
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

LIBRARY FOR MULTIPLATFORM DEVELOPMENT

OF MOBILE APPS
KNIHOVNA PRO MULTIPLATFORMNÍ VÝVOJ MOBILNÍCH APLIKACÍ

BACHELOR’S THESIS

BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL KOVAŘÍK

AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.

VEDOUCÍ PRÁCE

BRNO 2017

Abstract
This thesis addresses the issues when developing mobile applications for multiple operating
systems and development environments, with the target being to create the ideal user inter-
face library. A framework for HTML app development has been designed and implemented
that is built on top of modern web standards, allowing the developer to create applications
with a single codebase that will, when deployed, intelligently adapt to the device and oper-
ating system that they are being run on. Released as an open-source project and currently
supporting Windows 10, Android, Chrome OS and Web. Flexus, a framework for building
user interfaces, is in live use and active development.

Abstrakt
Tato práce se zabývá potížemi s vývojem mobilních aplikací pro vícero operačních systémů
a vývojových prostředí, s cílem vytvořit ideální knihovnu pro tvorbu uživatelských rozhraní.
Na základě moderních webových standardů byl navržen a implementován framework pro
vývoj HTML aplikací, umožňující vývojářům snadné vytváření aplikací s jednotným zdro-
jovým kódem, které se samy inteligetně přizpůsobí zařízením a operačním systémům, na
nichž jsou spuštěny. Zvřejněn coby open-source projekt, současně podporující Windows
10, Android, Chrome OS a Web, je Flexus frameworkem návrhu uživatelskách rozhraní v
aktivním užívání a nadálém vývoji.

Keywords
Material Design, Universal Windows Platform (UWP), Microsoft Design Language (MDL),
Neon Design, Android, Windows, HTML, CSS, JavaScript, Framework, Library.

Klíčová slova
Material Design, Univerzální Platforma Windows (UWP), Designový Jazyk Microsoft (MDL),
Neon Design, Android, Windows, HTML, CSS, JavaScript, Framework, Knihovna.

Reference
KOVAŘÍK, Michal. Library for Multiplatform Development of Mobile Apps. Brno, 2017.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor prof. Ing. Adam Herout, Ph.D.

Library for Multiplatform Development
of Mobile Apps

Declaration
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana prof.
Ing. Adama Herouta, Ph.D. Uvedl jsem všechny literární prameny a publikace, ze kterých
jsem čerpal.

. .
Michal Kovařík

May 18, 2017

Acknowledgements
Děkuji panu prof. Ing. Adamu Heroutovi, Ph.D. za jeho odborné vedení této práce, dále
děkuji všem, kteří mi poskytli pomoc a korekci k tomuto dokumentu, jměnovitě David
Smith, Emma Olivia Pedersen, Keifer Lucchi.

Contents

1 Introduction 3

2 Current State of Apps and User Interfaces 4
2.1 Platforms and runtimes . 4

2.1.1 Android . 4
2.1.2 iOS . 5
2.1.3 Windows – UWP . 5
2.1.4 Web . 5
2.1.5 Chrome OS . 5
2.1.6 Other platforms . 6

2.2 Anatomy of an Application . 6
2.3 Design Languages . 8

2.3.1 Material Design . 8
2.3.2 Neon Design Language (Microsoft Design Language) 9
2.3.3 iOS Human Interface . 10

3 Goals of the Framework 11
3.1 Flexus Modules . 12
3.2 Code Simplicity . 13

3.2.1 Custom Attributes . 14
3.2.2 Comparison to Other Existing Libraries and Frameworks 15
3.2.3 Customization . 18

3.3 Bridging Design Languages . 20

4 Implementation 24
4.1 Optimizations for Variety of Screens and Devices 24

4.1.1 Scaling . 24
4.1.2 Responsivity . 24
4.1.3 Sizing and Spacing . 25
4.1.4 Touch vs. Mouse . 25
4.1.5 Composition . 27

4.2 Pixel Perfect Implementation of Design Languages 27
4.3 Optimization Compromises . 30
4.4 Experimental Standards . 30

4.4.1 Shadow DOM . 31
4.4.2 CSS Custom Properties . 32

4.5 Modularity . 33
4.6 Performance . 33

1

4.6.1 DOM Manipulation . 34
4.6.2 GPU Acceleration . 34
4.6.3 Caching . 35
4.6.4 Scrolling with Passive Listeners . 35
4.6.5 Scheduling the Browser’s Animation Frame 36

5 Evaluation for Real World Usage 37

6 Conclusion 40

Bibliography 42

A Content of the DVD 44

B Demo applications 45

2

Chapter 1

Introduction

Any software development with the intention of reaching a wide audience spanning multiple
platforms and form factors has always been difficult due to the restriction in programming
languages and APIs available for each of the platforms. And of course, the user interface
has to be adjusted for various screen sizes and, preferably, even each operating system’s
specific look and rules. In addition to that, the internet has become increasingly important
and, in order to stay relevant and broadly available, services and companies now have to
provide users with not only a mobile application or a program for desktop computers but
also a website or rather a full web application providing the same functionality.

Development efforts are being scattered across multiple separate apps that are concur-
rently being built from the ground up to fit each platform’s needs. However the landscape
of app development has undergone immense changes in the past couple of years and, thanks
to the popularity of web platforms, languages that have previously been only used to create
a website can now be used to build mobile applications as well. Given that every major
operating system today has a built-in web browser, the first prerequisite is met. However,
when it comes to creating user interfaces that are responsive to numerous screen sizes and
input types, things start to get complicated. There are many open source UI libraries
available to use, which are mainly designed for creating websites, not applications, and if
so they only support a single design language for specific operating systems.

This thesis provides insight into the current state of application development and aims
to remedy the situation by creating a framework for HTML development, called Flexus,
that aims to solve the aforementioned problems by providing developers with a set of
building blocks for designing a user interface that automatically scales and adjusts, to
various screens and platforms with minimal effort. A tool, implemented in JavaScript, on
top of modern web standards, designed with simplicity in mind and that takes away the
hard and repetitive work from a developer’s hands, resulting in clear, customizable and
easily maintainable application source code.

3

Chapter 2

Current State of Apps and User
Interfaces

The landscape of software development has shifted dramatically over the past couple of
years, towards mobile devices such as phones and tablets, due to their increasing popularity
and availability. These devices are usually used without any peripherals and are generally
controlled using a touchscreen interface. As such they are primarily optimized for touch
input causing text, buttons, and the whole user interface in general to be large enough
for fingertips to control easily. Often programs, also called applications or apps for short,
written for these platforms lack some functionality as the main focus is to be simple and
clear. Their, development, however is not as trivial as one would hope. There are currently
four major platforms, each of which vastly differs both visually and in runtime, supporting
only certain programming languages for the apps to be coded in. Beyond that developers
are presented with user interface libraries that provide a basic set of components for building
a GUI. These libraries are, of course, based on each platform’s programming language of
choice and coding style that they enforce varies. This leaves developers with app code that
is non-reusable across other platforms and results in writing and testing the app multiple
times, from scratch, for each of the platforms.

2.1 Platforms and runtimes

2.1.1 Android

Android (by Google) is currently the world’s leading mobile operating system, holding
a majority market share. The primary programming language is Java, aided by XML for
configuration files and is confusingly bloated, repetitive and has extensive layout definitions.
Although web technologies are not supported for native application development, it is
possible to create an empty Java app covered with a Webview component, which then
hosts the HTML and JS files, effectively creating a native web application. This Webview
shares its engine with Google’s web browser (Chrome) and is regularly updated. Making it
anattractive development target, mainly with the help of the Cordova project, simplifying
this process.

4

2.1.2 iOS

iOs is Apple’s smartphone and tablet powering operating system which, much like Android,
prefers custom languages (Objective-C or Swift) over web technologies for native application
development. However, the same Webview approach, as with Android, can be used.

2.1.3 Windows – UWP

Windows has traditionally been a desktop only system that eventually branched out into the
smartphone sector with an overhauled interface. Version 8 of the system started to bridge
differences by bringing touch enabled apps to its desktop counterpart. With Windows
10, this plan for a converged OS came to fruition thanks to a unified design language for
interfaces that works well across all screen types. Along with two separate runtimes capable
of hosting apps powered by variety of programming languages. It is known as Universal
Windows Platform or UWP for short.

Firstly there is a runtime centered around Microsoft’s traditional C# and XAML lan-
guages. Secondly, and for my thesis more importantly, there is a second runtime (based on
the EdgeHTML and Chakra engines) which is essentially the Edge web browser enhanced
with the same system APIs provided to the C# runtime as well. This allows the creation
of native applications with web technologies. Edge (both runtime and browser), which is
updated twice a year alongside the system, supports most of the modern ECMAScript and
HTML5 web standards and can be just as high performing as the C# app runtime since
both underlying web engines are greatly optimized. Microsoft also provides the WinJS
library for building UIs.However, it did not become very popular among developers due to
its strange and complicated code style, making it challenging to understand and code.

2.1.4 Web

The Internet, once a text document sharing tool, grew in popularity with both users and
developers. Websites slowly turned into web applications capable of what previously could
have only been done in a desktop program thanks to new standards regularly extending
HTML, JavaScript and CSS languages.

Most of the mobile apps today come with a web counterpart offering that has the
same features through web browsers, usually powered by some MVC framework taking
care of data rendering and navigation without actually reloading the whole web page.
This paradigm is called a Single Page Application and, with new standards, under the
name Progressive Web Apps [7], enables offline access and “pinning to the home screen”
by storing all of the application’s files and placing icons beside native applications [5]. It
then operates without connection to the internet and suppresses the browser’s URL bar,
leaving the web app looking and behaving like an actual application without the need of
installation. The requirement for this is the creation of a manifest.json file [8].

2.1.5 Chrome OS

Google’s other operating system is an extension of the existing Chrome browser, aimed at
laptop users who spend most of their time browsing the internet, and as such is solely based
on web technologies. The only available languages for development are HTML, CSS, and
JavaScript, currently, applications must be published to the Chrome Web Store using a

5

separate manifest.json file, although it is expected that the PWA standard will be favored
in the future being as it is already implemented in Android.

2.1.6 Other platforms

As previously mentioned, Android and iOS do not currently support web languages as
their primary means for application development. However, Webview components can be
utilised for hosting HTML, CSS, and Javascript. This has been popularized by the Cordova
project 1, formerly known as PhoneGap, which automates the creation of such Webview
shells on mobile operating systems: Android, iOS, and Windows.

And, much like Cordova, two open source projects NW.JS 2 and Electron 3 combinine
Chrome’s rendering engine (Blink) with deeper access to the system and removing sandbox
limitations of typical websites. Bringing web programs for desktop OS’s (MacOS, Linux,
Windows).

2.2 Anatomy of an Application
Despite visual differences, the essential structure stays similar on most platforms. The
basis for every screen in the application is what I, for the lack of a better term, call View.
It is a container for a single state, or unit of content, with a unique set of functionality,
taking up whole screen of a phone. Every View has content in the middle, taking up the
majority of the space. This could be anything from plain text to photos, or an interactive
component like buttons and checkboxes. The other important part of a View is usually, but
not necessarily always, a heading, navigational icon button leading to a previous View, and
an additional actionable button(s). These are all grouped into a single component called
the Toolbar, also known as the AppBar or the NavBar due to naming diversity.

