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Abstract
Identification of G-quadruplexes in DNA has been the interest of many studies in recent
years. As a result, many identification tools were created. This bachelor’s thesis focuses
on analysis and optimization of a tool called pqsfinder along with creating a web interface
for this tool. The optimization provided significant increase in the algorithm’s speed and
ability to process long DNA sequences. The web interface was designed and implemented
using modern and effective technologies with emphasis on the user friendliness of the web
application.

Abstrakt
Detekcia G-kvadruplexov v DNA bola v posledných rokoch cieľom viacerých štúdií. Dôsled-
kom bol vznik viacerých identifikačných nástrojov. Táto bakalárska práca sa zameriava na
analýzu a optimalizáciu nástroja pqsfinder ako aj vytvorenie užívateľského rozhrania pre
tento nástroj. Optimalizácia poskytla významný nárast v rýchlosti algoritmu a taktiež jeho
schopnosti spracovávať dlhé DNA sekvencie. Užívateľské rozhranie bolo navrhnuté a im-
plementované za použitia moderných a efektívnych technológií s dôrazom na užívateľskú
prívetivosť webovej aplikácie.
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Rozšírený abstrakt
Rozumieť štruktúre a funkcii DNA je veľmi dôležitá časť porozumenia života na Zemi ako
ho poznáme. DNA je nosič genetickej informácie a je zodpovedná za rast, regeneráciu a
replikáciu buniek vo všetkých živých organizmoch. Všeobecne akceptovanou kanonickou
štruktúrou DNA je síce dvojitá závitnica, no DNA sa dokáže formovať aj v iné, sekundárne
štruktúry. Táto práca sa zameriava na štruktúru nazývanú G-kvadruplex (G4), ktorá sa
tvorí v tých častiach DNA, ktoré sú bohaté na guaníny.

Výskum G4 v posledných rokoch výrazne napredoval, no ich funkcia a vznik v živých
organizmoch stále nie sú plne pochopené. Je dokázané, že bunky si vyvinuli mechaniz-
mus, ktorým sú schopné vytvorené G-kvadruplexy rozmotať, čo môže byť náznakom ich
negatívneho vplyvu na bunku. Existujú však aj štúdie dokazujúce potenciálne využitie G4
v liečení nádorových chorôb. Na lepšie pochopenie vzniku a funkcie G4 je potrebné byť
schopný identifikovať ich pozíciu v DNA sekvencii.

Identifikácia G4 bola v minulosti záujmom viacerých štúdií, ktorých výsledkom sú rôzne
nástroje na detekciu G4 v DNA sekvenciách. Všetky tieto nástroje sa zameriavajú na
identifikáciu intramolekulárnych G4, t.j. G4 tvorené z jedného vlákna DNA. Keďže táto
téma stále nie je dôkladne preskúmaná, nové poznatky o G4 sú neustále objavované a
podľa nich rástla aj kvalita jednotlivých nástrojov. Táto práca sa zameriava na najnovší
identifikačný nástroj pqsfinder, ktorý vykazuje najvyššiu úspešnosť v detekcii a taktiež
najväčší potenciál prispôsobiť sa novým poznatkom o G4.

DNA môže byť reprezentovaná ako postupnosť dusíkatých bází. G4 sa skladá z dvoch
základných častí ktoré sa navzájom striedajú – G-run, ktorý sa vyskytne 4 krát a slučka,
ktorá sa vyskytne nanajvýš 3 krát. Z toho vyplýva, že G4 v sekvencii je vlastne špeci-
fická postupnosť znakov, ktorá môže byť identifikovaná regulárnym výrazom. Algoritmus
pqsfinder je vysvetlený dopodrobna, keďže jeho pochopenie je potrebné pre pochopenie
implementovanej optimalizácie. Tento algoritmus identifikuje G4 používaním upraveného
regulárneho výrazu, ktorý je schopný identifikovať aj nedokonalosti v G-runoch. Spôsob,
akým pqsfinder prehľadáva stavový priestor všetkých možností pre nájdenie potenciálneho
G4 je veľmi vyčerpávajúci a časovo náročný. Táto práca poskytuje optimalizáciu uve-
deného algoritmu. Keďže je pqsfinder dostupný iba ako R balíček, pre bežného užívateľa
bez výraznejších technologických zručností nie je moc prívetivý. Preto sa táto práca ďalej
zameriava aj na návrh a implementáciu webového rozhrania, ktoré bude slúžiť ako grafické
rozhranie pre používanie nástroja pqsfinder.

Pred tým, ako môže byť algoritmus optimalizovaný, je potrebné uskutočniť jeho analýzu.
Podrobným skúmaním algoritmu bolo zistené, že má problémy so spracovávaním sekvencií
s veľkou hustotou guanínu. Problém nastáva pretože sa sa na každej pozícii v sekvencii
vyskytuje veľké množstvo potenciálnych G4, čo spôsobuje priveľa generovaných možností,
ktoré musia byť spracované pri rozlišovaní prekrývajúcich sa G4. Pri počte 40 guanínov
za sebou program dokonca prestal pracovať. Toto správanie veľmi negatívne ovplyvňovalo
použiteľnosť pqsfinderu. Za použitia profilovacích nástrojov bol potvrdený pôvod zaseká-
vania algoritmu.

Práca navrhuje riešenie tohto problému pridaním dodatočných podmienok, ktoré musí
G4 splňovať po každom nájdenom G-rune. Algoritmus najprv vypočíta potenciálne na-
jvyššie skóre, aké by mohol G4 v aktuálnom stave dosiahnuť. Toto skóre je potom porov-
nané s dvomi hodnotami. Prvá hodnota predstavuje minimálne požadované skóre defi-
nované užívateľom. Druhá hodnota predstavuje najväčšie dosiahnuté skóre zo všetkých
doposiaľ nájdených G4 prekrývajúcich prvú pozíciu prvého G-runu práve skúmaného G4.
Ďalšia optimalizácia spočívala vo vytvorení 2 vektorov, ktoré sa na začiatku programu



naplnili výsledkami výpočtov, ktoré algoritmus počas behu využíva. Keďže boli výpočty
urobené dopredu, algoritmus k nim ďalej už len pristupuje. Tento spôsob zaručuje, že
každý výpočet bude prevedený iba jeden krát. Po implementácii navrhnutých zlepšení bola
rýchlosť algoritmu zvýšená až 1500-krát na sekvencii s nie 100% hustotou guanínov. Zrých-
lenie optimalizovaného algoritmu sa oproti pôvodnému zvyšuje s pribúdajúcou hustotou
guanínov.

Webové rozhranie je navrhnuté a implementované pomocou klient-server architektúry.
Celá aplikácia beží na cloude Stratus.FI s použitím Apache servera. Pre komunikáciu
medzi webovou aplikáciou a balíčkom pqsfinder bola navrhnutá jednoduchá REST API.
Komunikácia prebieha pomocou HTTP dotazov a je zabezpečená HTTPS a certifikátom
Let’s EncryptTM. Aplikácia je implementovaná v JavaScripte za použitia knižnice React.

Optimalizácia bola 2.5.2019 publikovaná ako pqsfinder verzia 2.0.0. Funkčné webové
rozhranie je dostupné na adrese https://pqsfinder.fi.muni.cz/.

https://pqsfinder.fi.muni.cz/
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Chapter 1

Introduction

Understanding the structure and functions of DNA is an important part of understanding
all life on Earth as we know it. DNA stores genetic information of a cell and is responsible
for growth, replication and regeneration of cells in all living organisms. Although the
double-helix is commonly accepted as a canonical structure, DNA can form other alternative
secondary structures. The focus of this thesis will be on a structure called a G-quadruplex
(G4), which forms in DNA sequences with high density of guanines and has been at the
foreground of scientific research in the last years.

The functions and creation of G4s in living organisms are not yet fully understood.
However, coming from the fact that cells have evolved a mechanism to unwind formed G4,
their formation might be potentially damaging to the cell. There are also some positive
aspects that were discovered regarding G4s. For instance, they are believed to have thera-
peutic potential in cancer treatment. To better understand their formation and function,
it is important to have the ability to detect their exact positions in a DNA sequence.

