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Abstract
This work focuses on Watson-Crick languages inspired by DNA computing, their models
and algorithms of deciding the language membership. It analyzes a recently introduced
algorithm called WK-CYK and introduces a state space search algorithm which is based
on regular Breath-first search but uses a number of optimizations and heuristics to be
efficient in practical use and able to analyze inputs of greater lengths. The key parts are
the heuristics for pruning the state space (detecting dead ends) and heuristics for choosing
the most promising branches to continue the search.

These two algorithms have been tested with 20 different Watson-Crick grammars (40
including their Chomsky normal form versions). While WK-CYK is able to decide the
language membership in a reasonable time for inputs of length of roughly 30–50 symbols
and its performance is very consistent for all kinds of grammars and inputs, the state space
search is usually (89–98 % of cases) more efficient and able to do the computation for inputs
with lengths of hundreds or even thousands of symbols. Thus, the state space search has
a potential to be a good tool for practical Watson-Crick membership testing and is a good
basis to further build on and further improve the efficiency of the algorithm.

Abstrakt
Tato práce se zabývá Watson-Crickovými jazyky, které jsou inspirovány výpočty nad DNA,
dále jejich modely a algoritmy pro rozhodování členství řetězců v těchto jazycích. Analyzuje
nedávno představený algoritmus nazvaný WK-CYK a prezentuje algoritmus založený na
prohledávání stavového prostoru, jehož základem je standardní prohledávání prostoru do
šířky, ale používá množství optimalizací a heuristik, aby byl v praxi efektivnější a dokázal
analyzovat delší vstupy. Klíčové jsou heuristiky pro prořezávání stavového prostoru (de-
tekují slepé větve) a heuristiky pro výběr nejslibnějších větví pro další výpočet.

Tyto dva algoritmy jsou testovány na 20 různých Watson-Crickových gramatikách (40
včetně jejich verzí v Chomského normální formě). Zatímco WK-CYK je schopen rozhod-
nout členství v jazyce v rozumném čase u vstupů o délce zhruba 30–50 symbolů, jeho efek-
tivnost je velmi konzistentní u různých gramatik a různých vstupů, algoritmus prohledá-
vající stavový prostor je obvykle (v 89–98 % případů) efektivnější a je schopen provést
výpočet pro vstupy s délkou o stovkách často i tisících symbolů. Tedy tento algoritmus
má potenciál být vhodným nástrojem pro praktické použití při rozhodování členství ve
Watson-Crickových jazycích a nabízí vhodný základ pro další vývoj a vylepšení, která by
dále zvyšovala efektivitu algoritmu.
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Rozšířený abstrakt
Tato práce se zabývá Watson-Crickovými jazyky, které jsou inspirovány výpočty nad DNA,
dále jejich modely a především algoritmy pro rozhodování členství řetězců v těchto jazycích.
Tyto jazyky pracují s dvojitými vstupními řetězci, jejichž symboly jsou spojeny komple-
mentární relací.

Jeden z hlavních modelů pro tyto jazyky jsou Watson-Crickovy bezkontextové gra-
matiky. Nedávno představený algoritmus WK-CYK, který je modifikací algoritmu CYK pro
bezkontextové gramatiky, je určen právě pro rozhodování členství v těchto jazycích. Tento
algoritmus pracuje s gramatikami ve Watson-Crickově Chomského normální formě (WK-
CNF), což je modifikace Chomského normální formy bezkontextových gramatik. V této
práci je algoritmus analyzován, implementován, je ověřena jeho funkčnost a deklarovaná
složitost 𝒪(𝑛6) vzhledem k délce vstupu.

Hlavním přínosem práce je použití algoritmu prohledávání stavového prostoru pro rozho-
dování členství ve Watson-Crickových jazycích. Jeho základem je standardní algoritmus
BFS (prohledávání stavového prostoru do šířky), který byl rozšířen o několik optimalizací a
heuristik, aby jeho efektivita byla zajímavá pro praktické použití. Kořen stavového stromu
je počáteční symbol gramatiky a následníci jsou získáni aplikací všech možných pravidel
gramatiky na první neterminální symbol ve slově.

Nejdůležitějším rozšířením oproti původnímu BFS je pět heuristik pro prořezávání
stavového stromu. Ty každý uzel analyzují a rozhodují, jestli je možné, že daný uzel
vede k hledanému řešení. Heuristiky kontrolují, zda není již ve slově příliš mnoho sym-
bolů, přičemž počet terminálních symbolů se snížit nemůže a u neterminálních symbolů je
počítán minimální počet symbolů, které z nich mohou vzejít. Dále je kontrolováno dodržení
komplementární relace a správnost pořadí již vygenerovaných terminálních symbolů. Dále
je zde použita sada heuristik pro výběr nejslibnějšího uzlu, pro další prohledávání. Obecně
preferují slova s méně neterminálními symboly a slova, jejíchž terminální symboly se více
shodují s vstupním řetězcem.

Pro testování bylo vybráno 20 různých Watson-Crickových gramatik, které byly použity
jednak v původní formě a také po transformaci do WK-CNF. Testování bylo provedeno
v několika fázích. Nejprve byly porovnány na všech gramatikách všechny dostupné heuris-
tiky pro výběr uzlu a vybrána ta, která dosáhla nejlepšího celkového času, protože je
možné mít aktivní vždy jen jednu z nich. Dále byly na všech gramatikách testovány pos-
tupně všechny heuristiky pro prořezávání stromu a porovnáváno, zda má algoritmus lepší
výkon s danou heuristikou aktivní nebo vypnutou. Tímto způsobem byla získána konfig-
urace, která má nejlepší celkový výkon. S touto konfigurací proběhly opět na všech gra-
matikách testy, které zjišťovaly maximální délku vstupu, pro kterou algoritmus prohledávání
stavového prostoru získá výsledek v daném časovém limitu (10 sekund). Podobné testování
následně proběhlo i pro algoritmus WK-CYK.

Při testování se ukázalo, že WK-CYK je schopen v rozumném časovém horizontu
rozhodnout členství v jazyce pro řetězce o délce 30–50 znaků. Jeho výhodou je konzis-
tentnost — ve všech testovaných případech, pro různé gramatiky i vstupy byla časová
složitost velice podobná.

Výhodou algoritmu prohledávání stavového prostoru je předně univerzálnost. Je schopen
pracovat s Watson-Crickovými gramatikami v jakékoli formě a s libovolnou komplementární
relací. Díky tomu není nutné gramatiky převádět do WK-CNF, což může vyústit v daleko
komplikovanější gramatiku s více pravidly. Při testování gramatik v základní formě byl
výpočet v 38 ze 40 testovacích případů (tedy 97.5 %) výrazně efektivnější — je takto
možné rozhodnout členství řetězců s řádově stovkami, často i tisíci symbolů. Po zahrnutí



gramatik po transformaci do WK-CNF byl algoritmus efektivnější v 71 z 80 (tedy 88.75 %)
testovacích případů. Další výhodou tohoto algoritmu je jeho konfigurovatelnost, je možné
pro konkrétní gramatiku porovnat účinnost heuristik pro výběr uzlu a používat tu, která
je pro daný případ nejvhodnější. Stejně tak u heuristik pro prořezávání stavového stromu
může být vhodné pro danou gramatiku některé vypnout, čímž se efektivita dále zvýší.
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Chapter 1

Introduction

The ability to read DNA, to understand it or even to modify it, is certainly one of the ways
that many people think will define the future. But in order to work with DNA, there needs
to be a mathematical model that can actually do calculations with such structures and that
is prepared to be run on computers. Moreover, working with this model must be efficient
enough because genetic code has a huge number of digits.

This works follows the work of M. Zulkufli et al. [10], [12], [11] who have studied
models for working with Watson-Crick languages and introduced the WK-CYK algorithm, a
modification of the CYK algorithm, which works with Watson-Crick context-free grammars
and is able to decide the membership problem for these languages. The stated complexity
of this algorithm is 𝒪(𝑛6) with respect to the input length. However, with this complexity
the algorithm still does not seem to be useful for practical DNA computations considering
how long DNA code is.

Therefore this work introduces the state space search algorithm. While its theoretical
complexity is not as good as in case of WK-CYK, it takes a more practical approach. In
practice, thanks to various heuristics, it is very often able to decide the membership in
languages defined by Watson-Crick context-free grammars of inputs far longer then what
WK-CYK can handle.

Chapter 2 contains an overview of most common models for working with Watson-Crick
languages. Chapter 3 discusses ways of deciding membership problem of those languages
with the focus on the WK-CYK algorithm. Chapter 4 introduces the state space search
algorithm and the heuristics and optimizations that make it more efficient. Chapter 5
focuses on the implementation of the state space search and is probably going to be useful
to someone who wants to delve into the code and use it or further build on it. Finally,
chapter 6 contains twenty grammars that were used for testing both state space search and
WK-CYK algorithms in practice and presents results of these tests.

A integral component of this thesis is an implementation in the Python programming
language of the state space search algorithm, the WK-CYK algorithm and a number of
tests used to analyze the state and space complexities and to compare the algorithms.
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Chapter 2

Models of Watson-Crick languages

A number of models working with double stranded sequences has been proposed. The
purpose of this chapter is to present a motivation for using them and to summarize these
models and some of their key attributes that will be important in later chapters.

2.1 DNA as an inspiration for Watson-Crick languages
The study of Watson-Crick models is motivated by DNA (deoxyribonucleic acid) computing.
In order to study the DNA mathematically, i.e. to perform mathematical operations over
it, it is necessary to work with a suitable abstraction — a model which captures its key
characteristics. Specifically, there are two characteristics that the Watson-Crick models
capture — the fact that the DNA is a double stranded chain and the Watson-Crick relation
between DNA nucleotides.

The two fundamental models that are used to define a language in computer theory are
grammars and automata. Several versions of both have been proposed but all of them work
with these two characteristics in a very similar manner.

DNA consists of two chains of nucleotides, one of which is marked as 5′ end and the
other 3′ end. The chains are connected by covalent bonds and together form a double
helix (figure 2.1). These two chains are represented in the Watson-Crick automata by two
reading heads which read two inputs independently but are controlled by the same states.
Similarly, Watson-Crick grammars produce by their rules not just a chain of symbols, but
two chains.

Each nucleotide contains one of the four nucleobases - cytosine (C), guanine (G), adenine
(A) and thymine (T). These bases are always connected with their counterpart: cytosine
with guanine and adenine with thymine. That means that whenever one of the four appears
in a chain, its counterpart appears in the other chain in the corresponding place being
bound together by the covalent bond. The Watson-Crick models therefore introduce a
complementarity relation — a relation between symbols which must be kept in the whole
input for it to be valid. Typically, this relation is symmetric (𝑎𝑅𝑏 ⇔ 𝑏𝑅𝑎) and covers the
whole alphabet (every symbol must have at least one counterpart). Often every symbol
has exactly one counterpart, just like in case of DNA. The relation is usually defined as
an identity (i.e. each symbol is related to itself and only to itself) which is still somewhat
similar to the DNA pairing.

3



Figure 2.1: The DNA double helix

2.2 Watson-Crick automata
Watson-Crick automata have first been proposed in [7] as an enhancement of standard
Finite Automata. Watson-Crick finite automaton is a 6-tuple 𝑀 = (𝑉, 𝜌,𝑄, 𝑞0, 𝐹, 𝑃 ) with
the following meaning.

• 𝑉 – finite input alphabet

• 𝜌 ⊆ 𝑉 × 𝑉 – complementarity relation

• 𝑄 – finite set of states

• 𝑞0 ∈ 𝑄 – starting symbol

• 𝐹 ⊆ 𝑄 – set of final states

• 𝑃 – finite set of transition rules in a form 𝑞
(︀
𝑤1

𝑤2

)︀
→ 𝑞′ where 𝑞, 𝑞′ ∈ 𝑄,𝑤1, 𝑤2 ∈ 𝑉 *

Compared to Finite automata, Watson-Crick automata have different form of transition
rules which read two strings at the same time. These represent the two independent reading
heads — one reading the upper strand (𝑤1) and the other reading the lower strand (𝑤2).
They also add the complementarity relation which is usually required to be symmetric. The
symbols in the upper and lower strands with the same indexes need to adhere to it.(︀

𝑤1

𝑤2

)︀
denotes simply a pair (𝑤1, 𝑤2). A Watson-Crick domain is a set 𝑊𝐾𝜌(𝑉 ) which

denotes all valid double strands associated with a given 𝑉 and 𝜌. Formally:

𝑊𝐾𝜌(𝑉 ) =
[︀
𝑉
𝑉

]︀*
𝜌

where
[︀
𝑉
𝑉

]︀
𝜌

=
{︁[︀

𝑎
𝑏

]︀
|𝑎, 𝑏 ∈ 𝑉, (𝑎, 𝑏) ∈ 𝜌

}︁
This implies that the both strands in a WK domain must have the same length.

A configuration of a Watson-Crick automaton is a pair (𝑞,
(︀
𝑤1

𝑤2

)︀
) where 𝑞 ∈ 𝑄 is a current

state and 𝑤1, 𝑤2 ∈ 𝑉 * are the parts of the upper and lower strands yet to be read.
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If 𝑞
(︀
𝑢1

𝑢2

)︀
→ 𝑞′ ∈ 𝑃 and

(︀
𝑢1𝑣1
𝑢2𝑣2

)︀
∈

(︀
𝑉 *

𝑉 *

)︀
then 𝑞

(︀
𝑢1𝑣1
𝑢2𝑣2

)︀
⇒ 𝑞′

(︀
𝑣1
𝑣2

)︀
is a transition of the

Watson-Crick automaton. ⇒* denotes the transitive and reflexive closure of the relation
⇒.

A Watson-Crick automaton accepts the language 𝐿(𝑀):

𝐿(𝑀) =
{︁
𝑤1 ∈ 𝑉 *|𝑞0

[︀
𝑤1

𝑤2

]︀
⇒* 𝑓

(︀
𝜆
𝜆

)︀
where 𝑓 ∈ 𝐹,𝑤2 ∈ 𝑉 *,

[︀
𝑤1

𝑤2

]︀
∈ 𝑊𝐾𝜌(𝑉 )

}︁
where 𝜆 denotes a string of zero length (an empty string). This means that only the

upper strand is accepted by this automaton to the language 𝐿. The lower strand has just
an auxiliary purpose.

2.3 Special versions of Watson-Crick automata
Four special versions of Watson-Crick automata (WKA) are often used ([5], [13]). These
are:

• stateless WKA — the WKA has only one state: 𝑄 = 𝐹 = 𝑞0

• all final WKA — all the states are final: 𝑄 = 𝐹

• simple WKA — each rule reads only one head: (𝑞
(︀
𝑤1

𝑤2

)︀
→ 𝑞′ ∈ 𝑃 ) ⇒ (𝑤1 = 𝜆∨𝑤2 = 𝜆)

• 1-limited WKA — reads only one symbol at a time: (𝑞
(︀
𝑤1

𝑤2

)︀
→ 𝑞′ ∈ 𝑃 ) ⇒ |𝑤1𝑤2| = 1

Three of these four special types of WKAs have the same expressing power as the
actual WKA, namely all final WKA, simple WKA and 1-limited WKA (stateless WKA
is weaker). Therefore, one possible approach to decide membership would be to limit the
decision algorithm to one of these three types without any loss in expressing power.

There are three different variants of deterministic WKA proposed in [5]. These are:

• Weakly deterministic WKA: WKA where in each reachable configuration, there is at
most one possible continuation.

• Deterministic WKA: For any two rules which lead from the same state, either their
upper strands or their lower strands must not be prefix comparable (one is not the
prefix of the other). Formally: (𝑞

(︀
𝑢
𝑣

)︀
→ 𝑞1 ∈ 𝑃 ∧𝑞

(︀
𝑢′

𝑣′

)︀
→ 𝑞2 ∈ 𝑃 ) ⇒ 𝑢 �𝑝 𝑢

′∨𝑣 �𝑝 𝑣
′

where ∼𝑝 is the relation of prefix comparability.

• Strongly deterministic WKA: A deterministic WKA whose complementarity relation
is identity.

It is not specified how to actually achieve weak determinism. In fact, [5] shows that
this property is undecidable. Intuitively, for a WKA to be weakly deterministic but not
deterministic, there must be at least two rules which could both be used in a certain
configuration (otherwise it would be deterministic). But such a configuration must not
be reachable (otherwise it would not be weakly deterministic). The configuration may be
unreachable trivially — by rules using an unreachable state or a symbols that have no
related symbols in the complementarity relation. But a configuration may be unreachable
non-trivially, if it is possible to tell how many symbols will be read from each strand before
reaching certain state.
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Both weakly deterministic and deterministic WKA are in reality not deterministic (in an
intuitive sense). Their determinism relies on the fact that the configuration is known and for
the configuration to be known, the entire input (meaning both strands of the input) needs
to be specified. But that is often not a way how WKA are used, since WKA decides the
membership in a language for the upper strand only. That means that a compatible strand
has to be found in the process of running the WKA. Theoretically, it is possible to approach
this problem by first generating all possible lower strands for the given upper strand based
solely on the complementarity relation and afterwards use all these pairs as inputs for the
WKA. In such a case, the weakly deterministic and deterministic automata would be truly
deterministic, however this is clearly not feasible for non-trivial complementarity relations.
Therefore, the strongly deterministic WKA is the only one witch is truly deterministic
under all circumstances because the identity relation requirement leaves no space for these
types of non-determinism.

2.4 Watson-Crick grammars
The first kind of Watson-Crick grammars introduced were the Watson-Crick regular gram-
mars [14]. The key features are shared with Watson-Crick automata. Specifically, it it the
complementarity relation 𝜌 and the double stranded strings that the grammar produces.
The WK regular grammars have been used as a basis for Watson-Crick linear grammars
and Watson-Crick context-free grammars introduced in [10]. Since a WK linear grammar is
a generalization of WK regular grammar and WK context-free grammar is a generalization
of WK linear grammar, it makes sense to start with the definition of the context-free version
and then specify the constraints of linear and regular versions.

