BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

AUTOMATION OF SOFTWARE CORRECTION
RELEASE PROCESS FOR OPENSCAPE 4000

AUTOMATIZACE PROCESU VYDAVANi SOFTWAROVYCH OPRAV PRO OPENSCAPE 4000

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. SERGII KHUNOVYCH
AUTOR PRACE

SUPERVISOR Ing. RADEK KOCI, Ph.D.
VEDOUCI PRACE

BRNO 2017

Master's Thesis Specification/20233/2016/xkhuno00
Brno University of Technology - Faculty of Information Technology

Department of Intelligent Sys_tems Academic year 2016/2017
Master's Thesis Specification
For: Khunovych Sergii, Bc.

Branch of study: Intelligent Systems
Automation of Software Correction Release Process for
OpenScape 4000

Category: Software Engineering

Title:

Instructions for project work:

1. Analyse current process of software correction release (hotfixes) for the OpenScape
4000 process and discuss the suggested process changes.

2. Design a suitable tool, which will automate the process of hotfixes or at least support
the necessary manual steps effectively. The tool should fulfill in particular the
following requirements. Shorten the time to release the software correction, minimize
the necessity to enter data by hand, start hotfix production automatically, and
provide reports about hotfixes and planned corrections.

3. Implement the tool and integrate it with the existing project management tools
(JIRA, Confluence) and Continuous Integration tool (Jenkins).

4. Provide technical documentation for the tool and teach the staff how to use the tool
in form of a training.

5. Evaluate the benefits of the tool and its implementation.

Basic references:
e J. F. Smart, Jenkins: The Definitive Guide, O'Reilly Media, 2011
e Extend Jenkins, https://wiki.jenkins-ci.org/display/JENKINS/Extend+Jenkins, Oct.
2016
e Atlassian Developers, Jira aand Confluence. https://developer.atlassian.com
/index.html, dostupné fijen 2016.

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of
the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

Supervisor: Kodi Radek, Ing., Ph.D., DITS FIT BUT
Beginning of work: November 1, 2016
Date of delivery: May 24, 2017
VYSOKE UCEN(TECHNICKE V BRNE
Fakulta informadnich.technologf

Ustav Inteligeptiich systémd __—
612 66 Brno, BoZeticheva

_—

o

Petr Hanacek
Associate Professor and Head of Department

Abstract

This thesis describes the problematic of software correction release in OpenScape 4000 ecosystem,

analyze actual way of collecting correction information and producing new Hotfixes. Together with
that were discussed ways how to eliminate most manual steps and design new tool, with better UX,
for needed processes. The result is a new implemented web based application, which called Hotfix

Portal, with authentication and different views for different roles of users.

Abstrakt

Tato prace popisuje problematiku vydavani softwarovych oprav v ekosystému OpenScape 4000,
analyzuje aktualni zptsob sbéru korekénich informaci a vytvafeni novych Hotfixu. Spole¢né s tim
byly diskutovany zpisoby, jak eliminovat vétSinu manudlnich krokti a navrhnout novy néstroj s
lepsim UX pro potiebné procesy. Vysledkem je nové implementovana webova aplikace, ktera se
nazyva Hotfix Portal s autentizace a riznymi pohledy pro rizné role uZivateld.

Keywords

Release management, Product management, Hotfix, OpenScape4000, Jira, Meteor, MongoDB,
ReactJS, Automation, UX.

Kli¢ova slova

Rizeni vydani, Rizeni productt, Hotfix, OpenScape4000, Jira, Meteor, MongoDB, ReactJS,
Automatizace, UX.

Citation

Sergii Khunovych: Automation of Software Correction Release Process for OpenScape 4000, Brno,
Faculty of Information Technology, Brno University of Technology, 2017

Automation of Software Correction Release process for
OpenScape 4000

Declaration

| declare that | have worked out this diploma thesis independently under supervision of Ing. Radek
Ko¢i, Ph. D. Further information was provided by Ing. Peter Jelen from the company IXPERTA s.r.o.
| have listed all literature and publications from which information was received.

Prohlaseni

Prohlasuji, Ze jsem tuto diplomovou praci vypracoval samostatné pod vedenim pana Ing. Radka
Kociho, Ph. D. Dalsi informace mi poskytl pan Ing. Peter Jelen, ze spole¢nosti IXPERTA s.r.o.
Uvedl jsem vSechny literarni prameny a publikace, ze kterych jsem cerpal.

Sergii Khunovych
24.05.2017

Acknowledgment

I would like to thank the supervisor of this work Ing. Radek Ko¢i, Ph. D. and Ing. Peter Jelen for their
help in creating this work.

Podékovani

Chtél bych podékovat vedoucimu této prace panu Ing. Radkovi Ko¢imu, Ph. D. a panu Ing. Petrovi
Jelenovi za jich pomoc pfi vytvarfeni této prace.

© Sergii Khunovych, 2017

This work was created as a school work at the Brno University of Technology, Faculty of
Information Technology. This work is protected by copyright law and its usage without
author’s permission is illegal, except in cases defined by the law.

Contents

(070 01 1=] 01 £ PR OPTOUPOURRURRUPRUP 1
R 11 £ [o] o PSSR 2
00 R |V T 11 = Ui o] ST 2
1.2 Goal and StrUCLUIE OF WOTKoceiiiiieieceee st 3
2 Problems and @NalYSIS........ciiieiiiiieieisese s 4
2.1 DBVEIOPET VIBW ...ttt bbbt bbb 4
2.2 TSEEI VIBW...uiiuiitieiieit sttt ettt b b bbbttt bt bbbt ens 5
2.3 ProducCt COOMINALOT VIBW.......cueieuieiieiisiisiesiesie st ettt sttt be et sttt e e eneeneanas 7
3 BUSINESS ProCESS PrOPOSAL.......cviiiieiie ettt ettt st be s be e be s e e sbesbeeneesreeneenrens 12
TSN 1 W o 11T o 1o ISR 12
3.2 Updating CUrrent SOIULIONcviiiiiieiic e st re e e 13
3.3 New web based apPliCALIONccceviiiiiiic e e 13
O U 1= o N (<ol o1 o] [oT o TSROSO 15
O R |V [(o | T OO T PP UURTOPRTPN 15
4.2 IMONQODDBot 17
A3 REACHIS ..o bbbttt nbe e nre e e e 18
O AN o oL T U A TSP 20
5 IMPIEMENTATION ...ttt bbbt 22
5.1 Database JESIONooueiiiiriiiiiieeeie bbb 22
5.2 Application implementation ... s 24
53 UXand GUI impIemENtatioN............cooiiiiiiiiiieieieise s 27
5.4 CONFIQUIALIONoiuiitiitiite ettt bbbt bbb b e 31
T o 2 Tod 111 o] o ISP RRRSSN 34
8.1 INEBXE SEEPS. .. ettt ettt sttt b e bbb bR bRt nr b n e nr e ne 34
RETEIBNCES ...ttt ettt st s et s e bt s e et e e et e s e Rt e b e e b e be s Rt e et et neereans 36
[E 0 N o= To (o= SRS 37
E N 0] 01 00D TSR PR 38

1 Introduction

OpenScape 4000 (OS4K) is hybrid TDM/IP-PBX platform for enterprise voice communication. As for
all enterprise systems it needs get all parts sustainable for long period of time and fixable in short period
of time. Because of this the release process are divided into Major, Minor and Fix releases and for the
last one Hotfix releases. Also are two types of product with synchronized versioning and releasing —
OpenScape 4000 Assistant and OpenScape 4000 Manager. Assistant — is dedicated software for service
management one OS4K system. Unlike an Assistant, the Manager — is a master for slave Assistants and
it is possible to manage all system from one place. In OpenScape 4000 ecosystem always exists few
sustainable releases for which ones we need to produce Hotfixes. Right now exist 2 sustainable versions
(V7 R2.24.0 and V8 R0.14.0).

