

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

POLYMER ELEMENTS FOR A BUSINESS PROCESS
MANAGEMENT SYSTEM
POLYMER ELEMENTY PRO SYSTÉM ŘÍZENÍ PODNIKOVÝCH PROCESŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. SERHII PAHUTA
AUTOR PRÁCE

SUPERVISOR Ing. RADEK BURGET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract

Goal of this thesis is to introduce and analyze Web Components technology and JBoss BPM Suite.

Web Components technology gives ability to build lightweight HTML components with predefined

functionality. Implementation of this work shows how this approach is applied for creating set of web

components, which contains all required custom elements for jBPM user console.

Abstrakt

Cílem této diplomové práce je představit a analyzovat technologie Web Components a JBoss BPM

Suite. Technologie Web Components dává možnost vytvořit lehkou HTML komponentu s

předefinovanou funkčnosti. Vyslédná implementace ukazuje jak tento přístup se používá pro tvorbu

sady web komponent, která obsahuje všechny potřebné elementy pro uživatelské konzoli jBPM.

Keywords

JavaScript, web, Web Components, Polymer, JBoss, BPM, BPMN, reusable HTML elements,

Shadow DOM, JavaScript framework, business processes

Klíčová slova

JavaScript, web, Web Components, Polymer, JBoss, BPM, BPMN, znovu použitelné HTML

elementy, Shadow DOM, JavaScript knihovna, podnikové procesy

Reference

PAHUTA, Serhii. Polymer elements for a Business Process Management System. Brno, 2017.

Master’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor

Radek Burget.

Polymer Elements for a Business Process Management

System

Declaration
I hereby declare that I have worked on this master’s thesis on my own under the supervision of Ing.

Radek Burget, Ph.D. All the relevant information sources, which I used for this project, are

mentioned in Literature section.

……………………

Serhii Pahuta

2017

Acknowledgements
I would like to thank my supervisor Ing. Radek Burget for his continued support, patience and

meaningful remarks and comments. Also I want to thank Ivo Bek, my technical consultant and

colleague, for his help in understanding of technologies and architectures used in this thesis.

© Serhii Pahuta, 2017.

This thesis was created as a school work at the Brno University of Technology, Faculty

of Information Technology. The thesis is protected by copyright law and its use without

author’s explicit consent is illegal, except for cases defined by law.

1

Contents
1 Introduction 3

2 Web Components 4

2.1 History of Web Components ... 4

2.2 Main architecture of Web Components ... 5

2.2.1 Shadow DOM ... 5

2.2.2 Custom Elements .. 8

2.2.3 HTML Templates ... 10

2.2.4 HTML Imports.. 11

2.3 Polymer framework ... 12

3 BPMN standard and jBPM architecture 15

3.1 Standard BPMN 2.0 ... 15

3.2 JBoss BPM Suite ... 18

3.2.1 Execution Node .. 19

3.2.2 Reporting tools / Dashboards .. 19

3.2.3 Human Task Service ... 19

3.3 jBPM Business Central user console ... 20

3.4 REST interaction with KIE server ... 20

4 Proposed architecture of the library 23

4.1 User forms for processes ... 24

4.2 User forms for tasks ... 24

4.3 BPM’s items listing ... 25

5 Implementation 27

5.1 Communication with KIE execution server .. 27

5.2 Forms ... 29

5.2.1 Fetching form’s fields ... 30

5.2.2 Submitting form .. 32

5.3 Processes listing ... 34

5.4 Human tasks listing ... 36

5.5 Demo application for testing components ... 37

6 Conclusion 39

6.1 Future steps .. 39

7 Bibliography 41

8 Appendices 43

2

List of Appendices .. 44

A CD Content 45

3

Chapter 1

Introduction

Nowadays evolution of web technologies leads to fast growth of functionality in modern web

applications. They acquire new powerful features and UI experience without loss of performance.

That’s why users are starting to prefer on-line web services more than desktop applications.

After releasing new JavaScript standards (EcmaScript 6/7) and application platform NodeJS,

JavaScript obtained new meaning as a programming language. Creating full-stack web project

requires great flexibility and modularity of language. This is a place where JavaScript developer’s

community meets the problem.

At this point Web Components try to solve existing issue. This technology brings not only

possibility of creating, importing and using reusable custom HTML elements. Also it brings a

standard which should be supported by internet browsers.

JBoss BPM (Business Process Management) is an open source project which provides the

platform for building automated business processes. This suit contains user console – jBPM Business

Central – web application with big amount of instruments for creating, editing and controlling all

processes. But for non-technical users such multifunctional application could be very complex and

unclear. That’s why companies creates own more simple user consoles. Small web application

building is not so difficult, but it can take a lot of time.

Objective of this thesis is implementation of Web Components elements with predefined logic

and REST query. It should help to create user’s web console for jBPM suite quickly and easily.

Web Components as a technology described and analyzed in chapter 2.1, 2.2. Web Components

based framework, which is used for this thesis, is described in chapter 2.3.

Whole JBoss BPM system and BPMN standard are introduced in chapter 3. Based on analysis

from two previous chapters, architecture of KIE components library was proposed and presented in

chapter 4.

In chapter 5 can be found description of implementation and specific for each KIE element

technical details. How created components can be integrated into web application shows chapter 5.5.

4

Chapter 2

Web Components

In scope of this thesis we will implement JavaScript framework which consist of web components

collection for jBPM user console. But first we need to get familiar with new technology “Web

Components” and look how it works. In chapter 2.1 we briefly look through history of Web

Components. Architecture and technology functionality will be described in chapter 2.2 .Web

component framework Polymer, which will be used for implementing our library, is described in

chapter 2.3.

2.1 History of Web Components

The very first attempt to create a semblance of encapsulating components was made by Microsoft. In

1998 they proposed the technology named “HTML Components” (HTC for short) to the W3C

organization [13]. But this attempt failed and Microsoft eventually shut down the project.

Also Mozilla has tried to do own contribution to the web components [14]. They released

Xenogamous Binding Language 1.0 in 2001. This technology has gained some popularity, but it has

not been widely known. In 2007 Mozilla announces XBL 2.0, but project was failed later.

One of the first successful attempts to make reusable web elements was made by Dojo Toolkit.

It’s a JavaScript framework designed for complex client-side web development. Among all of Dojo’s

features (e.g. cross-browser APIs, build tools for optimizing JavaScript and CSS, unit testing, etc.),

there’s user-interface widgets and layouts. Adding a widget to page is very simple and requires only

few lines of code. It’s a quite good example of reusable web elements. This framework showed how

can be useful and comfortable creating own UI modules [7].

Alex Russel, co-founder of the Dojo Toolkit, saw the potential in these reusable components.

Later, together with colleges from Google, he has started work on Web Components. In 2011, Alex

had a talk at the conference Fronteers. He presented the lecture “Web Components and Model Driven

Views” [15]. In 2012 there was a first draft of Web Components specification. From this moment

Google began to make great investment into this technology and started development of library based

on Web Components. Thus in 2013 Google has announced open-source JavaScript framework -

Polymer. The library is intended to create own HTML elements or even a complex web structures or

modules. More detailed information about Polymer see chapter 2.3.

5

2.2 Main architecture of Web Components

The main advantage of this technology is that it allows you to create self-defined encapsulated

elements with the appropriate style and logic of behavior. They can be distributed on the Internet for

use by others.

Simple Web Components structure diagram is shown in Figure Figure 2.1

Figure 2.1: Simple structure of Web Components and browser support

Actually Web Components is an umbrella name for a few technologies that allow creating and

including reusable components into web application. All of them are well documented and have

specifications drafts on W3C website [16].

Next we will analyze how each technology works.