A Watson-Crick context-free grammar is 𝐺 = (𝑁,𝑇, 𝜌, 𝑃, 𝑆) where 𝑁 is a finite
set of non-terminals, 𝑇 is a finite set of terminals and 𝑁 ∪ 𝑇 = ∅, 𝑆 ∈ 𝑁 is a starting
non-terminal, 𝜌 ⊆ 𝑇 × 𝑇 is a symmetric complementarity relation, and 𝑃 is a finite set of
rules that have the form 𝐴 → 𝛼 where 𝐴 ∈ 𝑁 ∧ 𝛼 ∈ (𝑁 ∪

(︀
𝑇 *

𝑇 *

)︀
)*.

The derivation of the grammar 𝐺 starts with the starting symbol 𝑆. 𝑥 ∈ (𝑁 ∪
(︀
𝑇 *

𝑇 *

)︀
)*

directly derives 𝑦 ∈ (𝑁 ∪
(︀
𝑇 *

𝑇 *

)︀
)*, denoted by 𝑥 ⇒ 𝑦, if and only if:

𝑥 = 𝛽𝐴𝛾 ∧ 𝑦 = 𝛽𝛼𝛾

where 𝐴 ∈ 𝑁 ∧ 𝛼, 𝛽, 𝛾 ∈ (𝑁 ∪
(︀
𝑇 *

𝑇 *

)︀
)* ∧ 𝐴 → 𝛼 ∈ 𝑃 .

The language generated by the grammar 𝐺 is:

𝐿(𝐺) =
{︀
𝑤1|𝑆 ⇒* [︀𝑤1

𝑤2

]︀
∈
[︀
𝑇 *

𝑇 *

]︀
𝜌

}︀
where ⇒* is a reflexive and transitive closure of ⇒.
A Watson-Crick linear grammar is a special version of a Watson-Crick context-free

grammar where all the rules in the set of rules 𝑃 are in one of the following forms:

𝐴 →
(︀
𝑇 *

𝑇 *

)︀
𝐵
(︀
𝑇 *

𝑇 *

)︀
, 𝐴 →

(︀
𝑇 *

𝑇 *

)︀
where 𝐴,𝐵 ∈ 𝑁
A Watson-Crick regular grammar is also a special version of a Watson-Crick

context-free grammar (and of a Watson-Crick linear grammar) where all the rules in the
set of rules 𝑃 are in one of the following forms:
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𝐴 →
(︀
𝑇 *

𝑇 *

)︀
𝐵, 𝐴 →

(︀
𝑇 *

𝑇 *

)︀
where 𝐴,𝐵 ∈ 𝑁
A further specialization of Watson-Crick regular grammar has been defined in [14] called

1-limited Watson-Crick regular grammar (N1WK grammar). All rules of such a
grammar must contain exactly one terminal symbol on the left-hand side and the starting
non-terminal must be the only non-terminal in the grammar. In other words, the form of
each rule must be one of the following:

𝑆 →
(︀
𝑎
𝜆

)︀
𝑆, 𝑆 →

(︀
𝜆
𝑎

)︀
𝑆, 𝑆 →

(︀
𝑎
𝜆

)︀
, 𝑆 →

(︀
𝜆
𝑎

)︀
where 𝑆 is the only non-terminal of the grammar.

2.5 Some other models for Watson-Crick languages
This section mentions some other, perhaps slightly less often used, models for Watson-
Crick languages — Watson-Crick pushdown automata, Watson-Crick context-free systems
and parallel communicating Watson-Crick automata.

2.5.1 Watson-Crick pushdown automata

The Watson-Crick Pushdown automata (WCPDA) have been introduced in [1]. It is ba-
sically a two-head pushdown automaton with the complementarity relation added on top.
Formally a WCPDA 𝑃 is a 10-tuple 𝑃 = (𝑄,#, $, 𝑉,Γ, 𝛿, 𝑞0, 𝑍0, 𝐹, 𝜌) with most symbols
having the same standard meaning as in a conventional pushdown automaton — 𝑄 is a
finite set of states, 𝑉 is an input alphabet, Γ is a stack alphabet, 𝑞0 ∈ 𝑄 is a starting state,
𝑍0 ∈ Γ is a starting stack symbol and 𝐹 ⊆ 𝑄 is the set of final states. Symbols #, $ /∈ 𝑉 are
left and right input markers of the two strands. 𝜌 is the complementarity relation similar
to standard WKA.

𝛿 is a set of rules in the following form: (𝑞,
(︀
𝑤1

𝑤2

)︀
, 𝑥) → (𝑞′, 𝛾) where 𝑞, 𝑞′ ∈ 𝑄,𝑤1, 𝑤2 ∈

𝑉 * ∪ #𝑉 * ∪ 𝑉 *$ ∪ #𝑉 *$, 𝑥 ∈ Γ, 𝛾 ∈ Γ*. It means that the automaton can transition from
state 𝑞 reading the input 𝑤1 with the first head and 𝑤2 with the second head and go to state
𝑞′ while removing the top symbol from the stack and putting a string (i.e. 0–n symbols)
of the stack symbols onto the stack. The two strands on the input are enclosed in the
beginning symbol # and the closing symbol $, therefore the symbol # may appear in the
beginning of 𝑤1 or 𝑤2 and similarly the closing symbol $ at the end.

A configuration of 𝑃 is a triple (𝑞,
(︀
𝑥
𝑦

)︀
, 𝛾) where 𝑞 ∈ 𝑄 is a state,

(︀
𝑥
𝑦

)︀
is the remaining

input to be read where 𝑥, 𝑦 ∈ #𝑉 *$ ∪ 𝑉 *$ ∪ 𝜆 and 𝛾 ∈ Γ* is the content of the stack. The
initial configuration of the automaton is (𝑞0,

(︀#𝑤1$
#𝑤2$

)︀
, 𝑍0) where

[︀
𝑤1

𝑤2

]︀
∈ 𝑊𝐾𝜌(𝑉 ).

A transition ⊢ of 𝑃 is a relation between configurations defined as follows:(︀
𝑞,
(︀
𝑎1𝑤1

𝑎2𝑤2

)︀
, 𝑋𝛽

)︀
⊢
(︀
𝑝,
(︀
𝑤1

𝑤2

)︀
, 𝛼𝛽

)︀
⇐⇒

(︀
𝑞,
(︀
𝑎1
𝑎2

)︀
, 𝑋

)︀
→ (𝑝, 𝛼) ∈ 𝛿

⊢* is a transitive and reflexive relation of ⊢ denoting zero or more transitions.
The language accepted by 𝑃 is:

𝐿(𝑃 ) =
{︁
𝑤1 ∈ 𝑉 *|𝑤2 ∈ 𝑉 *∧

[︀
𝑤1

𝑤2

]︀
∈ 𝑊𝐾𝜌(𝑉 )∧

(︀
𝑞0,

(︀#𝑤1$
#𝑤2$

)︀
, 𝑍0

)︀
⊢* (︀𝑞, (︀𝜆𝜆)︀, 𝛼)︀∧𝑞 ∈ 𝐹∧𝛼 ∈ Γ*

}︁
meaning that there exists a sequence of transitions (⊢*) from the initial configuration to

a final configuration where the remaining input to be read is
(︀
𝜆
𝜆

)︀
, the content of the stack
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is arbitrary and the state is in the set of final states 𝐹 . This means that WK pushdown
automata accept by final states.

[1] also defines two special versions of WK pushdown automata — deterministic Watson-
Crick pushdown automata (DWKPDA) and strongly deterministic Watson-Crick pushdown
automata (SDWKPDA) which are inspired by the deterministic and strongly deterministic
WKA.

Watson-Crick pushdown automaton is deterministic if any two rules, which start in the
same state, read inputs which are prefix incomparable in the upper or lower part. Formally:(︀

𝑞,
(︀
𝑢
𝑣

)︀
, 𝑋

)︀
→ (𝑞′, 𝛾) ∈ 𝛿 ∧

(︀
𝑞,
(︀
𝑢′

𝑣′

)︀
, 𝑋

)︀
→ (𝑞′′, 𝛾′) ∈ 𝛿 ⇒ 𝑢 �𝑝 𝑢

′ ∨ 𝑣 �𝑝 𝑣
′

Watson-Crick pushdown automaton is strongly deterministic if it is deterministic and
its complementarity relation is identity.

2.5.2 Watson-Crick context-free systems

A Watson-Crick context-free systems (WKCFS) have been defined in [15] A WKCFS is:
𝑆 = (𝑉,Σ, 𝜌, 𝐴, 𝑃 ) where 𝑉 is a finite alphabet, Σ ⊂ 𝑉 , 𝜌 ⊆ Σ×(𝑉 ∖Σ) is a complementarity
relation where if (𝑎, 𝑎) ∈ 𝜌 then 𝑎 ∈ 𝑉 − Σ is unique for 𝑎 ∈ Σ. 𝐴 is a finite set of axioms
in form

[︀
𝑤
𝑠

]︀
where 𝑤 ∈ Σ*, 𝑠 ∈ (𝑉 − Σ)* and (𝑤, 𝑠) ∈ 𝜌. 𝑃 is a finite set of rules in one of

the forms: (︀
𝑎
𝑎

)︀
→

(︀
𝑥
𝑦

)︀
,
(︀
𝑎
𝜆

)︀
→

(︀
𝑥
𝑦

)︀
,
(︀
𝜆
𝑎

)︀
→

(︀
𝑥
𝑦

)︀
where 𝑎 ∈ Σ, (𝑎, 𝑎) ∈ 𝜌, 𝑥 ∈ Σ* and 𝑦 ∈ (𝑉 − Σ)*

A derivation ⇒ in 𝑆 is a relation between
(︀
𝑢1

𝑣1

)︀
and

(︀
𝑢2

𝑣2

)︀
defined as follows:(︀

𝑢1

𝑣1

)︀
⇒

(︀
𝑢2

𝑣2

)︀
if one of the following conditions is met:

1.
(︀
𝑢1

𝑣1

)︀
=

(︀
𝑥1

𝑦1

)︀(︀
𝑎
𝑎

)︀(︀
𝑥2

𝑦2

)︀(︀
𝑢2

𝑣2

)︀
=

(︀
𝑥1𝑥𝑥2

𝑦1𝑦𝑦2

)︀
if
(︀
𝑎
𝑎

)︀
→

(︀
𝑥
𝑦

)︀
∈ 𝑃

2.
(︀
𝑢1

𝑣1

)︀
=

(︀
𝑥1

𝑦1

)︀(︀
𝑎
𝜆

)︀(︀
𝑥2

𝑦2

)︀(︀
𝑢2

𝑣2

)︀
=

(︀
𝑥1𝑥𝑥2

𝑦1𝑦𝑦2

)︀
if
(︀
𝑎
𝜆

)︀
→

(︀
𝑥
𝑦

)︀
∈ 𝑃

3.
(︀
𝑢1

𝑣1

)︀
=

(︀
𝑥1

𝑦1

)︀(︀
𝜆
𝑎

)︀(︀
𝑥2

𝑦2

)︀
(︀
𝑢2

𝑣2

)︀
=

(︀
𝑥1𝑥𝑥2

𝑦1𝑦𝑦2

)︀
if
(︀
𝜆
𝑎

)︀
→

(︀
𝑥
𝑦

)︀
∈ 𝑃

where 𝑎 ∈ Σ, (𝑎, 𝑎) ∈ 𝜌, 𝑥1, 𝑥2 ∈ Σ*, 𝑦1, 𝑦2 ∈ (𝑉 − Σ)*

The language of 𝑆 is: 𝐿(𝑆) =
{︀
𝑥|
[︀
𝑤
𝑠

]︀
⇒* [︀𝑥

𝑦

]︀}︀
where

[︀
𝑤
𝑠

]︀
∈ 𝐴, 𝑥 ∈ Σ* and 𝑦 ∈ (𝑉 −Σ)*

2.5.3 Parallel communicating Watson-Crick automata systems

Parallel communicating Watson-Crick automata systems (PCWK) have been defined in [3].
PCWK(𝑛) is a PCWK of degree 𝑛 which is a (𝑛 + 3)-tuple: 𝐴 = (𝑉, 𝜌,𝐴1, 𝐴2, ..., 𝐴𝑛,𝐾)

where 𝑉 is an input alphabet, 𝜌 is a complementarity relation, 𝐴𝑖 = (𝑉, 𝜌,𝑄𝑖, 𝑞𝑖, 𝐹𝑖, 𝛿𝑖)
for 1 ≤ 𝑖 ≤ 𝑛 is a Watson-Crick automaton. 𝐾 = 𝐾1,𝐾2, ...,𝐾𝑛 ⊆

⋃︀𝑛
𝑖=1𝑄𝑖 is a set of query

states.
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The automata 𝐴1−𝑛 are the components of the system 𝐴. A configuration of a PCWK
is a 2𝑛-tuple

(︀
𝑠1,

(︀
𝑢1

𝑣1

)︀
, 𝑠2,

(︀
𝑢2

𝑣2

)︀
, ..., 𝑠𝑛,

(︀
𝑢𝑛

𝑣𝑛

)︀)︀
where 𝑠𝑖 is a state of component 𝐴𝑖 and

(︀
𝑢𝑖
𝑣𝑖

)︀
is part of the input word that has not yet been read by 𝐴𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

A transition is a relation ⊢ between two configurations and is defined as follows:(︀
𝑠1,

(︀
𝑢1

𝑣1

)︀
, 𝑠2,

(︀
𝑢2

𝑣2

)︀
, ..., 𝑠𝑛,

(︀
𝑢𝑛

𝑣𝑛

)︀)︀
⊢
(︀
𝑟1,

(︀𝑢′
1

𝑣′1

)︀
, 𝑟2,

(︀𝑢′
2

𝑣′2

)︀
, ..., 𝑟𝑛,

(︀𝑢′
𝑛

𝑣′𝑛

)︀)︀
if one of the following conditions is met:

1.
𝐾 ∩ {𝑠1, 𝑠2, ..., 𝑠𝑛} = ∅ ∧

(︀
𝑢𝑖
𝑣𝑖

)︀
=

(︀
𝑥𝑖
𝑦𝑖

)︀(︀𝑢′
𝑖

𝑣′𝑖

)︀
∧ 𝑟𝑖 ∈ 𝛿𝑖

(︀
𝑠𝑖,

(︀
𝑥𝑖
𝑦𝑖

)︀)︀
for 1 ≤ 𝑖 ≤ 𝑛

2. for all 1 ≤ 𝑖 ≤ 𝑛 such that 𝑠𝑖 = 𝐾𝑗𝑖 ∧ 𝑠𝑗𝑖 /∈ 𝐾 there is 𝑟𝑖 = 𝑠𝑗𝑖 and for all other
𝑖 ≤ 𝑗 ≤ 𝑛 there is 𝑟𝑙 = 𝑠𝑙(︀𝑢′

𝑖
𝑣′𝑖

)︀
=

(︀
𝑢𝑖
𝑣𝑖

)︀
for all 1 ≤ 𝑖 ≤ 𝑛.

⊢* denotes the reflexive and transitive closure of ⊢ and the language recognized by
PCWK 𝐴 is:

𝐿(𝐴) =
{︁
𝑤1 ∈ 𝑉 *|

(︀
𝑞1,

[︀
𝑤1

𝑤2

]︀
, 𝑞2,

[︀
𝑤1

𝑤2

]︀
, ..., 𝑞𝑛,

[︀
𝑤1

𝑤2

]︀)︀
⊢* (︀

𝑠1,
[︀
𝜆
𝜆

]︀
, 𝑠2,

[︀
𝜆
𝜆

]︀
, ..., 𝑠𝑛,

[︀
𝜆
𝜆

]︀)︀
, 𝑠𝑖 ∈

𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑛
}︁

2.6 Expressing power of Watson-Crick models
The comparison of expressing power of WK language families in the context of the Chomsky
hierarchy has been studied in [10] and [12]. The main result is shown at the figure 2.2.
The Chomsky hierarchy is represented on the right (REG — regular languages, LIN —
linear languages, CF — context-free languages, CS — context sensitive languages, RE
— recursively enumerable languages) while the Watson-Crick languages are on the left.
WKREG are languages defined by a non-deterministic Watson-Crick automata or a Watson-
Crick regular grammars ([14] shows that these are equivalent). WKLIN are languages
defined by WK linear grammars and WKCF are languages defined by WK context-free
grammars (it has not been shown, yet, that WK pushdown automata have the same power).
The full arrows denote proper inclusion, dotted arrows denote inclusion and dotted lines
denote incomparability.

It has been shown in [9] that the type of complementary relation which is used does
not increase the expressing power of the Watson-Crick automata and grammars. Also
[4] provides an algorithm how to transform any WK automaton to an equivalent WK
automaton with the relation being identity. Therefore, many models and algorithms limit
themselves to working with identity complementarity relation.
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Figure 2.2: Comparison of WK language families in the context of the Chomsky hierarchy
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Chapter 3

Existing ways of testing
membership in Watson-Crick
languages

This chapter focuses mainly on the WK-CYK algorithm which is practically the only algo-
rithm explicitly designed to decide a membership in Watson-Crick languages defined by a
WK context-free grammars. Another way could be using WK automata, which is discussed
in the latter part.

3.1 The WK-CYK algorithm
The WK-CYK algorithm has been introduced in [11] and it is an enhancement of the CYK
algorithm modified for WK context-free languages. To understand it, it is good to be
familiar with the way the original CYK algorithm works.

3.1.1 The CYK algorithm as an inspiration of WK-CYK

The CYK algorithm is named after J. Cocke, D. Younger and T. Kasami [2], [17] [8]. It
is used to decide the membership in a language defined by a context-free grammar, which
must be in the Chomsky normal form (CNF).

On the input there is a string and a grammar and the algorithm decides whether the
string belongs to the language defined by the grammar (accepts or rejects the string). There
are two kinds of rules in a grammar in the CNF (disregarding the 𝑆 → 𝜖 rule which is used
only to include empty string in the language): 𝐴 → 𝑎 and 𝐴 → 𝐵𝐶 where 𝐴,𝐵,𝐶 are
non-terminals and 𝑎 is a terminal.

In the first stage, it analyzes the first kind of rules — each of the symbols from the
input string has to be generated by a rule or several rules of this form. Thus, it gets a set
of candidate non-terminals for each symbol.

