
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

GENERATINGANIMATIONSWITHNEURALNETWORKS
GENEROVÁNÍ ANIMACÍ NEURONOVÝMI SÍTĚMI

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR FILIP DRÁBER
AUTOR PRÁCE

SUPERVISOR Ing. MICHAL HRADIŠ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021



Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

 Bachelor's Thesis Specification

Student: Dráber Filip
Programme: Information Technology
Title: Generating Animations with Neural Networks
Category: Image Processing
Assignment:

1. Familiarize yourself with neural networks and skeletal animation.
2. Study existing methods for generating skeletal animations which use neural networks.
3. Propose your own method based on the existing approaches.
4. Prepare a data set suitable for experiments.
5. Implement the method and experiment on the data set.
6. Analyze and interpret the results and suggest possible future extensions and modifications of

the method.
7. Prepare a short video demonstrating the method and results.

Recommended literature:
He Zhang, Sebastian Starke, Taku Komura, and Jun Saito.: Mode-adaptive neural networks
for quadruped motion control. SIGGRAPH. 2018.
Sebastian Starke, He Zhang, Taku Komura, and Jun Saito.: Neural state machine for
character-scene interactions. SIGGRAPH Asia. 2019.
Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.: DeepMimic:
example-guided deep reinforcement learning of physics-based character skills. SIGGRAPH,
2018.
Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman.: Local motion phases for
learning multi-contact character movements. SIGGRAPH, 2020.

Requirements for the first semester:
Items 1 to 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Hradiš Michal, Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: May 5, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/20902/2020/xdrabe09 Page 1/1



Abstract
While motion capture serves as a mean for animators to circumvent some of the most ardu-
ous aspects of creating realistic animation, there is still a lot of work hiding in annotating
and structuring the data. I solve this problem by designing a neural network which can
be trained on a motion capture data file to reproduce human locomotion visualized in an
application which allows for the user to control the character’s direction. I also subject
various methods of training an autoregressive model to experiments and find which method
trades training times for performance the best. Additionally, I remark how the addition
of certain control features to frame-by-frame generations impacts the use of recurrent neural
networks for this task.

Abstrakt
Ačkoli je snímání pohybu už tak nástrojem, který má animátorům pomoci zjednodušit ty ne-
jsložitější aspekty tvorby realistických animací, spousta námahy je stále ukrytá v anotování
a strukturalizaci těchto dat. Tento problém řeším návrhem neuronové sítě, která může být
natrénována na datovém souboru nasnímaného pohybu tak, aby reprodukovala lidský po-
hyb, který je vizualizován v aplikaci, které umožňuje uživateli tento pohyb ovládat. Také
experimentuji s různými metodami trénování autoregresivního modelu, a na základě toho
určuji, která metoda nejlépe vyvažuje dobu trénování a výkon. Dalším postřehem je, jak
přidání ovládacích hodnot do vlastností generovaných snímků ovlivňuje použití rekurentních
neuronových sítí pro tento úkol.

Keywords
animation, motion capture, BVH, machine learning, neural networks, LSTM, discriminative
models, autoregressive models

Klíčová slova
animace, snímání pohybu, BVH, strojové učení, neuronové sítě, LSTM, diskriminativní
modely, autoregresivní modely

Reference
DRÁBER, Filip. Generating Animations with Neural Networks. Brno, 2021. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Michal Hradiš, Ph.D.



Rozšířený abstrakt
Snímání pohybu (motion capture, mocap) je proces převádění pohybu subjektu (lidského,

ale i např. zvířecího) do digitální formy. Jedno z jeho primárních využití lze najít v
animačním průmyslu, protože tvoření realistické animace postav je nesrovnatelně nákladné.
I tak ale není zdaleka vyhráno. Data vznikající touto metodou jsou často neanotovaná, a
jeden soubor může popisovat několik různých pohybů, a tak se část úsilí pouze přesouvá do
zpracovávání těchto dat. Strojové učení se nabízí jako jeden ze způsobů, jak tyto procesy
automatizovat.

Tento problém se dá rozdělit na dvě hlavní části – generování pohybu a jeho ovládání.
Generování pohybu není ve světě strojového učení zrovna obskurní problém. Převládá v něm
však generování řízené fyzikou, ve kterém je pohyb utvářen tak, aby modely respektovaly
zákonitosti fyziky jako hmotnosti, elasticitu, točivé momenty a další. Generování řízené
daty je ve srovnání zastoupené méně.

Neuronové sítě jako druh modelu strojového učení své uplatnění v tomto odvětví nacházejí.
Dokonce i přes podstatu řešeného problému jakožto generování takřka nekonečné série dat
lze hledat úspěšné příklady takových modelů, které lze popsat jako feed-forward – zpra-
cování vstupu ve formě vektoru příznaků a generace výstupu není nijak ovlivněno před-
chozími vektory, a ani nijak neovlivňuje budoucí generování. Většina těchto modelů se však
snaží nějakým způsobem charakterizovat časovou dimenzi generovaného pohybu, například
navázáním parametrů neuronové sítě na cyklickou funkci, jejímž argumentem je hodnota,
která popisuje, v jaké fázi kroku levé či pravé nohy se postava zrovna nachází.

Tato práce se však zaměřuje na rekurentní sítě, tedy takové, jejichž zpracování a výstup
ovlivní zpracování budoucích vstupů. V případě časové řady snímků tedy v modelu zůstává
kvantifikovaný dojem o tom, jaký pohyb aktuálně zpracovává. Místo klasické rekurence,
kdy se buď celý generovaná výstup sítě nebo jeho část vrací do modelu jako vstup, lze
však využít tzv. vrstvu LSTM – Long Short-Term Memory. Kromě zpracovávání svého
předchozího výstupu má totiž tato vrstva ještě skrytý stav reprezentovaný vektorem, jehož
hodnoty se síť učí opravovat na základě přicházejících vstupů. Některé hodnoty tohoto
skrytého stavu může síť měnit vyjímečně, a tak zůstanou v modelu, aniž by byly vytlačeny
nově příchozími vstupy.

Jeden ze způsobů ovládání pohybu je pomocí trajektorie. Ta je pro každý snímek
reprezentována minulými a budoucími pozicemi postavy v pohybu. Zavedením trajekto-
rie do vektoru příznaků daného snímku umožňuje před modelu charakteristiku pohybu,
a pokud bychom tuto trajektorii za běhu změnili např. na základě uživatelského vstupu,
model by měl generovat snímky odpovídající této změně pohybu. Protože ale požadovaná
trajektorie pravděpodobně nebude přesně odpovídat žádné trajektorii v originální datové
sadě, tak se trajektorie do vektoru příznaků generuje smícháním mezi trajektorií vygen-
erovanou modelem pro daný snímek a naší požadovanou trajektorií.

Dále je součástí práce také obecný popis datových formátů pro snímání pohybu, ale
také podrobný popis formátu BVH, jehož transformaci na sadu příznakových vektorů jed-
notlivých snímků jsem v rámci práce implementoval. Pro práci byla využita datová sada
SAUCE Project Motion Library, která obsahuje několik záznamů lidské chůze v různých
náladách nebo při různých aktiviách.

Následně popisuji ředzpracování dat a veškeré transformace, které je třeba provést
k vytvoření příznakových vektorů podle datové sady, pak i samotné trénování. Právě
u trénování popisuji, že při trénování modelu pouze na hodnotách z datové sady může
dojít k problému za běhu, kdy na vstup modelu naopak přichází pouze hodnoty, které
model sám vygeneroval, a může se v nich nacházet chyba, která je od původních hodnot



odlišuje natolik, že model vygeneruje snímek s ještě větši chybou. Navrhuji toto řešit už
při trénování buď postupným přidáváním šumu na vstup nebo navracením generovaného
snímku zpátky na vstup modelu místo použití příznakového vektoru z datové řady.

Kromě implementačních detailů procesu trénování, generování a vizualizace pohybu
také podrobuji jednotlivé modely (rozlišené právě trénovacími strategiemi popsanými výše)
experimentům, které umožňují se vyjádřit ke kvalitě jednotlivých modelů jinak, než od
oka. Měřením stráveného času a postupných ztrát zjišťuji, že poslední strategie může být
až o šedesát procent pomalejší, než ostatní dvě. Dalšími metrikami pak jsou: míra, do
jaké animovaným postavám kloužou po podlaze nohy, pak míra, do jaké otočení postavy
následuje očekávanou trajektorii, a nakonec srovnání spekter různých příznaků charakteri-
zovaných jako signálů.

Nakonec diskutuji tyto výsledky, jak by s modelem mohlo být naloženo dále, ale také
vypozorovaný fakt, pokud postava náhodou zamrzne v jedné póze, tak právě ovlivnění tra-
jektorie může mít za následek, že se postava z této pózy vytrhne a bude pokračovat v chůzi.
Toto pozorování považuju za indikaci, že přidáním trajektorie lze vynutit dlouhodobost
pohybu, se kterou mají jinak modely na podobných principech problém.



Generating Animations with Neural Networks

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Michal Hradiš, Ing., PhD. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Filip Dráber

May 17, 2021

Acknowledgements
I would like to thank Mr. Michal Hradiš, Ing., PhD., for his supervision and guidance
in this relatively complex field of machine learning. I would also like to thank Mr. Marek
Šolony, Ing., PhD., for helping to provide the motion capture data set utilized in this
Bachelor’s thesis.



Contents

1 Introduction 3

2 Motion Generation 4
2.1 Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Data-driven Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Motion Generation Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Character Control 9
3.1 Trajectory Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Character Control Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Motion Capture Data Sets 11
4.1 Other Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 The SAUCE Project Motion Library . . . . . . . . . . . . . . . . . . . . . . 12
4.3 The Biovision Hierarchical Format . . . . . . . . . . . . . . . . . . . . . . . 13

5 Trajectory-guided Locomotion Recurrent Neural Network 16
5.1 The Discriminative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Application implementation 23
6.1 BVH Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 The TGLRNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 Runtime Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Experiments And Discussion 31
7.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Motion Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Conclusion 37

Bibliography 38

A Downloading the Data Set 41

1



B Application Requirements 42

C Running the Main Script 43

D Video 44

2



Chapter 1

Introduction

In this thesis, I implement and present an application featuring a recurrent neural network
model which generates human character locomotion based on an unstructured motion cap-
ture file, visualize it, and enable the user to control the character’s movement. This solution
is motivated by the difficulty that still arises when supplementing motion capture for an-
imation to make the animating process easier. The issue stems from the fact that most
motion capture data is unstructured and needs complex pre-processing. I aim to streamline
this process for human locomotion by training a neural network model to transform a single
motion capture file into locomotion. The finished result parses a motion capture file in the
BVH format (also described in this thesis) and generates locomotion which reflects the
one described in the file. In terms of contributions, the experiments indicate how various
strategies for training autoregressive models impact the performance, and how the presence
of a trajectory as an added set of control features impacts the problem of these models
with long-term maintenance of periodic motion

First, the problem at hand is broken down into motion generation and motion control,
and various concepts utilized in this field are described before several existing designs which
try to solve these two problems are presented. Certain solutions far more complex than the
one proposed by this thesis are mentioned, should the reader be interested in how deep
learning can be mixed up and experimented with to find unconventional solutions.

In brief, the existing data sets for motion capture are discussed. While the data sets are
not primarily meant for experimentation in machine learning and need some processing and
interpretation, they include some of those most often reached for when one tries to solve
the problem at hand. Then, the data set utilized in this thesis is described in greater depth,
and the choice of this data set is then defended.

