
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CONTAINERIZATION OF DATABASE DETECTORS
KONTEJNERIZACE DETEKTORŮ NAD RELAČNÍMI DATABÁZEMI

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MICHAL OBERREITER
AUTOR PRÁCE
SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav inteligentních systémů (UITS) Akademický rok 2018/2019
Zadání bakalářské práce

Student: Oberreiter Michal
Program: Informační technologie
Název: Kontejnerizace detektorů nad relačními databázemi
 Containerization of Database Detectors
Kategorie: Analýza a testování softwaru
Zadání:

1. Prostudujte projekty db-reporter a db-detectors v rámci platformy Testos pro detekci dat v relačních
databázích. Nastudujte technologii Docker.

2. Analyzujte požadavky na zapouzdření detektorů dat nad databázemi do Linuxových kontejnerů. Navrhněte
řešení kontejnerizace detektorů v technologii Docker.

3. Implementujte rozhraní REST API k zapouzdřeným aplikacím. Navrhněte pro uživatele přehledný výstupní
formát detekce a implementujte export výsledků detektorů do tohoto formátu.

4. Správnost funkcionality podpořte automatizovanými integračními testy.
Literatura:

Kropáč, F.: Nástroj pro analýzu obsahu databáze pro účely testování softwaru. 2017. Bakalářská práce
FIT VUT v Brně.
Ochodek, M.: Nástroj pro analýzu obsahu databáze pro účely testování softwaru. 2017. Bakalářská práce
FIT VUT v Brně.

Pro udělení zápočtu za první semestr je požadováno:
První dva body zadání

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Smrčka Aleš, Ing., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 15. května 2019
Datum schválení: 1. listopadu 2018

Powered by TCPDF (www.tcpdf.org)

Zadání bakalářské práce/20386/2018/xoberr00 Strana 1 z 1

Abstract
This thesis deals with containerization of command-line applications including containeriza-
tion of existing tools for database content analysis. The thesis is a part of Testos platform,
which aims at software testing automation. The goal was to design and implement a solu-
tion that would be both universally usable for command-line applications and at the same
time flexible enough to accommodate database detectors and their specific requirements.
Docker was chosen as the containerization platform, on which a management system was
built. This system provides both a graphical user interface and an application program-
ming interface. The result allows for easy application management and output retrieval.
The primary contribution of this thesis is the streamlining and simplification of running
command-line applications with specific dependencies. These features come in form of
abstracting the underlying mechanisms and providing a graphical user interface.

Abstrakt
Tato práce se zabývá kontejnerizací aplikací pro příkazové řádky, konkrétně pak analyzátorů
obsahu databáze. Práce je řešena v kontextu platformy Testos, která cílí na automatizaci
softwarového testování. Cílem řešení je navrhnout a implementovat univerzálně použitelný
nástroj, který by také vhodným způsobem řešil specifické požadavky databázových detek-
torů. Pro účely kontejnerizace byl zvolen nástroj Docker, nad kterým byl postaven za-
pouzdřující systém. Dále bylo vytvořeno webové uživatelské rozhraní komunikující s API.
Výsledné řešení umožňuje snadno spravovat aplikace příkazové řádky a získávat z nich
relevantní výstupy. Přínosem této práce je usnadnění práce s aplikacemi, které vyžadují
své specifické závislosti. Usnadnění spočívá v zapouzdření specifik nástroje Docker pod
obecnější model práce a také ve vytvoření uživatelsky přívětivého grafického rozhraní.

Keywords
containers, containerization, microservices, Testos, Docker, REST, .NET Core, Flask

Klíčová slova
kontejnery, kontejnerizace, microservices, Testos, Docker, REST, .NET Core, Flask

Reference
OBERREITER, Michal. Containerization of Database Detectors. Brno, 2019. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Ing.
Aleš Smrčka, Ph.D.

Rozšířený abstrakt
Nutnost vytvářet portabilní softwarová řešení ve věku cloudových řešení a on-demand služeb
se značně zvyšuje. Vývojáři či výzkumníci v mnoha případech nejsou schopni replikovat
korektní chování daných nástrojů ve svém prostředí a jsou nuceni zdlouhavě diagnostikovat
tyto problémy. Tyto a mnohá jiná úskalí jsou důvodem, proč kontejnerizace nabývá na
významu.

Tato práce se zabývá kontejnerizací aplikací pro příkazové řádky a snaží se tak usnad-
nit spouštění těchto aplikací. Jejím cílem bylo navrhnout a implementovat univerzálně
použitelný nástroj, který by také vhodným způsobem řešil specifické požadavky analyzá-
torů obsahu databáze – detektorů a zároveň poskytoval grafické i HTTP rozhraní. Tento
nástroj – Detection Containers (DeCon) – je řešen v kontextu platformy Testos vyvíjeného
na Fakultě Informačních Technologie Vysokého Učení Technického v Brně. Testos cílí
na automatizaci softwarového testování a jeho nástroje se snaží kombinovat různé úrovně
testování – od jednotkového po akceptační. Nástroje db-detectors a db-reporter, které jsou
součastí platformy Testos, jsou předmětem kontejnerizace a integrace.

Při návrhu systému DeCon byl kladen důraz na zjednodušení práce s kontejnerizovanými
aplikacemi. Abstrakce spočívá ve vytvoření modelu práce podobnému testovacím případům
a spuštěním. Obdoba testovacích případů v DeConu jsou configurations a jobs jsou ekvi-
valentem testovacích spuštění. Jako kontejnerizační systém byl použit Docker, který mimo
jiné poskytuje robustní rozhraní jak z příkazové řádky, tak i HTTP. DeCon byl navrhnut
právě na základě těchto Docker kontejnerů. Samotný DeCon je pak koncipován jako sada
navzájem komunikujících microservices. Oproti monolitickým aplikacím se ty, které užívají
principu microservices, vyznačují lepší škálovatelností, jasnějším oddělením závislostí a také
možností kombinovat více technologií v jednom softwarovém řešením.

Klíčovými komponenty – službami – řešení jsou Configuration service a Job service.
První zmíněná zajišťuje správu nastavení pro jednotlivé kontejnerizované aplikace, zatímco
druhá orchestruje jejich spouštění a poskytuje informace o získaných datech a aktuálním
stavu. Spouštění jobs je realizováno skrze Docker service, která abstrahuje jednotlivá vy-
braná volání do Dockeru. Docker service zpracováním požadavku spouští samotný Docker
kontejner, ve kterém okamžitě startuje tzv. Application wrapper, který zajišťuje odchytávání
výstupu (standard out i standard error) z dané zapouzdřené aplikace. Zachycený výstup je
zasílán do Job service, kde je uložen do databáze. Zprávy o chybách či nevalidních datech
jsou zasílány do Logging service, která tyto záznamy ukládá paralelně do textového souboru
i databáze. Přístup k těmto službám je realizován pomocí Gateway, která odděluje privátně
a veřejně dostupná volání služeb a také poskytuje funkcionalitu přepínání editovatelnosti
configurations. Tato vlastnost byla vyžadována z důvodu potenciálního využití pro veřejné
demonstrační účely.

REST API poskytované službou Gateway je konzumované webovou aplikací, jejímž
účelem je poskytnout uživatelsky přívětivou správu systému DeCon. Aplikace klade důraz
na maximální jednoduchost a snaží se nebýt překážkou v možném budoucím týmovém
workflow, tudíž neimplementuje autentifikaci ani autorizaci. Uživatelské rozhraní jako jed-
iné obsahuje specializace pro databázové detektory (všechny služby jsou stavěné obecně)
ve formě přizpůsobeného zadávání parametrů a exportu zpracovaných výsledků ve formátu
JSON. Pro každou zapouzdřenou aplikaci uživatelské rozhraní nabízí možnost náhledu stavu
aplikace s automatickou aktualizací, přehledem a exportem surových výstupů. V přehledu
je možné filtrovat i pomocí regulárních výrazů.

K dosažení maximální flexibility v možnosti zapouzdření různých aplikací DeCon im-
plementuje podporu pro publikování portů z kontejnerů, specifikaci složky k zpřístupnění,

nastavení časového limitu pro násilné ukončení kontejneru a také dodání vlastního Docker-
file pro instalaci potřebných závislostí aplikace.

Služby DeConu jsou implementovány v multiplatformním frameworku .NET Core s vy-
užitím jazyka C# (Configuration service, Job service, Logging service, Application wrapper)
a také Flask API v Pythonu (Gateway, Docker service). V rámci výběru implementační
technologie byly zohledněny faktory, jakými jsou například: množství aplikační logiky, poža-
davky na práci s vlákny a asynchronní operace atd. Webová aplikace využívá technologie
React v jazyce JavaScript.

Výsledek práce byl podroben automatizovanému testovaní s užitím různých druhů testů.
Pro otestování kódu na úrovni bloků byly vytvořeny jednotkové testy. Testování na úrovni
služby je realizováno komponentními testy, jejichž vytvoření bylo možné díky využitý prin-
cipů vkládání závislostí a programování vůči rozhraní. K otestování celkové funkcionality
posloužily integrační testy, které komunikovaly přímo s Gateway a testovaly tak systém
z pohledu vnějšího aktéra.

Implementovaný nástroj DeCon splňuje kladené požadavky a skýtá potenciál pro bu-
doucí širší nasazení v rámci platformy Testos.

Containerization of Database Detectors

Declaration
I hereby declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Aleš Smrčka, Ph.D. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Michal Oberreiter

May 14, 2019

Acknowledgements
I would like to express my gratitude for the assistance and support that I have received
from my supervisor Ing. Aleš Smrčka, Ph.D. Also I would like to thank him for the time
dedicated to the regular Testos meetings.

Contents

1 Introduction 6
1.1 Glossary . 6

2 Background 7
2.1 Virtualization . 7

2.1.1 Full Virtualization . 7
2.1.2 Containerization . 9

2.2 Docker Platform . 12
2.2.1 System overview . 12
2.2.2 Technical overview . 13
2.2.3 Docker security . 14
2.2.4 Interfaces . 15
2.2.5 Docker on Windows . 17
2.2.6 Docker on MacOS . 19

2.3 Hypertext Transfer Protocol . 19
2.4 Web APIs . 20

2.4.1 Representational state transfer . 20
2.4.2 REST APIs . 21
2.4.3 HTTP-based REST APIs . 21

2.5 Service-Oriented Architecture . 21
2.5.1 Microservices . 21

2.6 Testos . 23
2.6.1 Database detectors . 24
2.6.2 Database reporter . 24

3 Analysis and Design 25
3.1 Design Goals . 25
3.2 Target Product . 25
3.3 Existing Solutions with Similar Functionality 26

3.3.1 Portainer . 26
3.3.2 Kitematic . 26

3.4 Requirements . 27
3.5 Architecture . 29

3.5.1 Gateway . 32
3.5.2 Configuration service . 32
3.5.3 Job service . 33
3.5.4 Logging service . 37
3.5.5 Application wrapper . 38

1

3.5.6 Docker service . 38
3.5.7 Web application . 38

4 Implementation Details of DeCon 42
4.1 Technology Choices . 42
4.2 General Implementation Principles . 43
4.3 Project Structure . 44
4.4 User Interface Functionalities . 44
4.5 Use of Docker Features . 44

4.5.1 Custom Dockerfile . 45
4.6 Running DeCon . 46

4.6.1 Included examples . 47
4.7 Integration of Database Reporter and Detectors 48
4.8 Verification of Functionality . 49

4.8.1 Unit testing . 50
4.8.2 Component testing . 50
4.8.3 Integration testing . 51
4.8.4 Running the tests . 51

5 Conclusion 52

Bibliography 53

Appendices 56

A Contents of the CD 57
A.1 Building and Running DeCon . 57

B Web Application 58

C Code Samples 60

D Docker Examples 62

E API Models 64
E.1 Gateway Models . 64
E.2 Other Models . 65

2

List of Figures

2.1 Comparison of hypervisor types . 8
2.2 Paravirtualization . 9
2.3 Containerization . 10
2.4 Orchestration . 11
2.5 Docker overview . 12
2.6 Container layers . 13
2.7 Docker architecture on Linux . 14
2.8 Docker components . 16
2.9 Docker architecture running natively on Windows 17
2.10 Docker on Windows concurrently running Windows and Linux containers . 18
2.11 Testos platform . 23

3.1 Container management in Portainer . 26
3.2 Kitematic’s container output . 27
3.3 DeCon architecture . 31
3.4 Job state diagram . 35
3.5 Collaboration diagram of a job start . 36
3.6 Collaboration diagram of a job status retrieval 36
3.7 Collaboration diagram of a job update . 37
3.8 User interface showing a running job . 40
3.9 User interface showing a parsed and displayed result of database detectors . 41
3.10 Comparison of modals for job creation . 41

B.1 Modal window for adding a new job for database detectors 58
B.2 Modal window for adding a new job . 58
B.3 DeCon running a database detectors job . 59
B.4 Parsed results of a database detectors job 59

3

Listings

2.1 Example of run command with capabilities 15
2.2 Docker’s command-line interface . 16
2.3 Docker’s HTTP interface . 16
2.4 Dockerfile example . 17
2.5 Example of an HTTP request . 19
2.6 Example of an HTTP response . 20
3.1 Example of a file for progress reporting specification 34
3.2 Output format of an exported job . 39
3.3 Export format of a database detectors result 40
4.1 Used Docker commands for container management 45
4.2 Basic template for custom Dockerfiles . 46
4.3 Argument list of DeCon the startup script 46
4.4 Job creation model for running the detectors on the included database . . . 48
4.5 Database detectors output . 49
4.6 Unit tests example in xUnit . 50
4.7 Configuration of dependency injection . 50
4.8 Injected dependency on a controller . 51
4.9 Component tests using a test client . 51
4.10 Testing script usage . 51
C.1 Example of controller implementation in ASP.NET Core 60
C.2 Example of controller implementation in Flask 61
D.1 Concrete example of container management in DeCon 62
D.2 Definition of the default Dockerfile for command-line applications 62
D.3 Custom Dockerfile example (demo-dockerfile) 63
E.1 Full Job entity model example . 64
E.2 Job status model example . 65
E.3 Job creation model example . 65
E.4 Configuration model example . 65
E.5 Log entry model example . 65
E.6 Docker service container start model example 66

4

List of Tables

2.1 Example of HTTP methods mapping to CRUD 19

3.1 Requirements . 28
3.2 Gateway actions . 32
3.3 Configuration service actions . 33
3.4 Job service actions . 34
3.5 Logger service actions . 37
3.6 Docker service actions . 38

4.1 Connection information for the included database 47

5

Chapter 1

Introduction

In the age of cloud computing, importance of creating environment independent solutions
becomes more apparent. Oftentimes developers manage to get their tools working on their
local machines but others struggle to reproduce expected behavior due to unforeseen differ-
ences in these environments. Also, the increased difficulty of testing out any dependence-
heavy application contribute to the rise of containerization.