Figure 2.1: Typical View structure.

An app is essentially a collection of mutually interconnected Views and the user can
navigate from one to the other. They do this by either going hierarchically deeper to access
more information in the current scope, for example from list of contacts into a detail page

1https://cordova.apache.org/
2https://nwjs.io/
3https://electron.atom.io/

6

https://cordova.apache.org/
https://nwjs.io/
https://electron.atom.io/

of a single contact. Or by going to another View on the same level of flat hierarchy, for
example from the home screen to a settings page.

For the latter type of navigation both the Neon and Material design languages use a
side panel, known as the Drawer or the Navigational Drawer, which slides into the screen
from the left edge upon clicking a so-called “Hamburger menu”, an icon of three horizontal
lines that is located on the left side in Toolbar of top level View. The same space is then
occupied by a left facing arrow or an X to close and return to the previous View, up in the
hierarchy.

Figure 2.2: Navigational Drawer and its appearance on small and large displays.

In addition to primary navigation, a View’s content can also be split into sub sections
that are navigable using a Tabs component that is either directly part of the Toolbar or
immediately after it, visually blending into the rest of the content.

Figure 2.3: Single View with content separated using Tabs component.

Views are primarily designed to allow small screens to display all core functionality
but it can and should expand from there to account for larger screens by showing, not only
more content, but possibly changing the application’s layout. Most used is the master-detail
pattern which is applied to two Views in a hierarchical parent-child relation where a single
master View leads to many detail Views. Take, for example, a contact list, where the list is
the master and always visible on the left half of the display, the right side is then occupied
by details of individual contacts. Or a list of folder contents with additional actions hidden
in a side panel, sliding from under the right edge on phones, but permanently visible on
tablets where surface area is large enough for both.

7

Figure 2.4: Two Views in Master-Detail relation as displayed on small and large screens.

Despite structural similarities, there are still a lot of differences between platforms and
their design languages. Vague oversimplification often leads some developers to believe
that they could simply port their existing application 1:1 to another platform without
any design changes. Such approach to multiplatform development is frowned upon since
platforms actually vary not only visually but also behaviorally. This leaves users confused
because they come to expect every app to look similar and be controlled in the same way.
A prime example is navigation. The design of iOS places navigational Tabs on bottom
of the screen whereas Material Design (Google) tackles this with the Drawer, a vertical
panel sliding from the left side of the screen by dragging the finger from the edge of the
screen inwards or by clicking the “Hamburger” button in the Toolbar. These memorized
steps are crucial for less experienced users that rely on the presence of these interactions in
every app. Porting an iOs application to Android without first updating the interface to
match the Material Design specifications can lead to confusion due to the absence of the
aforementioned drag-in gesture for opening the navigational drawer.

2.3 Design Languages
Each platform devised a distinctive visual look to differentiate itself from the others. These
looks are called Design Languages because it, just like natural human languages, follows
syntax and rules where words are replaced with interface components. These languages
are described in extensive documents known as Design Guidelines which define everything
from fonts and colors, sizing, spacing, and placement of components, up to wireframes and
examples of common mistakes to be avoided.

2.3.1 Material Design

Developed by Google for Android OS and web services, it is a bold new step that places
emphasis on color, imagery, transitions, simple shadow effects in three dimensional space
and rounded edges of boxes called Cards encapsulating the content. The layout is very
spacious since it was primarily designed for touch devices, but extends beyond to Chrome
OS laptops without touchscreen where sizing of a few components is reduced.

The visuals are an analogy to real world where all elements are made out of material,
hence the name, and that is paper. Just like in real world, these sheets of paper can be
placed next to each other creating a seam, stacked over each other casting a shadow, moved
around, stretch or collapse and change color. Unlike other design languages it capitalizes
on animations and transitions and bold visuals. Great example is the Toolbar component

8

that, unlike in other conventional design languages, goes beyond just a thin strip on top of
the screen. It can hold images, stretch height, react to scroll and become more prominent
part of the application’s layout on larger screens.

Material Design Guidelines is a document extensive in both small details, like exact
measurements of elements and their sizing on different screens, application layout, compo-
sition, responsivity, terminology as well as guidance on customization or forbidden patterns
to avoid. This combined with the flexibility and customization is the reason I chose it as a
basis for Flexus.

2.3.2 Neon Design Language (Microsoft Design Language)

With Windows 10, Microsoft has focused on creating a balanced design that could work
across various form factors and input methods. This poses a problem since desktop pro-
grams are usually delivered with lots of information, labels and lines upon lines of text
thanks to the precision that mice offer. A cluttered interface is not the best to begin with,
however the overly spacious Metro from Windows 8 was also not ideal. Neon strikes a bal-
ance by delivering clickable areas that are just large enough to be easily reached by fingers
on a touchscreen but not so large as to feel empty and space-wasting on classic desktop
PCs.

Visually, the language is fairly simple, compact, flat and without any special effects or
shadows, with the exception of transparency. The visuals are dominated by sharp edges,
straight lines and flat filled areas, using black or white upon which lies text and heading in
large but thin Segoe UI font. Regular text size is 15px for optimal readability but headings
are large and distinctive. The overall layout and spacing is generally more condensed,
making it comfortable for mouse manipulation but actionable and clickable areas are are
at least 32 pixels tall or wide, allowing it to be large enough for touchscreen devices. A
notable part of some applications is the navigation drawer, a vertical list of icons with text,
similar to that found in in Material Design, only here it is placed to the left hand side of
the application, almost exclusively, in compact thin form. It expands upon clicking the
“Hamburger button”. Similarly, this inspiration was drawn upon for the toolbar that hosts
frequently used actions, represented by icons.

This design language might seem a little vague in it’s appearance, but the new category
of hybrid devices with touch screens and detachable keyboards is where it truly shines.
Users of such devices have the comfort of using a precise mouse cursor but also the ability
to utilize gestures that are tailored for physical interaction with the screen with their fingers.

At the time of writing, this particular design language is undergoing another shift,
or rather extension. Microsoft is currently experimenting with new blur effects, colorful
toolbars bearing larger text that is also reactive to scrolling. Basically bringing this design
language more in line with Material Design. These new changes can already be seen in the
pre-installed Windows 10 applications such as Movies & TV and Groove Music. More are
scheduled to follow with next update in the fall.

This visual refresh is known as Project Neon and I also chose to reference it as such,
rather than MDL. This is to prevent ambiguity because the M could potentially refer to
either Microsoft or Material.

Unfortunately, the design documentation is limited and Microsoft provides very little
guidance on basic measurements, sizing or spacing. This forces my implementation of this
design language in Flexus to be an approximation, based on existing Microsoft’s (and third
party) applications for Windows 10. I downloaded, studied and measured a number of

9

these applications to ensure as close a match as possible. Additionally, researching Neon
changes are considerably difficult at this undocumented stage. I did, however, manage to
dissect Microsoft’s WinJS library, which allowed me to determine the proper sizes of fonts
and toolbar components.

Despite its many challenges, I chose Neon for the challenging yet forward thinking
interface that traverses a large variety of different devices.

2.3.3 iOS Human Interface

Due to the popularity of its devices, iOS has garnered a massive user base. Unfortunately,
Apple does not provide any real information into their design guidelines. Detailing mostly
large white planes that host a thin, uniform, toolbar on the top of every view, leaving the
developer with the freedom to express his or her own style. Due to the iOS design guidelines
and the relative complexities involved in supporting Material Design and Microsoft Design
Language, porting the best features of both over to an iOS application in the future should
pose no issues. However, when considering support for iOS, I found that I needed to reverse
engineer the design specifications (sizing, spacing etc) themselves. As the development
environment for iOS requires an iPhone and Macintosh, which I do not have available to
me, I was unable to consider adding iOS support into Flexus at this time.

10

Chapter 3

Goals of the Framework

Many existing platforms, languages and component libraries are vastly different and in-
compatible so committing to these environments, precludes code sharing and reusability
across other platforms. One solution is the use of web technologies and, although much
progress has been made in the creation of an environment for native HTML applications, it
remains unpopular due to the lack of interest of the platforms authors to provide meaning-
ful tools and user interface building blocks because they usually prefer a platform’s primary
programming language. The main argument for this is, of course, performance, as native
languages are optimized to run closely tied to the hardware whereas Webview introduces an-
other layer of abstraction. I, however, hold the opposite view. Smartphones were conceived
as a multipurpose device, one of these purposes being a web browser. Their popularity
sparked a wave of optimization amongst vendors on one side and web developers, more
strictly following good practices of development, on the other. Smartphones are becoming
increasingly faster with four core CPUs and GPUs capable of intensive 3D graphics. With
new deeper level APIs granting developers access to GPU acceleration, this makes HTML-
based development performant and viable. The final missing piece is a library for creating
compelling user interfaces that would scale and adjust.

This is where Flexus steps in with four core principles.

∙ A single application codebase that automatically adjusts to two design languages,
various screen sizes, input types and platforms.

∙ Opinionated, yet extremely simple code.

∙ Powerful and extensible when required, but intelligently inferring when not.

∙ Precise implementation of Material Design and Neon languages.

Flexus is a framework for building user interfaces in HTML, CSS and JavaScript lan-
guages. It is not just a library that only provides sets of components. It is a framework
that cements itself into the language by introducing new elements for scaffolding the appli-
cation’s layout, while allowing developers to reuse all existing HTML tags e.g. <button>,
unlike others tools like Paper Elements library 1 which enforces the use of custom re-
placements, <paper-button> for example. These elements are self configurable and aware

1https://www.webcomponents.org/collection/PolymerElements/paper-elements

11

https://www.webcomponents.org/collection/PolymerElements/paper-elements

of context, platform, size, input type, they provide robust customization, most notably
<flexus-toolbar>, and their inner code does not leak into application code.

The visuals of the application are defined by two CSS files with the implementation of
both Neon and Material Design that can be swapped as required, that allows developers to
meet the design specifications for the platform that the application is launched on. Fonts
and icons are included, as well as a wide color palette that can be utilized for styling and
customization. The layout of the application is automatically adjusted to screen type, size,
orientation, effects disabled on slower devices or when the battery is running out, and more.

Simplicity was key for designing this framework, which could be used to create appli-
cations with next to no additional setup. For example <flexus-tabs> element can be
created to control currently shown page in <flexus-pages> and both elements are capable
of finding and attaching themselves into each other, without the need of specifying [for]
and [id], if they are both located within the same <flexus-view>. Flexus also delivers
substantial built-in behavior that automatically sets up the environment and takes care of
the usual hard work associated with repetitive, so called “boilerplate” code that is gener-
ally involved in the development of an application. It is simplistic, in terms of a prototype
building tool, where output is not just a prototype, but an actual working interface.

This project is an exploration of what the ideal framework should look like, both from
a code perspective and, also, technologically. It is built on top of modern web platform
features and specifications that are being standardized and implemented in browsers right
now (or in the near future). That said, it was always meant as a serious, production facing
open-source project and not simply an experiment. Flexus has been released on Github 2

where it available for download and use. The currently targeted platforms are Android,
Chrome OS, Windows 10 and Web. It does this by implementing two design languages
(so far) with the intention of expanding to other platforms in the future, namely iOS and
MacOS, however these come with specific hardware requirements that are not currently
available to me.

