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Abstract
In this thesis, we examine existing parsing algorithms for context-free grammars. Based
on these existing algorithms, we design a new model for representing LR automatons and we
define a new parsing algorithm LSCELR based on that model. We modify parsing algorithms
to create translation algorithms based on translation grammars. We define attribute
translation grammars, an extension of translation grammars for defining the relationships
between input and output symbols in translation. We implement a translation grammar-
based framework ctf that implements the new parsing algorithm. We define a language
for describing attribute translation grammars and implement a translator that creates source
representation of these grammars for the implemented framework.

Abstrakt
V této práci prozkoumáváme existující algoritmy pro přijímání jazyků definovaných bezkon-
textovými gramatikami. Na základě těchto znalostí navrhujeme nový model pro reprezentaci
LR automatů a s jeho pomocí definujeme nový algoritmus LSCELR. Modifikujeme algo-
ritmy pro přijímání jazyků k vytvoření algoritmů pro překlad založený na překladových
gramatikách. Definujeme atributové překladové gramatiky jako rozšířené překladové gra-
matiky pro definici vztahů mezi vstupními a výstupními symboly překladu. Implementujeme
překladový framework ctf založený na gramatikách, který implementuje překlad pomocí
LSCELR. Definujeme jazyk pro popis atributových překladových gramatik a implemen-
tujeme překladač pro překlad této reprezentace do zdrojového kódu pro implementovaný
framework.

Keywords
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translation grammars
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Rozšířený abstrakt
V této diplomové práci navrhujeme překladový framework založený na gramatikách. Nej-

dříve zkoumáme existující algoritmy pro přijímání jazyků definovaných bezkontextovými
gramatikami. Sledujeme deterministické algoritmy, které přijímají vstup zleva doprava
a nahlíží vždy na jeden následující symbol. Zkoumáme fungování algoritmu pro generování
minimálních LR(1) parserů IELR, který je implementovaný v existujícím generátoru parserů
GNU Bison. Představujeme také modifikaci LR algoritmů pro řešení konfliktů v tabulkách
pro LR(1) parsing.

Na základě těchto existujících algoritmů navrhujeme nový model pro reprezentaci LR au-
tomatů. Tento nový model ukládá pro každý svůj stav generované lookahead symboly pro své
položky, a ukládá také zdroje pro ostatní lookehead symboly. Tyto informace zachovávají
proti běžnému modelu více informací o struktuře automatu a umožňují jednoduchou analýzu
propagace těchto symbolů. Tento model také umožňuje jednoduché změny v automatu
díky implicitní změně lookahead symbolů při budoucích výpočtech jejich množin. S pomocí
tohoto upraveného modelu navrhujeme nový algoritmus pro generování minimálních LR(1)
parserů LSCELR. Tento algoritmus využívá vlastností tohoto modelu pro výpočet konfliktů
v automatu a rozdělení některých jeho stavů. LSCELR dokáže stejně jako IELR generovat
validní parsery i pro gramatiky, které spoléhají na specifické řešení konfliktů pro svoje použití,
kde by LALR parsery mohly zmenšit množinu přijímaných jazyků. V této práci popisujeme
algoritmy pro vytvoření LSCELR parserů a na vybraných gramatikách demonstrujeme jejich
vlastnosti.

V této práci definujeme překladové gramatiky jako prostředky pro generování překladů.
Definujeme také atributové překladové gramatiky pro definici překladů v praktickém využití,
kde formálně definujeme vztahy mezi atributy vstupních a výstupních terminálů v jed-
notlivých přepisovacích pravidlech gramatiky. Modifikujeme známé algoritmy pro přijímání
jazyků na algoritmy pro překlad, konkrétně prediktivní překlad shora dolů a LR překlad sdola
nahoru. Volíme dvouzásobníkový automat jako model pro překlad definovaný překladovými
gramatikami. V této práci také představujeme důkaz generativní síly překladových gramatik.
Při omezení výstupního jazyka lze využít lineární překladové gramatiky jako prostředek
pro generování jazyků se sílou Turingova stroje. Důkaz této síly je založený na simulaci
frontových gramatik, které mají stejnou generativní sílu jako Turingovy stroje.

V poslední části práce popisujeme implementaci překladového frameworku na základě al-
goritmů představených v předchozích částech této práce. Implementovaný framework využívá
atributové překladové gramatiky pro definice překladu a využívá LSCELR jako algoritmus
pro překlad. Popisujeme rozdíl mezi tradičním přístupem k překladu založeném na bezkon-
textových gramatikách a představujeme přístup k překladu založeném na překladových
gramatikách. Práce předkládá náročné aspekty vývoje výstupních jazyků atributových
překladových gramatik pro praktické využití. Představujeme také způsob pro kompresi
tabulek pro LR algoritmy, které za cenu horší složitosti přístupu k položkám výrazně snižují
paměťové nároky pro reprezentaci všech stavů LR algoritmu v paměti. Popisujeme jazyk
pro definici atributových překladových gramatik a asociativitu a precedenci jejich terminálů
a pravidel. S pomocí implementovaného frameworku implementujeme nástroj, který překládá
tuto reprezentaci do zdrojových kódů pro náš framework.

Pro výslednou implementaci frameworku ve zkratce představujeme způsob reprezentace
některých konceptů a požadavky na uživatele tohoto frameworku. Zmiňujeme nedostatky
současné implementace a navrhujeme úpravy a vylepšení pro budoucí práce.
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Chapter 1

Introduction

Translation is an important part of the computer science world; all programming languages
have to be translated to machine instructions or to another interpreted language. Even
interpreted languages must first be translated to a form that a virtual machine can easily
execute. Many storage and serialization formats and various protocol adapters utilize
translation as well.

Many translation tools today are based on context-free grammars. They provide a formal
specification of the input context-free language, and there exist many algorithms that let us
parse the input string and determine whether it’s properly formed according to that grammar.
Most translation algorithms today only formally specify their input and create their output
informally by manually constructing syntax trees upon applying individual productions.
In other words, we often formally define what we translate, but leave the specification
of the output to the implementation.

In this thesis, we propose and implement a slightly different approach. We define and
use attribute translation grammars to formally define both input and output of translations.
This way, we are able to reason about the results we get when using modified versions
of known parsing algorithms that produce output defined by these grammars. Instead
of producing syntax trees based on productions we use, we directly translate our input
to a formally defined output. When we use this approach, we are free to use different parsing
algorithms without them affecting the design of the rest of our translation tools, since we
only need to process the output string. This brings a new set of challenges: we must be
able to define usable output formats and then be able to process them efficiently.

We focused our studies on existing parsing algorithms. LR bottom-up parsing represents
one of the most powerful approaches to parsing, and there exist many modifications of this
algorithms that are used by many existing tools. LR parsers are one of the least limiting
for grammar designers and are widely used today. In this thesis, we were able to design
an original LR parsing algorithm that is both powerful and memory efficient. We achieved
this by modifying the underlying automaton model that LR parsers use and by using this
new model to analyze and modify the automaton to create a minimal LR(1) parser.

This master’s thesis is a continuation of my bachelor’s thesis (see [17]), where some
of the concepts we’ll be looking at here were first introduced. Parts of the existing concepts
have already been covered in this thesis’ term project (see [18]). In this thesis, we design
an original minimal LR(1) parsing algorithm and an extension of translation grammars
for practical use. We also heavily modify the translation framework first implemented
for my bachelor’s thesis to implement the new translation algorithms and simplify its usage.
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In Chapter 2, we discuss some basic concepts from discrete math and language theory.
We introduce sets and relations, alphabets and languages, grammars and other language
generating and accepting devices. Some prior knowledge of these concepts is required for full
understanding of this thesis, as most of these concepts are introduced only briefly as formal
definitions.

In Chapter 3, we introduce existing parsing methods. We discuss top-down parsing
methods, namely recursive descent parsing and LL parsing. These parsing methods attempt
to parse the input by expanding nonterminals so that they recreate the input according
to the read symbols. We also take a look at bottom-up LR parsing. We examine existing
variants of LR parsing, such as canonical LR, LALR, and IELR parsing. We also discuss
conflict resolution methods for LR parsing algorithms and their importance for practical
parsing and we briefly examine the traditional construction of syntax trees and transfer-
ring attributes through these syntax trees. We briefly discuss the traditional approach
to translation using these parsing algorithms.

In Chapter 4, we introduce LSCELR parsing. LSCELR is an original minimal LR(1)
parsing algorithm conceptually based on the IELR algorithm. The originality of LSCELR
lies in its new automaton model. We explicitly track lookahead dependencies between
states and their items, which lets us directly reason about the properties of the automaton
without needing to perform additional analysis of the relationships between states. LSCELR
generates minimal LR(1) parsers by using this explicit lookahead source model for conflict
analysis and generating additional states. Like IELR, LSCELR can generate parsers for
ambiguous grammars with conflict resolution without changing the size of the accepted
language compared to canonical LR(1) parsers. The main advantage of LSCELR over IELR
is the transparency of the approach, making it potentially easier to understand and teach.
We also demonstrate how to obtain some traditional LR parsers using our new automaton
model.

In Chapter 5, we discuss translation grammars and their properties. We introduce them
as a model for formal translation and introduce algorithms for both top-down and bottom-up
translation based on well established parsing algorithms. We define attribute translation
grammars as an extension of translation grammars to formally define the relationships
between the input and output attributes in individual productions. This extension allows
us to use translation grammars in practical algorithms where we need to consider attributes
of input symbols in addition to their identity. We also discuss the properties of translation
grammars as language generation devices. By restricting the accepted output languages
of specific linear translation grammars, we are able to generate recursively enumerable
languages. We provide a proof of their language generation power by simulating queue
grammars.

Finally in Chapter 6, we design a translation framework based on translation grammars
and the original parsing algorithms introduced in Chapter 4. We define a language for de-
scribing attribute translation grammars. This will allow the users of our framework to define
translations conveniently. We demonstrate the differences between traditional context-free
grammar-based tools and the proposed approach to translation based on attribute translation
grammars. We propose a method of compressing LR parsing tables to reduce the space
requirements for representing parsing tables in memory. We discuss some implementation
details and the application program interface of the translation framework. We also provide
an overview of the tools implemented for this framework and we examine the approach
to translation using this framework by taking a closer look at the implementation of one
of its tools.
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Chapter 2

Preliminaries

This chapter reviews some basic concepts from set theory, discrete mathematics and formal
languages. This chapter also introduces the terminology used throughout this thesis and
introduces some formal language systems. This chapter is an extended version of Chapter 2
from [17].

