Let 𝐴 = (Σ, 𝑄, 𝐼, 𝐹,Π, 𝛿) be an NFA. Equivalence relation ≡𝑅⊆ 𝑄×𝑄 is defined as:

∙ ≡𝑅 ∩(𝐹 × (𝑄− 𝐹 )) = ∅

∙ for any 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ, (𝑝 ≡𝑅 𝑞 ⇒ (∀𝑞′ ∈ 𝛿(𝑞, 𝑎), ∃𝑝′ ∈ 𝛿(𝑝, 𝑎), 𝑝′ ≡𝑅 𝑞′ 𝑎𝑛𝑑 ∀𝑝′ ∈
𝛿(𝑝, 𝑎),∃𝑞′ ∈ 𝛿(𝑞, 𝑎), 𝑞′ ≡𝑅 𝑝′))

The first condition simply means that a final state cannot be equivalent to a nonfinal
state. The second condition means that two states 𝑝 and 𝑞 are equivalent when for every
symbol 𝑎 such that transition 𝑝

𝑎−→ 𝑝′ ∈ 𝛿 a transition 𝑞
𝑎−→ 𝑞′ ∈ 𝛿 must exist and the states

𝑝′ and 𝑞′ must also be equivalent.
Symmetrically, a relation ≡𝐿 can be defined over an reversed automaton. By reversed

automaton is meant an automaton, in which transition have been reversed by the rule
𝑞 ∈ 𝛿𝑟(𝑝, 𝑎) if 𝑝 ∈ 𝛿(𝑞, 𝑎).

An automaton can be reduced using both equivalencies, but the automaton reduced by
≡𝑅 and the automaton reduced by ≡𝐿 do not need to be equivalent.

Implementing reduction directly by the definition would lead to exponential rise of used
memory space because computing equivalence for one state leads to computing equivalence
for all the following ones. The computation would recursively check all the following states
until it reaches a state with no transitions or finds a counterexample. This strategy is not
computationally possible for big automata. The more efficient method could be checking
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the equivalence in the reversed order, by checking the predecessors of a state which may
eliminate the recursion.

After computing equivalence, the algorithm to reduce the automaton A is trivial: it
simply merges all state in the same equivalence class into one and modifies the transi-
tions accordingly.

4.2 Reduction and simulations
A stronger reduction can be efficiently obtained by using simulations instead of equivalence.
The definition of simulation ⪯𝑅⊆ 𝑄×𝑄 is similar to equivalence:

∙ ⪯𝑅 ∩(𝐹 × (𝑄− 𝐹 )) = ∅

∙ for any 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ, (𝑝 ⪯𝑅 𝑞 ⇒ ∀𝑞′ ∈ 𝛿(𝑞, 𝑎), ∃𝑝′ ∈ 𝛿(𝑝, 𝑎), 𝑝′ ⪯𝑅 𝑞′)

As in the case with equivalencies, ⪯𝐿 can be created using the reversed automaton. If
𝑝 ⪯𝑅 𝑞, then 𝐿𝑅(𝑝) ⊆ 𝐿𝑅(𝑞) and if 𝑝 ⪯𝐿 𝑞 then 𝐿𝐿(𝑝) ⊆ 𝐿𝐿(𝑞).

The reduction using simulations is more complicated than the reduction using equiva-
lencies. We can merge two states 𝑝 and 𝑞 as soon as any of the conditions is met:

1. 𝑝 ⪯𝑅 𝑞 and 𝑞 ⪯𝑅 𝑝

2. 𝑝 ⪯𝐿 𝑞 and 𝑞 ⪯𝐿 𝑝

3. 𝑝 ⪯𝑅 𝑞 and 𝑝 ⪯𝐿 𝑞

However, after merging the states according to conditions 1 or 2, relations ⪯𝑅 and ⪯𝐿

must be updated so that their relation with the languages 𝐿𝑅 and 𝐿𝐿 is preserved. For
instance, if merged state of 𝑝 and 𝑞 is denoted 𝑞, we must remove from ⪯𝑅 any pairs (𝑞, 𝑠)
for which 𝑝 �𝑅 𝑠. Merging according to condition 3 does not require any update.

Pseudocode for efficient computation of simulations is given in Algorithm 5. The algo-
rithm works correctly only on the complete NFAs. In this algorithm, 𝑐𝑎𝑟𝑑(𝑛) denotes the
number of items in a set 𝑛. The result of this algorithm is �𝑅, which is a complement of
⪯𝑅. �𝑅 is defined as:

∙ (𝐹 × (𝑄− 𝐹 )) ⊆�𝑅

∙ for any 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ, (∃𝑝′ ∈ 𝛿(𝑝, 𝑎), ∀𝑞′ ∈ 𝛿(𝑞, 𝑎), 𝑝′ �𝑅 𝑞′ ⇒ 𝑝 �𝑅 𝑞)

Since �𝑅 is a complement of ⪯𝑅, this algorithm returns all pair of states (𝑝, 𝑞) in which
𝑞 does not simulate 𝑝. The same algorithm can be used for computing �𝐿 when it is applied
on the reversed automaton.