I then present a new model, the Trajectory-guided Locomotion Recurrent Neural Net-
work, cross-implementing elements from other solutions. The preprocessing of the data is
described in detail, and so is the training process as well as the model’s runtime, the use
of which is paid attention to. Details of the application involving the model are explored,
and the additional implementation of the supporting visual application is described.

Finally, the model is subjected to experimentation with the explicit goal of looking
for training process differences between various training methods, as well as differences
in runtime results, visible to the naked eye or not. The results and the future of both the
model alone and the application as a whole are all discussed.

3



Chapter 2

Motion Generation

Making a character move does, in fact, make for a relatively common machine learning
problem. Two forms of generation are prevalent. First, there is physics-based generation,
which assigns physicality to the characters and generates motion that respects the charac-
ter’s weight, elasticity, torques and such, as mentioned by Zhang, Starke et al. [22]. Then,
however there is the data-driven approach, which instead processes data descripting motion,
definitely including motion capture data.

2.1 Motion Capture
Motion capture (mocap) is a popular method utilized to create rigs for animators which
have been under more and more pressure to produce realistic animations, which are oth-
erwise rather difficult to put together using traditional animation methods. This method
involves transforming natural human motion and locomotion via digital capture and thus
transforming it into a format that can be utilized by animators afterwards.

Nowadays, there are numerous methods to perform motion capture [14]. The most
common dividing line is whether they utilize markers, as in, small objects or devices attached
directly to the actor, or not. Markers can come in various forms, from passive or active
optical points that a camera can detect, to magnetic, acoustic or mechanical devices that
allow to locate the actor’s individual joints in the three-dimensional space.

Furthermore, methods can be distinguished by whether they calculate the relevant data
immediately during capture, or they infer it from, for example, camera recordings. Either
way, the animators who make use of mocap data have not won just yet. The nature
of motion capture recording sessions generally result in long, unstructured data files which
contain all sorts of different motions. While a key may be provided which describes the
series of actions taken by the actor, it can still be a lengthy task to manually annotate
segments of the data, and may still pose an issue for the animators of certain motions not
blending together too well. One solution offered for these problems is to utilize machine
learning and train models on these data files which would select and blend the necessary
motions as the animation requires.

General Format

While there are several formats that can describe the data generated during motion capture,
similarities can be drawn between how they approach the issue. Generally, each defines their
described character as a skeleton, comprising of bones (or joints), which are (generally)

4



structured hierarchically. Each of these objects has a given amount of channels, or degrees
of freedom. These parameters represent values such as position, rotation, or scale. Finally,
each motion is broken down into frames, their amount dictated by the motion duration and
the rate at which the frames are generated. Each frame carries with itself the values of
each bone’s channels, and it is these values which, when played back, generate the desired
motion [13].

2.2 Data-driven Generation
Recreation of character locomotion from motion capture data is not represented among com-
mon machine learning problems as much as certain other tasks, for example facial recog-
nition, text prediction or even pose prediction from video data. This problem consists
of two main aspects – understanding and parsing the data created during motion capture,
and constructing a machine learning model that would learn to predict and generate new
data based on the existing ones. In addition to these two problems and their individual
challenges, another one presents itself in the form of mapping the user inputs to charac-
ter control, resulting in a free-running animation of a character whose locomotion should
respond to the user’s wishes.

Recurrent Neural Networks

Since we are effectively processing and predicting a series of frames, it is in due course
to utilize a machine learning model that can utilize information regarding the processed
vectors. While there are still existing solutions detailed in Chapter 2.3 which avoid utilizing
recurrent elements to a degree of success, this thesis and the implemented application make
use of layers which makes use of storing and processing values generated “on the side” when
processing the previous feature vector.

Long Short-Term Memory Layers

To avoid certain issues that arise when implementing classic recurrent neural network mod-
els, a new type of a recurrent cell has been developed – the Long Short-Term Memory cell,
or LSTM cell [4]. While considerably more complex (see Figure 2.1), it surpasses its coun-
terparts for tasks which involve the learning of long-term dynamics and dependencies. For
example, when inferring from text and predicting how it continues, an element in the cell
state can track the gender of the most recent subject to select proper pronouns even after
considerable delays [15]. It maintains its own hidden cell state, parts of which are then, via
gating functions, erased or replaced by new values, and then exported onto the output.

The mathematical representation of the LSTM cells used in this thesis is described
in the PyTorch documentation [18] approximately as follows:

i𝑡 = 𝜎(W𝑖𝑖x𝑡 + b𝑖𝑖 + Wℎ𝑖h𝑡−1 + bℎ𝑖) (2.1)
f𝑡 = 𝜎(W𝑖𝑓x𝑡 + b𝑖𝑓 + Wℎ𝑓h𝑡−1 + bℎ𝑓 ) (2.2)
g𝑡 = 𝜑(W𝑖𝑔x𝑡 + b𝑖𝑔 + Wℎ𝑔h𝑡−1 + bℎ𝑔) (2.3)
o𝑡 = 𝜎(W𝑖𝑜x𝑡 + b𝑖𝑜 + Wℎ𝑜h𝑡−1 + bℎ𝑜) (2.4)
c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ g𝑡 (2.5)
h𝑡 = o𝑡 ⊙ 𝜑(c𝑡) (2.6)

5



CELL

LSTM Layer

x

h h

y

σ

σ

σ

φ φ

forget

candidate

input

output

input vector

previous output

output vector

Figure 2.1: A diagram of an LSTM layer, visualizing how the current and previous input
affect the cell state and generate the output out of updated cell state. Notice the sigmoid
functions 𝜎 preceding element-wise products, serving as a form of “selection” of individual
values from the vector that is the other factor.

The input x at a given step 𝑡 is, along with the cell’s previous output h𝑡−1 passed
through four nonlinear gates with their specific weights W and biases b, as well as these
two functions: The sigmoid, 𝜎(𝑥) = 1

1+𝑒−𝑥 , and the hyperbolic tangent 𝜑. Each of these
four vectors then comes into play when updating the cell state c𝑡 and producing an output.
First, the forget vector f𝑡, consisting of values from the interval [0, 1] determines to what
degree are the elements of the old cell state c𝑡−1 retained using the element-wise product.
Candidate values g𝑡 to be added to the cell state are then modulated in a similar fashion
using the input gate vector i𝑡 and added to the cell state. Finally, the output gate vector
o𝑡 dictates which values from the new cell state c𝑡 are selected and passed onto the output
of the LSTM cell (as well as its own input at step 𝑡 + 1).

Teacher Forcing

One possible and fairly straightforward strategy for training recurrent neural networks is
to repeatedly provide an input x𝑖), which is taken from the ground truth for the network
to then find the likeliest output y𝑖 based on the input and the recurrent units’ memory state.
The next input from the sequence of inputs, x𝑖+1, is, again, taken from the ground truth.
During runtime, however, the ground truth is no longer available, and thus the previous
output, y𝑖 is provided. Small discrepancies between the ground truth and the network’s
output, especially when introduced early into the sequence, can quickly push the outputs
out of the state space the network has been trained on. This approach is known as teacher
forcing [21] [1]. One proposed method to make the model less vulnerable to small deviations
is to begin applying noise to the input vectors. Ideally, the intensity of the noise should be
dictated by the variances of the individual features. As a result, the model effectively learns
to fix corrupted data, which should enable it to mitigate minor discrepancies it produces
on its output. This method is utilized by Fragkiadaki et al. in their proposed recurrent
neural network model for motion generation [5].

6



Another method is to provide the network’s own outputs as the following inputs. Bengio
et al. [1] first suggest to, throughout training, randomly determine whether the next input
should be taken from the ground truth or the neural network’s previous output. They
then propose, however, to skew the probability of performing this swap. Specifically, it
should not happen too often early into the training, as the outputs will still be relatively
random, but should rather become more common towards the end of the training, when
the network’s behavior much more closely resembles its expected behavior during runtime.

Lamb, Goyal et al. [7] instead propose to utilize the generative adversarial network
framework and train a second model which forces the recurrent model to act the same
whether it is receiving ground truth inputs, or sampling from its own outputs.

2.3 Motion Generation Solutions
Despite not being a renowned machine learning problem, models which generate animations
trained on motion capture data have been explored and succsefully implemented by various
teams. This section describes a selection of attempts at recreating animations and the
various techniques they invented and employed to patch various issues which arise in this
problem.

Non-recurrent Neural Network Models

PFNN To avoid the common pitfall of the animated character slipping into a neutral
pose after an arbitrary amount of time has passed, neural network models have been ex-
panded with various mechanisms. Holden et al. [9], inspired by various works that attempt
to map certain parameters directly onto the latent space of the model [11], or outright
directly parametrize the network’s weight [12], present the Phase-Functioned Neural Net-
work (PFNN). The model’s core is relatively simple, consisting only of a neural network
of three layers of nonlinear activation functions. However, instead of training the network
by altering the parameters of these layers, the weights are generated by what the article
calls a “phase function” = a cyclic function controlled by a single variable, the phase 𝑝.
Training the model instead involves finding the parameters for this function that would
result in the best rectified linear unit layer weights.

The phase 𝑝 is a parameter within the interval ⟨0; 2𝜋) , and, during pre-processing,
is automatically assigned to each frame. Key values such as 0 and 𝜋 are automatically
assigned to foot contacts, and the rest is interpolated. The phase is a part of the feature
vector, and the network is trained to predict the phase of the next frame.

As a result, the animated character is constantly driven by the cyclic function, or, rather,
the changes in phase, preventing slipping into a frozen frame for a prolonged amount of time.

MANN Zhang, Starke et al. [22] go a step beyond human locomotion and instead opt
to try and predict the locomotion of quadrupeds. This is made considerably more complex
by the sheer amount of gaits that they perform at various paces (rendering the phase func-
tion approach proposed by Holden et al. [9] moot). On top of that, the fact that quadruped
motion cannot be as easily directed during motion capture as that of humans results in more
chaotic, unstructured mocap data. The MANN – Mode-Adaptive Neural Network – pro-
duces fluid motion responsive to user control. Its weights are dynamically altered by a
gating network, which in turn is controlled by “expert weights” inferred from motion fea-
tures such as the gait.

7



Local Motion Phases Starke et al. [17] tackle the issue of complex motion which
involves multiple asynchronous motions of various body parts. Such motion cannot be
easily described by a single phase variable, and thus a model is proposed which assigns a
local phase to each bone based on the bone’s contacts with the environment. This approach
is demonstrated on the irregular, complex and contact heavy action of playing basketball.

A Recurrent Neural Network Model

Due to the nature of animation being a linear sequence, it is only natural that recurrent
neural networks ended up being utilized for the task of recreating animation of human
locomotion.

ERD Fragkiadaki et al. [5] propose the ERD – Encoder-Recurrent-Decoder model. The
model utilizes two LSTM layers, but expands upon other existing LSTM-based models
by “wrapping” these layers between non-linear encoder layers and non-linear decoder layers.
This model is then both utilized to predict human locomotion from motion capture data as
well as from video capture. It appears to be the first attempt to utilize a recurrent neural
network model on human motion, because previous recurrent neural network models have
been utilized as language models for processes such as handwriting generation and image
captioning.