This thesis aims to provide a solution for containerization of database detectors and
other command-line applications by building a container management system on top of
Docker. This system DeCon – Detection Containers – offers ability to easily setup and
run user-specified command-line applications via an included graphical user interface or an
application programming interface. DeCon is tailored to the specific requirements of the
Testos platform. Users do not need to possess any prior knowledge of the Docker platform
for performing basic tasks in DeCon. However for advanced users, DeCon offers a great
deal of customizability in terms of application dependencies.

Containerization of database detectors is just one of the few included demonstration
examples that aims to highlight the features of DeCon. Database detectors are treated
as any other command-line application everywhere, except the web user interface, where
customized controls and result parsing is added. Results collected from database detectors
can be exported for additional processing.

In order to properly define and describe technologies used to implement this system,
Chapter 2 lists related topics which include virtualization, containerization, Docker plat-
form, web APIs and microservices. Chapter 3 discusses design decisions made during the
design process of DeCon and attempts to give a technology-independent description of the
system. The specifics of the implementation are explained in Chapter 4, where author
reasons technology choices, gives examples of how the technologies were used and describes
the measures that were undertaken to verify the functionality.

1.1 Glossary
DeCon Detection Containers
Testos Test Tool Set platform developed at FIT BUT [22]

db-detectors Database detectors by Marek Ochodek [14]
db-reporter Database reporter by František Kropáč [10]

API Application programming interface, see Section 2.4
Configuration (DeCon) Entity based on which jobs are spawned

Job (DeCon) Entity holding information about application run

6

Chapter 2

Background

In this chapter, the author describes basic concepts of virtualization while highlighting its
modern-day usage in enterprise solutions. Specifically, author tries to present an ecosystem-
wide overview of the Docker platform while noting differences between the implementations
across different operating systems. Author views these topics as important to this thesis
subject.

Description of virtualization in comparison to containerization in Section 2.1 is needed to
convince the reader of the importance of containerization today’s application development
and deployment. Section 2.2 deals with Docker description and its technical implementa-
tion. Docker’s cross-platform implementation similarities and differences provide a view
into possible future integration over different platforms. HTTP protocol is outlined in Sec-
tion 2.3. Section 2.4 deals with web APIs and tries to briefly describe the basics of these
omnipresent technologies, while underpinning the fundamentals for understanding the inner
workings of DeCon. Service-oriented architecture and microservices in Section 2.5 help to
understand design principles and choices that have been made when designing DeCon.

2.1 Virtualization
Virtualization is a process of running a virtual instance of a computer system in a layer
abstracted from an actual hardware [15]. It is commonly used for running multiple simulated
and isolated environments on a single system. Three main types of virtualization are:

∙ full virtualization

∙ paravirtualization

∙ operating-system-level virtualization

2.1.1 Full Virtualization

In case of full virtualization, a virtual machine1(VM) simulates enough hardware to allow
for running the operating system inside the VM [26].

A hypervisor (or a virtual machine monitor – VMM) [16, pg. 413] is used to provide
a layer between the host and guest environments and connection to the actual hardware
via the host system. Hypervisor is responsible for creating and running virtual machines.

1Emulation of a computer system.

7

SystemSystem

Virtual machineVirtual machine

Application #2Application #2

Guest Operating
System

Guest Operating
System

Virtual machine

Application #2

Guest Operating
System

Virtual machineVirtual machine

Application #1Application #1

Guest Operating
System

Guest Operating
System

Virtual machine

Application #1

Guest Operating
System

Hypervisor

Hardware

(a) Bare-metal

SystemSystem

Virtual machineVirtual machine

Application #2Application #2

Guest Operating
System

Guest Operating
System

Virtual machine

Application #2

Guest Operating
System

Virtual machineVirtual machine

Application #1Application #1

Guest Operating
System

Guest Operating
System

Virtual machine

Application #1

Guest Operating
System

Hypervisor

Host Operating System

Hardware

(b) Hosted

Figure 2.1: Comparison of hypervisor types

Any program or operating system running inside a VM should exhibit the same behavior
as if it was run on the native system and given the same system resources [16, pg. 413].
Hypervisors, as shown in Figure 2.1, can be classified into two types [16]:

∙ Type-1 – native hypervisors
This type of hypervisors (also called bare-metal hypervisors) runs directly on the
host’s hardware, meaning that instructions are executed without any dependency on
the host OS; thus minimizing a potential attack surface. Examples include: Microsoft
Hyper-V2, VMware ESX/ESXi3, Xen4, XboX One system software5 etc.

∙ Type-2 – hosted hypervisors
Hypervisors of this type use the host operating system to execute instructions; there-
fore degrading the guest system performance by introducing latency caused by in-
struction interpretation. This type is also vulnerable to threats caused by security
issues of the host system. Examples of Type-2 hypervisors: VMware Workstation6,
VirtualBox7, QEMU8, bhyve9, KVM10 etc.

Virtualization enables many use-cases with which a regular user comes into contact
without even realizing. With the emergence of cloud computing, which builds upon securely
isolated environments sharing the same hardware, virtualization became a focus point from
security and performance perspectives.

2https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
3https://www.vmware.com/cz/products/esxi-and-esx.html
4https://xenproject.org/
5https://www.xbox.com
6https://www.vmware.com/cz/products/workstation-pro.html
7https://www.virtualbox.org/
8https://www.qemu.org/
9http://bhyve.org/

10https://www.linux-kvm.org/page/Main_Page

8

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.vmware.com/cz/products/esxi-and-esx.html
https://xenproject.org/
https://www.xbox.com
https://www.vmware.com/cz/products/workstation-pro.html
https://www.virtualbox.org/
https://www.qemu.org/
http://bhyve.org/
https://www.linux-kvm.org/page/Main_Page

Cloud computing technology is built around features of virtualization [28]. Platform as
a Service (PaaS) model utilizes this technology to run client-provided applications on a ven-
dor’s virtualized platform. Similarly, Infrastructure as a Service (IaaS) model lets clients
manage an operating system running inside a virtual machine. PaaS and IaaS services are
provided by many enterprise vendors such as: Amazon (AWS), Microsoft (Azure) or Google.
The model known as Software as a Service (SaaS) provides the whole package (infrastruc-
ture, platform and software) as a cloud service. Regular users may come across SaaS when
using cloud storage services, such as Dropbox11 or cloud-enabled software applications like
Office 36512 or Google Suite13.

Paravirtualization is a technique that aims to improve performance and efficiency
compared to full virtualization by modifying the guest OS kernel to replace non-virtualizable
instructions with calls communicating directly with the hypervisors’ virtualization layer
[23, pg. 5]. Figure 2.2 outlines the system architecture with multiple paravirtualized guest
systems. For example the Xen project hypervisor supports paravirtualized Linux kernel
apart from supporting full virtualization.

SystemSystem

Virtual machineVirtual machine

Application #2Application #2

Modified Guest
Operating System

Modified Guest
Operating System

Virtual machine

Application #2

Modified Guest
Operating System

Virtual machineVirtual machine

Application #1Application #1

Modified Guest
Operating System

Modified Guest
Operating System

Virtual machine

Application #1

Modified Guest
Operating System

Hypervisor

Host Operating System

Hardware

Figure 2.2: Paravirtualization

2.1.2 Containerization

Containerization or operating-system-level virtualization is a feature of operating system’s
kernel that allows for existence of multiple isolated user spaces [24], see Figure 2.3. A con-
tainer is then an isolated user space, which shares the host operating system’s kernel but
has a restricted access to the resources of that host. Advantages of containerization in
comparison to full virtualization are [2, pg. 2]:

∙ slimness – container does not include the OS, so it offers a higher environment density

∙ quick start – since containers share kernel with the host system, no booting is required

∙ performance – sharing kernel gives containers performance of a native application

11https://www.dropbox.com/
12https://www.office.com/
13https://gsuite.google.com/

9

https://www.dropbox.com/
https://www.office.com/
https://gsuite.google.com/

SystemSystem

Containerization Platform

Host Operating System

Hardware

Application #1 Application #2

Figure 2.3: Containerization

However, the main concern with containers is their security, since sharing kernel with
the host system may allow an attacker to gain access or compromise the system from inside
the container using a security issue inside the shared kernel [2]. An another disadvantage
also comes from sharing the kernel – containers cannot run applications which are not
compatible with the host kernel.

Containers’ primary use-case is to create and deploy lightweight encapsulated environ-
ments that are independent of the host system configuration or currently installed libraries
and versions. Also, resource allocation and management can be easier with containers
compared to VMs [27, pg. 5]. Over the years many containerization solutions have been
released. Those released include:

∙ chroot14 (1982) (change root) is a command on UNIX systems that allows for changing
root directory for the current process and its children.

∙ FreeBSD jail15 (2000) improves upon chroot by providing virtualized access to the
file system, users and networking. Jailed processes cannot break free on their own,
however an unprivileged user on the host can in cooperation with the jailed user can
obtain elevated access in the host environment.

∙ OpenVZ16 (2005) is a containerization technology that focuses on sharing resources of
a physical server across multiple isolated environments called Virtual Private Servers
or Virtual Environments.

∙ LXC17 (2008) (Linux Containers) and its wrapper LXD are technologies for creating
and managing isolated environments – containers. Prior to Docker v0.9 it was used as
and underlying container management technology but since was replaced by Docker’s
own runc18 project.

14http://man7.org/linux/man-pages/man2/chroot.2.html
15https://www.freebsd.org/doc/handbook/jails.html
16https://openvz.org/
17https://linuxcontainers.org/
18https://github.com/opencontainers/runc

10

http://man7.org/linux/man-pages/man2/chroot.2.html
https://www.freebsd.org/doc/handbook/jails.html
https://openvz.org/
https://linuxcontainers.org/
https://github.com/opencontainers/runc

∙ Docker19 (2013) aims to provide a high-level solution for mainly application con-
tainerization targeted at developers and DevOps. Unlike other competitors, Docker
is available across multiple platforms (Linux, FreeBSD, Windows, macOS). Further
description and technical overview is available in Section 2.2.

∙ rkt20 (2014) (Rocket) is a competing solution to Docker, which hopes to solve Docker’s
privilege issues (Docker Engine runs as the root user) by allowing for more control
by an unprivileged user, as well as image signing by default. Rocket is also able to
fetch, convert and execute existing Docker images.

The aforementioned technologies by themselves only aim at running containers on a sin-
gle physical machine and not deploying and running them across compute clusters consisting
of multiple nodes. This issue is solved by orchestration which aims to abstract the host
infrastructure and make deploying to a cluster environment transparent to users [4]. Nodes
across the cluster are managed by the scheduler, which orchestrates the whole cluster as
shown in Figure 2.4. Container orchestration is a process that automates deployment,
management, scaling, networking, and availability of container-based applications.

OrchestratorOrchestrator

Scheduler

ClusterCluster

Node #1 Node #2 Node #3

Figure 2.4: Orchestration

Orchestration solutions include:

∙ Docker Swarm21 – a native Docker solution for managing container deployments to
clusters. Each machine inside a cluster hosts a full Docker Engine which is controlled
from a swarm manager.

∙ Kubernetes22 – originally a Google project aimed at providing a platform for au-
tomating deployment and scaling of containers. Kubernetes can be integrated with
Docker containers by overriding the default Docker orchestrator – Docker Swarm.

∙ Amazon ECS23 (Elastic Container Service) – a scalable, high-performance orches-
tration service for Docker containers available on Amazon’s own cloud computing
platform AWS (Amazon Web Services).

19https://www.docker.com/
20https://coreos.com/rkt/
21https://docs.docker.com/engine/swarm/
22https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
23https://aws.amazon.com/ecs/

11

https://www.docker.com/
https://coreos.com/rkt/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://aws.amazon.com/ecs/

2.2 Docker Platform
Docker is a software tool for creating and managing containers24. In contrast to full vir-
tualization, Docker performs virtualization on the operating system level, meaning that all
containers share the same operating system kernel. Docker as a tool was first released in
2013. It is commonly used in conjunction with orchestration tools, such as Docker’s own
Swarm tool or Kubernetes.

2.2.1 System overview

Docker as a platform is composed of three integral components: client, host and registry.
Figure 2.5 illustrates the interaction between these components. Docker Engine (also Docker
Daemon) is the backbone of Docker, it manages all images and containers related operations.
Docker Engine can pull remote images from a registry and run them locally or used them
to create new user-defined images. Clients connect to Docker Engine via the provided API.

A Docker image is a template for instantiating containers. Given image is either pulled
from a registry or can be built by specifying a Dockerfile. A Docker container is an instance
of an image, which can be started and managed. Container management is performed via
a Docker command-line interface (CLI) or an application programming interface (API). In
its default configuration25 all changes made to the container during runtime are lost upon
container removal. The isolation level can be changed, so that network connections and/or
sharing files with the host system is enabled. Container outputs (standard output and
standard error) are stored to logs via a logging driver which determines a storage method.

Figure 2.5: Docker overview, source: [5]

Dockerfile is a text file which defines instructions to be executed against a parent image.
Instructions provided extend the parent image. Each instruction represents a layer. Layers
are read-only (during runtime) except the last one which is called container layer. An
example of the layer system in Docker is demonstrated in Figure 2.6. This layer is write-
enabled – it stores all the changes made during container runtime.

24https://www.docker.com/
25A volume can mounted, then files in the volume are shared between the host and the container.

12

https://www.docker.com/

Dockerfile must specify either an entry point (a program or a script that will be always
executed by run or start command) or the cmd instruction which can be used for specifying
entry point arguments and also for setting an overridable entry point26.

Figure 2.6: Container layers, source: [6]

If an image has no parent image then it is called a base image. Unlike base images,
parent images are distinguished by having FROM directive in their own Dockerfile.