G4 identification has been the interest of many studies. As a result, some identification
tools were created. As more information about G4s was discovered, the tools grew in
quality and identification reliability. This thesis provides an overview of the tools and their
abilities, but further focuses only on the pqsfinder tool. This tool was chosen as the most
advanced and with the biggest potential to adapt to new discoveries. The main deficiency
of pqsfinder is in its speed. Another important shortcoming is that the user needs to have
slightly advanced technological knowledge to use it, as it is available as an R package and
does not have a graphical user interface.

The goal of this thesis is to identify the source of pqsfinder’s lack of speed and suggest and
implement an optimization. Other aspect that this thesis focuses on is a web application for
pqsfinder. To implement the web application, it will be necessary to design an architecture
of the whole interface.

The text of this thesis is structured into several logical units. Chapter 2 explains the
structure and function of DNA and provides an overview of G-quadruplex formation and
relevance in biology. Chapter 3 serves as an overview of existing tools used for G-quadruplex
identification and it thoroughly explains the pqsfinder algorithm. Next, chapter 4 focuses on
the whole optimization process. It provides an analysis of the algorithm as well as suggested
improvements and their implementation. Chapter 5 defines a proposed web interface archi-
tecture and functionality along with the design of pqsfinder web application. Last, chapter 6
clarifies the application development process, used technologies and application structure.
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Chapter 2

DNA

DNA (Deoxyribonucleic acid) is a molecule that serves as a carrier for genetic information
of a cell. It is necessary for growth, duplication and regeneration of cells in all living
organisms [7]. This chapter is an overview of the structure and function of DNA and its
relevant secondary structures.

2.1 Structure of DNA
Even though the existence of DNA – called ”nuclein“ at the time – was detected as early
as the 1860s, its function as transporter of genetic information was not discovered until
much later. The first evidence that DNA plays a role in inheritance of genetic information
came in 1944, when a team of scientists published experiments that are now considered as
definitive proof that DNA is the hereditary material [2]. These findings had a profound
impact on discovery of the double helix (illustrated in Figure 2.3) structure of DNA by a
number of scientists in the 1950s [20].

A DNA molecule consists of two polynucleotide chains, that can be called DNA strands
or DNA chains. The strands form a right-handed double-helix – B-DNA. Each of these
strands is made of four types of nucleotide sub-units as seen in Figure 2.1. Every nucleotide
contains a sugar group, a phosphate group and a nitrogen base, that can be either adenine
(A), thymine (T), guanine (G) or cytosine (C)[7].

Figure 2.1: Structure of a nucleotide. Taken from article [6].

The strands are held together by hydrogen bonding between nitrogen bases as shown
in Figure 2.2. Bonding of the bases is not random, but abides the Watson-Crick DNA
base pairing model, where a purine always binds with one particular type of pyrimidine
[20]. This means that the adenine of one strand always pairs with a thymine of the other
strand and the cytosine always pairs with a guanine. This characteristic is referred to
as complementarity of nitrogen bases. The A-T pairs are formed by two hydrogen bonds,
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whereas the G-C pairs are formed by three. The genetic code of a cell is determined by the
order of these bases. The complete human genome contains about 3 billion bases.[6]

Figure 2.2: Hydrogen bonding between nitrogen bases. Taken from article [6].

Each polynucleotide strand has two different ends that can be distinguished based on
whether they end with phosphate group or -OH (hydroxyl) group. These ends are respec-
tively called the 5’end and the 3’end. DNA strands are antiparallel, meaning that the 3’end
of one strand is paired with the 5’end of the other strand and are known as the ’+’ and ’-’
strands. The ’+’ strand is the one which runs from 5’ to 3’. [6]

Figure 2.3: The double helix. Taken from article [6].

DNA replication

To start a DNA replication process, a part of the DNA has to be targeted by an initiator
protein1. Once the initiator marked origin of the replication, it mobilizes other proteins
that form a pre-replication complex2. Consequence of the forming of this protein complex
is that the hydrogen bonds holding together the double-helix break and the helix opens.

1https://en.wikipedia.org/wiki/Initiator_protein
2https://en.wikipedia.org/wiki/Pre-replication_complex

4

https://en.wikipedia.org/wiki/Initiator_protein
https://en.wikipedia.org/wiki/Pre-replication_complex


The breaking of the bonds can be contributed to a helicase3 enzyme. Each of the strands
serves as a template for new complementary strand. Creation of the complementary strand
is handled by enzyme DNA polymerase, which attaches nucleotides to the new strand to
complement the bases on the template strand. Products of the replication process are two
new identical DNA helixes.[6]

Figure 2.4: The replication of DNA. Taken from article [8].

Secondary structures

DNA is dynamic, meaning it is capable of forming alternative secondary structures, called
non-B-DNA, such as triplexes, cruciforms, Z-DNA or G-quadruplexes. These structures are
of growing interest in chemical and biological studies because of their potential ability to
play regulatory roles in biological processes such as translation, transcription or replication
of cells, some of which are already known [10]. Even before the discovery of the double-helix,
it was known that guanine-rich DNA strands have the ability to self-associate. Structures
that form by self-associating guanines are called G-quadruplexes. The next section covers
the structure and functional roles of G-quadruplexes.

2.2 G-quadruplex
“If G-quadruplexes form so readily in vitro, Nature will have found a way of using them in
vivo.“ – Aaron Klug, Nobel Prize Winner in Chemistry (1982). This sentence best expressed
the significance of discovery of G4s, which where identified in 1962. These quadruple-helix
DNA structures had only been demonstrated in the human genome in 2013 [4].

Structure

DNA sequences that are rich on guanine can lead to creation of G-quartets, or G-tetrads.
G-quartet is a structure formed by four guanine bases linked cyclically through non-Watson-
Crick base pairs called Hoogsten hydrogen bonds, depicted in Figure 2.5. Hoogsten base
pairing4 contains a purine and two pyrimidines and has different geometry between A-C

3https://en.wikipedia.org/wiki/Helicase
4https://en.wikipedia.org/wiki/Hoogsteen_base_pair
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and G-C bonds. It applies a C6 amino group and the N7 position of the purine base, which
bind the Watson-Crick (N3–C4) face of the pyrimidine base.

At least two or more of G-quartets stacked on top of each other form a non-canonical
helical structure called G-quadruplex (G4) shown in Figure 2.5. G4 is additionally stabilized
by the existence of a cation located in the centre between each pair of G-quartets.[16]

Figure 2.5: Left: four guanines looped into a stabilized guanine quartet by Hoogsten hy-
drogen bonds. Right: a formation of G-quadruplex by the stacking of G-quartets. Taken
from article [16].

Classification

G4s can have numerous topologies and can be categorized based on the following criteria
[5]:

1. Direction of strands or parts of a strand:

∙ parallel – all of the strands run in the the same 5’–3’ polarity, so the linking
loops always run top-to-bottom,

∙ antiparallel – two of the strands run in one direction and the other two in the
other direction,

∙ hybrid – three of the strands have the same orientation, the fourth has a different
one.

2. Number of strands:

∙ intramolecular – all G-quartets occur on the same strand. See Figure 2.6,
∙ intermolecular – guanines forming G-quartets come from two or four different

strands (DNA or RNA). See Figure 2.7.

The type of quadruplex that forms in in vitro experiments depends on many factors,
such as strand length, sequence, type of stabilizing cation and composition of the dissolvent.

Functional roles

The mechanism of creation and purpose of G4s in living organisms is not yet fully identi-
fied. However, based on the fact that cells have evolved a technique for unwinding formed
quadruplexes, their formation might be damaging to the cell. Nevertheless, due to their in
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Figure 2.6: Intramolecular topologies. Taken from article [13].

Figure 2.7: Intermolecular topologies. Taken from article [13].

vivo occurrence in promoter regions of some genes and at telomeric regions in humans, they
are believed to have therapeutic potential in cancer treatment. G4s are predicted to play a
role in regulation of gene expression. Quadruplexes formed in healthy cells can be unwound
by helicase. This is not the case in cancerous cells with mutated helicase, where the G4s
can not be unwound. This potentially leads to replication of damaged and cancerous cells.
The quadruplex creation and dissolution also relates to activity of telomerase enzyme and
the length of telomeres5. [15]

Possible defects

As confirmed by various experiments [19, 14], G4s are able to form with imperfections. So
far, two types of imperfect G4s that appeared to be stable under physiological conditions
have been identified: G4s with bulges and G4s with mismatches. Both are visualized in
Figure 2.8.