2.2.1 Shadow DOM

Encapsulation is key property of web component development. Without it there’s no way to guarantee

that CSS rules meant for included component wouldn’t cause CSS conflicts. Also it is hard to predict

if external frameworks or code snippets doesn’t interference with the component’s DOM tree.

That is why the existence of Web Components isn’t possible without encapsulation of styles,

id, names and logic. Shadow DOM is perfectly fitted for solving this problem. There are some

standard elements (e. g. <input>, <textarea>, <video>, etc.) which use Shadow DOM for own

structure isolation and scoping [4].

“Core” of this technology is possibility to create a scoped DOM tree attached to the element

and separated from its actual children at the same time. This isolated subtree has a name – “shadow

tree”. The element it's a point where shadow tree was attached called “shadow host”. Anything added

to created shadow tree becomes local to the hosting element. Same rule is applied for <style> tag

and that’s a way how CSS scoping is solved.

Diagram of Shadow DOM scoping is shown in FigureFigure 2.2.

6

Figure 2.2: Example of Shadow DOM scoping

Besides CSS scoping there are other problems that can be solved by Shadow DOM technology:

 CSS queries simplification. Scoping of DOM elements allows developer use more generic

class names, id. In turn it gives a possibility to use simple CSS selectors and don’t be afraid

of naming conflicts;

 Composition. Creating components with declarative API design;

 Component’s DOM isolation. There’s no way to get access to component’s elements and

cause security violation.

Adding Shadow DOM is made by JavaScript command

element.attachShadow(shadowRootInit) where element is a host for shadow tree.

shadowRootInit is an object which contains additional parameters: mode - can be set to open or

close. Option open specifies open encapsulation mode. This means there will be access to shadow

DOM elements just after it was created. In this case attachShadow() function returns an object

containing shadow tree

Option close specifies close encapsulation mode. Behavior of function will be a quite

opposite. Access to shadow DOM elements will be closed and unavailable. Native HTML elements,

such as <video>, work in a similar way. When close option is used attachShadow() returns

null value.

Also in the Shadow DOM specification term “light tree” is used [9] (or “light DOM” in other

media resources). This term pointing to tree created by web component’s user and appended to

custom element. User’s structure is not a part of the shadow tree and it is child of a custom HTML

element [4]. An example of light tree is shown in the Figure Figure 2.3.

7

Figure 2.3: Example of light DOM

Also developer can define how to render user’s markup inside component. This is done using

the tag <slot>. He reserves areas in the component structure in which will be added user’s elements

or whole tree.

There is also exists a concept Flattened DOM tree. This tree is obtained as a result of the

browser distributing the user's light DOM into component’s shadow DOM and rendering the final

product.

For example there is a custom element <my-element> and user decides to add some

elements to it. Resulting code then looks like this:

<my-element>

 <!-- the image and label are my-elements's light DOM -->

 <label>Hello, dear customer!</label>

</my-element>

8

Shadow tree of component <my-element> will look like this:

#shadow-root

 <style>...</style>

 <slot name="icon"></slot>

 <label id="label-wrap">

 <slot>my element’s label</slot>

 </label>

After browser’s render we will get structure named Flattened DOM tree:

<my-elemnt>

 #shadow-root

 <style>...</style>

 <slot name="icon">

 </slot>

 <slot>

 <label>Hello, dear customer!</label>

 </slot>

</my-elemnt>

Nowadays Shadow DOM technology is supported only by 3 popular browsers: Google

Chrome, Opera and Safari. For supporting in other browser polyfill library is used (e.g. open-source

framework “shadydom”)

2.2.2 Custom Elements

Today set of standard HTML tags consist of many necessary elements. Also HTML5 has brought a

lot of new useful ones, without which it is hard to imagine modern development of web applications.

But this set is not enough to create a big client-side application. To achieve main UI goals developers

create huge structures built of large number of native elements. It is very difficult to debug such

application.

If Shadow DOM solves the problem with isolation and encapsulation of this structure and its

logic, the Custom Elements solves problem with definition of own html element. It is much more

handy insert one tag into code than whole bulky tree. It brings a standards-based way to create

reusable components using only native web technologies.

9

Another advantage of Custom Elements is an ability to expand functionality of the native html

elements or elements of other users

Custom element creation is made by JavaScript command.

customElements.define(tagName, tagClass). A special point here that second

argument tagClass is a JavaScript class. First parameter tagName argument is a string. Whole

definition of new element should be done like this:

class MyElement extends HTMLElement {...}

window.customElements.define('my-element', MyElement);

It is important to notice that customElemnts.define should be executed in global scope.

That’s why window object used in example.

To reduce the number of code lines it is possible to pass second argument as an anonymous

class:

window.customElements.define('my-elemeny', class extends HTMLElement

{...});

After this developer can use his tag in html markup like any other native element: <my-

element></ my-element>. It is also possible to attach event listeners to it, define id, class,

properties, etc.

There are some rules and limitations on creating custom elements [5]:

 Name of custom tag must contain a dash symbol. HTML parser should be able to

distinguish custom elements from native ones;

 New element can be registered only once. It is not acceptable to register element with the

same tag name;

 There is no way to create self-closing element.

As mentioned before it is possible to expand other developer's or native html elements. This is

implemented with help of class inheritance:

class BetterElement extends MyElement {

 constructor() {

 super(); // this calls extended class constructor

 ...

 }

 myMethod() {

10

 //extend method functionality here

 //if parent class functionality is required

 //call super.myMethod()

 }

 mySecondMethod() {

 ...

 }

}

customElements.define('better-element', BetterElement);

Original element will stay the same without any changes. Expanding of functionality is made in

new class.

For now Custom Elements v1 is supported only by Google Chrome browser. For other

browsers polyfill library can be used [5].

2.2.3 HTML Templates

The main task of this technology is to make browser to ignore the contents of the template. This

allows to store structure of the component directly on the web page at the same time avoiding the

rendering. Thus the developer can control the moment when media resources should be loaded (e.g.

contents of tags , <video>, etc.) or scripts should be executed.

This ability is important for Web Components. Because when you import components into web

page, the contents of custom element will be "invisible" to the browser. This is good optimization,

because without templates performance of browser would go down with each additional component.

To create HTML template developer needs to use <template> tag. An example of usage is

shown below:

<template id="hello-template">

</template>

For displaying template as an element on the page, it is needed to copy its content into another

element. This is done in the following way:

var temp = document.querySelector('#hello-template');

11

temp.content.querySelector('img').src = 'icon.png';

var clone = document.importNode(temp.content, true);

document.body.appendChild(clone);

HTML Templates are supported by all modern popular browsers: Google Chrome, Mozzila

Firefox, Opera, Safari, Microsoft Edge [3].

2.2.4 HTML Imports

Import of web components is the last thing missing for increasing the flexibility and modularity in

web development. HTML Imports technology solves this problem. Among standard HTML tags

already exist those that can do an import of styles (<link rel = "stylesheet">), scripts

(<script src>), media information (, <audio>, <video>, etc.)

Import HTML is not something new. Before it there are several methods already exist:

 <iframe>. Heavy weight and very difficult to control;

 AJAX with responseType=”document”. Because of executing in JavaScript code this

method is implicit.

 Some community methods. For example content of HTML page is embedded into string

which is received by executing some script. Then string is parsed and all HTML structure is

appended to existing HTML element.

HTML Imports brings standardized way how to do it. Also it allows import HTML pages with

styles and scripts included. Need to mention that this type of import has text/html mimetype.

For Web Components this technology has meaningful purpose. Web developer can store his

entire component’s markup, styles, JavaScript logic in one .html file. Then component’s consumer

just imports it into own web page only with one line of code.