V8 R1.13.3

— L

Major number Minor number Fix number Hotfix number

Image Nel — Release numbers in OpenScape 4000

1.1 Motivation

Given the fact that Hotfixes released only for sustainable Fix releases, each of them are the set of rpms
or how they called components. Producing and releasing of Hotfixes for enterprise system — is hard and
volume teamwork of developers, testers and product coordinators, because of needs to collect all fixed
issues, producing only changed components of the system and testing of produced Hotfix. In
OpenScape 4000, Hotfix — is tarball of accumulated changed components starting from Hotfix 1. So,
for example, Hotfix 3 will contain all changed components since Hotfix 1 for current Fix release.

Common Hotfix releasing workflow shown on image Ne2: “Common Hotfix releasing workflow”.

®
! ’

Submit correction Build set of fixed
Bug reported |— Getlistof bugs p—— information about —— components
fix (Produce Hotfix)

v

. i Submit new
Agg:f;:pllﬁg::gon S Test submitted correction .
Fix release issues information after
refix bug

Release Hotfix)@

Image Ne2 — Common Hotfix releasing workflow

Also the current solution of Hotfix production and release called “Hotfix portal” requires too
many manual steps from users, has security issues, because of old operating system, does not have

integration with project management tools, as Jira, and has bad UX.

1.2 Goal and structure of work

This thesis contains two main goals. The first one is to analyze current workflow of Hotfix production
and release, highlight weak steps and bad UX. Based on it design new software tool, which will
automate or support manual steps effectively. The second goal is to implement designed tool with better
UX and integrate it with existing management tool, as Jira.

To achieve the set goals work was organized as follow. The first part describes current Hotfix
workflow separated by user views — developer view, tester view and product coordinator view.
Analyzed and highlighted weak parts of currents solution in this section. The second part contains
proposals of business process with possibilities to improve current release management. The third part
is devoted to description of used and studied technologies, such as Meteor, MongoDB and ReactJS.
The fourth part contains detailed design and implementation of new application for release management
process.

The final part of thesis evaluates the benefits of the tool and describes further improvements and

next steps after integrating it into OpenScape 4000 production and release ecosystem.

2 Problems and analysis

As was said in introduction current Hotfix releasing tool called Hotfix portal has many different
problems. Such as many manual steps from all participants of releasing process, bad user experience
design, missing integration with project management tool Jira and has security issues. A number of
presentations of work with the current tool was conducted to identify and analyze the main problems

and limitations. After it, was decided to divide all the work into three types of activity with this tool —
from the point of view of developer, tester and product coordinator.

2.1 Developer view

Every developer, after the issue was fixed, have to submit correction information (CIT). For this

proposes is used Hotfix portal page showed on image Ne3: “Submitting correction information in
current Hotfix portal”.

Com ESY-Intranet Angebote: ¥ Hot Links v

Oreanization | Products | Processes
| Home

Submitting a ticket here iz nor a HF request! w Process d Feedback: Stefan SAVIT

* Mandatory fields
Your E-mail address: (x.3@unify.com) Phone:
+ Store profile
(sets a coolie)
L To be produced with releaze (APS line, branch):
The Production Home Page shows the mapping of build munbers (KVrelease), APS Lines, and branches.
v ") the MEmager

2. Package to be produced:
APS Imes: "L ("local”) denotas the ADP/ Assistant, "N" ("network”) the

Flea:

slect. ¥ | F

Use the Cirl key to select multiple versions
Please select

3. Problem ticket iz relevant for a hotfix on (platform):
Please select..
ADP

Al Can NOT Be Deactivated

4. Deactivation possibility:

1ges are not deactivarable

* Use the Ctrl key to select nltiple platforms,
* Please select only ADP as platform for V6 R1.13 (30-APL.10, V63T

jon gf older HotFix

5. Short problem description (from the user's point of view; usmally zame as "MR Summary”):

6. MR number(s): 7. (highest) Priority of the MR(3):

fep:GRMSHIMSE .
£ more than cne, blark separated cnly! o

8. TR and CR. number(s): (If available; check MRTS "XRef MREs" screen!)

If more than cne, blank separated anly

9, Short comment: (optional)

~

There is o need to check these fextboxes if you have already sntered yow package's group.

YVour CTT will be sent to your packags's smail group autornatically

I£ vou wat to update the packaee erowp please click here.,

10. €C to TPL and GVS: (optional)
Faobert Westermeter (PL V) Giilen Toker (TPL ST)
Petr Jelen (TPL Platform, XIE) Alina Zamfiresen (GVS)
Zahit Ozean (TPL CM Svstaining) Luca catalin (GVS)
Stefan SAV (TPL ProductiondStartuy)

Ciprian Veres (TPL AMO)
Additional CCs: blask separated (e.2. xyfm yz@wifycom)

Clear Form [| Submit

Image Ne3 — Submitting correction information in current Hotfix portal

As seen from image Ne3: “Submitting correction information in current Hotfix portal”, each developer
has to perform many manual steps and together with that requires knowledge of archaic names of
products and versions. This is the only page accessible for them as well and this leads to impossible
view all submitted correction information and current statuses of Hotfixes.
To summarize, the main problems of developer workflow in Hotfix Portal are:
e Every submitting correction information requires many common manual inputs, such as email
address, telephone number and additional email list for notifications.

e Requires knowing of archaic platform and version names.

e Does not provide list of yours submitted correction information.

e Does not provide list of Hotfixes.

e Has old-fashioned and unclear UX design.

2.2 Tester view

In Hotfix produce and release management testers has a task to test all issues included into current
Hotfix. The issue must have corresponding correction information ticket (CIT) and this CIT must be
included to current Hotfix. When product coordinator take the necessary steps, such as building and
starting up Hotfix on live system, all participants will get an notification email and hyperlink to the
webpage where everyone, not only testers, can write test result in format PASS or FAIL and short
comment.

For each Hotfix has new link with testing table and from image Ned: “Webpage for writing
Hotfix test results” seen, the header of page contents release number, in example HF 10 for Assistant
Fix release V7 R2.20. Then goes commit changes button, description how to write test results and the
table with issues to test itself. First column contains archaic and hard-remembered CIT number of issue
to test, second — short description. After that goes issue number in obsolete issue tracker system. The

column called “Produce” contains very important component name, where fix was provided.

Commit changes

Release: V7 R02.20 HF:

10 (Delta) Platform: Assistant

Ifyou write PASS or N (literally) in the test result field, it will be colored accordingly.

FLID Summary

MREnr|PrixOriginator| TRnr |Prio|Customer|| Produce

Tester:PASS|FAIL(Reason)

NA13201166-
[UAS002544 7L MT datly
transfer hangs

[[57326)2

|ASmpeid

Sesion max
[UASD025466(count = 0
lpossible

[[57300/3 |AShttp

[UASD025480(lof SLALT
lboards

TSDM- Suppert

57513

=]

|AStsdm

INA13300218-

[7AS002540] [F1EF Beer can
ot access

[Platform

[I57355

=]

NA15300218 |ASsecm

JA15203475-
Call to

xternal

TASD025505
[LASD025503 Template

report

[[57321)3 NALS293475 |ASpim

lpenerate empty

|AScm: Update
[UAS0025516/jof online help
for Assistant.

575623 |AScm

[HFO VT R2
20_Tomcat's
[UASD02552] imemory 15
already
corrpted

[[57568

[

AShttp

Scrollbar
vertical on

[UASDO25527
eded

157576/ AS1ap?

AP2 page not

COL Java
xception

|Azzistant

[VTR2.20HF9

[UAS0025535

[[57495)3 |ASsyvsm

37313-
JA13279343

[UASDO25538

[[57313)3 NALS270343 |AScomedit

there is an
[UAS002554] unexpected
long delay of
approx 6 sec

57610

=]

NA15319767 |ASxie

click here to expand

If you need a list of the MRs only:

Image Ned — \Webpage for writing Hotfix test results

If summarize, as in developer view, the main problems of tester workflow are:

e Test Hotfix pages are available for everyone via link in notification mail.

o All test Hotfix pages are separated from each other.

e UX design for submitting result.

e Lack of information about issues in test table.

e Does not provide information about tester of CIT.

o Does not provide list of Hotfixes.

o Provide possibility to write test result for anyone.