Further in this thesis, ⪯ is used as a shorthand for ⪯𝑅.

4.3 Antichains
The textbook approach to language inclusion checking requires both automata to be deter-
minized first. This approach is inefficient when working with big alphabets and automata.
The antichain algorithm allows us to skip the complete determinization. While checking if
𝐿𝐴 ⊆ 𝐿𝐵, the automaton 𝐴 is not determinized at all and the automaton 𝐵 is determinized
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Algorithm 5: Algorithm for simulations computation. Algorithm is taken from [14]
Input: complete NFA 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿)
Output: �𝑅

1 for each 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ do
2 compute 𝛿𝑟(𝑞, 𝑎) as an linked list;
3 compute 𝑐𝑎𝑟𝑑(𝛿(𝑞, 𝑎));
4 end
5 initialize all 𝑁(𝑎)s with 0s;
6 𝜔 := ∅;
7 𝒞 := 𝑁𝐸𝑊_𝑄𝑈𝐸𝑈𝐸();
8 for each 𝑓 ∈ 𝐹 do
9 for each 𝑞 ∈ 𝑄− 𝐹 do

10 𝜔 := 𝜔 ∪ {(𝑓, 𝑞)};
11 𝐸𝑁𝑄𝑈𝐸𝑈𝐸(𝒞, (𝑓, 𝑗));
12 end
13 end
14 while 𝒞 ̸= ∅ do
15 (𝑖, 𝑗) := 𝐷𝐸𝑄𝑈𝐸𝑈𝐸(𝒞) ;
16 for each 𝑎 ∈ Σ do
17 for each 𝑘 ∈ 𝛿𝑟(𝑗, 𝑎) do
18 𝑁(𝑎)𝑖𝑘 := 𝑁(𝑎)𝑖𝑘 + 1;
19 if 𝑁(𝑎)𝑖𝑘 == 𝑐𝑎𝑟𝑑(𝛿(𝑘, 𝑎)) then
20 for 𝑙 ∈ 𝛿𝑟(𝑖, 𝑎) do
21 if (𝑙, 𝑘) /∈ 𝜔 then
22 𝜔 := 𝜔 ∪ {(𝑙, 𝑘)};
23 𝐸𝑁𝑄𝑈𝐸𝑈𝐸(𝒞, (𝑙, 𝑘));
24 end
25 end
26 end
27 end
28 end
29 end
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gradually. If 𝐿𝐴 * 𝐿𝐵, the algorithm stops when finding the first counterexample, so the
automaton 𝐵 is not completely determinized.

We define an antichain and some others terms before describing the algorithm itself.
Given a partially ordered set 𝑌 , an antichain is a set 𝑋 ⊆ 𝑌 such that all elements of 𝑋 are
incomparable. 𝑀𝑎𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒 is defined as a subset of states from 𝑄. For two macrostates 𝑃
and 𝑅 of a NFA is 𝑅 ⪯∀∃ 𝑃 shorthand for ∀𝑟 ∈ 𝑅 . ∃𝑝 ∈ 𝑃 : 𝑟 ⪯ 𝑝. A product state (𝑝, 𝑃 ) of
a NFA 𝐴∩𝐵𝑑𝑒𝑡 is witness, if 𝑝 is final in automaton 𝐴 and 𝑃 is not final in automaton 𝐵𝑑𝑒𝑡.

The antichains algorithm [5] described in pseudocode in Algorithm 6 can be used for
language inclusion checking of finite automata. The antichains algorithm tries to find a final
state of the product automaton 𝐴∩𝐵𝑑𝑒𝑡 while not exploring the states when not necessary.
The algorithm explores pairs (𝑝, 𝑃 ) where 𝑝 ∈ 𝑄𝐴 and 𝑃 ⊆ 𝑄𝐵𝑑𝑒𝑡

. The automaton 𝐵

is gradually determinized while constructing 𝑃𝑜𝑠𝑡(𝑝, 𝑃 ) := {(𝑝′, 𝑃 ′) | ∃𝑎 ∈ Σ : 𝑝
𝑎−→ 𝑝′ ∈

𝛿𝐴, 𝑃
′ = {𝑝′′ ∈ 𝑄𝐵 | ∃𝑝′′′ ∈ 𝑃 : 𝑝′′′

𝑎−→ 𝑝′′ ∈ 𝛿𝐵}}.
The algorithm derives the new states from the product automaton transitions and inserts

them to the set 𝑁𝑒𝑥𝑡 for further processing (line 15). Once a product state from 𝑁𝑒𝑥𝑡 is
processed it is moved to the set of checked pairs 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (line 7). 𝑁𝑒𝑥𝑡 and 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
keep only minimal elements with respect to the ordering given by (𝑟,𝑅) ⊑ (𝑝, 𝑃 ) iff 𝑟 =
𝑝 ∧ 𝑅 ⊆ 𝑃 . If there is a pair (𝑝, 𝑃 ) generated and there is (𝑟,𝑅) ∈ 𝑁𝑒𝑥𝑡 ∪ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
such that (𝑟,𝑅) ⊑ (𝑝, 𝑃 ), we can skip (𝑝, 𝑃 ) and not insert it to 𝑁𝑒𝑥𝑡 for further search
(lines 13–16).