2.1 Sets and Relations
This section reviews some basic ideas from set theory (see [10]).

Definition 2.1.1. A set Σ is a collection of elements taken from some universe. If Σ
contains a finite amount of elements, it is a finite set. A finite set is customarily specified
by listing its members: Σ = {𝑒1, 𝑒2, ..., 𝑒𝑛}, where 𝑒1 through 𝑒𝑛 are all members of Σ.
If Σ contains an infinite amount of elements, it is an infinite set. An infinite set is usually
specified by a predicate, 𝜋, so that it contains all elements which satisfy this property; this
is denoted by Σ = {𝑥 : 𝜋(𝑥)}. The set with zero elements is denoted by ∅ and is called
an empty set. {} = ∅. |Σ| is the cardinality of the set Σ. It is the number of elements in Σ.
If Σ contains an element 𝑎, we denote this by 𝑎 ∈ Σ and refer to 𝑎 as a member of Σ. If 𝑎 is
not in Σ, it is denoted by 𝑎 ̸∈ Σ. Let 𝐴 and 𝐵 be two sets. 𝐴 is a subset of 𝐵, symbolically
written 𝐴 ⊆ 𝐵, when each member of 𝐴 also belongs to 𝐵. 𝐴 is a proper subset, symbolically
𝐴 ⊂ 𝐵, when 𝐴 ⊆ 𝐵 and 𝐵 contains at least one element that doesn’t belong to 𝐴.
The union of 𝐴 and 𝐵, denoted by 𝐴 ∪𝐵, is defined as

𝐴 ∪𝐵 = {𝑥 : 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

The intersection of 𝐴 and 𝐵, denoted by 𝐴 ∩𝐵, is defined as

𝐴 ∩𝐵 = {𝑥 : 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

The difference of 𝐴 and 𝐵, denoted by 𝐴−𝐵, is defined as

𝐴−𝐵 = {𝑥 : 𝑥 ∈ 𝐴 ∧ 𝑥 ̸∈ 𝐵}

If Σ is a set over a universe 𝑈 , then its complement, denoted by Σ′, is defined as

Σ′ = 𝑈 − Σ

The power set of 𝐴, denoted by 2𝐴, is the set of all subsets of 𝐴.
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Definition 2.1.2. For two objects, 𝑎 and 𝑏, (𝑎, 𝑏) denotes the ordered pair consisting of 𝑎
and 𝑏, in this order.

Definition 2.1.3. Let 𝐴 and 𝐵 be two sets. The Cartesian product of 𝐴 and 𝐵, 𝐴×𝐵, is
defined as

𝐴×𝐵 = {(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

Definition 2.1.4. Let 𝐴 and 𝐵 be two sets. Any subset 𝜌 ⊆ 𝐴×𝐵 is a binary relation or,
briefly, relation. If 𝜌 represents a finite set, it is a finite relation. If 𝜌 represents an infinite
set, it is an infinite relation. To express that (𝑎, 𝑏) ∈ 𝜌, we usually write 𝑎𝜌𝑏. Let 𝐴 be a set,
𝑎, 𝑏 ∈ 𝐴, and the relation 𝜌 ⊆ 𝐴×𝐴. For 𝑘 ≥ 1, the k-fold product of 𝜌, 𝜌𝑘, is recursively
defined as

∙ 𝑎𝜌0𝑏 if 𝑎 = 𝑏

∙ 𝑎𝜌1𝑏 if 𝑎𝜌𝑏

∙ 𝑎𝜌𝑘𝑏 if there exists 𝑐 ∈ 𝐴 such that 𝑎𝜌𝑐 and 𝑐𝜌𝑘−1𝑏 for 𝑘 ≥ 2.

The transitive closure of 𝜌, 𝜌+, is defined as 𝑎𝜌+𝑐 only if 𝑎𝜌𝑘𝑏 for some 𝑘 ≥ 1. The reflexive
and transitive closure of 𝜌, 𝜌*, is defined as 𝑎𝜌*𝑏 only if 𝑎 = 𝑏 or 𝑎𝜌+𝑏.

Definition 2.1.5 (page 3 in [9]). A function from 𝐴 to 𝐵, denoted as 𝑓 : 𝐴 → 𝐵, is
a relation 𝑓 ⊆ 𝐴 × 𝐵 such that for any 𝑎 ∈ 𝐴, |{𝑏 : (𝑎, 𝑏) ∈ 𝑓}| ≤ 1. If (𝑎, 𝑏) ∈ 𝑓 , then
𝑓(𝑎) denotes 𝑏.

2.2 Alphabets and Languages
This section reviews some basic ideas from language theory (see [10]).

Definition 2.2.1. An Alphabet Σ is a finite nonempty set, whose members are called
symbols.

Definition 2.2.2. A finite sequence of symbols from Σ is a string over Σ. 𝜀 denotes
an empty string; the string consisting of zero symbols. By Σ* we denote the set of all
strings over Σ. Σ+ = Σ* − {𝜀}. Let 𝑥, 𝑦 ∈ Σ*. |𝑥| denotes the length of 𝑥: how many
symbols in sequence there are in 𝑥. Σ𝑛 denotes {𝑧 ∈ Σ* : |𝑧| = 𝑛}. When 𝑥 = 𝑎𝑦𝑏, where
𝑥, 𝑎, 𝑏, 𝑦 ∈ Σ*, then 𝑦 is a substring of 𝑥. 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑥, 𝑦) is true when 𝑦 is a substring of 𝑥.
𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 𝑛) denotes the nth leftmost symbol of the string 𝑥. 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 1) is the first symbol
of the string; if 𝑖 > |𝑥|, 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 𝑖) = 𝜀. 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, |𝑥|) is the last symbol in the string. Let
𝑥 ∈ Σ*, 𝑦 ∈ Σ. 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑥, 𝑦) is the number of occurences of 𝑦 in 𝑥. It is the number
of times the symbol 𝑦 is in the string 𝑥.

Definition 2.2.3. A language over Σ is any subset 𝐿 ⊆ Σ*. When 𝐿 represents a finite set
of strings, it is a finite language. When it represents an infinite set of strings, it is an infinite
language.

Definition 2.2.4. Let 𝑥, 𝑦 ∈ Σ* and 𝐿,𝐾 be two languages over Σ. The concatenation
of 𝑥 with 𝑦, denoted by 𝑥𝑦, is the string obtained by appending 𝑦 to 𝑥. For every 𝑥 ∈ Σ*,
𝑥 = 𝑥𝜀 = 𝜀𝑥. The concatenation of 𝐿 with 𝐾, denoted as 𝐿𝐾, is defined as

𝐿𝐾 = {𝑥𝑦 : 𝑥 ∈ 𝐿, 𝑦 ∈ 𝐾}
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Definition 2.2.5. The reversal of 𝑥, denoted by 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥), is 𝑥 written in the reverse
order. The reversal of 𝐿, denoted by 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝐿), is defined as

𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝐿) = {𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥) : 𝑥 ∈ 𝐿}

Definition 2.2.6. Throughout this thesis, 𝐷 denotes Dyck’s language defined as

𝐷 = {𝑣𝑤 : 𝑣 ∈ {0, 1}*, 𝑤 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑣)}

This thesis doesn’t examine the properties of Dyck’s languages; this rudimentary definition
is sufficient for the purposes of this thesis. For a more rigorous definition, see page 603 of [8].

2.3 Grammars
Finite languages can be defined by listing all their components. Infinite languages, however,
are impossible to define by enumeration. To define both finite and infinite languages, we
introduce grammars. Grammars are devices that generate languages and play a major role
in formal language theory. The following definitions are cited from [14], except where noted
otherwise.

Definition 2.3.1. A phrase-structure grammar is a quadruple

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

where

∙ 𝑁 is an alphabet of nonterminals

∙ 𝑇 is an alphabet of terminals such that 𝑁 ∩ 𝑇 = ∅

∙ 𝑃 is a finite relation from (𝑁 ∪ 𝑇 )*𝑁(𝑁 ∪ 𝑇 )* to (𝑁 ∪ 𝑇 )*

∙ 𝑆 is the start symbol

Pairs (𝑢, 𝑣) ∈ 𝑃 are called rewriting rules or productions, and are written as 𝑢 → 𝑣.
The direct derivation relation over (𝑁 ∪ 𝑇 )* is denoted by ⇒𝐺 and is defined as

𝑥 ⇒𝐺 𝑦

only if 𝑥 = 𝑥1𝑢𝑥2, 𝑦 = 𝑥1𝑣𝑥2, and 𝑢 → 𝑣 ∈ 𝑃 , where 𝑥1, 𝑥2 ∈ (𝑁 ∪ 𝑇 )*. The relation ⇒𝐺

is often denoted by ⇒ where no ambiguity rises. Let 𝑆 ⇒* 𝑥, 𝑥 ∈ (𝑁 ∪ 𝑇 )*. Then, 𝑥 is
a sentential form. If 𝑥 ∈ 𝑇 *, then 𝑥 is a sentence. If 𝑥 is is a sentence, then 𝑆 ⇒* 𝑥 is
a successful derivation. We can explicitly denote the production or series of productions
by writing 𝑥 [𝑝1𝑝2...𝑝𝑛] ⇒* 𝑦.
The language of G, denoted by 𝐿(𝐺), is the set of all sentences defined as

𝐿(𝐺) = {𝑤 ∈ 𝑇 * : 𝑆 ⇒*
𝐺 𝑤}

Definition 2.3.2. A recursively enumerable language is a language generated by a phrase-
structure grammar. The family of recursively enumerable languages is denoted by RE.
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Definition 2.3.3. A context-sensitive grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

such that every 𝑢 → 𝑣 ∈ 𝑃 is of the form 𝑢 = 𝑥1𝐴𝑥2, 𝑣 = 𝑥1𝑦𝑥2, where 𝑥1, 𝑥2 ∈ (𝑁 ∪ 𝑇 )*,
𝐴 ∈ 𝑁 , and 𝑦 ∈ (𝑁 ∪ 𝑇 )+.

Definition 2.3.4. A context-sensitive language is a language generated by a context-sensitive
grammar. The family of context-sensitive languages is denoted by CS.

Definition 2.3.5. A context-free grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

such that every rule in 𝑃 is of the form 𝐴 → 𝑥, where 𝐴 ∈ 𝑁 and 𝑥 ∈ (𝑁 ∪ 𝑇 )*.

Definition 2.3.6. A context-free language is a language generated by a context-free grammar.
The family of context-free languages is denoted by CF.

Definition 2.3.7. A linear grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

such that every rule in 𝑃 is of the form 𝐴 → 𝑥 or 𝐴 → 𝑥𝐵𝑦, where 𝐴,𝐵 ∈ 𝑁 and 𝑥, 𝑦 ∈ 𝑇 *.

Definition 2.3.8. A linear language is a language generated by a linear grammar. The family
of linear languages is denoted by LIN.

Definition 2.3.9. A regular grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

such that every rule in 𝑃 is of the form 𝐴 → 𝑎𝐵 or 𝐴 → 𝐵, where 𝐴,𝐵 ∈ 𝑁 and 𝑎 ∈ 𝑇 .

Definition 2.3.10. A regular language is a language generated by a regular grammar.
The family of regular languages is denoted by REG.

Theorem 2.3.11 (Chomsky hierarchy, see [3]).

REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE

Definition 2.3.12 (page 20 of [13]). A queue grammar is a sextuple

𝑄 = (𝑉, 𝑇,𝑊,𝐹,𝑅, 𝑔)

where

∙ 𝑉 is an alphabet of nonterminals and terminals

∙ 𝑇 ⊂ 𝑉 is an alphabet of terminals

∙ 𝑊 is an alphabet of states. 𝑉 ∩𝑊 = ∅

∙ 𝐹 ⊂ 𝑊 is a set of final states

∙ 𝑅 ⊆ (𝑉 × (𝑊 − 𝐹 )) × (𝑉 * ×𝑊 ) is a finite relation
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∙ 𝑔 ∈ (𝑉 − 𝑇 )(𝑊 − 𝐹 ) is the starting pair of symbols

If 𝑢 = 𝑎𝑟𝑏, 𝑣 = 𝑟𝑥𝑐, and ((𝑎, 𝑏), (𝑥, 𝑐)) ∈ 𝑅, where 𝑟, 𝑥 ∈ 𝑉 *, 𝑎 ∈ 𝑉 , and 𝑏, 𝑐 ∈ 𝑊 , then Q
makes a derivation step 𝑢 ⇒ 𝑣 according to ((𝑎, 𝑏), (𝑥, 𝑐)) — usually denoted as (𝑎, 𝑏, 𝑥, 𝑐)
for brevity.
The language generated by a queue grammar 𝑄, denoted by 𝐿(𝑄), is defined as

𝐿(𝑄) = {𝑥 : 𝑥 ∈ 𝑇 *, 𝑔 ⇒*
𝑄 𝑥𝑓, 𝑓 ∈ 𝐹}

Queue grammars characterize the family of RE.