2.2.2 Technical overview

Docker uses a number of technologies to deliver containerization features across multiple
platforms. As depicted in Figure 2.7, on Linux-based systems Docker Engine uses runc27 to
spawn and run containers in accordance with the Open Containers Initiative (OCI) stan-
dard. Container management is done through containerd28, which handles image opera-
tions, storage and network management. These tools enable cross-platform and cross-engine
container compatibility. In the past, Linux Containers (LXC) were used for container man-
agement (prior to the release of Docker v0.9). In case of Linux-based systems, Docker uses
many kernel features such as these:

∙ namespaces – encapsulates a global system resource in a way that is invisible to
a process within the namespace. Namespaces used by Docker Engine:

– pid – process isolation
– net – networking
– ipc – interprocess communication
– mnt – mount points
– uts – Unix Timesharing System – isolation of kernel and version identifiers

26Overriding can be performed for example with run command.
27https://github.com/opencontainers/runc
28https://containerd.io/

13

https://github.com/opencontainers/runc
https://containerd.io/

∙ cgroups – a feature that organizes processes into hierarchical groups allowing for
hardware resource management (e.g., memory and CPU usage)

∙ UnionFS variants – union mount file systems enable image layering by presenting mul-
tiple file systems as one virtual directory (e.g., AUFS ’ branches translate to Docker’s
layers). Docker can use multiple different storage drivers, such as AUFS, btrfs, vfs or
DeviceMapper. These drivers use stackable image layers and copy-on-write technique.

Docker Client Docker Compose Docker Registry Docker Swarm

Docker Engine

REST API

libcontainerd libnetwork graphplugins

Operating System

Other OS parts
Control Groups

(cgroups)

Namespaces
(pid, net, ipc, mnt, uts)

Layering
(UnionFS variants)

containerd + runc

Figure 2.7: Docker architecture on Linux

2.2.3 Docker security

Security in the Docker ecosystem is important in order to prevent attackers from gaining
control or damaging the host system from inside the container. On Linux-based systems
security can be hardened using Linux Security Modules (LSM) [2]. Docker supports Ap-
pArmor and SELinux LSMs which both provide Mandatory Access Control (MAC).

MAC is an access control system where access to all resource objects is mandated by
a central authority – system administrator – and cannot be overridden, unlike in Discre-
tionary Access Control (DAC), where access permissions can be changed by users.

SELinux29 (Security-Enhanced Linux) is originally a US National Security Agency
(NSA) project which was later picked up by the SELinux community. Access control is
implemented via labels which are present on every system object (e.g., file, directory, pro-
cess). The role of system administrator is then to define associations between processes and
system objects.

The relationship between Docker and SELinux revolves around securing isolation be-
tween containers and isolation from the host. SELinux’s Type Enforcement rules are based
on a process type label, which restricts read/write operations on some system objects inside

29https://selinuxproject.org/page/Main_Page

14

https://selinuxproject.org/page/Main_Page

containers. Other SELinux feature used by Docker is Multi-Category Security (MCS) en-
forcement which is able to isolate containers from each other by creating unique container
identifier on startup.

AppArmor30 is an LSM that uses MAC system to restrict program’s access to re-
sources. It is currently maintained by Canonical.

Unlike SELinux which uses labels, AppArmor’s behavior is defined by profiles, which
limit process capabilities. AppArmor supports two modes of behavior: complain and en-
forcement. In the complain mode, all policy violations are permitted but also logged. In
contrast, the enforcement mode prohibits these violations. The complain mode can be used
for defining new or customizing existing profiles [2, pg. 6]. Docker uses AppArmor to deny
access to key parts of the host kernel. If no profile is specified, Docker uses its default
profile.

Capabilities on Linux provide a fine-grained control over permissions; thus eliminating
the need for the root user in cases where only a specific subset of permissions is needed.
Capabilities are a per-thread attribute. Some of the capabilities are:

∙ NET_ADMIN – network administration

∙ SYS_ADMIN – system administration

∙ SYS_TIME – time manipulation

∙ WAKE_ALARM – system wake up
Capabilities can be used with Docker to give containers additional permissions. When

privileged flag is supplied to docker run command, container will run in privileged mode,
which gives it by default number of capabilities (SETPCAP, AUDIT_WRITE, NET_RAW, KILL etc).
Additional capabilities can be provided by cap-add and dropped by cap-drop as seen in
Listing 2.1.

$ docker run --cap-add=ALL --cap-drop=MKNOD ...

Listing 2.1: Example of run command with capabilities

Docker Registry31 is a scalable server-side application which hosts and enables dis-
tribution of Docker images. The Docker ecosystem has its own public registry – Docker
Hub32 – which hosts many33 official images from authors themselves. Registries can also
be hosted on private servers.

Docker Machine34 is a part of the Docker ecosystem that allows for Docker Engine
hosts management. It is used for provisioning Docker hosts on remote systems (installing
Docker Engine, configuring client etc.). Alternatively, it can serve as a way to run Docker
Engine on non-compatible Windows and MacOS versions, which was in the past the only
way to run Docker on non-Linux operating systems.

2.2.4 Interfaces

Docker Engine API (also called Docker REST API and Docker Remote API) exposes the
Docker Engine functionality via HTTP based API as shown in Figure 2.8. On top of the

30https://gitlab.com/apparmor/apparmor/wikis/home/
31https://docs.docker.com/registry/
32https://hub.docker.com/
33For example: Ubuntu, MySql, NGINX, MongoDB, NodeJS
34https://docs.docker.com/machine/overview/

15

https://gitlab.com/apparmor/apparmor/wikis/home/
https://docs.docker.com/registry/
https://hub.docker.com/
https://docs.docker.com/machine/overview/

Engine API Docker provides a command-line interface which serves as a wrapper of the
API calls. Most of the command-line calls map directly to the API ones, with exception of
docker run command which consists of create and start API calls. Listings 2.2 and 2.3
depict a difference between these types of calls35.

Figure 2.8: Docker components, source: [5]

$ docker build . -t api
$ docker run api

Listing 2.2: Docker’s command-line interface

POST /build
POST /containers/create
POST /containers/start

Listing 2.3: Docker’s HTTP interface

Docker Compose36 is a tool in the Docker ecosystem for creating and managing
multi-container environments. Definition of the composure is done by specifying a YAML
file docker-compose.yml, example of which can be seen Listing 2.4. A Dockerfile usually
contains list of services, volumes and networks and their respective configurations. Services
can specify features such as port exposures, dependency on other services37, commands
to be executed etc. Docker Compose is typically used to host web applications with their
databases. In such environment one container hosts the web application and the second one
is used for a database management system (DBMS). These two are by default connected
to their internal network, on which both can be accessed by their respective service names
(e.g., mongodb://mongodb:27017).

35It should be noted that command-line interface also has the create and start commands.
36https://docs.docker.com/compose/overview/
37Dependency ensures the startup order of services, however does not wait for the actual service to be

ready.

16

https://docs.docker.com/compose/overview/

version: "3"
services:

web:
build: .
ports:

- ’${WEB_PORT}:8080’
depends_on:

- db
db:

image: mongodb

Listing 2.4: Dockerfile example

2.2.5 Docker on Windows

Docker on Windows (DoW) can run both native Windows containers and Linux containers.
Each of these types has its specifics and can use multiple technologies to achieve the desired
level isolation and performance.

Windows containers can be categorized by their level of isolation. First type is Windows
Server Containers which architecturally resembles container technology present on Linux-
based systems. As a replacement for containerd and runc, Windows implements Hosted
Compute Service (HCS) for low-level container manipulation (Figure 2.9). HCS is also able
to create Hyper-V isolated containers [20].

Docker Client Docker Compose Docker Registry Docker Swarm

Docker Engine

REST API

libcontainerd libnetwork graphplugins

Operating System

Host Compute Service

Other OS parts
Control Groups

(Job Objects)

Namespaces
(Object Namespace, Process

Table, Networking)

Layering
(Registry, UnionFS-like

extensions)

containerd + runhcs

Figure 2.9: Docker architecture running natively on Windows

Unlike Windows Server Containers, the second type – Hyper-V isolation – runs contain-
ers inside a virtual machine; therefore gaining security benefits of a virtual machine, while
still retaining some advantages of containers.

Windows containers are based on the Nano Server or Server Core images. Both images
are derivatives of the Windows Server operating system, though Nano Server is much more
slimmed-downed version, claiming 93 % lower virtual hard-disk size and 80 % fewer reboots
than Server Core [21].

17

Docker on Windows is also capable of running Linux containers. This is beneficial in
cases when users want to use38 Docker inside Windows Subsystem for Linux39, which at
the moment does not natively support Docker. The only way is to connect a Docker client
to the Docker on Windows via an HTTP bridge.

Linux containers can run on Windows in two different ways [3]. First of them consists
of having a full Moby virtual machine (Docker’s own virtual machine inside Hyper-V, i.e.
Linux container host) whose kernel is shared with all Linux containers. In this mode only
a chosen type of containers can be run at the same time and a reconfiguration is needed to
switch between Linux and Windows containers.

For use-cases when Windows and Linux containers need to run at the same time or
Hyper-V isolation is needed between the individual Linux containers (and not only on the
Linux container host level), users can choose to enable experimental feature (as of Spring
2019) to run Linux containers directly without Moby VM, as shown in Figure 2.10. This
feature is called Linux containers on Windows (LCOW).

Windows Container Host

Docker Client

Docker Engine

Windows Kernel

Docker Client
Docker Client

Windows Container

LCOW with Hyper-V

gRPC

Linux Kernel

Linux Container

Hypervisor

Figure 2.10: DoW concurrently running Windows and Linux containers using Hyper-V

This approach spawns a new Hyper-V isolated environment for each container; thus
sandboxing the container inside its own virtual machine. A Linux kernel with minimal
dependencies is present inside the VM, which performs container management via receiv-
ing calls through gRPC – a remote procedure call framework40. The embedded Linux
distribution is built using LinuxKit41.

38Most of DeCon was developed using Docker on Windows.
39https://docs.microsoft.com/en-us/windows/wsl/about
40https://grpc.io/
41https://github.com/linuxkit/linuxkit

18

https://docs.microsoft.com/en-us/windows/wsl/about
https://grpc.io/
https://github.com/linuxkit/linuxkit

2.2.6 Docker on MacOS

Similar to Windows, Docker for Mac uses virtualization to run Linux containers. In case
of MacOS, Docker includes its own hosted hypervisor Hyperkit42, which is based on bhyve
– a BSD hypervisor43. The distribution of Linux inside the virtual machine is also based
on LinuxKit.

2.3 Hypertext Transfer Protocol
Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, col-
laborative, hypermedia information systems [8].

HTTP is a stateless protocol running in a client-server model. Requests made by clients
are processed and responses are sent by servers. Each request has to adhere to the format
specified by the HTTP standard [8, pg. 35]. A request is composed of a request-line (HTTP
method, URI of the resource and HTTP version), headers, an empty line and an optional
message body. Listing 2.5 shows an example of such request. An HTTP method indicates
the desired action to be performed for a given request. Table 2.1 depicts an example of
HTTP methods mapping to the CRUD44 operations.

HTTP method CRUD operation
GET Read resource
POST Create resource
PUT Update/replace (complete resource needed)
PATCH Update/modify (only changes required)

Table 2.1: Example of HTTP methods mapping to CRUD

POST /api/values HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
Host: www.testos.org
Content-Type: application/x-www-form-urlencoded
Content-Length: length
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

name=John&surname=Doe

Listing 2.5: Example of an HTTP request

Each response contains a status-line (HTTP version, HTTP status code and reason
phrase) followed by zero or more headers, an empty line and an optional message body
(Listing 2.6). A status code, a three digit number, indicates the outcome of the request
and can be categorized into 5 groups: informational, success, redirection, client error and
server error. Reason phrases give human-understandable information about status codes,
for example: 200 – OK, 404 – Not Found.

42https://github.com/moby/hyperkit
43http://bhyve.org/
44CRUD – Create, Read, Update, Delete – basic operations with a resource.

19

https://github.com/moby/hyperkit
http://bhyve.org/

HTTP/1.1 404 Not Found
Date: Fri, 10 May 2019 23:49:20 GMT
Server: Apache/2.4.39 (Win64)
Content-Length: 42
Connection: Closed
Content-Type: text/html; charset=iso-8859-2

Listing 2.6: Example of an HTTP response

2.4 Web APIs
Application programming interface (API) is a set of functions and procedures that allows
for accessing features of an operating system, application, service or a software library. In
a web environment, APIs can be used for manipulating documents, fetching data from the
server, manipulating graphics [12] etc.

Many web APIs adhere to principle of REST. Thus it is important to present an overview
of REST API principles, since this thesis deals with such APIs.

2.4.1 Representational state transfer

Representational state transfer (REST) is an architectural style that conforms to a set of
constraints [7, pg. 76–85]. These constraints are:

∙ Client-Server – separation of concerns, meaning that user interface can be decou-
pled from the data storage; therefore improving portability, scalability and enabling
independent redeployment of both components.

∙ Stateless – the client-server communication must be stateless – all data needed to
understand a request must be a part of the request and no communication context
can be stored on the server. Statelessness contributes to visibility (all data is in the
request), reliability (no state can be corrupted on the server) and scalability (server
does not need to keep any context for the individual clients).

∙ Cache – responses can be marked as cacheable or non-cacheable, so clients can reuse
responses for later equivalent requests. This results in an improvement in efficiency,
scalability and client performance.

∙ Uniform interface – uniformity of interfaces decouples implementations from the pro-
vided services. Such interface is defined by these constraints: resource identification
(e.g., URI system), resource manipulation through representations, self-descriptive
messages, hypermedia as the engine of application state (HATEOAS, dynamic dis-
coverability of links to other actions which hold contextual data – similar to links on
a website).

∙ Layered system – constraints of layered system enable for existence of network-based
intermediaries to be deployed between client and server in order to provide security,
caching or load balancing features.

∙ Code on demand – an optional constraint for extending functionality by executing
a downloaded code like Java applets or a JavaScript code.

20

Data elements of REST can be summarized to [7, pg. 89]:

∙ Resource – abstraction of information

∙ Resource identifier – typically a URL

∙ Resource metadata

∙ Representation – JSON, XML, HTML, JPEG etc.

∙ Representation metadata – content type, alternates

∙ Control data – usually HTTP headers

2.4.2 REST APIs

Web services can expose themselves through web APIs to clients. Web APIs that adhere
to the principles of REST are called REST APIs, then a web service with a REST API is
a RESTful service [11, pg. 6].

2.4.3 HTTP-based REST APIs

Though REST was outlined with web in mind, it is predominantly but not exclusively45

used with HTTP. HTTP offers features such as URIs, HTTP methods, caching headers that
directly map to properties of REST. Usage of HTTP with REST is based on conventions
and design guidelines [11].

2.5 Service-Oriented Architecture
Service-oriented architecture (SOA) is an approach to software application design [9]. In-
stead of developing single monolithic application, multiple smaller components are used to
achieve the same functionality. This improves maintainability and ensures better separation
of concerns when implemented correctly.