For importing <link rel=”import”> tag’s used. Example of usage:

<link rel=”import” href=”path/to/page.html”>

One more additional feature if HTML Imports that it allows to pass to href attribute URL to

another domain. But such import requires enabled CORS (Cross Origin Resource Sharing) on the side

from where import is happening. HTML tag in this case will be like this:

<link rel=”import” href=”http://other-domain.com/example.html”>

Similar to HTML Templates, content of HTML page is not rendered at just after importing.

Browser is only parsing it. But if HTML page for import contains scripts they will be executed. In

12

this case to avoid rendering block of main page <link rel=”import”> can be used with

async attribute.

All scripts and other included things in imported page are parsed only once [17]. It’s a good

feature for dependency management. In this way HTML Imports secures that all resources are loaded

and no conflicts caused by double parsing same include or import.

HTML Imports is supported only by Google Chrome. But for other browsers polyfill

framework can be used.

2.3 Polymer framework

At Google I/O 2013, Google presented a new web user interface (UI) framework called Polymer.

After a huge contribution to the development of Web Components specification, Google realized that

there is a need in the library which offers all the features of this technology. Because today Web

Components are not standardized yet, Polymer makes it possible to create and “touch” reusable

elements. This framework has a cross-browser ability because of using polyfill functions. The library

also has some additional features: data binding, predefined Google elements, binding properties and

attributes.

Polymer’s architecture has the following layers:

 Foundation layer. Provides basic technologies for use (Shadow DOM, HTML Imports, etc.);

 Core layer. Provides functions and technologies which are not in future Web Components

standard;

 UI elements layer. Provides a set of components and elements .built on Core layer.

Among all standard Web Components technologies in Foundation layer there are also:

 DOM Mutation Oberservers and Object.observe() which probably will appear in

EcmaScript 7 standard. They allow observing changes in DOM elements and JavaScript

objects.

 Model-Driven Views (MDV). It gives an ability to make data bindings in HTML.Does data-

binding directly in HTML (this technology not standardized).

 Web Animations. API unifying several of the web’s animation approaches.

Core and UI elements layers purpose is provide a huge number of fully functional UI widgets.

All of them are belong to some category:

 App elements - basic for web application elements. For example tool-bar menus or scroll

boxes;

 Iron elements - set of visual and non-visual utility elements. Includes elements for working

with layout, user input, selection, and scaffolding apps;

http://www.polymer-project.org/

13

 Paper elements - visual elements that implement Google's Material Design. Basic UI is

here: buttons, checkboxes, sliders, tabs, etc.;

 Google Web Components – elements with predefined logic for working with Google’s Web

Services and other Google APIs;

 Gold Elements - these elements are built for e-commerce purposes. For example input fields

for credit cards and CVV numbers;

 Neon elements - provides all necessary functionality for creating web animations and

special effects;

 Platinum elements - consists of elements for implementing push notification technology,

working with Bluetooth devices, subscribing and messaging services;

 Molecules - there are elements that wrap another necessary for web developing JavaScript

(third-party) libraries and frameworks.

Polymer is designed in way to support interoperability. It means that web component produced

by other framework, e.g. X-Tag by Mozilla, will work correctly in Polymer’s code [12].

New element can be registered by calling Polymer function. Registration is made in separate

HTML file, where all styles, DOM structure and logic should be stored. For example: if developer

wants to create new component <my-element> he needs to create my-elem.html file and put there

following code:

<link rel="import"

href="https://polygit2.appspot.com/components/polymer/polymer.html">

<script>

 Polymer({

 is: "my-element",

 ready: function() {

 this.textContent = "Hello, my dear customer!"

 }

 });

</script>

After defining Polymer component developer needs to import it to main HTML page:

<!DOCTYPE html>

 <head>

 <script

src="https://polygit2.appspot.com/components/webcomponentsjs/webcomp

onents-lite.js"></script>

 <link rel="import" href="my-element.html">

 </head>

 <body>

 <my-element></my-element>

14

 </body>

</html>

As we can see on first line used HTML import to load Polymer library. Framework itself is a

web component too. After that Polymer function is called. It takes object as a single argument. This

object contains set of parameters describing how component should be created. In example above

object’s property is defining name of custom tag and property ready defining a callback function

which will be executed when element is included to main HTML page [2].

There are some alternative web components frameworks like X-Tag, Bosonic, SkateJS. But for

this master’s thesis Polymer was chosen because of its high performance.

15

Chapter 3

BPMN standard and jBPM architecture

Since this master’s thesis about creating set of web components for KIE user console we need to

know bunch of BPM principles and internal structure of workflow engine.

What is BPMN standard and its some specifications are introduced in chapter 3.1. JBoss BPM

system/suit architecture and how it works is described in chapter 3.2. Short information about jBPM

Business Central user console is in chapter 3.3.Which REST API’s requests will be used by web

components is described in chapter 3.4.

3.1 Standard BPMN 2.0

BPMN (Business Process Model and Notation) is a standard which was developed by Object

Management Group in 2005.Later in 2011 BPMN v2 was released. Actually before second version

release it was named as Business Process Management Initiative [1]. But name was changed because

of new introduced features: notational and diagramming elements.

This standard describes a bunch of rules and elements required to create a business process. It

is designed in such way that any user would be able correctly create or read already existing business

process [6]. It means that people without technical education can use BPMN standard. At the same

time designed business procedure will be correctly implemented by developers. Such approach

guarantees one-sided understanding of technology by both parties (designing and implementing) and

does not require any special skills.

Created according to the standard business process can look like a notation or diagram of

actions. As a result, business procedure can be easily read by a person as well as by program that

executes the process.

For graphical representation certain set of figures and icons is used. Software that implements

BPMN must strictly use graphic elements specified in the standard.

Main target of this thesis is to create a library which allows developing a web application that

will be able to manage the existing business processes. So here will not be given all elements and

events that are included into standard BPMN. We will look through basic elements only.

All elements are divided into 5 main categories:

1. Flow Objects

 Events

 Activities

 Gateways

16

2. Data

 Data Objects

 Data Inputs

 Data Outputs

 Data Stores

3. Connecting Objects

 Sequence Flows

 Message Flows

 Associations

 Data Associations

4. Swimlanes

 Pools

 Lanes

5. Artifacts

 Group

 Text Annotation

Flow Objects are used for defining business process definition. Connecting objects are

describing how connect Flow Object with each other. Purpose of Swimlanes is grouping elements.

Artifacts are used to provide additional information about the Process. There are only two

standardized Artifacts, but modelers or modeling tools are free to add as many Artifacts as necessary

[10].

List of some basic elements is presented in Table Table 3.1

Table 3.1: Basic BPMN elements

Element name Graphical representation Description

Event “Event” is an action that can be happen

during executing of process. Events have a

triggers and results. There are three types

of Events: Start, Intermediate, End.

Activity An Activity is a generic term for work that

company performs in a Process. An

Activity can be atomic or compound.

Types of Activities: Sub-Process and Task

Gateway Gateway controls process flow. It can be

used for branching, forking or merging.

Sequence Flow Shows order of Activites in process

Message Flow Message Flow shows information flow

between two Participants(two separate

Pools)

17

Table 3.2 (cont.): Basic BPMN elements

Association An Association links information between

Artifacts and other graphical elements. An

arrowhead indicates a direction of flow

Pool

A Pool represents Participant. It also used

as a “swimlane” and a container for

partitioning a set of Activities from other

Pools.

Lane

Lane can be sub-partition of a Process or

Pool. Generally they need for organizing

and categorize Activities

Data Object Data Objects show what Activities has on

input and what they have on output.

Message A Message is used to determine the

contents of a communication between two

Participants

Group Group element is used for grouping

elements are belongs to same type or

category.

Text Annotation Text Annotation shows additional text

information about process or other

elements in this process

Each element has expanded graphical representation that corresponds to element’s function.