It is mentioned by Zhang, Starke et al. in their Mode-Adaptive Neural Network paper
[22] that recurrent models such as the ERD exist, but tend to slip into a frozen pose (citing
the solution by Fragkiadaki et al. as an example). Utilizing a form of character control
in this thesis’s solution is also an attempt at combatting this phenomenon.

8



Chapter 3

Character Control

This chapter first offers an overview of different existing solutions for individual smaller as-
pects of the overarching problem that is controlling the character. The largest gap to bridge
is the fact that the unstructured motion capture data set does not come with predefined
user inputs that the model could refer to, leaving it with no way of determining if any
motion in the data set corresponds to a given user input.

3.1 Trajectory Blending
One method utilized in the solutions listed in this chapter is to create a trajectory of the
animated character’s motion. In its most basic form, a trajectory for a given frame consists
of the character’s positions in the surrounding frames. In these solutions as well as the one
implemented in this thesis, the relevant information is only collected from a subsampled
set of the surrounding frames.

Characterizing the locomotion using a trajectory additionally enables a form of user
control in neural network models. However, simply generating a trajectory and forcing it
into the feature vector on the model’s input may present the model with values it has not
encountered when training on the ground truth, and has indeed proven ineffective during
the implementation of the model for this thesis.

One method to combat this, presented by Holden et al. [9] (mentioned below) and uti-
lized in this solution is to blend the model’s predicted future trajectory with the trajectory
expected based on user control. More specifically, a given point t𝑏 ∈ R3 of the result tra-
jectory is generated by mixing the corresponding points of the predicted trajectory t𝑝 ∈ R3

and the user control trajectory t𝑐 ∈ R3, weighing closer towards the point from the user
control trajectory the further into the future the points are.

t𝑛𝑏 = (1 − 𝑡𝜏 )t𝑛𝑝 + 𝑡𝜏t𝑛𝑐 (3.1)

The value 𝑡 on the interval (0; 1) corresponds to how far into the future the trajectory’s
point is, and the value 𝜏 is a parameter that affects the bias of the blended trajectory
towards the originally predicted one.

3.2 Character Control Solutions
The following works, on top of finding ways of generating locomotion, also explore the
various methods of solving this issue. The solutions either detail the evolution of the

9



Figure 3.1: A representation of the trajectory – sixteen character positions from the past
and in the future – in the application implemented in this thesis (edited).

approach to this problem, offer technologies and elements that have been adopted by the
solution proposed in this thesis, or involve components too complex to be implemented
within the scope of this thesis.

Motion Matching While this may not be work in the field of neural networks (or machine
learning in general), Simon Clavet’s Motion Matching presentation at the Game Developers
Conference 2016 [3] showcases an approach to select proper motion capture data for an-
imations and to blend animations together to create realistic movement guided by user
control. Specifically, at a given point, the best animation to select for motion is found by a
brute-force greedy search across all the animation clips and finding one with the lowest cost
– the sum of various errors and mismatches that a given animation would result in. Its
trajectory and cost-based approach has laid the groundwork for various future endeavors
in motion generation.

PFNN In the attempt of Holden et al. [9] to generate character motion using a phase
variable, a method is explored to match user input to motion via blending the trajectory
predicted by the neural network with the desired trajectory. In this case, the trajectory is a
complex combination of values, ranging from the displacement of the character’s root to its
individual velocities and directions at a given point in time in relation to the current frame.
Moreover, since this model also deals in generating motion across terrain, the trajectory
tracks the terrain height at the root positions as well as at points offset to the side of the
root positions, resulting in the feature vector containing information about the character’s
surroundings.

Local Motion Phases Starke et. al [17] follow up on the groundwork provided in Motion
Matching [3], but instead propose a generative control model, trained adversarially to create
a low-dimensional latent space of user control. More importantly, however, it circumvents
part of the issue by already matchingly appointing the user control inputs with the data set.

10



Chapter 4

Motion Capture Data Sets

The existing data sets for motion generation generally come from general motion capture
data sets. Several are available on-line, and this chapter describes the two most common sets
as well as the one utilized in the development and implementation of the model presented
by this thesis. Specifically Ubisoft Montréal’s data set can serve as a good basis for more
mocap-driven research, if the supporting technologies are, from the get go, implemented
to parse it properly.

4.1 Other Data Sets
Out of the various motion capture libraries, these two are either new or often utilized in
similar problems, be it motion reconstruction, or computer vision.

LaFAN 1

This relatively new data set has been shot in 2017, but has been released in 2020 along
with the SIGGRAPH 2020 paper Robust Motion In-betweening [8]. It has been created
by the Ubisoft Montréal’s La Forge studio. It contains 496,672 motion frames, which, at
the rate of 30 FPS, amount to about 4.6 hours of content. For the purposes of this thesis,
however, only certain sequences could be used. While the files are in the BVH format,
the accompanying parsing algorithms transform the rotation values into quaternions as
opposed to the Euler angles utilized in this thesis. Moreover, as mentioned in Chapter 4.3,
the axes are different from the other motion capture data set, and would not be parsed by
the implemented BVH data file parser.

Human 3.6 Million

This data set, commonly abbreviated as H3.6M [10], is considered to be one of the largest
human motion capture data sets ever created, with the statistic of containing over 3.6
million individual poses (hence the name) often cited. Its content often involves standing
motion as opposed to locomotion (smoking, talking on the phone and such), but also include
various walking activities, such as walking the dog. While the walking animations could
prove useful to be explored, the dataset could not be obtained for the purpose of this thesis.

11



Figure 4.1: The path taken by the actors in each motion capture file of the SAUCE Project
motion library, exhibiting various turning radiuses. Taken from the data set itself.

4.2 The SAUCE Project Motion Library
SAUCE, standing for Smart Assets for re-Use in Creative Environments [16], was a col-
laboration between various European academic institutions, including the Brno University
of Technology, as well as industry entities such as the Disney Research Studios, based
in Switzerland. The goal was to create re-usable assets and invent tools for digital pro-
duction. Amongst these is the PHS Motion Library, a collection of over an hour’s worth
of data containing animations of a human character walking with various emotions or ac-
tions, including running, pompous sway, tiptoeing or even texting.

The data set contains 38 different motion capture recordings, as well as accompanying
videos. Each motion follows the same path, although due to different exhibited paces, the
total duration of each motion varies. Each recording session is provided in multiple formats
– there is the BVH format utilized in this thesis and described below, recorded at 30 frames
per second, but also files in FBX, another motion capture format, with recordings available
at rates of both 30 and 120 frames per second. Marker data for the FBX format is also
available. Finally, besides files that describe the dataset, a diagram (Figure 4.1) is also
provided that details the paths taken by the actor during each session. This one is utilized
in this thesis to check the functionality of BVH parsing.

The skeleton that the motion capture data describes consists of 21 joints in total, and
each joint boasts six degrees of freedom, including the rotation denoted in Euler angles.
While the units for the offset are not defined, it can be estimated that the individual
offsets are provided in centimeters. The Euler angles are listed in degrees as opposed
to radians. From the data set, the file utilized for parsing and training was a simple
recording of a neutral walk, containing 2,106 frames, or a little over a minute in terms
of duration. Ultimately, the size of this data set may have negatively affected the results
of this model’s implementation. However, merging multiple files into a greater data set
to train on could conversely produce even worse results, considering the fact that the files
contain various gaits and walks, and this disctinction is not accounted for in the feature
vector that describes each frame. The model could end up blending these various emotions.

12



4.3 The Biovision Hierarchical Format
Introduced by the company Biovision as an extension of their existing formats to describe
motion capture data, the Biovision Hierarchical format is a commonly used file format uti-
lized to define the joint structure of the animated character as well as the motion itself [13].
It consists of two parts: a header section that defines the skeleton as a tree structure, start-
ing with the keyword HIERARCHY. The keyword ROOT defines the joint which forms the root
of the tree, and the other joints are defined recursively. Each joint is defined by an OFFSET
keyword, which dictates its spatial displacement from its parent joint in a neutral pose
(generally zero for the actual root joint), and a CHANNELS keyword, which is followed by the
definition of the individual degrees of freedom that a given joint has. Finally, completing
the recursive nature, the definition of a joint can contain the definitions of other joints, its
children in the tree structure, headed by the keyword JOINT. Furthermore, an End Site
keyword can be used to signify the end of a joint series, which only contains the definition
of its offset. For an example of the BVH file structure, see Figure 4.2.

The second part of the file describes the motion itself via the values of each channel
defined in the HIERARCHY section. It is headed by the MOTION keyword, followed by a
line describing the total amount of frames described by the file, and a line containing the
duration of a single frame in seconds. From then onwards, each line consists of a series
of values. These values represent the channel values of each joint, with the joints being
ordered accordingly to a Preorder traversal of the hierarchical structure (or, alternatively,
in the order in which they are defined in the HIERARCHY section). For example, in the data
set I have chosen to train the model on, each joint has six degrees of freedom. Thus, the
first six values correspond to the six degrees of freedom of the root joint, the next six values
correspond to the six degrees of freedom of the first child of the root (the spine joint in this
case), the next six of the first child joint of the spine and so on. An example of what the
MOTION part can look like is provided in Figure 4.3.

Reconstructing the Motion

In order to recover the individual positions and motions of each joint, the data needs to be
processed. The process in general is detailed in an article by Meredith and Maddock at the
University of Sheffield [13]. For each joint at any given frame, its local transformation
𝑀 has to be calculated from its rotation and offset. Since scaling is not featured in this
format, the order of multiplications 𝑀 = 𝑇𝑅𝑆 is simplified to 𝑀 = 𝑇𝑅. The compound
rotation matrix is calculated from three individual rotation matrices for each axis, their
order ideally defined in the order of the channels in the HIERARCHY section. As with the
example provided in Figure 4.2, the compound rotation matrix would thus be calculated as

R = R𝑧R𝑥R𝑦. (4.1)

Once the local transformation for a given joint as well as for every preceding joint in the
hierarchy, the joint’s global transformation can be computed as their product:

M𝑛
𝐺 = M0

𝐿M
1
𝐿 . . .M𝑛−1

𝐿 M𝑛
𝐿, (4.2)

Where the index 𝑛 = 0 refers to the root and increments with each joint towards the
desired one. Alternatively, the global transformations can be stored for each joint and
stand in for the sequence of preceding local transformations when calculating the global
transformation of its children. It should be further noted that while animation will most

13



HIERARCHY
ROOT Hips
{

OFFSET 0 0 0
CHANNELS 6 Xpos Ypos Zpos Zrot Xrot Yrot
JOINT Right_Leg
{

OFFSET -10 0 0
CHANNELS 3 Zrot Xrot Yrot
End Site
{

OFFSET 0 -90 0
}

}
JOINT Left_Leg
{

OFFSET 10 0 0
CHANNELS 3 Zrot Xrot Yrot
End Site
{

OFFSET 0 -90 0
}

}
}

Figure 4.2: An example of a five-joint skeleton defined by a BVH file with arbitrary values.

likely require the global positions of each joint, it is sometimes more useful to find a given
joint’s displacement and rotation in relation to the root (and its facing direction) instead
of globally. Specifically when constructing feature vectors for a machine learning model, it
is in due course to avoid global positions, as discussed in Chapter 5.1.