2.3 Product coordinator view

The main role and work in all process of releasing Hotfixes have product coordinator. The set of his
responsibilities are from defining new product fix versions to build needed components via special
script on build server.

During analyzing product coordinator workflow were discovered lack of automation in his work,
plenty operations and steps were handled manual. Together with that were found many archaic and
historical parameters in producing steps. As well as in previous views webpages had UX design
problems.

First of all, product coordinator has to define new sustainable product fix version. For this case
in current implementation does not provided any graphical interface. All changes handled manually
directly into database tables, which used by current tool. When changes added developers can submit
correction information for fixed issues and product coordinator can define new Hotfix for created
version.

When it is time to release a new Hotfix first step is necessary to proceed — define. For this purpose
product coordinator use Hotfix portal page shown on image Ne5: “Parts of define a new Hotfix page”
and as seen on it needed to select version, release number in some archaic format and manually enter

new HF number.

* Define a New Hotfix
Create a hotfix version by selecting
components/packages.

Please specify the version number:

V6.25 v

Please specify the release number:
625251 v
Define a new HF —> version number --> release number —> HF number
The next HF number for this release 625251 would be: 7
Please enter number for the HF: 7

Clear Form | Submit

Image Ne5 — Parts of define a new Hotfix page

The next step in releasing — request. And again product coordinator uses Hotfix portal. On image
Ne6: “Parts of request Hotfix page” seen workflow for requesting: select release number, for all
packages does not select any and check “Show new” and after submit button clicked an table with
correction information tickets generated to be included into current HF. This list of CITs are manually
copied to xls file and send to all participants via notification mail.

+« Search a Release Number
Searclung a release number i the database.

Please specify the release number:
710107 v

Please select a
Please select # Show New

If you do not select any package. all packages will be shown in the next screen.

Clear Form || Submit

Correction status for release 2.2 R02.00

Column 2. "First HF", shows the hotfix in which a ticket was first produced.

FLD ! Summary MR Priullﬂriginamr TRar |Prio|Customer Produce Platform
-1:1'.55@3“51 (DI“T“':;" ﬁlﬂiﬁ 2 l mummag._. ASapp |ADP
> Uason2s162 g;‘;‘:;" L2346 l Nasisers| | ASbum |ADP
3: 1‘.9..3M151ﬂ_g*;' v u:,’d_ﬁﬁ_l N ss109| | ASbum [PRMAN

Image Ne6 — Parts of request Hotfix page

After this product coordinator start compilation of changed components via ssh connection to
build server. The result Hotfix tarball are copied into special intranet download location. Together with
it product coordinator initiate next step of releasing — produced. This means that for all participants will
send notification mail with header “STEP 3”, which corresponds to produced status, and subject in
following format — “Hotfix: ADP-MGR-22R02.00.001-ASapp-ASbum Several Corrections”, ADP and
MGR - are archaic names for Assistant and Manager products , 22R02.00.001 — means V2 R2.01 and
then follows names of components produced with HF. Also, needed to set issues in product

management tool Jira to solved status. This is done manual.

Next step is — start up Hotfix on live system. If startup was successful product coordinator
initiate next notification mail with link for downloading HF and link to page were testers can write test
results.

If some issue did not passed the test reproduction initiate needed. In this case after new fix of it
developer need to submit new correction information and product coordinator have to add it to
corresponding Hotfix via steps shown on image Ne7: “Parts of adding CIT for reproduction Hotfix
portal page”. And as seen on this image to add new CIT product coordinator need make following

manual steps: enter HF number, select component where fix are and finally add it.

--> Define a new HF --> version number --> release number --> HF number
The next HF number for this release 220200 would be: 1

Please enter number for the HF: [1'

Clear Form | Submit |

—> Define a new HF > version number —> release number > HF number > package

Please select a package:

[ASbum]
Submit |

ADP MGR
ASbum

—> Define a new HF --> version number --> release number > package > tickets
For the release 220200 you specified the package ASbum to be produced

Please select.. ;]

UAS0025164
Use the Ctrl key to select multiple tickets.

=] Use the shift key to select a range.
Clear Form I Submit I

You have added to the HF 1, release 220200, package ASbum the following UASnumbers:

UAS0025164

Image Ne7 — Parts of adding CIT for reproduction Hotfix portal page
After all this steps, also needed to submit reproduction request via specific page on Hotfix portal,
where again needed manual specify number, check for which product this applies (Assistant or

Manager) and submit decision. Notification mail will be send to all participants with subject and header

at following format: “Hotfix: ADP-22R02.00.001-ASapp-ASbum”, “===[ADP REPRODUCTION
REQUESTED]=== ", what means that for Assistant V2 R2.0.1 reproduction was requested.

Next steps will be the same as after build HF — produced with mail notification and the same for
startup.

After all issues passed tests the next step are initiated — tested. This means that the final list of
issues included into HF need to create. As seen from image Ne8: “Creating list of issues added to HF
page” this leads to many manual steps, such as: selecting release number, product name, HF number,
specifying from to list of CITs and choosing show only delta, because of said before that each HF

includes accumulate fixes since first one. Also manual deleting of failed and duplicate CITs from this
list needed.

Com ESY-Intranet Angebote: v
| Products

' Hot Lir

| Organization | Processes

HiPath 4000 - HF Handling

New Ticket
—> Collect data for release > release number > platform >
Request HF ticket range) = MRs/TRs/descriptions/complete list
g P p
HF Status You have selected the release number:
HF Tracking
710107
Various tools
(quick links) You have selected the platform:
ADP
Developer You have selected the HF number:
0

Following correction information tickets are affected:
UAS0021638UAS0021640UAS0021743UAS0021745UAS002177SUASOC

Please specify the item you want to proceed with.

"Delta correction list" lists the corrections of one HF

compared to the previous one. for one platform.

The list is semicolon separated. so it can be imported in e.g. Execl
"Complete correction list" lists all corrections of a release

ordered by HF number. for one platform.

The list is semicolon separated. so it can be imported in e.g. Execl

Please select... v
Please select...

List of MRs

List of TRs

List of short descriptions
List of special remarks
Delta correction list k
Complete correction lis

Image Ne8 — Creating list of issues added to HF page

10

And after all of above, the last step is released. For change HF status to that product coordinator
again, same as in previous steps, have to do several manual operations (choose release, HF number and
so on) and submit his decision. After that mail notification sends to all participants with info about
released HF, links to Hotfix Portal, where list of included issues can be found and, of course, link for
download it.

And now, when analyze are finished. To summarize, the main problems of product coordinator
workflow in Hotfix Portal are:

e Graphical interface for adding new sustainable product versions.

e Manual operations while defining new Hotfix.

e UX design and manual sending issue list while requesting Hotfix.

e Manual generating list of components to be produced on build machine.
o Archaic mail notification format.

e Manual setting issues in Jira to solved status after HF produced.

e Many same manual operations in reproduction needed step.

e And again manual operations in tested and released steps.

11

3 Business process proposal

An important part of this work was based on studied and analyzed current workflow propose the ways
how to improve and automate Hotfix release management. To reduce time needed to pass the all
bureaucracy management steps, to facilitate work of all participants of this process and eliminate
manual steps to the minimum. Given the fact, that in release process several user roles take part we
need to develop and improve interaction between them considering current problems. Also, we need to
consider all management and product eliminations during proposal of future business process.

If generalize, Hotfix release process covers the following sequence of steps. In the first step
management defining date and the list of issues, to be fixed, for the future Hotfix release. Based on that,
developers start investigate into the issues problems and fix them. After, product coordinator collect
fixed issues and start producing new Hotfix and inform about result of it. Based on this, testers begin
to check included fixes and if everything works fine allow to provide Hotfix to customers. If not, the
fix, failed during tests, need to be refix and whereupon reproduced. Also it necessary to take into
account that all mentioned above actions require to notifications to the all participants in Hotfix release
process.