For example Gateway element for forking and merging has own icons (look at Figure Figure 3.1).

a) b)

Figure 3.1: a) Merging gateway; b)Forking gateway

Example of simple business process is shown on Figure Figure 3.2

18

Figure 3.2: Simple BPMN model

3.2 JBoss BPM Suite

Every BPM systems consist of software parts each of which controls business through the whole

BPM cycle. Main purpose of such system is making executables definitions from graphical

representation of process. It means that everything is happening on action diagram should be done

properly by BPM software. If a group of tasks can be concurrent, they turn them into parallel tasks. If

output from previous action should be saved into report, system will store this into file on a disk. If

some task requires a human activity, BPM software asks suitable person for it (by email or other

communication channels). All this actions is hard to control and that’s why BPM system usually has a

set of modules and layers. Each of them controls own part of business process.

JBoss BPM (jBPM) has the same structure and performs same control over processes. Internal

architecture of jBPM system is shown on Figure Figure 3.3

Each component in this chart stands for one particular function inside the BPMS architecture.

In this chapter we shortly analyze some of them and how they work.

Figure 3.3: BPMs internal structure

19

From jBPM version 6, jBPM and another parent project called Drools (jBPM implements

workflow engine and Drool implements rule engine) have got umbrella name KIE (Knowledge Is

Everything) [11]. So in next chapters KIE and jBPM acronyms will be used since they point to same

software.

3.2.1 Execution Node

In BPM system exists two terms related to business procedure: process definition and process

instance. Process definition is a scaffold of process, bunch of rules and task defined with BPMN

standard. Figure 3.2 from previous chapter in BPM scope is a process definition. Created in BPM

process by its definition is called process instance.

The execution node is responsible for receiving and parsing process definitions, executing it (or

create a process instances in other words), tracking each step of process and to be aware of results

from these steps. Parsing is performed by semantic module. It consists of a series of parsers to

understand BPMN definition and produce internal structure which will be executed by processes

engine.

In turn process engine creates process instances and makes all this tracking [11].

Persistence and Transactions used to provide strategy for content which processes need to be able to

execute them from different threads or servers.

3.2.2 Reporting tools / Dashboards

This module is designed for displaying information from given interval of time of executions in

particular environment. All this statistics are presented in a way that assists users can track

environment’s efficiency.

3.2.3 Human Task Service

Process definitions sometimes can contain task that need a human input. In such case process instance

should be stopped (if there is no other rules for this situation) and wait until user finish this task.

Human Task Service component receives such tasks and starts an interaction with right user. This

component guarantees that all tasks are delivered and updates its status.

Searching for proper user is done in following way:

 Identity component is called to get access to the company’s users;

 Store the internal state of tasks;

 Update user’s UIs to show information related to tasks (all forms and initial information

which allow to finish a task).

20

3.3 jBPM Business Central user console

For managing business processes JBoss BPM Suite provides user console – Business Central. This

web application has a lot of instruments for performing all existing operations over the process. One

of those instruments is “Process Modeling”. It is a simple flow chart drawer (Figure Figure 3.4),

where user can draw order of action and tasks, define input and output of process, enable reporting

and logging, etc. All of the BPMN elements are there. It makes defining of the process very easy and

fast.

Problem can appear when non-technical business user get access to this user console. For using

such powerful tool special skills and knowledge is required. A lot of companies who uses jBPM

create own web apps with simple UI and logic for their employees. This master’s thesis is about

simplification of development such applications. Business Central is a great and powerful instrument,

but it also can be unclear and difficult to some of business users.

Figure 3.4: Process modeling in Business Central user console

3.4 REST interaction with KIE server

JBoss BPM has a few ways how to create process definitions and drives its instances. One of them is

jBPM Business Central mentioned in previous part. Another method is an KIE API. Developer can

get access to process directly from Java code with help of API’s commands. But for this project

REST API was chosen. It defines a lot of HTTP queries for all required operations over the business

process: creation of process definitions, executing them, managing process instances, task controlling,

etc. For purposes of our framework not all of them will be used.

For each HTTP request base URL (KIE endpoint) defined as

21

http://localhost:8080/kie-server/services/rest/

Here localhost:8080 is used only as example. In real life there should be name of domain.

In a list below some of HTTP request (only tail URLs used) to KIE server are introduced and

explained:

Process Instances:

Service: server/containers/{id}/processes

Endpoints:

 /instances (DELETE) - deletes process instances in container with given {id};

 /instances/{pInstanceId} (DELETE, GET) – gets information about process

instance with given {pInstanceId} or deletes it;

 /instances/{pInstanceId}/variable/{varName} (GET, PUT) – gets value of

given {varName} variable or write a new value;

 /instances/{pInstanceId}/variables (GET, POST) – gets information about

all variables of given process instance;

Process Definitions:

Service: server/containers/{id}/processes/definitions

Endpoints:

 /{pId} (GET) – gets information about given {pId} process definition;

 /{pId}/subprocesses (GET) – gets list of all subprocesses of a given {pId}

process definition;

 /{pId}/tasks/users (GET) – gets list of users who can be responsible for tasks of

this process definition;

 /{pId}/tasks/users/{taskName}/inputs (GET) – gets information about what

data can be as input for particular task;

 /{pId}/tasks/users/{taskName}/outputs (GET) – gest information about what

data can be as output for particular task;

 /{pId}/variables (GET) – gets information about all variables of process definition;

Tasks:

Service: server/containers/{id}/tasks

Endpoints:

 /{tInstanceId} (GET, POST) – gets or changes task by {tInstanceId};
 /attachments/{attachmentId} (DELETE, GET) – deletes or get attachment of

particular task;

 /attachments/{attachmentId}/content (GET) – gets content of a given

attachment in a task;

 /name (PUT) – changes name of task;

22

 /states/ (PUT) – change status of task. Can be completed, activated, failed, resumed,

etc.

23

Chapter 4

Proposed architecture of the library

Due to this thesis we should implement library, which consists of web components with predefined

RESTful API for communication with KIE system. Because of reasons discussed in previous chapter,

library will use only small part of jBPM’s REST API. Also we already defined some of HTTP

requests that will be required.

Architecture of library is separated in parts. Each part defines scope of functionality it uses. It’s

a main idea of this library and also it fits into Polymer ideology very well. Abstract structure of

library is shown on Figure Figure 4.1.

In chapter 4.1 we will look through items and resources needed for managing process

instances, and try to decide what UI solutions we can apply for that. The same thing will happen in

chapter 4.2, but there we take a look at tasks. Mainly we focus on human tasks, because they required

input from user and at this point we need validation of user’s data. It will protect executing processes

againts human error.

Chapter 4.3 is about listing BPM items: process definitions, instances, tasks. Also we will

analyze how filtration on these items will be done and what Polymer tools can help with that.

Figure 4.1: Proposed abstract architecture

24

4.1 User forms for processes

Both process definitions and process instances sometimes require input data. In case of definitions it

means only specifying type of data. If we are talking about process instances it means actual

information. Also definitions and instances have properties and or settings. Business Central console

give a several ways how to monitor or change them. Our library should allow same ability to set up

properties by proper UI elements. Some Polymer components and UI elements required for building

this layer are described in Table Table 4.1.

Table 4.1: List of required UI elements (process form)

Element name Usage purpose Description

iron-ajax Calling jBPM endpoints Non-UI element. Contains all

functions for making ajax call

and response parsing

iron-form Group of input elements which

should be validated

Validate and submit any custom

elements as well as any native

HTML elements.

paper-dialog Warn users that process can’t be

started or aborted.

Dialog window with option to

choose animation of appearing

and disappearing

paper-listbox Listing of human tasks of

current process.