A common pattern in SOA is an enterprise service bus (ESB), which handles point-to-
point communication. ESBs attempt to decouple service from each other by a standardized
way of communication. ESBs are in nature similar to message buses such as D-Bus46 or
Testos Bus47. Data storage is usually shared between all services, which limits the scalability
of such storage.

SOA pattern is typically used in large enterprise solutions, where services can represent
whole legacy applications or in cases where monoliths cannot be split due to the existing
infrastructure.

2.5.1 Microservices

Microservices are a software development style for designing and running small loosely cou-
pled autonomous services with bounded contexts – domain boundaries. Richards [17] defines
microservices as a specific approach to the service-oriented architecture, because SOA in
general does not provide specifics on how to split services so that the outcome produces

45See https://github.com/swagger-api/swagger-socket
46https://www.freedesktop.org/wiki/Software/dbus/
47https://pajda.fit.vutbr.cz/testos/testos-bus

21

https://github.com/swagger-api/swagger-socket
https://www.freedesktop.org/wiki/Software/dbus/
https://pajda.fit.vutbr.cz/testos/testos-bus

desired benefits over a single monolithic application. In contrast to SOA, microservices
limit sharing of data storage. Microservices are usually smaller in size, compared to SOA
services. Main principles of microservices as stated by Newman [13, pg. 246]:

∙ hidden internal implementation details

∙ decentralized

∙ deployed independently

∙ failure isolation

∙ highly observable

∙ business concept as the focus point

∙ automation of tasks

Motivation for using microservices comes from the need for highly scalable and agile
infrastructure and development. Traditionally used monolithic approach to building ap-
plications is not suited for solving these issues. Scaling a monolithic application means
that the entire application host hardware needs to be scaled, while with microservices only
specific services could be scaled.

Another big concern with developing monoliths is their high-risk deployment. With
every code modification, the entire application has to be built, tested and then deployed.
Therefore if large applications are in question, this process can be time consuming; thus
reducing the ability to quickly iterate over new versions. Redeploying monolith also comes
with a risk of breaking the functionality since many changes are put into production at
once.

Deconstructing monolith into microservices also comes with the benefit that small de-
veloper teams can own the whole lifecycle (from development and testing to deploying) of
their service. Having small autonomous services also makes them immune to implementa-
tion changes in other services. Microservices usually do not make use of a shared codebase
as it is considered anti-pattern, since it creates a tight coupling among the services which
defeats the purpose of microservices. This also means that DRY 48 principle is not strictly
enforced across services.

Handling databases in microservices does not follow the same principles as in monolithic
applications. To ensure loose coupling, a shared database should not be used, as it couples
the connected services with current database schema and any change to the schema can
potentially break the services. Instead database-per-service pattern is more suitable and
better scalable [19], since many instances of the same service can be active at the same
time.

The absence of a shared database prohibits the ACID (Atomicity, Consistency, Isolation,
Durability) principles to be retained. This fact poses challenges summarized in Brewer’s
CAP theorem [1]:

∙ Consistency – consistency equivalent to having a single up-to-date copy of the data

∙ Availability – high availability of that data without guaranteeing that the information
is updated

48DRY – Don’t Repeat Yourself

22

∙ Partitions – tolerance to network partitions (delays or lost messages)

At most two of these properties can be applied to any distributed data system. In
microservices, high availability directly contradicts consistency (e.g., multiple services in-
volved in a transaction). Therefore eventual consistency is introduced, which provides
BASE semantics: Basically Available, Soft state, Eventual consistency. BASE consistency
is achieved via convergence that is usually implemented by data replication across the
services.

The use of technology-agnostic inter-service communication protocols (e.g., HTTP)
achieves decoupling any specific technology from the actual implementation. Language and
framework choice can vary service by service. By using different technologies, developers
can choose the one that the best.

By maintaining multiple small isolated services, errors and failures can be contained
in a way that no other services will be affected; therefore preventing cascade failures. Mi-
croservices on its own do not guarantee this feature but a proper robust design can help
with mitigating such system-wide failures. A technique of circuit breakers can be applied
to ”fail fast“ in case of repeated service failures so that failures do not cascade over to other
services [18].

In real life, microservices are used for variety of applications, ranging from e-shops to
on-demand video platforms, such as Netflix49. For implementing aforementioned features,
mainly scaling, orchestration tools like Kubernetes in conjunction with Docker can be used.

2.6 Testos
Testos (Test Tool Set) [22] is a platform developed in Faculty of Information Technology
at Brno University of Technology. Testos supports automation of software testing. Tools
within the platform (Fig. 2.11) combine different levels of testing (from unit to acceptance
testing) with different categories of testing, such as model-based testing, requirement-based
testing, GUI testing, data-based testing and execution-based testing with dynamic analysis.

Figure 2.11: Testos platform, source: [22]

49https://www.netflix.com/

23

https://www.netflix.com/

2.6.1 Database detectors

Database detectors or db-detectors is a tool for database content analysis authored by
Marek Ochodek [14]. The goal was to detect data restrictions in an already created re-
lational database by implementing a set of detectors for database exploration. Database
detectors communicate with the database reporter which orchestrates the process of detec-
tion. As stated by the author, its current implementation is limited by only one database
per program instance and suffers from poor error handling [14, pg. 33].

2.6.2 Database reporter

Database reporter or db-reporter a is tool for orchestrating database content analysis au-
thored by František Kropáč [10]. Reporter aimed to provide means to organize, schedule
and manage lifecycle of database detectors. Communication with the detectors is imple-
mented using D-Bus50 – a low level message bus. Kropáč states that the main shortcomings
are: limit to one database per instance and lack of code documentation [10, pg. 31].

50https://www.freedesktop.org/wiki/Software/dbus/

24

https://www.freedesktop.org/wiki/Software/dbus/

Chapter 3

Analysis and Design

Design process of any software product poses challenges, requiring a precise and concrete
analysis of existing solutions and requirements on the new solution. The need for analysis
is further accentuated in cases where the solution includes numerous interacting parts, such
as this thesis. In this chapter author attempts to offer an insight into the thought process
concerning the architecture of this system – DeCon.

3.1 Design Goals
The original purpose of DeCon was to containerize database detectors and reporter using
Docker containers. After discussions with the supervisor, the goal was extended to present
a user-friendly means of interacting with containers and include the ability to run arbitrary
command-line applications inside the containers. Author tried to follow design principles
of microservices and general rules concerning design and implementation of REST APIs,
so that the overall system adheres to the most recent trends in designing complex systems.

Since Testos is a collection of testing tools and, in the future, DeCon is expected to
containerize some of these tools, it seemed only logical to design DeCon in resemblance to
test cases and test runs. DeCon’s configurations are counterparts to test cases and jobs are
equivalent to test runs.

3.2 Target Product
The final product should be composed of multiple microservices that are, through a gateway,
accessible via a web API. This API will be consumed by a simple graphical user interface,
which should provide a user-friendly way to interact with DeCon. Users should be able
to start and manage jobs, review, filter and download logs. Publicly facing DeCon API
and the microservices should be designed without distinction between database detectors
and other command-line applications. The only specialized part for the detectors will be
the GUI, which should provide customizations to enable easier and more streamlined user
experience. No knowledge of Docker should be required for basic operations. However,
advanced users should be able to provide their own custom Dockerfiles. DeCon will adapt
to hosting scenarios (local hosting or public server) when appropriate startup flags are
specified.

25

3.3 Existing Solutions with Similar Functionality
Since DeCon builds on top of Docker, some similar solutions already exist. These solutions
focus on providing a user interface on top of Docker, which, in principle, share similar
functionalities with DeCon. However, it should be noted that DeCon is not merely a GUI
to Docker containers. Its backend architecture, test case-like job execution and customized
parsing are custom-tailored to the needs of Testos platform. In spite of this, author regards
mentioning these existing solutions as important.

3.3.1 Portainer

Portainer1 is an open-source Docker management tool available on Linux, Windows and
MacOS. It runs directly on top Docker Engine API and exposes the Docker functionality
through a graphical interface as shown in Figure 3.1. Portainer supports Docker features
such as networking, volumes, secrets, Swarm mode etc. Feature-wise it covers most of
Docker. Therefore users can mostly avoid the command-line interface.

Figure 3.1: Container management in Portainer

3.3.2 Kitematic

Kitematic2 is an open-source container management tool acquired by Docker. This solution
focuses solely on container management. Unlike Portainer, it offers a greatly simplified user
interface (Figure 3.2). Thus it loses some of the functionality of Portainer, but it makes
the user experience easier for users with no previous experience with the Docker platform.

1https://www.portainer.io/
2https://kitematic.com/

26

https://www.portainer.io/
https://kitematic.com/

Figure 3.2: Kitematic’s container output

3.4 Requirements
Many of the requirements were outlined prior to design and implementation of DeCon. From
these requirements a detailed analysis was conducted. Both functional3 and non-functional4
requirements were specified.

Identifier Name Category
req_auth Token based authorization Security
Authorization will be token based.
req_logging Logging Reliability
Relevant information and exceptions will be logged.
req_code_style Code style consistency Code
Code style will be consistent and will adhere to language specifics.
req_code_doc Code documentation Code
Code will be documented in a way usual for the given programming language.
req_testing Testing Code
Testing will be done where deemed necessary.
req_unit_tests Unit tests Code
Key parts of the codebase will be covered by unit tests.
req_integration_tests Integration tests Code
Testing across services will be performed.
req_code_struct Code structure Code
Code will be structured in a clear and easy to understand way.
req_code_patterns Design patterns Code

3Requirements describing actual system behavior or features.
4Requirements defining general system characteristics.

27

Services will use well-known design patterns where applicable.
req_request_time Fast request response Performance
No request will take longer than it is needed for the relevant response to be returned.
req_parallel_jobs Parallel jobs Performance
Multiple command-line application can run at the same time.
req_log_persistence Job output persistence Reliability
Output produced by the command-line applications has to persist Docker cache,
container and images wipes.
req_install_instructions Install and run instructions Documentation
Clear and concise instructions will be given on how to run DeCon.
req_http HTTP communication Interoperability
All web APIs will be HTTP based.
req_portability Platform independence Portability
All services should be platform independent.
req_api_gui GUI and API Functionality
DeCon will provide both an API and a GUI to manage jobs.
req_job_configurations Job configurations Functionality
Configurations will hold general information about the command-line applications.
req_mounting Mounting Functionality
Additional folder/file can be mounted for application to access.
req_locking Lock mode Functionality
Configuration editing could be disabled by an option for demo purposes.
req_arbitrary_cli Arbitrary applications Functionality
DeCon will be able to run both database detectors and any arbitrary command-
line application
req_gui_export_import Session state export/import Functionality
State of user’s session can be exported to a file and imported back.
req_cli_specialization Specializations in GUI Functionality
Only the GUI will include features specific to the detectors, other components will
make no distinction between detectors and any other command-line application.
req_percentage_report Progress reporting Functionality
Command-line applications can report their progress by sending messages in a
specified format.
req_detectors_output Parsed output of detectors Functionality
Output from the detectors will be parsed and presented in a clear and understand-
able way.
req_containers Docker containers Functionality
Docker containers will be used for service containerization.

Table 3.1: Requirements

28

3.5 Architecture
Given the requirements imposed on the final product, it was clear from the initial design
phase that it would be impractical to develop DeCon as a monolithic application. This
emerges primarily from the following reasons:

∙ having both command-line and graphical interface inside any monolith could result
in an inconsistent behavior

∙ applications that have long execution time (or indefinite) would be unmaintainable
in a monolithic web application – a background service is needed

∙ combining different technologies and frameworks would be hard to achieve

Instead, DeCon was designed as a set of services running inside Docker containers.
Service-oriented architecture was considered and at one point even partially implemented.
SOA solution would split the system into a few separate services; thus resolving the afore-
mentioned issues of a monolithic approach. However, for the actual implementation, mi-
croservices were chosen as a result of certain later identified key disadvantages of the SOA
approach. These included insufficient service granularity and public/private service separa-
tion. Facing the requirements in question, the following advantages offered by microservices
are of great importance:

∙ separation to small independent units that are easier to containerize and orchestrate
via Kubernetes or similar tools

∙ communication between services is encouraged to be simple, usually using HTTP-
based REST APIs

∙ adding and testing new features, as they are conceived, is a relatively low-risk opera-
tion in terms of impact on other services

In practical applications, correct data separation in microservices might prove difficult,
as data are usually stored in databases. As mentioned in Section 2.5.1, sharing databases
between multiple microservices could be considered an anti-pattern, since database creates
a dependency between services and a possible single point of failure. In order to mitigate
these hazards, DeCon uses one database per service. However, this introduces problems
of eventual consistency, that have to be managed manually5 by making calls to related
services. Advantages of this approach are mainly in better separation, ability to change
database schemas independently and distribute the load more evenly, since database does
not have to bear the load of multiple services. This is greatly beneficial in cases where
services sharing the databases are heavily loaded with incoming traffic.

Communication between services is implemented by HTTP REST APIs (req_http).
HTTP was chosen for its ubiquity and support by application frameworks. Since HTTP
usually6 runs on TCP/IP protocol, communication is considered reliable on the packet
level. Communication however can fail when one or more services go offline. In these
circumstances, DeCon availability will be affected, however, where possible, system will
apply appropriate measures (job timeout, optimistic container killing – when not sure,

5See Section 3.5.2, deletion of a configuration has to trigger cascade deletion of jobs.
6See HTTP/3 over QUIC https://http3-explained.haxx.se/en/h3.html

29

https://http3-explained.haxx.se/en/h3.html

DeCon will attempt to kill the container, even when host system was restarted and no such
container exists) to eventually achieve consistency.

All services are designed with portability in mind (req_portability), so all of them
should be able to run under any supported operating system7. Since Docker is supported
on all mainstream OS types (Windows, Linux, MacOS), DeCon can be run on any of these
systems. However, it should be noted that inconsistencies8 exist across Docker implemen-
tations.

When dealing with authentication and authorization in applications where the end
user is expected to be either developer (self-hosted scenario) or a team member (hosted
scenario), it is important consider the obtrusiveness of the authentication and authorization
process, since introducing a complex authentication and authorization system could prove
as redundant. In accordance with the requirement (req_auth), authorization will be token
based, meaning that only an unguessable universally unique identifier (UUID) will be used.
The knowledge of the token will authorize users to perform any action allowed given the
current DeCon configuration (e.g. modifiability of job configurations). Authentication on
the API is not present, only in the case of web application, browser’s local storage is used
to store known job and configuration identifiers/tokens.