In the next stage it uses the second kind of rules. Every non-terminal (except the
starting one) has to be generated by such a rule. The algorithm is looking for rules which
can generate the candidate non-terminals which have been found in the previous stage. All
possible combinations need to be considered, for instance the sequence of non-terminals
𝐴𝐵𝐶 may be generated by rules 𝑋 → 𝐴𝐵 and 𝑌 → 𝑋𝐶 or by rules 𝑋 → 𝐵𝐶 and
𝑌 → 𝐴𝑋. In this way, the algorithm needs to find all possible ways to generate words of
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increasing length (all parse trees). Finally, it needs to find a non-terminal that can generate
the whole word and, at the same time, it must be the starting non-terminal in the given
grammar. If it succeeds, the word given on the input is in the language, otherwise it is not.

The complexity of the CYK algorithm is 𝑂(𝑛3 ×𝑅) where 𝑛 is the input string length
and 𝑅 is the number of rules in the grammar.

3.1.2 Watson-Crick Chomsky normal form

Just like the CYK algorithm works with grammars in the Chomsky normal form, the WK-
CYK algorithm requires grammars to be in the Watson-Crick Chomsky normal form. The
Watson-Crick Chomsky normal form (WK-CNF) is a modification of CNF for Watson-Crick
context-free grammars. A grammar in the WK-CNF has only rules of one of the following
forms:

• 𝐴 →
(︀
𝑎
𝜆

)︀
• 𝐴 →

(︀
𝜆
𝑎

)︀
• 𝐴 → 𝐵𝐶

• 𝑆 →
(︀
𝜆
𝜆

)︀
(this rule is used only to include an empty word in the language)

where 𝐴, 𝐵 and 𝐶 are non-terminals, 𝑆 is the starting non-terminal and 𝑎 is a terminal
of the grammar. It is possible to transform any WK context-free grammar to the WK-CNF.
The steps are mostly analogous to the transformation of the standard context-free grammar
to the CNF. This process includes:

1. removing 𝜆-rules (rules of the form 𝐴 →
(︀
𝜆
𝜆

)︀
)

2. removing unit rules (rules of the form 𝐴 → 𝐵)

3. removing useless rules and symbols (symbols that are unreachable from the starting
symbol or cannot lead to a terminal string and rules which use such symbols)

4. replacing every terminal on the left-hand side of each rule (except the rules already
in the right form) with a new non-terminal and adding a new corresponding rule

5. breaking down the rules producing non-terminals, so that they produce only two at
a time

The procedure of the transformation is described formally in [11].

3.1.3 Order of generating terminals in WK grammar

A complication compared to the CYK algorithm that WK-CYK has to deal with, is the
ambiguity in the order of generating terminals. In case of a standard context-free grammar
in the CNF, the order of non-terminals that generate a word, for instance 𝑎𝑏𝑐𝑑, is clear —
if the rules are 𝐴 → 𝑎, 𝐵 → 𝑏, 𝐶 → 𝑐 and 𝐷 → 𝑑, the non-terminal word that generates
the terminal string 𝑎𝑏𝑐𝑑 must be 𝐴𝐵𝐶𝐷. The order cannot change.

But in case of WK grammars, the order is not clear. For the terminal string
(︀
𝑎𝑏
𝑐𝑑

)︀
, the

only given order of generation is 𝑎 before 𝑏 and 𝑐 before 𝑑, anything else is uncertain. If the
rules are 𝐴 →

(︀
𝑎
𝜆

)︀
, 𝐵 →

(︀
𝑏
𝜆

)︀
, 𝐶 →

(︀
𝜆
𝑐

)︀
and 𝐷 →

(︀
𝜆
𝑑

)︀
, that terminal word can be produced

by six different orderings of the non-terminals: 𝐴𝐵𝐶𝐷, 𝐴𝐶𝐵𝐷, 𝐴𝐶𝐷𝐵, 𝐶𝐴𝐵𝐷, 𝐶𝐴𝐷𝐵
and 𝐶𝐷𝐴𝐵.
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3.1.4 Description of the WK-CYK algorithm

The WK-CYK algorithm taken from [11] is on the figures 3.1 and 3.2.
1 procedure SetsConstruction:
2 Input: string [w/w] = [𝑥11𝑥12...𝑥1𝑛/𝑥21𝑥22...𝑥2𝑛]
3
4 for 1 ≤ 𝑖 ≤ 𝑛 do
5 𝑋𝑖:𝑖,0:0 = {𝐴 : 𝐴 → (𝑥1𝑖/𝜆)}
6 𝑋0:0,𝑖:𝑖 = {𝐴 : 𝐴 → (𝜆/𝑥2𝑖)}
7
8 for 2 ≤ 𝑦 ≤ 2𝑛 do
9 for 0 ≤ 𝛽 ≤ 𝑛 do

10 𝛼 = 𝑦 − 𝛽
11 if 𝛼 = 0 then
12 i = j = 0
13 for 1 ≤ 𝑘 ≤ 𝑛− 𝑦 + 1 do
14 l = k + y - 1
15 ComputeSet 𝑋𝑖:𝑗,𝑘:𝑙

16 else if 𝛽 = 0 then
17 k = l = 0
18 for 1 ≤ 𝑖 ≤ 𝑛− 𝑦 + 1 do
19 j = i + y - 1
20 ComputeSet 𝑋𝑖:𝑗,𝑘:𝑙

21 else
22 for 1 ≤ 𝑖 ≤ 𝑛− 𝛼 + 1 do
23 for 1 ≤ 𝑘 ≤ 𝑛− 𝛽 + 1 do
24 j = i + 𝛼 - 1
25 l = k + 𝛽 - 1
26 ComputeSet 𝑋𝑖:𝑗,𝑘:𝑙

27 if 𝑆 ∈ 𝑋1:𝑛,1:𝑛 then
28 w ∈ L(G)
29 else
30 w /∈ L(G)

Listing 3.1: Procedure SetsConstruction of WK-CYK

1 procedure ComputeSet:
2
3 if i = j = 0 then
4 𝑋0:0,𝑘:𝑙 =

{︀⋃︀
𝑡∈[𝑘,𝑙−1]𝑋0:0,𝑘:𝑡𝑋0:0,𝑡+1:𝑙

}︀
5 else if k = l = 0 then
6 𝑋𝑖:𝑗,0:0 =

{︀⋃︀
𝑠∈[𝑖,𝑗−1]𝑋𝑖:𝑠,0:0𝑋𝑠+1:𝑗,0:0

}︀
7 else
8 𝑋𝑖:𝑗,𝑘:𝑙 =

{︀
𝑋𝑖:𝑗,0:0𝑋0:0,𝑘:𝑙 ∪𝑋0:0,𝑘:𝑙𝑋𝑖:𝑗,0:0

}︀
∪

9
⋃︀

𝑠∈[𝑖,𝑗−1],𝑡∈[𝑘,𝑙−1]

{︀
𝑋𝑖:𝑠,𝑘:𝑡𝑋𝑠+1:𝑗,𝑡+1:𝑙

}︀
∪

10
⋃︀

𝑠∈[𝑖,𝑗−1]

{︀
𝑋𝑖:𝑠,𝑘:𝑙𝑋𝑠+1:𝑗,0:0 ∪𝑋𝑖:𝑠,0:0𝑋𝑠+1:𝑗,𝑘:𝑙

}︀
∪

11
⋃︀

𝑡∈[𝑘,𝑙−1]

{︀
𝑋𝑖:𝑗,𝑘:𝑡𝑋0:0,𝑡+1:𝑙 ∪𝑋0:0,𝑘:𝑡𝑋𝑖:𝑗,𝑡+1:𝑙

}︀
Listing 3.2: Procedure ComputeSet of WK-CYK
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WK-CYK algorithm expects a grammar in the WK-CNF and a double stranded string
on the input. Since one of the algorithm’s requirements is that the complementarity relation
must be identity, the upper and lower strands are always the same.

WK-CYK uses sets marked as 𝑋𝑎:𝑏,𝑐:𝑑. These are sets of non-terminals that can generate
a segment of the input double stranded string specified by the indexes 𝑎, 𝑏, 𝑐 and 𝑑. 𝑎 and
𝑏 are indexes of terminals in the upper strand and specify an interval (the indexing starts
with the index 1 and the edge indexes are included). The lower strand interval is specified
by indexes 𝑐 and 𝑑. If a pair of indexes is 0, no symbols from the corresponding strand are
included. For instance, for the segment

(︀
𝑎𝑏𝑐𝑑
𝑎𝑏𝑐𝑑

)︀
, 𝑋2:2,0:0 would contain a set of non-terminals

that generate
(︀
𝑏
𝜆

)︀
, 𝑋2:4,1:3 non-terminals that generate

(︀
𝑏𝑐𝑑
𝑎𝑏𝑐

)︀
.

The main procedure of WK-CYK

In the first step (lines 4–6 of figure 3.1) WK-CYK finds sets 𝑋𝑖:𝑖,0:0 and 𝑋0:0,𝑖:𝑖 for 0 <
𝑖 ≤ |𝑛| (𝑛 is the length of the input). These are non-terminals that directly generate
single terminals. Then, it searches for ways to generate segments of the input of increasing
lengths, beginning with length of 2 and up to the length of 2𝑛. It is because in the input of
length 𝑛 there are actually 2𝑛 of terminals — 𝑛 in the upper and 𝑛 in the lower strand. For
each length of the segment it takes all possible combinations of number of symbols from
the upper and the lower strands. For instance, if the length of the current segment is 3,
that can include 3 terminals from the upper strand and 0 from the lower or 2 and 1, 1 and
2, 0 and 3.

For each of these segments, it calls the procedure ComputeSet which finds all non-
terminals, that could generate the given segment. When WK-CYK uses this procedure to
compute set 𝑋 of a segment of length 𝑛, it is necessary to have already computed sets 𝑋
for all segments of length 𝑚 < 𝑛. Therefore it proceeds from the length 1 upward.

Let us consider an example with input
(︀
𝑎𝑏𝑐𝑑
𝑎𝑏𝑐𝑑

)︀
. The first step looks for way of generating

the individual terminals, in other words non-terminals that generate
(︀
𝑎
𝜆

)︀
,
(︀
𝜆
𝑎

)︀
,
(︀
𝑏
𝜆

)︀
etc.

Then it looks for non-terminals that could generate two terminals, meaning either two
terminals from the upper strand, two terminals from the lower strand or one from each. In
each of these cases, all possible combinations need to be considered. If the two terminals
are from the upper strand, the combinations are either

(︀
𝑎𝑏
𝜆

)︀
,
(︀
𝑏𝑐
𝜆

)︀
or

(︀
𝑐𝑑
𝜆

)︀
(or using the

𝑋 sets: 𝑋1:2,0:0, 𝑋2:3,0:0 or 𝑋3:4,0:0). It the two terminals are one from each strand, there
are 16 combinations

(︀
𝑥
𝑦

)︀
where 𝑥, 𝑦 ∈ {𝑎, 𝑏, 𝑐, 𝑑} (𝑋1:1,1:1, 𝑋2:2,1:1, 𝑋1:1,2:2 etc.). And for

terminals from the lower strand, the combinations are
(︀
𝜆
𝑎𝑏

)︀
,
(︀
𝜆
𝑏𝑐

)︀
or

(︀
𝜆
𝑐𝑑

)︀
(𝑋0:0,1:2, 𝑋0:0,2:3

and 𝑋0:0,3:4).
When the segment of length 2𝑛 has been computed, WK-CYK is finished. It has

succeeded if the starting symbol 𝑆 can generate the whole input, in other words: if 𝑆 ∈
𝑋1:𝑛,1:𝑛.

The ComputeSet procedure

The ComputeSet procedure has as a parameter a segment of input specified by the four
indexes. It searches all pairs of sets 𝑋 which could together produce the given segment. If
the segment consists of symbols from one strand only (𝑋𝑖:𝑗,0:0 or 𝑋0:0,𝑖:𝑗), the situation is
simpler — it needs to consider the pairs of sets 𝑋 that produce the segment split in any
two parts. If the segment contains symbols from both strands, there are more ways to split
it:

14



• The first set could produce the entire upper strand and the second set could produce
the entire lower strand or the other way around (the order matters)

• The first set could produce the entire upper (or lower) strand and any part the lower
(upper), the second one would produce the rest of the divided strand. Again, all
possible divisions of the divided strand need to be considered.

• Both sets could produce parts of both strands. Again, all possible combinations of
divisions of both strands need to be considered.

When all combinations of two 𝑋 sets potentially producing the input segment have
been found, the procedure then needs to check the grammar rules to find those rules which
actually generate non-terminal from these sets. This step is not explicitly described in
the ComputeSet procedure. For each such a rule, the non-terminal on its left-hand side is
going to be included in the procedure’s result. The final result is then a set of all such
non-terminals.

Lets us consider an example, where the procedure computes 𝑋1:2,1:2, in other words,
the segment

(︀
𝑎𝑏
𝑎𝑏

)︀
. All possible divisions of this segment are in the table 3.1:

Figure 3.1: All possible divisions of the segment
(︀
𝑎𝑏
𝑎𝑏

)︀
sub-segments corresponding sets example of sets contents

1.
(︀
𝑎𝑏
𝜆

)︀
,
(︀
𝜆
𝑎𝑏

)︀
𝑋1:2,0:0, 𝑋0:0,1:2 {𝑁1}, {𝑁2}

2.
(︀
𝜆
𝑎𝑏

)︀
,
(︀
𝑎𝑏
𝜆

)︀
𝑋0:0,1:2, 𝑋1:2,0:0 {𝑁3}, {𝑁4, 𝑁5}

3.
(︀
𝑎𝑏
𝑎

)︀
,
(︀
𝜆
𝑏

)︀
𝑋1:2,1:1, 𝑋0:0,2:2 {𝑁6}, ∅

4.
(︀

𝑎
𝑎𝑏

)︀
,
(︀
𝑏
𝜆

)︀
𝑋1:1,1:2, 𝑋2:2,0:0 ∅, ∅

5.
(︀
𝑎
𝜆

)︀
,
(︀

𝑏
𝑎𝑏

)︀
𝑋1:1,0:0, 𝑋2:2,1:2 ∅, ∅

6.
(︀
𝜆
𝑎

)︀
,
(︀
𝑎𝑏
𝑏

)︀
𝑋0:0,1:1, 𝑋1:2,2:2 ∅, ∅

7.
(︀
𝑎
𝑎

)︀
,
(︀
𝑏
𝑏

)︀
𝑋1:1,1:1, 𝑋2:2,2:2 ∅, ∅

All the 14 𝑋 sets from the middle column must already be computed, they are sets
for segments of lengths 1, 2 and 3. Each of these sets contains zero or more non-terminals
that can produce the given sub-segment. In last step, the procedure checks all rules of the
grammar of type 𝐴 → 𝐵𝐶 to find rules where 𝐵 is in the first 𝑋 set and 𝐶 is in the second
𝑋 set of one of the divisions of the segment. In the example, there are three combinations
of non-terminals that could lead to a result: 𝑁1𝑁2, 𝑁3𝑁4 and 𝑁3𝑁5 (𝑁6 is alone — that
is not not enough to produce the segment). Therefore, the result will be a set {𝑋,𝑌, 𝑍}
if there are rules 𝑋 → 𝑁1𝑁2, 𝑌 → 𝑁3𝑁4 and 𝑍 → 𝑁3𝑁5. If only subset of these rules is
found, the resulting set will contain only left-hand sides of those rules (or could even be an
empty set).

Two remarks regarding WK-CYK

1. The loop on the line 9 of the procedure SetsConstruction (figure 3.1) iterates 𝛽 from 0 to
𝑛. In this context, 𝛽 represents the length of the lower strand segment while 𝛼 represents
the length of the upper strand segment and 𝛼 = 𝑦 − 𝛽 where 𝑦 is the length of the whole
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segment. Part of the loop actually calculates with non-sensical values. When calculating
with segment that is shorter then one strand (i.e. 𝑦 < 𝑛), it includes the case when 𝛽 > 𝑦
and so 𝛼 < 0. In other words, the algorithm splits the segment of length, for instance, 2,
to two parts of lengths 3 and -1.

When calculating with segment that is longer than the input, it includes the case where
𝛽 is too short and so 𝛼 is then longer then a strand length. In other words, if the input
length is, for instance, 4 and the segment length is 8, it splits the segment to lengths 7 and
1 which is not possible with the input length of 4.

This does not affect the correctness of the computation because the non-sensical values
find no result. However, more precise and efficient solution would be to iterate 𝛽 over the
interval: ⟨𝑚𝑎𝑥(𝑦 − 𝑛, 0),𝑚𝑖𝑛(𝑛, 𝑦)⟩ instead of interval ⟨0, 𝑛⟩.

2. The time complexity of WK-CYK is 𝒪(𝑛6). As described in [11] (section 6), the
WK-CYK main procedure has complexity of 𝒪(𝑛4) and the nested procedure ComputeSet
has complexity of 𝒪(𝑛2). This is true with respect to the input length. Possibly, more
precise description of the complexity would be 𝒪(𝑛6 ×𝑅) where 𝑛 is the input length and
𝑅 is the number of rules in the grammar. The description of the procedure ComputeSet
uses the operation of set union (∪), as if it has constant time complexity which, in reality,
it does not — it requires iterating over the rules of the grammar.

3.2 Using automata to test the membership in Watson-Crick
languages

In general, automata seem more suitable for deciding the membership in a language than
grammars. In case of deterministic automata, the situation is quite straightforward —
every input deterministically leads to the next state and when the whole input is read, the
automaton decides whether the input is accepted by finishing in a final state or not. The
situation is not as clear in case of the weaker types of deterministic automata.

3.2.1 Strongly deterministic Watson-Crick automata

The strongly deterministic automata represent the simplest case as they have clearly linear
complexity. A disadvantage may be the fact that strongly deterministic automata are
weaker then deterministic automata.

3.2.2 Weakly deterministic and deterministic Watson-Crick automata

Weakly deterministic and deterministic automata are similar in the sense that their de-
terminism depends on the configuration being known. But the membership of a string
in a WK language is defined by the string being equal to upper strand only (see section
2.2). A corresponding lower strand simply needs to exist but is not automatically known
in advance. If this is not the case and the entire input with both strands is available at the
beginning, then there is practically no difference between the three types of deterministic
WKA. The strongly deterministic WKA knows the lower strand thanks to the fact that the
complementarity relation is identity — the strands must be identical.