Listing of users responsible for

current process task

Listbox with a different

highlightings on selected and

unselected items

paper-checkbox Swithing on and off process

attributes or properties (e.g.

logging)

Same as <input

type=”checkbox”>, but

with ability of styling

paper-button Starting process, saving

configuration, etc.

Same as <button>, but with

styling

paper-spinner Represents the waiting for

precess starting or aborting

Shows a progress of work as

spinning ring

4.2 User forms for tasks

Tasks will take the most of attention in library implementation. And there is a reason why: task is a

highly demanding on incoming data. It’s a place where user should do something to complete task. It

means that UI solutions for this type of BPMN elements should be well ergonomic. And at the same

time Polymer components need to accept only validate data. Without input data control executing

25

process can be aborted in middle of its runtime. Some of main UI elements and Polymer components

needed for these purposes are listed in Table Table 4.2.

Table 4.2: List of required UI elements (task form)

Element name Usage purpose Description

iron-textarea User’s reports or annotations

for a task.

Text field which grows with

amount of content

iron-form Group of input elements which

should be validated

Validate and submit any custom

elements as well as any native

HTML elements.

iron-input Custom validation can be used

for specific input

Provides a data-binding and

custom validation

paper-dialog User notification about bad

input or wrong actions

Dialog window with option to

choose animation of appearing

and disappearing

paper-checkbox User’s input Same as <input

type=”checkbox”>, but

with ability of styling

iron-localstorage Uploading/downloading

reports, certificates or other

required for task documents

Element implements access to

Web Storage API

paper-radio-button Checking group of task

properties

Styled radio button

paper-slider User’s input Allows select a value from a

range of values by moving the

slider thumb. Intensity level can

be changed for better UI

experience

4.3 BPM’s items listing

One of most important tools in BPM user’s console is a list. It allows user to find particular element

or sort them by defined property. This tool also can be very handy for monitoring some category of

processes. Or user can list all tasks that belong to him.

26

This instrument seems simple on a paper, but there a lot of complex logic behind the scenes.

And this is a place where Polymer components will be very useful. Some of UI and Polymer elements

that will be used for library implementation are introduced in Table Table 4.3.

Table 4.3: List of required UI elements (BPM’s elements listing)

Element name Usage purpose Description

iron-collapse Wrapper box for detailed info

about process or task. Can be

opened directly in a list

Block of content that can be

opened or collapsed

table Global container for listed items Native HTML table

iron-input Search and filtration purposes Provides a data-binding and

custom validation

paper-icon-button Can be used for “search button”

or other button in a search

toolbar

Button with an image in a

center and special effect when

button is pressed

paper-menu General list for BPM items Very similar to paper-listbox,

but has more styling methods.

paper-toolbar Searching or/and filtration

toolbar

Horizontal bar containing items

that can be used for label,

navigation, search and actions.

paper-progress Progress of searching or

filtration of big amount of items

Stylized progress bar

27

Chapter 5

Implementation

This chapter contains a description and some technical details of the implementation, which was

designed according to previously proposed architecture.

The main task of this thesis is development of such Polymer elements, which can be used

separately from each other, or in combination. This allows developer to use web components in more

various ways in own web solution.

For example, KIE elements consumer can use the UI components <kie-tasks-list> and

<kie-processes-list> separately to display a list of tasks and processes. But also he can use

them together on same page, forcing them to synchronize with each other (e.g. the process started - a

new task appeared).

Chapter 5.1 will focus on the implementation features of the element for communicating with

the KIE server. How elements for process and task forms are constructed is described in chapter 5.2.

The technical details of two largest listing components are given in chapters 5.3 and 5.4.

5.1 Communication with KIE execution server

Various KIE web components require different data for their work. This means that each element

should call an endpoint corresponding to its function or needs. To avoid overloading with code for

composing HTTP requests, the UI component named <kie-server-execute> was developed.

The core of this component is Polymer element <iron-ajax> [18]. It affords an abstract level

above the standard browser API function - XMLHttpRequest. In the tag attributes, developer can

specify URL, HTTP method (GET, PUT, POST or DELETE), content of body request, HTTP headers,

etc.

Implementation of <kie-server-execute> uses <iron-ajax> with these attributes:

<iron-ajax

 verbose

 id="ajax"

 url="[[url]]"

 method="[[method]]"

 body="[[body]]"

 content-type="[[contentType]]"

 params="[[params]]"

 with-credentials="true"

 on-response="_handleResponse"

 on-error="_handleError">

</iron-ajax>

28

Expressions like [[url]], [[method]] or [[body]] are called “dom-binding”. This

technology is provided and maintained by the Polymer framework [19]. Variables within these

expressions are properties of host element (i.e. <kie-server-execute>). Full list of implemented

element’s properties and methods can be found in Table Table 5.1.

All the properties specified in the tag attributes get their values in element’s method -

execute(). The code of composing request headers is given below:

_makeHeaders() {

 var obj = {};

 obj.Accept = this.acceptType;

 obj.Authorization = "Basic " + btoa(this.username +

":"+this.password);

 obj["X-Requested-With"] = "XMLHttpRequest";

 this.$.ajax.headers = obj;

 if (this.acceptType.indexOf("json") > -1) {

 this.$.ajax.handleAs = "json";

 } else if (this.acceptType.indexOf("xml") > -1) {

 this.$.ajax.handleAs = "text";

 }

}

The request is sent by calling function this.$.ajax.generateRequest(), where ajax is

id of <iron-ajax> element in the HTML markup.

As a result, the user of <kie-server-execute> component does not have to worry about

writing code to compose the headers or the body of the request. He only needs to specify the

endpoint, request method, user credentials and the server address, if it differs from the default one.

The code of using <kie-server-execute> is given below:

<kie-server-execute

 id="getProcess"

 op="queries/processes/definitions"

 username="[[user.password]]"

 password="[[user.userId]]"

 server-url="http://localhost:8080/kie-execution-

server/services/rest/server/"

 on-kieresponse="_setUpData">

</kie-server-execute>

Polymer provides its own way of attaching event handlers to elements. In code fragment above

it is done by defining tag’s attribute on-response. The value of this attribute is the callback

function that will be triggered when the "response" event occurs [20]. Also it automatically binds

tag’s attributes to corresponding element properties. For this property and attribute should have same

names. If property has two words in name, it should be defined in “camelCase” style and

29

corresponding attribute in “dash-case” style. In code fragment above value in server-url attribute

will be stored to serverUrl property.

Table 5.1: List of <kie-server-execute> methods and properties

Name of property/method Type Description

serverUrl String Used for specifying URL of KIE server’s enpoints

service. Has a default value set to localhost:8080

url String Stores full URL to exact enpoint. Value is computed

of serverUrl and op.

op String Keeps URL of endpoint. Can be specified by

component’s consumer

method String Keeps name of method of request. Can be specified

by component’s consumer. By default has a value is

“GET”

body String This property is used for storing body of request.

contentType String Specifies type of content of request. Value is

consumed by <iron-ajax>

params Object Optional property. If there are some extra properties

for HTTP request they can be specified in this

property.

username String Need to be specified for making authentication

password String Together with username is used for making

authorization request header

acceptType String Defines accepted types of response form KIE server

error Object Stores an object with details about error if it occurs.

response Object Property keeps an object of HTTP response from

KIE server. This property used by <iron-ajax>

and never by component’s consumer

execute() Function Method starts a headers build and when they are

ready makes HTTP request.

5.2 Forms

Process definitions and human tasks can have their own forms. Form is a set of UI fields in which

user can write the data required to start a business process or complete a task. The problem is that

forms metadata, received from KIE server, is different for processes and tasks. That’s why three web

components were implemented for working with forms:

30

 <kie-form>: designed to combine the form fields into one UI element, to process input

user data, to submit the form and send data provided by user.