In view of the above, the following solutions were analyzed and weighted their pros and cons —
implementation of Jira plugin, updating current application, implementation of new web based

application.

3.1 Jiraplugin

One of the possibility to improve release management process is to implement Jira plugin solution. This
implementation would eliminate needs in integration issue tracking system and release management
system. Together with it, there will be no need to solve notifications of all participants about changes
or progress in Hotfix producing, because of accessibility of information for all.

For definition lists of issues to be included into specified Hotfix would be used labeling system
of Jira. At the time when all issues are solved by developers — the automatic build of the Hotfix begins.
After that product coordinator can take produced tarball and started up it in system for testing. In that
moment, testers should start their work and changed status of corresponding issues to pass or failed.
Based on this, in the moment when all tests are succeed — the automatic release of the Hotfix are made.

Unfortunately, due to the fact that Jira is a paid commercial product and any changes or customer
specific improvements are also paid — this implementation is not suitable for solving our goals in current

period of time.

12

Summarizing all of the above, this solution has the following pros and cons:
e Pros: one tool for all processes, high level of automation, notification possibility by
default.

e Cons: paid changes in commercial product.

3.2 Updating current solution

One more variant to solve pressing problems is to update, currently used and described at chapter
2:“Problems and analysis”, application. Given the fact, that it was implemented in the mid-nineties and
after that no further improvements were made, it means that all parts of solution should be upgraded
from out of date operation system, where application are running, to older version of programming
language (PHP) and database (MySQL).

Also, need to consider to update UX and graphical interface, which leads to the need for changes
and addition on the server side. One more thing to be solved is integration with the Jira product
management tool. In fact, all parts of application would be updated, rewritten or modified to meet the
goals of this work.

So, if summarize, the question arises — does the benefits of such a solution cover the invested
time and effort? And also this solution will be deprived of the choice of the programming language, the

used platform and database.

3.3 New web based application

The last one way and the chosen one to improve Hotfix release management process — is to develop
new real-time web based application and integrate it with Jira product management tool, which will
substitute current solution.

This implementation would provide for all participants minimize needed manual steps in their
daily work. Also, it will have better UX design and graphical interface. Manual providing of user
specific information, such as email address, name and telephone number, would be eliminated by
introducing authentication. The graphical interface would be divided by user roles workflow to
developer, tester and product coordinator view. Each view will be interacting only with allowed set of
data.

For developer view should be provided form for submitting correction information for fixed
issues with easier way to do it. For this purposes, will be integrated Jira APl connector with possibility
to retrieve needed data corresponding specified issue. Also, the way to choose relevant version
information, component list and notification mail subscribers should be implemented in multi selection
way. As one more of improvement would be possibility to view list of previously submitted correction

information (CITs) and list of Hotfixes.

13

The main and most important improvement for tester view would be ability to have all issues for
test on one place. Also, setting result of the test would be by select it by click. The same as in developer
view would be provided read only overview about all Hotfixes.

For product coordinator view should be provided new possibilities to define new supported
versions and new Hotfix, to add list of correction information for specified Hotfix and changing statuses
of Hotfixes. It will be achieved by minimizing manual steps and automation, for instance if some test
failed — corresponding Hotfix will automatic change the status to “Reproduction requested”. The list of
components for producing will be provided by click. Mail notifications about changing statuses would
be more informative.

Also, application should allow to initially configure needed values, such as users with attached
roles, groups of notification mails subscribers, list of components and of course credentials for Jira API.

Based on foregoing, to implement such an application, it was decided to use the following stack
of technologies: JavaScript programming language, MongoDB, as a data store, Meteor, as platform for
developing, and ReactJS for creating graphical interface. The above technologies are described in the

following chapter 4: “Used technologies”.

14

4 Used technologies

In this part of thesis will be provided information about technologies used in implementation of new
Hotfix Portal tool.

4.1 Meteor

Meteor is a full-stack JavaScript platform, based on Node JS, for developing modern web and mobile
applications [1]. If summarize, the main advantages are:
o Possibility to develop in one language, JavaScript, for server-side and client-side (web,
browser, mobile devise).
e Using data on the wire, means that the server sends data and the client processes it.
e Own ecosystem of packages called Atmosphere JS.
e Automatically propagating data changes to client via Distributed Data Protocol, without
requiring any synchronization code.

In the moment when Meteor was installed, project could be created with following command:
meteor create myapp, this would create directory called by name of application and contains initial
directory hierarchy and files that needs by project. Going to the folder, need to install Meteor’s build-
in npm dependencies using command meteor npm install. After this, run new application on
localhost (meteor start). Server will run on http://localhost:3000/ and Meteor support hot reload,
which means that when some changes did, it will restart server and update GUI according to the
changes. To add needed Meteor or npm packages to application use meteor add <package_name>
and meteor npm intall <package_name> respectively.

For using ReactJS as view library adding npm packages needed, such as react and react-dom. To
provide data from DB or server-side to client-side React]JS components needed to use Meteor package
react-meteor-data, which allows to create data-container to communicate with backend on one side
and provide this data to frontend on another side [2]. Prerequisite to use this package is installed npm
package react-addons-pure-render-mixin. Detailed description of using and developing ReactJS
components are in 3.3 “React]S” part of this thesis.

Meteor gives possibility to build multi-user application with no need to develop own solution.
For this purposes just needed to add new packages accounts-ui and accounts-password. Given the
fact, that this packages provide Ul component in internal templating technology, called Blaze, to use in
a React component needs to wrap it. In data-container, described above, exist possibility to check if
user is logged in and get information about him. For this purposes just needed to call internal method

Meteor.user() and response will contain info about current user. This trick also used on server-side

15

to validate if calling secure parts of application does under logged in user. If not, throw not authorized
error.

To extend accounting management could be used alanning:roles Meteor package, which lets
to attach roles with different permissions to a user. After roles are defined and attached to control if
user is in some role the following method used: Roles.userIsInRole(userId, nameOfRole)[3].

To provide secure client-server interaction in Meteor needed to define methods with allowed
operations by roles. Methods - are Meteor’s remote procedure call (RPC) system, used to save user
input events and data that come from the client [4]. On image Ne9:“Define Meteor’s method” shown
an example of defining method for inserting, let’s say, new task to Mongo collection with checking

userld in and role.

import { Meteor } from 'meteor/meteor’;

import { Mongo } from 'meteor/mongo’;

import { check } from 'meteor/check’;

import { Roles } from 'meteor/alanning:roles’;

export const Tasks = new Mongo.Collection('tasks');

Meteor.methods ({
"task.insert' (txt)

{
check(txt, String);

if(! Meteor.userId) {
throw new Meteor.Error('not-authorized');
}
if(! Roles.userIsInRole(this.userId, ['role'])) {
throw new Meteor.Error('not-permitted');
}
Tasks.insert({
text: txt,
createdAt: new Date(),
owner: Meteor.userId(),
username: Meteor.user().username
})s
}
1)

Image Ne9 — Define Meteor’s method
Also Meteor gives ability to send emails, for this purposes it provides package email. Before
actually send an email, needed to provide access to email provider, specifically needs to sign up for an
SMTP service that can delegate our email for sending [5]. In order to send email in application, needed
to set MAIL_URL environment variable. After this is possible to send an email with calling
Email.send() method with following properties:
e Required parameters

o to-—email address or an array of string with email addresses.

16

o from - the email address email being sent from.
o subject — the subject field added to email.
o text-—plain text of email.
e Additional parameters
o cc— array of string with email addresses to copy email to.
o replyTo — string or array of strings with email addresses that can be set as the
reply to address for the recipient.

o html —string, which contains HTML that can be rendered in the body of email.