It is important to mention why author chose not to use native Docker logs and instead
resolved to sending the outputs via HTTP directly to a DeCon service. The reasons for
doing so were:

∙ native logs and status (see docker inspect) retrieval is request based
Given that a container would be started, no subsequent status request would be made
and container would be deleted, all logs would be lost, since they were present only
in Docker. Having a wrapping application that listens for the outputs and actively
streams data back to a DeCon service ensures that data are stored in a permanent
storage almost immediately.

∙ every request for a job status would result in a call to Docker for new logs
Calling Docker with every request (especially when the GUI or large number of clients
would make frequent requests) could cause noticeably load on Docker Engine. By
sending the output data, as they are captured, to a DeCon service, Docker is spared
the load. Under this architecture the service has to only retrieve logs from its database.

As for regular logging of events and errors from DeCon services, author also chose to
implement custom logging mechanisms. The reasons for custom logging were mainly:

∙ different technologies used across services
Having a diverse set of technologies used in DeCon and not having single point for
logging, would greatly increase difficulty of searching the logs.

∙ lack of a standard log format
As mentioned in the first point, diverse technologies produce different log formats,
which would further decrease searchability of the logs.

7Supported operating system of the multi-platform framework.
8For example DNS record for the host system differs, however future versions of Docker are expected to

fix this issue.

30

∙ inconsistent for custom logging attributes
Having custom logging attributes can help services to determine whether any errors
occurred during the job execution.

When designing DeCon an important choice had to be made – where to differentiate
between generalization and specialization in terms of database detectors. According to the
requirement (req_cli_specialization) a choice was made to specialize only in GUI. The
differences between detectors and any other command-line application are in the means
of data input and presentation, namely to what extent the inputs and outputs are user-
friendly. The rest of the process of managing jobs is identical, therefore it was decided to
keep the specializations in the GUI. In the future, if DeCon would integrate other Testos
tools, having a generalized backend infrastructure might prove helpful to avoid unnecessary
issues.

DeCon components (Fig. 3.3)

∙ Gateway – public endpoint

∙ Job service – handling jobs and their lifecycle

∙ Configuration service – managing configurations

∙ Logging service – log storage and retrieval

∙ Application wrapper – capturing output from the command-line application

∙ Docker service – wrapper around Docker commands specific for DeCon

∙ Web application (the GUI) – user interface for managing DeCon

Private Docker Network

DB

DBTXT

Private Docker Network

DB

DBTXT

Docker ServiceDocker Service

Configuration ServiceConfiguration Service

Job ServiceJob ServiceWeb ApplicationWeb Application

GatewayGateway Logging ServiceLogging Service

Any Client ApplicationAny Client Application

DB

Application WrapperApplication WrapperApplication WrapperApplication WrapperApplication WrapperApplication Wrapper

Figure 3.3: DeCon architecture

31

Name URL HTTP method
Create a configuration /configuration/ POST
From the passed model a new configuration will be created.
Get a configuration /configuration/{token} GET
Configuration with a matching token will be returned.
Update a configuration /configuration/{token} PUT
Configuration with a matching token will be updated.
Delete a configuration /configuration/{token} DELETE
Configuration with a matching token will be deleted along with all associated jobs.
Start a job /job/ POST
Job will be created and started according to the passed model.
Get a job /job/{token} GET
Job with a matching token will be returned.
Delete a job /job/{token} DELETE
Job with a matching token will be deleted.
Kill a job /job/kill/{token} GET
Job with a matching token will be killed, if it is running.
Get status of a job /job/status/{token} GET
Status information about a job matching the token will be returned.
Configuration modifiability /modifiable GET
Returns a boolean value depending on whether configurations can be modified.

Table 3.2: Gateway actions

3.5.1 Gateway

Gateway is the only publicly accessible API. Its role is to abstract internal API calls which
may or may not directly 1:1 to the public ones. The available actions/calls are listed in
Table 3.2. Having the API as the singular point for public access also simplifies access
control, since private actions are simply not exposed through Gateway. It interacts with
Job and Configuration services, depending on the type of request. Logging information are
sent to Logging service for further processing.

To be able to run DeCon on a production server or in a public demonstration environ-
ment, DeCon has to mitigate the threat of remote code execution, because by giving users
access to any executable present on the host system, while having an internet connection,
would effectively open the container and the host system to any malevolent entity. The
danger lies in the users’ ability to add new configurations; thus toggleability of this feature
is required (req_locking). Since this is a purely permission related issue, it is a part of
Gateway.

3.5.2 Configuration service

Configuration service handles retrieving and managing configurations – templates from
which jobs are spawned (req_job_configurations). Configuration is identified by its
unique name. Optionally a mount to a directory or a file can be specified (req_mounting).
Mounting is done via Docker Volumes. Deleting a configuration will cause a call to Job

32

Name URL HTTP method
Create a configuration / POST
Get a configuration /{token} GET
Update a configuration /{token} PUT
Delete a configuration /{token} DELETE

Table 3.3: Configuration service actions

service for all jobs created from this configuration and then another call for deleting them
along with this configuration. Table 3.3 shows actions of this service.

Configuration attributes

∙ Name – unique configuration name

∙ FilePath – path to the executable

∙ WorkingDirectory – working directory of the executable

∙ Mount – file or directory that will be mounted to /app/mount

∙ Dockerfile – optional, path to a Dockerfile for installing dependencies

∙ ContainerPort – port inside the container which will be exposed

∙ JobTimeout – timeout after which job (without any activity for that amount time)
will be killed

DeCon can optionally expose a port from the container to the host system. This can
enable usecases where the command-line application would be accessible from the host
system and act as a server. When creating a configuration, the port can be specified to
indicate which port from the container will be exposed. Mapping of this port to the host
is individually specified when creating jobs. However, it should be noted, when an already
used port is specified, job will fail to start. This can be avoided by setting the port to 0 (or
null) thus Docker will pick any port available, then the actual port is updated on the job
entity. If no port is specified with the configuration, container will not be exposed.

Job timeouts are essential when dealing with potentially unstable applications that could
cause unwanted resource consumption due to hangups. By default, job will be killed after
900 seconds of no standard output and error activity. This can be configured by specifying
the timeout when creating new configurations. If timeout 0 is entered, no timeout will be
applied. This feature is handled at Configuration service level, since it is expected that this
setting is the same for all jobs under given configuration.

3.5.3 Job service

Job service is responsible for managing all activities associated with running and managing
jobs. It manages the whole job lifecycle, see Table 3.4.

For a job to be started, a configuration name must be provided, optionally any number
of command line arguments can be passed as a string array or a port on the host system

33

can specified for exposing the command-line application. If a configuration with a matching
identifier is found, then the job is scheduled for execution.

Since this service indirectly works with Docker containers (whose startup time can
be noticeable), it adheres to req_request_time requirement by making calls to Docker
service asynchronous (if a request to Docker service would fail, job timeout would cancel
the job after the specified interval). The number of concurrently running jobs is not limited
(req_parallel_jobs). Though the host system will eventually run out of the system
resources, since with every job a new container is created.

Name URL HTTP method
Start a job / POST
Get a job /{token} GET
Delete a job /{token} DELETE
Kill a job /kill/{token} GET
Get a status of a job /status/{token} GET
Get all job IDs by a conf. /listbyconfiguration/{conf} GET
Add a new status update /log GET

Table 3.4: Job service actions

All jobs can report their current progress in a percentage value by outputting a spe-
cialized message (req_percentage_report). This feature enables the GUI to render the
progress bar given that the command-line application supports this reporting. Regular
expressions for parsing the progress percentage can be specified by a text file. Expressions
are expected to be delimited by a UNIX line ending. When parsing the output lines, Job
service checks each line whether any of the provided regular expressions matches the current
line. If a match is found, it is parsed to double. If successful, job’s ProgressPercentage
property is updated with the parsed value. If multiple matches are found, only the first
one is parsed, the rest is ignored. The file with regular expressions can contain for example
lines depicted in Listing 3.1.

(?<=\[PROGRESS\]).+
(?<=\[PROGRESSX_SOMETHING_ELSE\]).+

Listing 3.1: Example of a file for progress reporting specification

Job entity attributes

∙ Id – universally unique identifier

∙ Created – timestamp when the entity was created

∙ Started – timestamp when the job State switched from Scheduled to Running

∙ Finished – timestamp when the job State switched from Running to Success

∙ State – job state, see Job state lifecycle

∙ Configuration – name of the associated configuration

∙ Arguments – serialized command-line arguments

34

∙ StdOut – collection of StreamEntries sent from Application wrapper

∙ StdErr – collection of StreamEntries sent from Application wrapper

∙ LastActivity – the most recent timestamp received

∙ ProgressPercentage – reported progress of the command-line application

∙ ExitCode – exit code of the command-line application

StreamEntry entity

∙ Timestamp – timestamp when the entry was captured by Application wrapper

∙ Value – actual line value

Job state lifecycle (Fig. 3.4)

Scheduled

Failure Killed

Running

Success

Figure 3.4: Job state diagram

∙ Scheduled – job is waiting to be started (Docker container is being started or the
Application wrapper is in process of starting the command-line application). If any
errors occur during startup, the job changes its state to Failure.

∙ Running – the command-line application is running and the Application wrapper is
capturing the output. Any error directly from the Application wrapper terminates the
job. Subsequently the presumably running container is killed and the job is marked
as a Failure.

∙ Success – the application has exited.

∙ Killed – job was killed explicitly or implicitly after a set timeout (default 900 seconds,
see Section 4.6) when no activity has been detected.

∙ Failure – an internal error occurred or the Docker container failed to start.

35

Interactions when starting a new job (Fig. 3.5)

Figure 3.5: Collaboration diagram of a job start

1. A request is made to start a new job.

2. A request for the specified configuration is made to Configuration service.

3. The configuration is returned.

4. The job entity is created in the database.

5. A request for starting a new Docker container is made (asynchronous to 3.).

6. The container is started with the Application wrapper inside (asynchronous to 3.).

7. Application wrapper starts the command-line application (asynchronous to 3.).

8. Job Status is passed back to the client (on a startJob request Job service returns
only a HTTP status code, Gateway then makes a getStatus request (see Figure 3.6)
which then adds actual job status information).

Interactions when getting a job status (Fig. 3.6)

Figure 3.6: Collaboration diagram of a job status retrieval

1. A request is made by the client for the job status.

2. The job entity is retrieved from the database.

3. The job status is passed back to the client.

36

Interactions when sending output data (Fig. 3.7)

Figure 3.7: Collaboration diagram of a job update

1. Standard output or error is produced and captured by Application wrapper.

2. Captured data are sent to Job service.

3. Job service updates the associated job entity.

3.5.4 Logging service

Logging service provides a simple log storage for all DeCon services with the option of
DeCon specific logging information and filtering (req_logging). Service saves the logs to
both a database and a text file. Actions supported by this service are listed in Table 3.5.
Log entry format

∙ Id – universally unique identifier

∙ LogLevel – log severity

∙ EventId – identifier associated with the log entry in the source service

∙ Name – point of origin (service or part of a service)

∙ Message – actual message

∙ Timestamp – timestamp when the log entry was created in the source service

Name URL HTTP method
Get logs / GET
Add a log /{token} POST

Table 3.5: Logger service actions

37

3.5.5 Application wrapper

Application wrapper encapsulates command-line applications (req_arbitrary_cli). It
provides ability to start a command-line application with given arguments and capture the
output streams line by line. Each captured line is then sent to Job service, where it is stored
with the corresponding job entity. Message types originating from application wrapper:

∙ StdOut – line containing standard output message

∙ StdErr – line containing standard error message

∙ Error – internal error (f.e. failed application start, job switches to Failure)

∙ Start – successful start (causes job to go from Scheduled to Running)

∙ Exit – successful exit (causes job to go from Running to Success), exit code is returned

This application is started with every new job and receives a token (job identifier),
a file path to the executable and a working directory for the executable. When the started
executable exits, Application wrapper also terminates, subsequently the encapsulating con-
tainer is also terminated. If a kill request is made, the encapsulating container is terminated.

3.5.6 Docker service

Docker service is the only service running outside of Docker containers, since its purpose is
to execute only predetermined Docker commands (req_containers). Having this service
outside of Docker was necessary because it has to be able to access all of the host file
system, since it needs to copy working directories inside containers. This was the only
factor preventing this service from being hosted inside a Docker container.

Service receives requests for starting/killing (Table 3.6) containers from Job service,
which are then parsed and transformed to Docker commands for execution. Docker service
is able to build and run any Docker container; therefore it is completely independent of
other DeCon services.

Name URL HTTP method
Start a Docker container / POST
Kill a Docker container /{token} DELETE

Table 3.6: Docker service actions

3.5.7 Web application

The graphical user interface for DeCon was designed in order to provide a user-friendly
way of interaction with DeCon (req_api_gui). Implementation as a web application was
chosen because web interface provides many benefits, such as:

∙ no additional user environment dependencies

∙ faster development time than comparable solutions (desktop or mobile application)

∙ accessibility across operating systems

38

The design was focused on communicating all the information clearly, simply and in
a modern-looking web environment. Prior to creating wireframes, author studied solutions
containing features such as test automation or integration of console-like interfaces in web
applications. These solutions included Microsoft Azure9 and GitLab10.

As mentioned in Section 3.2, web application is the only specialized part of DeCon.
Specialization was done in order to simplify argument input for database detectors. Since
DeCon’s authorization (req_auth) is purely token based, users intentionally cannot obtain
lists of existing entities. Instead they rely on other users providing them with tokens to
configurations/jobs or creating the entities by themselves. Therefore, all tokens known to
the current user are stored in his browser’s local storage, from where they can be exported
and later imported back. Users can share their tokens via the share functionality which
creates a hyperlink which will import the token to the recipient’s local storage.

Both job and configuration can be deleted. In addition to deleting them permanently,
user can choose to delete them locally; thus allowing other users to still access them.

General layout of the application is conceived as single-page website, meaning that
no complete page reload is necessary when performing interactions with the interface.

The navigation bar is placed in the top part of the interface and contains the application
name and a link to the API documentation. The left side is occupied by the menu with
buttons to add a new configuration, export and import the session state. This menu is
collapsable; thus, it can allow for better output readability from the main window. The
window houses all of the job meta information and outputs. In the upper part, buttons for
job management are placed along with the job name and configuration name. Actions, such
as job killing, sharing, refreshing or forking (creating a new job with the same arguments),
can be performed through these buttons. Meta information is outputted to a clearly format-
ted table. If the currently shown job is running and DeCon is able to determine percentage
of progress11, an animated progress bar is rendered as seen in Figure 3.8.