 <kie-form-start-process>: non-UI element. The main goal of this component is to

gather information about the form’s fields and input data for these fields. Then, this

information is passed to the <kie-form> element to display the form on the page.

 <kie-form-complete-task>: non-UI element. Just like <kie-form>-start-process this

element collects information about form fields. The difference lies in using another

endpoints and extra processing of task-specific data. After all operations, information about

tasks is passed to <kie-form>.

The <kie-form-start-process> and <kie-form-complete-task> components collect

information with different structure and significance. But after processing, they pass unified data to

<kie-form>.

5.2.1 Fetching form’s fields

In the implementation of this thesis, two endpoints are used to get basic data about the form fields:

 for fetching fields for the process start form:

server/container/{container-id}/forms/processes/{process-id}

 for fetching fields for the complete task form:

server/container/{container-id}/forms/tasks/{task-id}

In both cases, the components use <kie-server-execute> element to call the endpoint. For

<kie-form-start-process> data, returned by KIE server, is enough to build a full-fledged form.

In case of <kie-form-complete-task>, among other stuff, you need to request information about

the input data and binding type of field. The complete task forms can contain fields with input

binding and/or output binding [21]. The input binding field is initialized with the values of process

variables to which field is binded. The second type of field writes the received input to the binded

process variables. Because of this reason, <kie-form-complete-task> uses two additional

endpoints:

 containers/{container-id}/tasks/{task-id}/contents/input

 containers/{container-id}/processes/definitions/{process-

id}/tasks/users/{task-name}/outputs

When all information is collected, the element creates an object with a suitable structure for the

<kie-form>. Once this object falls into the component’s property, the dom-binding system registers

it and <kie-form> builds a full-fledged form.

31

A list of properties and methods for the <kie-form-complete-task> and <kie-form-

start-process> components is provided in Table Table 5.2 and Table Table 5.3, respectively.

Table 5.2: List of <kie-form-complete-task> methods and properties

Name of property/method Type Description

serverUrl String Used for specifying URL of KIE server’s enpoints

service. Has a default value set to localhost:8080

container String Component’s consumer can specify ID of container

where required project with tasks is running.

taskId String This property is required. It is used for composing

HTTP request to the right endpoint.

user Object Contains user credentials (i.e. username and

password) required for authetication and

authorization to KIE server.

buttonName String The name of „Submit“ button can be specified in this

property. Default value is „Complete Task“

hidden Boolean If this property is set to true, the whole form will

not be displayed until its value changed to false. By

default hidden property is false.

noInit Boolean Setting this property to true means that component

starts to fetch all reqired data (i.e. fields, input/ouput

bindings) as soon as it is registered by Polymer.

fetchTaskForms() Function Method starts a process of fetching and gathering all

required data about task’s form and fields.

Table 5.3: List of <kie-form-start-process> methods and properties

Name of property/method Type Description

serverUrl String Used for specifying URL of KIE server’s enpoints

service. Has a default value set to localhost:8080

container String Component’s consumer can specify ID of container

where required processes are running.

processId String This property is required. It is used for composing

HTTP request to the right endpoint.

user Object Contains user credentials (i.e. username and

password) required for authetication and

authorization to KIE server.

32

Table 5.4 (cont.): List of <kie-form-start-process> methods and properties

Name of property/method Type Description

buttonName String The name of „Submit“ button can be specified in this

property. Default value is „Start Process“

hidden Boolean If this property is set to true, the whole form will

not be displayed until its value changed to false. By

default hidden property is false.

noInit Boolean Setting this property to true means that component

starts to fetch all reqired data (i.e. fields, names and

type of variables) as soon as it is registered by

Polymer.

fetchProcessForms() Function Method starts a process of fetching and gathering all

required data about process definition‘s form and

fields.

startProcess() Function If called starts the <kie-form>‘s method

submitForm().

5.2.2 Submitting form

After the <kie-form> has received all the necessary information, it begins to process it and build the

form. For construction several Polymer elements with Material design are used:

 <paper-input>. One-line input element. It can be used for various kinds of input:

numbers, text, date, etc. Has the ability to auto-validate. [22]

 <paper-textareat>. Multi-line input element. Has all the same properties as <paper-

input>.

 <paper-checkbox>

 <paper-button>. Used for submitting the form. By changing the attributes, it can switch

its design depending on the purpose. [23]

 <paper-toast>. “Pop-up” element for notifications.

Form is assembled in <template is=”dom-repeat”> and <template is=”dom-if”>

elements. The first tag repeats the pattern defined inside it. The second tag stamps its content into the

DOM only when the condition becomes truthy. In <kie-form> it looks like this:

<div id="form">

 <template is="dom-repeat" items="{{fields}}" as="field">

 <template is="dom-if" if="{{_isTextBox(field)}}">

33

 <paper-input auto-validate value="{{field.innerData}}"

type="{{_getType(field)}}" label="{{field.label}}"

placeholder="{{field.placeHolder}}" required="{{field.required}}"

readonly="{{_readOnlyCheck(field)}}"></paper-input>

 </template>

 <template is="dom-if" if="{{_isTextArea(field)}}">

 <paper-textarea auto-validate value="{{field.innerData}}"

label="{{field.label}}" placeholder="{{field.placeHolder}}"

required="{{field.required}}" readonly="{{_readOnlyCheck(field)}}"

rows="{{field.rows}}"></paper-input>

 </template>

 <template is="dom-if" if="{{_isCheckBox(field)}}">

 <paper-checkbox style="margin-top: 5px"

checked="{{field.innerData}}" required="{{field.required}}"

readonly="{{_readOnlyCheck(field)}}">{{field.label}}</paper-checkbox>

 </template>

 </template>

</div>

On the Figure Figure 5.1 you can find example of rendered form.

The form submitting for processes and for tasks has different consequences. For processes, this

is start of a new process instance. For human tasks submitting forms usually cause completing (i.e.

changing status) of this task. But component consumer can clarify what he wants to do by submitting

form. He can do it by passing full URL to <kie-form> url property. List of element properties and

methods you can find in Table Table 5.5.

Table 5.5: List of <kie-form> properties and methods

Name of property/method Type Description

url String Recievied its value from component’s consumer.

Keeps URL adress to endpoint for submitting form.

formData Object In this property form data shoud be defined. <kie-

form> uses it for building form and composing body

of HTTP request.

buttonName String Name of „Submit“ button. By default property is set

to „Submit“

hideButton Boolean If set to true hides button for submitting form.

method String Property value specifies which HTTP request method

will be used. Default value is POST.

notificationMessage String Private property which can be set by element’s

methods. Used as a message container for <paper-

dialog>

34

Figure 5.1: Example of rendered form

5.3 Processes listing

Processes listing was implemented in <kie-processes-list> component. This is a complex

custom element, which includes native HTML elements, Polymer Material design elements, Polymer

behavior elements, and some of the KIE elements.

As input parameters are serverUrl, user, and listOf properties. This component is made in

such way that a developer can choose what exactly he wants to listing. For this goal listOf property

was designed. It can have the string value “definitions” or “instances”. Also this component has an

ability to filter the content, depending on the user's search query. Full list of element’s properties and

methods is represented in Table Ошибка! Источник ссылки не найден..

<kie-processes-list> uses five different endpoints to fetch data:

 queries/processes/definitions

KIE server responds with array of objects, which contains basic information about process

definitions. Used for getting information about all processes and initializing list.

 queries/processes/instances

Same as endpoint above, but it is used for process instances.

 containers/{container-id}/processes/definitions/{process-id}

35

KIE server responds with details about specified by id process definition. This endpoint is

need for getting information about process variables.

 queries/processes/instances/{process-instance-

id}/variables/instances

Like as endpoint for process definition component receives list of process instance variables

and their values.

 containers/{container-id}/processes/instances/{process-instance-id}

This endpoint is called with HTTP method ‘DELETE’. It allows to abort process instance.