An improvement of the antichains algorithm is based on simulations. We can stop the
search for a pair (𝑝, 𝑃 ) if one of the following conditions is met:

∙ there exists some already visited pair (𝑟,𝑅) ∈ 𝑁𝑒𝑥𝑡 ∪ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 such that 𝑝 ⪯
𝑟 ∧𝑅 ⪯∀∃ 𝑃

∙ there is 𝑝′ ∈ 𝑃 such that 𝑝 ⪯ 𝑝′

This optimisation is at the lines 12–15 in the pseudo code. The basic explanation is
that if the algorithm encounters a macrostate 𝑅 which is a superset of already checked
macrostate 𝑃 , there is no need to continue the search for this one. If no counterexample
was found in the macrostate P, then it cannot be found in R since R is bigger and widens
the number of accepted words.

Another optimisation is based on a different principle. It comes from observation that
𝐿(𝐴)(𝑃 ) = 𝐿(𝐴)(𝑃∖{𝑝1}) if there is some 𝑝2 ∈ 𝑃 such that 𝑝1 ⪯ 𝑝2 and 𝑝1 ̸= 𝑝2. Since 𝑃
and 𝑃∖{𝑝1} have the same language, if a word is not accepted from 𝑃 , it is not accepted from
𝑃∖{𝑝1} either. Also, if all words from Σ* are accepted from 𝑃 , they are also accepted from
𝑃∖{𝑝1}. Therefore, it is safe to replace the macrostate 𝑃 with macrostate 𝑃∖{𝑝1}. This
optimisation is applied by the function 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 at the lines 5 and 8 in the pseudocode.

4.4 Antichains and simulations for symbolic automata
The implementation of antichains algorithm for symbolic automata is similar than for finite
automata, described in Algorithm 6. Although the main part of the algorithm stays the
same, some alterations must be made to adapt it to predicates. This section contains
only fragments of code representing the alterations since both antichains and simulations
algorithms were already described in Section 4.2 and Section 4.3.

The following snippet shows change in simulations computation introduced in Algo-
rithm 5. Since the labels in symbolic automata represent sets of symbols, these computa-
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Algorithm 6: Language inclusion checking with antichains and simulations. Algo-
rithm is taken from [13]

Input: NFAs 𝐴 = (Σ, 𝑄𝐴, 𝐼𝐴, 𝐹𝐴, 𝛿𝐴) , 𝐵 = (Σ, 𝑄𝐵, 𝐼𝐵, 𝐹𝐵, 𝛿𝐵)
A relation ⪯ over 𝐴 ∪𝐵 that imply language inclusion.
Output: TRUE if 𝐿𝐴 ⊆ 𝐿𝐵. Otherwise FALSE.

1 if there is a witness product-state in {(𝑖, 𝐼𝐵) | 𝑖 ∈ 𝐼𝐴} then
2 return FALSE;
3 end
4 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑:=∅;
5 𝑁𝑒𝑥𝑡:= {(𝑠,𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐼𝐵)) | 𝑠 ∈ 𝐼𝐴};
6 while 𝑁𝑒𝑥𝑡 ̸= ∅ do
7 Pick and remove a product-state (𝑟,𝑅) from 𝑁𝑒𝑥𝑡 and move it to 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑;
8 foreach (𝑝, 𝑃 ) ∈ {(𝑟′,𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑅′)) | (𝑟′, 𝑅′) ∈ 𝑃𝑜𝑠𝑡(𝑟,𝑅)} do
9 if (𝑝, 𝑃 ) is a witness product-state then

10 return FALSE;
11 else
12 if @𝑝′ ∈ 𝑃 𝑠.𝑡. 𝑝 ⪯ 𝑝′ then
13 if @(𝑥,𝑋) ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪𝑁𝑒𝑥𝑡 𝑠.𝑡. 𝑝 ⪯ 𝑥 ∧𝑋 ⪯∀∃ 𝑃 then
14 Remove all (𝑥,𝑋) from 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪𝑁𝑒𝑥𝑡 𝑠.𝑡. 𝑥 ⪯ 𝑝 ∧ 𝑃 ⪯∀∃ 𝑋;
15 Add (𝑝, 𝑃 ) to 𝑁𝑒𝑥𝑡;
16 end
17 end
18 end
19 end
20 end
21 return TRUE;
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tions are implemented by looping through all alphabet symbols and checking if they belong
to a predicate. The pseudocode for this alternation can be seen in the fragment of code in
Algorithm 7. This alteration is used each time where the original algorithm loops through
𝑎 ∈ Σ — lines 1 and 16 of Algorithm 5.