5https://en.wikipedia.org/wiki/Telomere
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A bulge is two or more projecting nucleotides that separate two quanines from neigh-
bouring G-tetrads in one column.

A mismatch is defined as a nucleotide other than G that substitutes a guanine. Mis-
matches may participate in stacking.

Figure 2.8: G4 defects: A) Mismatch B) Bulge. Taken from article [18].

Detection in DNA

DNA can be represented as a sequence of nitrogen bases, meaning that an intramolecular
G4 itself can be represented as a string. Every G4 contains two types of elements: G-runs
and loops. The representation is showed in Figure 2.9 along with marked G-runs and loops.

Figure 2.9: Representation of a G4 by nitrogen bases.

G G
G G

C

T

T

A

G G

TG

GG
G G

T

T

A
A

T

C

Figure 2.10: Sequence from Figure 2.9 folded
into a G4.

A G-run is a sequence of stacked nitro-
gen bases that bond with other G-runs to
create the G-tetrads. These runs can con-
tain bulges and mismatches, which were ex-
plained earlier. Loops are excessive nitrogen
bases that do not bond but connect individ-
ual runs. Each G4 consists of four runs and
at most three loops.

Figure 2.10 represents what the folded
G4 from sequence in Figure 2.9 could look
like. This is a unimolecular antiparallel G4,
but its parallelity depends on many other
things and hence the G4 is not guaranteed
to take this particular form. The Gs that
form one G-tetrad are connected by a red
line.

Since intramolecular G4s can be repre-
sented as sequences, they are very easy to
detect using regular expressions. The most
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commonly used regular expression is G{3,6}.{1,8}G{3,6}.{1,8}G{3,6}.{1,8}G{3,6}, which
depends on the G4 having at most six G-tetrads, the maximum loop length to be eight and
the G-runs to be without imperfections.

Intramolecular G4s are currently also the most studied types of quadruplexes. This is
mainly because of their potential involvement in the replication process that was explained
earlier. Regarding the further application in this thesis, only intramolecular G4s will be
further taken into consideration on account of their easy detection and the demand for their
study.
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Chapter 3

Existing tools for G-quadruplex
identification

There are several existing tools for detecting potential quadruplex forming sequences (PQS).
As the research on G-quadruplexes (G4s) grew, so did the quality of emerging tools. The
main features that are important for a solid identification tool and that are going to be
talked about in relation to tools discussed in this chapter are:

∙ overlapping PQS detection – a sequence can have multiple overlapping PQS that are
mutually exclusive and it is highly useful to identify them and assign them a score
based on their susceptibility to form a G4,

∙ imperfection tolerance – the existence of imperfect G4s has been evidenced in recent
years. G-runs can include bulges or mismatches, meaning the standard regular ex-
pression G{3,6}.{1,8}G{3,6}.{1,8}G{3,6}.{1,8}G{3,6} does not capture all PQS and
the search algorithm should be customized accordingly,

∙ score assignment – individual PQS having a score based on their stability can pro-
foundly help in determining their potential to form stable G4s,

∙ availability – it is preferable that a user without advanced technological knowledge
can easily use the tool and customize the searching algorithm, so its accessibility and
additionally format of its output are quite important.

3.1 QGRS Mapper
QGRS Mapper [12] is one of the first PQS detection tools and as such does not tolerate any
imperfections and is based on a simple folding rule defining four G-runs with rather short
loops. It does however detect overlapping PQS and implements a scoring function as well
as has a web interface, which is shown in Figure 3.1.

Customization of the search algorithm is limited to setting maximum length of G4,
minimum size of G-run and a range for loop size. QGRS Mapper is the only tool that
provides the user with an option to enter a regular expression representing a specific string
that should be contained in one or more loops.
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This tool has many ways in which the user can search for PQS. In addition to raw or
FASTA format, it is possible to search and analyze a sequence by Gene name or symbol,
Gene ID and Accession number or a Gene ID for NCBI Entrez Gene database1.

QGRS Mapper provides several formats of data output. The user can pick a table view
with information on each PQS found in the entered sequence either with overlaps or without
them. One of the options to choose from is also a full sequence view with Another option
is a graphics view with visual display of found PQS. The graphic module is user-friendly
and interactive, but it needs a Java Plugin to run, which is not supported by most modern
browsers2.

Figure 3.1: Main page of the QGRS Mapper web application.

3.2 ImGQfinder
ImGQfinder [18] is capable of detecting overlapping PQS but does not provide a scoring
function, so it is not immediately clear which PQS has the highest potential to form a G4.
Similarly to QGRS Mapper, ImGQfinder uses a folding rule to find PQS and has an easy
to use web interface, albeit as shown in Figure 3.2, not very intricate.

This was the first tool that included imperfection tolerance in its algorithm, although
rather limited, since it allows a maximum of one defect per G4.

Available input type is FASTA file and raw or FASTA format sequence. A user can
customize the algorithm by selecting maximal loop length, number of G-tetrads and number
of defects. One of the shortcomings is that the user can only select one option at a time,
meaning the algorithm either searches for perfect G4s or G4s with exactly one defect. The
same issue comes with the number of G-tetrads.

1https://www.ncbi.nlm.nih.gov/gene
2https://www.java.com/en/download/help/browser_activate_plugin.xml
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ImGQfinder only provides basic output in the form of a simple table of found PQS with
elementary information on each individual sequence.

Figure 3.2: Main page of the ImGQfinder web application.

3.3 TetraplexFinder/QuadBase2
QuadBase2 [9] is an updated version of QuadBase [21]. QuadBase2 is divided into three
modules, one of which is TetraplexFinder, which is a module capable of PQS search in cus-
tom sequences. TetraplexFinder uses a regular expression to search for PQS in a sequence.
It is able to detect overlaps and imperfections, but fails to provide a score for individual
sequences. The web server can detect bulges of user provided length that is fixed between
0 and 7 and works only if the G-run length is set to three.

User can define custom G-run length, minimum and maximum loop size, bulge size and
strands on which the search should be executed. The tool provides three pre-configured
combinations of parameters and it is also possible to select ’greedy’ or ’non-greedy’ algo-
rithm for search. Using the former variation of algorithm can maximize the loop length and
the found sequences can contain multiple internal PQS, while the latter aims to shorten
the loop length and the found sequences do not contain any internal PQS.

TetraplexFinder accepts a sequence in FASTA format as an input and displays results
in two possible formats. The first format is a display of the whole sequence with marked
found sequences differentiated by strand. The second format is a simple graph which shows
position of found PQS in the sequence, also with strand differentiation.

3.4 G4Hunter
G4Hunter [3] allows imperfections as well as it provides a scoring function, but it merges
neighbouring and overlapping PQS, resulting in the boundaries of individual PQS not being
clear-cut. The detection of imperfect G4s is limited by not defining individual defect types.
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G4Hunter detects PQS using a sliding window, so the resulting sequences are detected
based on a scoring function that expresses PQS propensity. Each position in a sequence is
given a score based on the type of nucleotide. A and T are given a score of 0. To account
for G-richness, Gs are given score that is also based on their surroundings. One G has
a score of 1, two continuous Gs a score of 2, three have a score of 3 and four or more
consecutive Gs are awarded a 4. The same principle is applied to Cs, but with negative
values from -1 to -4. The algorithm then takes a sliding window of 25 nucleotides and
computes a mean score for each nucleid acid sequence of this length. Values where the
absolute value of computed mean score rises above threshold are discarded. This is a very
simple identification technique but was also proved to be one of the most precise out of so
far discussed tools. The speed of G4Hunter is not lowered by its success rate in identifying
PQS.

This tool is only available as an R-script and as such is not easily accessible to users
without advanced technological knowledge.

3.5 pqsfinder
The last evaluated tool is pqsfinder [11], which was released later than all previously dis-
cussed tools as an R package3. It does not have a graphical user interface. pqsfinder allows
imperfections as both bulges and mismatches, allows excessively long loops between indi-
vidual G-runs and provides a scoring function based on the stability of PQS. Furthermore,
it can detect all overlapping PQS and/or only the locally best and provide a density of all
possible PQS on any position in a sequence. Additionally, it is highly customizable – a
user can define their own scoring function, a regular expression for PQS search and many
configuration options.