Irregularities in the Format

Despite boasting a defined file structure, the contents of a given BVH file do not necessarily
follow any standard. This includes, but is not limited to, the amount of channels for a
given joint, the units in which the values are provided, or the orientations of the axes.
A popular guide for BVH files [2] implies in its order of matrix multiplications that the
vertical axis is the Y axis, or at least that the order of rotation channels of each joint
is dictated by which axis is the vertical one. Both apply for the SAUCE Project data
set used in this thesis, but in Ubisoft Montréal’s LaFAN1 data set, the axes are swapped
around, immediately breaking mechanisms which assume the Y axis to be the vertical one.
Likewise, both data sets utilize different units for angles. Finally, the SAUCE Project
BVH files feature six channels for every single joint, not only for the root. The guide’s
author claims, however, that “[they] have never encountered a BVH file that did not have
6 channels for the root object and 3 channels for every other object in the hierarchy”.
Moreover, due to the lack of any comments within the file itself, it is not well-defined what

14



MOTION
Frames: 3
Frame Time: 0.033333
0 90 0 0.5 0 0 0.01 0 -1.5707 0.01 0 1.5707 0 0 0 0 0 0
0 91 1 0.5 0 0 0.01 0 -1.6707 0.01 0 1.4707 0 0 0 0 0 0
0 92 2 0.5 0 0 0.01 0 -1.7707 0.01 0 1.3707 0 0 0 0 0 0

Figure 4.3: An example motion description of the skeleton defined in Figure 4.2 with
arbitrary values.

the three additional channels of each joint represent – “position” can refer to their absolute
positions within the space, their relative positions to the root joint, their relative positions
to their parent joint and so on. Finally, if one uses an on-line application that plays BVH
files back as animations1, they may find that the generated model is far larger than the
example clips provided within the application. Such is the case with the SAUCE Project
motion capture data, further showcasing the lack of unit standardization across this file
format.

1An example BVH player: http://lo-th.github.io/olympe/BVH_player.html

15

http://lo-th.github.io/olympe/BVH_player.html


Chapter 5

Trajectory-guided Locomotion
Recurrent Neural Network

As a solution to the problem of generating character animation and locomotion, I have
designed and implemented TGLRNN – a Trajectory-guided Locomotion Recurrent Neural
Network. This model, trained on a single BVH file, produces motion which can be controlled
during runtime in a similar fashion to how one would control a video game character. The
model is implemented within an application which also features algorithms to parse the
respective BVH file, as well as let the model run freely, visualized in a window, and let the
user perform inputs that control the character’s motion.

5.1 The Discriminative Model
The TGLRNN is a recurrent neural network model consisting of three modules, following
the Encoder-Recurrent-Decoder structure presented by Fragkiadaki et al. [5]. First, there
is the Encoder module, which transforms the input feature vector into the frame’s represen-
tation in the latent space. It consists of one non-linear activation function layer. For this
implementation, I have selected the element-wise Rectified Linear Unit activation function,
defined as

ReLU(𝑥) = max(0, 𝑥). (5.1)

The non-linear activation function is inserted between two linear layers, and the Encoder
module can thus be defined as

ℰ(x;P) = W1 ReLU(W0 x + b0) + b1, (5.2)

where the parameters P of the module can be described as P = {W0 ∈ Rℎ0×𝑖𝑛,W1 ∈
Rℎ1×ℎ0 ,b0 ∈ Rℎ0 ,b1 ∈ Rℎ1} for an input x ∈ R𝑖𝑛, feature vector of size 𝑖𝑛, encoder hidden
layer of size ℎ0 and latent space of size ℎ1.

Then, there is the Recurrent module. This module consists of two LSTM layers, de-
scribed in Figure 2.2. Then, the Recurrent module can be described as

ℛ(x,h0,h1, c0, c1;P) = LSTM(LSTM(x,h0, c0),h1, c1), (5.3)

with the latent-space input x ∈ Rℎ1 and the hidden states h0 ∈ Rℎ1 , h1 ∈ Rℎ1 and cell
states c0 ∈ Rℎ1 , c1 ∈ Rℎ1 as the arguments, and the parameters P described in 2.2, all
satisfying the constant latent space vector length of ℎ1.

16



Encoder Recurrent Decoder

input

ReLU

LSTM LSTM

ReLU ReLU

output

174 174

256 256 256

512 512

TGLRNN

Figure 5.1: A schematic of the TGLRNN’s modules and their individual layers. The vector
size below each layer indicates its input size, with 174 for the input and output vectors
being determined by the character’s skeleton as well as the trajectory parameters.

Finally, the Decoder module consists of two non-linear activation function layers and
outputs a feature vector that represents the next predicted frame:

𝒟(x;P) = W2 ReLU(W1 ReLU(W0 x + b0) + b1) + b2 (5.4)

The model is parametrized by P = {W0 ∈ Rℎ0×ℎ1 ,W1 ∈ Rℎ0×ℎ0 ,W2 ∈ R𝑜𝑢𝑡×ℎ0 ,b0 ∈
Rℎ0 ,b1 ∈ Rℎ0 ,b2 ∈ R𝑜𝑢𝑡} with the transformed latent space input x ∈ Rℎ1 , latent space
size of ℎ1, decoder hidden layer size of ℎ0 and the predicted vector of size 𝑜𝑢𝑡. In this
model, I have chosen the Decoder’s hidden layer size to be the same as the Encoder’s, and
the output vector to be the same size (and composition) as its input: 𝑜𝑢𝑡 = 𝑖𝑛.

Thus, the entire neural network model as visualized in Figure 5.1 can be described using
the following function:

TGLRNN(x, z;P) = 𝒟(ℛ(ℰ(x), z)), (5.5)
where z represents the hidden and cell states of the two recurrent layers: h0, h1, c0 and c1
and P, in turn, the parameters of the individual modules.

The sizes of the individual layers are as follows:

• 174 for the size of the feature vector (based on the skeleton defined in the BVH file)

• 256 for the hidden sizes within the Encoder and Decoder modules

• 512 for the recurrent layers

The Feature Vector

The feature vector which describes a single frame of motion consists of several values.
First, there are the positions of each individual non-root joint relative to the root’s position

17



and transformation. These values are utilized instead of, for example, the joints’ global
positions, as then, two sequences of the character walking would, while describing the
same motion, be described by wildly different feature vectors. Especially during runtime,
once there are no boundaries for the free-running character, leaving the coordinates of the
boundaries of the motion capture set would result in values that have not been provided
to the network during training.

Similar to positions, the velocities of each joint (including the root) are utilized, again
in relation to the root’s facing direction.

The input feature vector is the same as the output vector. It can be parametrized
as x𝑖 = {j𝑅,v𝑅,∆𝛼0, 𝛽0, 𝛾0,v0

𝑅, t}, where j𝑅 ∈ R3(𝑗−1) are the individual non-root joint
positions in relation to the root’s position and rotation, v𝑅 ∈ R3(𝑗−1) are the individual non-
root joint velocities in relation to the root’s position and rotation, ∆𝛼0 ∈ R is the difference
in the root’s rotation around the vertical axis, 𝛽0 ∈ R and 𝛾0 ∈ R are the root’s rotation
angles around the two non-vertical axes, v0

𝑅 ∈ R3 is the velocity of the root in relation to its
rotation and t ∈ R3𝑇 are the positions of trajectory points relative to the root’s position
and rotation. Spaces are described using 𝑛, which represents the number of joints in the
animated charcater, and 𝑇 , which represents the number of trajectory points.

The root’s local rotational transformation, however, is broken down into specific angles.
Specifically, while the root’s rotation angles around the X and Z axes, 𝛽0 and 𝛾0, are passed
into the feature vector without any change, the rotation around the vertical Y axis, 𝛼0, is
only tracked in its difference to the previous position’s rotation, ensuring, again, that the
neural network model does not distinguish between the exact same motions simply based
on whether the character is, for example, facing North or South-West.

Finally, there is the trajectory. A frame’s trajectory consists of the root positions and
facing directions in subsampled surrounding frames, covering approximately one second
into the past and the future, all relative to the current root’s position and facing direction.
A trajectory’s goal is to link certain current motions to differences in rotation in the future,
but it also allows to match user control onto the expected motion.

5.2 Data Preprocessing
Before the model can be trained, the provided BVH data needs to be processed and formed
into a sequence of feature vectors that the model will be trained on. That, however, requires
the knowledge of the hierarchical structure of the character’s joints. So first, such structure
is created, mimicking the structure defined in the BVH file. Then, for each frame, the
channel values are used to form each joint’s local transforms M𝐿. Those enable finding the
relative and absolute positions of each joint, as described in Chapter 4.3, by combining the
joint’s local offset T and its rotational angles around the three axes, R𝑧, R𝑥 and R𝑦.

M𝐿 = TR𝑧R𝑥R𝑦 (5.6)
j𝑛𝐺 = M0

𝐿M
1
𝐿 . . .M𝑛−1

𝐿 M𝑛
𝐿[0, 0, 0, 1] (5.7)

represent the process of reconstructing the global position 𝑗 of a joint indexed 𝑛, with
local transforms of its parent joints with decreasing indices, down to the root with index 0.

The relevant values, however, are the joints’ individual positions relative to the root po-
sition and rotation. Effectively, this means that one has to remove the root’s transformation

18



matrix from the process of finding the given joint’s global transform described in (5.7):

j𝑛𝑅 = M1
𝐿M

2
𝐿 . . .M𝑛−1

𝐿 M𝑛
𝐿[0, 0, 0, 1] (5.8)

(Notice the different index of the first local transform matrix, as the root’s local transform
M0

𝐿 is omitted.)
Another two values that can be inferred right from a given frame are the root joint’s

rotation angles 𝛽 and 𝛾 around the nonvertical axes, X and Z in this case.
Afterwards, the values of joint velocities as well as the change in the root’s facing

direction are all inferred from comparing each two subsequent frames. The velocity v𝑛 of
a joint j𝑛 in a given frame 𝑡 is found as the difference between the joint’s root transforms
in the subsequent frames:

v𝑛
𝑡 = j𝑛𝑅,𝑡 − j𝑛𝑅,𝑡−1 (5.9)

The root’s turn ∆𝛼 is simply just the difference in the root’s facing directions represented
by its rotation around the Y axis 𝛼 between the two subsequent frames:

∆𝛼𝑡 = 𝛼𝑡 − 𝛼𝑡−1 (5.10)

Finally, the trajectory for each frame is constructed by taking several surrounding frames
(with their amount and spacing selected to cover roughly one second of motion forwards
and backwards from the current frame), extracting their root positions and finding their
transforms to the current root’s position and rotation.

𝑛 ∈ Z ∩ ⟨−𝑇 ;𝑇 ⟩ − 0 (5.11)
t𝑛𝑡 = T j0𝐺,𝑡−𝑛*𝑆 R (5.12)

The resulting vector t𝑡 consists of 2𝑇 three-dimensional vectors. The value 𝑆 represents
the spacing between the regarded frames (resulting in subsampling). T is a 3D translation
matrix constructed using the non-vertical displacement values of the global root position
at frame 𝑡 and R is a rotation matrix only involving said root joint’s facing direction around
the vertical axis, 𝛼. The values used to construct these matrices and the order of operations
effectively perform a reverse transformation, resulting in the displacement of a past or future
position of the root joint in the transform of the current frame’s root position and direction.

For this implementation, I have chosen to have the application look at eight frames both
in the past and in the future, spaced six frames apart from each other.

Holden et al. [9], following the ideas presented in Clavet’s Motion Matching [3], also
include the past and future root facing directions and velocities in the trajectory. For this
model, however, I have found during testing that attaching more features related to the
trajectory causes the network to neglect the periodic motion defined by the joints’ relative
positions, and results in the animated character sliding into a frozen pose.