If the lower strand is not known, however, the deterministic WK automata are in practice
the same as non-deterministic WK automata. It is, in general, not necessarily clear what
the next state will be given the input. This is demonstrated by example on the left on the
figure 3.2. The snippet of the WK automaton has two transition rules: 𝑞0

(︀
𝑎
𝑏

)︀
→ 𝑞1 and
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𝑞0
(︀
𝑎
𝑐

)︀
→ 𝑞2. Let us suppose that both (𝑎, 𝑏) ∈ 𝜌 and (𝑎, 𝑐) ∈ 𝜌 and there is the string 𝑎𝑎𝑎

on the input. These rules fulfill the condition for deterministic WKA which, for this case,
is: 𝑎 � 𝑎 ∨ 𝑏 � 𝑐. It is not possible to choose the next path based on the upper strand as
𝑎 is a prefix of 𝑎. However, it should be possible to decide based on the lower strand —
either a symbol 𝑏 is going to be read and the automaton will transition to 𝑞1 or symbol 𝑐
and the automaton will transition to 𝑞2. But if the process of accepting a string is at the
same time looking for a suitable lower strand, it is up to the automaton to decide between
these two possibilities and produce either the symbol 𝑏 to the lower strand or the symbol 𝑐.

The figure 3.2 on the right shows a snippet of a completely non-deterministic WKA.
The rules shown are: 𝑞0

(︀
𝑎
𝑏

)︀
→ 𝑞1 and 𝑞0

(︀
𝑎𝑎
𝑏𝑏

)︀
→ 𝑞2. Even if both input strands are known,

in case the upper strand contains 𝑎𝑎 and the lower strand contains 𝑏𝑏, both paths are
possible. Either one symbol from each strand will be read and transition will lead to 𝑞1 or
two symbols from each strand will be read and the transition will lead to 𝑞2. So in practice,
there is not much difference between a weakly deterministic WKA, deterministic WKA and
non-deterministic WKA unless the lower strand is known in advance.

Figure 3.2: Example of non-determinisms in WKA

3.2.3 Accepting inputs by a non-deterministic Watson-Crick automaton

It is possible to propose a similar algorithm for a run of WKA as for non-deterministic finite
automata (FA). Such an algorithm for a finite automaton needs to consider all possible paths
the FA may take — in practice it must remember, not just one state where the FA is at
the moment, but a subset of all its states. However, this is not enough in case of WKA.
An algorithm which controls a run of a non-deterministic WKA needs to remember not
only all the states where the automaton can be at a given moment, but also, what inputs
have been read from the upper strand and what inputs have been generated to the lower
strand. The figure 3.3 demonstrates the difference between undeterminism in run of a FA
and WKA.

The FA snippet on the left starts in state 𝑞0. If the next symbol on the input is 𝑎, the
automaton can transition to state 𝑞1 or 𝑞2. This means that the algorithm keeps in mind
that the current state is one of the two (a subset of all FA states: {𝑞1, 𝑞2}). If there is
another 𝑎 which causes another non-deterministic choice, it turns out that the number of
possibilities can even decrease or, as in this case, stay the same because some branches are
merged. The new state is either 𝑞3 or 𝑞4.

The situation in case of WKA on the right is much more complicated. Even though it
may seem like the paths merge in the state 𝑞4, they do not. Let us assume that the input
string is 𝑎𝑎𝑎 and that (𝑎, 𝑏) ∈ 𝜌 and (𝑎, 𝑐) ∈ 𝜌. The automaton has three choices:
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Figure 3.3: Non-determinisms in a WKA and a finite automaton

1. Transition to 𝑞1, read symbol 𝑎 from the input and generate symbol 𝑏 to the lower
strand. This may be possible even if (𝑎, 𝑏) /∈ 𝜌 because a different number of symbols
might have been read from the two strands (they are, in a way, out of sync).

2. Transition to 𝑞2, read two symbols 𝑎𝑎 and generate two symbols 𝑏𝑏 to the lower strand.

3. Transition to 𝑞3, read symbol 𝑎 and generate symbol 𝑐.

In these three cases, there are more differences between these states of the algorithm
then just the the different WKA state. Therefore, after the next step, the three paths
will still differ in what has been read from the input (upper strand) and what has been
generated to the lower strand.

The algorithm that would simulate the run of a WKA could therefore be designed as
a state space searching algorithm. Each node would contain three items — 1. what state
is the WKA in, 2. what remains to be read from the input, 3. what has been generated
to the lower strand. The solution would then be a node where WKA is in a final state,
nothing remains to be read and the two strands (one read, one generated) adhere to the
complementarity relation.

This is quite close to the solution that is proposed in the following chapter with the
main difference that the space state search is based on WK context-free grammars instead
of automata as they have more expressive power (see 2.6).
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Chapter 4

Testing membership by searching
the state space

This chapter introduces the main algorithm of this thesis for testing membership in WK
context-free languages. In this thesis it is referred to as the state space search or the
tree search. Its core is a standard Breadth-first search algorithm (BFS) with various
optimizations added on top.

Standard BFS starts with a root node. In case of grammars, that is the starting non-
terminal symbol of the grammar. Then the tree is built by applying all possible rules to all
possible non-terminals. Each rule application generates a new node. The node contains a
word which consists of some non-terminals, some terminals in the upper strand and some
terminals in the lower strand.

The BFS algorithm always finds a solution if there is one. It finds the optimal solution
which, in this case, means the shortest sequence of rules that generate the input string from
the starting non-terminal. However, whether the solution is optimal or not is irrelevant for
the membership problem. If there is no solution, the algorithm will probably never stop, as
the state tree is usually infinite. Also, such a tree would grow very rapidly and the solution
would usually not be found in a reasonable time frame. Therefore, some optimizations need
to be used. This work introduces two key kinds of optimizations. Firstly, identifying dead
ends in the search tree and removing them from the computation — this is referred to as
pruning. Secondly, choosing such nodes for the subsequent computation which seem to be
the most promising in leading to the solution. This is referred to as node precedence.

4.1 Key characteristics of the state space search
Besides pruning and node precedence heuristics, the algorithm keeps a set of states which
have been generated (added to the tree), in order to avoid analyzing the same word repeat-
edly or even getting stuck in a loop. Also, it considers leftmost derivation only. This means
that a node which contains several non-terminals can generate new nodes only by applying
rules to the first non-terminal in the word.

The figure 4.1 shows an example of a tree search progress. The rules of its grammar in
this example are 𝑆 → 𝑆𝑆 | 𝐴𝐵𝐶, 𝐴 →

(︀
𝑎
𝑎

)︀
|
(︀
𝑏
𝑏

)︀
and some rules 𝐵 → ..., 𝐶 → ... which

are not important. 𝑆 is the starting non-terminal, therefore, 𝑆 is the first node and there
are two possible rules that can be applied to 𝑆, so this node has two successors. The node
precedence heuristic will choose one of the successors to be analyzed next — perhaps the
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left one with word 𝐴𝐵𝐶. This node, too, only has two successors, which are made by the
two rules that can be applied to the first non-terminal — 𝐴. Even though there are some
rules for 𝐵 and 𝐶, these rules are not used to produce successors, yet. The nodes created
by rules applied on 𝐵 would be successors of the words

(︀
𝑎
𝑎

)︀
𝐵𝐶 and

(︀
𝑏
𝑏

)︀
𝐵𝐶 which have the

symbol 𝐵 as the first non-terminal from the left.

Figure 4.1: Example of a search tree

In a word of a WK grammar, the terminals are clustered together into segments. If two
segments appear next to each other in a word, they are merged. These segments, as well
as non-terminals, are referred to as letters because together they constitute words. For
instance, a three-letter word:

(︀
𝑎𝑏𝑐
𝜆

)︀
𝐴
(︀
𝑏
𝑏

)︀
after application of rule 𝐴 →

(︀
𝜆
𝑎

)︀
, will result in a

word with just one letter:
(︀
𝑎𝑏𝑐𝑏
𝑎𝑏

)︀
.

The word in a node that is the solution needs to meet the following criteria:

1. It contains no non-terminals. Since neighboring terminal segments are always merged
this implies that there is only one letter — a segment of terminals.

2. The upper and lower strands of this segment are of the same length.

3. Each pair of symbols from the upper and lower strands with the same index must be
related by the complementarity relation.

4. The upper strand must be equal to the input string.

If the criteria are met, the algorithm has found the right node and that means the input
string is a part of the language defined by the grammar. It has been accepted by the state
space search algorithm. If the whole state space has been searched (in case it is not infinite),
there is no solution and the input has been rejected by the state space search algorithm.

4.2 Identifying a dead end in the state tree
A blind BFS would stop searching a branch only when all non-terminals have been used
to generate all possible terminal words (words with terminals only). But sometimes it is
possible to tell in advance that a specific word cannot lead to the desired solution. If that
is the case, the node can simply be removed and the whole branch which it would generate
is skipped. The next section describes various ways (heuristics) of recognizing the dead
branches. These are referred to as pruning heuristics, there are five of them and each one
has an abbreviation which is used further on.

1. Detecting that one of the strands is already too long — SL

20



2. Detecting that the overall word is already too long — TL

3. Matching the starting terminals in the upper strand to the input — WS

4. Checking the complementarity relation — RL

5. Comparing the input to a regular expression generated from the word — RE

4.2.1 One of the strands is too long (SL)

A terminal symbol which appears both in the upper or lower strand can never disappear
further in the branch. That means that the count of all symbols in upper and in the lower
strand must not be grater then the length of the input string. Otherwise the solution can
never be reached from that branch.

4.2.2 The word including non-terminals is too long (TL)

Non-terminals present a more complex problem when dealing with the length of the word.
First of all, the algorithm calculates in advance how many terminals each non-terminal
produces at minimum. For instance, if the grammar contains rules: 𝐴 → 𝐴𝐴 |

(︀
𝑎𝑏
𝑐𝑑

)︀
| 𝐵𝐵

and 𝐵 →
(︀
𝑎
𝜆

)︀
, the non-terminal 𝐵 produces always one terminal, that means one terminal

at minimum. The non-terminal 𝐴 can produce various number of terminals, but two at
minimum — thanks to the rule 𝐴 → 𝐵𝐵 and the fact that 𝐵 has the minimum of one.
This value is than considered to be the length of the given non-terminal. This length can
be applied both to the upper or to the lower strand because, in general, it is not known
which strand will absorb the symbols generated from the non-terminal. This then leads to
the following constraint on the word:

|𝑢𝑝𝑝𝑒𝑟| + |𝑙𝑜𝑤𝑒𝑟| + |𝑛𝑡𝑠| ≤ 2 × |𝑖𝑛𝑝𝑢𝑡|

where |𝑢𝑝𝑝𝑒𝑟| and |𝑙𝑜𝑤𝑒𝑟| are the counts of terminals in the upper and lower strands,
|𝑛𝑡𝑠| is the length of all non-terminals in the word and |𝑖𝑛𝑝𝑢𝑡| is the length of the input
string. If this constraint is broken, the word cannot lead to the solution and the branch
can be pruned.

If the grammar contains no 𝜆-rule (rule of the form 𝑁 →
(︀
𝜆
𝜆

)︀
), This constraint guaran-

tees that the algorithm will finish. Once all the words within the given length limit have
been generated and a solution not found, the search will end.

If the grammar does contain 𝜆-rules, the previous constraint can still be applied — the
non-terminals that can be erased are assigned the length of zero. In this case, it is not
possible to guarantee that the search will end, because the non-terminals of length zero
can be combined infinitely many times. However, it is possible to utilize the algorithm for
removing 𝜆-rules (which is described in [11] and which is implemented in the application
described in the next chapter).

4.2.3 The beginning of the word does not match the input (WS)

If a word in a node begins with some terminal symbols in the upper strand, these symbols
will always stay at the beginning further in the given branch. Unlike the other terminals,
these starting terminals already have fixed indexes. If these symbols do not match the
prefix of the input string of the same length, the input string can never be generated from
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this branch. If on the other hand, the word starts with a non-terminal, there is nothing to
be said about what can be at the beginning of the word further in the branch.

It is possible to check the end of the word in the same manner but the generation is
performed from the left to the right and so there is little benefit in checking the end.

4.2.4 Checking the complementarity relation (RL)

As previously described, the symbols in the upper and lower strands with the same indexes
must be related by the complementarity relation. Unfortunately, this can be checked only
at the beginning of the word (Technically, it can be checked at the end as well, while
indexes of these symbols are not yet known, the last terminal symbol will always stay the
last. But just like in the case of previous heuristic, there is little benefit in checking the end
when the generation is done from the left side.). Indexes of the symbols in the middle part
(anywhere after the first non-terminal) are not known. Thus this check can be understood
as an extension of the previous one — if the word begins with some terminal symbols and
there are some symbols in both the upper and lower strands, these symbols can be tested
whether they adhere to the complementarity relation. But only to the length of the shorter
of the two strands in this letter.

4.2.5 The input matches a regular expression generated from the word
(RE)

It is possible to generate a regular expression that represents the current word. Each non-
terminal serves as a wild card (.*). Each terminal in the upper strand stands for itself.
Lower strand is ignored. This expression must be matchable to the input string, otherwise
it is not possible to generate it from the current branch. For instance, if the word is(︀

𝑎𝑏𝑐
𝑓

)︀
𝑁1

(︀
𝑑
𝑔ℎ

)︀
𝑁2

(︀
𝑒
𝑖

)︀
𝑁3

then the resulting regular expression will be: ^abc.*d.*e. The symbols 𝑎𝑏𝑐 must be
at the beginning (therefore the ^ denoting the beginning of the expression is placed at the
start); then it is not known what will be generated by the non-terminal 𝑁1 — therefore
the wildcard is there next; then there will have to be a symbol 𝑑; another wildcard for
non-terminal 𝑁2; symbol 𝑒; and then anything. The regular expression might end with
a wildcard generated from the last non-terminal 𝑁3 but that is not necessary. Wildcard
before and after the expression is implicit. A starting non-terminal can be represented by
omitting the symbol ^ which denotes the beginning of the string. An ending non-terminal
can be represented by omitting the symbol $ which denotes the end of the string.

The order in which the pruning heuristics are applied matters. It is good to first apply
the heuristics that are more likely to succeed and that require less computational power. If
they are successful, the more complex heuristic can be skipped.

It is possible to come up with some more checks that could identify a dead end in
the search tree. The disadvantage of any check is the computing power that has to be
used for checking any node that is generated and analyzed. If some checks are unlikely to
significantly prune the tree and/or are complicated to compute, it is not clear if they will
improve the actual performance of the algorithm.
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4.2.6 Examples of pruning

Let us consider a grammar with no 𝜆-rules with the identity complementarity relation, the
input string 𝑎𝑏𝑐𝑑 and the following words:

1. (︀
𝑎
𝑎𝑏

)︀
𝑁1

(︀
𝜆
𝑐𝑑

)︀
𝑁2

(︀
𝜆
𝑒

)︀
The input string can never be generated from this word because the fragments of the
lower strand are too long already — it has five symbols and the input string only has
four. The SL pruning will remove this word.

2. (︀
𝑎𝑏
𝑎𝑏

)︀
𝑁1𝑁2

(︀
𝜆
𝑑

)︀
𝑁3𝑁4

This word would be promising if there had been some 𝜆-rules. Since there are not,
the word contains too many non-terminals. Each of them is going to generate at least
one terminal symbol and only three symbols are missing (𝑐 and 𝑑 in the upper strand
and 𝑐 in the lower strand). Inevitably, there will be at least one symbol too many.
This word will be removed by the TL pruning.

3. (︀
𝑎𝑏𝑑
𝜆

)︀
𝑁1

(︀
𝜆
𝑎𝑏

)︀
𝑁2

Regardless of what can be generated from 𝑁1 and 𝑁2, the upper strand will always
have to begin with symbols 𝑎𝑏𝑑. There is no way how to insert 𝑐 between 𝑏 and 𝑑.
Therefore the input string can never be generated from here and this word will be
removed by the WS pruning.

4. (︀
𝑎𝑏𝑐
𝑎𝑐

)︀
𝑁1

(︀
𝜆
𝑑

)︀
𝑁2

The upper strand looks promising as it starts with the same symbols 𝑎𝑏𝑐 as the input
string. But the lower strand starts with 𝑎𝑐. The first symbol pair (𝑎/𝑎) adheres to
the complementarity relation, the second one (𝑏/𝑐) does not. The third symbol in the
upper strand — 𝑐 cannot be related to any symbol — it has no counterpart, yet. The
check was always going to end with the second symbol pair. Anyway, this word will
be removed by the pruning RL.

5.
𝑁1

(︀
𝑏
𝜆

)︀
𝑁2

(︀
𝑎
𝜆

)︀
𝑁3

Whatever is generated from the non-terminals 𝑁1, 𝑁2 and 𝑁3, the upper strand will
always keep the order of symbols — first, the symbol 𝑏, then the symbol 𝑎 (with
potentially some symbols before, in between and after). That can never result in the
string 𝑎𝑏𝑐𝑑. This word will be removed by the pruning RE.

4.3 Heuristics for node precedence

The aim of the node precedence heuristics is to choose a path in the search tree, which
is likely to lead to the solution, the more promising nodes are taken before the others
and their successors are generated sooner. The individual heuristic functions attempts

23



to answer the question — which node is more promising than the rest? It assigns
each node a number — an evaluation of the node. The lower the node evaluation, the
higher priority the node has.
Such heuristics can only be effective if the answer of the search is positive — if there
actually is a solution. Unfortunately, if it is negative, it does not help that the
algorithm eliminates the more promising branches of the tree first. Eventually, it will
have to search through all possible states anyway, in order to make sure that there is
no solution.
The following node precedence heuristics have been implemented. Each heuristic also
has an abbreviation that will refer to it further on.

• No heuristic (NONE) — the evaluation of the word is always 0. This is used for
comparison to the other heuristics.

• Aversion to non-terminals (NTA) — the evaluation is equal to the count of non-
terminals in the word

• Weighted aversion to non-terminals (WNTA) — each non-terminal has a pre-
calculated weight, which is the minimum amount of rules that must be used in
order to generate a terminal word from it. The evaluation is equal to the sum
of the weights of all non-terminals in the word.

• The terminal matching — there are three variants that differ slightly (TM1,
TM2, TM3). Each of them increases the priority (i.e. decreases the evaluation)
for each upper strand non-terminal (going from left to right) which matches the
input string symbol on the same index.

– TM1 examines terminals going from the left while ignoring non-terminals,
decreases evaluation (i.e. increases priority) for each match and finishes
when it discovers the first difference.