2.4 Automata
In this section, we define automata. Automata are devices that recognise strings in a given
language. They are typically used to accept languages generated by grammars.

Definition 2.4.1 (see [14]). A finite state automaton is a quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 )

where

∙ 𝑄 is a finite set of states

∙ Σ is an input alphabet

∙ 𝑅 ⊆ (𝑄× (Σ ∪ {𝜀})) ×𝑄 is the set of rules or transitions

∙ 𝑠 ∈ 𝑄 is the start state

∙ 𝐹 ⊆ 𝑄 is the set of final states

Instead of ((𝑝, 𝑦), 𝑞) ∈ 𝑅, we write 𝑝𝑦 → 𝑞 ∈ 𝑅. If 𝑦 = 𝜀, we write 𝑝 → 𝑞 ∈ 𝑅. A configuration
of 𝑀 is any string from 𝑄Σ*. The relation of a move, symbolically denoted by ⊢𝑀 (or ⊢
where no ambiguity rises), is defined over 𝑄Σ* as follows:

𝑝𝑦𝑥 ⊢ 𝑞𝑥

only if 𝑦 ∈ (Σ ∪ {𝜀}), 𝑝𝑦𝑥, 𝑞𝑥 ∈ 𝑄Σ* and 𝑝𝑦 → 𝑞 ∈ 𝑅.
The language of 𝑀 is defined as

𝐿(𝑀) = {𝑤 ∈ Σ* : 𝑠𝑤 ⊢* 𝑓, 𝑓 ∈ 𝐹}

Finite state automata characterize the family of REG.

Definition 2.4.2 (see [14]). A pushdown automaton is a septuple

𝑀 = (𝑄,Σ, 𝜏, 𝑅, 𝑠, 𝑆, 𝐹 )

where

∙ 𝑄, Σ, 𝑠 and 𝐹 are defined as in a finite automaton

∙ 𝜏 is a pushdown alphabet
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∙ 𝑅 ⊆ (𝜏 ×𝑄× (Σ ∪ {𝜀})) × (𝜏* ×𝑄) is the set of rules of transitions

∙ 𝑆 is the initial pushdown symbol

𝑄 and (Σ ∪ 𝜏) are always assumed to be disjoint. Instead of ((𝑎, 𝑏, 𝑐), (𝑑, 𝑒)) ∈ 𝑅, we write
𝑎𝑏𝑐 → 𝑑𝑒. The configuration of 𝑀 is any string from 𝜏*𝑄Σ*. The relation of a move,
denoted by ⊢𝑀 or ⊢, is defined as

𝑥𝑣𝑝𝑎𝑦 ⊢ 𝑥𝑤𝑞𝑦

where 𝑥,𝑤 ∈ 𝜏*, 𝑣 ∈ 𝜏 , 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ (Σ ∪ {𝜀}), 𝑦 ∈ Σ* and 𝑣𝑝𝑎 → 𝑤𝑞 ∈ 𝑅.
The language accepted by M empty pushdown is defined as

𝐿(𝑀) = {𝑥 ∈ Σ* : 𝑆𝑠𝑥 ⊢* 𝑓, 𝑓 ∈ 𝑄}

The language accepted by M final state is defined as

𝐿(𝑀) = {𝑥 ∈ Σ* : 𝑆𝑠𝑥 ⊢* 𝑍𝑓,𝑍 ∈ 𝜏*, 𝑓 ∈ 𝐹}

The language accepted by M empty pushdown and final state is defined as

𝐿(𝑀) = {𝑥 ∈ Σ* : 𝑆𝑠𝑥 ⊢* 𝑓, 𝑓 ∈ 𝐹}

Pushdown automata define the family of CF.

Definition 2.4.3. A two-stack pushdown automaton (or 2PDA) is a pushdown automaton
with two stacks. A two-stack pushdown automaton 𝑀 is an octuple

𝑀 = (𝑄,Σ, 𝜏, 𝑅, 𝑠, 𝑆𝐼 , 𝑆𝑂, 𝐹 )

where

∙ 𝑄, Σ, 𝑠, 𝐹 and 𝜏 are defined as in a pushdown automaton

∙ 𝑅 ⊆ 𝜏 × 𝜏 ×𝑄× (Σ ∪ {𝜀}) × 𝜏* × 𝜏* ×𝑄 is the set of rules or transitions

∙ 𝑆𝐼 is the initial input pushdown symbol

∙ 𝑆𝑂 is the initial output pushdown symbol

Instead of ((𝑎𝑖, 𝑎𝑜, 𝑏, 𝑐), (𝑑𝑖, 𝑑𝑜, 𝑒)) ∈ 𝑅, we write

𝑎𝑖|𝑎𝑜𝑏𝑐 → 𝑑𝑖|𝑑𝑜𝑒 ∈ 𝑅

where | ̸∈ (𝑄 ∪ Σ ∪ 𝜏) is a special symbol denoting the border between the two stacks.
The configuration of 𝑀 is any string from 𝜏*|𝜏*𝑄Σ*. The relation of a move, denoted by ⊢𝑀

or ⊢, is defined as
𝑠𝑖𝑖|𝑠𝑜𝑜𝑝𝑎𝑦 ⊢ 𝑠𝑖𝐼|𝑠𝑜𝑂𝑞𝑦

where 𝑖, 𝑜 ∈ 𝜏 , 𝑠𝑖, 𝑠𝑜, 𝐼, 𝑂 ∈ 𝜏*, 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ (Σ ∪ {𝜀}), 𝑦 ∈ Σ* and 𝑖|𝑜𝑝𝑎 → 𝐼|𝑂𝑞 ∈ 𝑅.
The language accepted by M final state is defined as

{𝑥 ∈ Σ* : 𝑆𝐼 |𝑆𝑂𝑠𝑥 ⊢* 𝑠𝑖|𝑠𝑜𝑓, 𝑠𝑖, 𝑠𝑜 ∈ 𝜏*, 𝑓 ∈ 𝐹}

The language accepted by M empty input pushdown is defined as

{𝑥 ∈ Σ* : 𝑆𝐼 |𝑆𝑂𝑠𝑥 ⊢* |𝑠𝑜𝑓, 𝑠𝑜 ∈ 𝜏*, 𝑓 ∈ 𝑄}

The language accepted by M empty input pushdown and final state is defined as

{𝑥 ∈ Σ* : 𝑆𝐼 |𝑆𝑂𝑠𝑥 ⊢* |𝑠𝑜𝑓, 𝑠𝑜 ∈ 𝜏*, 𝑓 ∈ 𝐹}
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2.5 More Definitions
Grammars and automata may not always be convenient in written text to express some
ideas. This section describes some convenient ways to define languages instead of grammars
or automata.

Definition 2.5.1. Regular expressions define the family of REG. Quoting verbatim
from [10], they are recursively defined as follows:

1. ∅ is a regular expression denoting the empty set.

2. 𝜀 is a regular expression denoting {𝜀}.

3. 𝑎, where 𝑎 ∈ Σ, is a regular expression denoting {𝑎}.

4. if 𝑟 and 𝑠 are regular expressions denoting the languages 𝑅 and 𝑆, respectively, then

(a) (𝑟𝑠) is the regular expression denoting 𝑅𝑆.
(b) (𝑟 + 𝑠) is the regular expression denoting 𝑅 ∪ 𝑆.
(c) (𝑟*) is the regular expression denoting 𝑅*.

Parentheses are omitted when no ambiguity arises. For convenience, we also introduce
the repetition operator: for a regular expression 𝑟 denoting the language 𝑅, 𝑟𝑛∈N denotes
𝑅𝑛.
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Chapter 3

Parsing

In this chapter, we discuss existing parsing methods. We discuss both top-down and
bottom-up parsing algorithms in detail. We take a look at variations of the LR parsing
algorithm and review their properties. We discuss conflict resolution in LR parsers and we
describe a common method used in practical parsing tools such as GNU Bison. The contents
of this chapter were already covered in [18] and most of its contents, with the exception
of conflict resolution, are quoted from there.

3.1 Context-free grammars
Parsing methods introduced in this chapter typically work with a subset of context-free
grammars. Here, we introduce some additional concepts that will help us talk about
context-free grammars in the context of parsing.

Definition 3.1.1. For any context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) and a series of productions
𝑎 ∈ 𝑃 *, we can construct a parse tree. Intuitively, it is a tree where its nodes are terminals
and nonterminals, and each symbol’s parent node is the nonterminal of the production it
was added in.

S

a S

c d

b

Figure 3.1: The parse tree of 𝑆 ⇒ 𝑎𝑆𝑏 ⇒ 𝑎𝑐𝑑𝑏

Figure 3.1 shows a parse tree for a context-free grammar

𝐺 = ({𝑆}, {𝑎, 𝑏, 𝑐, 𝑑}, {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝑐𝑑}, 𝑆)

Each non-leaf node is a nonterminal, and all leaf nodes are terminals.

Definition 3.1.2 (Definition 3.4 in [9]). Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar.
A leftmost derivation over (𝑁 ∪ 𝑇 )* is denoted by ⇒𝑙𝑚

𝐺 and is defined as

𝑥1𝑢𝑥2 ⇒𝑙𝑚
𝐺 𝑥1𝑣𝑥2
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only if 𝑢 → 𝑣 ∈ 𝑃 , where 𝑥1 ∈ 𝑇 * and 𝑥2 ∈ (𝑁 ∪ 𝑇 )*. A sequence of productions 𝛼 ∈ 𝑃+

such that 𝑆 [𝛼] ⇒𝑙𝑚* 𝑡, where 𝑡 ∈ 𝐿(𝐺) is a sentence, is called a left parse of 𝐺. A rightmost
derivation over (𝑁 ∪ 𝑇 )* is denoted by ⇒𝑟𝑚

𝐺 and is defined as

𝑥1𝑢𝑥2 ⇒𝑟𝑚
𝐺 𝑥1𝑣𝑥2

only if 𝑢 → 𝑣 ∈ 𝑃 , where 𝑥1 ∈ (𝑁 ∪ 𝑇 )* and 𝑥2 ∈ 𝑇 *. A sequence of productions 𝛼 ∈ 𝑃+

such that 𝑆 [𝛼] ⇒𝑟𝑚* 𝑡, where 𝑡 ∈ 𝐿(𝐺) is a sentence, is called a right parse of 𝐺.

Definition 3.1.3 (Definition 3.6 in [9]). Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar. 𝐺 is ambiguous
if there exists a sentence 𝑤 ∈ 𝐿(𝐺) and two different sequences 𝑎, 𝑏 ∈ 𝑃+, 𝑎 ̸= 𝑏, such that
𝑆 [𝑎] ⇒𝑙𝑚* 𝑤 and 𝑆 [𝑏] ⇒𝑙𝑚* 𝑤. It is unambiguous otherwise.