Algorithm 7: Transformation of simulations algorithm for symbolic automata
1 for 𝑎 ∈ Σ do
2 for 𝜋 ∈ 𝛿(𝑞, 𝜋) do
3 if 𝑎 ∈ 𝜋 then
4 process the transition;
5 end
6 end
7 end

The same principle is reused in computation of 𝑃𝑜𝑠𝑡 over symbolic automata as can be
seen in Algorithm 8. We check for each symbol of alphabet whether there are transitions
from both states representing the sets of symbols including 𝑎.

Algorithm 8: Computing 𝑃𝑜𝑠𝑡 over symbolic automata
1 for 𝑎 ∈ Σ do
2 for 𝜋 ∈ 𝛿(𝑞, 𝜋) do
3 if 𝑎 ∈ 𝜋 then
4 𝑃𝑜𝑠𝑡 = 𝑃𝑜𝑠𝑡 ∪ 𝛿(𝑞, 𝜋);
5 end
6 end
7 end

The used modifications of antichains algorithm for symbolic automata yield correct
results, but they are not efficient because they perform implicit transformation to letter
automata. Further optimisation of these functions specifically for symbolic automata can
make the library created in this thesis faster and are the subjects for further research.
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Chapter 5

Existing Libraries for Automata

This chapter contains a brief description of some of the existing libraries that deal with
finite or symbolic automata. For every chosen library, implementation language, types of
supported automata and other details are given. The real number of automata libraries
is bigger, but the inspection of all of them is over the scope of this thesis. Therefore,
only the libraries that are closely related to this thesis (by their design or used concept)
are mentioned.

5.1 AutomataDotNet
AutomataDotNet [17] is a library by Margus Veanes written in .NET framework in C#. It
supports algorithms for regular expressions, automata, and transducers. AutomataDotNet
can work with symbolic automata where characters are replaced with character predicates.
It also allows to use SMT solver as a plugin. Some of the high efficient algorithms for
automata manipulation are implemented, e.g. simulations used for automata reduction.

AutomataDotNet can handle many types of automata from classic finite automata and
transducers to tree automata. A big advantage is a possibility to use an SMT solver for
predicates. Unfortunately, the library is complex and many modules, their connections and
interactions have to be studied for extending it. This is the reason, why the library is not
easily modifiable and thus is not suitable for fast prototyping.

5.2 symbolicautomata
Symbolicautomata [7] is a library by Loris d’Antoni written in Java. The library can han-
dle symbolic automata and algorithms over them such as intersection, union, equivalence
and minimization. The predicates supported by symbolicautomata by default are char-
acter intervals. For example [𝑎–𝑧] represents every symbol in the interval from 𝑎 to 𝑧.
It includes support for symbolic pushdown automata and symbolic transducers. Further-
more, some of the high efficient algorithms for automata manipulation such as simulations
are implemented.

Due to complexity of the library, the learning curve of this library is high and it is not
suitable for easy and fast prototyping of new algorithms.
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5.3 VATA
Libvata [4, 18] is a highly optimised non-deterministic finite tree automata library imple-
mented in C++. It uses the most advanced techniques for automata. VATA can deal with
classic finite automata as well as both explicit and semi-symbolic encoding of tree automata.

VATA has a modular design so the various encodings for automata can be easily added
as long as they respect the defined interface. Different encodings may implement different
sets of operations. Generally, VATA offers basic operations, such as union and intersection,
and also more complex ones, such as reduction based on simulation or language inclusion
checking with antichains optimisation. For some operations, such as language inclusion,
different versions of algorithms are available.

VATA lacks transducers, moreover C++ is not really a good language for fast prototyping.

5.4 FAdo
FAdo [1] is a Python library focusing on finite automata and other models of computation.
Because this library can work with both regular expressions and automata, it offers only
basic algorithms. It can perform conversions between nondeterministic and deterministic
automata, as well as conversion between automata and regular expression. FAdo can also
transfer automata to simple graphic representations.

Regular expressions, DFA and NFA are implemented as Python classes. Transducers
are also available. Elementary regular languages operations as union, intersection, concate-
nation, complementation and reversion are implemented for each class. For operations like
determinization and minimalization, it is possible to choose from more methods, such as
Moore, Hopcroft, and some incremental algorithms. Some of these algorithms are imple-
mented in C for higher efficiency.

The biggest advantage of FAdo library is implementation in Python. Python is language
that is easy to use and therefore has the potential to be used for fast prototyping of new
efficient algorithms. Unfortunately, FAdo library is still immature, more in the state of
a prototype, and not very well documented. Extending this library to support symbolic
automata would be hard because of the lack of good documentation of its classes, interfaces
and inner communication.

5.5 FSA
FSA [2] is a fast library written in Prolog that can handle classic finite automata and
transducers as well as symbolic. Predicates 𝑖𝑛 and 𝑛𝑜𝑡_𝑖𝑛 which are used in this thesis
and will be implemented in the created library are inspired by FSA.