When compared to other HTML, CSS and JavaScript based libraries or frameworks
developed by large teams, Flexus may, currently, only provide a small amount of what
these other frameworks can offer, but what it does, it tries to do correctly.

3.1 Flexus Modules
The scope of this framework is relatively wide, so it was necessary to set out the function-
alities and to separate them into sub-modules:

∙ Flexus UI
By default, a HTML document has no style with no visual elements and text in the
serif typeface. Flexus provides two rigid, comprehensive stylesheet files, one for each
design language implemented to a high level of detail and containing styles covering
everything from basic elements to complex layout schemes. Most HTML built-in
elements like <button>, <input> text fields, checkboxes, radio buttons, as well as
custom components like <flexus-toolbar> are automatically styled upon importing
the CSS file to a HTML document. Color palette and typography with icons are
predefined and properly spaced, including a wide range of custom attributes that can
be used to customize any part of the application.

2https://github.com/MikeKovarik/flexus

12

https://github.com/MikeKovarik/flexus

Flexus UI provides everything the application could need when it comes to design,
so ideally the developer wouldn’t have to write any CSS, unless it’s for some de-
tailed customization matter that cannot be solved by provided modifier attributes.
These styles can be used standalone, without any other Flexus modules, but then the
automatic adjustment to screen size and form factor would be lacking.

∙ Flexus Custom Components Library
Despite respecting built-in HTML elements and encouraging developers to use them,
Flexus introduces a host of new custom elements that extend the language and can
be used like any other. For example <flexus-toolbar>, which is semantically similar
to the built-in <header>, but has a lot of advanced behavior built in.
These elements are self configuring, context aware and can talk to each other to work
for developers with minimal effort. That is ensured by building them on top of new
standards called Web Components which allow the enclosure all of the framework’s
source code into what, from the application’s standpoint, appears as a single HTML
element, without spilling out of context and causing confusion.

∙ Flexus Core Support Library
As the name implies, the support library has many objectives required for the proper
functioning of other modules or the framework as a whole.

– Collection of classes, decorators and helper functions that are shared, used or
inherited by the custom components classes.

– Platform detector gathers information about operating system, runtime or browser,
screen size, input type, device form factor, performance and battery.

– Fills in missing meta tags, configuration, ensures proper scaling, disables zooming
and overall prepares the environment for application development.

– Loads polyfills for missing platform features, if they’re not included
– Loads proper design language if it’s not defined
– Adjusts look and behavior.
– Disables or re-enables device processor intensive effects, based on device and

battery status.

∙ Ganymede
At the beginning of writing this thesis, there were two unfinished and partially im-
plemented versions of Web Components standards [17]. Ganymede was created as
an abstraction layer from this inconvenience and later turned into a lightweight li-
brary. It handles the registration, creation (and later destruction) of component and
mapping instance properties to DOM attributes of the element.

3.2 Code Simplicity
HTML is a very expressive language that allows programs to be written in declarative
manner. Being built on top of it, Flexus framework shares some of that language’s traits
and introduces opinionated concepts. It guides and sometimes enforces the developer to
write code in a particular way, but the tradeoff is much simpler application code.

13

3.2.1 Custom Attributes

The way HTML elements are traditionally styled is by using classes or IDs. Classes supplied
by UI libraries could be used with custom styles written by the developer, but this way is
prone to indistinguishability.

<h2 class=”text-primary custom-heading”>

Two classes are used in this common example: .text-primary is Bootstrap library class
for adding color, .custom-heading is hypothetical class by the application’s developer to
further enhance look of the element.

HTML elements can also contain additional information in form of attributes. Only few
are built into the language by default, the most known are [disabled] for actionable form
elements, or [type] that changes behavior and look of the universal <input> element to be
either a text field <input type=”text”>, checkbox <input type=”checkbox”>, or a radio
button <input type=”radio”>. And while it was able to query attributes using CSS, it
was not a popular styling option among developers up until widespread adoption of Web
Components standards which reinvented what a good and bad practises for the language
are, styling attributes being one of them. Part of Flexus is a set of custom components
that use attributes as a means of configuration of the element as well for styling since it
would be impractical and inefficient to duplicate parts of the code as a CSS class. Equally
impractical would be requiring use of classes for built-in elements and attributes for custom
elements.

Design decision has therefore been made to utilize attributes everywhere, not only in
custom elements, in order to fall in line with the philosophy of cementing Flexus into the
language, giving a notion of what HTML for application development always should’ve
been, because use of attributes implies built-in behavior which is exactly what Flexus does.
That way there’s a clear distinction between developer’s custom code and the rest of the
environment and third party tools.

One of the new attributes is [tinted] for applying color to elements. With it, the
previous example could therefore be rewritten as:

<h2 tinted class=”custom-heading”>

This code immediately indicates that the class is supplied by developer to customize
heading which has additional styling built into it.

Another example is the use of HTML’s built in [hidden] and [disabled] attributes.
The navigational drawer <flexus-drawer> automatically adds and removes [hidden] to
itself upon opening or closing and it could be used by the user as well to configure that it
should be hidden by default. On the other hand <flexus-tabs> uses [disabled] on its
children to denote the inaccessibility of a specific tab.
<flexus-tabs>

Speed dial
Recent calls
Contacts

</flexus-tabs>

This approach is much friendlier as it recycles pre-existing and well known concepts
instead of artificially creating new ones.

14

3.2.2 Comparison to Other Existing Libraries and Frameworks

The following code is an example of a simple button with a star icon and the text ”Favorite“
inside it, using the Material Design Lite library, by Google.
<button class="mdl-button mdl-js-button mdl-button--raised">

<i class="material-icons">star</i> Favorite
</button>

As can be seen, the HTML built-in <button> tag is used to create the button which
would, however, lack any style that the library is supposed to provide. Without the addi-
tional classes where mdl- is a namespace, mdl-button and mdl-js-button are the manda-
tory classes containing the default look and, finally, the mdl-button– further deepens the
scope to access only button related style modifiers of which raised adds a shadow around
the button. Additionally mdl-button–primary can be used to embellish the element with
the theme’s primary color.

Twitter’s Bootstrap doesn’t cause as much clutter thanks to omitting the namespace
but retains scopes. In this case .btn for button related styles which leaves this solution far
from perfect with implicit .btn and .btn-default classes.
<button type="button" class="btn btn-default">

 Favorite
</button>

WinJS by Microsoft follows the same pattern but lacks a named icon system so entity
code has to be inserted instead.
<button class="win-button"> Default button</button>

Unopinionated libraries sound good in theory, however practice presents the developer
with repetitive boilerplate code. Combination of multiple libraries ends up producing hard
to maintain code for what should’ve been only a simple, colored button with icon and text
in it. Following example is an amalgamation of MDL and WinJS code to make the same
code adjust to both design languages. It clearly is not an optimal way for creation of just
a single button.
<button class="win-button-primary mdl-button mdl-js-button mdl-button--raised">

 <i class="material-icons">star</i> Favorite
</button>

Besides MDL, Google also develops Polymer and Paper Elements library build on top of
Web Components standard, just like Flexus, but it strangely presents custom replacement
elements for those already built-in to HTML. Instead of native <button> developers are
forced to use <paper-button>. It has to be imported to the document since it’s defined
in external javascript file, causing unnecessary overhead as additional javascript code runs
behind every button in the app. Not to mention that icons are only available through
another custom element <iron-icon> as seen in this example:
<paper-button raised>

<iron-icon icon="star"></iron-icon> Favorite
</paper-button>

Flexus can be marked as opinionated since it, by default, applies styles globally to all
appropriate elements. Therefore buttons will always look consistent, based on the design
spec of hosting platform with no additional code to what developers have already come to
know. The button from the previous examples can be only written using the following code
where [raised] adds shadow in Material Design and [icon] uses CSS pseudo-elements to

15

inlay the icon glyph without the need of additional nested icon-hosting elements as with
other libraries.
<button raised icon="star">Favorite</button>

A single button with an icon can be used as a small example, the crucial differences and
simplicity starts to show up in the code that more accurately depicts an actual application.
Every application usually has a Toolbar.

WinJS dynamically enhances elements into so called controls, but it does so with every
child. Not only does it require additional code but also causes unnecessary performance
overhead. Simple toolbar with single button written in WinJS looks as follows:
<div data-win-control="WinJS.UI.ToolBar">

<button data-win-control="WinJS.UI.Command"
data-win-options="{

Type:’button’,
icon: ’edit’,
label: ’Edit’

}"></button>
</div>

New configuration attribute data-win-options is introduced, leading to steeper learn-
ing curve. The same toolbar can be written in Flexus on just a three lines:
<flexus-toolbar>

<button icon="edit">Edit</button>
</flexus-toolbar>

More realistic toolbars are much more complicated, as in the following example taken
directly from Onsen UI website [9]. It has four icons with a heading in between. That
should be six elements in total, with the toolbar included. Yet the Onsen UI, much like
most other similarly targeted multi platform frameworks do not provide the same comfort
that I envisioned for Flexus.

Figure 3.1: Basic Material Design toolbar with a title and a few buttons.

16

<div class="navigation-bar navigation-bar--material">
<div class="navigation-bar__left navigation-bar--material__left">

<i class="zmdi zmdi-menu"></i>

</div>
<div class="navigation-bar__center navigation-bar--material__center">Title</div>
<div class="navigation-bar__right navigation-bar--material__right">

<i class="zmdi zmdi-search"></i>

<i class="zmdi zmdi-favorite"></i>

<i class="zmdi zmdi-more-vert"></i>

</div>
</div>

As can be seen in previous snippet which recreates Fig. 3.1, not only does Onsen UI
force developers to write verbose classes like .navigation-bar–material__center and
.navigation-bar__center, that are arguably confusing due to the combination of variety
of dash and underscore delimiters. However, and most importantly, these classes are ex-
plicitly only applying the Material Design look, therefore additional and separate code has
to be written for another platform’s design language.

This example Toolbar can be rewritten in Flexus as follows:
<flexus-toolbar>

<button icon="menu"></button>
<h1>Title</h1>
<button icon="search"></button>
<button icon="heart"></button>
<button icon="more"></button>

</flexus-toolbar>

Not only is this code clearer but also semantically correct, this is because the the icons
are meant to be clicked on like on a button. And, in Flexus, they are represented by an
actual HTML element <button> instead of general purpose <div> and elements,
making it easy for machine processing by screen readers. Notably the title is also represented
by the semantical heading element, in this case <h1> and since <flexus-toolbar> inherits
the horizontal [layout], there’s no need to wrap content into additional containers like the
Onsen UI does with classes .navigation-bar__center and .navigation-bar__right.

Flexus does not force developers to relate to any particular design language in code.
Both provided styles, Material Design and Neon, are built around the same single core so
the application code stays untouched but appearance changes accordingly when either Neon
or Material CSS files are loaded. The code from previous example is displayed as follows:

Figure 3.2: Toolbar from Fig. 3.1 recreated with Flexus in Material Design and Neon
Design.