The main output panel is situated beneath the meta information section. If the job
is based on database detectors, a specialized tab called Results is rendered, otherwise
only a single panel with stream toggling and filtering is shown. Filtering works in two
modes – standard and regular expressions. Users can toggle between these modes and only
lines matching the filter will be shown. The panel below renders outputted standard output
and error line along with timestamps. The entire output can be scrolled through. When
the auto-refreshing of the job window is enabled, the panel is automatically refreshed. Per
user request, the entire output can be exported to a standardized format shown in Listing
3.2, where STREAM_TYPE is either STDOUT or STDERR, TIMESTAMP is in the ISO 8601 format
and VALUE represents actual output value.

STREAM_TYPE TIMESTAMP: VALUE
STDOUT 2019-04-16T21:17:10.689Z: [INFO] Starting detectors...

Listing 3.2: Output format of an exported job

The Results tab contains the parsed output from database detectors (req_detect_out)
as seen in Figure 3.9. Output logs are dynamically parsed, so that easy-to-understand
representation can be rendered. For each table, all the detected columns are shown, along

9https://azure.microsoft.com/en-us/
10https://about.gitlab.com/
11Supported with db-detectors and any other command-line application that implements progress report-

ing.

39

https://azure.microsoft.com/en-us/
https://about.gitlab.com/

Configuration name #1

Time – Job name #1

Time – Job name #2

+ Add Job

Configuration name #2

ResultsLog

Filter...

Configuration name #1: Job name #1

Detection Containers

Job information

API Docs

RefreshShareForkKill

ImportExportAdd configuration

All Stdout Stderr Filter Export log

2019-04-16T21:17:04.151Z Output line2019-04-16T21:17:04.151Z Output line

2019-04-16T21:17:04.151Z Output line2019-04-16T21:17:04.151Z Output line

2019-04-16T21:17:04.151Z Output line2019-04-16T21:17:04.151Z Output line

2019-04-16T21:17:04.151Z Output line2019-04-16T21:17:04.151Z Output line

Standard Regex

Jobs in session <

Configuration name #1

Time – Job name #1

Time – Job name #2

+ Add Job

Configuration name #2

ResultsLog

Filter...

Configuration name #1: Job name #1

Detection Containers

Job information

API Docs

RefreshShareForkKill

ImportExportAdd configuration

All Stdout Stderr Filter Export log

2019-04-16T21:17:04.151Z Output line

2019-04-16T21:17:04.151Z Output line

2019-04-16T21:17:04.151Z Output line

2019-04-16T21:17:04.151Z Output line

Standard Regex

Jobs in session <

Figure 3.8: User interface showing a running job

with their respective column type and detector names that returned the highest weight12.
If multiple detectors report the same weight, all values are displayed. When the result is
expanded, all weights reported are shown. The parsed result can be exported in the format
seen in Listing 3.3.

{
"table_name": {

"column_name: {
"type": "COLUMN_TYPE",
"weights": [

{
"weight": 0.9,
"detector": "Detector#1"

},
{

"weight": 0.2,
"detector": " Detector#2"

}
]

}
...

}
...

}

Listing 3.3: Export format of a database detectors result

12Weight is converted to percentage.

40

Configuration name #1

Time – Job name #1

Time – Job name #2

+ Add Job

Configuration name #2

ResultsLog

Configuration name #1: Job name #1

Detection Containers

Job information

API Docs

RefreshShareForkKill

ImportExportAdd configuration

Table name

Column name Column type DETECTOR1 (42%) -Column name Column type DETECTOR1 (42%) -

DETECTOR1 (42%), DETECTOR2 (10%), DETECTOR3 (0%)DETECTOR1 (42%), DETECTOR2 (10%), DETECTOR3 (0%)

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Export results

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +Column name Column type DETECTOR1 (42%) +

Jobs in session <

Configuration name #1

Time – Job name #1

Time – Job name #2

+ Add Job

Configuration name #2

ResultsLog

Configuration name #1: Job name #1

Detection Containers

Job information

API Docs

RefreshShareForkKill

ImportExportAdd configuration

Table name

Column name Column type DETECTOR1 (42%) -

DETECTOR1 (42%), DETECTOR2 (10%), DETECTOR3 (0%)

Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +

Export results

Column name Column type DETECTOR1 (42%) +

Column name Column type DETECTOR1 (42%) +

Jobs in session <

Figure 3.9: User interface showing a parsed and displayed result of database detectors

Add job: Configuration nameAdd job: Configuration nameAdd job: Configuration name

New Existing

Port

CLI Arguments

Argument #1

Argument #2

X

X

Add argument

AddClose

Port assignment

(a) Job creation for a generic CLI application

Add job: Configuration nameAdd job: Configuration nameAdd job: Configuration name

ExistingNew

Detectors

structural StringDet ClearAll

Connection String

AddClose

(b) Job creation for db-detectors

Figure 3.10: Comparison of modals for job creation

Modals or modal windows are child windows of their parent window and their primary
function is to communicate new information or to provide additional functionality to the
application. Modals are used in DeCon for creating configurations, starting jobs, sharing
etc.

Notable example of modal window in DeCon is the Add job modal. This modal greatly
differs based on whether it is created for database detectors or not. For a regular command-
line application, users can input command-line arguments one-by-one or specify a port
on which the command-line application will be exposed on the host system. In the case
of detectors a specialized user interface is displayed (req_cli_specialization). This
interface contains a list box of known detectors, which can be selected (or any custom text
can be inputted and then confirmed via the enter key) and set of text boxes and drop-
downs for specifying the connection string to the target database. The difference is shown
in Figure 3.10, see Appendix B for screenshots of the actual user interface implementation.

41

Chapter 4

Implementation Details of DeCon

In this chapter author will attempt to describe details of DeCon implementation with focus
on technology-specific aspects of this solution. Notable implementation details will be
mentioned and integration of database detectors will be discussed.

4.1 Technology Choices
When making decisions regarding choices of implementation language or framework, ease-
of-use, productivity and suitability should be considered. Since DeCon is implemented using
microservice architecture, it allows for usage of diverse technologies. Among the services,
two subgroups with different requirements were identified:

∙ services using databases and having similar APIs (Configuration, Job and Logging
services)

∙ simple services not using databases (Gateway and Docker service)

For the first set of services ASP.NET Core1 Web API framework using C# language
was chosen. This framework was selected mainly because it provides a robust API building
system based on a language that has well-designed threading and asynchronous support.
Unlike the full .NET framework, .NET Core is compatible with multiple operating systems;
therefore it can run on Linux-based systems. The database type of choice for these services
was MongoDB which was selected for its simplicity and flexibility. Third-party libraries
(NuGet packages) used in .NET services:

∙ MongoDB driver2 – interface to MongoDB

∙ NSwag3 – Swagger support

∙ CommandLineParser4 – parsing command-line arguments (Application wrapper only)

∙ Json.NET5 – JSON serialization/deserialization framework
1https://dotnet.microsoft.com/apps/aspnet
2https://docs.mongodb.com/ecosystem/drivers/csharp/
3https://github.com/RicoSuter/NSwag
4https://github.com/commandlineparser/commandline
5https://www.newtonsoft.com/json

42

https://dotnet.microsoft.com/apps/aspnet
https://docs.mongodb.com/ecosystem/drivers/csharp/
https://github.com/RicoSuter/NSwag
https://github.com/commandlineparser/commandline
https://www.newtonsoft.com/json

∙ RestSharp6 – simple HTTP API client

∙ Moq7 – library for creating mock objects

∙ XUnit8 – unit testing framework

The second type of services did not require some of the mentioned features and codebase
was expected to be much smaller. Therefore, Flask API on Python was the framework
of choice, because it contains virtually no boilerplate code9 and much smaller container
footprint (only Python and a few packages required). Packages used in Flask APIs:

∙ Flask-RESTPlus10 – Swagger support

∙ Flask-CORS11 – Cross-origin resource sharing support

∙ Requests12 – simple HTTP request library

Both frameworks are compared on a short code sample in Appendix C.
For Application wrapper, .NET Core was used, as it offered greater simplicity as far

as capturing of standard output and process error is concerned, and an easily configurable
HTTP client.

For the web application multiple approaches were considered. Eventually a frontend-
only web application was implemented, because the singular role of the web application
is to consume DeCon’s public API; therefore no backend code was required. From all
the frontend technologies, React13 (a JavaScript library) was selected since it offers a fast
virtual DOM and can be easily combined with other JavaScript libraries, such as jQuery14.

A reverse proxy15 was used to forward the requests to Gateway and the user interface.
NGINX16 was chosen as the reverse proxy functionality provider.

4.2 General Implementation Principles
The implementation across different services follows the same standards. Code style and
formatting adheres to the usual practices and standards of given programming language
(req_code_style). All relevant sections including all public method signatures are doc-
umented (req_code_doc). The DeCon implementation, where applicable, tries to follow
the SOLID17 design principles (req_code_struct). SOLID is manifested in DeCon mainly
by using dependency injection18 to inject implementations of interfaces. Where applicable,
design patterns (such as repository pattern) are used (req_code_patterns).

6http://restsharp.org/
7https://github.com/Moq/moq4/wiki/Quickstart
8https://xunit.net/
9Code required to setup the framework, often no changes are made to the template.

10https://flask-restplus.readthedocs.io/en/stable/
11https://flask-cors.readthedocs.io/en/latest/
12https://2.python-requests.org/en/master/
13https://reactjs.org/
14https://jquery.com/
15Type of a proxy server that retrieves resources on behalf of client [25].
16https://www.nginx.com/
17Single responsibility principle, Open-closed principle, Liskov substitution principle, Interface segregation

principle, Dependency inversion principle.
18Technique that injects object’s dependencies usually by passing them to a constructor.

43

http://restsharp.org/
https://github.com/Moq/moq4/wiki/Quickstart
https://xunit.net/
https://flask-restplus.readthedocs.io/en/stable/
https://flask-cors.readthedocs.io/en/latest/
https://2.python-requests.org/en/master/
https://reactjs.org/
https://jquery.com/
https://www.nginx.com/

4.3 Project Structure
Each service is implemented as a separate project. In case of ASP.NET-based services
a shared project is included in the service. This could seem as a violation of one the
microservices principles – no dependencies should exist between microservices. However,
in this case, the shared project is included inside the service folder as a Git19 submod-
ule. Therefore it enables control over pulling new changes for each service independently.
The shared project is not a set of particular files shared between services but instead it is a
version-controlled snapshot of the included files. The project includes a common infrastruc-
ture used across the ASP.NET services, such as a database access via repository pattern or
a base controller with support for logging and exception handling.

4.4 User Interface Functionalities
The behavior of the web application is built around the concept of browser local storage. It
stores all the visible configuration names and job identifiers – everything else is dependent
on the API. Data are stored in JSON and their format is equivalent to the one that of
the exported state. In fact, importing and exporting of the state only replaces/downloads
the actual value of the local storage. By default, the storage is initialized to include all
demos (db-detectors, demo-mount, demo-flask etc.). To reset the local storage to the default
state, users can import the initializing file located in /data/gui_initial_state.dcx. With
every import, a backup file is downloaded, which contains the application state before it
was replaced by the uploaded one.

Separation of local and server storage was done because of the expectation of DeCon
deployment and sharing between multiple users, for example a project team. Because every
browser’s storage has its state and the exported files can be shared, DeCon tries not to
interfere with the actual team workflow; therefore maximizing its adaptability to potential
future deployments.

4.5 Use of Docker Features
Services are placed each in its separate Docker container which is then managed by Docker
Compose utility. Apart from using Docker to run the DeCon services, Docker is also used
to start new jobs. This process is implemented in Docker service which encapsulates Docker
calls.

Container startup is implemented via 5 separate calls to Docker – build, create,
copy to container, start and port retrieval, see Listing 4.1 for example calls. An al-
ternative, more common approach, is to call start directly, but since the requirement
(req_parallel_jobs) states that multiple containers need to run in parallel, the usage of
Docker volumes for the command-line application directory would not be sufficient. Vol-
umes are problematic, as they are essentially only mounts to the host directory. Therefore
file locking and concurrent write access to files could potentially result in an unexpected
behavior. This problem is solved by copying the entire working directory to the container.
Copying files however comes both with upsides and downsides. Benefits of this approach
are that all changes made to the command-line application are reflected on every new job
start and no conflicts occur between the running jobs on the file system level. However,

19https://git-scm.com/

44

https://git-scm.com/

copying also has some downsides. Slower startup time (files need to be copied) and loosing
file changes in the working directory20 are the main ones. By default, files from the working
directory are copied, but users also can opt-in to mount the working directory as a volume.
This comes with the mentioned downsides but can also allow for usecases where user would
edit the files and in real time changes were propagated to the running application21. All
the created containers are automatically removed by Docker when they exit, in order to
free the system resources.

Persistence of DeCon databases is implemented using Docker volumes, which provide
a permanent storage. These volumes are mounted to the data directory inside MongoDB
containers. This ensures that database data persist Docker image and container wipes

$ docker build -f=DOCKERFILE -t=IMAGE_NAME SOURCE_FOLDER
$ docker create --rm --network=NETWORK_NAME --name=CONTAINER_NAME

--volume=SOURCE_FOLDER:TARGET_FOLDER IMAGE_NAME
$ docker cp SOURCE_FOLDER CONTAINER_NAME:/app/cli/
$ docker start CONTAINER_NAME
$ docker port CONTAINER_NAME
...
$ docker stop CONTAINER_NAME

Listing 4.1: Used Docker commands for container management

Container creation arguments

∙ network – name of a Docker network (for DeCon it is decon_internal) to which all
DeCon services are connected

∙ name– container name, DeCon uses the job identifier (UUID)

∙ volume – file/folder to mount, mount point specified in job’s configuration, mounted
as /app/mount/ in the container22

∙ rm– remove the container after it exits

Arguments for Application wrapper passed with create command

∙ token – job identifier with which Application wrapper will send output back to Job
service

∙ file – executable to start

∙ working directory – working directory of the executable

∙ arguments – command line arguments encoded

4.5.1 Custom Dockerfile

DeCon provides an option to customize the container environment. The default Dockerfile
uses the official Debian image23 with preinstalled build-essential package and Python.