– TM2 is similar to TM1, but when it discovers a difference, it does not finish
but increases the evaluation and moves on

– TM3 evaluates the first item in the word only. If it is a non-terminal, it
returns zero.

• Combinations of NTA/WNTA and TM1/TM2/TM3 — There are six combina-
tions because it does not make sense to combine NTA and WNTA or TM1-3
together: NTA+TM1, NTA+TM2, NTA+TM3, WNTA+TM1, WNTA+TM2,
WNTA+TM3.

In summary, there are 12 node precedence heuristics considered in total (including the
first, empty heuristic). Unlike in case of pruning, where all methods can be applied
at the same time, there can be only one node precedence heuristic active at one time.
Therefore chapter 6 contains the tests and comparison of the effectiveness of these
heuristics.

4.4 Theoretical complexity of the state space search
The state space search algorithm uses Breadth-first search (BFS) as its basis. Both the time
and space complexity of BFS are 𝒪(𝑏𝑑) where 𝑏 is the maximum number of successors of a
node (branching factor) and 𝑑 is the depth of the tree. The branching factor is then equal
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to the maximum number of rules of the given grammar that have the same non-terminal on
the left-hand side. This is because always only the first non-terminal in the word is used to
generate successors in the tree. The depth of the tree is going to be different for different
grammars and even for different inputs.

In general, the theoretical complexity of the state space search algorithm is not impres-
sive, it is much worse then WK-CYK’s 𝒪(𝑛6) or 𝒪(𝑛6 × 𝑅). However, this is because it
has been designed with a rather practical approach, it relies heavily on the heuristics and
optimizations and so its performance is usually much better.

4.5 Parallelization of the state space search
The parallelization of the state space search should be very much possible and straightfor-
ward. The algorithm uses a priority queue to store all the nodes which are to be analyzed.
Therefore, multiple processes could be taking nodes from the queue and analyze them in-
dependently. There are many variants how this could be done — analyzing one node at
the time and returning result immediately to the queue shared by all process or analyzing
independently whole segments of the tree with less need for synchronization but, perhaps,
more redundant work — these are questions of the efficiency of the actual implementation
which is out of the scope of this work.
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Chapter 5

Implementation of the state space
search

The implementation has been done in the language Python (version 3.9.7). The main
components are the following:

• the class representing a Watson-Crick context-free grammar, including the implemen-
tation of the WK-CYK algorithm and the state space search algorithm

• classes representing a rule of a grammar and a tree node

• a set of grammar definitions and generators of the input strings

• a set of test scripts that run the various tests comparing heuristics, performance etc.

• test runner class which is a middle layer between the test scripts and the main gram-
mar class.

In the code and its description I use the term word to refer to the right hand side of
the rules and, in general, a list of letters. The term letter is a one element of the word,
which is either a non-terminal, or a segment with terminals. Such segments with terminals
are stored as a pair (tuple) of two lists — upper and lower strand. For instance, a word
𝐴
(︀
𝑎𝑏𝑐
𝜆

)︀
𝐵 has three letters: non-terminals 𝐴 and 𝐵 and a segment of non-terminals

(︀
𝑎𝑏𝑐
𝜆

)︀
,

which contains two lists, first (upper strand) with three items — terminals 𝑎, 𝑏 and 𝑐 and
the second one (lower strand) is an empty list.

5.1 Implementation of the main class representing the gram-
mar

The class representing a grammar is called cWK_CFG, it contains the following data:

• the items which define the grammar: nts — the set of non-terminals, which are repre-
sented by alpha-numeric characters; ts — set of terminals, also represented by alpha-
numeric characters; startSymbol — starting non-terminal; rules — set of grammar
rules, which are objects of the class cRule; relation — list representing a complemen-
tarity relation, it contains tuples of two terminals. These five items are parameters
which need to be passed to the class constructor. This corresponds to the way how a
context-free WK grammar is formally defined.
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• nodePrecedenceList — a list of all implemented node precedence heuristics, it is stored
as a list of pairs (tuples) of heuristic name and function; currentNodePrecedence is
the index of the active one

• pruningOptions — a dictionary with a pruning function as a key and a boolean as
a value indicating which pruning heuristics are active; pruneCnts — a dictionary of
pruning functions as keys and integer values which counts, how many times the given
pruning has been successfully used

• ruleDict — grammar rules stored in a dictionary with non-terminals as keys and list of
rules as values. This is a more efficient way of accessing rules for a given non-terminal
then iterating over all rules and filtering them based on left-hand side non-terminal.

• relDict — complementarity relation stored in a more convenient way in a dictionary
with first symbol as a key and string of symbols (symbols that are related to the key
symbol) as a value. This is more efficient way of finding all symbols related to a given
symbol.

• ntDistances — a pre-calculated dictionary, with all non-terminals as keys and distance
to terminals as values. This distance is a minimum number of rules which lead from
the given non-terminal to a word with terminals only. This is used for the node
precedence heuristic WNTA.

• erasableNts — a pre-calculated set of non-terminals which can be erased by applying
certain sequence of rules. It is used for removing the 𝜆-rules.

• termsFromNts — a pre-calculated dictionary which has all non-terminals as key and as
a value minimum amount of terminals that can be generated from this non-terminal.
This is used in the pruning heuristic TL.

• timeLimit — after how long should the tree search or WK-CYK time out

A constructor of the cWK_CFG class requires as parameters a list of non-terminals, a
list of terminals, the starting non-terminal, the list of rules and the list of relations. An
example of an object construction would then be (for rules definition, see 5.2):

g = cWK_CFG([’S’, ’A’], [’a’, ’b’], ’S’, rules, [(’a’, ’a’), (’b’, ’b’)])

The class cWK_CFG has these key functionalities:

• initialization, backup and restore

• the run of the tree search algorithm

• pruning heuristics

• node precedence heuristics

• the transformation of grammar to the WK-CNF

• the run of the WK-CYK algorithm
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5.1.1 Initialization, backup and restore

During an initialization of the class, several methods are run ensuring validity of the gram-
mar and pre-calculating data.

• method is_consistent verifies that the constructor parameters that define the gram-
mar are consistent: sets of terminals and non-terminals must be exclusive, the start
symbols and all rules left-hand sides must be found among the non-terminals, rule
right hand sides must contain only specified terminals and non-terminals and the
complementarity relation list must refer only to the defined terminals. If the method
fails, an exception is thrown and the class is not created.

• method generate_rule_dict parses the set of rules and creates ruleDict

• method generate_relation_dict parses the complementarity relation and creates rel-
Dict

• method find_erasable_nts creates the set erasableNts, a set of non-terminals that can
be erased by applying a sequence of rules. The set is empty if the grammar contains
no 𝜆-rule.

• method calc_nt_distances creates the dictionary ntDistances mapping non-terminals
to the minimum number of rules needed to reach a terminal word

• method calc_min_terms_from_nt creates the dictionary termsFromNts mapping
non-terminals to the minimum number of terminals that they can generate

• method calc_rules_nt_lens calculates the rule length for all rules

A rule length is a value which indicates how the minimal length of a word will be changed
after the application of the rule. It is used by the TL (total length) pruning heuristic. The
rule length is equal to the negative left-hand side non-terminal length plus lengths of all
elements on the right-hand side.

For instance, let us have a word 𝐴
(︀
𝑎𝑏
𝑐

)︀
𝐵, the rule being applied 𝐴 → 𝐵

(︀
𝑑
𝑑

)︀
and the

minimum number of terminals generated from 𝐴 is 2 and from 𝐵 is 3. The resulting word
will be 𝐵

(︀
𝑑𝑎𝑏
𝑑𝑐

)︀
𝐵. The word at the start had total length of 8 (1 for each terminal symbol,

2 for 𝐴, 3 for 𝐵). The word afterwards has a total length of 11 (3 for each 𝐵 and 1 for
each terminal). Therefore, the rule 𝐴 → 𝐵

(︀
𝑑
𝑑

)︀
must have the length of 3. And it does: −2

for the non-terminal 𝐴 on the left-hand side, 1 for each of the two terminals and 3 for the
non-terminal 𝐵.

Since the grammar is able to apply certain transformations (like to the Wk-CNF or
removing lambda rules), it is convenient to be able to save the state of the grammar and later
restore it. This is what the methods backup and restore are for. The backup method simply
saves a copy of the sets of rules, non-terminals and terminals as rulesBackup, ntsBackup
and tsBackup. The restore method then restores these backup sets and runs again the
pre-calculating methods similarly to the class initialization phase.

5.1.2 Run of the state space search algorithm

The state space search algorithm is run by the run_tree_search method which has one
parameter: the string to be tested for the language membership. It uses a priority queue
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(python PriorityQueue class from the queue module) to store the nodes of the search tree.
When getting items from this queue, it returns the smallest value item that it contains.
The items in the queue are objects of the class cTreeNode (described in 5.2). The method
also uses a set of hash codes (acquired by the standard Python hash function) of all the
nodes that have been put in the queue (whether they are still there or have been taken
out), so that duplicate nodes are skipped.

At the beginning, the queue contains one node — the starting non-terminal. If the
queue is empty (and there is no node being parsed), it indicates that the whole state
space has been searched and the method ends with a negative response. Otherwise, it gets
the next node from the queue and generates all possible successors of this node (method
get_all_successors). Each of the successor nodes is tested whether it is the desired solution
(method is_result). If so, the search optionally prints the path to the solution and ends
with the positive result. Otherwise, it checks whether the node is new (has not been in
the queue before) by computing its hash and looking into the set of hashes of all generated
states. If it is new, it is added to the queue. Also, the main loop checks during every
iteration whether the time limit has been exceeded. If so, it returns an empty response
(None value).

The return value of the method is a tuple containing following items: a maximum
number of items in the queue, number of all generated nodes, list of pruning statistics, the
actual result (True, False, or None).

The get_all_successors method requires two parameters — a node and the input string
(which is then passed to the pruning methods). First, it finds the first non-terminal in the
given word. It applies all the rules (method apply_rule) that the grammar has for this
non-terminal, each time creating a new node. The node is then checked by all the pruning
algorithms (method is_word_feasible described in next section) to see, if the node can lead
to the solution. If so, the priority of the node is calculated (method calculate_distance
described in the next section) and the node is yielded as a result.

The is_result method needs to check all the conditions that the node has to meet in
order to be a solution (word contains only one letter, the letter is a segment of terminals, its
upper strand and lower strand have the same length, all the symbols from the two strands
correspond to the complementarity relation and the upper strand is equal to the input
string). It takes a word and the input string as parameters and returns a boolean value
indicating whether the word is the solution.

The apply_rule method takes three parameters: a word, an index of the non-terminal
to be replaced and a rule right-hand side. It removes the non-terminal specified by its index
(because there can be more than one occurrence of this non-terminal in the word) from the
word, and replaces it with the word snippet specified by the rule left-hand side. It contains
logic for merging letters containing terminals if they appear in the word next to each other.
It returns the final word.

5.1.3 Pruning heuristics

In order to be able to work flexibly with the pruning methods, the class contains a dictionary
(called pruningOptions) of the implemented pruning functions and indication whether they
are active or not. The method is_word_feasible iterates through all items in this dictionary
and if the value is True, indicating the active pruning, it runs the corresponding method.
The pruning methods are:
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• prune_check_strands_len (SL): checks that the sum of the symbols in the upper and
the lower strand is not greater than the input length

• prune_check_total_len (TL): checks that the total length of the word (count of all
terminal symbols plus lengths of all non-terminals) is not greater then the doubled
input length

• prune_check_word_start (WS): checks that the starting terminals of the word cor-
respond to the input string

• prune_check_relation (RL): checks that the starting terminals meet the complemen-
tarity relation constraint

• prune_check_regex (RE): checks that the input matches the regular expression based
on the word

All the pruning methods require a word and the input string as parameters. They return
a boolean value indicating whether the word is feasible or not.

The pruning heuristics can be activated or deactivated by the method activate, param-
eters are the name of the heuristic and a boolean value indicating if it should be active or
not. For example:

g.activate(’RE’, True) # g is an object of class cWK_CFG
g.activate(’RL’, False)

5.1.4 Node precedence heuristics

Just like with pruning, the node precedence functionality needs to be flexible — it must be
possible to switch between various node precedence methods. The functionality is imple-
mented by the method compute_precedence. This methods simply uses nodePrecedenceList
and currentNodePrecedence to call the right specific method. There are 12 of these methods
called compute_precedence_[name] where name is the name of the specific heuristic (one
of NTA, WNTA, TM1, TM2, TM3, NTA_TM1, NTA_TM2, NTA_TM3, WNTA_TM1,
WNTA_TM2, WNTA_TM3, NONE). All of these methods take a word and an input
string as parameters, they return an integer evaluation of the node.

The node precedence heuristics can be activated by the method activate, the name of
the chosen heuristic is the only parameter. For example:

g.activate(’NTA’) # g is an object of class cWK_CFG

5.1.5 The transformation of a grammar to the WK Chomsky normal
form

The transformation of a WK grammar to WK-CNF is quite similar to the transformation
of a standard context-free grammar to the CNF. It is performed by the method to_wk_cnf
and it takes the following steps:

1. Removing 𝜆-rules — this is done by the method remove_lambda_rules

2. Removing unit rules — unit rules are rules in the form of 𝐴 → 𝐵 where 𝐴 and 𝐵 are
non-terminals. These is performed by the method remove_unit_rules.
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3. Removing unterminatable symbols — unterminatable symbols are non-terminals,
which cannot be transformed into terminal strings by any sequence of rules. It is
possible to remove them without affecting the grammar language because if such a
rule ever appeared in a word, the whole word would be automatically useless. Any
rules containing such a symbol are useless, as well, and are also removed. This is
performed by the method remove_unterminatable_symbols.

4. Removing unreachable symbols — unreachable symbols are symbols that can never
appear in a word because there is no sequence of rules leading from the starting
symbol that would be able to generate them. Therefore they can be removed without
affecting the grammar language. Any rules containing such a symbol are useless, as
well, and are also removed. This is done by the method remove_unreachable_symbols.

5. Dismantling rules generating terminal letters — WK-CNF requires all rules generating
terminals to generate one symbol only, this means only rules in the form of 𝐴 →

(︀
𝑎
𝜆

)︀
and 𝐴 →

(︀
𝜆
𝑎

)︀
are allowed. This is achieved by the method dismantle_term_letters

which iterates through all the rules and replaces any terminal letters at the rule right-
hand side with a newly generated non-terminal. Afterwards, new rules are added and
non-terminals are created which assure that the terminal letter is generated in steps,
each rule having at maximum two items on the right-hand side.
If the rule is 𝐴 → 𝐴𝐵

(︀
𝑎𝑏
𝑐

)︀
(𝐴, 𝐵 being non-terminals, 𝑎, 𝑏, 𝑐 being terminals), then

the 𝐴 and 𝐵 are skipped and the letter
(︀
𝑎𝑏
𝑐

)︀
is replaced by a new non-terminal 𝑁1.

Then, another rule is created: 𝑁1 →
(︀
𝑎𝑏
𝑐

)︀
, which needs to be broken down further.

For each terminal in this letter, a new rule is created and the terminal replaced by a
new non-terminal, until there remains only one terminal in that letter. The final set
of rules is then going to be: 𝐴 → 𝐴𝐵𝑁1, 𝑁1 →

(︀
𝑎
𝜆

)︀
𝑁2, 𝑁2 →

(︀
𝜆
𝑐

)︀
𝑁3, 𝑁3 →

(︀
𝑏
𝜆

)︀
6. Dismantling rules generating non-terminals — in the final stage of the transformation,

the method transform_to_wk_cnf_form iterates through all the rules, it keeps the
rules in the WK-CNF form (𝐴 → 𝐵𝐶, 𝐴 →

(︀
𝑎
𝜆

)︀
and 𝐴 →

(︀
𝜆
𝑎

)︀
) and breaks down

other rules in a process analogous to the actions of dismantle_term_letters.

7. Recalculation of data — runs the methods that pre-calculate data, similarly to the
class initialization phase or after restore method

The methods which remove 𝜆-rules, unit rules, unterminatable symbols and unreach-
able symbols are useful even outside of the transformation to the WK-CNF. Removing
unterminatable symbols and unreachable symbols (and rules containing these symbols) are
optional but useful steps in the transformation. The dismantling of rules are two steps that
make sense only in this context.

5.1.6 Run of the WK-CYK algorithm

The WK-CYK algorithm is implemented by the method run_wk_cyk which takes as a
single parameter an input string and returns a boolean value indicating whether the input
has been accepted or not. Similarly to tree search, every iteration of the algorithm’s main
loop checks the elapsed time and if it exceeds the time limit, it returns an empty value
(None). The implementation follows closely the description in [11] (in section 6) and 3.1.
The run_wk_cyk method corresponds to the sets construction procedure. The compute set
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procedure called from sets construction then corresponds to the computeSet method of the
cWK_CNF class.

5.2 Implementation of the rule and node classes
A rule of a grammar is modeled by the class cRule. It contains the following data:

• lhs — a non-terminal, left-hand side of the rule

• rhs — a word, right-hand side of the rule

• ntsLen — length of all non-terminals of the right-hand side

• upperCnt — count of all terminals in the upper strand of the right-hand side

• lowerCnt — count of all terminals in the lower strand of the right-hand side

The items ntsLen, upperCnt and lowerCnt are there for optimization purposes. It is
always possible to iterate over the word and count them, but it is more efficient to count it
once for every rule and store this value.

The cRule class then contains the following methods:

• compactize — this method is called during the object initialization phase and ensures
that the right-hand side does not contain any terminal letters next to each other, if it
does, then these are merged together. For instance a rule 𝐴 →

(︀
𝑎
𝑏

)︀(︀
𝑎
𝑏

)︀
is transformed

to an equivalent rule 𝐴 →
(︀
𝑎𝑎
𝑏𝑏

)︀
.

• calculate_cnts — method is called during the object initialization phase and counts
values for upperCnt and lowerCnt. The length of non-terminals is calculated during
the initialization of the cWK_CFG object because it needs to know the length of
non-terminals.