17

3.2.3 Customization

Simplicity is important but so is customization. Toolbars are one of the most important
and diverse components according to the Material Design specifications and, yet, this is
where most other UI libraries lack because they think of toolbar as of just a thin strip
atop the screen. Toolbars can be rich, include multiple sections, images and be resizeable,
change color or fade out certain child elements in reaction to scroll. Not to mention that
applications usually have search capabilities that are built into the toolbar, transforming
its color and layout to reveal the search text-box upon clicking the search icon. None of the
currently available HTML frameworks provide this level of customization that the native
Android’s Java AppCompat style library gives. One of the goals of Flexus was to bring this
functionality to life with comparably simple code.

Customization begins by wrapping the original contents of <flexus-toolbar> into
the <section> element and adds a [multisection] attribute to the toolbar element.
This results in, visually, the same toolbar. From there additional sections can be added,
<flexus-tabs>, or even images.

<flexus-toolbar multisection>
<section>

<button icon="menu"></button>
<div flex></div>
<button icon="search"></button>
<button icon="more"></button>

</section>
<h2 indent display1>My Music</h2>

</flexus-toolbar>

Figure 3.3: Multisection Toolbar created with Flexus.

In this snippet we can see the heading pushed further down. The <h2> element was
chosen and, while it would be better to have it wrapped in another <section> element, this
works just as well because both of them are block elements. Additionally, the [display1],
one of many typography modifiers predefined by Flexus, was used to increase the size and
thickness and [indent] to align nicely.

All of these customizations are included with the default CSS stylesheet so they can be
used without importing the elements/toolbar.js custom component javascript definition
file. However, adding it unlocks additional capabilities, the first of which is a quality of life
improvement – automatically adding the [multisection] attribute.

Some applications host searchable content or a list of selectable items. The toolbar
can be used to swap the main section for one that better fits the context. Support for
this behavior is built into the <flexus-toolbar>. Adding [search] to <section> makes
it hidden and it’s revealed only after clicking a button with the search icon, specifically
[icon=”search”]. If the closing button is included inside the section, it will be taken care
of as well. This is the most common, default behavior, but the search-show or search-hide
events can be used for customized manipulation. Section with a selection context can be
added handled similarly using [selection].

18

<flexus-toolbar multisection>
<section>

<button icon="menu"></button>
<div flex></div>
<button icon="search"></button>
<button icon="more"></button>

</section>
<section search>

<button icon="arrow-back"></button>
<input type="search" placeholder="search">
<button icon="more"></button>

</section>
<h2 indent display1>My Music</h2>

</flexus-toolbar>

Material Design takes the capabilities of the Toolbar further with reactivity to scroll.
Flexus implements this as well with opt-in attributes [sticky] and [collapse]. Both are
mutually exclusive and can be added by the user manually or could be assigned automati-
cally by Flexus’ educated guesses. Sections marked with [sticky] will remain visible even
after scrolling the content it is succeeded by, whereas the remaining sections will be hidden
and/or faded out. Alternatively [collapse] can be applied to only those sections that are
meant to be hidden.

<flexus-toolbar multisection>
<section overlay sticky>

<button icon="menu"></button>
<div flex></div>
<button icon="heart-outline"></button>

</section>

<section overlay indent>

<h2>Zelny trh</h2>
</section>

</flexus-toolbar>

This snippet also shows the use of [overlay] which can be used to display the section
over the collapsible content with a transparent background. The collapsible content is an
image that is also automatically adjusted to fit any width.

These elementary tools unlock many uses like the following example of social application
with hidden search section and a collapsible Card showing information about a missed call.
Attributes inferred and automatically assigned by Flexus are represented by gray color.

19

<flexus-toolbar multisection>
<section main sticky>

<h1>Social Hub</h1>
<button icon="search"></button>
<button icon="more"></button>

</section>
<section search dark sticky>

<button icon="arrow-back"></button>
<input type="search">

</section>
<div card collapse fx-item>

<div two-line>

<div>Michal</div>
<div muted>Mobile, 5 minutes ago</div>

</div>
</div>
<flexus-tabs sticky>

<a>Speed dial
<a>Recents
<a>Contacts

</flexus-tabs>
</flexus-toolbar>

3.3 Bridging Design Languages
Flexus forms a strong opinion on the source application code it is applied to by styling all
native HTML tags for the developer without asking. That could be viewed by some as a
downside since intrusive opinionated libraries make it harder to be used with other libraries.
This however begs the question “Why use other libraries at all?” Flexus answers this by
taking care of all of the hard work related to styling by covering most possible elements
and design use cases across two distinctive design languages.

All of the application’s styles are compiled into two separate CSS files, one for Material
Design and the other for the Neon Design Language, complemented by their respective icon
sets. For the application to acquire the visual look, one of the styles has to be included
with the <link> tag.
<link rel="stylesheet" type="text/css" href="flexus/css/flexus-material.css">
<link rel="stylesheet" type="text/css" href="flexus/css/flexus-material-icons.css">

Otherwise Flexus will automatically load a relevant design language based on platform
the application is launched on. Unless the developer explicitly forces Flexus to load a specific
design language by adding either [material] or [neon] to the <body> element. This is
particularly useful during development and testing, but using <link> tags is recommended
for production code to improve load time.

Both implementations are built around a single core which resets the original browser’s
style, contains shared utility attributes, mixins, color palettes, and basic application layouts.
Onto this core, the design language specific code is added. This makes the two stylesheets
interchangeable. However, both are unique in their own way. Flexus tries to tie them
together as closely as possible but there are still some specific cases that the developers
might want to use to tailor their application for each design language separately.

Material Design Guidelines are a comprehensive visual guide that makes for a great
foundation for some of the framework’s design decisions because neither Neon, nor iOS

20

(which is currently not targeted but it is intended for the future) provide much of any
actual information for developers wanting to implement the design, as these guidelines are
aimed primarily at designers. Whereas Material Design provides plenty information and,
importantly, some naming conventions that could be used instead of reinventing custom
terms.

At a first glance the two designs are similar in terms of application composition. They
both use toolbars with title and a “hamburger” icon menu that opens up a navigation
drawer, but deep down they are different, visually and conceptually. Material design uses a
facsimile of real world paper, with layers that can stacked, placed next to each other, slide
around and as such the content is enclosed onto these pieces of paper, called “cards” that
cast shadow and should not be transparent.

Flexus implements this look in an attribute [card] that can be applied to most con-
tent containers. One of the simplicity-driven decisions was to create a universal [card]
attribute that can be applied to wide range of pre-existing elements, instead of a strict
new <flexus-card> component. Another reason besides simplicity was that Neon does
not have this concept of paper and all of the styles applied to [card] in Material degrade
gracefully in Neon and, what remains, is just a style-less element.

Besides cards, the toolbar is another sheet of shadow casting paper in this analogy. For
this purpose, Material Design has fashioned an elevation system in which every component
is placed into a 3D space. The further the element is from the plane of other content, the
deeper the shadow is. Flexus provides an attribute [elevation] that can be used by users,
and it is also inherited by some components. <flexus-toolbar> has, by default, elevation
value of 2. This however only applies to Material design, since, again, Neon does not share
this visual concept. So applying [elevation=”0”] to <flexus-toolbar> makes it lose the
shadow in Material version but does nothing in Neon.

This becomes more interesting when we consider that the Material paper behavior also
introduces concept of “seams”. When the component does not elevate, it descends to the
same depth plane as other elements, yet they do not blend together and a separation
is visible between them. A seam. This description sounds oddly unique from Material
philosophical perspective but, upon closer inspection, the behavior is similar to content
separators like HTML’s <hr> and is something where Neon already bears some resemblance.
But not only that, certain Neon applications like Microsoft Edge have a thin border on the
bottom of the toolbar which is exactly the same look as the Material’s version of “seamed”
toolbar. This behavior was therefore built into <hr> as well as [seam] attribute that can
be applied to elements. Doing that will also automatically disable any shadows without the
need of using [elevation=”0”] since these two behaviors are mutually exclusive.

This is just one of the examples where these two design languages meet. Flexus is
designed to take care of most of the work from small details, up to the composition of the
application. Figure 3.4 shows application with two Views in Master-Detail relation and the
way Flexus displays it differently in the two design languages. Neon on the right can be
seen with two clean columns and a navigation drawer, whereas Material on the left side of
the image transforms one of the views into a distinct card laid over the other view.

Besides the visual separation, another element, the <flexus-scene> can be used to
stack multiple views together. This allows Flexus to change the layout depending on screen
the resolution and only showing one at a time if the viewport could not fit them both as
can be seen in Fig.3.5.

A big part of the visual appearance is also typography, icons, and color. Material
Design uses the Roboto font. Neon Design uses Segoe UI. Both of these fonts are included

21

Figure 3.4: Master-Detail application created with Flexus in Material Design and Neon
Design as seen on large screens.

Figure 3.5: Master-Detail application created with Flexus in Material Design and Neon
Design as seen on small screens.

with Flexus and dynamically loaded if they are not preinstalled on the platform. Text
can be modified with a handful of attribute modifiers such as [small], [bold], [italic],
[underline] as well as more specific ones like [display1] or [headline] with higher
specificity, just to name a few.

A useful [icon=”...”] attribute is available to choose from over one thousand named
icons, that are mixed and matched from both Microsoft’s Segoe MDL2 Assets icon font 3

and an open source Material Design Icons library 4.

Figure 3.6: Example of differences between Material Icons and Neon Icons

3https://docs.microsoft.com/en-us/windows/uwp/style/segoe-ui-symbol-font/
4https://materialdesignicons.com/

22

https://docs.microsoft.com/en-us/windows/uwp/style/segoe-ui-symbol-font/
https://materialdesignicons.com/

A wide range of colors is also available for deep customization for which Material’s
color palette [1] and naming scheme is implemented. Every application can have two main
colors, of which, the aptly named, primary color covers large surfaces like toolbars. It can
be complemented by accent color for details such as check boxes, active tab indicators, etc.
This is where the two design languages differ. Material introduces a system of two colors
and encourages more vibrant applications, whereas Neon is more subtle with just a single
color. It eventually comes down to the developer’s taste. Should they decide to use both,
they can use two attributes [primary=”...”] and [accent=”...”]. These attributes can
be used globally for the whole application, per view, or essentially everywhere. They do
not change the immediate background of the element. Instead they define the accent and
primary tones for all child elements that might use color, within the scope.

With the blue and yellow example, the toolbar would have a blue background and,
should it contain tabs or a button, those would be yellow. Proper foreground color is also
implemented so the toolbar automatically has white text. This view itself uses a [light]
theme and the check boxes would usually pick up the accent color, making the yellow hardly
visible on the white background. However, in this special case Flexus intelligently omits
yellow and uses the primary color instead. This is thanks to cleverly mixing both colors
into a so called “adaptive tint”. The same code, only with [dark] theme used instead, will
result in yellow check boxes as can be seen on Fig 3.7. This is all possible thanks to the new
standard CSS Custom Properties [10]. That way customization possibilities are endless and
the developer is only provided with a simple [tinted] attribute. Of course primary and
accent colors can be forced with the use of value-less attributes [primary] and [accent].
[background=”...”] and [foreground=”...”] are also available for granular control
over the style. If the provided color palette is not sufficient, the developer can simply use
custom hex values, such as <body primary=”#F00”> and Flexus will again take care of
applying the color everywhere, including providing proper foreground color for text.