5.3 Training
The training of the model is relatively straightforward, but certain mechanisms can be uti-
lized to improve the model’s stability. I have chosen to train it with a simple stochastic
gradient descent, updating the model’s parameters after sequences of 32 frames. The net-
work is provided with the feature vectors describing each frame in a single BVH motion.
The training values can be normalized – the mean value subtracted from each, and then

19



divided by their variance, resulting in a vector of values centered around zero and vary-
ing within similar intervals. However, while the mean subtraction is retained, the division
by variances is abstained from, because some features tend to have zero variance. While this
should be a red flag and the values could probably be removed from the feature vectors,
their presence appears to be dictated by the individual BVH file, and could vary across
various files. Since after mean subtraction, these values will be zero, dividing them by their
variance (which is also zero) can be skipped. During testing, however, it was found that the
higher-varying values made the model generate periodic walking motion more consistently.
This is in accord with the work of Holden et al. [9], where it is mentioned that, opposingly,
multiplying every non-trajectory feature vector by a coefficient of 0.1, thus diminishing
their values in relation to the features containing motion control information, resulted in a
more responsive character.

Since the model outputs values defining a frame of animation rather than a probability
model, the output can be compared to the expected frame from the ground truth. That
is why I have selected the Mean squared error function [19] as the loss metric for training
the model:

Cost(X,P, z) =
1

32

32∑︁
𝑛=1

(TGLRNN(X𝑛, z;P) −X𝑛+1)
2 (5.13)

X represents the sequence of 33 feature vectors lifted from the ground truth, P represents
the trained parameters and z represents the LSTM layers’ hidden and cell states (which
are set to zero before a sequence is processed).

I utilize the Adam optimizer for training the network. The learning rate is set to 0.0005,
and each model is trained for 1000 epochs, which are described below.

Training Cycles

The training of the model can be divided into (and controlled by the number of) individual
epochs. During a single epoch, a total of 4 * 𝑆

32 sequences are selected from the ground
truth, where 𝑆 represents the total number of frames in the ground truth. Each sequence
is selected randomly by randomizing an index between 0 and 𝑆 − 32 − 1 (the decrement
by one at the end is to ensure that there is a vector of expected values after the last input
vector from the input sequence is passed in case of the maximum possible index).

Training Methods

The aforementioned strategy, known as teacher forcing, which has already been described
in Chapter 2.2, is relatively straightforward, but suffers from the fact that once the anima-
tion is started and the network’s output begin looping back into it as inputs, any errors
in the network will begin to deviate from the ground truth and possibly result in a larger,
cumulative error, as remarked by Fragkiadaki et al. when describing the training of their
model [5]. That is why, optionally, two training strategies can be employed to combat this
problem. If either strategy is selected, a probability is calculated for each sequence:

progress 0−20 % 20 %−40 % 40 %−60 % 60 %−80 % 80 %−100 %
𝑃 0 0.1 0.2 0.4 0.8

Table 5.1: Alternate training method probabilities based on training progress.

20



With the given probability 𝑃 , the selected method will be performed instead of the
teacher forcing method of inputting straight from the ground truth. The probabilities are
slanted towards the end of the training process, when the model more closely resembles its
form during runtime.

One method is adding noise to the input feature vectors, resulting in “corrupted” data
and teaching the encoding layer to sanitize the inputs and thus enable the model to fix
its own deviations from the ground truth manifold that it may output. I opt to simply
add a value generated by a normal distribution with the mean value of zero and standard
deviation of one, multiplied by the given feature’s variance.

Alternatively, instead of parsing the whole sequence of 32 vectors, the other method sees
that only 31 vectors are forwarded through the network, resulting in 31 predicted frames.
These 31 frames are then used as inputs again, and it is the networks’ predictions with these
inputs that are then compared against the ground truth to find the error:

Cost(X,P, z) =
1

31

31∑︁
𝑛=1

(TGLRNN(TGLRNN(X𝑛, z;P), z;P) −X𝑛+2)
2 (5.14)

(The notation remains the same as for (5.13).)
I was planning to utilize a simpler form of returning the output frame back to input,

simply taking the first frame from the ground truth replacing the other frames from the
sequence with the predictions immediately, but this algorithm tended to cause the script
to freeze, and while the CUDA platform mentioned in Chapter 6.2 provided limited infor-
mation as to what had gone wrong, I estimate it was an issue of running out of memory.
The nature of the script interacting with the GPU also prevented the interpretation from
being stopped via an outside signal.

5.4 Runtime
The neural network model generates animation autoregressively – once it has predicted
an output vector determining the next pose, it is this vector that will be utilized as the
model’s input for the next frame. This means, however, that the first feature vector to be
fed forward through the network needs to be taken from elsewhere. Or, rather, to properly
set up the network’s LSTM layers, a sequence is provided instead. For the purposes of this
thesis, the sequence is lifted directly from the ground truth, picked via observation of the
original BVH file.

As suggested in Chapter 5.2, the transfer from the model’s output back to its input
is not direct and certain values can be altered to enable for user control. Specifically, the
trajectory on the model’s input is synthetized by blending the original predicted trajectory
with one matching the user input. I have utilized the same function to calculate the mixture
of trajectories as did Holden et al. [9], described in Chapter 3.1

Locomotion

The character’s movement across the 2D plane is defined by these specific values from the
feature vector: the difference in the root’s facing direction ∆𝛼, the Euler angles defining
the root’s rotations around the other axes – 𝛽 and 𝛾 – and the root’s velocity in its own
transform v0

𝑅.
𝛼𝑡 = 𝛼𝑡−1 + ∆𝛼𝑡 (5.15)

21



The root velocity, however, needs to be transformed before it can be applied to the
global space, using the rotation matrix R constructed with the Euler angles defining the
root orientation 𝛼, 𝛽 and 𝛾, resulting in the displacement v0

𝐺 in the global space.

v0
𝐺 = Rv0

𝐿 (5.16)

While not visible in the visual application, it is possible for the model to predict such
frames that while the character remains upright, the height of their root begins veering away
from its original value of roughly 90 units without any correction, resulting in the character
effectively beginning to float or sinking into the floor. I have decided to forcefully correct
the root’s global height for each frame to enable the measurement of foot skating, a metric
determining the model’s performance, which considers the foot joints’ global positions and
velocities.

Animation

The animation aspect of the predicted motion is defined by the relative positions of the
character’s joints j𝑛𝐿 in relation to the root joint. In fact, visualizing them as they are
predicted in the feature vector can produce the walking animation on its own. To recreate
the character walking on a plane, then each joint’s local transform needs to be transformed
into the global transform using the root’s position and rotation. For the purposes of the
visualization application, however, the joints are only rotated, much like how the root’s
velocity in the global space is calculated in (5.16) and the root position is only added
to their position by the application if necessary.

22



Chapter 6

Application implementation

I have chosen to implement the model and supporting application in the Python 3.8 lan-
guage, and I utilize the Numpy1 library across various aspects of the implementation. The
central script, control.py, handles both training a model as well as letting the model run
freely and generate the desired animation.

The usage of the control.py script is detailed in Appendix C.

6.1 BVH Parsing
Parsing the BVH file is handled using functions provided in the bvh_parser.py script.
Outside using the Pickle library that handles saving certain data structures into files for fu-
ture use, it also utilizes the bvh-python library2, created by the 20tab product team and
distributed under the MIT license. implemented to parse the content of a BVH file. How-
ever, it by no means supplements the entire process of creating a hierarchical structure, let
alone reconstructing the animation from a file. Specifically, the Bvh object is utilized that
parses the file and provides methods to access the parsed information, of which I utilize
these:

• Bvh.get_joint_names(), which lists the names of all joints of the character, starting
with the root joint.

• Bvh.joint_direct_children(name), which lists the child joints to the joint identi-
fied by name.

• Bvh.joint_offset(name), which returns the initial offset values of a given joint
identified by name.

• Bvh.joint_channels(name), which lists the names of channels (degrees of freedom)
that a given joint identified by name has.

The get_joint_names function is only utilized to get the first value, the name of the
root. Then, the joint_direct_children function is utilized specifically to recursively build
a custom tree structure, defined using the Node class. Each node representing a joint in this
structure is assigned an offset and has declared space for channels via the aforementioned
function, but from then onwards, I no longer utilize the Bvh library.

1available at https://numpy.org
2available at https://github.com/20tab/bvh-python

23

https://numpy.org
https://github.com/20tab/bvh-python


The greatest advantage of transferring the Node class is the ability to perform a Preorder
traversal, implemented in the Node.PreOrder() method. Immediately after the tree is
formed, channel values can be assigned to each node, taken from the BVH file’s MOTION
section.

Furthermore, when finding the positions of each joint in the root or global transform,
recall the matrix multiplication from Chapter 4.3:

M𝑛
𝐺 = M0

𝐿M
1
𝐿 . . .M𝑛−1

𝐿 M𝑛
𝐿 (6.1)

If we try to find the global transform of a joint whose parent’s global transform is charac-
terized as 𝑀𝑛

𝐺, we find it as:

M𝑛+1
𝐺 = M0

𝐿M
1
𝐿 . . .M𝑛

𝐿M
𝑛+1
𝐿 (6.2)

Then, from these two equations, we can find:

M𝑛+1
𝐺 = M𝑛

𝐺M
𝑛+1
𝐿 (6.3)

The same applies for the root transform, which simply omits the root’s local transform
from the multiplication sequence.

If we perform the Preorder traversal of the joint hierarchy, we ensure that if we want
to find the global and root transform of a given joint, we have already found that of its
parent joint and can avoid excess calculations by supplementing it instead of the matrix
multiplication sequence.

In the end, a dictionary is created that contains all the relevant values to a single frame,
organized with the following keys:

• “absXYZ”: each non-root joint’s position in the global space

• “relXYZ”: each non-root joint’s position in the root transform

• “rootRot”: the root’s rotation in the global space

• “rootPos”: the root’s position in the global space

• “velXYZ”: each non-root joint’s velocity in the root transform

• “rootTurn”: the root’s change in rotation in the global space

• “rootVel”: the root’s displacement in the current root transform

If an entry contains values of multiple joints, they are sorted in another dictionary, with
the keys being their

Finally, there is the trajectory, compiled together in the manner described in Chap-
ter 5.2. Each frame is iterated through, from which other surrounding frames are consid-
ered. First, the surrounding subsampled frames in the past are iterated through backwards,
and their root’s absolute position is extracted, the same then happens for frames in the
future, iterated through forwards. If the algorithm looks for a frame that does not exist
(either at the start of the animation or at the end), the best root position in that direction
(past or future) so far is supplemented instead. Afterwards, the past and future global root
positions are transformed into the current frame’s root transform as described in (5.12),
Chapter 5.2.

The series of root positions in the current frame’s root transform is then stored in the
frame dictionary:

24



• “trajectory”: the root positions of surrounding subsampled frames in the current
frame’s root transform

Once the necessary values of each frame are found, there is a pair of functions I have
implemented to transform the dictionary into a one-dimensional array of values and back
in order to create and then parse the feature vectors for working with the neural network:

• GetFlatValues(frame, root): This function returns the feature vector of a given
frame, using the dictionary frame. Optional keyword arguments enable printing out
a detailed description of the features and their count, making it easier to adapt the
other function to any changes in the constituency of the feature vector, and also
adding the trajectory point directions to the vector.