FSA offers determinization, minimization, Epsilon removal and other algorithms. It also
supports transducers. Unfortunately, this library is outdated. Also, Prolog is not widely
used and adaptation of the library in the community would be hard.
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Chapter 6

Design

This chapter contains a description of the library design. The library modules and their
connections are discussed.

The library is designed to allow easy and intuitive manipulation with symbolic au-
tomata and transducers. The library will provide explicit and also symbolic encoding of
finite automata. Basic operations should be available for each supported type of automata.
Additionally, some state-of-the-art algorithms for finite automata should be implemented.
Adding new operations should be straightforward. None of the operations should be de-
pendent on a specific predicate type. Adding new types of predicates should be allowed as
long as they respect a defined interface.

6.1 Design of the library
The library consists of multiple modules, as is shown in Figure 6.1. The lines in the Figure
signifies that the connected modules interact with each other.

∙ Parser is used for automata and transducer parsing.

∙ Predicate parser is called when Parser reaches a predicate. Predicate parser
should parse the predicate and transform it into a Predicate object. The object is
then returned and Parser stores it in the automaton object.

∙ Symbolic is a class for operations that are the same for symbolic automata and
symbolic transducers. This includes the operations that process the automata inde-
pendently on the transition labels such as intersection or union.

∙ Symbolic automata is a class for operations over symbolic automata. It includes
basic operations such as determinization and minimization as well as efficient and
advanced ones such as simulations and antichain.

∙ Symbolic Transducer contains implementation of operations over symbolic trans-
ducers such as composition or application on NFA.

∙ Finite automata is a class containing optimised algorithms for classical finite au-
tomata.
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Figure 6.1: Library Design
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6.2 Predicates
The library supports two different types of predicates by default. When adding new types
of predicates, predicate class and parser must be provided. The new predicates must im-
plement the defined interface for the library to work correctly.

6.2.1 Default predicates

Predicates provided by the library as default are:

∙ 𝑖𝑛 and 𝑛𝑜𝑡_𝑖𝑛 predicates, introduced in Section 2.5

∙ 𝑙𝑒𝑡𝑡𝑒𝑟 predicates representing symbols used in classic finite automata operations

6.2.2 Predicate interface

There are 5 operations needed for the implemented algorithms:

∙ conjunction — conjunction of two predicates

∙ disjunction — disjunction of two predicates

∙ negation — negation of a predicate

∙ satisfiability — check whether the predicate is satisfiable

∙ has_letter — check if a symbol belongs to the set represented by the predicate

𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and 𝑑𝑖𝑠𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 are needed for basic algorithms such as intersection and
union. Algorithms such as determinization and minimisation also need 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 op-
eration. 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is used in optimisations described in Section 3.5. The operation
ℎ𝑎𝑠_𝑙𝑒𝑡𝑡𝑒𝑟 is used in advanced algorithms such as computing simulations relation and the
antichains algorithm.
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Chapter 7

Implementation

This chapter provides the description of the created library 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏. The more specific
information about the library is given first. Then, information about the inner representa-
tion of different types of automata is given. Finally, implementation of various algorithms
is discussed.

7.1 Symboliclib
𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is a library implemented in Python 3. It supports finite and symbolic automata
as well as finite and symbolic transducers. The default input format of 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is
Timbuk [3] which is so far the only supported format. The library supports conversion of
symbolic automata to classic finite automata and serialisation of automata back to Timbuk
text format.

The predicates supported by default are 𝑖𝑛 and 𝑛𝑜𝑡_𝑖𝑛 predicated inspired by FSA
library[2] and 𝑙𝑒𝑡𝑡𝑒𝑟 predicates which represent symbols used in classic finite automata
and transducers. Some of the algorithms which can be optimised to work on finite au-
tomata more efficiently than on symbolic automata are implemented for both types of
automata separately.

Adding new types of predicates is simple as long as they implement the predefined
interface. Usage of SMT solvers is also possible by creating a middle-layer that converts
the interface of SMT solver to the interface required by 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏.

7.1.1 Command line interface

𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 provides a simple command line interface written in bash. CLI takes a name of
the desired operations and path to automata files as arguments. It should cover the most
used automata operations as well as different algorithms for inclusion checking described
in Section 7.4.

7.2 Transducers support
𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 library has a basic support for transducers including operations such as union,
intersection, composition or running transducer on NFA. Both classic finite and symbolic
transducers are supported, but unlike automata, operations are not implemented separately
for classic and symbolic transducers. Transducers containing epsilon transitions are not
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supported, but used data structures and already implemented operations allow to add this
support in the future.

Informally said, the only difference between automata and transducers input format and
processing are the transition labels. Where one predicate is enough for automata to model
configurations of systems, transducers use two predicates to model system behaviour. This
difference is handled by 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 module Transducer predicate.

Transducer predicate provides a layer for transducer processing by executing predi-
cate operations on both input and output predicates component-wise. This way, the inter-
face for automata and transducer predicate processing is the same and algorithms such as
intersection and union can be generalised to work on both automata and transducers.