Definition 3.1.4. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. An augmented context-
free grammar is a context-free grammar

𝐺′ = (𝑁 ∪ {𝑆′}, 𝑇 ∪ {$}, 𝑃 ∪ {𝑆′ → 𝑆$}, 𝑆′)

where 𝑆′ ̸∈ 𝑁 , $ ̸∈ 𝑇 and $ is the end of input symbol. Augmented grammars generate
the same language as the grammar they were created from, but each sentence has the special
end of input symbol $ appended to it.

3.2 Predictive sets
Both top-down and bottom-up parsing algorithms use two predictive sets first and follow
associated with a context-free grammar 𝐺. The definitions, algorithms and procedures
introduced here are cited from [10].

Definition 3.2.1. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. For every string
𝑥 ∈ (𝑁 ∪ 𝑇 )*,

𝑓𝑖𝑟𝑠𝑡(𝑥) = {𝑎 : 𝑥 ⇒* 𝑎𝑤, (𝑤 ∈ (𝑁 ∪ 𝑇 )*, 𝑎 ∈ 𝑇 ∨ 𝑎 = 𝑎𝑤 = 𝜀)}

If 𝑥 ⇒* 𝜀, where 𝑥 ∈ (𝑁 ∪ 𝑇 )*, then 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑥); as a special case, for 𝑥 = 𝜀,
𝑓𝑖𝑟𝑠𝑡(𝑥) = {𝜀}.

The set 𝑓𝑖𝑟𝑠𝑡(𝑥) is the predictive set of terminals or 𝜀 that can be the first symbol
in a sentential form derived from 𝑥. This predictive set will be used later for the construction
of other predictive sets. Algorithm 3.1 creates 𝑓𝑖𝑟𝑠𝑡(𝑥) for every 𝑥 ∈ 𝑁 ∪𝑇 ∪{𝜀}. Algorithm
3.2 creates 𝑓𝑖𝑟𝑠𝑡(𝑥) for any string 𝑥 ∈ (𝑁∪𝑇 )* when 𝑓𝑖𝑟𝑠𝑡(𝑦) is known for all 𝑦 ∈ 𝑁∪𝑇∪{𝜀}.

Definition 3.2.2. For every nonterminal 𝑋, we define the set 𝑓𝑜𝑙𝑙𝑜𝑤:

𝑓𝑜𝑙𝑙𝑜𝑤(𝑋) = {𝑥 ∈ 𝑇 : 𝑋𝑥 is a substring of a sentential form of G}

For every nonterminal 𝑁 , the predictive set follow(𝑁) contains all terminals that may follow
the nonterminal 𝑁 in a sentential form.

Algorithm 3.3 creates follow for every nonterminal in the translation grammar 𝐺. We add
symbols following nonterminals in productions to their follow sets until no more modifications
are possible.
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Algorithm 3.1 first (based on [12] and [10])
Input: context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆)
Output: set 𝑓𝑖𝑟𝑠𝑡(𝑥) for each 𝑥 ∈ 𝑁 ∪ 𝑇 ∪ {𝜀}

for all 𝑥 ∈ 𝑁 do
𝑓𝑖𝑟𝑠𝑡(𝑥) := ∅

for all 𝑥 ∈ 𝑇 do
𝑓𝑖𝑟𝑠𝑡(𝑥) := {𝑥}

𝑓𝑖𝑟𝑠𝑡(𝜀) := {𝜀}
repeat

for all 𝐴 → 𝑖 ∈ 𝑃 do
Add all symbols from 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑖, 1)) to 𝑓𝑖𝑟𝑠𝑡(𝐴)
if 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑖, 𝑛)) for 𝑛 = 1, . . . , 𝑘 − 1 where 𝑘 ≤ |𝑖| + 1 then

Add all symbols from 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑖, 𝑘)) to 𝑓𝑖𝑟𝑠𝑡(𝐴)

until no change

Algorithm 3.2 string first (based on [12])
Input: context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), string 𝑥 ∈ (𝑁 ∪ 𝑇 )*, 𝑓𝑖𝑟𝑠𝑡(𝑋) for every
𝑋 ∈ 𝑁 ∪ 𝑇 ∪ {𝜀}

Output: set 𝑓𝑖𝑟𝑠𝑡(𝑥)
𝑓𝑖𝑟𝑠𝑡(𝑥) := 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 1))
if 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 𝑛) for 𝑛 = 1, . . . , 𝑘 − 1 where 𝑘 ≤ |𝑥| then

Add all symbols from 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 𝑘)) − {𝜀} to 𝑓𝑖𝑟𝑠𝑡(𝑥)

if 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑠𝑦𝑚𝑏𝑜𝑙(𝑥, 𝑛) for 𝑛 = 1, . . . , |𝑥| then
Add all 𝜀 to 𝑓𝑖𝑟𝑠𝑡(𝑥)

3.3 Top-Down Parsing
Top-down parsing can be viewed as the problem of constructing a parse tree for the input
string (see [1]), starting from the root nonterminal. We are constructing the series of rules
in a left-most derivation of the input string.

3.3.1 Recursive Descent

A recursive-descent parsing program consists of a set of procedures, one for each nonterminal.
Execution begins with the procedure for the start symbol, which halts and announces
success if its procedure body scans the entire input string. General recursive-descent parsers
may need to implement backtracking to scan over the input multiple times, but this is not
necessary for most programming language constructs (see page 219 of [1]).

The idea for recursive-descent parsers is manually implementing the parser to avoid
tables and an explicit pushdown. Instead, the pushdown is simulated by the programming
language’s recursion mechanism, and the selection of productions to apply is left to the pro-
grammer. This may, of course, result in differences from the context-free grammar if there
are errors or deliberate differences in the implementation.

The main disadvantage of recursive-descent parsers is the need to manually rewrite
the individual procedures whenever the grammar is changed; this means that the resulting
parser is less flexible than parsers with generated tables. Since implementing recursive
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Algorithm 3.3 follow (based on [12] and [10])
Input: context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) and 𝑓𝑖𝑟𝑠𝑡(𝑥) for each 𝑥 ∈ 𝑁 ∪ 𝑇 ∪ {𝜀}.
Output: 𝑓𝑜𝑙𝑙𝑜𝑤(𝑥) for each 𝑥 ∈ 𝑁
Require: $ ̸∈ 𝑁 ∪ 𝑇

𝑓𝑜𝑙𝑙𝑜𝑤(𝑆) := {$}
repeat

for all 𝑎𝐵𝑦, where 𝐴 → 𝑎𝐵𝑦 ∈ 𝑃 , 𝑎, 𝑦 ∈ (𝑁 ∪ 𝑇 )*, 𝐵 ∈ 𝑁 do
if 𝑦 ̸= 𝜀 then

Add all symbols from 𝑓𝑖𝑟𝑠𝑡(𝑦) − {𝜀} to 𝑓𝑜𝑙𝑙𝑜𝑤(𝐵)

if 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑦) then
Add all symbols from 𝑓𝑜𝑙𝑙𝑜𝑤(𝐴) to 𝑓𝑜𝑙𝑙𝑜𝑤(𝐵)

until no change

descent parsers does not generally benefit from using any parsing frameworks, we will not
discuss them further.

3.3.2 LL(1) Parsing

LL(1) parsing is a table method for top-down parsing. We construct a table which lets us
decide which leftmost production is possible based on a single lookahead symbol. The first
L stands for a left-to-right scan of symbols and the other L stands for leftmost derivation.
Definition 3.3.1. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. The predict set (see [10])
is defined for every 𝑎 = 𝐴 → 𝑖 ∈ 𝑃 as

1. If 𝜀 ̸∈ 𝑓𝑖𝑟𝑠𝑡(𝑖), then 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑎) = 𝑓𝑖𝑟𝑠𝑡(𝑖)

2. If 𝜀 ∈ 𝑓𝑖𝑟𝑠𝑡(𝑖), then 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑎) = (𝑓𝑖𝑟𝑠𝑡(𝑖) − {𝜀}) ∪ 𝑓𝑜𝑙𝑙𝑜𝑤(𝐴)

The predictive set predict is the set of all terminals that may be the leftmost generated
symbol if we apply the production 𝑎 to the leftmost nonterminal. That is, for all

𝑥𝐴𝑞 [𝑎𝛼] ⇒𝑙𝑚* 𝑥𝐵

where 𝑥,𝐵 ∈ 𝑇 *, 𝐴 ∈ 𝑁 , 𝑞 ∈ (𝑁 ∪ 𝑇 )*, and 𝑎 = 𝐴 → 𝑖 ∈ 𝑃 is the first production used
in the derivation, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑎) is the set of all terminals 𝑡 such that 𝑡 is the first symbol of 𝐵.
Definition 3.3.2. A context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) is an LL(1) context-free gram-
mar if for each 𝐴 ∈ 𝑁 , any two different productions 𝑝 = 𝐴 → 𝑥, 𝑞 = 𝐴 → 𝑦, satisfy
𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑝) ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑞) = ∅.

Next, we introduce a predictive table. This table determines a production for each
pair of nonterminal and terminal. In predictive top-down parsing, this table determines
the production that is used for nonterminal expansion. Algorithm 3.4 shows the construction
of this table.

Algorithm 3.5 describes the predictive top-down parsing method. This method is based
on Algorithm 7.17 from [10]. The contents of the stack 𝑖𝑝𝑑 is written head-first; the first
symbol is the symbol on top of the stack. In addition to regular stack functionality (POP,
removing the top element from the stack and PUSH ), both stacks support the operation
REPLACE. REPLACE(𝑛, 𝑥) replaces the symbol 𝑛 closest to the top of the stack with
the string 𝑥. The first symbol in 𝑥 will be closest to the top of the stack. This behavior can
be achieved with a stack with only PUSH and POP, but we introduce REPLACE for brevity.
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Algorithm 3.4 Constructing a predictive table
Input: LL(1) context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥) for each 𝑥 ∈ 𝑃
Output: predictive table 𝛼

for all 𝑡 ∈ 𝑇 ∪ {$}, 𝑛 ∈ 𝑁 do
𝛼(𝑛, 𝑡) := 𝑛𝑢𝑙𝑙

for all 𝑦 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥) for each 𝑥 = 𝐴 → 𝑖 ∈ 𝑃 do
𝛼(𝐴, 𝑦) := 𝑥

Algorithm 3.5 Predictive top-down parsing (see algorithm 7.17 in [10])
Input: an augmented context-free grammar 𝐺 = (𝑁 ∪ {𝑆′}, 𝑇 ∪ {$}, 𝑃 ∪ {𝑆′ → 𝑆$}, 𝑆′),

its predictive table 𝛼 and the input string 𝑥$, where 𝑥 ∈ (𝑇 − {$})*

Output: SUCCESS or ERROR
𝑖𝑝𝑑 := 𝑆$
𝑛 := 1
repeat

let 𝑋 denote the current 𝑖𝑝𝑑 top symbol
let 𝑡 be the 𝑛th symbol in the input string
switch X:

case 𝑋 = $:
if 𝑡 = $ then SUCCESS, else ERROR

case 𝑋 ∈ 𝑇 :
if 𝑡 = 𝑋 then increment 𝑛 and POP 𝑖𝑝𝑑, else ERROR

case 𝑋 ∈ 𝑁 :
if 𝛼(𝑋, 𝑡) = 𝑛𝑢𝑙𝑙 then

ERROR
else

𝛼(𝑋, 𝑡) = 𝑋 → 𝑖
REPLACE(𝑋, 𝑖) in 𝑖𝑝𝑑

until SUCCESS or ERROR

3.4 Bottom-up Parsing
Bottom-up parsing takes the opposite approach in comparison to top-down parsing; the parse
tree is constructed starting from the terminals, reaching the top starting nonterminal at
the very end. Although there exist simpler bottom-up parsing algorithms (e.g. precedence
parsing, see page 159 in [9]), we will focus on the LR family of parsing algorithms. We will
introduce SLR parsing, canonical LR(1) parsing, LALR parsing, and finally IELR parsing.
Each subsequent algorithm makes heavy use of the concepts used in the previous algorithms.
We assume all context-free grammars are augmented, and we will always append the end
of input symbol $ to the end of each input string.