• ParseNewValues(root, vals): This function returns a dictionary of values describ-
ing a given frame by iterating through vals, the frame’s feature vector, a one-
dimensional array. Optional keyword argument specifies whether trajectory directions
are also expected to be a part of the feature vector.

Both functions unfortunately still require the argument root, which references the joint
hierarchy, represented by a Node object. Specifically, its Node.PreOrder() method is uti-
lized to find the proper assignment between each joint’s channel values and their indices
in the feature vector. This means that even during runtime, when these two functions are
utilized back and forth, the application will still need to have parsed a BVH file, requiring
the ground truth dataset to be loaded during runtime.

Running the bvh_parser.py script on its own parses a BVH file of a name defined
within the script (locs/loc_0001.bvh) and replays it using the visualizing application.

6.2 The TGLRNN Model
The entirety of the neural network model is implemented in the provided tglrnn.py script.
It is implemented using the PyTorch library, which has been developed to simplify imple-
menting machine learning models in the Python 3 language and improve their performance
by performing calculations in the considerably faster C++ language. CUDA, a platform
and interface to perform computations on a graphics device, is utilized to further improve
performance, but it needs to be enabled for the model to function. Checking if the interface
is available can be done with a simple script:

>>> import torch
>>> torch.cuda.is_available()
True

PyTorch provides a special data structure, the Tensor, which is a multidimensional
matrix of values of a given data type [20]. Its utility lies in the fact, however, that it
attaches a computational graph to itself and effectively tracks the matrix’s computation
history. This becomes useful for computing the gradients of a model and adjusting its
parameters during training.

The model, defined as a custom TGLRNN class, inherits from PyTorch’s Module class,
which implements most methods regarding training and using a neural network. Defined
within this class specifically is the structure of the model, described in Chapter 5.1.

Each layer is implemented as an instance of a PyTorch object. As an example, here
is a simple Linear layer, used in tglrnn.py, line 63, to define the first linear layer of the
Encoder module:

25



self.e1 =
nn.Linear(in_features=self.frame_features, out_features=HIDDEN_F1)

This line defines the model’s e1 object to be an instance of the torch.nn (here imported
as nn) package’s Linear class, defined to accept vectors of length frame_features (provided
to the model when instantiated) and outputting hidden space vectors of size HIDDEN_F1,
which is set to 256.

I have then implemented the TGLRNN.forward(input) function, which is called when-
ever we want to feed a feature vector labeled as input through the model. It is within this
function where the PyTorch implementation of the layers shines, as to feed the input vector
through it, I only need to do this:

res_e1 = self.e1(input)

This roughly corresponds to line 89 of tglrnn.py, albeit the script also reshapes the in-
put vector to match the function’s specifications. This line then performs the following
calculation:

y = Wx + b (6.4)

x is the vector passed in the argument of size 174, y is the output vector of size 256, saved
to the res_e1 variable, and W ∈ R256×174 and b ∈ R256 are the learnable parameters of the
layer.

Including the Rectified linear unit function is considerably simpler. Since it operates
element-wise, it does not require a predefined size parameter and can be defined simply as:

self.e2 = nn.ReLU()

Then, it is applied with:

res_e2 = self.e2(res_e1)

When it comes to the LSTM layers, a remark has to be made that despite them having
learnable parameters of their own, I also had to implement the model in such a way to keep
track of their hidden and cell states, which are provided alongside the output of calling
the LSTM object, but are in turn required on the input again, as the layers do not retain
this information themselves. I solve this by turning the hidden and cell states into model
variables:

self.r1 =
nn.LSTM(input_size=HIDDEN_F2, hidden_size=HIDDEN_F2,
num_layers=1, batch_first=False)

self.r1_hc = None

Then, the application of the recurrent layer is as follows:

res_r1, hc1 = self.r1(res_e3, self.r1_hc)

The variable hc1 can be used to overwrite TGLRNN.r1_hc afterwards.
I have implemented two methods which encompass feeding the input vector forward

through a model. GetNextFrame(model,frame) simply takes the feature vector frame
and lets the model referenced by the model parameter predict a new frame, which the
function returns. This function wraps the process with a torch.no_grad() flag, though,
which prevents the feature vector from accumulating a computational graph (which we do
not need outside training). The other function, PassSeed(model, sequence) instead has a
model referenced by model predicts a frame following a series of feature vectors (sequence).

26



Additionally, however, a special model function, TGLRNN.ResetRecurrent() is called before
the frame is predicted, which resets the hidden and cell states of the LSTM layers. This
effectively allows to begin motion generation anew, and ensure that no previous predicted
frames affect the new predictions.

def ResetRecurrent(self):
self.r1_hc = None
self.r2_hc = None

6.3 Training
I have implemented a single function, Train(...), to handle the training of a single model
in any of the proposed fashions. In fact, due to the initializations of certain aspects of the
neural network model within this function, it needs to be called even when the model is only
utilized to predict new frames, for example for the visualization aspect of the application.

Train(model, data, iter, enable_curr=False,
use_oi=False, model_name=None, load_model=True,
savetime=False, saveloss=False)

The function is provided with a model that should be trained, and a series of vectors
referenced to via data as the ground truth to train on. The amount of iterations is specified
via the iter parameter, which is set to zero if we only want to prepare the model for
generation instead of training it. The optional arguments consist of enable_curr and
use_oi which determine whether the curricular learning involving methods other than
teacher forcing should be invoked, and whether it should utilize the “predicted vector back to
input” method rather than denoising, respectively. The model_name parameter determines
the name of the file into which the PyTorch library functions save the model. If this
parameter is not set, the script switches to a default name based on which training method
is used: tglrnn_tf for standard teacher forcing, tglrnn_dn for denoising and tglrnn_oi
for returning predicted frames to input. If a model of that name already exists, setting
load_model to True will load the existing model and train it further. Finally, setting
savetime or saveloss to True will save either the training durations or the losses in each
epoch to a file named after the model name.

For training, two more PyTorch objects are instantiated:

loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0005)

After each sequence of vectors is passed through the model and a sequence of predicted
frames is generated that can be compared against the ground truth, the error can be
computed with the loss function:

loss = loss_function(micro_out, micro_exp)

In this case, loss is an object which retains its computational history. Its value can
be accessed via loss.item(). However, to perform the backpropagation and update the
network parameters, the following two functions need to be called:

loss.backward()
optimizer.step()

27



Throughout the training, after each epoch, information about the losses is printed to
the standard output, containing both the total error accumulated throughout the epoch,
as well as how it is split between the normal teacher forcing method and an alternate one,
if it is enabled. These losses can also be exported to a log file if the saveloss parameter is
present. The target path for the file will be as follows:

out/MODEL_NAME_losses.out

Additionally, the savetime parameter can be set to True, and the script will then export
the time spent the interpreter has spent on each epoch in seconds to a log file:

out/MODEL_NAME_times.out

In both cases, MODEL_NAME is the name specified with the model_name parameter, or default.

6.4 Runtime Visualization
Once a model has been trained, the control.py script can be additionally used to make it
generate character locomotion, and visualize it using a simple user interface. This interface
is implemented in the window.py script and utilizes the OpenCV library for Python 33.
However, for this application to function, OpenCV needs to be able to open a new window,
which, for example with the Windows Subsystem for Linux that I have used, can be achieved
by running a display window server such as Xserver which provides the application with a
window output.

To test if a window is available, the script window.py script can be interpreted on its
own, whereupon it attempts to create a such window. If it succeeds, it exits immediately.

This script contains the definition of a DisplayWindow class, which is instantiated
by whichever script requires visualization. The visualization app offers three different
views of the animated skeleton, and the current view is tracked by the instance attribute
DisplayWindow.currView.

The three views, depicted in Figure 6.1, are as follows:

• View 0: Displays front and side view of the moving character, as well as an arrow
indicating the character’s direction. Movement across the global space is irrelevant
to this view.

• View 1: Displays a top-down view of the character’s motion, centered over the [0, 0, 0]
coordinate.

• View 2: Displays a top-down view of the character’s motion, centered on the character.
Background lines imitating the floor help indicate how the character moves around
the space.

The W key iterates through each of these views. The Q key closes the window and stops
the script that started it.

OpenCV handles visualization by representing the picture as a multi-dimensional array
of floating point values and providing several methods that change these values based on
what shape we want to visualize, and this array is one of the class instance’s attributes.

The DisplayWindow class provides the following method, which renders an animation:
PutLines(self, lines, rootRot, rootPos, trajectory, arrows=[])

3Available at https://pypi.org/project/opencv-python/

28

https://pypi.org/project/opencv-python/


Figure 6.1: The three views (edited) of the generated motion provided by the visualization
application. View 0 (top) depicts the animation from two views, each centered on the
character. View 1 (bottom left) depicts the character’s trajectory and locomotion from
above, centered over the center of the global space. View 2 (bottom right) is instead
centered over the character, but represents locomotion by representing the static floor via
squares beneath the character.

In this case, rootRot and rootPos represent the character’s root joint rotation and position
in the global space, respectively, and trajectory represents the points making up the
frame’s current trajectory. However, lines is a special object that requires preprocessing
on the caller’s side. Specifically, it is expected to be an array of pairs, where each pair is the
start and end point of a bone in root transform, but already rotated by the root’s rotation
in global space. Finally, the arrows argument provides an array for rotations expressed
by three Euler angles, which are then represented by a small arrow circling the visualized
character.

If character animation from a model is visualized, its trajectory can be controlled via
keyboard inputs. The trajectory is blended using the function described in (3.1) in Chap-
ter 5.4, which is implemented as a BlendTrajectories in the bvh_parser.py file. The
parameter 𝜏 is left at the value of 2. The user control trajectory is generated by either
the GetStraightTrajectory() or the GetCircleTrajectory(radius, cwise) functions.
The former always returns the same trajectory, while the latter returns a trajectory that
would see the character trace a circle of a given radius. The flag cwise determines whether
the character is turning left (False) or right (True).

29



The user control trajectory is thus selected from the following array of values:

80 160 320 0 −320 −160 −80

Table 6.1: The turn radiuses which can be generated by user input. The default radius
of 0 instead swaps out the circular trajectory for a straight line. Positive values correspond
to turning left, negative to turning right.

The default trajectory is straight ahead, but the array can be iterated through using
the arrow keys. Pressing the Left Arrow key selects a sharper turn to the left (the radius
at a lower index than the current one, down to the radius of 80), pressing the Right Arrow
key instead selects a sharper turn to the right (the radius at a higher index, up to −80).
Additionally, for quick turns, the A and D keys immediately set the turning radius to 80
and −80, respectively.

30



Chapter 7

Experiments And Discussion

To measure the performance and quality of the individual neural network models, I have
decided to, on top of visual addressing of the result, measure the following values:

• the time taken to train each model

• the progressive loss throughout the training process

• foot skating: the degree to which feet move in the global space despite being supposed
to be planted on the ground

• angular error: the degree to which the root’s turn does not correspond to the projected
trajectory

• NPSS – Normalized Power Spectrum Similarity: the degree to which the powers
of various predicted feature values as signals resemble those of the ground truth,
as presented in Gopalakrishnan et al. [6]

The three models have only been trained once, and the value of NPSS is also calculated
for each model only once. Both foot skating and angular errors are calculated on a prediction
sequence of 2400 frames following a random seed from the ground truth, with the direction
switched every 800 frames. These test runs have been conducted five times for each model.