Overlaps Score

Imperfections

QGRS Mapper

TetraplexFinder
G4Hunter

pqsfinder

ImGQfinder

Figure 3.3: Summary of capabilities of the discussed tools.

As evidenced in Figure 3.3, pqsfinder is the most relevant search tool to this day. This,
along with it having the biggest potential, is why I deemed it valuable to provide an opti-

3https://git.bioconductor.org/packages/pqsfinder
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mization for this algorithms deficiency in speed and create a web based graphical interface
so it can be used by a wider variety of users. For better understanding of the optimization
explained in chapter 4, this algorithm is going to be explained in greater details.

Algorithm

The foundation of this algorithm stands on the fact that a G4 is formed by four consecutive
G-runs which can be imperfect and are separated by loops of semi-arbitrary lengths. The
whole algorithm can be split into three logical steps: identification of G-quartets, score
assignment and overlap resolution.

Identification of G-quartets

To identify a G-run, pqsfinder uses a regular expression (regexp) G{1,10}.{0,9}G{1,10},
which along with requiring at least two guanines allows imperfect G-runs with both bulges
and mismatches to be matched. The first G-run is found by applying this regexp to the
sequence while limiting minimal and maximal length. This regexp is also used to match
the remaining three G-runs, although with some added constraints. The first constraint is
that each following G-run lies beyond the 3’-end of the previous one, which assures that
the G-runs do not overlap. Next, the distance between two G-runs must fit in the range
of minimal and maximal loop length while only one loop can have zero length. The last
constraint is that with adding the new G-run, the PQS cannot exceed the user-defined
maximal PQS length. A visual explanation of these constraints can be seen in Figure 3.4.

Figure 3.4: PQS constraints. Each PQS consists of G-runs (R1-4) and loops (L1-3), whose
minimal and maximal lengths are constrained by overall PQS length as well as correspond-
ing options shown in the figure. The algorithm takes all of these options as arguments and
as such can be customized. Taken from article [11].

To identify all possible combinations, pqsfinder uses a backtracking approach. After
matching and processing the whole PQS, the last G-run in the matched sequence is short-
ened by one nucleic acid base from the end. If the resulting G-run is still valid, the algorithm
continues to scoring and overlap resolution. If the G-run is not valid, the algorithm back-
tracks to the preceding matched G-run and applies the same shortening process again. If
this modified G-run is valid, the algorithm tries to match all the subsequent G-runs again.
This continues until the algorithm reaches the first G-run. Once it finds its shortened state
invalid, the whole process starts over from starting position of the first G-run shifted by one
to the end. This backtracking procedure is beneficial in modeling the competition between
overlapping PQS.
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Score assignment

The scoring scheme of pqsfinder approximates the relationship between a G4 and its struc-
tural stability and can be split into two parts. Firstly, the quality of individual G-runs is
assessed. A bonus score is awarded for each G-tetrad and a score penalty is given for every
defect. The scoring is expressed by Equation 3.1,

𝑆𝑟 = (𝑁𝑡 − 1)𝐵𝑡 −𝑁𝑚𝑃𝑀 −
𝑁𝑏∑︁
𝑖=1

𝑃𝑏 + 𝐹𝑏𝐿
𝐸𝑏
𝑏𝑖 (3.1)

where:

𝑁𝑡 = number of tetrads
𝐵𝑡 = G-tetrad stacking bonus
𝑁𝑚 = number of inner mismatches
𝑃𝑚 = mismatch penalization
𝑁𝑏 = number of bulges
𝑃𝑏 = bulge penalization
𝐹𝑏 = bulge length penalization factor
𝐿𝑏𝑖 = length of the i-th bulge
𝐸𝑏 = bulge length exponent

The authors of pqsfinder decided to make two simplifying assumptions to neatly analyze
defects. Firstly, at least one G-run in a PQS must be perfect (consisting of only guanines)
and secondly, only one defect per G-run is allowed. Thanks to these premises, only lengths
of G-runs and their G content are needed to detect bulges and mismatches.

In the second part of the scoring procedure, the destabilizing effect of loops is quantified
by adding a penalty based on loop lengths. Complete scoring function is defined in Equation
3.2,

𝑆 = 𝑚𝑎𝑥(𝑆𝑟 − 𝐹𝑚𝐿𝐸𝑚
𝑚 , 0) (3.2)

where:

𝑆𝑟 = value from Equation 3.1
𝐿𝑚 = loop length mean
𝐹𝑚, 𝐸𝑚 = numerical parameters derived from experiments

Overlap resolution

The overlap resolution is designed as an iterative process that always prefers dominant
PQS and is implemented to reduce memory usage as much as possible. First, the algorithm
selects all PQS that share the highest obtained score. These selected PQS are then handled
one at a time in the order of their rising starting position. If the currently processed PQS
overlaps with the previous one, the current one is removed. If the current PQS is completely
contained in the previous one, the previous is removed. Then, all lower-scoring PQS that
overlap any of the selected PQS that are left are removed. All remaining PQS are reported
and the also removed. The iteration starts again with selecting highest scoring PQS. These
iterations continue until all PQS are processed.
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Implementation

The pqsfinder package was implemented using languages R and C++. R is utilized to
implement an interface for user interaction within the Bioconductor4 framework using mul-
tiple R packages. Because of the main PQS search’s computational intensity, C++ is used
to implement the algorithm. To link the C++ code with R scripting language, the Rcpp5

library was used.
Aside from the main information about individual PQS, pqsfinder provides two addi-

tional vectors – density vector and maxScores vector. The density vector presents the
number of distinctive PQS overlapping each particular position in a sequence. The second
vector gives a maximal achieved score of all overlapping PQS on each position.

As the general regular expression engine was found to be too inefficient for the needs of
pqsfinder, an optimized matching function was implemented for the default G-run regular
expression. If a user wants to use their own regular expression, the Boost regular expression
library6 is used.

Customization

pqsfinder was designed to be highly customizable. Users can adjust all relevant search and
scoring parameters. Supported pqsfinder options are listed in Table 3.1 and can be divided
into three logical groups:

∙ Filter options, that represent the main constraints used in PQS detection. They have
great impact on sensitivity and speed of the algorithm as PQS that do not fit the
constraints are immediately discarded and do not continue to the scoring part.

∙ Scoring options are all the constants from Equations 3.1 and 3.2. Default values are
picked by experiments as the most reasonable values.

∙ Advanced options give the user full control over the algorithm. They provide a chance
to set a custom G-run regular expression and a scoring function.

4http://bioconductor.org/
5https://www.r-project.org/nosvn/pandoc/Rcpp.html
6https://github.com/boostorg/regex
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Group Name Description
Filters strand Strand symbol: +, – or * (both).

overlapping Enables overlapping PQS.
max_len Maximal PQS length.
min_score Minimal PQS score.
run_min_len Minimal G run length.
run_max_len Maximal G run length.
loop_min_len Minimal loop length.
loop_max_len Maximal loop length.
max_bulges Maximal number of bulges.
max_mismatches Maximal number of mismatches.
max_defects Maximal number of all defects.

Scoring tetrad_bonus G-tetrad stacking bonus 𝐵𝑡.
mismatch_penalty Inner mismatch penalization 𝑃𝑚.
bulge_penalty Bulge penalization 𝑃𝑏.
bulge_len_factor Bulge length penal. factor 𝐹𝑏.
bulge_len_exponent Bulge length penal. exponent 𝐸𝑏.
loop_mean_factor Loop mean penal. factor 𝐹𝑚.
loop_mean_exponent Loop mean penal. exponent 𝐸𝑚.

Advanced run_re G run regular expression.
custom_scoring_fn User-defined scoring function.
use_default_scoring Enables internal scoring system.
verbose Enables detailed text output.

Table 3.1: Overview of pqsfinder options
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Chapter 4

Optimization of pqsfinder
algorithm

As can be seen in Chapter 3, pqsfinder is currently the most advanced G-quadruplex (G4)
identification tool. This chapter will provide an analysis of the algorithm based on its speed
and efficiency, as well as suggested improvements and their implementation.

4.1 Analysis of the current state
Analysing an algorithm means to determine its computational complexity, that is the re-
sources, storage and time it takes to execute it. The main deficiency of pqsfinder is in its
speed, so this section focuses primarily on that. After assessing the algorithm’s speed, the
program will be profiled to find the most time consuming part of the algorithm. These
findings should be sufficient to propose significant speed improvements.