7.3 Inner representation of automata
Inner representation of symbolic and finite automata and transducers is a Python class
with the same basic attributes. The library does not support different input and output
alphabets for transducers. The classes additionally include some advanced attributes used
for optimisation such as 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑧𝑒𝑑 or 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑 which represent the determinized and
reversed version of the automaton. When determinizing or reversing, the library first checks
whether these attributes are non-empty. If they are present, the desired modification of the
automata is returned without the need to perform the operation again.

Attributes of the automata such as alphabets and initial, final and all states are repre-
sented by a set. This guarantees that the same state or symbol is not saved redundantly
two times. As an optimisation, after parsing an automaton 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 removes all nonter-
minating and useless states and their respective transitions as described in Section 7.5.

For easy manipulation with automata, transitions are saved in a list of dictionaries. The
key of the dictionary is a left-handed side state of a transition and the value is another dictio-
nary. In this dictionary, the key is a predicate and the value is a list of right-handed states.

For transitions 𝑝0
𝑖𝑛{𝑎,𝑏}−−−−→ 𝑝1, 𝑝0

𝑖𝑛{𝑎,𝑏}−−−−→ 𝑝2 and 𝑝1
𝑖𝑛{𝑏}−−−→ 𝑝2 the structure would be:

[{’p0’: {𝑖𝑛{𝑎, 𝑏} : [p1,p2]}}, {’p1’: {𝑖𝑛{𝑏} : [p2]}]

A schematic example of automata transitions data structure can be found in Figure 7.1.

Figure 7.1: Automata transitions data structure and its internal representation
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For an easier automata manipulation, the function 𝑔𝑒𝑡_𝑚𝑎𝑡ℎ_𝑓𝑜𝑟𝑚𝑎𝑡 was added. This
function returns automaton in a dictionary containing items 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡, 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝑓𝑖𝑛𝑎𝑙
and 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠. This method should make possible to get automata in standard formal
definition format and thus make easier usage for new users.

7.4 Algorithms
Most of the algorithms in 𝑠𝑚𝑦𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 (intersection, union, determinization, minimisation,
epsilon rules removing, etc.) are based on Lecture notes from Javier Esparza [8].

Some of the operations such as intersection or simulations are separately implemented
and optimised for classic finite automata. This allows avoiding operations on sets like
intersection and union where a simple equality checking is sufficient. Generally, these
operations should run faster on classic finite automata than on symbolic automata.

𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 implements the following algorithms for language inclusion checking which
is a widely used operation in formal verification:

∙ Inclusion checking by mathematical definition — 𝑖𝑠_𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑_𝑠𝑖𝑚𝑝𝑙𝑒 —
check whether 𝐿(𝐴) ⊆ 𝐿(𝐵) by constructing 𝐿(𝐴) ∩ ¬𝐿(𝐵)

∙ Classic inclusion checking — 𝑖𝑠_𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 — based on [8]

∙ Antichains — 𝑖𝑠_𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑_𝑎𝑛𝑡𝑖𝑐ℎ𝑎𝑖𝑛_𝑝𝑢𝑟𝑒 — described in Section 4.3, without
the simulations optimisation

∙ Antichains with simulations — 𝑖𝑠_𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑_𝑎𝑛𝑡𝑖𝑐ℎ𝑎𝑖𝑛 — described in Sec-
tion 4.3, including the simulations optimisation

7.5 Optimizations
𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 includes some optimisations for better performance and faster execution.

After parsing an input automaton, all nonterminating or unavailable states are removed
from the automaton and so are all their corresponding transitions. By removing nontermi-
nating and unavailable states, the language accepted by the automaton is not changed, but
the size of the automaton may be decreased which leads to faster execution of operations.

The next optimisation of automata size is merging transition labels into one when pos-
sible. E.g., if an automaton contains transitions 𝑝0

𝑖𝑛{𝑎}−−−→ 𝑝1, 𝑝0
𝑖𝑛{𝑏}−−−→ 𝑝1, these are merged

and saved as 𝑝0
𝑖𝑛{𝑎,𝑏}−−−−→ 𝑝1. This reduces the number of transitions of the automaton. The

reduction is especially needed when the automaton was transformed from classic FA to
symbolic, in which case each predicate represents only one symbol.
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Chapter 8

Experimental Evaluation

This chapter describes the experimental evaluation of the language inclusion checking algo-
rithms implemented in 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏. Possible reduction in automata size by using symbolic
automata was also evaluated. The efficiency of symbolic automata operations in compar-
ison with classic automata operations is discussed. Then, a comparison of an algorithm
implemented in VATA and in 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is given.

For the evaluations we used NFA from abstract regular model checking provided by
VATA library. Since VATA does not support symbolic automata, the finite automata were
transformed into equivalent symbolic automata so that the execution times are comparable.
The tests were performed on a computer with Ubuntu 14.04 LTS, Intel(R) Core(TM) i3-
3120M CPU (2,5 GHz, 2 cores, 256 K cache) and 4GB RAM.