No specific respond from KIE server.

All of these endpoints are called by <kie-server-execute> element.

The list itself is implemented with help of Polymers <template is=”dom-repeat”> and

<template is=”dom-if”>. Depends on value of listOf property different DOM structures are

generated. It is done in such way because of distinction of process data, which should be shown to

user. For example of process definitions and process instances lists see Figure Figure 5.2:.

Figure 5.2: Example of lists

Custom element <kie-processes-list> also uses <kie-form-start-process>. Its

public method startProcess() is called when user clicks on list item. When all form data is ready

<paper-dialog> pops up and asks for user’s input. It’s a good example of combining web

components and making them work as on solid mechanism.

36

Table 5.6: List of <kie-processes-list> methods and properties

Name pf property/method Type Description

listOf String Component’s consumer can specify which type of

list he wants by storing value “definitions” or

“instances” into this property

searchStr String Used for implementations of dynamic user search.

Keeps current user input.

getProcessUrl String It’s a string with URL of endpoint which is used for

getting general data about processes

getProcessVarsUrl String Same as getProcessUrl keeps URL address to

endpoint for getting process variables

user Object Contains user credentials (i.e. username and

password) required for authetication and

authorization to KIE server.

processData Array Stores array of processes, which is sent as respond by

KIE server.

procVars Object Used by element for storing all variables of specified

process.

refreshList() Function This method can be called by component’s consumer

tp force list of tasks update itself. refreshList()

calls another private method –

this._getProcessesData() and clear the list

for correct re-rendering

serverUrl String Specified by component’s consumer KIE server url.

5.4 Human tasks listing

Tasks list can be created by component <kie-task-list>. Its logic exactly the same as <kie-

processes-list>, but has simpler HTML markup and layout. Also only one endpoint is used here:

queries/tasks/instances

By calling this service KIE server responds with array of tasks and details about them.

Element’s API pretty similar to <kie-processes-list> and differs only in names of

properties and methods. List of properties and method are represented in Table Table 5.7.

37

Table 5.7: List of <kie-tasks-list> methods and properties

Name of property/method Type Description

user Object Keeps user credentials (i.e.

username and password)

required for authetication and

authorization to KIE server.

taskData Array Stores array of tasks, which is

sent as respond by KIE server.

searchStr String Used for implementations of

dynamic user search. Keeps

current user input.

refreshList() Function This method can be called by

component’s consumer tp force

list of tasks update itself.

serverUrl String Specified by component’s

consumer KIE server url.

5.5 Demo application for testing components

To test all the implemented components, a small demo application was developed. Demo application

consists of six parts in each of which you can test all the KIE elements. The last part demonstrates

how the created elements can interact and update the data of each other. Synchronization between

lists occurs as follows: when the user submits the form, <kie-form> dispatches custom event named

“submitted”. It is bubbling from the <kie-form> up through all parents DOM nodes. To make a

“submitted” event pass through shadow DOM boundaries, the composed flag is set to true [26].

this.dispatchEvent(new CustomEvent('submitted', {

 detail: {"formName":this.formData.name},

 bubbles: true,

 composed:true

}));

Component’s consumer can attach event listener to <kie-form>`s parent, for example to

<kie-processes-list>. Inside listener function developer should call method of <kie-tasks-

list> element - refreshList(). It forces list of tasks to update itself. For example in demo

application it is done like this:

var kieServer = document.getElementById("getProcess");

38

var proc = document.getElementById('pInstances');

var def = document.getElementById('pDefinitions');

var tasks = document.getElementById('tTask');

def.addEventListener('submitted',function() {

proc.refreshList();

tasks.refreshList();

});

tasks.addEventListener('submitted',function() {

 proc.refreshList();

});

proc.addEventListener('aborted',function() {

 setTimeout(function() {tasks.refreshList();},500);

});

Where object def keeps <kie-processes-list> for definitions, proc – for instances,

tasks – stores <kie-tasks-list>. It is necessary to notice when user makes process instance

abort, <kie-processes-list> fires “aborted” event.

All parts of demo are steps for testing KIE elements. Each step asks user to do “monkey

testing” [24]. This method was chosen because of significance role of UI. User must make sure that

all forms are shown correctly and correspond to forms existing in jBPM business central web app.

Performed tests in different browser showed that KIE elements have best performance in

Google Chrome and Opera browsers. It can be explained by their native support for Web Components

technology [25]. In other browsers KIE elements work and displayed correctly only in case if web

components polyfill was used. Detailed information about browser support you can find in Table

.Table 5.8

Table 5.8: Support of Web Components by different browsers

Web Standart Chrome Opera IE 11+/Edg Firefox Safari 9+

Template Native Native Partial Native Native

HTML Imports Native Native Pollyfill required Pollyfill required Partial

Custom Elements Native Native Pollyfill required Pollyfill required Partial

Shadow DOM Native Native Pollyfill required Pollyfill required Partial

39

Chapter 6

Conclusion

In scope of this master’s thesis, the research of new technology Web Components was done. Despite

the relatively young age of all parts of this technology, it is gaining popularity. Such a conclusion can

be made from Table Table 5.8. Among all the libraries aimed on developing a web components,

Polymer was chosen for thesis implementation. This decision was made for the reason that this

framework is actively supported by developers and its community. It has “close to native” API and it

has powerful helper tools. To create the KIE elements, the latest version of Polymer 2.0.0 was used.

Its advantage is the using features of the new JavaScript standards: EcmaScript 5 and 6. On the other

hand, the use of new technologies have some drawbacks. Support for modern standards is not yet

quite popular, and not all the most well-known browsers implement Web Components standards.

Therefore, the KIE elements user will be forced to use the polyfill frameworks for correct work in the

browser without full support. This can slow down the loading of pages, the runtime of the web

component or lead to code conflicts.

However, the usage of these standards in the implementation of this thesis is justified for

several reasons. One of them is a low obsolescence of such components. Developer, who will use

these components, doesn’t need to keep his web application in applicable for KIE elements state.

Also, such web components are easier to maintain. For upgrading to new versions of used

technologies (i.e Polymer), a minimum of work should be performed.

As a result of work on this thesis, I developed a set of Web components with help of Polymer

framework. All of them was designed in way to have ability work with each other or separately. The

created KIE element API and UI, created in scope of this thesis, is enough for performing basic

operations over business processes.

Each of elements was published to GitHub. This allows easily to install elements with help of

front-end package manager such as Bower [26]. The last one also was used in implementation to keep

all dependencies for components in one place.

6.1 Future steps

The general mission of future development is adding new functionality from jBMP business central

web app. The problem here that endpoints, provided in documentation, don’t cover all functionality

requirement. There is no “easy” way to get metadata about all process instances. Used in this master’s

thesis endpoint gives information only about running instances and nothing about aborted or fulfilled

40

process instances. To all other there’s no way to tell KIE server to save form data without submitting

it. These problems should be investigated and API of each KIE element should be improved.

Also one of the future steps is an integration of Red Hat’s Patternfly project [27]. It’s a set of

UI solutions that are made in company’s style. The problem which can be met here is absence of

standard way to load script into Polymer element. It can be done by simple including script, but this

way doesn’t guarantee that no code conflicts occur while runtime.

After that created KIE elements will be published to web components database [28] and Bower

packages.