4.2 MongoDB

MongoDB - is open-source cross-platform document oriented database that provides, high
performance, high availability, and easy scalability. It works on concept of collection and document
[6]. In MongoDB world, database is physical container for collections, each gets its own set of files on
file system. Collection — is the equivalent of an SQL based table, it is a set of MongoDB documents.
They do not have schema and documents inside it can have different fields, but typically, all documents
in a collection are of related purpose. Document — is analogue to JSON object of key-value pairs, but
stored in the database in a more type-rich format called binary JSON or BSON.

Relational DB MongoDB
Database Database
Table Collection
Row Document
Index Index
JOIN Reference or
embedded document

Table Nel — Relationship of relational DB with MongoDB [7]

MongoDB provides a unique id for every document. This id is 12 bytes hexadecimal number,
which guarantee uniqueness of every document. First 4 bytes are for the current timestamp, next 3 bytes
are machine id, next 2 bytes for process id of MongoDB server and last 3 bytes are simple incremental
value.

MongoDB provides various official supported drivers in following programing languages: C,
C++, C#, Java, JavaScript, Python, etc. Given the fact that in this work used JavaScript platform Meteor
with native supporting of MongoDB, let’s describe possibilities and main functions of JavaScript
MeteorDB driver.

To store and manipulate with some data we need to create a collection and keeps a reference to
it with possibility to use it in needed place. To do this in JavaScript just write the following statement:

export const MyNewCollection = new Mongo.Collection(‘myNewCollection’). This statement

17

returns a reference to object with methods to insert documents into collection, update their properties,
remove them and to find the documents in the current collection that corresponds search criteria.

To retrieve the documents from a specified collection the following function used:
MyNewCollection.find(object), where object — is a search criteria JSON object. The function will
return an array of JSON objects corresponds to search terms or if we leave function empty, it will
retrieve all of the documents from the collection. To retrieve the date in a human-readable format use
the same function, but attach a fetch function to the end of it: MyNewCollection.find({}).fetch().
Also if needed to return only one document from a collection should use function
MyNewCollection.findOne (), with specified search criteria.

To store a new document into collection used function MyNewCollection.insert(object),
where object — is a JSON object to be inserted.

To update existing document in collection used function MyNewCollection.update(_id,
{$set: }), where the first argument is id of document to be updated, and the second one passed $set
operator and this allows to modify the value of a field or multiple fields.

To remove document from collection used function MyNewCollection. remove(_id). If instead
of id place an empty object ({}), then all documents from current collection would be removed.

MongoDB also has his own console interface to query and update data as well as perform
administrative operations. To start Meteor MongoDB shell call command meteor mongo in root folder

of application. In table Ne2: “MongoDB shell commands” describes main commands of this interface.

Command Description
use dbName Switch to database called dbName
show collections Check created collections in current database
db.createCollection(‘“newCollection™) Creates new collection
db.newCollection.insert({*field”: “value”}) Insert new document into collection
db.newCollection.find() Retrieves all documents in collection
db.newCollection.drop() Drop collection from the database
db.newCollection.update(id, {$set: Update document fields mentioned in second
{“field”: “value”}}) parameter by document id in first parameter
db.newCollection.remove(id) Delete document by id from collection

Table Ne2 — MongoDB shell commands

4.3 ReactJS

React is front end library, which used for handling view layer for web applications. It allows to crate

reusable Ul components which presents data that changes over time. Lots of people use React as the V

18

in MVC (Model-View-Controller). It abstracts away the DOM from you, giving a simpler programming
model and better performance [10].

If summarize the features and advantages of React are:

o JSX —is JavaScript syntax extension. It is hardly recommended to use it in developing
React applications.

e Components — let you split the Ul into independent, reusable pieces. They are like
JavaScript function — accept some input and return elements describing what should be
drawn on the screen. Also they improve readability and this is helps to maintain bigger
applications.

e One-way data flow, which makes easier understand application.

e Virtual DOM - is JavaScript object and this improve applications performance since it
is faster than the regular browser DOM.

e Can be used with other framework. In case of this thesis, with Meteor.

React uses JSX for templating purposes instead of regular JavaScript. It neither a string nor
HTML, however it looks like regular HTML in most cases. JSX is faster because of optimization while
compiling code, it is type-safe and the errors can be detected during compilation. The example of JSX
file syntax, where returning value are HTML element div, shown on image Ne10:”File with JSX
syntax”. Also it is allows to embed any JavaScript expression by wrapping in curly braces.

import React from 'react’';

class App extends React.Component {
returnHelloWorld() {
return “Hello World!”;

}
render() {
return (
<div>
{returnHelloWorld()}
</div>
)s
}

Image Nel0 — File with JSX syntax
Component — is an independent and reusable piece of Ul, as an input they accepts, from parent
component, props and as an return gives back React element to render on the screen. There are two
types of them — functional, when Component defined as function, and class Component, when it defines
as class. Component names should always start from capital letter, because native DOM element names
starts from lowercase letters.
To show developed Ul on web page, we need to import file with root component to main

JavaScript file and call there React render method with first parameter name of root component and

19

the second one is an html element with specified id where to place it:
ReactDOM. render (<RootComponent />,document.getElementById(‘root’)).

As was said, props are passed from parent components and cannot be changed, they are should
be immutable. That’s why, for making dynamic updates in UI used state, which allows to change
components output over time in response to user action, server responses, etc. For this proposal, in
component’s container should be initialized state. An example of using props and state shown on image
Nell: “Components with props and state”, on it seen that root component has state with names of the
tasks and propagate it to the child components via their props, so in the moment when one of names

would be changed, only corresponding child component will be re rendered.

import React from 'react';

class App extends React.Component {
constructor() {
this.state = {

taskNamel = “Task 1%,
taskName2 = “Task 2”
}
}
render() {
return (
<div>
<Task name={this.state.taskNamel}/>
<Task name={this.state.taskName2}/>
</div>
)s
}
}
class Task extends React.Component {
render() {
return (

<p>{this.props.name}</p>

)5

Image Nell — Component with props and state

4.4 Atlassian Jira API

Jira is a proprietary issue tracking product, developed by Atlassian. It provides bug tracking, issue
tracking, and project management functions [12]. It provides both Java APIs and REST APIs that can
be used to cooperate with Jira programmatically.

REST APIs provide access to resources (data entities) via URI paths. To use a REST API, your

application will make an HTTP request and parse the response. Your methods will be the standard

20

HTTP methods like GET, PUT, POST and DELETE. REST APIs operate over HTTP(s) making it easy
to use with any programming language or framework. The input and output format for the JIRA REST
APIs is JSON [13].

Using this API it is possible to retrieve an issue data, create issues, edit and update. For instance,
to retrieve specific issue data you need to send GET request in following format:
http://hostname/rest/api/2/issue/{issuekKey} and as response you get needed information in
JSON format.

Also exists program drivers, which provides an object oriented wrapper for Jira Rest API. One
of them are used in this work. It is NodeJS module called jira-client. After adding this module to
application you need to initialize connection to Jira instance, providing used protocol, host address
and authentication credentials. Using this driver it is possible to interact with needed data in allowed
way, for instance to find an issue called following method and in promise get needed information:
jira.findIssue(issueNumber).then(function(issue){console.log(issue);}).

It is possible to add new issue to Jira via method addnewIssue(issue: object) or delete it
via deleteIssue(issueId). Given the fact, that Jira has her own query language called JQL (Jira
query language), you can also search issues or users by search criteria by passing it to method
searchJira(searchCriteriaString). For update an issue you need to call the following method:
updateIssue(issueld, issueUpdateObject), and as the first parameter specify issue id and as the

second one an object with updating data.

21

3) Implementation

This part of thesis will describe the way tool would be implemented and the UX interface for it.
Assumed that graphical interface of implemented web application are only UX and functional. As it
was described it previously, the main goal of this project is to design and implement a batter way of
working with Hotfix releasing management for all participants, never create beautiful user interface.
The graphical part of new Hotfix Portal would be divided by user roles: developer, tester and
product coordinator. Each role will receive permission to view and modify only data related to their

work responsibilities.