A constructor of the cRule class requires a left-hand side of the rule, which is a non-
terminal, and a right-hand side of the rule, which is a word, i.e. a list of letters. A letter is
either a non-terminal or a tuple of two lists. An example of a rule object creation for rule
𝐴 → 𝐴

(︀
𝑎𝑏
𝜆

)︀
would then be:

cRule(’A’, [’A’, ([’a’, ’b’], [])])

A tree node is modeled by the class cTreeNode which contains the following:

• word — the actual word of the grammar

• upperStrLen — number of upper strand terminals in the word

• lowerStrLen — number of lower strand terminals in the word

• ntLen — length of all non-terminals

• parent — node in the search tree, which is this node’s predecessor, this is not necessary
for the search but once a solution is found, it may be useful to know what path has
been taken to reach it

• hashNo — a unique hash code of the node calculated during the object initialization

32



• precedence — a value assigned by the active node precedence heuristic, it is used to
compare two objects of this class which is needed by the priority queue to order the
nodes

A cTreeNode constructor requires a word, three integers specifying the upperStrLen,
lowerStrLen and ntLen, the parent node, and the precedence. Of course, the lengths of
terminals could be counted by the tree node itself during the initialization or when needed.
These values are passed to the constructor for optimization purposes. Counting them would
require iterating over the whole word which can be quite long. When creating a new node,
it is more efficient to take these counts from the parent node and add or subtract differences
which are stored in the rule object which is being applied.

An example of a creation of this class object (in this case the root node) could then be:

cTreeNode([’S’], 0, 0, 1, None, 1)

Both of these classes, cTreeNode and cRule, as well as the main class cWK_CFG, are
in the source file lib/ctf_WK_grammar.py, as they are quite closely related.

5.3 Implementation of the test runner class, test scripts and
grammars

The grammars that are used for testing both the tree search and the WK-CYK are stored
in the file lib/grammars.py. Each grammar is characterized primarily by its rules, those
are created first. Then the instance of the cWK_CFG is created and then a generator of
inputs is assigned to each grammar.

A generator of inputs is a method of each grammar object called input_gen_func.
Its purpose is to generate inputs for the given grammar of increasing lengths. It takes 3
parameters: a starting number of characters, a step — how many characters should be
added in the next generated input, and a boolean indicating whether the generated inputs
should be accepted by the grammar or not. The generator does not have to return the
input string exactly of the length which it was specified. Sometimes it is not even possible.
The generated string’s length may be approximate to the specified values.

Here is an example of input generator use for grammar 1:

generator = g1.input_gen_func(5, 2, True)
input1 = next(generator) # generates ’aaaaa’
g1.can_generate(input1)
input2 = next(generator) # generates ’aaaaaaa’
g1.can_generate(input2)

I have implemented the following five test scripts, which are in the root directory:

• ts_node_precedence_tests.py — runs a test for all of the 40 grammars (20 in the
basic form and 20 in the WK-CNF) with inputs which are going to be accepted (node
precedence is irrelevant if inputs are eventually rejected). Each test runs the tree on
search this input one time for each of the available node precedence heuristics.

• ts_pruning_tests.py — runs two tests for each of the 40 grammars, one with an input
that will be accepted and one that will be rejected by the search. Each test runs the
search with all pruning heuristics inactive, then with all active, and then for each
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one it runs with activated all but the one heuristic. Thus comparing how each one
heuristic contributes to the overall performance.

• ts_speed_tests.py — runs two tests (one positive, one negative) for each of the 40
grammars, in each test a Tree search is run repeatedly (up to 30 times or it is stopped
if a search exceeds time limit) with increasing input length. This is used to analyze
the time and memory complexity of the tree search with respect to the input length.

• ts_var_inputs_tests.py — runs tests for some hand-picked inputs of the same length
in order to compare, how the different variants of the same length inputs affect the
performance

• wk_cyk_tests.py — runs two tests (one positive, one negative) for 17 grammars, which
are ready for WK-CYK run. Those must be in the WK-CNF and grammars 5, 19
and 20 are excluded, since they use other complementarity relation then identity. In
each test, the grammar runs the WK-CYK repeatedly with increasing input lengths.

Each of these scripts prints its output into a table where all the results are compared.
Outputs, which I received by running these test scripts, are attached in the output directory.

All these scripts use the cPerfTester class, which is a sort of middle layer between the
grammar class and the test scripts. It helps with displaying the result table and gathering
and parsing data returned by the algorithm runs. It contains the following methods:

• run_test_ntimes — runs the tree search several times, calculates and returns averages
over results of these runs

• run_node_precedence_test — a wrapper used by the script ts_node_precedence_tests.py

• run_prune_test — a wrapper used by the script ts_pruning_tests.py

• run_speed_test —a wrapper used by the script ts_speed_tests.py

• var_inputs_test —a wrapper used by the script ts_var_inputs_tests.py

• run_wk_cyk_test —a wrapper used by the script wk_cyk_tests.py

5.4 How to use the application
It is possible to directly run the one or more of the test scripts from the root folder. They
do not have other requirements than having installed the interpreter of language Python
(version 3). In the application root directory in Linux terminal it can be run simply by
typing:

python3 ts_node_precedence_tests.py
python3 ts_pruning_tests.py
...

In order to use the cWK_CFG class directly there is a demo script in the root directory
demo.py which shows the use of predefined grammars and creating a new grammar step by
step and can be called in the same way:

python3 demo.py

34



In a nutshell, when using a predefined grammar, it can be used right after import. To
test if a grammar 1 can generate a string 𝑎𝑎𝑎𝑎𝑎, one could write:

from lib.grammars import g1
o, a, p, result = g1.can_generate(’aaaaa’)
print(result)

And to define a grammar from scratch and, for instance, run the WK-CYK algorithm,
one can write:

rules = [
cRule(’S’, [’S’, ’S’, ’S’]), # S -> S S S
cRule(’S’, [([’a’], [’a’])]) # S -> a/a

]
g1 = cWK_CFG([’S’], [’a’], ’S’, rules, [(’a’, ’a’)])
g1.to_wk_cnf()
result = g1.run_wk_cyk(’aaaaa’)
print(result)
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Chapter 6

Testing the state space search and
the WK-CYK algorithm

In this chapter I present the set of grammars that have been used to test the algorithms
and then the results of the tests. First, there is the test comparing the node precedence
heuristics. Since only one can be active at a time, it is appropriate to start with choosing
the one which provides the best overall performance. The tests that follow after that will
all use this winning node precedence heuristic. Next, I test pruning heuristics to see if all
of them contribute to the overall performance or if it is better to turn some off. This way
I get the best configuration of the state space search that is available. In some cases, a
different configuration would be more efficient but the goal here is to get the best overall
performance.

When the best configuration is known, I test the performance of both the state space
search algorithm and WK-CYK with various inputs, especially inputs of increasing lengths
and compare the results.

All tests were run in the following environment:

• CPU: AMD Ryzen 5 3600 6-Core Processor

• Memory: 32 GB

• Operating system: Linux, Ubuntu 21.10

• Interpreter: Python 3.9.7

6.1 Watson-Crick grammars used for testing
For the testing of the tree search algorithm and the WK-CYK algorithm, I have used the
following Watson-Crick grammars. Unless stated otherwise, the set of non-terminals and
the set of terminals is defined simply by the symbols that appear in the rules — all the
uppercase letters are non-terminals of the grammar and all the lowercase letters and digits
are terminals. The starting non-terminal is 𝑆 and the complementarity relation is identity.
With these specifications in mind the grammar can be defined by the rules only.

1.
𝑆 →

(︀
𝑎
𝑎

)︀
| 𝑆𝑆𝑆
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The accepted language is: 𝑎(𝑎𝑎)*

2.
𝑆 →

(︀
𝑎
𝑎

)︀
𝑆 |

(︀
𝑏
𝑏

)︀
𝑆 |

(︀
𝑐
𝑐

)︀
𝑆 |

(︀
𝑎𝑏𝑐
𝑎𝑏𝑐

)︀
The accepted language is: (𝑎 + 𝑏 + 𝑐)*𝑎𝑏𝑐

The aim of this example is to test inputs with the decisive part on the very end.
This could prove difficult since the tree search expands the non-terminals from left to
right.

3.
𝑆 → 𝐴

(︀
𝑎𝑏𝑐
𝑎𝑏𝑐

)︀
𝐴 → 𝐴

(︀
𝑎
𝑎

)︀
|𝐴

(︀
𝑏
𝑏

)︀
|𝐴

(︀
𝑐
𝑐

)︀
|
(︀
𝜆
𝜆

)︀
The accepted language is: (𝑎 + 𝑏 + 𝑐)*𝑎𝑏𝑐

The aim of this example is, again, to test inputs with the decisive part on the very
end while, at the same time, the rules are left recursive.

4.
𝑆 → 𝑄

(︀
𝑎
𝑎

)︀
|𝐴𝐵𝐶𝐷𝐸𝐹𝐺

𝑄 → 𝑄𝑄 |𝐴𝐵𝐶𝐷𝐸𝐹𝐺

𝐴 →
(︀
𝑎
𝑎

)︀
|
(︀
𝜆
𝜆

)︀
𝐵 →

(︀
𝑏
𝑏

)︀
|
(︀
𝜆
𝜆

)︀
𝐶 →

(︀
𝑐
𝑐

)︀
|
(︀
𝜆
𝜆

)︀
𝐷 →

(︀
𝑑
𝑑

)︀
|
(︀
𝜆
𝜆

)︀
𝐸 →

(︀
𝑒
𝑒

)︀
|
(︀
𝜆
𝜆

)︀
𝐹 →

(︀
𝑓
𝑓

)︀
|
(︀
𝜆
𝜆

)︀
𝐺 →

(︀
𝑔
𝑔

)︀
|
(︀
𝜆
𝜆

)︀
The accepted language is: 𝑎?𝑏?𝑐?𝑑?𝑒?𝑓?𝑔?+(𝑎?𝑏?𝑐?𝑑?𝑒?𝑓?𝑔?)*𝑎 (𝑥? denotes that the
symbol 𝑥 is optional, i.e. (𝑥 + 𝜆) )
The problematic feature of this grammar may be the fact, that during the transforma-
tion of this grammar to the WK-CNF (more specifically, when removing the 𝜆-rules)
the number of rules increases rapidly.

5.
𝑆 →

(︀
𝑎
𝑡

)︀
𝑆 |

(︀
𝑡
𝑎

)︀
𝑆 |

(︀
𝑔
𝑐

)︀
𝑆 |

(︀
𝑐
𝑔

)︀
𝐴

𝐴 →
(︀
𝑐
𝑔

)︀
𝐴 |

(︀
𝑎
𝑡

)︀
𝑆 |

(︀
𝑔
𝑐

)︀
𝑆 |

(︀
𝑡
𝑎

)︀
𝐵

𝐵 →
(︀
𝑐
𝑔

)︀
𝐴 |

(︀
𝑎
𝑡

)︀
𝑆 |

(︀
𝑡
𝑎

)︀
𝑆 |

(︀
𝑔
𝑐

)︀
𝐶

𝐶 →
(︀
𝑎
𝑡

)︀
𝐶 |

(︀
𝑡
𝑎

)︀
𝐶 |

(︀
𝑔
𝑐

)︀
𝐶 |

(︀
𝑐
𝑔

)︀
𝐶 |

(︀
𝜆
𝜆

)︀
The terminals in this grammar refer to the actual nucleobases in the DNA and the
complementarity relation mirrors the relations among them: 𝜌 = {(𝑎, 𝑡), (𝑡, 𝑎), (𝑐, 𝑔), (𝑔, 𝑐)}
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The accepted language is: ({𝑎, 𝑡, 𝑐, 𝑔}*𝑐𝑡𝑔{𝑎, 𝑡, 𝑐, 𝑔}*)*

This grammar is taken from [10] and is a first step towards an actual analysis of the
DNA. In this case, it simply looks for the substring 𝑐𝑡𝑔.

6.
𝑆 →

(︀
𝑎
𝜆

)︀
𝑆 |

(︀
𝑎
𝜆

)︀
𝐴

𝐴 →
(︀
𝑏
𝑎

)︀
𝐴 |

(︀
𝑏
𝑎

)︀
𝐵

𝐵 →
(︀
𝜆
𝑏

)︀
𝐵 |

(︀
𝜆
𝑏

)︀
The accepted language is: 𝑎𝑛𝑏𝑛 where 𝑛 ≥ 1 (symbol 𝑥𝑛 denotes 𝑛 occurrences of the
symbol 𝑥)
The grammar is taken from [14].

7.
𝑆 →

(︀
𝑎
𝑎

)︀
𝑆
(︀
𝑎
𝑎

)︀
|
(︀
𝑏
𝑏

)︀
𝑆
(︀
𝑏
𝑏

)︀
|
(︀
𝑐
𝑐

)︀
The accepted language is: 𝑤𝑐𝑤𝑅 where 𝑤 ∈ {𝑎, 𝑏}*(𝑤𝑅 is the reversal of the string
𝑤)

8.
𝑆 →

(︀
𝑎
𝑎

)︀
𝑆
(︀
𝑎
𝑎

)︀
|
(︀
𝑏
𝑏

)︀
𝑆
(︀
𝑏
𝑏

)︀
|
(︀
𝜆
𝜆

)︀
The accepted language is: 𝑤𝑤𝑅 where 𝑤 ∈ {𝑎, 𝑏}*

9.
𝑆 → 𝐵𝐿 |𝑅𝐵

𝐿 → 𝐵𝐿 |𝐴
𝑅 → 𝑅𝐵 |𝐴

𝐴 → 𝐵𝐴𝐵 |
(︀
2
2

)︀
𝐵 →

(︀
0
0

)︀
|
(︀
1
1

)︀
The accepted language is: 𝑥2𝑦 : 𝑥, 𝑦 ∈ {0, 1}* ∧ |𝑥| ≠ |𝑦|
The grammar is taken from [16].

10.
𝑆 → 𝑇 | 𝑇

(︀
𝑝
𝑝

)︀
𝑆

𝑇 → 𝐹 | 𝐹𝑇

𝐹 →
(︀
𝑒
𝑒

)︀
|𝑊 |

(︀
𝑜
𝑜

)︀
𝑇
(︀
𝑝
𝑝

)︀
𝑆
(︀
𝑐
𝑐

)︀
|𝑋

(︀
𝑠
𝑠

)︀
|
(︀
𝑜
𝑜

)︀
𝑌
(︀
𝑐
𝑐

)︀(︀
𝑠
𝑠

)︀
𝑋 →

(︀
𝑒
𝑒

)︀
|
(︀
𝑙
𝑙

)︀
|
(︀
0
0

)︀
|
(︀
1
1

)︀
𝑌 → 𝑇

(︀
𝑝
𝑝

)︀
𝑆 | 𝐹

(︀
𝑑
𝑑

)︀
𝑇 |𝑋

(︀
𝑠
𝑠

)︀
|
(︀
𝑜
𝑜

)︀
𝑌
(︀
𝑐
𝑐

)︀(︀
𝑠
𝑠

)︀
| 𝑍𝑍

𝑊 →
(︀
𝑙
𝑙

)︀
| 𝑍

𝑍 →
(︀
0
0

)︀
|
(︀
1
1

)︀
| 𝑍𝑍

The accepted language includes regular expressions over symbols 0 and 1 with paren-
theses (𝑜 for opening and 𝑐 for closing parenthesis), operators + (p), * (s), · (d) and
symbols ∅ (e), 𝜀 (l)
The grammar is taken from [6].
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11.
𝑆 → 𝐴 |𝐵 |𝐴𝐵 |𝐵𝐴

𝐴 →
(︀
𝑎
𝑎

)︀
|
(︀
𝑎
𝑎

)︀
𝐴
(︀
𝑎
𝑎

)︀
|
(︀
𝑎
𝑎

)︀
𝐴
(︀
𝑏
𝑏

)︀
|
(︀
𝑏
𝑏

)︀
𝐴
(︀
𝑏
𝑏

)︀
|
(︀
𝑏
𝑏

)︀
𝐴
(︀
𝑎
𝑎

)︀
𝐵 →

(︀
𝑏
𝑏

)︀
|
(︀
𝑎
𝑎

)︀
𝐵
(︀
𝑎
𝑎

)︀
|
(︀
𝑎
𝑎

)︀
𝐵
(︀
𝑏
𝑏

)︀
|
(︀
𝑏
𝑏

)︀
𝐵
(︀
𝑏
𝑏

)︀
|
(︀
𝑏
𝑏

)︀
𝐵
(︀
𝑎
𝑎

)︀
The accepted language is: {𝑎, 𝑏}* ∖ 𝑤𝑤 where 𝑤 ∈ {𝑎, 𝑏}* — i.e. the complement of
the copy language.

12.
𝑆 →

(︀
𝑟
𝜆

)︀
𝑆 |
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𝑟
𝜆

)︀
𝐴
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𝑑
𝑟

)︀
𝐴 |

(︀
𝑑
𝑟

)︀
𝐵
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𝑢
𝑑

)︀
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𝑢
𝑑
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𝐶

𝐶 →
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𝑟
𝑢

)︀
𝐶 |

(︀
𝑟
𝑢

)︀
𝐷

𝐷 →
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𝜆
𝑟

)︀
𝐷 |

(︀
𝜆
𝑟

)︀
The accepted language is: 𝑟𝑛𝑑𝑛𝑢𝑛𝑟𝑛 where 𝑛 ≥ 1

The grammar is taken from [14].

13.
𝑆 →

(︀
𝑎
𝜆

)︀
𝑆
(︀
𝑏
𝜆
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|
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𝑎
𝜆
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𝑏
𝜆

)︀
𝐴 →

(︀
𝑐
𝑎
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𝜆
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𝜆
𝑏

)︀
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𝜆
𝑐

)︀
𝐵
(︀
𝜆
𝑏

)︀
|
(︀
𝜆
𝜆

)︀
The accepted language is: 𝑎𝑛𝑐𝑛𝑏𝑛 where 𝑛 ≥ 1

The grammar is taken from [10].
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𝐴
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𝐶

𝐶 →
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𝑑
𝑏
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𝐶 |

(︀
𝑑
𝑏

)︀
𝐷

𝐷 →
(︀
𝜆
𝑐

)︀
𝐷 |

(︀
𝜆
𝑑

)︀
𝐷 |

(︀
𝜆
𝜆

)︀
The accepted language is: 𝑎𝑛𝑏𝑚𝑐𝑛𝑑𝑚 where 𝑛,𝑚 ≥ 1

The grammar is taken from [10].