41

Bibliography

[1] Business Process Model and Notation. Wikipedia [online]. Wikipedia, 2016. Available at the

URL: https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation

[2] Quick tour of Polymer. Www.polymer-project.org [online]. Polymer. Available at the URL:

https://www.polymer-project.org/1.0/docs/devguide/quick-tour

[3] HTML's New Template Tag. Html5rocks.com [online]. Eric Bidelman, 2013. Available at the

URL: https://www.html5rocks.com/en/tutorials/webcomponents/template/

[4] Shadow DOM v1: Self-Contained Web Components. Developers.google.com [online]. Eric

Bidelman, 2016. Available at the URL:

https://developers.google.com/web/fundamentals/getting-started/primers/shadowdom

[5] Custom Elements v1: Reusable Web Components. Developers.google.com [online]. Eric

Bidelman, 2016. Available at the URL:

https://developers.google.com/web/fundamentals/getting-started/primers/customelements

[6] ALLWEYER, Thomas. BPMN 2.0: introduction to the standard for business process modeling.

11, 1. Aufl. Norderstedt: Books on Demand, 2010. ISBN 38-391-4985-1.

[7] Web Components: A discussion surrounding Web Components and their role in the future of

web development. Http://kaytcat.github.io/ [online]. Kaitlin Rathwell, 2015. Available at the

URL: http://kaytcat.github.io/web-components/

[8] Web Components - building blocks of the future web. Infinum.co [online]. infinum.co, 2014.

Available at the URL: https://infinum.co/the-capsized-eight/web-components-building-blocks-

of-the-future-web

[9] Shadow DOM: W3C Working Draft. Www.w3.org [online]. W3C, 2016. Available at the URL:

https://www.w3.org/TR/shadow-dom/

[10] Business Process Model and Notation (BPMN). 2. 2011.

[11] SALATINO, Mauricio, Esteban ALIVERTI a Mariano NICOLAS DE MAIO. JBPM 6

Developer Guide. 3. Birmingham B3 2PB, UK: Packt Publishing, 2014. ISBN 978-1-78328-661-

4.

[12] OVERSON, Jarrod a Jason STRIMPEL. Developing web components: [UI from Jquery to

Polymer]. ISBN 14-919-4902-3.

[13] HTML Components: Componentizing Web Applications. W3C [online]. Available at the URL:

https://www.w3.org/TR/NOTE-HTMLComponents

[14] XBL 2.0: W3C Working Draft 2 May 2012. W3C [online]. Available at the URL:

https://dev.w3.org/2006/xbl2/

https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://www.polymer-project.org/1.0/docs/devguide/quick-tour
https://www.html5rocks.com/en/tutorials/webcomponents/template/
https://developers.google.com/web/fundamentals/getting-started/primers/shadowdom
https://developers.google.com/web/fundamentals/getting-started/primers/customelements
http://kaytcat.github.io/web-components/
https://infinum.co/the-capsized-eight/web-components-building-blocks-of-the-future-web
https://infinum.co/the-capsized-eight/web-components-building-blocks-of-the-future-web
https://www.w3.org/TR/shadow-dom/
https://www.w3.org/TR/NOTE-HTMLComponents
https://dev.w3.org/2006/xbl2/

42

[15] Web Components and Model Driven Views by Alex Russell. Fronteers [online]. Available at the

URL: https://fronteers.nl/congres/2011/sessions/web-components-and-model-driven-views-alex-

russell

[16] Web Components Current Status. W3C [online]. Available at the URL:

https://www.w3.org/standards/techs/components#w3c_all

[17] HTML Imports: #include for the web. HTML5 ROCKS [online]. Available at the URL:

https://www.html5rocks.com/en/tutorials/webcomponents/imports/

[18] Iron-ajax: Easily make ajax requests. WebComponents [online]. Available at the URL:

https://www.webcomponents.org/element/PolymerElements/iron-ajax/elements/iron-ajax

[19] Data binding. Polymer Project [online]. Available at the URL: https://www.polymer-

project.org/2.0/docs/devguide/data-binding

[20] Handle and fire events: Polymer Project [online]. Available at the URL: https://www.polymer-

project.org/2.0/docs/devguide/events

[21] Field types. JBPM Documentation [online]. Available at the URL:

http://docs.jboss.org/jbpm/release/7.0.0.CR3/jbpm-

docs/html_single/#_sect_formmodeler_fieldtypes

[22] Paper-input: A Material Design text field. WebComponents [online]. Available at the URL:

https://www.webcomponents.org/element/PolymerElements/paper-input/elements/paper-input

[23] Paper-button: A button à la Material Design. WebComponents [online]. Available at the URL:

https://www.webcomponents.org/element/PolymerElements/paper-button/elements/paper-button

[24] Monkey testing. Wikipedia [online]. 2017. Available at the URL:

https://en.wikipedia.org/wiki/Monkey_testing

[25] Browser support overview: Platform features. Polymer Project [online]. Available at the URL:

https://www.polymer-project.org/2.0/docs/browsers

[26] About Bower. Bower [online]. Available at the URL: https://bower.io/docs/about/

[27] Pattern Library: Get Started. Patternfly [online]. Available at the URL:

https://www.patternfly.org/get-started/

[28] About webcomponents.org. WebComponents [online]. Available at the URL:

https://www.webcomponents.org/about

https://fronteers.nl/congres/2011/sessions/web-components-and-model-driven-views-alex-russell
https://fronteers.nl/congres/2011/sessions/web-components-and-model-driven-views-alex-russell
https://www.w3.org/standards/techs/components%23w3c_all
https://www.html5rocks.com/en/tutorials/webcomponents/imports/
https://www.webcomponents.org/element/PolymerElements/iron-ajax/elements/iron-ajax
https://www.polymer-project.org/2.0/docs/devguide/data-binding
https://www.polymer-project.org/2.0/docs/devguide/data-binding
https://www.polymer-project.org/2.0/docs/devguide/events
https://www.polymer-project.org/2.0/docs/devguide/events
http://docs.jboss.org/jbpm/release/7.0.0.CR3/jbpm-docs/html_single/%23_sect_formmodeler_fieldtypes
http://docs.jboss.org/jbpm/release/7.0.0.CR3/jbpm-docs/html_single/%23_sect_formmodeler_fieldtypes
https://www.webcomponents.org/element/PolymerElements/paper-input/elements/paper-input
https://www.webcomponents.org/element/PolymerElements/paper-button/elements/paper-button
https://en.wikipedia.org/wiki/Monkey_testing
https://www.polymer-project.org/2.0/docs/browsers
https://bower.io/docs/about/
https://www.patternfly.org/get-started/
https://www.webcomponents.org/about

43

Appendices

44

List of Appendices

A CD Content 44

45

Appendix A

CD Content

/demo Demo application for testing

/DP_pdf PDF file with this master’s thesis

/DP_word Microsoft Word file with text of this master’s thesis

/kie-elements Source codes of implemented KIE web components

/README Manual how to setup and run environment for demo application

	Introduction
	Chapter 2

	Web Components
	2.1 History of Web Components
	2.2 Main architecture of Web Components
	2.2.1 Shadow DOM
	2.2.2 Custom Elements
	2.2.3 HTML Templates
	2.2.4 HTML Imports

	2.3 Polymer framework
	Chapter 3

	BPMN standard and jBPM architecture
	3.1 Standard BPMN 2.0
	3.2 JBoss BPM Suite
	3.2.1 Execution Node
	3.2.2 Reporting tools / Dashboards
	3.2.3 Human Task Service

	3.3 jBPM Business Central user console
	3.4 REST interaction with KIE server
	Chapter 4

	Proposed architecture of the library
	4.1 User forms for processes
	4.2 User forms for tasks
	4.3 BPM’s items listing
	Chapter 5

	Implementation
	5.1 Communication with KIE execution server
	5.2 Forms
	5.2.1 Fetching form’s fields
	5.2.2 Submitting form

	5.3 Processes listing
	5.4 Human tasks listing
	5.5 Demo application for testing components
	Chapter 6

	Conclusion
	6.1 Future steps

	Bibliography
	Appendices
	List of Appendices

	CD Content