<flexus-view light/dark primary=”blue”
accent=”yellow”>

<flexus-toolbar tinted>
...

</flexus-toolbar>
<main>

<h2 tinted>Tinted heading</h2>
<div fx-item icon="home">

....
<input type="checkbox" checked>

</div>
<main>

</flexus-view>

Figure 3.7: Primary and accent color shown on light and dark theme.

Both primary and accent colors (and their tags) can be omitted to leave the application
colorless. Flexus, however, integrates more deeply into Windows 10 and can automatically
use the local system’s theme (light or dark) and color. Similarly, part of the PWA standards
is the <meta name=”theme-color” content=”#FF0000”> tag which can be used to define
color to be used by browser and/or system. Flexus can automatically read from this tag
and adjust the application, or vice versa.

23

Chapter 4

Implementation

4.1 Optimizations for Variety of Screens and Devices

4.1.1 Scaling

Besides clarity, modern high density displays introduced a new problem, scaling. Most
typical desktop monitors have mdpi pixel density, also known as “Pixel Ratio 1.0”, meaning
one physical pixel represents one logical pixel. Smartphones are equipped with denser
displays, for comfortable use at a much closer viewing distance, where one logical pixel has
to be represented by many physical pixels on the screen. For example a 56 pixel tall toolbar
takes up about 120 mm on a hypothetical 22” mdpi monitor with pixel ratio 1.0. A phone
with an xxhdpi 5” screen that has a resolution of 1080x1920px at a 3.0 ratio would show the
same toolbar at around 36 mm unless it’s scaled up, in which case the application perceives
the resolution as only 360x640px, where 1 logical pixel is represented by 9 physical pixels
on the screen. The toolbar, from a programming standpoint, still remains effectively 56px
tall, even though it is displayed on 168 physical pixels, resulting in size of around 110mm,
making it roughly the same size in the real world, independent of screen density. Both of
the targeted design languages are aware of this and use different units, Density-independent
pixels (dp) [3] in Material Design and Effective pixels (epx) in Neon [6], both having the
same meaning – logical resolution. Flexus, specifically the Core Support library, takes this
into account and automatically configures the proper <meta name=”viewport”> tags so
that the developer doesn’t have to. And, like most other features, developers can override
this default behavior by simply providing a custom meta tag.

4.1.2 Responsivity

Applications are being developed for the mobile first, displaying one view at a time however,
simply stretching out the width is unsuitable for a larger screen. This is where Flexus
starts to change layout composition or even begins to display previously hidden elements.
Of course both design languages have their own way of handling responsivity with different
breakpoints. It had to be simplified into a single unified breakpoint system, with a Metrics
Table 1 in mind. The backbone for this are three states that the application can be in,
depending on screen width, or window width in case of an OS windowed mode.

∙ S – Small, up to 600px
Covers all smartphones, shows a single view, spacing is confined.

1https://material.io/devices/

24

https://material.io/devices/

∙ M – Medium, between 600px and 1000px
Most small tablets at any orientation and larger tablets in portrait orientation fall
into this category. Still only a single view is shown (with increased spacing). In
Neon Design, the drawer is shown in a pinned mode and the toolbar may change in
appearance.

∙ L – Large, from 1020px
Large tablets in landscape orientation fall under this state. Multiple views are allowed
to show though only two are being displayed by default in <flexus-scene>.

The two breakpoints are defined as CSS variables –breakpoint-s-m and –breakpoint-m-l
in :root scope, which makes it easily customizable. The JS Core Support Library picks it
up from there and sets up media query listeners that, in turn, applies the [screensize]
attribute to the HTML tag, together with other platform information, making it easy for
granular customization.

4.1.3 Sizing and Spacing

Both Material and Neon utilize two different values for padding contents of view, spacing
between elements and the density of the entire application. The values differ though, with
16px and 24px in Material and 12px and 24px in Neon. However, it is important to note
that they are used in the same manner. Small phone-sized screens make use of the lower
values and larger screens utilize the larger values to ensure that the application looks more
spacious, clear and comfortable to use. This also assists the “medium” breakpoint. Small
tablets occupy this category with screens that are much larger than phones, but not nearly
enough to host two views. The layout from the “small” category is therefore used with
spacing increased to that of the 24px layout, which makes it slightly upscaled and therefore
tailored correctly to the screen size.

These sizing changes can be most notably seen as a padding of toolbars and view’s
content. Material Design however includes a few more deviations to this [4]. Neon’s toolbars
have fixed base height of 48px, whereas Material varies with 56px on small screens, 64px on
medium and large screens, with exception for non-touch devices, where only 48px is used.

4.1.4 Touch vs. Mouse

The size of the screen is not the only thing that Flexus optimizes for. Applications can be
used on both touch screens as well as with a mouse and keyboard. The physical size of an
area the human finger touches on the screen, according to Material Design Guidelines [2],
is approximately 9mm. Therefore, the recommendation is to have touch targets that are,
at least, 48px to accommodate this. Ideally all buttons would therefore be at least 48px
wide and tall but that doesn’t make for an attractive, visually appealing, design. Typical
buttons in Material design are 32 pixels tall. Empty buttons hosting only icons are even
smaller at only 24 pixels. This is more than enough for mouse operated applications but not
ideal for the imprecise touch operation. Scaling up to a larger size would favor touchscreens
but cause the application to be impractically large for mouse operated computers.

Flexus, however, cleverly optimizes for it with use of the CSS3 pseudo-elements [12]
::before and ::after. These pseudo-elements are not specified in the HTML node tree,
they are, instead, specified in CSS and are then injected into the element within DOM.
The [icon] attribute uses this to inject an icon into any kind of element without the need

25

of any additional element. For touch enabled screens the Core Support Library adds the
[touch] attribute to the <html> element, onto which selectors are hooked by adding the
::after pseudo-element into clickable elements as well. It is absolutely positioned around
the element to cover, at least, 48px. This layer is, of course, invisible so that it does not
interfere visually but makes the element reactive to clicking beyond its actual size and,
thanks to the positioning, the element retains the same physical size so that the layout or
spacings are not affected.

Figure 4.1: Hitbox optimization for touch screens.

Touch enabled devices not only differ in sizing and spacing but also enable other new
ways of manipulating and interacting with content. One example is the navigational drawer
in Fig. 4.2. A hidden panel that can be opened by clicking a related button, or, in the case
of a touchscreen, dragged in from outside the edge. Drag and Drop is the usual pattern
for visible components, but in this case the drawer is initially hidden and no portions of
it are visible for the finger to hold on to. Here, a very similar approach is used where a
thin, invisible strip is displayed on the left side of the screen. Wide enough for a finger to
latch onto and initiate the drag, but narrow enough so interference with the application’s
content is prevented.

Figure 4.2: Touch screen optimization for the Navigational Drawer using the invisible strip.

Windows 10 offers a feature called “Tablet Mode” for hybrid devices with touchscreens
and/or detachable keyboards. It is mostly useful on a system level because it automatically
switches the current application to fullscreen and adjusts the system UI when the keyboard
is removed. This feature led me to use it as a trigger for a UI change, increasing the
sizes of components and spaces between them in the tablet mode. However, even though
detection of the tablet mode is possible in UWP’s EdgeHTML runtime, it’s not reliable,
and no similar features are available for Android, Chrome OS or Web. This did not prove
to be a problem. Strictly condensing the UI in the presence of precision pointer, i.e. mouse
or trackpad, is not a perfect solution for hybrid devices. Personal experience and testing
demonstrates that touch interactions are likely to be used regardless. More often than not it
is more convenient to tap on the screen rather than sliding a finger a couple of times across
the trackpad to move the cursor to opposite side of the screen. Flexus therefore makes an

26

educated guess, based on form factor, screen type and application size, to determine the
optimal application sizing and spacing. All touch enabled devices, including hybrids, are
therefore displayed in a touch-friendly manner.

Despite this adjustment being automatic, it can be overridden. The Core Support
Library adds either [touch] or [nontouch] to the <html> element and developers can
specify one or the others to disable Flexus’ detection and switching mechanism. Alterna-
tively [dense] or [spacious] attributes can be added for more granular use. Unfortunately
<html> has to be used instead of <body> which does make it less convenient but ensures
the proper value of CSS rem unit that is used for sizing of the application.

4.1.5 Composition

The core of each screen is a single view but this only applies to small screen sizes. Instead
of leaving it to stretch out, the developer can opt-in for automated composition. The
pattern of master-detail can be achieved with the <flexus-scene> element, for which a
elements/scene.js extension must be loaded. Once that is done, this element hooks
into the breakpoint responsive system and, upon changes in screen size, it is capable of
displaying two views next to each other or just one at a time and transitioning between
them.

Besides that, navigational buttons are being hidden or shown accordingly. The master is
usually the top-level view with a hamburger menu button in the toolbar, whereas the detail
view lies hierarchically below and must have a button navigating back up. That button is
also placed in the toolbar but it is only usable on smaller screens where one view is shown
at a time. Flexus therefore automatically hides the button with [icon=”arrow-back”] in
a detail’s toolbar on a larger screen because there’s no need for such a navigation step as
seen in Fig. 3.4 and 3.5.

4.2 Pixel Perfect Implementation of Design Languages
The visuals of an application are not just the color and shadow effects. Beyond every ele-
ment lie measurements of height, width, padding, margin, spacing between other elements
and set of rules, that may change depending on size and input type. Flexus primarily
adheres to Material Design since its design guidelines provide explicit measurements and
in-depth coverage of structure [2] and terminology. Most of the concepts are applicable
to Neon Design which was also given equal attention. It, unfortunately, does not have
as detailed and helpful design guidelines since it is more targeted at designers instead of
developers.

Every detail is painstakingly adhered to, ensuring that the implementation of the design
language is as complete and true as possible.

One notable point is the indentation line 4.3. This is an invention of Material Design
but applies nicely to Neon as well. It is denoted by a secondary line on the left side of the
layout, around which text and elements must be aligned if they contain icons, checkboxes,
avatars or are modified in any other way causing them to skip the primary line. The primary
line is either 16px or 24px, depending on the screen size, from the edge of the screen and
serves as an anchor where all of the content is aligned to. After that, additional 56 pixels
are reserved for potential content-shifting elements such as the icons previously referred to.

Thanks to CSS variables, Flexus is able to ensure proper compliance of all texts and
elements, be they plain or nested, to this indentation line as can be seen in Fig. 4.4. These

27

variables, –indent and –size, can be further adjusted, giving developers full customization
control over these basic layouts and sizes of icons, checkboxes, avatars, etc.

Figure 4.3: Excerpt of measurements behind Material Design’s components and layout.
Retrieved from: https://material.io/guidelines/layout/structure.html

Figure 4.4: Example of a <flexus-view> with various components aligning around inden-
tation line.