20Configuration’s mount argument can be used to preserve the file changes.
21For example running a Flask API with debug mode enabled.
22Configuration’s mount option is designed for reading/writing to shared files, not for executables.
23https://hub.docker.com/_/debian

45

https://hub.docker.com/_/debian

If the command-line application needs additional dependencies, custom Dockerfile can be
provided. Examples of base and custom Dockerfiles are listed in Appendix D. The custom
Dockerfile (see Listing 4.2 for a basic template) must follow these rules:

∙ the result image must be based on decon-app-wrapper image or the entire /app/
folder has to be moved to the desired container

∙ /app/app-wrapper/publish/ApplicationWrapper has to be the container entry-
point24

FROM decon-app-wrapper

... # Your commands

ENTRYPOINT ["/app/app-wrapper/publish/ApplicationWrapper"]

Listing 4.2: Basic template for custom Dockerfiles

Provided Dockerfile has its build context set to the specified working directory. In the
final image the working directory will be copied to /app/cli/ directory during the container
start. Since Application wrapper is a self-contained .NET Core application that targets
linux-x64, moving the binary to a different distribution is possible but functionality is not
always guaranteed. For each configuration a new image is created, but the build starts only
after the first job request is made. During the build, job is stuck in Scheduled state. Build
can take up to a several minutes (depending on the system performance and Dockerfile
complexity). When the build time exceeds 15 minutes, the started job will fail, however
when the build is finished you can start a new job that will begin its execution almost
immediately.

4.6 Running DeCon
To run DeCon following dependencies need to be installed on the host machine:

∙ Docker 18.03+

∙ Python 3.7+

∙ Doxygen

The host machine can use any operating system supported by Docker 18.03+ versions.
DeCon’s start is encapsulated in the startup script run.sh which builds and starts all the
necessary services. Complete install and run instructions are specified in the README.md
file (req_install_instructions).
Startup script usage (Listing 4.3)

$./run.sh [--build] [--port=PORT] [--docker-service-port=DOCKER_PORT]
[--os-type=TYPE] [--preserve-jobs] [--no-configuration-modifiable]
[--db-recreate] [--job-progress-regex-file=PATH_TO_FILE] [--help]

Listing 4.3: Argument list of DeCon the startup script

24Executable that will be started inside the container.

46

∙ b | build – forces to build all dependencies

∙ p | port - port on which DeCon GUI and API will run, default 80

∙ d | docker-service-port - port on which Docker service will run, by default 6002
(to prevent possible conflicts with port assignment on the host, since Docker service
runs directly on the host machine)

∙ o | os-type - operating system on which Docker Engine runs, defaults to value from
docker info – OperatingSystem, other possible values: linux, windows, macos

∙ n | no-configuration-modifiable – configurations editing, enabled by default

∙ r | db-recreate - recreate all databases

∙ g | job-progress-regex-file – regular expressions values for matching progress
reports, delimited with newline, defaults to /data/job-progress-regex.txt

∙ j | preserve-jobs – running jobs are not killed upon exit, by default killed

∙ h | help – help is displayed

During startup, services are built (if build argument is specified or DeCon was not
previously built) and Docker Compose is started. While Docker Compose is running,
Ctrl+C command can be sent to gracefully terminate the services (to forcefully kill ser-
vices, another Ctrl+C can be used). After startup, the web application is available at
http://localhost/ and API at http://localhost/api/. Doxygen25 documentation is
located in doc/html/index.html. Swagger specification is available at the following URLs:

∙ Gateway – http://localhost/api/swagger (Swagger UI)

∙ Job service – http://localhost/swagger/job/

∙ Configuration service – http://localhost/swagger/configuration/

∙ Logger service – http://localhost/swagger/logger/

∙ Docker service – http://localhost:6002/swagger/ (Swagger UI)

4.6.1 Included examples

In order to easily demonstrate DeCon functionality, a database with sample data is provided
for running database detectors. Connection information for this database is listed in Table
4.1. Database is hosted inside a MySQL container which is part of DeCon’s internal Docker
network. Listing 4.4 depicts an example of a request body for starting a new job based on
database detectors.

Database type MySQL Host name mysql Port 3306
Database name testdb Username root Password root

Table 4.1: Connection information for the included database

25http://www.doxygen.nl/

47

http://localhost/
http://localhost/api/
http://localhost/api/swagger
http://localhost/swagger/job/
http://localhost/swagger/configuration/
http://localhost/swagger/logger/
http://localhost:6002/swagger/
http://www.doxygen.nl/

{
"configuration": "db-detectors",
"Arguments": [

"structural FloatDet StringDet",
"{\"type\":\"mysql\", \"host\":\"mysql\", \"port\":\"3306\",

\"name\":\"testdb\", \"user\":\"root\", \"pass\":\"root\",
\"path\":\"\"}"

]
}

Listing 4.4: Job creation model for running the detectors on the included database

Other included examples

∙ demo-mount - example of the mounting functionality, optionally arguments will be
displayed

∙ demo-progress - demonstration of the progress bar reporting from C code

∙ demo-dockerfile - demonstration of adding a custom Dockerfile

∙ demo-flask - Flask API running from a custom Dockerfile with exposed port to the
host system, optionally the configuration can be changed to use volumes and live
script reloading can be performed

All examples are loaded into the Configuration database on the first start and then every
time the database is recreated. Between recreations all these examples can be deleted.
Database is initialized by services/configuration_service/initial.json file, which
contains an array of configurations.

4.7 Integration of Database Reporter and Detectors
As mentioned in the previous chapters, DeCon’s API does not distinguish between database
detectors and any other containerized command-line application, only specialization hap-
pens in the user interface with specialized argument inputting and output parsing. The
detectors had to be integrated into DeCon in a seamless way. Key integration parts were:

∙ database detectors configuration is by default26 present in the database

∙ database detectors configuration is hard-coded to the default state of the GUI

To allow for this smooth integration, number of changes had to be made to db-detectors
and db-reporter projects. First of all, an integration bash script (run_detectors.sh) was
implemented, because no such script was part of either thesis and as stated the submitted
code was not tested together. The necessary knowledge for creation of this script had to be
extracted from the provided undocumented files, since little or no instructions were given
in any of the theses.

26This configuration can be deleted, however via the db-recreate option, db-detectors and other examples
will be restored

48

Actions performed by the startup script

∙ starting db-reporter

∙ starting db-detectors

∙ sending a D-Bus message to db-reporter

During the integration, it was discovered that db-detectors and db-reporter both ex-
pected that the other party would provide the database connection string, therefore it had
to be manually inserted to the D-Bus communication as if the message originated from
db-detectors [10, pg. 20] [14, pg. 14].

Furthermore, the format of the structural detector result differed between thesis’ text
and actual implementation – this caused db-detectors to fatally crash. In addition to these
disparities, UUID detector contained an incorrect method call and faulty condition.

These errors were not the only ones, since after integration it became apparent that only
few detectors were actually working. Out of the 28 detectors, only 5 of them are working
(string, integer, float, UUID, datetime), the rest is unable to start. After a deep dive into
the code, author of this thesis concluded that the issue is most likely inside the dependency
manager, since only the detectors which depend only on the structural detector are working.
Trying to identify the exact root problem without a proper technical documentation was
not possible.

From all the supported database types27, only MySQL and MariaDB is verified to work,
since it was the only database type that was tested by the authors of db-detectors and db-
detector.

It was also necessary to refactor the way how the results were collected. Previously they
were written into a file, but because DeCon is focused on retrieving the console output28,
db-reporter was modified to output the results to standard output in a format seen in
Listing 4.5.

[RESULT][DetectorName]ActualResult
[RESULT][StringDet]{"name": "col_mac_address", "table_name": "MOCK_DATA", "type":

"VARCHAR(500)", "weight": 1.0}

Listing 4.5: Database detectors output

This format is later parsed in the user interface for the purposes of knowledge extrac-
tion. Apart from modifying the output, author decided to partially refactor db-detectors,
since some logic errors were identified in the code and overall code maintainability was
considered inadequate. Refactoring also introduced configurable log verbosity and stream-
lined log messages which were previously hard to understand without a prior complete code
knowledge.

4.8 Verification of Functionality
In accordance with the requirement for testing (req_testing), multiple suites of tests were
created in order to properly verify the functionality of DeCon. These automated tests range
from testing individual code blocks to testing the complete functionality on the system level.

27MySQL (MariaDB), SQLite, PostgreSQL, Oracle, SQL Server
28Writing to files requires a configured mount point.

49

4.8.1 Unit testing

Unit tests were created to verify the functionality on the method level. (req_unit_tests)
Since most of the DeCon services do not include any considerable amount of code, the only
service, where it was deemed necessary to create unit tests, was Job service. Unit tests in
Job service focus on testing custom method extensions, model validation and correct return
codes. These tests are implemented using xUnit framework, Listing 4.6 depicts an example
test in this framework.

using Xunit;

namespace Tests
{

public class ExampleTests
{

[Fact]
public void OrwellTest()
{

Assert.Equal(5, (2 + 2));
}

}
}

Listing 4.6: Unit tests example in xUnit

4.8.2 Component testing

Unlike unit testing, component testing aims at testing individual services separately without
an actual interaction with any external entity. In an environment, where the services depend
on others for their correct functionality, new requirements surfaced for the code structure
and usage of design patterns.

Because only with patterns like dependency injection and use of interfaces, communi-
cation with external services can be achieved without modifying the code that is being
tested. Configuration of dependency injection is done in the Startup class, where applica-
tion services are set up. Dependencies can be added, as seen in Listing 4.7, by specifying
an interface and a class that implements the interface. Thus all controllers expecting the
interface in their constructor are provided with an instance of the specified class (Listing
4.8). This instance can be either shared across all controllers – singleton – or unique to
that given controller – transient.

public void ConfigureServices(IServiceCollection services) {
...
services.AddTransient<IConnector, HttpConnector>();
...

}

Listing 4.7: Configuration of dependency injection

50

[ApiController]
public class JobController : BaseController {

public JobController(IConnector connector) : base(connector) {
...

}
}

Listing 4.8: Injected dependency on a controller

The component tests take advantage of this feature by using ASP.NET TestServer
package, which starts the API and creates a client. The API is started using a modified
Startup class which uses mock interface implementations, as seen in Listing 4.9. Compo-
nent testing in Job service includes verification of correct routing, response checking and
chaining multiple requests together.

client = new TestServer(new
WebHostBuilder().UseStartup<MockStartup>()).CreateClient();

var statusId = await GetStatusId();
var response = await client.GetAsync($"/kill/{statusId}");
Assert.Equal(HttpStatusCode.OK, response.StatusCode);

Listing 4.9: Component tests using a test client

4.8.3 Integration testing

For testing the overall functionality of DeCon, a set of integration tests were created
(req_integration_tests). These tests are used to verify the correct behavior of Gateway
service (and all of the services behind) including the NGINX reverse proxy. Integration
tests are implemented using Test service in Python. After the initialization of DeCon, Test
service begins its execution by sending requests to the DeCon public API. Tests are per-
formed from the host network. Testing includes creating new configurations, updating and
deleting them, job creation, execution and output retrieval. Actual execution of database
detectors is also performed. Database detectors target the included MySQL database – see
section 4.6.1.

4.8.4 Running the tests

All of the previously described tests can be executed using tests.sh script which shares
the argument options with run.sh script. This script requires DeCon dependencies to be
installed (Docker, Python, Doxygen), since the integration tests need to start all the DeCon
services to verify the expected functionality. Lisitng 4.10 shows how to start the tests.

$./tests.sh

Listing 4.10: Testing script usage

In the first step unit and component test are executed. After that Docker Compose
starts all services and integration tests begin their execution. After each step, a summary
is printed with information about the test results. Overall DeCon includes over 70 tests.

51

Chapter 5

Conclusion

The goal of this thesis was to design and implement containerization of command-line
applications including database detectors. The final product – DeCon – offers abstraction
over underlying container technology by simplifying the setup and providing configurations
and jobs – similar to test cases and test runs. For basic tasks DeCon does not require any
knowledge of Docker. However if needed, DeCon offers a great deal of configurability in
terms of required dependencies.

DeCon was implemented as a set of microservices communicating with each other using
HTTP-based REST APIs. On top of the services, a light-weight web user interface was
created. This user interface was not part of the original thesis assignment and adds ben-
efits of user-friendliness. All the microservices do not make distinctions between database
detectors and any other command-line applications, therefore any detectors specific logic
is limited to the user interface, where users have customized dialogs, result parsing and
exporting features. Despite the limitations of the current implementation of database de-
tectors, best efforts were made to integrate the detectors, even if some of the functionality
does not work as expected.

The final product was subjected to testing by a number of automated tests which
ranged from unit, component to integration tests. These tests helped to ensure the correct
functionality of the final product. To demonstrate this functionality, examples of different
types of applications were included.

In the future DeCon can be modified to run in clustered environments where it would
greatly benefit from the microservices architecture in terms of scalability. Furthermore,
the API and the user interface could be expanded to accommodate more fine-grained job
management, however these and other future improvements would arise when DeCon would
be used to containerize other Testos tools. Subsequently DeCon could be used to a great
effect in integrating the whole Testos platform.

52

Bibliography

[1] Brewer, E.: Towards Robust Distributed Systems. In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing. ACM. July 2000.
page 45. doi:10.1145/343477.34350.

[2] Bui, T.: Analysis of Docker Security. arXiv preprint arXiv:1501.02967. January 2015.

[3] Cooley, S.; Lang, P.; Mastrean, A.; et al.: Linux Containers on Windows. [Online;
accessed 30.04.2019].
Retrieved from: https://docs.microsoft.com/en-us/virtualization/
windowscontainers/deploy-containers/linux-containers

[4] Container Orchestration — Devopedia. [Online; accessed 30.04.2019].
Retrieved from: https://devopedia.org/container-orchestration

[5] Docker Overview — Docker Documentation. [Online; accessed 04.05.2019].
Retrieved from: https://docs.docker.com/engine/docker-overview/

[6] About Storage Drivers — Docker Documentation. [Online; accessed 04.05.2019].
Retrieved from: https://docs.docker.com/storage/storagedriver/

[7] Fielding, R. T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD. Thesis. University of California, Irvine. 2000.

[8] Fielding, R. T.; Gettys, J.; Mogul, J. C.; et al.: Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616. RFC Editor. June 1999.
Retrieved from: https://www.rfc-editor.org/rfc/rfc2616.txt

[9] Service-Oriented Architecture (SOA) — IBM Knowledge Center. [Online; accessed
30.04.2019].
Retrieved from: https://www.ibm.com/support/knowledgecenter/en/
SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html

[10] Kropáč, F.: Nástroj pro analýzu obsahu databáze pro účely testování softwaru.
Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
2017.
Retrieved from: http://www.fit.vutbr.cz/study/DP/BP.php?id=19446

[11] Masse, M.: REST API Design Rulebook. O’Reilly Media. October 2011. ISBN
978-1449310509. 116 pp.

[12] Introduction to Web APIs — Mozilla Developer Network Web Docs. [Online; accessed
30.04.2019].