Analysis

Some parts of the genome have very high G content density. These parts proved to be
hard to process for pqsfinder due to its sensitivity to sequences with high G content. The
sensitivity is demonstrated in Figure 4.1, where the exponential growth of execution time
with increasing G content can be seen. The graph stops at 60% of G content in a sequence,
because the execution time on sequences with higher density gets too high or even cause
the program to crash. This proves that G rich sequences cause the program to significantly
decrease its speed or even halt in case of full G sequences. This happens due to there being
too many different potential G4s on each position in the searched sequence, which causes
a large number of generated candidates that need to be processed in the overlap resolution
as was explained on page 15.

When it comes to sequence length, a function representing the relation between sequence
length and execution time is linear. This fact can be evidenced in Figure 4.2. Looking at
Figures 4.1 and 4.2 it can be said that the main optimization focus should be on better
PQS identification process in G rich parts of sequences.

After analysing the algorithm’s time complexity, the next step is to find out what parts
of the algorithm take up the most of execution time and figure out the cause and whether
they can be optimized. This is performed by dynamic program analysis, or otherwise called
profiling.
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Figure 4.1: The relation between G content and execution time. Samples were taken on
5000-letter randomly generated sequences with gradually increased G content. For each
sample, the algorithm was run 20 times and the execution times were averaged.

0.0

0.5

1.0

1.5

2.0

0 5000 10000 15000 20000

Sequence length

E
xe

cu
tio

n
 t

im
e

 (
s)

Figure 4.2: The relation between sequence length and execution time. Samples were taken
on sequences with evenly distributed individual bases. For each sample, the algorithm was
run 20 times and each time on a different randomly generated sequence. The execution
times were averaged.
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Profiling

The program was profiled using the gperftools1 profiling tool. This tool uses sampling to
obtain data. Sampling means that the profiler interrupts program execution at specific
intervals and logs the state of program’s call stack. As output, gperftools is able to draw
a graph that represents how much time the program spent in individual procedures. This
type of graph is called a call graph.

Each node in a call graph represents a procedure. The directed edges indicate caller to
callee relations and the text node next to each one indicates the number of samples that
were taken in the caller procedure on behalf of the callee. A node contains two important
values, self weight and total weight. In a call graph generated by gperftools, the last two
lines of a node contain these timing information. The third line represents the time it took
to execute instructions directly contained in the procedure while the last line represents the
time it took to execute instructions in called procedures along with the focused procedure.

Taking a look at Figure 4.3, it can be seen that 100% of the time is spent in proce-
dure find_all_runs. This procedure is responsible for handling the whole PQS detection
process. However, the self time of this procedure is only 8.2% with 73.1% of its total time
being spent in procedure score_pqs. Over 30% of this time is spent in the procedure
score_run_defects. Both of these procedures collectively implement the scoring function
defined in Equations 3.1 and 3.2. The implementation of the scoring function in C++ uses
function pow in its calculations, which, as can be seen in Figure 4.3, takes about 16% of the
whole time it takes to score a PQS.

By assessing the generated call graph, it is certain that the parts of the algorithm that
need to be evaluated for optimization are procedure score_pqs and the number of times
procedure find_all_runs is recursively called.

4.2 Suggested improvements
The most significant optimization should be to limit the number of recursive calls to pro-
cedure find_all_runs.

As was previously explained in section 3.5, each run in the PQS is identified individually
by applying regular expression with some additional constraints. However, between indi-
vidual run searches, the only constraint the algorithm enforces is whether the loop between
previous and current run is not too long. If the constraint does not fail, it always continues
to search for the next run by recursively calling function find_all_runs. Because of no
other constraints for continuing the search, the algorithm has to finish identification for
every PQS. If the PQS has too low score, it is only found out after the identification of
all four runs. The number of recursions could be reduced by applying conditions between
individual run searches that check whether it is worth it to continue the search. By elim-
inating PQS before they make it to the scoring part and minimizing the available search
scope, the execution time of the algorithm should rapidly decrease.

The main principle of suggested optimization is that after each run, the maximal poten-
tial score of a PQS is be computed. This value is then compared to the defined min_score
and to maximal found score of all reported PQS so far overlapping the starting position of
the first run in the current PQS. If the potential score is lower than min_score or the max-
imal found score, the search for other runs can be terminated. The maximal potential score

1https://gperftools.github.io/gperftools/cpuprofile.html
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Figure 4.3: gperftools profiling run output. 1117 samples were taken during this run. The
program was run on a 50000-letter sequence with default options. 155 PQS were identified
on this sequence.

should be computed by the standard scoring function, while assuming that the remaining
runs will not have any defects.

The second improvement that can be made is to optimize the time complexity of the
scoring function. This can be done by removing the use of library function pow. This
function is used while computing the values of loop and bulge penalties. The loop penalty
is computed as sum of loop length divided by 3 to the power of loop_mean_exponent.
Since the sum of loop lengths can only be in the range of 0 to loop_max_len times three,
these values can be easily precomputed. This would mean that the values would only be
computed once, not every time a score is calculated. The same principle can be used for
precomputing values of bulge penalties. A bulge penalty is calculated as length of the bulge
to the power of bulge_len_exponent. The bulge length can only be in the range of 0 to
run_max_len.
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4.3 Implementation
The main optimization occurred in file pqsfinder.cpp, in procedure find_all_runs. The
principal of this change is to compare potential maximal score of PQS with defined minimal
PQS score. To calculate the potential max score, these values are needed: tetrad count, loop
lengths and defect count. Before starting the search, the tetrad count is set to MAX_INT
and loop lengths sum and defect count to 0.

The next tetrad count is set as equal to run length in case of a mismatch and equal to G
count in case of a perfect or bulged run. The tetrad count that is used in score calculations
represents the minimal value from the next tetrad count and the minimum from previous
tetrad counts. The loop lengths sum stays equal to zero in the first run. In the following
runs, the loop length between the last found run and current run is added to the sum. The
defect count is incremented by one if the length of the current run is not equal to its G
count.

Using these values, the potential maximal score is calculated using the scoring function
defined in Figure 3.2. The score is then compared to the defined minimal PQS score. If the
score is lower than min score, the algorithm can continue to search for other run alternatives
and will not continue to further recursion in this search path. The score is also compared
to the maximal score reported so far overlapping the starting position of the first run in the
current PQS. If both of these conditions succeed, the procedure continues either to scoring
or to the recursive call of itself, in which case the computed values of tetrad count, loop
lengths sum and defect count are passed as parameters.

Because this optimization is not compatible with searching for overlapping PQS, option
called deep was added to pqsfinder parameters to turn the optimization on and off.

Another change in pqsfinder is precomputing the values of penalties. At the start of the
program, loop_max_len and run_max_len are used to precompute the values of the bulge
length penalty and the loop length penalty. These values are then stored in integer vectors.
The algorithm then simply accesses the required value through the key representing either
loop lengths sum or bulge size that it needs to compute a penalty for.

Optimization outcome

Looking at Figure 4.5, it can be clearly seen that the optimization provided a significant
speed up of up to 1500 times on a sequence with only 60% G content. It is also evident
that the speed up gets bigger with rising G content.

To demonstrate the speed increase, first 10 million nucleotides in chromosome 21 of the
human genome were analyzed by the algorithm before and after optimization. The first
code sample below shows the output of the microbenchmark2 function run with pqsfinder
before optimization. The second sample shows output of the same function run with the
optimized algorithm.

Unit: seconds
expr min lq mean median

pqsfinder(genome$chr21[1:1e+07]) 1541.676 1594.018 1644.125 1646.199
uq max neval

1702.385 1750.721 20

2https://cran.r-project.org/web/packages/microbenchmark/microbenchmark.pdf
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Unit: seconds
expr min lq mean median

pqsfinder(genome$chr21[1:1e+07]) 6.981571 7.505814 7.919199 7.795637
uq max neval

8.396269 8.935915 100

As can be seen, while the original algorithm took about 27 minutes to complete, the
optimized version finished in 8 seconds.
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Figure 4.4: Visible acceleration of the algorithms speed in relation to G content. Samples
were taken on 5000-letter randomly generated sequences with gradually increased G content.
For each sample, the algorithm was run 50 times and the execution times were averaged.