Up until recently, HTML and CSS were not suitable for advanced element composition
since the languages were lacking proper layout tools. That was until introduction of the
new Flexbox [11] standard, which Flexus uses extensively, and presents developers with
the utility attribute [layout]. It can be used in combination with the [horizontal] or
[vertical] attributes to create container hosting elements in a single line, aligning them
around a single axis and flexibly adjusting their size, relative to other sibling nodes as
represented in Fig. 4.5. This greatly simplifies code and, since Flexbox handles children
independently of the display mode, it allows for inline-block elements like <button> to be
flexed next to block element such as <h1>. A prime example of this is <flexus-toolbar>
as most Flexus custom elements inherit [layout] behavior, or at least portions of it.

28

https://material.io/guidelines/layout/structure.html

Figure 4.5: Representation of flexbox behavior implemented in [layout] attribute.

Most applications consist of lists, whether they are contacts, emails, messages, to-do
lists or any other group of items, they typically host an additional icon, checkbox or avatar
on the left side, with the rest of it being filled with a single line of text. Flexus therefore
provides styles for creating items of such list available under the [fx-item] attribute,
Fig 4.6. This is a subset of [layout] with higher specificity and proper spacing between
not only children, but also other sibling items and, most importantly, alignment to the
indentation line. Besides just a plain thext, lists items often contain icons, checkboxes or
images to which [avatar] attribute can be added.

Behavior of [fx-item] is also inherited by <flexus-toolbar> element and its sub-
sections.

The [fx-item] was intentionally designed to be an attribute instead of a custom element
so that it could be applied to a range of elements such as <label> so that the whole item
could be reactive to click and control state of checkboxes as in Fig. 4.7.

<div fx-item icon=”cloud”>Online Storage</div>

Figure 4.6: Example of a simple, single-line, list item with an icon, created using [fx-item]
attribute. Material Design variation is on the left, Neon design on the right.

<label fx-item>

<div two-line>

<div>Michal</div>
<div muted>Missed call, 5 minutes ago</div>

</div>
<input type="checkbox">

</label>

Figure 4.7: Example of an item with an avatar, two lines of text and a checkbox, created
using [fx-item] attribute. Material Design variation is on the left, Neon design on the
right.

29

4.3 Optimization Compromises
As was already mentioned, Flexus provides developers with a wide range of text, size and
color modifying attributes to be used in conjunction with HTML elements such as [hidden]
for hiding components. These attributes can be used either globally without a value, or
with a specifier of where to apply. There are five different specifiers that were cleverly
designed to be used together with very little excessive code. Those are small, medium,
large for screen size and neon, material for design. For each of these attributes that are
responsive to the specifiers, there are five statements inside the Flexus source code, such as
following where hidden is the attribute name and star character, instead of direct equality,
applies the style rule only when the attribute value contains small.
[neon] [hidden*="neon"],
[material] [hidden*="material"],
[screensize*="s"] [hidden*="small"],
[screensize*="m"] [hidden*="medium"],
[screensize*="l"] [hidden*="large"] {

...
}

This provides enough flexibility to combine specifiers, [hidden*=”medium,large”] ap-
plies to medium and large screen sizes, effectively showing the element only on small phones.
Due to performance concerns I decided against implementing more complex specifiers. It
is tempting to use small-material that would only apply to material design phone ap-
plications, but each combination of specifiers would have to be hard-coded, resulting in
seventeen selectors instead of five, leading up to hundreds of lines of additional code that
could potentially cause slowdowns that I wanted to avoid. It is, however, encouraged to go
beyond what Flexus has to offer for achieving the true vision that the developers may have
for their application by writing custom code, only on a per-app level.

4.4 Experimental Standards
Web Components are a set of modern standards that change the core behavior of browser’s
engines and open up a future for highly composable components. Web Components consist
of four separate standards; Custom Elements [13], Shadow DOM [15], HTML Templates [18]
and HTML Imports [14] which are currently undergoing the final phases of standardization
and are being implemented by browser vendors.

Using unfinished technology in the midst of its standardization is risky, but the founda-
tion has already been laid. Backed up by a positive reception and demand from the com-
munity, the initial implementation in Chrome and pre-existing libraries (namely Google’s
Polymer and their Paper Elements components library) I was confident to move forward
and build Flexus around the Web Components standards [17]. It was an important design
decision, because it was critical for achieving some of the set out principles:

∙ Simplicity of the application’s code

∙ Self contained functions of components

∙ Non-leaking separation of framework’s and application’s code

This however turned out to be one of the primary problems as well. Chrome (and
Android’s Webview) initially supported v0 standards as of the start of the development of

30

this thesis. Over time, v1 has been finally implemented in Chrome and Flexus adapted to
it with an abstraction layer for custom components registration that subsequently became
the Ganymede module. Unfortunately Edge (and the UWP runtime) does not support Web
Components, yet making it much more complicated. There are ways to partially overcome
this problem. One of them is the use of polyfills 2 which Flexus automatically loads during
runtime of the application if needed. However, this solution is not perfect as the polyfills
are only a simulation of the missing features, some of which are impossible to do as they
deeply alter the browser’s behavior, specifically the Shadow Dom standard. This lead to
changes in the framework’s code to allow for functioning in today’s environments, although
with somewhat limited capabilities.

An example case is the requirement to use the [fx-item] attribute on all descendants of
the <flexus-drawer> element due to the missing encapsulation the Shadow DOM provides.
The drawer’s descendants could not be directly addressed with flexus-drawer > * CSS
selector. The <flexus-toolbar> on the other hand is feature complete as elegance of the
internal element’s code was sacrificed in order to work properly in both native and polyfilled
environments. This will, thankfully, change in the future as Microsoft has announced that
it will deliver Web Components 3 and they already have added another related standard,
the CSS Custom Properties [10] that Flexus is heavily utilizing, in a recent April 2017
update of Windows.

4.4.1 Shadow DOM

HTML documents are essentially a tree of elements stacked into a hierarchical structure.
One element can have multiple children and it is itself placed in a parent element. The
Shadow DOM standard enables to puncture a hole into a given element and create a sec-
ondary sub-branch aside from the primary DOM tree. This allows for the creation of a
scaffolding within the shadow root that is hidden from the user but defines the outlook of
the element. This underlying shadow structure can contain slots <slot>, serving as entry
points into which the actual element’s children will be redistributed into.

The shadow root is invisible and inaccessible to the outer world, ensuring encapsulation
of not only HTML nodes but also styles. CSS Rules applied to inner shadow elements do
not leak outside and remain immune to the application’s styles with an exception of CSS
Custom Properties.

Flexus utilizes this in an attempt to simplify the application’s code by applying default
styles to the immediate first-level children of elements such as <flexus-toolbar> where
<button icon=”...”> looks appropriate for the context of the Toolbar, whereas the same
code outside it will look like a normal content button without any additional style modifiers
or added classes.

The following example shows <flexus-toolbar> components that self-configure them-
selves based on the children they contain, attaches missing attributes and redistributes the
elements into an underlying shadow root. In this case, a main section complemented by a
[search] section, an image which is recognized as collapsible content, followed by tabs in
an overlay mode, resting on top of the element.

2https://www.webcomponents.org/polyfills
3https://blogs.windows.com/msedgedev/2015/07/15/microsoft-edge-and-web-component

31

https://www.webcomponents.org/polyfills
https://blogs.windows.com/msedgedev/2015/07/15/microsoft-edge-and-web-component

<flexus-toolbar>
<section>...</section>
<section search>...</section>

<flexus-tabs overlay>...</flexus-tabs>

</flexus-toolbar>

Listing 4.1: Original toolbar code

<flexus-toolbar>
<section slot=”before”>...</section>
<section slot=”before” search>...</section>

<flexus-tabs overlay sticky slot=”after-overlay”>...</flexus-tabs>

</flexus-toolbar>

Listing 4.2: Actual DOM code after self configuration

...
<div id="before">

<slot name=”before“></slot>
<div class="overlay">

<slot name="before-overlay"></slot>
</div>

</div>
<div id="collapsible">

<div id="parallaxwrap">
<slot name=”collapsible”></slot>

</div>
</div>
<div id="after">

<div class="overlay">
<slot name=”after-overlay”></slot>

</div>
<slot name="after"></slot>

</div>
...

Listing 4.3: Excerpt from shadow root

4.4.2 CSS Custom Properties

CSS Custom properties are unique because unlike other CSS rules they do not change the
immediate style of the element. A variable is created in the scope of the element and all
descendants are able to retrieve its value using var(–my-variable) syntax. This allows
for infinite theming capabilities as featured in the following approximation of how Flexus
theming mechanism works. Most other frameworks currently require developers to pre-build
themes into static CSS files, whereas Flexus, with a built in color palette, lets developers
specify colors on any level, using attributes like [primary=”...”]. Not only would this be
unsustainable with the amount of styleable elements and CSS’s default outside-in styling
mechanism, but Flexus’ unique feature “adaptive tint” could not be done at all.

32

[primary="red"] button {background-color: red}
[primary="red"] input {border: 1px solid red}
[primary="red"] h1[tinted] {color: red}
[primary="red"] h2[tinted] {color: red}

[primary="blue"] button {background-color: blue}
[primary="blue"] input {border: 1px solid blue}
[primary="blue"] h1[tinted] {color: blue}
[primary="blue"] h2[tinted] {color: blue}

[primary="green"] button {background-color: green}
[primary="green"] input {border: 1px solid green}
[primary="green"] h1[tinted] {color: green}
[primary="green"] h2[tinted] {color: green}

Listing 4.4: Conventional theming

[primary="red"] {--primary: red}
[primary="blue"] {--primary: blue}
[primary="green"] {--primary: green}

button {background-color: var(--primary)}
input {border: 1px solid var(--primary)}
h1[tinted] {color: var(--primary)}
h2[tinted] {color: var(--primary)}

Listing 4.5: CSS Custom properties way

4.5 Modularity
The most visible feature of Flexus is, of course, the UI styling provided by the CSS files.
Those provide all of the necessary style rules for both built-in elements and custom com-
ponents. It could realistically be used stand-alone without the Core Support Library, even
though it is not recommended as the Core Support Library handles platform detection and
adjusts to changes. However, what is recommended, is omitting the inclusion of custom
component javascript files.

Folder elements contains many .js files with implementation of element’s advanced
behavior, starting by registering a custom element, causing the browser to actively enhance
every instance of the element with a shadow root and given code. But this process is an
unnecessary overhead for simple applications that might not need all of the elements. If, for
example, only a simple <flexus-toolbar> is used, without any sections, nor the advanced
collapsible capabilities, it is not needed to load a toolbar.js since all basic styles are
already provided by a CSS stylesheet.

Components inherit the same resources from the Core Support Library, but they are
built to be independent of one another to further improve load speeds and performance.
The components were built to collaborate when used together, like <flexus-tabs> and
<flexus-page>, but they are not mutually dependent.

4.6 Performance
The most common complaint against using web technologies as a reliable application de-
velopment environment is performance. The problem, however, is not in the commonly

33

blamed JavaScript language, but the Document Object Model, a live, interactive represen-
tation of HTML code, more specifically DOM manipulations are very slow compared to JS
loops and function calls. The initial render is not that big of a problem but subsequent
modifications to the DOM can cause slowdowns if handled without care. I took a great
deal of care to avoid this as much as possible.