Due to the how I have implemented the parsing of the BVH files, however, it is impos-
sible to compare the TGLRNN to other existing solutions. Thus, I have decided to mostly
compare three individual TGLRNN models against each other, differing in the training
strategies presented in Chapter 5.3, thus providing input on the advantages and disadvan-
tages of these methods.

7.1 Training Results
After each epoch of the training processed is completed, three values are saved into an out-
put file: the amount of sequences processed using teacher forcing, the amount of sequences
processed using a different strategy, and the total time spent processing the epoch. The
perf_counter() function from Python’s time library is used to calculate delays.

Regarding the time taken to train the individual models, the following has been found
on a single session of training each model for 1000 epochs: not using any strategy to combat
teacher forcing results in about an hour’s worth of training the model on an Nvidia GeForce
GTX 1060 graphics card. Utilizing the denoising has such little impact on the computational

31



Model type Total time Avg. epoch time Strategy slowdown
TF 1.00 h 3.59 s –
DN 0.99 h 3.55 s −2.5 %
OI 1.19 h 4.30 s 60.7 %

Table 7.1: Performance statistics for training each model: the total time taken, the average
time per epoch, and how faster or slower the training is if an alternate strategy is used

time, its training session has actually ended up being faster by 2.5 %. Adding the extra
computation in returning the output values back to input, however, is roughly 61 % slower.
These values were found by first computing the average time spent resolving a sequence
using teacher forcing before the other strategy is introduced, then subtracting their expected
contribution to the delays in epochs involving the other strategy, and finding the time spent
processing a sequence with the other strategy from the remainder.

I have decided to track the progression of losses throughout the training process mostly
just to compare how the losses differ with the introductions of different learning strategies.
An interesting find is that the denoising strategy does not actually demonstrate any im-
provement in terms of learning to deal with the added noise, and the total loss per epoch
only increases as the chance of adding noise grows. On the other hand, letting the network
receive its own predictions on input demonstrates convergence towards the teacher forcing
loss values. The progression of losses and how introducing strategies to the training process
affects the training itself is visualized in Figure 7.1.

7.2 Motion Prediction
Besides the “sinking into the floor” issue described at the end of Chapter 5.4, several
remarks can also be made about the model’s prediction quality based on observation in the
visualization app.

First and foremost, the network appears to succeed in maintaining a periodic motion. It
can still slide into a frozen pose, although this is mostly restricted to changes in trajectory.
Where it fails, however, is maintaining movement in a given direction. Specifically, move-
ment tends to come with the artifact of spinning on the spot every few frames, resulting
in diverging away from the predicted straight trajectory despite appearing to steer in the
desired direction otherwise. This artifact remains for various directions.

The effect of the trajectory used as a guiding tool to keep the character moving can be
observed, however, in those cases when the character gets stuck in a single pose. Changing
up the trajectory at that point can snap the character back into periodic motion, despite
the prediction loop having started many frames ago.

Foot Skating

Using the phenomenon known as foot skating, when a foot joint slides across the floor
despite being supposed to remain rooted on the spot, is not unknown in the realm of motion
prediction [22]. I have attempted to implement it in various ways. For each, the crucial task
is to identify the foot’s height above the floor. First, the lowest five heights of each foot joint
were considered and averaged. However, due to the model possibly fluctuating in terms
of feet height even when a foot is supposed to be on the floor, I have instead decided to

32



0 200 400 600 800 1000
epoch

100

101

102

lo
ss

Loss throughout training with teacher forcing only

0 200 400 600 800 1000
epoch

101

102

lo
ss

Combined loss throughout training with denoising

0 200 400 600 800 1000
epoch

101

102

lo
ss

Loss throughout training with denoising

0 200 400 600 800 1000
epoch

101

102

lo
ss

Combined loss throughout training with predictions to input

0 200 400 600 800 1000
epoch

101

102

lo
ss

Loss throughout training with predictions to input

Figure 7.1: Subsampled progression of losses throughout the training of each TGLRNN
model using teacher forcing only (top), denoising (middle) and predictions to input (bottom)
strategies, visualized on a logarithmic scale. Left column represents total loss per epoch,
right column in turn average loss per teacher forcing (blue) or different strategy (red).
Vertical lines indicate increase of different strategy probability.

33



Model type Left foot score Right foot score
Ground truth 0.031 0.030

TF 0.214 0.251
DN 0.246 0.223
OI 0.238 0.228

Table 7.2: Foot skating penalty scores calculated using (7.1) of the ground truth sequence
and the three TGLRNN models: trained with teacher forcing only (TF), denoising (DN)
and predictions to input (OI).

find the minimum height for smaller intervals that cover the entire measured sequence, and
get a minimum for a given frame by interpolating between the closest two. Unfortunately,
even that proved ineffective (mostly by the ground truth reporting higher proponence to
foot skating than the predicted motion). Finally, I have implemented an algorithm which
calculates the height for each step independently, delimiting them by finding when the foot
crosses a threshold computed as the mean foot height across the sequence.

When applicable, the foot skating penalty 𝑝 for a given frame is then calculated as fol-
lows:

𝑝 = |∆x| * 𝑒𝜎*ℎ (7.1)

The |∆x| represents the distance of displacement of the joint, 𝜎 is a negative parameter
controlling the degree of penalization which I have set to −3, and ℎ is the joint’s height
above the floor. The function does penalize displacement even if the foot is being lifted or
is about to be planted on the ground, but since this calculation is performed on the ground
truth sequence as well, what really matters in the end is how the models compare to the
foot skating score of the ground truth sequence.

From the average foot skating error presented in Table 7.2, we can see that all models
suffer from this phenomenon to a similar degree, although the prediction to input strategy
appears to have the lowest error scores on average.

Angular Error

The metric referred to as Angular error reflects how well different predictions’ root turns
correspond to the trajectory the character is supposed to follow. I have decided to calculate
it by finding the angle by which the root should be turning. The angle is found by replacing
the trajectory in a given frame by an arc, its shape determined by the character’s position
and the furtherst future point in the trajectory and then, it was expected to find the
matching angle based on the arc’s central angle, divided by how many frames the last
trajectory point is away from the current frame, as seen in Figure 7.2

While looking for an expression of this desired estimated angle, however, I have been
found that it is simply a fraction of the angle to which the target trajectory point is offset
to the side.

𝛾 =
2 * arctan (Δ𝑥

Δ𝑧 )

𝑁
(7.2)

The estimated angle 𝛾 is equal to the angular result of the inverse tangential function of
the displacement [∆𝑥,∆𝑧] of the furthest trajectory point in root transform, divided by 𝑁 ,
the amount of frames. This amount of frames, however, is not the length of the trajectory

34



α β

β

γ '

x

z

Δ z

Δ x

Figure 7.2: A visualization of how replacing the future trajectory (red) with an arc con-
necting the current position (green) to the furthest point helps find the angle 𝛾′, which is
divided by the amount of frames between the current frame and the furthest one to find
the desired angle 𝛾.

Model type Angular error
TF 1.012

DN 0.862
OI 1.053

Table 7.3: Average angular errors calcuated using (7.2) of the three TGLRNN models:
trained with teacher forcing only (TF), denoising (DN) and predictions to input (OI).

in the future, however, because the trajectory is expected to be calculated from subsampled
frames.

Normalized Power Spectrum Similarity

Introduced by Gopalakrishnan et al. [6], the NPSS – Normalized Power Spectrum Similarity
– is a metric that evaluates long-term motion. It addresses the frequencies that characterize
the channel values of various character joints. Their paper lists slow walking as an example
of how the NPSS metric outshines the Mean square error loss in comparison – if the motion
is exactly the same, but misaligned, the MSE will report high error values, whereas the
NPSS will only at most penalize it as a phase shift.

Effectively, the metric compares several sequences from the ground truth and their corre-
sponding predictions. For each feature in each sequence, its squared magnitude spectrum is
calculated, normalized with regard to the frequencies. The difference is calculated between
the ground truth spectrum and predicted sequence’s spectrum, and a power weighted aver-
age of these differences across all features and sequences yields the desired scalar evaluation
metric. The lower the score is, the more similar the motion is.

35



Model type NPSS score
TF 0.549
DN 0.639
OI 0.563

Table 7.4: The Normalized Power Spectrum Similarity scores of predicted sequences com-
pared to sequences from the ground truth of three TGLRNN models: trained with teacher
forcing only (TF), denoising (DN) and predictions to input (OI).

The results, presented in Table 7.4, show that the most similar motions are, in fact,
predicted only using the teacher forcing strategy, although returning predicted frames to
input is not too far behind. The denoising strategy, in turn, reports a worse score than the
other two.

7.3 Discussion
The TGLRNN models predict periodic motion to a degree of success, and there is demon-
strable influence of the trajectory changing according to user control to the resulting loco-
motion.

The individual models report mixed scores in various metrics, ensuring that no strategy
comes off as the optimal one, or the worst option. Applying noise to input during training
appears to yield the worst performance in terms of losses as well as the NPSS evaluation,
but outperforms the other two models with the model’s ability to produce motion that
follows a given direction. Combatting teacher forcing with returning predicted frames
back to network input, in turn, significantly slows down the training process, and yields
only marginal improvements in the foot skating metric. Ultimately, it appears that not
employing any additional strategy for this task at the very least saves the extra time spent
on returning predictions back to input without sacrificing too much quality during runtime.

Visually, however, the model does not appear to hold up to other state-of-the-art models,
which have long emarked on solving more complex problems involving motion generation.

I believe that the greatest issue holding the model back is the BVH parsing itself. The
way it has been implemented limits scaleability outside the SAUCE Project motion capture
data set, and requires the ground truth to be present even during runtime. The model’s
issues that may arrive with following a user-controlled trajectory may come with the limited
size of the data set. Future work with the TGLRNN model would likely require a step back
and reworking the parsing and feature vector generation, perhaps even swapping the Euler
angles for a different unit, for example quaternions.

36



Chapter 8

Conclusion

I have studied various methods of motion generation and implemented a recurrent neural
network designed to produce human locomotion with parameters that allow the user to con-
trol the character’s motion. I have implemented this model as part of an application that
allows to train a model on a single BVH file containing motion capture data, and visualize
the process of the model repeatedly predicting new and new frames of an animation while
letting the user input directions to alter the character’s motion.

I have experimented with various methods of training the individual models to find see
if there exists an optimal solution to the issue of an autoregressive model accumulating
errors by receiving its own predictions on input instead of values from the ground truth.
I have found that while there are measurable differences between the performance of some
of these strategies (Table 7.1 for training times, Figure 7.1 for the convergences of losses),
most of the resulting models manage to fare equally well in terms of predicting motion,
even when subjected to metrics other than observation.

The finished result abridges the gap between unstructured motion capture data and
a responsive character in motion. Artifacts still appear in the finished result, but their
presence only offers more insight into the problematic. For example, while every now and
then the character does slip into a frozen pose, a possible pitfall with recurrent models
generating over a longer period of time, it can get back on track via user input and its
change to the character’s trajectory, showing that the trajectory can work as a set of control
features that maintain the periodic motion over prolonged periods of times.

Ultimately, one can find better-looking solutions regarding this problem, no further
than mentioned in this thesis, no less. However, alongside the various findings during
experimentation, I consider the fact that one can complete a training process and see the
difference with their own eyes a success, wrapping this thesis up as a form of insight into the
complex world of motion generation.