Figure 4.5 shows how the optimization affected sequences with extremely high G content.
The function representing relation of execution time to increasing of G content is no longer
exponential. It reaches its high point a little after 75% and then rapidly decreases.

Figure 4.6 represents the gperftools profiling output after the optimization. The lack of
procedure score_pqs and its callees indicates that the optimization reduced the number
of times this function is called as well as decreased its execution time to be negligible. The
number of recursive calls to find_all_runs is also notably smaller.

The provided optimization was released on 2nd May 2019 in Bioconductor version 3.9
as pqsfinder 2.0.0.3

3http://bioconductor.org/packages/release/bioc/html/pqsfinder.html
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Figure 4.5: Execution time on sequences with rising G content after optimization. Samples
were taken on 5000-letter randomly generated sequences with gradually increased G content.
For each sample, the algorithm was run 100 times and the execution times were averaged.
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Figure 4.6: gperftools profiling run output after optimization. 1247 samples were taken
during this run. The program was run on a 2800000-letter sequence with default options.
6506 PQS were identified on this sequence.

25



Chapter 5

Design of pqsfinder web interface

pqsfinder web application is designed for easy use of the pqsfinder package for users who
do not have advanced technological knowledge. This chapter serves as an overview of its
proposed architecture, functionality and design.

A processed user request to analyze a set of sequences will be referred to as a ”job“. A
job can contain multiple search results if multiple sequences were inserted.

5.1 Architecture
pqsfinder application aims to be platform independent for its users. For that reason, a
client-server architecture has been chosen. This allows for all the computations to be run
on the server. The client only sends a request to the server, which carries out the request
and responds with results. This project is designed so that it will not require a database,
since it only needs to store simple files with search results. It will however require additional
use of a technology that will allow the server to use the pqsfinder package.

Client Application server plugin
Requests

Replies

Figure 5.1: Client-server architecture with plugin.

5.2 Server
The server will be implemented as a simple REST API. All methods of the API need to be
implemented to withstand incorrect input arguments, so that users can use them in their
own programs, not just through this web application. It will need to be able to perform
these actions for the client to work properly:

∙ Receive the input data and options, call the pqsfinder function and return the results.

∙ Return any previously computed results.

∙ Return simple data such as package version and default algorithm options.
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Taking into consideration the previous requirements, the API will need to implement
four main methods: return pqsfinder default options, return pqsfinder version, receive a job
ID and return specific job, process sequence and return a job ID.

On account of the need to store computed results, it was decided that they will be
stored as FASTA1 formatted files into a single directory. The proposed process of storing
the results is as follows:

1. For each new job request, a unique job ID is generated.

2. The results are formatted and saved into a file, with the file name consisting of the
generated job ID.

3. Server returns the job ID to the client.

4. Files containing the results can be requested by client using the job ID.

5.3 Web application
The web application has two main functions. First, allow the user to insert a sequence and
set search options. Second, display the results in a reasonable and easily understandable
way. Some aspects of the design are inspired by existing tools described in chapter 3.

Before designing any other components, an application logo was designed. The logo
can be seen in Figure 5.2. Apart from the application name, it contains an image of the
most commonly known G4 structure. All presented design mockups were created using the
Moqups2 web application.

Figure 5.2: pqsfinder logo.

The common component for all pages is the navigation bar. This is the most important
design element on a page, since it gives the user a sense of orientation and the apps capa-
bilities. Users should not be confused with unexpected elements on common components,
so this navigation bar is designed to be very simple. As can be seen in Figure 5.3, the
navigation contains the application logo and name as is routine in all web applications.
Next, all available pages are listed with focus on the currently opened one. Last, a search
bar with placeholder ”Job id“ and a find button.

pqsfinder Analyze HelpExamples Contact Find 

Figure 5.3: Design of navigation bar.
1https://en.wikipedia.org/wiki/FASTA_format
2https://moqups.com/
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The application has three main functional components: a) Input of data, b) Table with
information about search results, c) Graph representing found G-quadruplexes (G4s).

Analyze

The main page of the application is called Analyze. The label was chosen based on the
fact that QGRS Mapper3, one of the most known existing tools uses the same label in the
same meaning, so most users are familiar with it. This page consist of two components –
sequence input form and search options.

GGGGATCCGGGATAGGATTCGGAGGCCCTGGGCCCTGGGCCCCGG Lorem ipsum dolor sit amet, 
consectetur adipiscing elit. Nulla quam 
velit, vulputate eu pharetra nec, mattis 

ac neque. Duis vulputate commodo 
lectus, ac blandit elit tincidunt id. Sed 
rhoncus, tortor sed eleifend tristique, 
tortor mauris molestie elit, et lacinia 
ipsum quam nec dui. Quisque nec 

mauris sit amet elit iaculis pretium sit 
amet quis magna. Aenean velit odio, 
elementum in tempus ut, vehicula eu 
diam. Pellentesque rhoncus aliquam 

f

Browse... No files selectedClear input Example data

1

2
3

Figure 5.4: Layout of the sequence input form. 1 – text area for nucleotide sequence; 2 –
buttons for input text manipulation; 3 – information about input restrictions.

User should be able to load data from his computer as well as to load some example
sequence to quickly test how the application works. Figure 5.4 represents intended layout of
the form for sequence input. Highlighted in blue are buttons for easy input manipulation.
The paragraph highlighted in red should contain some brief information about pqsfinder
along with listed restrictions for the input data.

Options are displayed in a separate component. Showing all possible search options
could seem confusing for inexperienced users, so only four most commonly used were chosen
to be shown implicitly – max length, min score, strand and max defects. The options
component contains a button that reveals all the other possible options along with a button
for setting the values to default ones.

Max length 50 Min score 17 Strand  "+"  "-"

Advanced optionsDefault values

Min score 17

Figure 5.5: Proposed design of the options component.

3http://bioinformatics.ramapo.edu/QGRS/analyze.php
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Results

The most important part of pqsfinder is the page for presenting computed data. First thing
the user should see is the job ID, so that he can access the results later. The user should
also have a way to export either all results in a job into one file or each result individually.
Possible export data formats are gff4 and csv5.

The table with results needs to contain all important G4 data – start, end, score, strand,
number of tetrads, number of bulges, number of mismatches and the found sequence itself.
The table needs to be sortable, with reasonable pagination.

While a table is the most used format to present this type of data, it was decided that
pqsfinder should also contain a graph visually depicting individual positions of the potential
quadruplex forming sequences (PQS) in the sequence.
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Figure 5.6: Mockup of the graph representing found PQS. Each rectangle represents indi-
vidual PQS.

As can be seen in Figure 5.6, individual PQS color is dependant on the PQS score to
better highlight the highest scoring PQS. The y-axis represents the score, while the x-axis
the position in the sequence. The graph should also be scalable so that the user can have
the option to focus on one part of the sequence. The user should have a chance to filter the
PQS shown in graph based on the strand on which they were found.

4https://www.ensembl.org/info/website/upload/gff3.html
5https://en.wikipedia.org/wiki/Comma-separated_values
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Chapter 6

Implementation of pqsfinder web
interface

This chapter will provide a detailed overview of the application development process,
used technologies and application structure. Greater focus is on the more challenging
implementation parts. The complete and functioning web application can be found at
https://pqsfinder.fi.muni.cz/.

6.1 Used technologies
Since the interface of the pqsfinder package is implemented in R, the REST API is also
written in R language, using the plumber [17] library. This makes it simple to utilize all
functions of pqsfinder and process information for the client. React1 library is used to
implement the web interface. A complex tool had to be chosen because an application as
complicated as this one would be very difficult to implement in pure HTML and JavaScript.
React was chosen for its declarative approach to programming user interfaces and its ability
to rerender separate components without affecting the whole page.

plumber

Plumber is an R package for converting existing R code into REST API using only special-
ized comments. The comments can be prefixed by #* or #´ to indicate they are specialized
comments, although the former is recommended due to potential conflict with roxygen. An
endpoint is generated by annotating a function with one of these HTTP methods: @get,
@post, @put, @delete, @head. A single endpoint can support multiple methods. Plumber
endpoints also support dynamic routes. The argument that will be dynamic is set between
< > brackets and received as a function parameter.