As was expected, 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is slower than VATA library. The inefficiency is partially
caused by the differences in main goals of these libraries. VATA is created with the focus
on fast and optimised automata processing, implemented in C++. On the other hand,
𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is written with the focus on easy and fast learning. A part of the inefficiency
can also be caused by the implementation language Python, which is generally slower
than C++.

8.1 Language inclusion
𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 supports four different algorithms for language inclusion testing described in
Section 7.4. In this evaluation, 𝑠𝑖𝑚𝑝𝑙𝑒 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 stands for inclusion checking by math-
ematical definition, 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 for algorithm based on [8], 𝑎𝑛𝑡𝑖𝑐ℎ𝑎𝑖𝑛𝑠 for antichains algo-
rithm without the simulations optimisation and 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 for antichains algorithm with
the simulations optimisation. The Figure 8.1 shows the comparison of them as well as
the execution time in the VATA library. Average inclusion times can be found in Table
8.1. Language inclusion was tested on more than 3 000 pairs of classic finite automata
with explicit encoding. The testing set included deterministic as well as nondeterministic
automata, most of them having less than 3 000 transitions.

Generally, simple and classic inclusion checking should be more efficient for smaller or
deterministic automata, when determinization is easy and fast or not needed at all. In such
cases, the computation of simulations takes longer time than simple inclusion checking. The
inclusion checking using antichains should be more efficient in nondeterministic automata
that have a big number of states or transitions which can be exponentially increased dur-
ing determinization.
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The experimental evaluation results confirm the assumption that classic inclusion check-
ing is efficient for smaller automata having less than 1 000 states. In these cases, the exe-
cution time in VATA library is 0.005 seconds and in 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 0.151 seconds. The basic
antichains algorithm beats all other 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 algorithms for any automata size.

On the other hand, antichains algorithm using simulations is the slowest for any au-
tomata size. Since the basic antichains algorithm is the fastest, the inefficiency is caused by
computation of the simulation relation. For big automata, the chosen implementation of
simulations is slow because of looping multiple times through the whole alphabet. A solu-
tion to this inefficiency would be to implement another algorithm for computing simulations
relation or to optimise the current one.

Figure 8.1: A comparison of different algorithms for language inclusion checking in
𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 with VATA. Evaluation was performed on classic finite automata with explicit
encoding.

Table 8.1: Average language inclusion checking execution times (in seconds)
size vata simple inclusion inclusion antichains simulations

0 - 1 000 0.005 0.598 0.151 0.130 1.004
1 000 - 2 000 0.020 2.993 0.743 0.559 7.485
2 000 - 3 000 0.028 3.360 0.896 0.871 7.247
3 000 - 4 000 0.032 4.980 1.409 1.254 8.486
4 000 - 5 000 0.049 4.861 1.772 1.613 11.717
5 000 - 6 000 0.050 5.270 2.227 2.056 14.006

8.2 Size reduction using symbolic automata
The biggest advantage of symbolic automata is the possibility of uniting multiple transitions
into one by using predicates instead of symbols. The average size reduction in the number
of transitions was tested on a set of more than 1 200 automata with 10 to 18 000 transitions.
The Figure 8.2 shows the decrease in the number of automata transitions.
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Figure 8.2: Decrease in automata size using symbolic automata

The decrease should be higher for automata which use more symbols on transitions
between the same states. In this case the symbols are represented by one predicate and all
such transitions are replaced with one transition. The size is not reduced if such transitions
do not exist.

As we see in the Figure 8.2, an average automaton size is decreased by 20% when
using symbolic automata. For automata having less than 4 000 transitions, the reduction
is smaller, usually 10%. In some of the cases, the reduction can be as high as 70%.

Eliminating 20% of transitions without changing the automata language is very useful
for big automata. Additionally, symbolic automata support most of the algorithms for
classic letter automata as was shown in Chapter 3. Therefore, using symbolic automata
instead of classic letter automata is useful as it leads to decrease in automata size without
lowering the number of available operations.

8.3 Symbolic automata operations
This section provides comparison of VATA intersection with intersection for letter and
symbolic automata in 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏. The results can be seen in Figure 8.3 and Table 8.2. As
was expected, VATA is faster than 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏, but for automata having less than 5 000
states the difference is not so notable.

We can observe that processing classic automata takes generally less time than the same
operation on equivalent symbolic automata. This fact supports the assumption that reim-
plementing some of the automata operations for classic automata increases the efficiency of
the library. This is because the predicates in symbolic automata represent a set of symbols
and therefore the intersection and union of such predicates include operations over sets in
Python. On the other hand, classic finite automata work with symbols, where intersection
and union may be replaced by simple equality which is a faster operation than operations
over sets.

As was shown in the previous section, using symbolic automata can decrease the au-
tomata size by 20%. The higher execution time of symbolic automata operations is a
trade-off to this reduction.