53

https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://devopedia.org/container-orchestration
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/storage/storagedriver/
https://www.rfc-editor.org/rfc/rfc2616.txt
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
http://www.fit.vutbr.cz/study/DP/BP.php?id=19446

Retrieved from: https://developer.mozilla.org/en-US/docs/Learn/JavaScript/
Client-side_web_APIs/Introduction#What_can_APIs_do

[13] Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media. February 2015. ISBN 978-1491950340. 280 pp.

[14] Ochodek, M.: Nástroj pro analýzu obsahu databáze pro účely testování softwaru.
Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
2017.
Retrieved from: http://www.fit.vutbr.cz/study/DP/BP.php?id=19259

[15] What Is Virtualization? — OpenSource.com. [Online; accessed 30.04.2019].
Retrieved from: https://opensource.com/resources/virtualization

[16] Popek, G. J.; Goldberg, R. P.: Formal Requirements for Virtualizable Third
Generation Architectures. Communications of the ACM. vol. 17. July 1974: page
412–421. doi: 10.1145/361011.361073.

[17] Richards, M.: Microservices vs. Service-Oriented Architecture. O’Reilly Media. April
2016. ISBN 978-1491975657. 55 pp.

[18] Richardson, Chris: Pattern: Circuit Breaker — Microservices.io. [Online; accessed
30.04.2019].
Retrieved from:
https://microservices.io/patterns/reliability/circuit-breaker.html

[19] Richardson, Chris: Pattern: Database per Service — Microservices.io. [Online;
accessed 30.04.2019].
Retrieved from:
https://microservices.io/patterns/data/database-per-service.html

[20] Slack, J.: Introducing the Host Compute Service (HCS) — Microsoft Tech
Community. [Online; accessed 30.04.2019].
Retrieved from: https://techcommunity.microsoft.com/t5/Containers/
Introducing-the-Host-Compute-Service-HCS/ba-p/382332

[21] Snover, J.; Mason, A.; Back, A.: Microsoft Announces Nano Server for Modern Apps
and Cloud — Windows Server Blog. [Online; accessed 30.04.2019].
Retrieved from: https://cloudblogs.microsoft.com/windowsserver/2015/04/08/
microsoft-announces-nano-server-for-modern-apps-and-cloud/

[22] Testos Group: Testos. [Online; accessed 30.04.2019].
Retrieved from: http://testos.org/

[23] VMware: Understanding Full Virtualization, Paravirtualization, and Hardware
Assist. Technical report. VMware. March 2008.
Retrieved from: https://www.vmware.com/techpapers/2007/understanding-full-
virtualization-paravirtualizat-1008.html

[24] OS-level Virtualisation — Wikipedia, The Free Encyclopedia. [Online; accessed
30.04.2019].
Retrieved from: https://en.wikipedia.org/wiki/OS-level_virtualisation

54

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction#What_can_APIs_do
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction#What_can_APIs_do
http://www.fit.vutbr.cz/study/DP/BP.php?id=19259
https://opensource.com/resources/virtualization
10.1145/361011.361073
https://microservices.io/patterns/reliability/circuit-breaker.html
https://microservices.io/patterns/data/database-per-service.html
https://techcommunity.microsoft.com/t5/Containers/Introducing-the-Host-Compute-Service-HCS/ba-p/382332
https://techcommunity.microsoft.com/t5/Containers/Introducing-the-Host-Compute-Service-HCS/ba-p/382332
https://cloudblogs.microsoft.com/windowsserver/2015/04/08/microsoft-announces-nano-server-for-modern-apps-and-cloud/
https://cloudblogs.microsoft.com/windowsserver/2015/04/08/microsoft-announces-nano-server-for-modern-apps-and-cloud/
http://testos.org/
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://en.wikipedia.org/wiki/OS-level_virtualisation

[25] Reverse Proxy — Wikipedia, The Free Encyclopedia. [Online; accessed 01.05.2019].
Retrieved from: https://en.wikipedia.org/wiki/Reverse_proxy

[26] Virtual Machine — Wikipedia, The Free Encyclopedia. [Online; accessed 30.04.2019].
Retrieved from: https://en.wikipedia.org/wiki/Virtual_machine

[27] Zhang, Q.; Liu, L.; Pu, C.; et al.: A Comparative Study of Containers and Virtual
Machines in Big Data Environment. arXiv preprint arXiv:1807.01842. July 2018.

[28] Zissis, D.; Lekkas, D.: Addressing Cloud Computing Security Issues. Future
Generation Computer Systems. vol. 28. March 2012: page 583–592. doi:
10.1016/j.future.2010.12.006.

55

https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Virtual_machine
10.1016/j.future.2010.12.006

Appendices

56

Appendix A

Contents of the CD

Directory structure of the included CD:

∙ /decon DeCon source files

∙ /text Source files for the thesis text

∙ xoberr00-decon.pdf Text of the thesis

A.1 Building and Running DeCon
It is recommended to follow instructions in the README file. However, given that all depen-
dencies (Docker, Python, Doxygen – see README) are installed, DeCon can be started using
this commands:

$ cd ./decon
$./run.sh

If no prior build was performed, the script starts the build operation. Depending on the
system performance, this operation could take more than 30 minutes to complete. During
the build, Docker base images are downloaded, DeCon images are built and databases
initialized. After the build is finished, DeCon services are started and users can access the
web application at http://localhost/.

57

http://localhost/

Appendix B

Web Application

The screenshots represent the final implementation of the DeCon graphical user interface.

Figure B.1: Modal window for adding a new job for database detectors

Figure B.2: Modal window for adding a new job

58

Figure B.3: DeCon running a database detectors job while sending data to the output
console

Figure B.4: Parsed results of a database detectors job

59

Appendix C

Code Samples

The following examples compare controller definition in ASP.NET Core Web API and Flask
API. Both examples define Swagger attributes that are used for generation of Swagger
specification.

/// <summary>
/// Controller for Configuration requests
/// </summary>
[ApiController]
public class ConfigurationController : BaseController {

/// <summary>
/// Configuration controller ctor
/// </summary>
/// <param name="repository">Repository patter</param>
/// <param name="logger">Logger</param>
/// <param name="connector">HTTP connector</param>
/// <param name="contextAccessor">HTTP context accessor</param>
public ConfigurationController(IRepository repository,

ILogger<ConfigurationController> logger, IConnector connector,
IHttpContextAccessor contextAccessor) : base(repository, logger,
connector, contextAccessor) {

}
/// <summary>
/// Retrieve configuration by name
/// </summary>
/// <param name="configuration">Configuration</param>
/// <returns>Configuration model</returns>
[Route("{configuration}")]
[HttpGet]
[SwaggerResponse(200, typeof(ConfigurationExternal), Description =

"Configuration")]
[SwaggerResponse(400, typeof(void), Description = "Invalid model state")]
[SwaggerResponse(500, typeof(void), Description = "An exception has occurred

during retrieval of configuration")]
public ActionResult<ConfigurationExternal> GetCongfiguration([FromRoute]

string configuration) {
return Ok(...);

}
}

Listing C.1: Example of controller implementation in ASP.NET Core

60

@configurations.route("/<id>")
@api.doc(params={’id’: ’ConfigurationID’})
class ConfigurationsParam(Resource):

"""
Configuration actions with parameters
"""
@api.response(200, ’Success’, configurationModel)
@configurations.doc(responses={

200: ’Success’,
404: ’Not found’,
500: ’Error retrieving configuration’

})
def get(self, id):

"""
Configuration retrieval
"""
return "", status.HTTP_200_OK

Listing C.2: Example of controller implementation in Flask

61

Appendix D

Docker Examples

These examples represent usage of Docker in this thesis and give samples of Dockerfiles
used to build DeCon images.

$ docker create --rm --network=decon_internal
--name=d548e996-4eda-4343-9405-f5a2e87d411e --volume=:/app/mount/
decon-image-dbdetectors --token "d548e996-4eda-4343-9405-f5a2e87d411e" --file
"/app/cli/db-reporter/run_detectors.sh" --workingDirectory "/app/cli/"
--arguments "EncodedArguments"

$ docker cp /home/user/decon/db-detection/
d548e996-4eda-4343-9405-f5a2e87d411e:/app/cli/

$ docker start d548e996-4eda-4343-9405-f5a2e87d411e
...
$ docker stop d548e996-4eda-4343-9405-f5a2e87d411e

Listing D.1: Concrete example of container management in DeCon

FROM microsoft/dotnet:2.2-sdk as dotnet-builder
WORKDIR /app/app-wrapper/
COPY ./ApplicationWrapper.sln /app/app-wrapper/
COPY ./src/ApplicationWrapper.csproj /app/app-wrapper/src/
RUN dotnet restore -r linux-x64
COPY . /app/app-wrapper/
RUN dotnet publish "ApplicationWrapper.sln" --no-restore --self-contained -c

release -o /output

FROM debian
LABEL maintainer="xoberr00@stud.fit.vutbr.cz"

RUN apt-get update && apt-get install -y --no-install-recommends apt-utils
build-essential python3-pip python3-setuptools python3-dev

RUN pip3 install wheel

RUN mkdir -p /app/app-wrapper
COPY --from=dotnet-builder /output/ /app/app-wrapper/publish/

WORKDIR /app/app-wrapper/publish
ENTRYPOINT ["/app/app-wrapper/publish/ApplicationWrapper"]

Listing D.2: Definition of the default Dockerfile for command-line applications

62

FROM mysql
LABEL maintainer="xoberr00@stud.fit.vutbr.cz"

RUN apt-get update && apt-get install -y --no-install-recommends apt-utils
RUN apt-get install -y dbus
RUN apt-get install -y dbus-x11
RUN apt-get install -y python3
RUN apt-get install -y python3-pip
RUN apt-get install -y python3-dev
RUN apt-get install -y wget
RUN apt-get install -y telnet
RUN apt-get install -y iputils-ping

RUN apt-get install -y build-essential libdbus-1-dev nlohmann-json-dev
libspdlog-dev libglib2.0-dev

RUN apt-get install -y python3-levenshtein python3-mysqldb libdbus-1-dev
nlohmann-json-dev libspdlog-dev libglib2.0-dev unixodbc-dev

RUN pip3 install lxml pandas fuzzywuzzy python-dateutil SQLAlchemy NumPy pyodbc

RUN mkdir -p /app/cli/db-reporter/
COPY ./db-reporter /app/cli/db-reporter/
RUN cd /app/cli/db-reporter/ && make

COPY --from=decon-app-wrapper /app/ /app/
ENTRYPOINT ["/app/app-wrapper/publish/ApplicationWrapper"]

Listing D.3: Custom Dockerfile example (demo-dockerfile)

63

Appendix E

API Models

Examples of the models used for communication with clients or between microservices.

E.1 Gateway Models

{
"Id":"20203463-a9ce-4a56-ac9f-ad4be8ceb4a7",
"Created":"2019-05-07T21:50:20.58Z",
"Started":"2019-05-07T21:54:01.925Z",
"Finished":"2019-05-07T21:54:15.957Z",
"State":"Success",
"ProgressPercentage":100,
"Configuration":"db-detectors",
"Arguments":"EncodedArguments",
"lastActivity":"2019-05-07T21:54:15.957Z",
"StdOut":[

{
"timestamp":"2019-05-07T21:54:14.042Z",
"value":"[RESULT][StringDet]{\"type\": \"VARCHAR(500)\", \"name\":

\"col_iban\", \"table_name\": \"MOCK_DATA\", \"weight\": 1.0}"
}

],
"StdErr":[

],
"ExitCode":0,
"HostPort":null

}

Listing E.1: Full Job entity model example

64

{
"Id": "72c894b3-0036-4e06-92f4-e067e5914807",
"Started": "2019-04-22T18:51:28.113Z",
"State": "Running",
"LastActivity": "2019-04-22T18:51:28.113Z",
"ProgressPercentage": 42

}

Listing E.2: Job status model example

{
"Configuration":"demo-mount",
"Arguments":[

"arg1",
"arg2"

],
"HostPort":null

}

Listing E.3: Job creation model example

{
"Name":"db-detectors",
"FilePath":"/decon/apps/db-detection/run_detectors.sh",
"WorkingDirectory":"/decon/apps/db-detection/",
"Mount":null,
"Dockerfile":"/decon/apps/db-detection/Dockerfile",
"ContainerPort":null,
"JobTimeout":300,
"IsVolumeMounted":false

}

Listing E.4: Configuration model example

E.2 Other Models

{
"Id":"41ffb383-80b2-4487-a11c-704ca8a65654",
"LogLevel":"Error",
"EventId":"5e819f2c-8d29-47a8-aa9e-cd1a73a2afdd",
"Name":"DetectionContainersAPI.Assets.ProcessWrapper",
"Message":"Container start failed",
"Timestamp":"2019-04-16T12:09:13.7370525+00:00"

}

Listing E.5: Log entry model example

65

{
"Image":"decon-image-dbdetectors",
"Dockerfile":"/decon/apps/db-detection/Dockerfile",
"Cmd":[

"--token",
"7a71d0de-f6bf-4136-8e63-8da3f0910351",
"--file",
"/app/cli/run_detectors.sh",
"--workingDirectory",
"/app/cli/",
"--arguments",
"EncodedArguments"

],
"HostConfig":{

"NetworkMode":"decon_internal"
},
"ContainerId":"7a71d0de-f6bf-4136-8e63-8da3f0910351",
"SourceFolder":"/decon/apps/db-detection/",
"TargetFolder":"/app/cli",
"PortMapping":"0:6000",
"IsVolumeMounted":"false"

}

Listing E.6: Docker service container start model example

66

	Introduction
	Glossary

	Background
	Virtualization
	Full Virtualization
	Containerization

	Docker Platform
	System overview
	Technical overview
	Docker security
	Interfaces
	Docker on Windows
	Docker on MacOS

	Hypertext Transfer Protocol
	Web APIs
	Representational state transfer
	REST APIs
	HTTP-based REST APIs

	Service-Oriented Architecture
	Microservices

	Testos
	Database detectors
	Database reporter

	Analysis and Design
	Design Goals
	Target Product
	Existing Solutions with Similar Functionality
	Portainer
	Kitematic

	Requirements
	Architecture
	Gateway
	Configuration service
	Job service
	Logging service
	Application wrapper
	Docker service
	Web application

	Implementation Details of DeCon
	Technology Choices
	General Implementation Principles
	Project Structure
	User Interface Functionalities
	Use of Docker Features
	Custom Dockerfile

	Running DeCon
	Included examples

	Integration of Database Reporter and Detectors
	Verification of Functionality
	Unit testing
	Component testing
	Integration testing
	Running the tests

	Conclusion
	Bibliography
	Appendices
	Contents of the CD
	Building and Running DeCon

	Web Application
	Code Samples
	Docker Examples
	API Models
	Gateway Models
	Other Models