React

React [1] is an open-source JavaScript library for creating user interfaces. It takes declar-
ative views made out of encapsulated components. React detects the data change and
updates and renders only those components where changes have been made. This makes
the application more predictable and easier to debug.

1https://reactjs.org/
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Each component in React has its own state. Passing values to other components can
be only done through HTML properties. These passed values are immutable and can only
be changed using a callback function.

6.2 Server
Apache2 server was chosen for hosting the web application. The server is running on
the Stratus.FI3 cloud. The REST API is run by plumber commands on the server on
localhost:8000. The client communicates with the server by HTTP requests through port
443. The communication with the server is secured by HTTPS4 and a Let’s EncryptTM5

certificate. These requests are forwarded to the API which processes them and returns a
result to the server which in turn sends a response to the client. The whole implemented
architecture can be seen in Figure 6.1.

Client Apache server
results/

static .css
.html files

plumber.RHTTP:443
api:8000

Figure 6.1: Architecture of pqsfinder web interface.

Implemented API endpoints and their functionality:

∙ GET /formals – returns the current default values of the pqsfinder function arguments
using the formals() R function

∙ GET /version – returns currently used pqsfinder package version using the
packageVersion() R function

∙ GET /job/<id> – returns file from the results folder identified by dynamic parameter
id

∙ POST /analyze – accepts a list of sequences to be processed along with user defined
algorithm options. Validates all received variables and generates a job ID. The func-
tion then iterates through all received sequences and calls the pqsfinder() function
on each one using the received options. The results are then formatted and sequen-
tially appended to one file. The file is stored in the results folder and it’s name is set
to the job ID. After all sequences are processed, the endpoint returns the generated
job ID to the client.

2https://httpd.apache.org/
3https://www.fi.muni.cz/tech/unix/stratus.html.cs
4https://en.wikipedia.org/wiki/HTTPS
5https://letsencrypt.org/
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6.3 Web application
Flux was chosen for the state management of the application. It enforces unidirectional
data flow, shown in Figure 6.2, where the data flows in only one direction. Every time some
data needs to be changed, the flow starts at the beginning.

Dispatcher Store View

Action

Action

Figure 6.2: Basic Flux data flow. See http://facebook.github.io/flux/docs/overview.html

Actions are all the possible changes that can be made to the state of the application.
Every time a data needs to be changed, an action is fired. There should be no other
way in which to alter the state. An action consist of type and payload. pqsfinder uses
three sets of actions that are respectively defined in individual files – SubjectActions.js,
ResultsActions.js and FindJobActions.js.

Dispatcher receives the action and passes it to all of the registered stores. Stores receive
all of the actions and decide on their own whether they will process them or not.

The stores handle the state of the entire application. There are many stores that each
control their own part of the application state. A store handles received action based
on its type and changes the state accordingly. Corresponding to actions, pqsfinder uses
three different stores – SubjectStore.js, ResultsStore.js and FindJobStore.js. After
handling the action, the store emits a change event that notifies the controller view.

The controller view asks the store for the new state, which it then passed to all the
views under it. The views are simple components that output data to the user. When they
receive user input, they just fire an action and the flow starts again.

Navigation

The page routing in this application is implemented using the react-router-dom6 library.
The router with available routes is defined in file App.js. All pages share a common instance
of object history for easy location manipulation. Individual pages can be accessed either
through the address bar or the application’s navigation bar.

The navigation bar provides an option to enter a job ID of results to display. After
clicking on the Get job button, contents of the input area are validated. If the validation
succeeds, an action is fired that instructs the results store to fetch a job with entered ID.
Component NavMenu is subscribed to change events from the results store and when it
accepts a change event with information that the results were fetched, the application is
rerouted to the Results component.

6https://www.npmjs.com/package/react-router-dom
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Figure 6.3: Main page of the web application.
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Analyze

The main page Analyze is implemented in the file Analyze.js and its subcomponents. The
final appearance of the page can be seen in Figure 6.3. Every change in the input text area
or to one of the options is reported through actions to the subject store with the new value.
After submitting the input to be analyzed, an action is fired that instructs the subject store
to analyze the data that it has stored at that moment. While the data is processed and
the results are send back from the server, the user sees a loader indicating that something
is happening, so that he does not think that the application has crashed. First thing the
algorithm does is to check the strand option to make sure that it contains at least one
value. If none value is specified, it defaults the option to the ’+’ strand.

The algorithm then moves on to parsing the text input. It starts o loop to parse
individual sequences that ends only after there is none data left to be processed. First, the
sequence name is identified. Due to FASTA format of the input, it is required that the
sequence name starts with character ’>’ and ends with ’\n’. Data from the position of ’\n’
plus one, until the next ’\n’ or ’>’, is recognized as the sequence itself. All found sequences
are gradually pushed into an array of objects, where each object represents the sequence
and contains two name-value pairs: sequence description and the sequence. Individual
sequences are then validated for allowed characters and maximal sequence length.

After all data is parsed and validated, a POST request to the server is send with options
and sequences as the request body. After receiving an answer with the generated job ID,
a change event is emitted to alert the Analyze component to reroute the application to
/results/<id> which mounts the Results component.

Results

After the Results component is mounted, it instructs the results store to request a job
based on the id in its location pathname. The final appearance of this page can be seen in
Figure 6.4. The received file with results is then processed and saved to a data structure.

The file is processed in a loop that ends when the last sequence with found PQS is iden-
tified. Since the information about the PQS is in a FASTA format, they are easily parsed.
The PQS description is identified by starting with character ’>’ and ending with ’\n’. The
information is then parsed and saved into a structure. The line after the description repre-
sents the PQS itself. All collected data is then saved into a structure containing key-value
pairs, where the key is the sequence description and the value is an object consisting of the
PQS and its features. After parsing the whole file, a change event is emitted to alert the
Results component that the results are ready to be displayed.

The component gets the results from the store and first renders a general header con-
taining the job ID and a button that the user can use to export results from all sequences.
Next, it renders an individual header, table and graph for each set of results. The header
contains information about the sequence length and a number of found quadruplexes. Ad-
ditionally, the user has an option to export results only from that individual sequence.
When the user clicks on the export button, an action is fired that instructs the results store
to prepare a file for export. The store takes the data it has currently stored and formats
them according to the user selected type. Then, using the file-saver7 library, it offers
the generated file for download to the client.

7https://www.npmjs.com/package/file-saver
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Figure 6.4: The page displaying results of the G4 identification.

The Results.js file also handles two important supplementary functionalities. First,
it handles filtering values for the Graph component based on the type of strand. Second,
it implements a function that colors the quadruplexes as can be seen in Figure 6.5. Light
grey color is used for loops, green for G-runs, orange for mismatches and red for bulges.
The positions of the G-runs are obtained from the server as additional information about
individual G4s. This function is quite intricate when it comes to coloring the defects. The
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function receives one run to process at a time. First, the G count of the run has to be
found. If the run is on the antisense strand, G count will be equal to the count of Cs. If
the G count along with the G-run length are both equal to number the of tetrads in the
quadruplex, it is a perfect run and is whole colored with green. If the number of tetrads is
greater than the G count by one, it is a mismatch. To determine which letter in the run
should be colored, the position of a non-G character is found by a regular expression and
that position is colored with orange, while all the other letters are green.

Figure 6.5: Colored quadruplex. Green represents G-runs, red bulges, orange mismatches
and grey the loops.

Identifying the bulges is a little more complicated. The main variable needed for finding
a whole bulge is the defect count, which is equal to the run length minus the number of
tetrads. The defect is identified by finding the positions of the first and last non-G characters
in the run. Everything between these positions is guaranteed to be a defect. This approach
is however not adequate in two special cases. The G run can be made of just Gs and
hence the bulge will also consist of Gs or there can be one or more Gs on either side of the
defect that were not identified as part of the bulge. These cases were handled by special
conditions.

If the run consist of just Gs, the middle position of the run is computed to be half of
the run length rounded down. This position is certainly part of a defect. If the defect count
is larger than one, the defect part of the sequence is extended evenly to both sides by half
of the defect count. Since the run length half is rounded down and the defect count half
is rounded up, in case of even defect count, it favours adding more Gs to the right of the
middle position.