3.4.1 LR parsing

The LR parsing algorithm is the same for all algorithms below; where they differ is in the con-
struction of the action and goto tables. The action table contains a parser action (shift 𝑠,
reduce 𝑋 → 𝑌 , success, or error) for each pair of state and terminal. The goto table contains
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Algorithm 3.6 LR parsing (see page 251 in [1])
Input: action and goto tables, an input string 𝑤$
Output: a reversed rightmost parse of the input string or ERROR

𝑠0 is the contents of the stack (𝑠0 is the initial state)
let 𝑎 be the first symbol of input 𝑤$
while true do

let 𝑠 be the state on top of the stack
if 𝑎𝑐𝑡𝑖𝑜𝑛[𝑠, 𝑎] = shift 𝑡 then

push 𝑡 onto the stack
let 𝑎 be the next input symbol

else if 𝑎𝑐𝑡𝑖𝑜𝑛[𝑠, 𝑎] = reduce 𝐴 → 𝐵 then
pop |𝐵| symbols off the stack
let state 𝑡 now be on top of the stack
push 𝑔𝑜𝑡𝑜[𝑡, 𝐴] onto the stack
output the production 𝐴 → 𝐵

else if 𝑎𝑐𝑡𝑖𝑜𝑛[𝑠, 𝑎] = accept then
break (parsing is done)

else
return ERROR (or error recovery)

either a state or nothing for each pair of state and nonterminal. The parsing method is
shown in Algorithm 3.6.

3.4.2 SLR Parsing

SLR parsing is the simplest LR parsing method, and is thus a good starting point for studying
LR parsing.

First, we will introduce LR(0) tables and LR(0) automata as introduced in [1]. An LR
parser makes shift-reduce decisions by maintaining states to track where we are in a parse.
Every state is a collection of items.

Definition 3.4.1. An LR(0) item is a rule from a context-free grammar 𝐺 with a dot at
some position of the body. For example, a production 𝐴 → 𝑏𝐶 yields three items 𝐴 → ·𝑏𝐶,
𝐴 → 𝑏·𝐶 and 𝐴 → 𝑏𝐶·.

Algorithm 3.7 closure (see page 245 in [1])
Input: a set of items 𝐼
Output: a set of items 𝑂
𝑂 := 𝐼
repeat

for all items 𝐴 → 𝛼·𝐵𝛽 in 𝑂 (where 𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇 )*) do
for all rules 𝐵 → 𝑋 ∈ 𝑃 (where 𝑋 ∈ (𝑁 ∪ 𝑇 )*) do

add 𝐵 → ·𝑋 to 𝑂
until no more items are added in an iteration

Definition 3.4.2. A closure of a set of items 𝐼 is constructed in the way described
in Algorithm 3.7. If the dot symbol is in front of a nonterminal in one of the items,
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all rules where that nonterminal is on the left-hand side are added to the closure set with
the dot before the first symbol on the right-hand side. This is repeated until there are no
more changes.

Definition 3.4.3. The goto function is constructed in the following way: 𝑔𝑜𝑡𝑜(𝐼,𝑋) is
the closure of all items 𝐴 → 𝛼𝑋·𝛽 such that 𝐴 → 𝛼·𝑋𝛽 ∈ 𝐼.

Algorithm 3.8 LR(0) automaton (see page 246 in [1])
Input: An augmented grammar 𝐺
Output: A LR(0) automaton (𝐶,𝐸)
𝐶 := 𝑐𝑙𝑜𝑠𝑢𝑟𝑒({𝑆′ → ·𝑆$}). This first state is stored as 𝐼0.
𝐸 := ∅
repeat

for all sets of items 𝐼 in 𝐶 do
for all symbols 𝑋 ∈ 𝑁 ∪ 𝑇 ∪ {$} do

if 𝑔𝑜𝑡𝑜(𝐼,𝑋) is not empty then
if 𝑔𝑜𝑡𝑜(𝐼,𝑋) is not in 𝐶 then

add 𝑔𝑜𝑡𝑜(𝐼,𝑋) to 𝐶

insert 𝐼
𝑋−→ 𝑔𝑜𝑡𝑜(𝐼,𝑋) to 𝐸

until no new sets of items are added to C in an iteration

We start constructing the parsing tables by generating an LR(0) automaton. An LR(0)
automaton is a graph, where nodes are sets of items and edges are marked with the symbol
that has been recognized. The construction of an LR(0) automaton is described in Algo-
rithm 3.8. The initial state is the closure of the initial item 𝑆′ → ·𝑆$. Then, from each
state, the dot is moved over each symbol in the state and new states are created this way.
If (𝑆1, 𝑆2) is an edge over the symbol 𝑋, we denote this by 𝑆1

𝑋−→ 𝑆2. If 𝑎𝑏𝑐 is a series
of symbols, we may denote a series of transitions 𝑆1

𝑎−→ 𝑆2
𝑏−→ 𝑆3

𝑐−→ 𝑆4 as 𝑆1
𝑎𝑏𝑐−−→ 𝑆4.

Algorithm 3.9 SLR action and goto tables
Input: an LR(0) automaton with the states {𝐼0, 𝐼1, . . . }, the follow set for each nonterminal
Output: the action and goto tables

State 𝑖 is constructed from 𝐼𝑖. The parsing actions for state 𝑖 are determined as follows:
All action entries are initialized as an error.
If 𝐴 → 𝛼·𝑎 𝛽 is in 𝐼𝑖, 𝑎 ̸= $ and 𝐼𝑖

𝑎−→ 𝐼𝑗 , set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, 𝑎] := shift j
If 𝐴 → 𝛼· is in 𝐼𝑖 and 𝐴 ̸= 𝑆′, set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, 𝑎] := reduce 𝐴 → 𝛼 for all 𝑎 ∈ 𝑓𝑜𝑙𝑙𝑜𝑤[𝐴].
If 𝑆′ → 𝑆·$ is in 𝐼𝑖, set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, $] := accept
If any conflicting actions arise from the above rules, we say the grammar is not SLR(1).
The goto transitions are created using the rule: If 𝐼𝑖

𝑋∈𝑁−−−→ 𝐼𝑗 , then 𝑔𝑜𝑡𝑜[𝑖,𝑋] = 𝑗.
The initial state 𝐼0 is the one constructed from 𝑆′ → ·𝑆$.

The SLR algorithm constructs the goto action tables from the LR(0) automaton and
the follow set for each nonterminal. The method is described in Algorithm 3.9.
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3.4.3 Canonical LR(1) Parsing

Canonical LR(1) parsing creates an LR(1) automaton with LR(1) items. An LR(1) item
contains a lookahead symbol 𝑠 ∈ 𝑇 that denotes which symbol may be the first read symbol
in the input string after a reduction is done. The following is cited from [1].

Canonical LR(1) parsers are the strongest LR parsers with the lookahead size of 1, but
lead to very large automatons, and thus to very large parsing tables. Until recently, the size
of the tables made it impossible to use this algorithm in practice, and it is not practical
to this day. Most practical grammars are LALR, and those that aren’t can be parsed with
the IELR algorithm with the same strength as canonical LR(1) parsing, but much smaller
tables (see Section 3.4.5).

Definition 3.4.4. An LR(1) item is an LR(0) item with a terminal symbol (or $) attached
to it. For example, if we have an LR(0) item 𝐴 → 𝐵·𝐶𝐷, we can create an LR(1) item
[𝐴 → 𝐵·𝐶𝐷, 𝑎]. The lookahead has no effect in an item where the dot isn’t at the last
position, but when it is, it tells us which terminal can follow the production in order for it
to be reduced. For example, if we have a state containing only [𝐴 → 𝐵𝐶·, 𝑎], we are only
compelled to reduce 𝐵𝐶 to 𝐴 if the next lookahead symbol is exactly 𝑎.

Algorithm 3.10 LR(1) closure
Input: a set of LR(1) items 𝐼, a context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆)
Output: 𝑂: the closure of 𝐼
𝑂 := 𝐼
repeat

for all items [𝐴 → 𝛼·𝐵𝛽, 𝑎] ∈ 𝑂 do
for all production 𝐵 → 𝛾 ∈ 𝑃 do

for all 𝑏 ∈ 𝑓𝑖𝑟𝑠𝑡(𝛽𝑎) do
add [𝐵 → ·𝛾, 𝑏] to 𝑂

until no more items are added to 𝑂

Algorithm 3.11 LR(1) goto
Input: a set of items 𝐼, a symbol 𝑋 ∈ 𝑁 ∪ 𝑇 ∪ {$}
Output: a set of items 𝑂

for all items [𝐴 → 𝛼·𝑋𝛽, 𝑎] do
add item [𝐴 → 𝛼𝑋·𝛽, 𝑎] to 𝑂

𝑂 := 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑂)

With LR(1) items, we can construct a LR(1) automaton. Algorithm 3.10 contains
a procedure for the closure of sets of LR(1) items, Algorithm 3.11 contains the goto function
for sets of LR(1) items, and finally Algorithm 3.12 shows the creation of a LR(1) automaton.
The process is largely the same as with LR(0) items, but the modification of the closure and
goto functions ensures that the lookahead symbols are computed. As a result of the lookahead
symbols being added to items, more states with different lookahead sets can be created.

The creation of the action and goto tables for canonical LR parsers is described in Algo-
rithm 3.13. The goto table is constructed the same way as in previous algorithms, using
the modified 𝑔𝑜𝑡𝑜 function. In the action table, the reduce action is added to the items with
the terminal symbols matching the lookahead symbols in the state’s items.
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Algorithm 3.12 LR(1) automaton
Input: a context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆)
Output: an LR(1) automaton (𝑂,𝐸) with the states {𝐼0, 𝐼1, . . . }

initialize 𝐶 to 𝑐𝑙𝑜𝑠𝑢𝑟𝑒([𝑆′ → 𝑆$, $]) (this initial item is 𝐼0)
repeat

for all sets of items 𝐼 in 𝐶 do
for all symbols 𝑋 ∈ 𝑁 ∪ 𝑇 ∪ {$} do

if 𝑔𝑜𝑡𝑜(𝐼,𝑋) is not empty then
if 𝑔𝑜𝑡𝑜(𝐼,𝑋) is not in 𝐶 then

add 𝑔𝑜𝑡𝑜(𝐼,𝑋) to 𝐶

insert 𝐼
𝑋−→ 𝑔𝑜𝑡𝑜(𝐼,𝑋) to the set 𝐸

until no new sets of items are added to C in an iteration

Algorithm 3.13 LR(1) action and goto
Input: an augmented context-free grammar 𝐺, a LR(1) automaton with the states
{𝐼0, 𝐼1, . . . }

Output: the action and goto tables
State 𝑖 is constructed from 𝐼𝑖. The parsing actions for state 𝑖 are determined as follows:
All action entries are initialized as an error.
If [𝐴 → 𝛼·𝑎 𝛽, 𝑏] is in 𝐼𝑖, 𝑎 ∈ 𝑇 , 𝑎 ̸= $ and 𝐼𝑖

𝑎−→ 𝐼𝑗 , set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, 𝑎] := shift j
If [𝐴 → 𝛼·, 𝑎] is in 𝐼𝑖 and 𝐴 ̸= 𝑆′, set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, 𝑎] := reduce 𝐴 → 𝛼
If [𝑆′ → 𝑆·$, $] is in 𝐼𝑖, set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, $] := accept
If any conflicting actions arise from the above rules, we say the grammar is not LR(1).
The goto transitions are created using the rule: If 𝐼𝑖

𝑋∈𝑁−−−→ 𝐼𝑗 , then 𝑔𝑜𝑡𝑜[𝑖,𝑋] = 𝑗.
The initial state 𝐼0 is the one constructed from [𝑆′ → ·𝑆$, $].