Browser vendors have been progressively optimizing both JavaScript engines and DOM
renderers over the past couple of years while the web platform itself has expanded in terms
of, not only, new features but also new performance-related specifications. For example
CSS 3 introduced GPU accelerated animations and transitions, offloading computational
tasks down the stream to a GPU, when used properly. Contrary to old bad practises using
obsolete libraries where every step of the animation is calculated in JavaScript and then
applied to the DOM, resulting in an overhead of ineffective calls that could be handled by
the Browser or better yet the GPU. This cumbersome method persists to this day on many
websites and the problem lives on.

I, however, took a great deal of care during the designing of Flexus to cautiously use re-
sources, avoid unnecessary operations, only follow the best practices and utilize new perfor-
mance specifications where possible. The most important of those are: GPU Acceleration,
utilizing a rendering scheduler, executing tasks in batch, and offline DOM manipulation.

4.6.1 DOM Manipulation

Manipulation with Document Object Model, i.e. changing text, updating classes, attributes,
styles or inserting new nodes is slow and should be decreased to minimum since it triggers
many other rendering related operations. Flexus adheres to good practices of applying
changes in batch instead of one after another. Additionally, “offline” manipulation outside
the active DOM is preferable. DocumentFragment serves as a temporary host for all new
or modified nodes that are then inserted into a live DOM all at once. One of the cases of
offline manipulation is the creation of a shadow root of custom components, when all of
the template nodes are created at first within a DocumentFragment which is then appended
into the shadowRoot DOM tree.

4.6.2 GPU Acceleration

Ensuring smooth transitions and animations is a difficult task because of DOM manipula-
tions, most of the style changes 4 lead to a repaint and even reflow in the worst cases. These
are the hidden processes of a browser’s rendering engine. Reflow is triggered when the lay-
out of the document has changed, e.g. the CSS property margin is modified, changing the
element position and forcing the geometry of all nodes to be recalculated. This is followed by
a repaint phase which literally paints the document by applying colors, textures and effects
onto precalculated node positions. More specifically, both of these phases are evaluated by
the CPU which then offloads the actual repaint rendering onto the GPU. Luckily, usage of
the CSS properties opacity and transform can optimize this process. These properties
instruct the GPU to create a snapshot (a transparent layer with only the element bearing
it) during the first repaint after a reflow. The first render pass is then executed as usual by
stacking all layers together and outputting the result. Subsequent changes to opacity or
transform avoid the repaint phase and are sent directly to GPU where only a single layer
from the last snapshot is modified without interference from the CPU. This dramatically

4https://csstriggers.com

34

https://csstriggers.com

speeds up the repeated modifications that animations consist of, since such operations are
relatively cheap for the GPU to perform, unlike assembling everything from scratch.

4.6.3 Caching

Caching is an ambiguous term since it’s used to describe many different operations. In my
case, I used it to store values from nested properties within objects. It could be dismissed
as trivial but profound differences can start to show up if the property-accessing code is
called regularly, i.e. inside a loop or event callback, or even worse, when the property is
deeper than a single level. The following excerpt is taken from file elements/toolbar.js
and shows a modification of CSS transform property on the element parallaxwrap that is
nested within this.$.
this.on(’collapse’, ([p, s, capped]) => {

this.$.parallaxwrap.style.transform = ‘translate3d(0px, ${capped}px, 0)‘
})

Since the path is expected to remain unchanged, it is wise to store the latest accessible
object from the path to a separate variable parallaxwrapStyle.
var parallaxwrapStyle = this.$.parallaxwrap.style
this.on(’collapse’, ([p, s, capped]) => {

parallaxwrapStyle.transform = ‘translate3d(0px, ${capped}px, 0)‘
})

It might not be always useful as code readability is also a concern for future main-
tainability but the provided example is justifiable due to it being a callback to the event
collapse which fires in bursts of hundreds as it is tied to scrolling.

It becomes especially beneficial in combination with a deeper knowledge of how render-
ing/layout engines work. Every DOM Element offers a set of methods and properties such
as offetWidth, offsetHeight and a little known fact is that merely reading these offset
properties forces costly reflows and repaints. Caching them is therefore reasonable, specif-
ically in case of Flexus’s Toolbar element which, in some configurations, needs to perform
adjustments based on size.

4.6.4 Scrolling with Passive Listeners

A common problem, seen with web development, is scroll performance. To remedy this,
Flexus uses new standard Passive Event Listeners [19]. To see the benefit we first have to un-
derstand the basics of event handling. Every time the browser fires an event, the developer
is offered a window for reaction. This could be plain update of a variable or an impacting
change to DOM which modifies the behavior of the fired event, in which case a default action
taken by the browser has to be canceled by calling the method event.preventDefault().
The browser has to presume this prevention every time it fires an event and allocating
needed resources for this operation results in delayed, unpredictable reactions that become
noticeable during a series of quickly fired events such as those produced by scrolling. There-
fore effects that respond to scrolling often appear to be unpleasantly lagging behind. Now,
registering a listener as passive marks a promise from developer to the browser not to
prevent the default action but to only observe. No additional resources are wasted and
results are significant. Launching the same example of collapsible toolbar in Chrome shows
a smooth transformation during scrolling whereas in Edge the toolbar jumps around and

35

lags behind. That is because Edge has not yet implemented 5 passive listeners, however,
this is expected to be included in future versions as this feature is already in development 6.

4.6.5 Scheduling the Browser’s Animation Frame

For an application to be conceived as smooth, be it through animations or scrolling, a thresh-
old of sixty frames displayed per second should be met. Previously mentioned optimizations
help reduce the overhead, allowing the browser to focus on reliably delivering those sixty
frames. This means that every 16.6 milliseconds one frame has to be rendered. If some
other operation takes up browser’s resources at this point, the application starts to appear
laggy. The worst offenders of this are scroll and pointer events (including touch and mouse
movement). Those are being fired erratically and usually in rapid bursts, possibly even
multiple times within the 16ms frame between rendering. Executing callbacks on every
single one of them results in disastrous performance hit if it interacts with DOM. Fortu-
nately the requestAnimationFrame [16] spec gives developers deeper integration into the
browser’s timer by allowing them to schedule code to be executed exactly at the moment
of the frame rendering when the browser is “warmed up” for these kind of tasks. Flexus
utilizes this scheduler in elements inheriting the Scrollable class and vastly improves scroll
performance by utilizing this scheduler, therefore reducing the number of callbacks by only
executing the latest ones.

5http://caniuse.com/#feat=passive-event-listener
6https://developer.microsoft.com/en-us/microsoft-edge/platform/status/

passiveeventlisteners/?q=passive

36

http://caniuse.com/#feat=passive-event-listener
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/passiveeventlisteners/?q=passive
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/passiveeventlisteners/?q=passive

Chapter 5

Evaluation for Real World Usage

Throughout the development of Flexus, I have been regularly testing snippets of code and
also complete demo applications to ensure that the project is not only useful but also
performant and on par with applications that are written in native languages such as C#
and Java.

As Webview adds another step between the application code and hardware, therefore,
it is only to be expected that it will be slower than native languages. This is, however, a
problem of the web platform which is not designed for creating intensive 3D graphics and
games to begin with and instead is ideal for applications such as to-do lists, calendars, news
readers etc. In this case ”slower“ is defined as tens of milliseconds. As discussed in the
previous chapter 4.6, the big focus during Flexus’ development was to make it performant
in both the initial load time along with actual interaction within the application.

Flexus was regularly tested on a Nexus 5 device, which as of writing this thesis, is an
almost four year old mid-range Android phone. The subjective load times from the users’
point of view are almost indistinguishable from native applications, with no noticeable
slowdown when delivering content. Furthermore, I was able to test on a Nexus 7 device
(released in 2012) which is, by today’s standards, a considerably slower device. Through
multiple tests it was obvious that even the native Java applications were slow on this device.
With this in mind, it would be fair to assume that HTML applications would be noticeably
worse however, they are absolutely comparable when considering performance.

Additionally, on Android devices I tested their ability to install the applications from
the web, due to the Android OS already supporting the PWA manifest. The launch speed
of PWA apps is heavily dependent on the way that the application’s files are served. I was
unable to properly test caching the application’s files locally on the device as that would
require the availability of an HTTPS server. I was able, however, to test it in remote mode
where at the moment of launching, all of the files would be loaded from the server. This
process is also dependant on the application’s content and images however, a basic app
(consisting of a single view with text and the core components of Flexus) loaded within a
second or two. This test was performed on a regular home WiFi connection which causes
the largest performance impact by retrieving the application’s files from the internet.

Another factor that increases the performance of Flexus lays in its modularity. For a
simple application, only the design CSS files and preferably the Core Support Library need
to be loaded, unless any advanced features like tabs/pages or toolbar are required. Unlike
Google’s Paper Elements library (also a web HTML based UI library), Flexus tries to keep
the number of newly created custom elements as low as possible. For example, creating a list
would require list item elements. Flexus merely provides the option of using the [fx-item]

37

attribute that can be applied to anything from <div> to <label>, whereas Polymer creates
a whole new custom element <paper-item>. A custom element like this is defined in
another file which then has to be imported, and the component’s code registered into the
browser’s element registry. Then, each time an item is created, the component’s underlying
JS code is executed, adding unnecessary performance overhead. Following the same topic
of simplification, with Flexus, icons can be added to almost anything, by applying the
attribute [icon=”myicon”], whereas Paper Elements requires the use of <iron-icons>
components, making it less practical (a deeper node tree) and more expensive (in both load
time and execution).

Regarding its usefulness, Flexus excels at handling the visual appearance of an appli-
cation by adjusting it to screen size, touch or mouse input, and provides proper styling
with Material Design and/or Neon Design. Developers can focus on writing their ideas
in declarative HTML and Flexus will take care of the styling and layout. It can be used
to develop applications that are deployable into the Windows Store, Android Store, and
Chrome OS Web Store, and along with the expansion of the PWA standards, the web.

The simplicity of the resulting application’s code was discussed in chapter 3.2, but
it should be stated that the code is not just clean, but also functional. Component
<flexus-toolbar> offers powerful animations that are reactive to scrolling of view’s con-
tent, which could be done with just a few lines of code. Just adding a element
as a child to a <flexus-toolbar> triggers a number of internal operations e.g. listen-
ing for changes in scroll position, updating state, rendering and accelerating animations
through the GPU to ensure smooth scrolling. This was achieved by utilizing Web Com-
ponents standards which allowed for encapsulating such complexity internally within the
component (during its lifecycle) and away from the application developers.

The result of this is a highly declarative code that, in the case of simple applications,
can stand on its own without the need of any additional JavaScript since, for example, the
components <flexus-tabs> and <pages-pages> can find each other and link themselves.
Unless the developer wants to precisely determine the relationship which could be done with
matching [id=”...”] and [for=”...”] attributes, in the same way that HTML’s <label>
and <input> functions. On the other hand, the component’s encapsulation ensures Flexus
is compatible with any of the popular MVCs, routing or a templating library or framework.

Flexus is, however, not without its flaws. Use of the modern (and often experimental)
web standards that Flexus is built on leads to the temporary unavailability of some features
in some browsers and environments. Even though Flexus also contains polyfills (open source
snippets of code that tries to patch or simulate missing browser features), these standards
are very tricky or nearly impossible to polyfill, especially the Shadow DOM (and styling
within). I have put considerable effort into making it work and it does collaborate with
the polyfills, even with all of the complex scrollable toolbars, at least for the most part.
However, this is at the expense of adding complexity to Flexus’ source code, making it not
as sleek and elegant as it could have been.