If the identified defect contains characters other than G and the length of the identified
defect does not equal the defect count, the defect contains Gs on one or both of its edges
that were not identified. By subtracting the length of the identified defect from the defect
count, the number of undetected Gs is found. As much Gs as possible and needed are added
to the end of the defect. Then, if there are still some Gs left that to need to be attached,
they are added to the start of the defect. The final identified defect represents the whole
bulge and is colored red. Everything else is colored green.

Table

The table is created using external library react-bootstrap-table-next8 and is imple-
mented in the ResultsTable.js file. Detail of the table with active pagination can be
seen in Figure 6.6. The library is sufficient in fast and easy creation of a table but its
sorting and pagination functions were not satisfactory for the required Table component,
so they had to be implemented separately. Changing the data to be displayed is handled
by the Table component, however the pagination that can be seen at the bottom of Figure
6.6 is implemented separately in the Pagination.js file. The user can choose how many
quadruplexes should be displayed at once. The available values range from 10 to 50, by a
step of 10. As can be seen in Figure 6.6, the table displays all available information about

8https://www.npmjs.com/package/react-bootstrap-table-next
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Figure 6.6: Detail of the table with active pagination.

individual G4s. All of these columns are sortable, with the exception of the second column
End, because its values directly correspond to the order of the first Start column. Each row
can be expanded, displaying the colored G4 itself. This feature is handled by the external
library.

Graph

The Graph component is the most complex component in this application. The whole
graph and all its parts are rendered as svg9 elements. The majority of its functionality is
implemented using the D3.js10 library. The graph consists of two main parts, the focus
window and its context.

The y-axis of the graph represents a G4 score. Its lower-bound is selected by finding the
lowest score among found G4s and decreasing it by 5 for better visualization. The upper-
bound is found using the same principle, only the highest score is increased by 5. The
x-axis represents the nucleotide position in a sequence. Values of this axis vary depending
on which part of the sequence is in focus. Although the d3 library implements a function
to generate grid lines, its behaviour did not meet the visual requirements, so they had to
be generated separately. The algorithm first selects all elements with specified class name
that identifies the ticks on given axis. For each selected tick, a line element is appended to
the focus element that starts at x[0,0] and ends at y[0, height], where height represents the
height of the focus element, in case of the x-axis, or x[0, width] y[0,0] in case of the y-axis.
Each line is then positioned by adding a transform11 attribute with the values being equal
to the relevant tick transform values.

The rectangles representing individual G4s are created using the rect element. As many
rectangles as there are found G4s are generated and they are positioned based on their start
position and score. To scale these values to fit into the graph, d3 function scaleLinear()
is used. This function accepts a domain and a range values. It then takes the domain values

9https://www.w3schools.com/html/html5_svg.asp
10https://d3js.org/
11https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/transform
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and maps them to output between the range values. In case of the x-axis, the domain is
between the lowest nucleotide position to be displayed and the highest one. The range is
always set to values from 0 to the width of the graph. The y-axis domain is set to the lower
and upper bound values and its range is from the height of the graph to 0.

Before any G4s can be portrayed, it has to be decided which G4s to display based on the
x-axis domain. On default, the domain is set from 0 to the sequence length. This can be
changed by adjusting the context brush or zooming in on the graph, which will be explained
in later paragraphs. Which data to display is determined by comparing individual G4s start
and end positions to the domain values. If the starting position is greater than the upper-
bound and the end position is smaller than the lower-bound, the G4 is not displayed at all.
If the starting position is smaller than the lower-bound or the end position greater than the
upper-bound, these positions are temporarily altered to the values of the lower and upper
bound.

Figure 6.7: Detail of the graph component with visible tooltip and zoom.

The context is created similarly to the focus, only its y-axis range values are much smaller
and its x-axis values are set and can not be changed. The brush covering the context is
implemented using a d3 function brushX(), which handles the brush animation and fires
a brush end event when the brush is moved. The event carries a selection attribute that
is used to set the new x-axis domain. Once the new domain is set, the focus x-axis values
are recomputed using these new values and new grid lines are created based on the new
ticks that were generated. All rect elements are removed and the G4s to display are also
reevaluated using the new x-axis domain. Once they are identified, new rect elements are
created.

The whole focus area is covered by a rectangle that has a d3 function zoom() applied
to it. This function takes a scale and translate extent and fires a zoom event when the user
scrolls over it or zooms it by touch on touchscreens. The fired event carries a transform
attribute that is used to rescale the x-axis domain. This attribute is computed automatically
based on the extent of the zoom. Similarly to brush handling, once the new domain is set,
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the focus x-axis and grid lines are recreated. The data to be displayed is recomputed
and generated anew. Additionally, the brush element is instructed to position its handles
according to the new domain.

The tooltip that appears when a user hovers over a rectangle is actually only a simple
div element that is implemented in the Detail.js file. The element has an attribute
visible that is set to false whenever none of the rectangles is hovered over. When the
hover starts, an ID of that specific G4 is passed to the component and its visibility is set to
true. The element is then positioned by adjusting its left and top style attributes. The
attributes are set so that the tooltip is always displayed within the graph and adapt on every
mouse move over the rectangle. When the mouse leaves the rectangle, the tooltip visibility
is set back to false. While implementing the tooltip, a problem was encountered. If a scroll
event was performed while the mouse was hovering over a rectangle, the event was passed
directly to the root element and the whole page would scroll. This behaviour was eliminated
by using a library called react-scroll-locky12, that provides the possibility to disable
scroll on the page. To enforce this restriction, the component had to be encapsulated in a
ScrollLocky component that accepts an enabled attribute. This attribute is by default
set to false, but changes to true when a hover event over rectangle is detected.

Server error

Server unavailability is caught every time a request is send. When the axios function catches
an error, a change event is emitted that a server error occurred. This event is handled in
the App component and affects only the Analyze and Tracks pages since those are the only
pages that need a stable server connection. If there is no connection, the components on
the page are replaced entirely by an error message that can be seen in Figure 6.8.

Figure 6.8: An error message displayed when the server is unavailable.

12https://www.npmjs.com/package/react-scroll-locky
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Chapter 7

Conclusions

The aim of this thesis was to optimize a G-quadruplex (G4) identification tool pqsfinder
and implement a web interface that uses pqsfinder and displays the search results. Both of
these goals were accomplished and their outcomes have been released online.

For the algorithm to be optimized, it first had to be analyzed and profiled. The analysis
showed a weakness in the algorithm’s ability to process guanine rich sequences. In case
of extremely high guanine density, the algorithm would even halt. Further examination of
the algorithm provided sufficient information to suggest improvements. First optimization
is based on adding a condition between individual G-run hits. Maximal potential score of
current G4 is computed and then compared to two values. First value is the defined mini-
mum required score. Second value represents the maximal found score of all reported G4s
so far overlapping the starting position of the first run in the current potential quadruplex
forming sequence. If the potential score is lower than the minimum score or the maximal
found score, the search for other runs can be terminated. After optimization, the algorithm
is up to 1500 times faster on not full G sequences. The speed up gets higher with rising
G density in a sequence. To demonstrate the speed increase, first 10 million nucleotides
in chromosome 21 of the human genome were analyzed by the algorithm before and after
optimization. While the original algorithm took about 27 minutes to complete, the opti-
mized version finished in 8 seconds. Overall, the optimization provided significant increase
in speed and the algorithm’s ability to process long sequences with high G density. The
optimized algorithm was released on 2nd May 2019 as pqsfinder version 2.0.01.

The web interface was designed using a client-server architecture. To handle client side
requests, a simple REST API was designed and implemented in R language. The web appli-
cation is implemented as a single page application using JavaScript with the React2 library.
Design of individual components is partially inspired by existing G-quadruplex identifica-
tion tools. The most important part of the web application is the graph representing found
G4s. This component was implemented using the D3.js3 library. The functioning web
interface was deployed and can be found at https://pqsfinder.fi.muni.cz/.

1http://bioconductor.org/packages/release/bioc/html/pqsfinder.html
2https://reactjs.org/
3https://d3js.org/
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Appendix A

Contents of Attached CD

∙ text/ – containing LATEXsources and files used in this text

∙ pqsfinder/ – containing the optimized pqsfinder R package source codes

∙ pqsfinder-backend/ – containing the REST API and a script to start the server

∙ pqsfinder-frontend/ – containing the web application source codes along with an
npm script that compiles the application and starts the server
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