5.1 Database design

For storing and collecting purposes would be used MongoDB collections. Database will consist of eight
collections — users, roles, versions, statuses, mail_list, components, cits and hfs. Assumed that
MongoDB collection is schema-less JSON array of objects with internally generated unique ids.
Description of each collection shown in table Ne3: “MongoDB collections description”. Collections
roles, users, versions, mail_list, components and statuses would be filled on initial application running
with data from configure files edited by needs. The description of these files are at chapter 5.4:
“Configuration” of this work.

Data in cits and hfs collections are the most important and will contain information about
submitted correction information for fixed issues and Hotfixes information respectively.

Collections users and roles serve for authentication purposes. Mail_list collection — is defined
and used as store of mail groups for notification. The last three collections — versions, statuses and
components —are used as a source of data for select box graphical element, which is described at chapter
5.3: “UX and GUI implementation” of this thesis.

Collection name | Attribute Description
users email User email
password Saved bcrypted password
role Developer, tester or product coordinator
createdAt Creating timestamp
roles name Names of defined roles
statuses value Name of status used as attribute at hfs collection
label Status name for GUI
nextStatuses Set of allowed next statuses for current status

Table /23 — MongoDB collections description

22

Collection name

Attribute

Description

versions value Internal value merged product and version
label Version name for GUI
product Product name (Assistant or Manager)
version Version in internal format (example: v7_r2.14)
cits citNo Incremental CIT number, starts from 1
issueNo Issue number in Jira
owner User id by whom created
priority Priority of Jira issue
description Short description of Jira issue
ticketNo Customer ticket number
comment Developer comment
deactivable True||False, if this fix are deactivatable
version Version where fix done
product Product where fix done
components List of components where fix done
createdAt Creating timestamp
hfld Assigning HF id
email Developer email
test passed||failed test result
testedBy Tester email
hfs hfNumber Incremental HF number, from 1, for current product and version
modified At Timestamp of last modifying
version Version from versions collection
product Product from versions collection
status Current status of HF
mail_list value Array of mail strings
label Group name for GUI
components value Internal name of component
label Name of component for GUI

Continuation of table /23 — MongoDB collections description

23

5.2 Application implementation

Hotfix Portal would be real-time web based application running on Meteor engine, using as database
MongoDB and GUI interface implemented in ReactJS framework. Functionality would be divided, as
was said, by user roles in Hotfix release management — developer, tester and product coordinator. For
this proposes, user accounting management will be used from accounts-ui, accounts-passwords and
roles packages for Meteor engine. Based on analysis, workflow and summarized problems use-cases
was defined — developer workflow on image Nel2: “Developer use-case”, tester workflow on image
Nel3: “Tester use-case” and finally product coordinator workflow on image Nel4: “Product coordinator
use-case” respectively.

Next step would be to eliminate summarized problems for each use-case detected and described

at chapters 2.1 Developer view, 2.2 Tester view and 2.3 Product coordinator view of this work.

Developer

Issue fixed

. 4 . 4

View the list of your
CITs or the list of
Hotfixes

Submit correction
information (CIT)

v

et an notification
email for submitted
CIT

()

Image Nel2 — Developer use-case
Eliminated problems in developer view with description:
e Manual input of email address and telephone number would be backed off by
accounting management.
o Email list for notifications about submitted CIT solved via mail groups, such as
developer, testers, management.

e Automatically update priority and description after Jira issue number is placed.

24

Archaic platform and version names changed by version labels from versions collection
described at 4.1 Database design.
New tab would be implemented with displayed “My CITs”.

New tab would be implemented for read only viewing list of Hotfixes.

Tester l
Testissue under HF

after build and start

u
Create list of issues P
needed in next HF ¢
release
Mark issue
PASS or FAIL

)

Image Nel3 — Tester use-case

Eliminated problems in tester view with description:

List of all Hotfixes ready to testing would be available for all testers via their view of
Hotfix Portal.

Redefined information described for each CIT to test.

Submitting test result via select box and automatically modifying CIT with information
about tester.

New tab would be implemented for read only viewing list of Hotfixes.

Roles in accounting management eliminate this possibility.

25

b A

D —

Product coordi

nator |

1] Define new
Hotfix number

Y

2] Request Hotfix

with included list of

issues
p
Build set of Reproduction
componets on build reguest notifaction
SEIVer mail send
A
h 4

3] Produced HF

mail notification and
change issue
statuses to solved

h A

Define new
sustainable product
fix versions

4] Startup HF on

live system and
provide dowload link
and link for testing

Add new CIT to HF

Reproduction
needed?

5] Tested

notification mail and
create list of
included issues

Y

6] Released HF

notification mail

J

Image Nel4 — Product coordinator use-case

Eliminated problems in product coordinator view with description:

Graphical interface for adding new sustainable product versions would be implemented.
Define new Hotfix by product and version selection.

Adding unassigned CITs to requested Hotfix via multiple selection by product and

version.

e Generate list of components to be produced automatically.

o Change Hotfix status via select box with allowed next statuses from statuses collection
described at 4.1 Database design.

e Automatically set Jira issues to solved state after corresponding Hotfix in produced
status.

e Automatically request reproduction if some test failed.

o List of issues under tested and released Hotfix automatically generated.

e New notification mails.

5.3 UXand GUI implementation

As a part of new Hotfix Portal was UX design improving and graphical interface implementation in
React]JS framework. At this part, would be shown images with new functional design. As a main
element of graphical interface was decided to choose a table element, because it is nice to browse and
map each correction information to table row or Hotfix information to table row.

The developer view consists of three tabs — tab for add new correction information, tab with read
only list of his previously submitted CITs and tab with read only list of Hotfixes. The last two tabs
serve for review purposes. On image Nel5: “Developer submit CIT form” seen new UX and graphical
interface for adding correction information ticket. When developer input complete Jira issue number —
priority and description will be fielded automatically via retrieving Jira issue information. Need to
mention also that by default mail notification will be send to all mail groups, if needed, developer can

delete unnecessary groups or via field “Additional mails” add further mails.

27

Add CIT

Issue number

Priority

Description

Versions

Components

GVS ticket number

Comment

Deactivable

Will be sent to

* Development |* | GWS | = Management = Production

Additional

Submit

Image Nel5 — Developer submit CIT form
On image Ne16: “Developer select versions” and on image Nel16: “Developer select components”
respectively seen implementation of new version and components selection, which will minimize

needed manual steps.

Versions Components
|
Assistant V& R0.1 ASsWL
Manager V& R0O.1 ASswa
Assistant VB R1.5 ASTm
Manager V& R1.5 ASlogm
Manager V7 R2.14 AShg3550m
Assistant R2.14 ASipsm
Image Ne16 — Developer select versions Image Nel7 — Developer select components

28

Under second tab developer could see his CIT divided to unassigned section and assigned to
specific Hotfix section. Each column provide the most important information about it, such as
correction information number, version and product information, components list, owner, creation time
and corresponding Jira issue number. For further is possible to view detail information about each CIT,
example of this shown on image Nel8: “Developer My CITs tab”, where user can find description,
comment, priority, deactivatable possibility and test result, if placed.

+ CIT-44 Manager V8 R0 1 swit sergil@ixperta.com 5/13/2017, 3:25:18 PM OSFOURK-4985
+ CIT-45 Assistant VB R1 5 swa sergil@ixperta.com 5/13/2017, 3:30:01 PM OSFOURK-4986
- CIT-46 Assistant VB RO.1 swa sergil@ixperta.com 5/13/2017, 3:41:17 PM OSFOURK-4088
Description: When you login via ssh or GUI into Manager there is a message that the Jjvar partition is full
Comment:
Priority: P3
Deactivable: True
+ CIT-47 Assistant VB RO.1 AShg3550m sergil@ixperta.com 5/15/2017, 1'56:23 PM OSFOURK-3333

HF 1 Manager V8 R0.1

+ CIT-25 Manager V8 R0 1 fm sergil@ixperta.com 4/8/2017, 4:11:06 PM OFSOURK-T777T
+ CIT-10 Manager V8 R0 1 swa fm sergil@ixperta.com 46/2017, 9:14:20 AM OSFOURK-456
+ CIT-13 Manager V8 R0 1 swa sergil@ixperta.com 4/6/2017, 10:00:38 PM OSFOURK-12345

Image Me18 — Developer My CITs tab
New product coordinator view will contains two tabs. The first one is with list of Hotfixes, button
to define new one, button to create new supported version, possibility to change status via select box
with allowed next statuses, button produce for requested and reproduction requested statuses. The
Hotfixes will be divided into sections by version and each row would contain the following information:
Hotfix number, product, status, with possibility to change it via select box with allowed next statuses,
and last modified time. The additionally provided information would be the list of attached corrections.