37



Bibliography

[1] Bengio, S., Vinyals, O., Jaitly, N. and Shazeer, N. Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks. In: Cortes, C., Lee, D. D.,
Sugiyama, M. and Garnett, R., ed. Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1. Cambridge, MA,
USA: MIT Press, 2015, p. 1171–1179. NIPS’15. DOI: 10.5555/2969239.

[2] Biovision BVH [online]. 1999 [cit. 2021-05-01]. Available at:
https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html.

[3] Clavet, S. Motion Matching and The Road to Next-Gen Animation [Presentation at
a conference]. March 2016. Game Developers Conference 2016. Available at:
https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road.

[4] Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S.,
Guadarrama, S. et al. Long-Term Recurrent Convolutional Networks for Visual
Recognition and Description. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1st ed. 2017, vol. 39, no. 4, p. 677–691. DOI:
10.1109/TPAMI.2016.2599174.

[5] Fragkiadaki, K., Levine, S., Felsen, P. and Malik, J. Recurrent Network
Models for Human Dynamics. In: 2015 IEEE International Conference on Computer
Vision (ICCV). Los Alamitos, CA, USA: IEEE Computer Society, Dec 2015,
p. 4346–4354. DOI: 10.1109/ICCV.2015.494. ISSN 2380-7504. Available at:
https://doi.ieeecomputersociety.org/10.1109/ICCV.2015.494.

[6] Gopalakrishnan, A., Mali, A., Kifer, D., Giles, L. and Ororbia, A. G. A
Neural Temporal Model for Human Motion Prediction. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June
2019.

[7] Goyal, A., Lamb, A., Zhang, Y., Zhang, S., Courville, A. et al. Professor
Forcing: A New Algorithm for Training Recurrent Networks. In: Proceedings of the
30th International Conference on Neural Information Processing Systems. Red Hook,
NY, USA: Curran Associates Inc., 2016, p. 4608–4616. NIPS’16. ISBN
9781510838819.

[8] Harvey, F. G., Yurick, M., Nowrouzezahrai, D. and Pal, C. Robust Motion
In-Betweening. ACM. 2020, vol. 39, no. 4.

[9] Holden, D., Komura, T. and Saito, J. Phase-Functioned Neural Networks for
Character Control. ACM Trans. Graph. 1st ed. New York, NY, USA: Association for

38

https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road
https://doi.ieeecomputersociety.org/10.1109/ICCV.2015.494


Computing Machinery. july 2017, vol. 36, no. 4. DOI: 10.1145/3072959.3073663.
ISSN 0730-0301. Available at: https://doi.org/10.1145/3072959.3073663.

[10] Ionescu, C., Papava, D., Olaru, V. and Sminchisescu, C. Human3.6M: Large
Scale Datasets and Predictive Methods for 3D Human Sensing in Natural
Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence.
IEEE Computer Society. jul 2014, vol. 36, no. 7, p. 1325–1339.

[11] Kulkarni, T. D., Whitney, W. F., Kohli, P. and Tenenbaum, J. Deep
Convolutional Inverse Graphics Network. In: Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M. and Garnett, R., ed. Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2015, vol. 28. Available at:
https://proceedings.neurips.cc/paper/2015/file/
ced556cd9f9c0c8315cfbe0744a3baf0-Paper.pdf.

[12] Memisevic, R. Learning to Relate Images. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 2013, vol. 35, no. 8, p. 1829–1846. DOI:
10.1109/TPAMI.2013.53.

[13] Meredith, M. and Maddock, S. Motion Capture File Formats Explained.
Production. january 2001.

[14] Nogueira, P. Motion Capture Fundamentals A Critical and Comparative Analysis
on Real-World Applications. In: Oliveira, E., David, G. and Sousa, A. A., ed. 4th
International Conference on Information Society and Technology [online]. 1st ed., 1.
Porto: FEUP, January 2012, p. 303–314 [cit. 2021-05-02]. DOI:
10.24840/978-972-752-141-8. Available at:
https://paginas.fe.up.pt/~prodei/dsie12/papers/paper_7.pdf.

[15] Olah, C. Understanding LSTM Networks, 27. august 2015. [cit. 2021-05-02].

[16] SAUCE Project, F. B.-W. for the. PHS Motion capture data. 2019. Available at:
https://animationsinstitut.de/en/phs-ml.

[17] Starke, S., Zhao, Y., Komura, T. and Zaman, K. Local Motion Phases for
Learning Multi-Contact Character Movements. ACM Trans. Graph. 1st ed. New
York, NY, USA: Association for Computing Machinery. july 2020, vol. 39, no. 4.
DOI: 10.1145/3386569.3392450. ISSN 0730-0301. Available at:
https://doi.org/10.1145/3386569.3392450.

[18] Torch Contributors. LSTM [online]. 2019. 2021 [cit. 2021-05-02]. Available at:
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#torch.nn.LSTM.

[19] Torch Contributors. MSELoss. 2019 [cit. 2021-05-11]. Available at:
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html.

[20] Torch Contributors. Torch.Tensor. 2019 [cit. 2021-05-15]. Available at:
https://pytorch.org/docs/stable/tensors.html.

[21] Williams, R. J. and Zipser, D. A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks. Neural Computation. 1st ed. 1989, vol. 1, no. 2,
p. 270–280. DOI: 10.1162/neco.1989.1.2.270.

39

https://doi.org/10.1145/3072959.3073663
https://proceedings.neurips.cc/paper/2015/file/ced556cd9f9c0c8315cfbe0744a3baf0-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ced556cd9f9c0c8315cfbe0744a3baf0-Paper.pdf
https://paginas.fe.up.pt/~prodei/dsie12/papers/paper_7.pdf
https://animationsinstitut.de/en/phs-ml
https://doi.org/10.1145/3386569.3392450
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://pytorch.org/docs/stable/tensors.html


[22] Zhang, H., Starke, S., Komura, T. and Saito, J. Mode-Adaptive Neural
Networks for Quadruped Motion Control. ACM Trans. Graph. 1st ed. New York,
NY, USA: Association for Computing Machinery. july 2018, vol. 37, no. 4. DOI:
10.1145/3197517.3201366. ISSN 0730-0301. Available at:
https://doi.org/10.1145/3197517.3201366.

40

https://doi.org/10.1145/3197517.3201366


Appendix A

Downloading the Data Set

Even though the data set is shared under the Attribution-NonCommercial-ShareAlike Cre-
ative Commons license, the Terms of Use that need to be agreed with in order to download
the data set prohibits further passing of the data from the set, which is why none of the
motion capture data is present within this thesis.

If a user wishes to obtain the motion capture data, the download is, at time of writing,
publicly accessible nevertheless. As the data has been created for the SAUCE Project, it
can be traced from the project’s website at https://www.sauceproject.eu. From there,
under the ’Downloads’ tab, one can find a reference to the PHS Motion Library, even
referred to as “available to download”. This reference takes the user to the website of the
Animations Institut of Filmakademie Baden-Wärtenburg. Specifically, the user is taken
directly to a page detailing the institute’s various contributions to the project, including
the motion library, which can be downloaded after the user has agreed to the restrictive
Terms of Use.

Ideally, for this thesis, the motion capture data in the BVH format should be placed
in the empty locs folder, as the default file names are locs/loc_0001.bvh.

41

https://www.sauceproject.eu


Appendix B

Application Requirements

A Python 3 language interpreter is required to run the various scripts provided with this
thesis. While most of the required libraries and packages usually come with general Python
3 installations, there are some that may require manual installation for the application
to work:

• bvh-parser: The library utilized to parse the contents of a BVH file and create data
structures to generate feature vectors with. Available at https://github.com/20tab/
bvh-python.

• Numpy: A package for scientific computations. Can be installed via pip install
numpy.

• PyTorch: A framework providing simple and efficient solutions for implementing ma-
chine learning models. A guide to installation based on the target system’s disposition
is available at https://pytorch.org/get-started/locally/.

• CUDA: An interface for computational acceleration on a graphics device, distributed
by Nvidia. Installation based on the target system is available at
https://developer.nvidia.com/cuda-downloads.

• OpenCV: A computer vision library utilized to visualize the motion. Also requires
a window for output, for example an Xserver. Can be installed via pip install
opencv-python.

The accesibility of the CUDA platform can be checked with:

>>> import torch
>>> torch.cuda.is_available()
True

To see if there is a window available for OpenCV, running the window.py script on its
own will attempt to connect to one. If it can find any, the script finishes immediately.

Finally, a BVH file is required to train the model and visualize its runtime. See Ap-
pendix A to see why its absent from the provided files and what can be done to fix that.

42

https://github.com/20tab/bvh-python
https://github.com/20tab/bvh-python
https://pytorch.org/get-started/locally/
https://developer.nvidia.com/cuda-downloads


Appendix C

Running the Main Script

All interactions with the implementation of the TGLRNN are done via the control.py
script. Here is an overview of the script’s arguments.

• mode: A mandatory positional argument which determines whether the script trains
a new TGLRNN model (0), or loads an existing one for motion generation (1).

• –name: This argument specifies the name of the TGLRNN model. If no name is
specified, a default one is supplemented instead, generated from the training strategy.

• -f, –filename: The name of the BVH file for the model to be trained on (in case of
training) or that a selected model has been trained on (in case of generation).

• (Training) –overwrite: Forces the script to avoid loading an existing model of the
same name and instead to create a new one, overwriting the old one in the end.

• (Training) –type: Determines what kind of training strategy should be used for this
model – teacher forcing (0), denoising (1) or returning predictions to model input (2).
Default value is 0.

• (Training) -i, –iterations: The amount of epochs the training lasts for. Default
value is 200.

• (Training) -s, –stats: Determines if the statistics regarding the training time and
losses should be printed to an output file in the end.

• (Generation) –run-tests: Enabling this prevents the script from opening a visual-
ization window, and instead runs a series of tests on the provided model.

For example, if one then wants to train a new model called “mymodel” using the de-
noising method for 1000 epochs on the locs/loc_0022.bvh file which contains the mocap
data for a rather specific type of walk, the command to do so would be as follows:

python3.8 control.py 0 --name=mymodel --filename=locs/loc_0022.bvh
-type=1 --iterations=1000 --overwrite

Then, letting the model freely generate frames of motion would be done with the fol-
lowing command:

python3.8 control.py 1 --name=mymodel --filename=locs/loc_0022.bvh

43



Appendix D

Video

A video containing a brief description of the problem, the methods utilized to solve it as
well as a visualization of the results is available at https://youtu.be/6LH4zf1HyPE.

44

https://youtu.be/6LH4zf1HyPE

	Introduction
	Motion Generation
	Motion Capture
	Data-driven Generation
	Motion Generation Solutions

	Character Control
	Trajectory Blending
	Character Control Solutions

	Motion Capture Data Sets
	Other Data Sets
	The SAUCE Project Motion Library
	The Biovision Hierarchical Format

	Trajectory-guided Locomotion Recurrent Neural Network
	The Discriminative Model
	Data Preprocessing
	Training
	Runtime

	Application implementation
	BVH Parsing
	The TGLRNN Model
	Training
	Runtime Visualization

	Experiments And Discussion
	Training Results
	Motion Prediction
	Discussion

	Conclusion
	Bibliography
	Downloading the Data Set
	Application Requirements
	Running the Main Script
	Video