15.
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𝜆
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𝑐
𝜆
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𝐴
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𝑎
𝑎
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(︀
𝑏
𝑏

)︀
𝐴 |

(︀
𝜆
𝑐

)︀
𝐵

𝐵 →
(︀
𝜆
𝑎

)︀
𝐵 |

(︀
𝜆
𝑏

)︀
𝐵 |

(︀
𝜆
𝜆

)︀
The accepted language is: 𝑤𝑐𝑤 where 𝑤 ∈ {𝑎, 𝑏}*

The grammar is taken from [10].
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16.
𝑆 →

(︀
𝑎
𝜆

)︀
𝑆
(︀
𝑎
𝑎

)︀
|
(︀
𝑎
𝜆

)︀
𝐴
(︀
𝑎
𝑎
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𝐴 →

(︀
𝑏𝑏
𝑎

)︀
𝐴 |
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𝑏𝑏𝑏
𝑎

)︀
𝐴 |

(︀
𝜆
𝑏

)︀
𝐵

𝐵 →
(︀
𝜆
𝑏

)︀
𝐵 |

(︀
𝜆
𝜆

)︀
The accepted language is: 𝑎𝑛𝑏𝑚𝑎𝑛 where 2𝑛 ≤ 𝑚 ≤ 3𝑛

The grammar is taken from [10].

17.
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𝑏
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𝑎
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𝑏
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𝜆
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𝐵 |
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𝜆
𝑏
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𝑎
𝑎
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𝑆
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𝑏
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)︀
|
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𝑎
𝜆
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𝑎
𝜆

)︀
𝐴

The accepted language is: 𝑤 : #𝑎(𝑤) = #𝑏(𝑤) and for any prefix 𝑣 of 𝑤 : #𝑎(𝑣) ≥
#𝑏(𝑣) where #𝑎(𝑥) denotes the number of occurrences of symbol 𝑎 in the string 𝑥

The grammar is taken from [11].

18.
𝑆 →
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𝑙
𝜆
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𝑆 |
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𝑙
𝜆
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𝐴

𝐴 →
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𝑟
𝑙

)︀
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(︀
𝑟
𝑙

)︀
𝐵

𝐵 →
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𝑙
𝑟

)︀
𝐵 |

(︀
𝜆
𝑟

)︀
𝐵 |

(︀
𝜆
𝜆

)︀
|𝐴

The accepted language is: (𝑙𝑛𝑟𝑛)𝑘 where 𝑛 does not increase for subsequent 𝑘. For
instance: 𝑙𝑙𝑙𝑟𝑟𝑟𝑙𝑟𝑙𝑟 is within the language, 𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑟𝑟𝑟 is not.
The grammar is taken from [10] (where it is stated that the language of this grammar
is (𝑙𝑛𝑟𝑛)𝑘 for 𝑛, 𝑘 ≥ 1 which is not correct). The original symbols for opening and
closing parenthesis have been replaced by letters 𝑙 (left parenthesis) and 𝑟 (right
parenthesis).

19. The grammar is identical to the grammar 13 with a difference in the complementarity
relation. The relations between symbols 𝑎, 𝑏 and symbols 𝑎, 𝑐 are added. This means
that the relation is: 𝜌 = {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑎, 𝑏), (𝑏, 𝑎), (𝑎, 𝑐), (𝑐, 𝑎)}
The accepted language is: 𝑎𝑛𝑏𝑚𝑐𝑛 where 𝑛,𝑚 ≥ 1

20. The grammar is identical to the grammar 14 with a difference in the complemen-
tarity relation. The relation between symbols 𝑎, 𝑏 is added making the relation
𝜌 = {(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑), (𝑎, 𝑏), (𝑏, 𝑎)}
The accepted language is: 𝑎𝑚𝑏𝑛𝑐𝑜𝑑𝑝 where 𝑚,𝑛, 𝑜, 𝑝 ≥ 1 ∧𝑚 + 𝑛 = 𝑜 + 𝑝

There are twenty grammars altogether. Grammars 1–5 are regular, 6–11 are context-
free and 12–18 are context-sensitive. Grammars 19 and 20 are context-free but they also
have a non-bijective complementarity relation.

In reality, there are not 20 but 40 grammars, because all of them can be used in the
basic form and after the transformation to the WK Chomsky normal form. That results in
a different grammar (although accepting the same language) which is usually significantly
more difficult to calculate with, as there are more rules and many rules generate more
non-terminals.
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6.2 Testing the state space search
There is a lot of parameters that could be tested and analyzed. How efficient are the various
heuristics (both pruning and node precedence) for different grammars. What input lengths
are answered within a reasonable time frame? Or more generally, what is the relation
between input length and time to get the answer? What are the memory requirements?
What is the difference in decision time between input strings which are in the given language
and those which are not? Are there significant differences between some inputs of the same
lengths?

In order to analyze these questions, I have decided to test the state space search in the
following stages.

1. comparison of the node precedence heuristics and analysis of their efficiency

2. comparison of the pruning heuristics and analysis of their efficiency

3. analysis of the time and memory complexity based on the length of the input string

4. testing if there are any different inputs of the same length which would result in a
significant difference in the computation complexity

5. testing the WK-CYK algorithm with various grammars and inputs and comparison
to the state space search

6.2.1 Comparison of the node precedence heuristics efficiency

In section 4.3, 12 node precedence heuristics have been described and only one of them can
be active at a time. In order to compare their effectiveness I used the script ts_node_prece-
dence_tests.py which runs one test for each of the 40 grammars with an input that will
be accepted. It is not useful to test the node precedence heuristics with inputs that are
not within the given language as in such cases, the whole space state needs to be searched
and node precedence cannot help in any way. The input strings have been chosen to have
suitable lengths, so that the computation is finished (at least with some heuristics) in a
reasonable time, specifically within the time limit of ten seconds but the search also should
last some measurable amount of time.

Each of the 40 tests consists of 12 runs, each with a different node precedence heuristic
active. There are three metrics to observe:

• How many times the search timed out?

• What is the total time in which all 40 tests were completed for each of the heuristics.
There should be a kind of penalty involved if the test times out because the time
needed for the computation is, in that case, certainly greater then the time it actually
ran before it was stopped by the time limit. Therefore, for the sake of the comparison,
the time of the search is in this case doubled.

• The total time normalized for each test — all the times are multiplied by a number
𝑛 = 1/𝑡𝑚𝑖𝑛 where 𝑡𝑚𝑖𝑛 is the time of the fastest heuristic for the given test. This
is probably the most telling metric as each test has roughly the same impact on the
final number.
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Each test prints out the results in a table similar to 6.1. The upper part of the table
displays the description of the accepted language, number of rules, non-terminals and ter-
minals in the grammar, string on the input (if it is too long to be printed out, its beginning
part and total length is printed out instead), whether the input is expected to be accepted
and the time limit. The lower part the table shows for each of the node precedence heuristic
how much time it took, how many states at most were in the queue at a time and how
many states were analyzed, how many times each pruning heuristic was successful and the
result of the search (True, False or Timeout). It would not be practical to present here
the complete output but it can be recreated simply by running the script again and is also
attached in the file output/node_precedence_test_output.txt.

Figure 6.1: An output of a node precedence heuristics test
Test 1
Grammar 𝑎(𝑎𝑎)*

Rules / NTs / Ts 2/1/1
Input string aaaaaaaaaaaaaaaaaaaaaaaaa... [len 801]
Should accept Yes
Timeout 7 seconds
Strategy Time States Q+C Prunes (SL, TL, WS, RL, RE) Accepted
NTA 0.4886 994 + 3001 0, 5, 0, 0, 250 TRUE
WNTA 0.4189 498 + 2503 0, 3, 0, 0, 250 TRUE
TM1 0.739 1489 + 3994 0, 7, 0, 0, 249 TRUE
TM2 0.7385 1489 + 3994 0, 7, 0, 0, 249 TRUE
TM3 0.7366 1489 + 3994 0, 7, 0, 0, 249 TRUE
NTA+TM1 0.5903 992 + 2999 0, 5, 0, 0, 250 TRUE
NTA+TM2 0.5915 992 + 2999 0, 5, 0, 0, 250 TRUE
NTA+TM3 0.5923 992 + 2999 0, 5, 0, 0, 250 TRUE
WNTA+TM1 0.495 498 + 2503 0, 3, 0, 0, 250 TRUE
WNTA+TM2 0.4949 498 + 2503 0, 3, 0, 0, 250 TRUE
WNTA+TM3 0.4977 498 + 2503 0, 3, 0, 0, 250 TRUE
NONE 2.4445 4188 + 22147 0, 89, 0, 0, 239 TRUE

It is interesting to notice how different heuristics are better in different test cases. This
is illustrated by selected test cases which are on figure 6.2. There are some cases where the
best heuristic is the empty one which assigns zero to each node, like in the case of test 23.
This is because this heuristic is the simplest one to compute and if no heuristic is effective
in a particular test case, this one wins. But since it does not win by a large margin, these
cases do not have a decisive impact on the overall result. There was only one timeout of
heuristic TM2 and the empty heuristic. The significant result differences indicate that the
state space search can be customized to fit a specific grammar and thus further improve its
performance.

In some cases, a certain heuristics do not work so well, but their combination does. This
can be seen in test 22 — NTA and WNTA have poor result, comparable to no heuristic.
TM1, TM2, TM3 have somewhat better result, but by far the best result is achieved by
combination of NTA with any version of TN.

The figure 6.3 shows the total result for all of the 40 tests. The left bar of each heuristic
shows the total time for the 40 tests and the right bar shows the normalized time. It
turns out that the best results are achieved by the combination NTA+TM1. The best
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Figure 6.2: Selected comparisons of node precedence heuristics

time overall was achieved by TM3 by very narrow margin. The normalized results of all
NTA+TM1, NTA+TM2 and NTA+TM3 heuristics are very close but the narrow winner
is NTA+TM1. Even if, in some cases, there are some faster heuristics, it’s usually not
by much. Interestingly, even though TM2 turns out to have the worst results of them all,
often worse than no heuristic, with the combination of NTA the results are among the best.
Anyway, for all of the following tests, the winning node precedence heuristic NTA+TM1
will be used.

6.2.2 Comparison of the pruning heuristics efficiency

Pruning has the advantage of being useful whether the input string is going to be accepted
or rejected by the tree search. Also, all of the pruning can be active at the same time. Each
node can be tested by all available checks to see whether it can be pruned or not.

The testing is performed over 80 tests — each of the 40 grammars is used for a positive
test (where the input will be accepted) and a negative test (the input will be rejected). Each
test contains seven runs of the tree search algorithm — one where all pruning heuristics
are active, one where all are inactive, and one for each heuristic where all are active except
the given one.

Similarly to the node precedence heuristics comparison, the metrics that are important
are the total time needed to compute the 80 tests and a number of timeouts for each of the
seven cases. The main goal here is not to compare the heuristics to each other and find
which one is the best — as they can be active at the same time, it does not matter that
much. Rather, the goal is to decide whether each of the pruning heuristics improves the
performance or if it is better to turn some off. Therefore the comparison between the case
where all heuristics are active and the case where a specific heuristic is inactive and the
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Figure 6.3: Comparison of the node precedence heuristic functions

rest are active is important. If the latter case is faster, the given heuristic’s cost (in terms
of computing power) is greater than its contribution.

The tests are run by the script ts_pruning_tests.py and each test prints out a table
similar to the table 6.4. Again, it would not be practical to include the entire output here.
The complete set of results can be recreated by running the script again and it is included
in the file output/pruning_test_output.txt.

Figure 6.4: An output of the pruning heuristics test
Test 1
Grammar 𝑎(𝑎𝑎)*

Rules / NTs / Ts 2/1/1
Input string aaaaaaaaaaaaaaaaaaaaaaaaa... [len 801]
Should accept Yes
Timeout 7 seconds
Strategy Time States Q+C Prunes (SL, TL, WS, RL, RE) Accepted
ALL ON 0.7841 799 + 1200 0, 3, 0, 0, 400 TRUE
strands len OFF 0.7781 799 + 1200 0, 3, 0, 0, 400 TRUE
total len OFF 0.7799 801 + 1200 0, 0, 0, 0, 400 TRUE
terms match OFF 0.7705 799 + 1200 0, 3, 0, 0, 400 TRUE
relation OFF 0.655 799 + 1200 0, 3, 0, 0, 400 TRUE
regex OFF 0.3594 800 + 1599 0, 3, 0, 0, 0 TRUE
ALL OFF 0.2179 801 + 1600 0, 0, 0, 0, 0 TRUE

The summary of results is displayed on figure 6.5 — the number of timeouts and 6.6
— the amount of time for each of the seven cases across the 80 tests. The smaller the
individual bars are, the better the result. But in case of the bars representing a specific
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pruning heuristic being turned off, the bigger the bar, the more important the given heuristic
is because the result is that much worse without it.

Figure 6.5: The number of timeouts of all pruning tests

Figure 6.6: The total time of all pruning tests

From these results it is clear that the tree pruning is the key feature of the tree search
algorithm. After turning off the pruning, the results are quite poor — 67 out of 80 tests
timed out. The total time is then not relevant at all. The middle bars, which represent the
individual pruning heuristics being turned off, need to be compared to the first one, where
all heuristics are active, to see how important the given heuristic actually is. Thus, the
figure suggests, that the RL (complementarity relation) check is the most important one
because turning it off had the biggest impact on the result. This can be a bit misleading,
as some heuristics can be sometimes backed up by another one. This is the reason why the
WS (match of leftmost terminals to the input string) seem to have a rather small impact. If
this heuristic is turned off, the dead branch can be identified by the RE (regular expression)
check and so the impact is not so big. Similarly, turning off the SL (strands length) heuristic
has smaller impact because it is backed up by TL (total length) heuristic.
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Nevertheless, all heuristics are useful according to this result because no other result is
as good as in the first case where all the heuristics are active. This finding is especially
important in the case of the RE heuristic. This one is quite demanding with regards to
computational power — regular expression match is performed each time this check is
executed. It is the reason why it is the last check that is used, if there is another heuristic
able to prune the node, a lot of computational power is saved. However, the figure shows
clearly, that the RE heuristic contributes significantly to the overall performance. Still,
some tests cannot benefit from all heuristics and turning some off would improve the results.
This, again, means that there is some space for improving the performance by customizing
the algorithm to specific grammars.

6.2.3 Analysis of the memory requirements

The tree search algorithm needs to keep in memory the nodes which have been generated
but not yet analyzed. These are in the priority queue waiting to be used. Also, it keeps
track of all the nodes which have already been generated. These are the nodes that had
been in the queue before and the nodes that are there at the moment, as in both cases,
there is no reason to put them into the queue again. But it is not necessary to keep all
these nodes in the memory in order to identify them, their hash code is enough.

If the algorithm should, not only find a solution if there is one, but also find the path
from the initial node to the solution, it is not enough just to remember the hashes of nodes
that have been analyzed. It is necessary to remember all of the nodes. This is actually
the case in the current implementation because when testing the tree search algorithm, it
turns out that the memory consumption is not a real issue and it is sometimes convenient
to learn the path to the solution. A very simple modification would change this — simply
removing the item parent from the tree node (cTreeNode class) and the method printPath
from the grammar (cWK_CFG class).

The number of nodes in the queue can go up or down as the search progresses but it
is more likely to go up, unless the search is coming to its end. In any case, the important
figure is the maximum number of nodes that were in the queue at one point.

Another parameter that needs to be considered is the size of one node in the memory. As
mentioned in the section 5, one node contains six integers (storing the number of terminals
in the two strands, number of non-terminals, hash number, the node parent and the node
precedence evaluation) and the word itself. The word can contain up to twice the number
of symbols then is the length of the input string. If it contains more, it is going to be
pruned.

This is not necessarily true, if the grammar contains some 𝜆-rules and non-terminals
that can be erased. Then the theoretical length of the word in memory has no limit but this
is not a typical scenario and it can be avoided altogether by applying the 𝜆-rules removal
algorithm.

The equation for getting the memory requirement, based on the number of nodes work-
ing with, is than the following:

𝑆𝑎𝑙𝑙 × 𝑠𝑖𝑧𝑒(𝑖𝑛𝑡) + 𝑆𝑎𝑙𝑙 × (6 × 𝑠𝑖𝑧𝑒(𝑖𝑛𝑡) + 2 × 𝑠𝑖𝑧𝑒(𝑠𝑦𝑚𝑏𝑜𝑙) × |𝑖𝑛𝑝𝑢𝑡|)

After the removal of the parent information from the nodes, the equation would be as
follows:

𝑆𝑎𝑙𝑙 × 𝑠𝑖𝑧𝑒(𝑖𝑛𝑡) + 𝑆𝑜𝑝𝑒𝑛 × (6 × 𝑠𝑖𝑧𝑒(𝑖𝑛𝑡) + 2 × 𝑠𝑖𝑧𝑒(𝑠𝑦𝑚𝑏𝑜𝑙) × |𝑖𝑛𝑝𝑢𝑡|)
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𝑆𝑎𝑙𝑙 is the number of all generated nodes, 𝑆𝑜𝑝𝑒𝑛 is the maximum number of nodes in
the queue, 𝑠𝑖𝑧𝑒(𝑖𝑛𝑡) is the size of an integer , 𝑠𝑖𝑧𝑒(𝑠𝑦𝑚𝑏𝑜𝑙) is the size of one symbol of the
grammar and |𝑖𝑛𝑝𝑢𝑡| is the length of the input string.

I’ve chosen grammar 3 in WK-CNF to test the results in practice, as this grammar is
among the hardest ones with respect to the computing complexity. I used inputs in the
form of 𝑎𝑛𝑏 with increasing 𝑛, which will always be rejected, because the grammar accepts
strings that end with symbols 𝑎𝑏𝑐.

The figure 6.7 on the left shows the amount of memory needed in relation to the input
length. The middle graph shows the memory consumption in relation to the time needed
for computation. To the right is the experimental result where I measured real memory
consumption of the program in time.

Figure 6.7: Memory consumption of the tree search (the left and middle parts show com-
puted values, the part on the right shows real measurements)

The measurement of the real memory consumption shows that there is a possibility to be
limited by the memory available. As the figure 6.7 on the right shows, the tree search used
1 GB of memory after approximately 80 seconds of running and the consumption increases
linearly (the number depends on the hardware and environment so it is very crude). On
the other hand, it does not seem practical to have the time limit of the computation too
high. If the result is not found in the order of tens of seconds or, at most, minutes, it is
probably not going to be found (within a reasonable time frame) at all.