3.4.4 LALR Parsing

In this section, we will examine the construction of action and goto tables for the LALR
(look-ahead LR) parsing algorithm from [1] and [16]. LALR parsing is a middle ground
between the relatively small recognition power of the SLR algorithm and the large state
count of canonical LR(1) parsing. It utilizes a lookahead set for each state that lets us
better predict when a reduction is possible but still uses the much smaller LR(0) automaton,
leading to the same number of states as the SLR algorithm. There exist LR(1) grammars
for which LALR parsing will result in conflicts; there will be different LR(1) states that are
merged in LALR (with the same LR(0) core, but different lookahead sets, called isocores),
potentially creating new reduce-reduce conflicts. The construction of the action and goto
tables is the same as in Algorithm 3.9, but the construction of reduce rules is different. If
𝐴 → 𝛼· is in 𝐼𝑖 and 𝐴 ̸= 𝑆′, set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, 𝑎] := reduce 𝐴 → 𝛼 for all 𝑎 ∈ 𝐿𝐴(𝑖, 𝐴 → 𝛼).

There exist multiple ways of computing the 𝐿𝐴 (lookahead) set that is needed for the con-
struction of LALR tables. The simplest is to create the LR(1) automaton and merge all
states with the same LR(0) item cores, but different lookahead symbols (see [1]). We present
two better approaches to constructing LALR parsers. Both construct the LR(0) automaton
and then compute the sets of lookahead symbols. The first approach is a straight-forward
construction from the LR(0) automaton, where we propagate lookaheads through the au-
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tomaton. The second approach is an efficient method of obtaining sets of lookahead symbols
utilized by the IELR algorithm.

Definition 3.4.5. A kernel of an LR state 𝑆 is a subset of items, where the 𝐿𝑅(0) portion
of each item has the form 𝐴 → 𝛼 · 𝛽, where 𝛼 ̸= 𝜀, or as a special case 𝑆′ → ·𝑆$. The full
state 𝑆 can be computed from its kernel 𝐾 as 𝑆 = 𝐶𝐿𝑂𝑆𝑈𝑅𝐸(𝐾).

Lookahead Propagation

Algorithm 3.14 Determining lookaheads (see Algorithm 4.62 in [1])
Input: the kernel 𝐾 of a set of LR(0) items 𝐼 and a grammar symbol 𝑋
Output: the lookaheads spontaneously generated by items in 𝐼 for kernel items

in 𝐺𝑂𝑇𝑂(𝐼,𝑋) and the items in 𝐼 from which lookaheads are propagated to kernel
items in 𝐺𝑂𝑇𝑂(𝐼,𝑋)
for all each item 𝐴 → 𝛼 · 𝛽 ∈ 𝐾 do

𝐽 := 𝐶𝐿𝑂𝑆𝑈𝑅𝐸({[𝐴 → 𝛼 · 𝛽,#]})
if [𝐵 → 𝛾 ·𝑋𝛿, 𝑎] ∈ 𝐽 and 𝑎 ̸= # then

Conclude that 𝑎 is generated spontaneously for item 𝐵 → 𝛾𝑋 · 𝛿 in 𝐺𝑂𝑇𝑂(𝐼,𝑋).
if [𝐵 → 𝛾 ·𝑋𝛿,#] ∈ 𝐽 then

Conclude that lookaheads propagate from 𝐴 → 𝛼 · 𝛽 ∈ 𝐼
to 𝐵 → 𝛾𝑋 · 𝛿 in 𝐺𝑂𝑇𝑂(𝐼,𝑋).

The first approach (see Section 4.7 in [1]) lets us get a set of lookaheads generated for
each successor in an LR(0) automaton. We also obtain the set of successor states where
lookaheads will be propagated. Algorithm 3.14 gives us the set of generated lookaheads
for each transition in the LR(0) automaton and how lookaheads are propagated through
that transition.

Algorithm 3.15 Computation of the kernels of the LALR(1) automaton (see Algorithm 4.63
in [1]
Input: an augmented context-free grammar 𝐺′

Output: kernels of the LALR(1) states.

1. Construct the kernels of the sets of LR(0) items for 𝐺′. A simple approach would be
computing the full states and removing nonkernel items.

2. Apply Algorithm 3.14 to each kernel and grammar symbol to obtain the sets of gen-
erated lookaheads and the lookahead propagation items.

3. Initialize a table that gives, for each kernel item in each set of items, the associated
lookaheads. Initially, each item has associated with it only those lookaheads that
were generated according to the previous step.

4. Make repeated passes over the kernel items in all sets. When we visit an item 𝑖, we
look up the kernel items to which 𝑖 propagates its lookaheads, using information
from step 2. The current set of lookaheads of 𝑖 is added to those items. We continue
making passes until no more new lookaheads are propagated.

Algorithm 3.15 describes the process of obtaining LALR(1) kernels. The main issue
with this approach is its ineffectiveness if the order of propagation is chosen poorly. After
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using this approach and completing the full LALR(1) states as closures of the kernels, we
construct the parser tables in the same way as for canonical LR parsers.

An Alternative Approach to LALR Lookahead Computation

An alternative to using the approach from the previous section exists. We will introduce
the computation from [16], creating the lookahead sets from the LR(0) automaton. Here,
𝑋 =𝑠 𝐹 (𝑋) denotes that 𝑋 is the smallest set satisfying 𝐹 (𝑋).

⋃︀
{𝐴,𝐵, . . . ,𝐷} denotes

𝐴 ∪ 𝐵 ∪ · · · ∪ 𝐷. Below, we will define the sets and relations that are used to calculate
the 𝐿𝐴 set from a 𝐿𝑅(0) automaton as described in [16].

Definition 3.4.6. (𝑝,𝐴 ∈ 𝑁) reads (𝑟, 𝐶) iff 𝑝
𝐴−→ 𝑟

𝐶−→ and 𝐶 ⇒* 𝜀.

Definition 3.4.7. We introduce the set of symbols direct read for each nonterminal transition
(𝑝,𝐴), denoted by 𝐷𝑅(𝑝,𝐴):

𝐷𝑅(𝑝,𝐴 ∈ 𝑁) = {𝑡 ∈ 𝑇 : 𝑝
𝐴−→ 𝑟

𝑡−→}

Direct read symbols are simply terminals that may be read after 𝐴 is read in 𝑝.

Definition 3.4.8.

𝑅𝑒𝑎𝑑(𝑝,𝐴) =𝑠 𝐷𝑅(𝑝,𝐴) ∪
⋃︁

{𝑅𝑒𝑎𝑑(𝑟, 𝐶) : (𝑝,𝐴) reads (𝑟, 𝐶)}

Read is the set of all terminals that can be read before any phrase including 𝐴 is reduced.
This includes the direct read symbols, as well as symbols read indirectly (via the reads
relation).

Definition 3.4.9. (𝑝,𝐴) includes (𝑝′, 𝐵) iff

𝐵 → 𝑋𝐴𝛾, 𝛾 ⇒* 𝜀, 𝑝′
𝑋−→ 𝑝

where 𝑋 ∈ (𝑇 ∪𝑁)*.
If 𝛾 may be reduced to 𝜀, then terminals that follow 𝐵 in state 𝑝′ may also follow 𝐴

in state 𝑝. We can identify such relations by the includes relation.

Definition 3.4.10.

𝐹𝑜𝑙𝑙𝑜𝑤(𝑝,𝐴) =𝑠 𝑅𝑒𝑎𝑑(𝑝,𝐴) ∪
⋃︁

{𝐹𝑜𝑙𝑙𝑜𝑤(𝑝′, 𝐵) : (𝑝,𝐴) includes (𝑝′, 𝐵)}

The follow set is the set of terminals that may follow after reducing to 𝐴 in state 𝑝.

Definition 3.4.11. (𝑞, 𝐴 → 𝜔) lookback (𝑝,𝐴) iff 𝑝
𝜔−→ 𝑞 where 𝜔 ∈ (𝑁 ∪ 𝑇 )*.

The lookback relation tells us whether there exists a path from state 𝑝 to 𝑞 through
the string 𝜔. After reducing 𝜔 to 𝐴 from state 𝑞, 𝑝 will be one of the possible states after 𝜔
is popped from the stack.

Definition 3.4.12. 𝐿𝐴(𝑞, 𝐴 → 𝜔) =
⋃︀
{𝐹𝑜𝑙𝑙𝑜𝑤(𝑝,𝐴) : (𝑞, 𝐴 → 𝜔) lookback (𝑝,𝐴)},

where 𝜔 ∈ (𝑁 ∪ 𝑇 )*.
When the parser reduces 𝜔 to 𝐴 in state 𝑞, each state 𝑝 is a possible state after 𝜔 is

popped. Then, the parser must read 𝐴, with some terminal 𝑡 the first of the input.

The computation of these sets and relations is described in detail using the digraph
algorithm in [16] and will be skipped here for brevity.
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3.4.5 IELR Parsing

IELR (inadequacy elimination LR) parsing was first introduced in [4], and this section is
cited from there. Here, we introduce the core concepts of IELR parsing. This algorithm has
the same strength as canonical LR(1) parsing (see [4]) with fewer parsing states. The IELR
algorithm first computes LALR parsing tables and then computes which inadequacies
in the state machine are LR(1) inadequacies, and splits those states accordingly.

Conflicts that are created by merging states are all present in LALR. We can mark states
that contribute to these conflicts with their lookahead symbols. When splitting states, we
can compare the immediate contributions to potential conflicts to decide whether any two
states are compatible.

The IELR algorithm consists of 6 phases, which we label Phase 0 through Phase 5 :

∙ Phase 0 :
Compute the LALR parsing tables as described in Section 3.4.4 (as sets and relations,
e.g. reads or includes).

∙ Phase 1 :
Compute auxiliary tables from some of the LALR parsing tables (to be used in later
phases).

∙ Phase 2 :
Compute annotations. Using the information from phases 0 and 1, we identify each
conflict in the LALR parsing tables. When such a conflict is detected, we trace back
through states that contribute to this conflict and record the nature of the contributions.

∙ Phase 3 :
Split states. The algorithm effectively splits states to eliminate LR(1) inadequacies.
The algorithm effectively recomputes the state machine in a way similar to that
of phase 0, but creates more different states based on the annotations from phase 2.