At the time of writing, the current version of Chrome (58), Chrome OS, and Android
Webview, fully support all of the mentioned standards and therefore all of Flexus and the
demo applications work flawlessly. Microsoft’s Edge and subsequently Windows 10 UWP
platform (built on top of Edge’s rendering code) are currently missing the implementation
of the Web Components standards. Due to this, some bugs are expected to surface and it
is possible that more complex applications may not work at all. This, however, is only a
temporary problem as Microsoft have pledged to support these standards in future releases
as have the other major platforms.

38

Another limitation is caused by sandboxed environments. Flexus is able to automati-
cally detect the platform and/or OS and tries to load up the appropriate design language
automatically (if it’s not defined by the developer) including polyfills. There is a limita-
tion that is only present with UWP and Chrome OS applications as they are executed in
a restrictive manner, where the CSP (Content Security Policy) prevents the application
from injecting another scripts or styles. Using less restrictive shells like Electron, NW.JS
or Cordova resolves and removes this limitation.

Flexus does not, currently, offer all of the components for developing intricate applica-
tions. I intend to remedy this in the future as I will be continuing the development and
expansion of Flexus as an open source project, improving current functionality, introducing
new components, and adding support for Apple devices through the iOS design language.

39

Chapter 6

Conclusion

In this thesis I have researched and studied the available literature relating to the design
and development of mobile applications and programs. There are currently a variety of
platforms and my findings proved that developing for them is difficult due to differences in
programming languages executable on each platform. Another obstacle is the distinctive
visual appearance that these platforms enforce. This problem is further compounded by
characteristic visual and behavioral patterns of the two input types, the touch and the
mouse pointer, around one of which are applications usually optimized. Despite available
alternative to use web technologies for development, it is not that practical because very
few multiplatform libraries and frameworks are available. And those that are do not tackle
all of the aforementioned problems all at once, rendering the libraries impractical as it still
leaves more work to be done by developers.

Based on these findings I have devised a simplistic API of a multiplatform framework for
application development and building User Interfaces. I have implemented this framework
in HTML, CSS and JavaScript languages using modern web standards. The name chosen
is Flexus as the framework flexibly adjusts interface of the application to fit the device it is
launched on. Flexus primarily provides two things: the visual style for the application and
a set of components to build it with. Two design languages are supported – Material Design
for Android and Neon Design for Windows 10. Both are complemented by large set of icons
and a color palette that can be used for styling. Also provided is a set of modular custom
components. Among these components are the basic building blocks such as navigational
drawer, toolbar, tabs, and more. By default, their basic styling is included, but developers
can selectively import respective additional javascript files to further enhance behavior of
such elements when needed.

The framework was designed to be simple on the outside, yet complex and powerful on
the inside. Giving developers the power they need to customize their applications if they
need it, or automatically configure itself and all components with smart assumptions based
on surroundings. This goal has been achieved. After a quick and straightforward setup
of simply including a few JS files, the Flexus framework takes over and adjusts the single
codebase for various platforms, screen sizes, and form factors. The appropriate design
language is loaded, layout and structure changes with screen size, spacing and sizing is
increased and touch gestures are enabled on touch screens, advanced effects can be used
with minimal code and can be automatically disabled on slower devices.

This project started as an exploration of what the ideal future UI framework could be,
and the result is an actual working tool. However, there’s a caveat to that. Flexus is built
on top of modern web standards, which poses some problems on platforms that have not

40

yet implemented all of these standards. However, all platforms have previously announced
development of Web Components standards so this inconvenience is only temporary. Cur-
rently targeted platforms are Windows 10, Android, Chrome OS and Web. Flexus has been
released as an open-source project on Github and I intend to continue development, add
support to iOS and expand functionality with more components.

41

Bibliography

[1] Google: Material Design Guidelines: Color Palette.
Retrieved from:
https://material.io/guidelines/style/color.html#color-color-tool

[2] Google: Material Design Guidelines: Layout - Metrics & keyline.
Retrieved from:
https://material.io/guidelines/layout/metrics-keylines.html

[3] Google: Material Design Guidelines: Layout - Units & measurements.
Retrieved from: https://material.io/guidelines/layout/units-
measurements.html#units-measurements-density-independent-pixels-dp

[4] Google: Material Design Guidelines: Structure.
Retrieved from:
https://material.io/guidelines/layout/structure.html#structure-app-bar

[5] Google: The Web App Manifest.
Retrieved from: https://developers.google.com/web/fundamentals/engage-and-
retain/web-app-manifest/

[6] Microsoft: Introduction to UWP app design.
Retrieved from:
https://docs.microsoft.com/en-us/windows/uwp/layout/design-and-ui-intro

[7] Mozilla: Progressive web apps.
Retrieved from: https://developer.mozilla.org/en-US/Apps/Progressive

[8] Mozilla: Web App Manifest.
Retrieved from: https://developer.mozilla.org/en-US/docs/Web/Manifest

[9] Onsen: Onsen UI: CSS Components.
Retrieved from: http://components.onsen.io

[10] W3C: CSS Custom Properties for Cascading Variables Module Level 1.
Retrieved from: https://www.w3.org/TR/css-variables/

[11] W3C: CSS Flexible Box Layout Module Level 1.
Retrieved from: https://www.w3.org/TR/css-flexbox-1/

[12] W3C: CSS Pseudo-Elements Module .
Retrieved from: https://drafts.csswg.org/css-pseudo-4/#generated-content

42

https://material.io/guidelines/style/color.html#color-color-tool
https://material.io/guidelines/layout/metrics-keylines.html
https://material.io/guidelines/layout/units-measurements.html#units-measurements-density-independent-pixels-dp
https://material.io/guidelines/layout/units-measurements.html#units-measurements-density-independent-pixels-dp
https://material.io/guidelines/layout/structure.html#structure-app-bar
https://developers.google.com/web/fundamentals/engage-and-retain/web-app-manifest/
https://developers.google.com/web/fundamentals/engage-and-retain/web-app-manifest/
https://docs.microsoft.com/en-us/windows/uwp/layout/design-and-ui-intro
https://developer.mozilla.org/en-US/Apps/Progressive
https://developer.mozilla.org/en-US/docs/Web/Manifest
http://components.onsen.io
https://www.w3.org/TR/css-variables/
https://www.w3.org/TR/css-flexbox-1/
https://drafts.csswg.org/css-pseudo-4/#generated-content

[13] W3C: Custom Elements.
Retrieved from: https://www.w3.org/TR/custom-elements/

[14] W3C: HTML Imports.
Retrieved from: http://w3c.github.io/webcomponents/spec/imports/

[15] W3C: Shadow DOM.
Retrieved from: https://www.w3.org/TR/shadow-dom/

[16] W3C: Timing control for script-based animations.
Retrieved from: https://www.w3.org/TR/animation-timing/#dom-
windowanimationtiming-requestanimationframe

[17] webcomponents.org: Web Components Specifications.
Retrieved from: https://www.webcomponents.org/specs

[18] WHATWG: HTML Living Standard.
Retrieved from: https:
//html.spec.whatwg.org/multipage/scripting.html#the-template-element

[19] WICG: Passive event listeners.
Retrieved from:
https://github.com/WICG/EventListenerOptions/blob/gh-pages/explainer.md

43

https://www.w3.org/TR/custom-elements/
http://w3c.github.io/webcomponents/spec/imports/
https://www.w3.org/TR/shadow-dom/
https://www.w3.org/TR/animation-timing/#dom-windowanimationtiming-requestanimationframe
https://www.w3.org/TR/animation-timing/#dom-windowanimationtiming-requestanimationframe
https://www.webcomponents.org/specs
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
https://github.com/WICG/EventListenerOptions/blob/gh-pages/explainer.md

Appendix A

Content of the DVD

The attached DVD contains the following notable directories and files:

|-- flexus (directory containing compiled and source code of flexus and demos)
| |-- css (directory with compiled Flexus CSS design languages)
| |-- demo (directory with variety of demo applications)
| |-- elements (directory with compiled Flexus custom components)
| |-- fonts (directory with fonts and icons used by CSS files)
| |-- lib (directory with compiled Flexus Core Support Library and Ganymede)
| |-- polyfills (polyfills fixing missing functionality in old browsers)
| |-- src (directory with original not compiled source codes of Flexus)
| |-- test (directory with code snippets and testing apps used during development)
| |-- flexus.jsproj (Visual Studio UWP project)
| |-- gulpfile.js (build tasks used for compiling)
|
|-- thesis (directory containing this thesis and its source)

|-- src (directory containing source code of this thesis)
|-- thesis.pdf (compiled electronic version of this thesis)
|-- manual.pdf (user’s guide for working with Flexus framework)
|-- promo.mp4 (brief video about Flexus framework and this thesis)
|-- poster.png (promotional poster about Flexus framework and this thesis)

The directory flexus also contains various other files related to or required by Visual
Studio project, build tasks, git, etc. The directories flexus/fonts and flexus/polyfills
contain open-source files created by third parties, retrieved from 1 2 3, which are used by
Flexus or the demo applications.

1https://www.webcomponents.org/polyfills
2https://materialdesignicons.com/
3https://docs.microsoft.com/en-us/windows/uwp/design-downloads/index

44

https://www.webcomponents.org/polyfills
https://materialdesignicons.com/
https://docs.microsoft.com/en-us/windows/uwp/design-downloads/index

Appendix B

Demo applications

Following are a few examples of applications, from the flexus/demo directory on attached
DVD, that were built using Flexus.

Figure B.1: Antivirus demo application.

Figure B.2: Tourist guide.

45

Figure B.3: Stocks application.

Figure B.4: Simple list of downloaded files inspired by Android’s Download application.

46

Figure B.5: Photo gallery.

Figure B.6: Panel with details of a photo.

47

Figure B.7: List of articles represented by cards.

Figure B.8: Video game hub.

Figure B.9: Simple list application.

48

	Introduction
	Current State of Apps and User Interfaces
	Platforms and runtimes
	Android
	iOS
	Windows – UWP
	Web
	Chrome OS
	Other platforms

	Anatomy of an Application
	Design Languages
	Material Design
	Neon Design Language (Microsoft Design Language)
	iOS Human Interface

	Goals of the Framework
	Flexus Modules
	Code Simplicity
	Custom Attributes
	Comparison to Other Existing Libraries and Frameworks
	Customization

	Bridging Design Languages

	Implementation
	Optimizations for Variety of Screens and Devices
	Scaling
	Responsivity
	Sizing and Spacing
	Touch vs. Mouse
	Composition

	Pixel Perfect Implementation of Design Languages
	Optimization Compromises
	Experimental Standards
	Shadow DOM
	CSS Custom Properties

	Modularity
	Performance
	DOM Manipulation
	GPU Acceleration
	Caching
	Scrolling with Passive Listeners
	Scheduling the Browser’s Animation Frame

	Evaluation for Real World Usage
	Conclusion
	Bibliography
	Content of the DVD
	Demo applications