6.2.4 The time complexity of the state space search

The previous sections showed that the best overall performance is achieved when using all
of the tree pruning heuristics and using the NTA+TM1 as the node precedence heuristic.
This may not be the case for every grammar or every input, but it is the case overall.
Therefore, this will be the setting used in the sections that follow — testing the tree
search performance, analyzing the practical complexity and comparison to the WK-CYK
algorithm.

I used the script ts_speed_tests.py to test the time complexity with respect to the input
length. It runs 80 test, two for each of the 40 grammars — one with inputs that are going
to be accepted by the tree search and one with inputs which will be refused. Each test runs
the tree search several times and increases the input length. It stops when the computation
takes longer than a limit of ten seconds or after 30 runs. For each of the 80 tests, it prints
out a table similar to 6.8. As it would not be practical to present all of the results here,
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they can be recreated by simply running the script again and they are included in the file
output/speed_test_output.txt.

Figure 6.8: An output of the time complexity test
Test 1
Grammar 𝑎(𝑎𝑎)*

Rules / NTs / Ts 2/1/1
Should accept Yes
Timeout 10 seconds
Input length Time States Q+C Prunes (SL, TL, WS, RL, RE) Accepted
2001 4.6528 1999 + 3000 0, 3, 0, 0, 1000 TRUE
2101 5.1277 2099 + 3150 0, 3, 0, 0, 1050 TRUE
2201 5.6251 2199 + 3300 0, 3, 0, 0, 1100 TRUE
2301 6.134 2299 + 3450 0, 3, 0, 0, 1150 TRUE
2401 6.665 2399 + 3600 0, 3, 0, 0, 1200 TRUE
2501 7.3398 2499 + 3750 0, 3, 0, 0, 1250 TRUE
2601 8.057 2599 + 3900 0, 3, 0, 0, 1300 TRUE
2701 8.4195 2699 + 4050 0, 3, 0, 0, 1350 TRUE
2801 9.2167 2799 + 4200 0, 3, 0, 0, 1400 TRUE

The performance for different grammars is quite different. In case of 11 of the 20
grammars (specifically, grammars 2, 5–10, 12-14, 19), the resulting graph is a very regular
parabola. Often a bit steeper when transformed to the WK-CNF and often steeper when
the inputs are going to be rejected. An example is on figure 6.9. The performance with
these grammars allows at least hundreds, in most cases thousands, of symbols on the input.

Figure 6.9: Grammar 12: 𝑟𝑛𝑑𝑛𝑢𝑛𝑟𝑛

Occasionally, thanks to the pruning heuristics, the algorithm is able to tell practically
immediately that there is no solution. This is the case of grammar 3 6.10 and grammar 4
6.11 in basic forms, making the complexity of this particular search constant. The grammar
3 has as the first rule, which it has to use to proceed further, 𝑆 → 𝐴

(︀
𝑎𝑏𝑐
𝑎𝑏𝑐

)︀
. If the input

string does not end with 𝑎𝑏𝑐, the regular expression check immediately detects that the
input cannot be matched, it prunes the only branch and the search is finished.

Similarly, in the case of grammar 4, any inputs that are longer than seven symbols need
to end with the symbol 𝑎 and can be reached only by using 𝑆 → 𝑄

(︀
𝑎
𝑎

)︀
as the first rule. The

regular expression check immediately prunes this branch. The rest of the tree is searched
very quickly because the only other possible starting rule is 𝑆 → 𝐴𝐵𝐶𝐷𝐸𝐹𝐺, there are
not many states that can be reached from it, so this part of the tree is always small.
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Figure 6.10: Grammar 3: (𝑎 + 𝑏 + 𝑐)*𝑎𝑏𝑐 with left recursive rules

Figure 6.11: Grammar 4: (𝑎 + 𝑏 + 𝑐)*𝑎𝑏𝑐 with right recursive rules

After conversion of the grammar to the WK-CNF, the complexity usually goes up. The
transformation adds a lot more rules and so the state space expands more rapidly, there
are also longer paths from the starting non-terminal to the final string (containing only
terminals) making the tree deeper. Also, the node precedence heuristics and the pruning
have harder time because many rules contain non-terminals only and most of the heuristics
work with terminals. The most extreme case is the grammar 3 6.11 where the tree search
is very effective for grammar in basic form (as discussed, in case of rejecting inputs the
result is immediate) but has very bad effectiveness for this grammar in the WK-CNF. The
maximum length of input it can answer within 10 second is about 13–14 symbols.

The worst results for grammar in the basic form are in the case of grammar 17 6.12.
Here, the tree search can handle only inputs with length of about 20 symbols within 10
seconds.

Figure 6.12: Grammar 17: 𝑤 : #𝑎(𝑤) = #𝑏(𝑤) and for any prefix 𝑣 of 𝑤: 𝑣 : #𝑎(𝑣) ≥ #𝑏(𝑣)
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Some grammars manifest an interesting behavior — for some longer inputs the perfor-
mance is actually better. This is the case of grammars 11 (6.13 on the left), 16 (6.14 on
the middle right) and 18 (6.15 on the middle left and middle right). Some of these results
may appear to be partly random, simply the input generator might sometimes generate
an input which is more complex and sometimes less complex to compute. This is the case
of the grammar 18, here, in fact, the shape of the randomly generated input has a sig-
nificant impact on the performance which is the reason for the irregular curves. However,
repeated tests of the other two grammars confirmed that this happens always and the figure
of grammar 16 has a clear pattern, it is certainly not random.

Figure 6.13: Grammar 11: (𝑤𝑤)𝐶

Figure 6.14: Grammar 16: 𝑎𝑛𝑏𝑚𝑎𝑛 where 2𝑛 ≤ 𝑚 ≤ 3𝑛

Figure 6.15: Grammar 18: (𝑙𝑛𝑟𝑛)𝑘 where 𝑛 does not increase for subsequent 𝑘s
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The results of the three grammars which have not been yet mentioned, grammars 1,
15 and 20, are mostly similar to the standard parabola of the majority of tests with some
irregularities.

6.2.5 Comparing different inputs of the same length

There are some grammars which do not provide any possibility of an interesting or edge
case input. Specifically, it is the case of grammars 1–4. Grammar 1 works only with the
terminal symbol 𝑎, grammars 2, 3 and 4 are only interested whether a string ends with
specific symbols. But the rest of the grammars, grammars 5–20, all provide some space
for trying to come up with an edge case input — an input, which has the key part on
the very end or on the very beginning etc. I have manually created some of these edge
cases and tested what differences in performance there are. For this test I used a script
ts_var_inputs_tests.py. Its complete output can be again recreated by running the script
and is attached in the file output/var_inputs_test_output.txt.

I have selected three of these tests to present here. The tables 6.16, 6.17, 6.18 show the
output of three tests from the script ts_var_inputs_tests.py. The first column called Input
displays the string that has been used as an input in a compact format (𝑛𝑠)* where 𝑛 is a
number of occurrences of the symbol or string 𝑠. For instance, 3𝑎 2𝑎𝑏 would translate to
string 𝑎𝑎𝑎𝑎𝑏𝑎𝑏.

As previously mentioned, one advantage of state space search is that sometimes it can
recognize right away that a certain input is not in a given language. It is usually when
the string starts with a symbol that cannot be at the beginning. For instance, the second
input on table 6.16, where the language is 𝑎𝑛𝑏𝑛 and the input starts with 𝑏, can never be
accepted. A similar case is the second input in table 6.18 where the language is 𝑟𝑛𝑑𝑛𝑢𝑛𝑟𝑛

and it cannot start with anything other than 𝑟.
On the other hand, sometimes the search has harder time finding a key part of the string

which is at the end. This can take longer as is the case in the last input of 6.16 (search has
to get to the end of the string to see that there are not enough 𝑏 symbols). Some inputs
in the table 6.18 also suffer for the same reason. This is usually not a problem that could
break the practical use completely. The result is typically still reached within a reasonable
time. An extreme example is, however, on the table 6.17 where the last input is not decided
in time, even though other inputs were decided very quickly.

Figure 6.16: Test of various inputs for the grammar 6
Test 2
Grammar 𝑎𝑛𝑏𝑛

Rules / NTs / Ts 6/3/2
Timeout 10 seconds
Input Time States Q+C Prunes(SL, TL, WS, RL, RE) Accepted
500a 0.1881 2 + 999 4, 0, 998, 0, 0 FALSE
500b 0.0 1 + 0 0, 0, 2, 0, 0 FALSE
a 500b 0.3448 3 + 502 2, 0, 2, 2, 500 FALSE
500a b 1.0903 3 + 1996 2, 0, 1000, 998, 0 FALSE
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Figure 6.17: Test of various inputs for the grammar 8
Test 4
Grammar 𝑤𝑤𝑟

Rules / NTs / Ts 3/1/2
Timeout 10 seconds
Input Time States Q+C Prunes(SL, TL, WS, RL, RE) Accepted
2000ab 2000ba a 0.0003 1 + 1 0, 0, 3, 0, 2, 0 FALSE
a 2000ab 2000ba 0.0003 1 + 1 0, 0, 2, 0, 3, 0 FALSE
2000ab a 2000ba 10.0079 1 + 1461 0, 0, 2921, 0, 1, 0 TIMEOUT

Figure 6.18: Test of various inputs for the grammar 12
Test 8
Grammar 𝑟𝑛𝑑𝑛𝑢𝑛𝑟𝑛

Rules / NTs / Ts 10/5/3
Timeout 10 seconds
Input Time States Q+C Prunes(SL,TL,WS,RL,RE) Accepted
500r 500d 500u 500r d 8.9568 1500 + 3001 0, 0, 3002, 998, 501, 1 FALSE
d 500r 500d 500u 500r 0.0001 1 + 0 0, 0, 2, 0, 0, 0 FALSE
500r 500d 500u 501r 8.9805 1500 + 3002 2, 0, 3000, 1000, 501, 0 FALSE
500r 500d 501u 500r 3.0577 1000 + 2001 0, 0, 3000, 2, 0, 0 FALSE
500r 501d 500u 500r 1.0785 1000 + 1001 0, 0, 2000, 2, 0, 0 FALSE
501r 500d 500u 500r 1.0763 1001 + 1002 0, 0, 2002, 2, 0, 0 FALSE
r 500d 500u 500r 0.0003 2 + 3 0, 0, 4, 2, 0, 0 FALSE
500r d 500u 500r 0.191 501 + 502 0, 0, 1002, 2, 0, 0 FALSE
500r 500d u 500r 0.9625 1000 + 1003 0, 0, 2002, 2, 0, 0 FALSE
500r 500d 500u r 3.0452 1001 + 2002 2, 0, 3000, 2, 0, 0 FALSE

6.3 Testing the efficiency of WK-CYK
I have tested the WK-CYK algorithm in the similar manner as the tree search. This time
not all grammars can be used due to the limitations of WK-CYK. The grammars must be
in the WK-CNF and grammars 5, 19 and 20 cannot be used at all, since WK-CYK requires
the complementarity relation to be identity which is not the case of these three grammars.
Therefore there are 17 grammars that can be tested. The script wk_cyk_tests.py runs two
tests for each of these grammars. One with inputs that should be accepted and one with
inputs that should be rejected. Again, each test increases the input string length until the
computation lasts more that the limit of 10 seconds. The output of each test is a table
similar to 6.19. The entire output can be recreated by running the script again and is
attached in file output/wk_cyk_test_output.txt.

It turns out that the WK-CYK gives very similar performance in all tests — for all the
grammars and regardless whether the input is accepted or not. The figure 6.20 on the left
shows a result for the first test which is very similar to all the others. The limit of ten
seconds is reached by WK-CYK when the input has about 33 symbols.

These results confirm the claim made by the authors of WK-CYK that the complexity
with regards to the input length is 𝑂(𝑛6). The figure 6.20 on the right shows the same test
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Figure 6.19: An output of the WK-CYK time complexity test
Test 1
Grammar 𝑎(𝑎𝑎)*

Rules / NTs / Ts 2/1/1
Should accept Yes
Timeout 7 seconds
Input length Time Accepted
3 0.0 TRUE
5 0.0 TRUE
7 0.0 TRUE
9 0.01 TRUE
11 0.03 TRUE
13 0.07 TRUE
15 0.15 TRUE
17 0.29 TRUE
19 0.53 TRUE
21 0.88 TRUE
23 1.45 TRUE
25 2.31 TRUE
27 3.49 TRUE
29 5.23 TRUE
31 7.55 TRUE
33 10.67 TRUE

with the input lengths raised to the power of six which can be considered to be a number
of numeric operations needed for the computation. The curve is then very close to linear.

When the results of the WK-CYK and state space search are compared, the advantage
of state space search is the actual speed in most cases. The results in the previous sections
showed that of all the grammars only one (grammar 17) was slower in the basic form when
analyzed by tree search then when analyzed by WK-CYK. After transformation to Wk-
CNF two more grammars (grammar 3 and 11) were comparable or slower when analyzed
by the tree search. Grammar 1 was slower for the negative inputs.

6.4 Comparison of the state space search and WK-CYK
It has been concluded in the previous section that the WK-CYK algorithm is able to
compute within the time limit of ten seconds results for inputs of length of approximately
33 symbols. I assume that this will always be the case even for grammars that would have
to be modified in order to be suitable for WK-CYK (grammars 5, 19 and 20). If these
results are compared with the results of state space search over grammars in basic forms,
only one of them is more efficient with WK-CYK. Other 19 are more efficient with the state
space search allowing hundreds of input symbols at minimum. That means that state space
search was more efficient in 38 out of 40 test cases (each grammar is tested with accepted
and rejected inputs) i.e. in 97.5 % of cases. In this comparison the state space search
benefits from being able to work with any WK grammar — there is no need to transform
it to the WK-CNF.
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Figure 6.20: WK-CYK test result

If the state space search is compared to WK-CYK over all 40 grammars, WK-CYK has
better efficiency in case of grammars 3 and 11 (in the WK-CNF) and with the rejected
inputs for grammar 1. That is 9 test cases out of 80 (four test cases of grammar 17, two of
grammars 3 and 11, one of grammar 1) i.e. in 88,75 % of cases. However, this comparison
assumes that there is a need to use the grammars in the CNF.

These results show some advantages and disadvantages of the two algorithms. An
advantage of state space search is the flexibility regarding the grammars. It does not require
to work with grammars in the WK-CNF. Also, it does not require the complementarity
relation to be identity. Even though it is always possible to transform any WK grammar
to the WK-CNF and it is always possible to further transform the grammar in order to use
only the identity as the relation, this can significantly add to the grammar’s complexity.

A useful feature of the state space search is the fact that it can be configured for the
need of a specific grammar. If the membership test will be performed repeatedly on a
grammar, it is possible to find out what node precedence heuristic works best and what
pruning heuristics are useful in that particular scenario by running tests analogous to those
presented in section 6.2.1. Thus the performance may be further enhanced.

An advantage of WK-CYK, on the other hand, is its universality. It has roughly the
same speed every time, it does not significantly depend on the grammar (increasing number
of rules adds a little bit) and it does not matter, if the input is going to be accepted or not.
For very complicated grammars, especially with lots of rules or long derivations from the
starting symbol to the final string, WK-CYK still might be more practical.
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Chapter 7

Conclusion

In this work I have presented various existing models for representing Watson-Crick lan-
guages, most importantly Watson Crick automata and Watson-Crick grammars and I have
analyzed the algorithm WK-CYK which is used for testing a membership of strings in lan-
guages defined by Watson-Crick context-free grammars. Than I have come up with another
algorithm for testing membership in WK languages which I call the state space search or
the tree search which is the most important contribution of this thesis.

The state space search is based on a standard Breadth-first search algorithm where the
starting non-terminal of the grammar is the root node and every applicable rule creates
successors in the tree. The state space search then introduces various optimizations, from
which the most important are pruning and node precedence heuristics. Pruning uses five
different methods of identifying that a given node cannot produce the desired solution and
removes the entire branch. Node precedence heuristics attempt to choose more promising
nodes to be analyzed first. I have implemented and tested 12 such heuristics and chosen
the one which had the best overall results (called NTA+TM1) as the default one.

I have collected or created twenty Watson-Crick context-free grammars to test the WK-
CYK and state space search algorithms. I have implemented both WK-CYK and state
space search in the Python language and written scripts to test the algorithms with all
these grammars and various inputs. The test results showed that for the majority of the
grammars, the state space search was very efficient and it can quickly decide membership
problem of inputs that are hundreds or even thousands of symbols long.

Among the advantages of the state space search is the fact that it can work over any
forms of WK context-free grammars (not only grammars in the WK-CNF or grammars with
the identity complementarity relation). Also, it can be optimized for a particular grammar.
Tests comparing performance of node precedence heuristics and tests of pruning heuristics
can be run in order to find which combination is best for a particular grammar thus further
improving the performance.

Testing the WK-CYK algorithm showed that its theoretical complexity 𝑂(𝑛6) with
respect to the input length corresponds to the real performance. In practice, it is able to
decide membership problem of inputs up to the length of approximately 30–50 symbols.
That is much less than state space search but, on the other hand, its performance is almost
identical for any grammar and for any input. It is more efficient in case of some specific or
complex grammars where the performance of state space search struggles.

The state space search is a suitable algorithm for parallization. Several processes can
take nodes from the queue of open nodes and analyze different branches of the tree in-
dependently. This would be a natural next step in the further development of the state
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space search. It is possible to come up with other heuristics for both the pruning and
node precedence. As for pruning, one possibility would be to expand the regular expression
matching (RE) heuristic also to consider the lower strand. Another idea for pruning is to
calculate how many terminals can be generated at minimum to the lower strand and to the
upper strand individually (currently, it is calculated how many terminals a non-terminal
produces to both strands) thus making the constraint of the words stronger. As for the
node precedence heuristics, it may be worthwhile to use some of the grammars with which
state space search is not efficient (in particular grammars 3 in the WK-CNF and grammar
17) and design or improve node precedence heuristics with respect to these particular cases.
Then it would be necessary to test all these new heuristics and see if they contribute to the
overall performance or not. Another promising improvement could be analyzing the input
from both sides at the same time. This could help with the cases, when the key part of
the input is at or near its end and the state space search may struggle to get there in a
reasonable time frame.
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