∙ Phase 4 :
Compute reduction lookahead (𝐿𝐴) sets. In this phase, we compute the lookahead
sets for the new created states. This is done in the same way as in phase 0.

∙ Phase 5 :
Resolve remaining conflicts. In this phase, the remaining parsing conflicts are resolved.
We describe a form of conflict resolution in Section 3.4.6.

Phases 1 through 3 are the core of IELR; phases 1 and 2 recognize and annotate LR(1)
inadequacies, and phase 3 splits the states to avoid them.

Phase 1

Phase 1 calculates three tables for the next phases: predecessors, follow_kernel_items and
always_follows.

The predecessors table simply denotes the predecessors of each state in the state machine.
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝐼𝑖) = {𝐼𝑛 : 𝐼𝑛

𝑋∈(𝑁∪𝑇 )−−−−−−→ 𝐼𝑖}. Note that 𝐼0 never has any predecessors.
The follow_kernel_items table holds boolean values; if 𝑓𝑜𝑙𝑙𝑜𝑤_𝑘𝑒𝑟𝑛𝑒𝑙_𝑖𝑡𝑒𝑚𝑠[(𝐼𝑖, 𝐼𝑛), 𝑘] is
true, then the lookahead sets of 𝐼𝑛 depend on the 𝑘th item of 𝐼𝑖. Finally, the always_follows
table holds all terminals that will be always generated as lookahead for all edges of the LALR
automaton. This is analogous to computations from Section 3.4.4.
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Phase 2

In phase 2, we detect states with shift-reduce and reduce-reduce conflicts, and we annotate
those states with the nature of these conflicts.

The annotations themselves take the following form:

𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝐼𝑖, 𝑡 ∈ 𝑇 ) = (𝑖, 𝑡,number of actions, 𝛾)

𝛾 is the inadequacy contribution matrix. |𝛾| = number of actions, and ∀1 ≤ 𝑖 ≤ |𝛾| : 𝛾[𝑖] is
either:

∙ Undefined, if the LR(0) item always generates that action (all shift actions).

∙ A boolean sequence such that |𝛾[𝑖]| = |𝐼𝑖|. If 𝛾[𝑖][𝑗] is true, then the 𝑗th item of 𝐼𝑖 can
generate action 𝑖 if 𝑡 is in the lookahead set of that item.

Annotations for predecessors are added to the annotations using an annotation propagation
procedure. The computation of these annotations is described in detail in [4].

Phase 3

In phase 3, we construct the IELR automaton. The construction of the automaton is very
similar to that of LALR parsers. New sets of items are calculated; this time, however, not all
items with the same LR(0) core are merged; instead, a new state with the same LR(0) items
may be created if the merge wouldn’t pass a compatibility test based on the annotations
from phase 2.

The algorithm starts with the already computed LR(0) state machine and its lookaheads
and propagates those lookaheads through different states. If a compatible state isn’t found,
a new state is created and the edge is modified so that the transition is made to the new
state. If a compatible state is found, its lookahead set is set to be recalculated. State
compatibility is examined by their contributions based on the current lookahead sets; if
two states merging would cause an inadequacy, they will not be merged. The complete
algorithm is in [4].

3.4.6 Conflict Resolution in LR parsers

Many practical grammars are ambiguous. Because of that, it is highly desirable to be able
to resolve shift-reduce and possibly reduce-reduce conflicts. Although there exist many
other approaches, we will take a look at one specific conflict resolution method used in GNU
Bison: operator associativity and precedence (see [5]).

Operator associativity and precedence is a concept employed in operator precedence
parsing (see Section 5.1 in [9]). We define precedence levels and associativity for terminals
and productions and the decisions whether to shift or reduce those symbols on conflicts
is made according to those properties. In order to use this modification, we first define
precedence levels and associativity for a subset of terminals. We also associate specific
terminals with productions to assign them that terminal’s precedence and associativity.

Definition 3.4.13. The precedence and associativity annotation of a context-free grammar
𝐺 = (𝑁,𝑇, 𝑃, 𝑆) is a triple (𝑝, 𝑎, 𝑠) , where

∙ 𝑝 : 𝑇 → N is an operator precedence function. A terminal 𝑥 ∈ 𝑇 has a higher precedence
than a terminal 𝑦 ∈ 𝑇 if 𝑎(𝑥) < 𝑎(𝑦).
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∙ 𝑎 : N → {𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛𝑒} is an operator associativity function. Each level of prece-
dence is given an associativity.

∙ 𝑠 : 𝑃 → 𝑇 is a function assigning terminals to productions. These terminals determine
the precedence and associativity of productions. Typically, 𝑠(𝐴 → 𝐵) will be the last
terminal on the right-hand side of the production — we will only mention the associated
terminal if it is different.

Operator precedence determines the priority for all terminals within shift-reduce conflicts.
If we can either shift or reduce a production 𝑝 ∈ 𝑃 on 𝑡 ∈ 𝑇 , we choose the shift action
if 𝑝(𝑡) < 𝑝(𝑠(𝑝)), and we choose the reduce action if 𝑝(𝑡) > 𝑝(𝑠(𝑝)). If 𝑝(𝑡) = 𝑝(𝑠(𝑝)),
which means that both the terminal and the production have the same precedence, we
choose according to that level’s associativity. If 𝑎(𝑝(𝑡)) = 𝑛𝑜𝑛𝑒, that precedence level is
not associative, and we cannot make a decision. This would result in an error, just like
if there was no conflict resolution. If 𝑎(𝑝(𝑡)) = 𝑙𝑒𝑓𝑡, we choose the reduce action, and if
𝑎(𝑝(𝑡)) = 𝑟𝑖𝑔ℎ𝑡, we choose the shift action.

The full specification for all terminals would be very large for many grammars and only
a small subset of terminals will typically have a meaningful precedence and associativity
(such as operators). For most terminals, we choose some 𝑛 ≫ |𝑇 | and we set 𝑎(𝑛) = 𝑛𝑜𝑛𝑒.
This becomes a default lowest precedence for most terminal symbols so that not all terminals
have to be explicitly assigned a precedence.

If there are two reduce actions on 𝑡 ∈ 𝑇 , we can simply warn the user and choose
the production that was defined earliest in the grammar. Reduce-reduce conflicts are
typically a sign of an error in the grammar, so a reduce-reduce conflict could be considered
an error. However, there might exist grammars where the shift action is chosen and
the remaining reduce-reduce conflict may cause an error on an otherwise valid grammar,
even if the reduce-reduce conflict ultimately doesn’t affect the parser. If reduce-reduce
conflicts are considered to be errors, it is desirable to at least leave the option to opt-out
of specific (or all) reduce-reduce errors.

3.5 Translation with Context-free Grammars
In this section, we will describe the approach most compilers use to generate translations
when working with context-free grammars as the formal basis. We will focus on syntax-
directed translation as described in [9].

When a rule is applied in the parsing algorithm (whether in top-down or bottom-up
algorithms), a part of the parse tree is created. Most practical compilers do not create
the parse tree, but create the syntax tree instead. This tree has the same basic structure
as the parse tree, but may omit superfluous information that is not needed for the creation
of target code. Because of this, the syntax tree is a more efficient representation of the source
program. As an alternative, compilers may instead generate three-address code or expressions
in postfix notation. Below, we will assume the generation of syntax trees for simplicity.

Whenever a rule is reduced or expanded (depending on the algorithm), we can create
a part of the syntax tree. The creation of the subtree is invoked by the parsing algorithm
as a specific action. This generation is not formally defined by the context-free grammar;
when we employ translation grammars, we will be able to formally define the output
of the parsing algorithms.
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3.5.1 Attributes

The input of a parsing algorithm is usually a string of tokens, extracted from the input
characters by a lexical analyzer. These tokens are terminals with the possibility of other
attributes attached to them (e.g. a terminal for an identifier may have an attribute with
its name attached). Attributes are associated with the input terminals and will be put
on the pushdown along with them.

3.5.2 Bottom-up actions

In bottom-up parsing, whenever we reduce a specific rule 𝐴 → 𝑎𝐵𝐶, we will perform
an action, where the parameters of that action are the attributes of the individual symbols
that we reduce to a single nonterminal. The action will create a part of the syntax tree and
will attach a new attribute 𝑎𝐴 to 𝐴 that will be added to the pushdown. A future reduction
𝑋 → 𝑌 𝐴𝑍 will take this new attribute as one of the parameters. When a reduction is made,
a part of the syntax tree is created from bottom-up. This means that a new node will be
created, and the reduced symbols will be its successors in the syntax tree.

3.5.3 Top-down actions

In top-down translation, we recognize two types of attributes for each symbol: Synthesized
attributes, that are transferred from the children to the parent, and inherited attributes,
which we transfer from the parent to the children. The nodes of the syntax tree have
unknown synthesized parameters when a rule is first applied. We can, however, mark
the locations of the future attribute destinations in the syntax tree on the pushdown and
whenever a terminal is popped, the token’s attribute may be put in the correct place
in the syntax tree. When a synthesized attribute is updated, inherited attributes may be
modified as a result. Individual actions, applied when a rule is expanded on the pushdown,
will reserve the space for the information obtained later in the parsing process in addition
to creating the part of the syntax tree.
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Chapter 4

LSCELR Parsing

In this chapter, we introduce LSCELR (Lookahead Source Conflict Elimination LR) parsing.
LSCELR is a new algorithm for generating minimal LR(1) parsers. It was inspired by IELR
parsing, and it was developed to have the same power as IELR and canonical LR parsers
with conflict resolution. Even non-LR grammars can be parsed with the help of conflict
resolution. The top-level algorithm is similar to IELR: we create an LALR automaton and
we identify all LR conflicts. Then, we will annotate states that contribute to those conflicts
and split them where needed.

The new algorithm’s originality is in its new model of the LR automaton. The traditional
LR(1) automaton stores lookaheads for its LR(0) items and doesn’t track the origin of those
lookaheads. Although there exist algorithms to recompute that information, we already
know this information during the construction of the automaton. We introduce an explicit
lookahead model that represents the relationships between individual items’ lookaheads
within the items. When creating the automaton, we save the propagation paths of all
lookahead symbols in individual items, which allows us to easily identify all conflicts created
by merging isocores. IELR has to recompute these dependencies in the following phases
of the algorithm, whereas LSCELR never throws away this information. In this chapter,
we will introduce this explicit model and we will introduce the algorithms needed to create
LSLALR (Lookahead Source LALR) and LSCELR parsers.

Throughout this chapter, we will show examples of automatons and algorithms on two
context-free grammars. Figure 4.1 shows a context-free grammar with four sentences 𝑎𝑎𝑎$,
𝑎𝑎𝑎𝑎$, 𝑏𝑎𝑏$ and 𝑏𝑎𝑎𝑏$. If we consider terminal 𝑎 to be left-associative, we can accept three
sentences 𝑎𝑎𝑎$, 𝑏𝑎𝑏$ and 𝑏𝑎𝑎𝑏$ with canonical LR(1) parsers. LALR parsers are no longer
able to parse 𝑏𝑎𝑎𝑏$ because of state merging. We will demonstrate that LSCELR doesn’t
have this deficiency. Figure 4.2 shows a context-free grammar that has a reduce-reduce

𝑃 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 : 𝑆′ → 𝑆$,
1 : 𝑆 → 𝑎𝐴𝑎,
2 : 𝑆 → 𝑏𝐴𝑏,
3 : 𝐴 → 𝑎,
4 : 𝐴 → 𝑎𝑎

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Figure 4.1: An unambiguous grammar
(see Fig. 1 in [4])

𝑃 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 : 𝑆′ → 𝑆$, 5 : 𝐵 → 𝐶𝑏,
1 : 𝑆 → 𝑎𝐴, 6 : 𝐵 → 𝐷𝑎,
2 : 𝑆 → 𝑏𝐵, 7 : 𝐶 → 𝑥𝑥,
3 : 𝐴 → 𝐶𝑎, 8 : 𝐷 → 𝑥𝑥
4 : 𝐴 → 𝐷𝑏,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Figure 4.2: An unambiguous grammar
with a reduce-reduce conflict in LALR
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conflict in LALR parsers. We will demonstrate that LSCELR eliminates these conflicts
by splitting states of the LALR automaton.