The example of this tab shown on image Ne19: “Product coordinator Hotfixes tab”.

HF number Product Status Last modify
V8 R0.1

+ HF 1 Assistant Released 3/20/2017, 8:24:45 PM
+ HF 2 Assistant Released 4/8/2017, 7:40:32 PM
- HF 1 Manager Started up/In test - 4427/2017, 9:42:11 AM

CIT-25 OFSOURK- 77777 m sergii@ixperta.com

CIT7 OSFORK-3423423 hg3550m franta@ixperta.com Test Tested by alina@unify.com

passed
CIT-10 O5SFOURK-456 swa,fm sergil@ixperta.com Test Tested by alina@unify.com
passed

CIT-13 O5SFOURK-12345 swa sergil@ixperta.com

CIT-15 OSFOURK 123123 hg3550m sergii@ixperta.com

CIT-17 OSFOURK-345345 ipsm sergii@ixperta.com

CIT-21 O5FOURK-66666 logm sergil@ixperta.com

CIT-23 OSFOURK-T7777 m sergii@ixperta.com

CIT-3 OSFOURK 345435 swi,swa,im sergii@ixperta.com Test failed Tested by alina@unify.com

CIT-29 OSFOURK.-3454563 SWa sergil@ixperta.com

CIT-31 OSFOURK-1232343 m sergii@ixperta.com

CIT-37 OSFOURK.789789 swi sergii@ixperta.com

CIT-39 155555 swa sergii@ixperta.com

Image M 19 — Product coordinator Hotfixes tab
To define new Hotfix product coordinator should click button “Define new HF” placed, under
the first tab, and after this form with version and product select box will be shown, as on image Ne20:

“Product coordinator define new HF under selected version™.

29

Cancel

Assistant V8 R0.1

Product
WManager W8 R0.1
Assistant VB R1E
Manager W8 R1.5
A
Manager V7 R2.14
- A

Aomimbmnt VT D7 14

Image N220 — Product coordinator define new HF under selected version

As was said above, on the first tab also placed functionality for defining new supported versions
and products. After click corresponding button the dialog for placing new supported version will be
shown. The example is on image Ne21: “Product coordinator modal dialog for defining new supported

version”.

Enter new supporied version (example "Assistant V7 R2.14")
IAssistant V8 R2.10] '

Close

Image M21 — Product coordinator modal dialog for defining new supported version

To obtain list of components to be produced, for needed Hotfix in one of the following statuses:
“Requested” or “Reproduction requested”, provided button “Produce”, which will show needed

components in modal dialog, as on image Ne22: “Product coordinator components list to produce”.

Components list:
hg3550m logm swa ipsm

Close

Image Ne22 — Product coordinator components list to produce
The second tab of product coordinator view, provides list of all CITs divided to unassigned and

assigned sections — is the same as at developer view, but with possibility to assign unassigned CITs to

selected Hotfix, as shown on image Ne23: “Product coordinator add CITs to specified Hotfix”.

30

HotFixes CITs

CIT number Product Componenis Submitted by Submitted date Issue number
Unassigned

+ CIT5 Assistant VB RL5 logm sergii@ixperta.com 3/28/2017, 7:22:19 PM OSFOURK:-34345
v + cIT-12 Assistant V8 R0.1 swa sergii@ixperta.com OSFOURK-12345
v + CIT-14 Assistant V8 R0.1 hg3550m sergii@ixperta.com OSFOURK-123123
v + CIT-16 Assistant V8 R0.1 ipsm sergii@ixperta.com 47/2017, 73111 PM OSFOURK-345345

+ CIT-19 Manager V8 R15 logm sergii@ixperta.com 4/8/2017, 3:10:48 PM O5FOURK-12353
v + CIT-20 Assistant VE R0.1 swa sergii@ixperta.com 4/8/2017, 3:18:12 PM OSFOUR
’ + CIT-22 Assistant V8 R0.1 m sergii@ixperta.com 4/8/2017, 3:35:25 FM OSFOURK-77777
v + CIT-24 Assistant VE R0.1 m sergii@ixperta.com 4/8/2017, 4:11:06 PM OFSOURK- 77777

+ CIT-27 Manager V8 R1.5 swa sergii@ixperta.com 4/8/2017, 4:18:28 FM OSFOURK-77777
v + CIT-28 Assistant VB R0.1 swa sergii@ixperta.com 4/8/2017, 4:19:45 PM OSFOURK-3454563
v + CIT-30 Assistant V8 R0.1 fm sergii@ixperta.com 4/8/2017, 4.21:43 FM OSFOURK 1232343

Image N223 — Product coordinator add CITs to specified Hotfix

New tester view also contains two tabs. The one of them, is the same to the developer’s view
read-only Hotfix list. But another tab provides the list of correction information tickets, sectioned by
Hotfixes, ready for test. This list looks the same table with CITs, but has two tester specific columns
with information about tester and test result. In the moment, when the time for placing result comes,
user can choose it from select box, it is also possible to change previously selected result, if needed.
The columns described above are shown on image Ne24: “Columns for fill test results” and

corresponding result selection on image Ne25: “Test result select box”.

Tested By Test Result
or test
Test. .
alinai@unify.com Failed :lr- tE PaSSEd
alina@unify.com Passed FELI|EIj
alina@unify.com Passed
Waiting for test Test. .
Waiting for test Test.
Image Ne24 — Columns for fill test results Image Ne25 — Test result select box

5.4 Configuration

For using this new tool few configuration steps needed, such as configuring smtp mail server address
for possibility to send notification mails, configuring connector to Jira API, for possibility to get or edit
issues, fill private files with initial data about users, roles, versions, components and mail groups for

corresponding database collections.

31

To configure smtp server address need to set environment variable MAIL_URL in the following
form smtp://USERNAME : PASSWORD@HOST : PORT. If it configured right, Meteor Email package will
use it for sending mails, if not, mails will be printed to standard output.

To configure connector to Jira APl needed to edit file called configJira.json, which can find in
private directory of tool. Example of configured connector shown on image Ne26: “Example of

configlira.json file”.

{

"protocol”: "https",
"host": "yourjira.com",
"port": "443",

"user": "user",
"password": "password",
"apiver": "2",
"strictSSL": false

}

Image Ne26 — Example of configJira.json file

Private files with initial data for collections also placed in private directory and can be edited
before initial run of Hotfix portal.
On image Ne27: “Example of file with user accounts users_init.json” shown an example of file

with defined four initial users with attached roles, which are corresponds to graphical interface views.

[{"name":"stefan","email": "stefan@unify.com"”,"roles":["production”]},

"name":"alina","email":"alina@unify.com","roles":["tester"]},

"name" :"sergii","email":"sergii@ixperta.com","roles":["developer"]},

"name":"franta"”,"email":"franta@ixperta.com","roles":["developer"]}]
Image Ne27 — Example of file with user accounts users_init.json

On image Ne28: “Example of file with versions list versions.json” shown the possible initial
supported products and versions.