35



Figure 8.3: Automata intersection execution times

Table 8.2: Average automata intersection execution times (in seconds)
size vata classic symbolic

0 - 5 000 0.252 1.544 3.372
5 000 - 10 000 1.116 4.869 10.221
10 000 - 15 000 0.066 5.895 11.891
15 000 - 20 000 1.663 35.270 78.516
20 000 - 25 000 8.813 45.521 102.165

8.4 Easy Prototyping
An example of implementation in 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 in comparison with VATA is given to show
simplicity of prototyping in 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏.

The simplicity of programming in 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 can be shown on the complement of
automata. Code for this algorithm in 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 can be seen in Algorithm 9 and in VATA
in Algorithm 10. Some unimportant parts of the code for this comparison such as comments
have been skipped.

In 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏, the automaton is first determinized and then the final states are ex-
changed for nonfinal states through set operations. This process comes directly from the
definition of complement of FA so it is straightforward and easy-to-understand.

In VATA, complement requires looping through the automata states and checking
whether they are final or nonfinal. The constructing of complement is less clear because of
multiple nested loops. Additionally, the determinization is not implicit, so the user has to
remember to determinize the automaton first and construct the complement after that.

The difference in implementation is partially caused by the different programming lan-
guages. VATA is implemented in C++, which is generally more complicated language, as
a trade-off to efficiency. On the other hand, 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is written in Python, which has
simpler syntax, but is slower.
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Algorithm 9: Automata complement algorithm in symboliclib
Input: NFA 𝑠𝑒𝑙𝑓 = (Σ, 𝑄𝐴, 𝐼𝐴, 𝐹𝐴, 𝛿𝐴)
Output: NFA 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 = (Σ, 𝑄𝐵, 𝐼𝐵, 𝐹𝐵, 𝛿𝐵); 𝐿𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 = Σ* − 𝐿𝑠𝑒𝑙𝑓

1 det = self.determinize();
2 complement = deepcopy(det);
3 complement.final = det.states - det.final;
4 return complement;

Algorithm 10: Automata complement algorithm in VATA
Input: NFA 𝑎𝑢𝑡 = (Σ, 𝑄𝐴, 𝐼𝐴, 𝐹𝐴, 𝛿𝐴)
Output: NFA 𝑟𝑒𝑠 = (Σ, 𝑄𝐵, 𝐼𝐵, 𝐹𝐵, 𝛿𝐵); 𝐿𝑟𝑒𝑠 = Σ* − 𝐿𝑎𝑢𝑡

1 ExplicitFA res;
2 for auto stateToCluster : *transitions do
3 if !aut.IsStateFinal(stateToCluster.first) then
4 res.SetStateFinal(stateToCluster.first);
5 end
6 for auto symbolToSet : *stateToCluster.second do
7 for auto stateInSet : symbolToSet.second do
8 if !aut.IsStateFinal(stateInSet) then
9 res.SetStateFinal(stateInSet);

10 end
11 end
12 end
13 end
14 return res
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Chapter 9

Conclusion

The goal of this thesis was to create an automata library suitable for fast prototyping of
new algorithms. Therefore defined data structures are transparent and easy-to-understand.
The library supports simple adding new types of predicates and new algorithms.

The created library 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 supports classic finite and symbolic automata as well as
transducers. Some state-of-the-art algorithms have been implemented including simulations
relation computation and language inclusion checking using antichains. The library was
implemented in Python3 which is a popular language with relatively simple syntax. The
input format of the library is Timbuk which is also used in other automata libraries such
as VATA. 𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 implements basic operations over automata and transducers such
as intersection, union, determinization or minimalization. Language inclusion checking has
been implemented using four different algorithms.

The library was tested on set of automata provided by the supervisor of this thesis. The
results indicate that while the library is slower than other existing optimised libraries, it
works correctly and can be used for predesigned purposes. A trade off to this inefficiency
is transparent design and fast learning curve which makes prototyping and testing of new
algorithms possible. 𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is roughly 8 times slower than VATA on automata having
less than 15 000 transitions but the execution time grows exponentially. This fact does not
limit testing of new algorithms using the 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 library in any significant way.

The further development could be more operations over transducer. The library could
be modified to support transducers with epsilon transitions. For further optimisation of
the library, a profilation could be done for detection of slow algorithms. These algorithms
can then be optimised which will add up to the efficiency. Some state-of-the-art algorithms
such as simulation relation could be further optimised or implemented in other ways. As
was determined in the evaluation, operations over classic finite automata take significantly
lower time than on symbolic automata so some of the operations currently implemented
only for symbolic automata can be modified and implemented for classic finite automata.

As another optimisations, simulations and antichains could be altered to work faster
on symbolic automata. Currently, the implementation of these operations is simple and
yields correct results. On the other hand, it is not very efficient since it basically transforms
symbolic automata transitions to classic finite automata. The algorithms could be designed
in another way to work directly with the predicates instead of checking all symbols of
automata alphabet.

Currently, 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is not very optimised, and thus it is not the best choice for perfor-
mance critical applications. However, 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑙𝑖𝑏 is suitable for new automata algorithms
implementation testing or for study purposes.
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Appendix A

Storage Medium

The storage medium contains the sources of created library. It also contains an electronic
version of this text report.
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