[{ "value" : "assistant_V8 0.1", "label" : "Assistant V8 R@.1",
"product” : "assistant", "version" : "v8 re.1" },

{ "value" : "manager V8 ©0.1", "label" : "Manager V8 RO.1",
"product” : "manager", "version" : "v8 re.1" },

{ "value" : "assistant V8 1.5", "label" : "Assistant V8 R1.5",
"product” : "assistant", "version" : "v8 ri1.5" },

{ "value" : "manager_V8_1.5", "label" : "Manager V8 R1.5",
"product” : "manager", "version" : "v8 rl.5" },

{ "value" : "manager_V7_2.14", "label" : "Manager V7 R2.14",
"product” : "manager", "version" : "v7_r2.14" },

{ "value" : "assistant V7_2.14", "label" : "Assistant V7 R2.14",
"product" : "assistant", "version" : "v7_r2.14" }]

Image No28 — Example of file with versions list versions.json

32

On image Ne29: “File with statuses statuses.json” shown the possible Hotfix statuses with

allowed next statuses list for each.

[{"value": "defined", "label": "Defined", "nextStatuses":
["requested”]},

{"value": "requested", "label": "Requested", "nextStatuses":
["produced”]},

{"value": "produced", "label": "Produced", "nextStatuses":
["start_test","repro_req"]},

{"value": "repro_req", "label": "Reproduction requested",

"nextStatuses": ["produced"]},
{"value": "start_test", "label": "Started up/In test",
"nextStatuses"”: ["tested","repro_req"]},

{"value": "tested", "label": "Tested", "nextStatuses":
["released”, "repro_req"]},
{"value": "released", "label": "Released", "nextStatuses": []}]

Image M29 — File with statuses statuses.json

On image Ne30: “Example of file with mails mail_list.json” shown the file with needed format

to define initial mail groups.

[

{ "value": ["sergii.khunovych@ixperta.com",
"khunovich.s@gmail.com"], "label": "Development" },
{ "value": ["sergii.khunovych@ixperta.com",

"khunovich.s@gmail.com"], "label": "Testers" },

{ "value": ["sergii.khunovych@ixperta.com",
"khunovich.s@gmail.com"], "label": "Management" },
{ "value": ["sergii.khunovych@ixperta.com",

"khunovich.s@gmail.com"], "label": "Production" }

]

Image Ne30 — Example of file with mails mail_list.json

On image Ne31: “Example of file with components components.json” shown the possible initial

list of components.

[
{ "value": "ASswt", "label": "ASswt" },
{ "value": "ASswa", "label": "ASswa" },
{ "value": "ASfm", "label": "ASfm" },
{ "value": "ASlogm", "label": "ASlogm" },
{ "value": "AShg3550m", "label": "AShg355em" },
{ "value": "ASipsm", "label": "ASipsm" },
{ "value": "AScm", "label": "AScm" },
{ "value": "AScommon", "label": "AScommon" },
{ "value": "AScomwin", "label": "AScomwin" },
{ "value": "ASxie", "label": "ASxie" }
1

Image Ne31 — Example of file with components components.json

33

6 Conclusion

As a result of this work, the web based application called Hotfix Portal was created. It allows users to
do their daily job in Hotfix releasing process in more easy way. Each user under specified role, as such
as developer, tester and product coordinator, see, modify and cooperate only with allowed view of
application.

For instance, Hotfix portal allows developer to submit correction information for fixed issue, via
special form with minimized manual steps, or view previously submitted correction information with
description under which Hotfix it attached and view current statuses of all existing Hotfixes. For tester
it allows to place test results, via special table, where seen only Hotfixes for test, and, the same as for
previous user, view list of all Hotfixes. Product coordinator has the ability to define new supported
version and new Hotfixes under them, change status of each Hotfix with corresponding automatic mail
notification for all participants defined in mail list. Also, he has possibility to attach correction
information tickets (CITs) to needed Hotfixes and get a list of component to be produced for specified
Hotfix.

Before creating application, used technologies and methodologies were studied. Also, core of
problems and process were analyzed, described and the way to eliminate them are proposed. Alliance
of Meteor, MongoDB and React was chosen as a common and open source way to develop modern
web application. Next step was to define all features that such application must have and choose what
will be implemented. On this basis, database structure and graphical user interface, with improving
usability, accessibility and easiness of use, were designed. After that, the Hotfix portal application was
implemented in JavaScript programming language.

The application was implemented to be flexible, as it is possible, for different products and users.
For this purposes were added configuration files with ability to edit list of components, create initial
list of supported version and products, create users with defined roles. Also, were implemented
separately mail notification interface, where with some improvements could be changed view of
sending mails.

The staff training and presentation using the new tool was conducted.

6.1 Next steps

In order to achieve more automation in implementation of Hotfix releasing process can be provided
next improvements. Bigger integration with product management tools to create correction information
by changing issue status in Jira to solved. In workflow of product coordinator, big improvement could
be automatic build of Hotfix set of components with following start up on test system. Also, defining

the list of Jira issues which must be included into specified Hotfix and following their automatic

34

attaching to it via submitting correction information. Mail notifications could be improved by using
templating mechanism and sending HTML-based emails.

Another improvement might be adding scheduled time and date for Hotfix producing with
automation build and start upping.

35

References

[1]
(2]
(3]
[4]
[5]
(6]
[7]
(8]
(9]

Meteor introduction, Meteor [online]. [cit. 2017-05-23]. Available at the URL:
<https://guide.meteor.com>

Meteor React tutorial, Meteor [online]. [cit. 2017-05-23]. Available at the URL.:
<https://www.meteor.com/tutorials/react>

Meteor-roles, Atmosphere [online]. [cit. 2017-05-23]. Available at the URL.:
<https://atmospherejs.com/alanning/roles>

Meteor methods, Meteor [online]. [cit. 2017-05-23]. Available at the URL:
<https://guide.meteor.com/methods.html>

Using the Email Package, The Meteor Chef [online]. [cit. 2017-05-23]. Available at the URL:
<https://themeteorchef.com/tutorials/using-the-email-package>

MongoDB Overview, TutorialsPoint [online]. [cit. 2017-05-23]. Available at the URL.:
<https://www.tutorialspoint.com/mongodb/mongodb_overview.htm>

Thinking in Documents: Part 1, MongoDB blog [online]. [cit. 2017-05-23]. Available at the
URL.: <https://www.mongodb.com/blog/post/thinking-documents-part-1>

Databases: Part 1, MeteorTips [online]. [cit. 2017-05-23]. Available at the URL.:
<http://meteortips.com/first-meteor-tutorial/databases-part-1>

Databases: Part 2, MeteorTips [online]. [cit. 2017-05-23]. Available at the URL.:
<http://meteortips.com/first-meteor-tutorial/databases-part-2>

[10] ReactJS Tutorial, TutorialsPoint [online]. [cit. 2017-05-23]. Available at the URL.:

<https://www.tutorialspoint.com/reactjs>

[11] ReactJS Hello World, Facebook React [online]. [cit. 2017-05-23]. Available at the URL.:

<https://facebook.github.io/react/docs>

[12] Jira (software), Wikipedia [online]. [cit. 2017-05-23]. Available at the URL.:

<https://en.wikipedia.org/wiki/Jira (software)>

[13] Jira REST APIs, Developer Atlassian [online]. [cit. 2017-05-23]. Available at the URL.:

<https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis>

[14] JavaScript JIRA API for node.js, Jira-node [online]. [cit. 2017-05-23]. Available at the URL:

<https://jira-node.qgithub.io>

36

https://guide.meteor.com/
https://www.meteor.com/tutorials/react
https://atmospherejs.com/alanning/roles
https://guide.meteor.com/methods.html
https://themeteorchef.com/tutorials/using-the-email-package
https://www.tutorialspoint.com/mongodb/mongodb_overview.htm
https://www.mongodb.com/blog/post/thinking-documents-part-1
http://meteortips.com/first-meteor-tutorial/databases-part-1
http://meteortips.com/first-meteor-tutorial/databases-part-2
https://www.tutorialspoint.com/reactjs
https://facebook.github.io/react/docs
https://en.wikipedia.org/wiki/Jira_(software)
https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis
https://jira-node.github.io/

List of Appendices

Appendix A. CD/DVD contents

37

Appendix A

CD/DVD contents:
e Technical documentation
e Source code of application

e Private configuration files

38