4.1 LS Items and the LS Automaton
First, we will introduce LS items and the LS automaton. We modify regular LR(1) items
so that they contain the marked production, generated lookahead symbols and references
to other items where the rest of lookaheads are propagated from.

Definition 4.1.1. An LS item is a triple 𝐼 = (𝐴 → 𝛼 · 𝛽, 𝑔, 𝑠), denoted by [𝐴 → 𝛼 · 𝛽, 𝑔, 𝑠],
where

∙ 𝐴 → 𝛼 · 𝛽 is an LR(0) item

∙ 𝑔 ⊆ 𝑇 is the set of generated lookahead symbols

∙ 𝑠 ⊆ N× N is the set of references to LS items that are sources of lookaheads for this
item. The first number in the pair references a state in the automaton, and the second
references an item in that state.

Unlike an LR(1) item, not all lookaheads are directly enumerated in its lookahead set.
Instead, we reference other items that lookaheads are propagated from.

Definition 4.1.2. An LS state is a pair 𝑆 = (𝐼,𝐺𝑂𝑇𝑂), where

∙ 𝐼 = {𝐼1, 𝐼2, . . . , 𝐼|𝐼|} is an LS item

∙ 𝐺𝑂𝑇𝑂 : (𝑇 ∪𝑁) → N is the transition function.

LS items in 𝐼 are explicitly marked by their numerical identifier. For an LS state 𝑆 =
(𝐼,𝐺𝑂𝑇𝑂) and 𝑖 ∈ ⟨1, |𝐼|⟩, 𝑆[𝑖] denotes 𝐼𝑖 ∈ 𝐼. We say that two states 𝑆𝑖 = (𝐼𝑖, 𝐺𝑂𝑇𝑂𝑖)
and 𝑆𝑗 = (𝐼𝑗 , 𝐺𝑂𝑇𝑂𝑗) are isocores iff |𝐼𝑖| = |𝐼𝑗 | ∧ ∀[𝑝, 𝑎, 𝑏] ∈ 𝐼𝑖 : ∃[𝑝, 𝑎, 𝑐] ∈ 𝐼𝑗 .

Definition 4.1.3. An LS automaton is a set of LS states 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆|𝑆|}.
LS states in 𝑆 are explicitly marked by their numerical identifier: For an LS automation

𝑆 and 𝑖 ∈ ⟨1, |𝑆|⟩, 𝑆[𝑖] denotes 𝑆𝑖 ∈ 𝑆. For two LS states 𝑆𝑖 = (𝐼𝑖, 𝐺𝑂𝑇𝑂𝑖) ∈ 𝑆 and
𝑆𝑗 = (𝐼𝑗 , 𝐺𝑂𝑇𝑂𝑗) ∈ 𝑆, 𝑆𝑖

𝑥−→ 𝑆𝑗 denotes 𝐺𝑂𝑇𝑂𝑖(𝑥) = 𝑗.

Algorithm 4.1 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑𝑠(𝑆, [𝑝, 𝑔, 𝑠], 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑)

Input: LS automaton 𝑆, LS item [𝑝, 𝑔, 𝑠], a set of examined LS items 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑
Output: a set of lookahead symbols 𝑙𝑎 ⊆ 𝑇

if [𝑝, 𝑔, 𝑠] ∈ 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 then
return ∅

𝑒 := 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 ∪ {[𝑝, 𝑔, 𝑠]}
return 𝑔 ∪

⋃︀
(𝑠𝑡𝑎𝑡𝑒,𝑖𝑡𝑒𝑚)∈𝑠 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑𝑠(𝑆, 𝑆[𝑠𝑡𝑎𝑡𝑒][𝑖𝑡𝑒𝑚], 𝑒)

The full lookahead set for each LS item is calculated by traversing the item’s predecessors.
We introduce the procedure for computing the lookahead set for LS items in Algorithm 4.1.
In order to obtain the set of lookahead symbols for an item 𝑖, we must call this procedure
with an empty set as the last argument: 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑𝑠(𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛, 𝑖,∅). The last argument is
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the set of already examined states, and is needed to stop infinite recursion in case of a cyclical
dependency of lookahead sources. To obtain the lookahead set for an LS item, we mark
this item as examined and we return the union of this item’s generated lookaheads and
the lookaheads of its lookahead sources. Note that the lookahead sets obtained when calling
this procedure with a non-empty examined set don’t necessarily match the actual lookahead
sets of those items: consider items with circular dependencies when one of the items has
been already been examined up the recursion stack.
Basic idea. Items contain their generated lookahead symbols and the source items of the rest
of their lookahead symbols. We get the full lookahead set by obtaining the lookahead sets
of the sources and adding them to the set of generated lookaheads. If there is a circular
dependency, we need stop infinite recursion by examining each state at most once in each
dependency path. If we examine any state for the second time, we can return the empty set
(any subset of 𝑔 can be returned here): the same state is already being examined up in the
recursion stack, and its lookaheads will be added properly there.

When computing the full lookahead sets for the whole automaton, we can do this
efficiently by computing the lookahead sets in ascending order. Then, the full lookahead sets
for previous states have already been computed and don’t require the recursive procedure
for their computation. Alternatively, we could change the order of computation after the first
state so that we always prioritize states in 𝐺𝑂𝑇𝑂 of the current state.

Algorithm 4.2 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝐼)

Input: an ordered set of LS items 𝐼 = {𝐼1, 𝐼2, . . . , 𝐼|𝐼|}
Output: LS state 𝑆 = (𝐼,𝐺𝑂𝑇𝑂)

repeat
for all items [𝐴 → 𝛼·𝐵𝛽, 𝑔, 𝑠] in 𝐼, where 𝐵 ∈ 𝑁 , 𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇 )* do

for all rules 𝐵 → 𝐶 ∈ 𝑃 , where 𝐶 ∈ (𝑁 ∪ 𝑇 )* do
𝑓 = 𝑓𝑖𝑟𝑠𝑡(𝛽)
if 𝜀 ∈ 𝑓 then 𝑆 = 𝑠 and 𝐺 = 𝑔 ∪ 𝑓 − {𝜀}
else 𝑆 = ∅ and 𝐺 = 𝑓

if ∃𝐼𝑥 = [𝐵 → ·𝐶, 𝑔𝑥, 𝑠𝑥] ∈ 𝐼 then
𝐼𝑥 := [𝐵 → ·𝐶, 𝑔𝑥 ∪𝐺, 𝑠𝑥 ∪ 𝑆]

else
let 𝐼|𝐼|+1 = [𝐵 → ·𝐶,𝐺, 𝑆]
add 𝐼|𝐼|+1 to 𝐼

until no more items are added or modified in an iteration
return (𝐼,∅)

In Algorithm 4.2, we modify Algorithm 3.10 to account for the different form of items.
The item set will contain the appropriate generated lookaheads for each item, and will link
to lookahead sources where the item’s lookahead is reliant on previous states.
Basic idea. The closure of a set of LS items is computed in the same way a closure
of LR(1) items would be. Because we store sets of lookaheads and lookahead sources, we
check whether an item with the same production part is in the set already, and we add
the generated lookaheads and lookahead sources instead of inserting a new item. If either
the set of generated lookaheads or the set of lookahead sources is modified, or a new item
has been added we continue the closure procedure. After several iterations, there will be no
more productions to add and all generated lookaheads and lookahead sources will have been
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distributed to their respective items. If the first set of the suffix of a production contains 𝜀,
the lookahead symbols of the original item become lookahead symbols of the closure item
as well. We achieve this by adding both the generated lookaheads and lookahead sources
to the new item.

4.2 The LSCELR Parser
We create the LSCELR parser in the following phases:

1. Generate the LSLALR automaton

2. Detect all states with shift-reduce and reduce-reduce conflicts.

3. Mark the conflict contribution sources in the state machine.

4. Split states potentially contributing to conflicts.

5. Calculate the final lookahead set for all states and resolve the remaining conflicts.

We begin by creating the LSLALR automaton as described in Section 4.2.1. If the LSLALR
automaton is constructed for an LALR grammar, no conflicts will be present and steps 2, 3
and 4 will be skipped. If there are any reduce-reduce or shift-reduce conflicts, we will go
backwards through the automaton, marking the potential conflict contributions in each state.
All states along that path that can be reached from multiple other states will be marked,
and those transitions will be reexamined. Only a single predecessor will be preserved, and
only states that make the same conflict contributions to their successor reduce states will be
merged. The resulting automaton does not contain any conflicts a canonical LR(1) parser
doesn’t have, but the number of states will be smaller for most non-trivial grammars.

The phases of this algorithm, as well as its general idea, were heavily influenced
by the IELR algorithm by Denny and Malloy (see [4]). The originality of our approach is
in the LS automaton model. We employ the explicit lookahead source model to determine
the conflicts and their sources instead of the analysis methods used by Denny and Malloy.
In principle, the resulting parsers should be nearly identical, although we have not consid-
ered any minimization of the parser after conflict resolution. Thanks to the explicit state
dependency tracking, this approach for creating minimal LR(1) parsers is arguably easier
to follow than IELR and might prove useful for teaching the principles of creating minimal
LR(1) parsers. It is also subjectively easier to reason about the correctness of the approach,
although no formal proof of correctness is made for LSCELR here.

4.2.1 Phase 1: The LSLALR Automaton

In the first phase, we generate the LS equivalent of the LALR automaton. Unlike LALR,
we don’t discard the information about where each lookahead symbol comes from. This lets
us obtain an explicit enumeration of all lookahead sources for each item in the automaton.
We will use that information in the next phase, when we mark the conflicts each state
potentially contributes to.

Algorithm 4.3 shows the creation of the successor states of an LS state. In traditional
parsing algorithms, this was referred to as the GOTO function. When we move over a symbol
in a state, we create a link to that state in items of the successor state. This means that
the set of generated lookahead symbols for successor states is always empty here, and we
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Algorithm 4.3 next(𝑆𝑛)
Input: LS state 𝑆𝑛 = (𝐼,𝐺𝑂𝑇𝑂)
Output: a set of successor transitions (𝑦 ∈ (𝑁 ∪ 𝑇 ), 𝑆𝑜), where 𝑆𝑜 is an LS state
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 := ∅
for all 𝐼𝑥 = [𝐴 → 𝛼 · 𝑦𝛽, 𝑔, 𝑠] ∈ 𝐼, where 𝑦 ∈ (𝑁 ∪ 𝑇 ) − {$}, 𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇 )* do

let 𝑛𝑒𝑥𝑡𝑖𝑡𝑒𝑚 = [𝐴 → 𝛼𝑦 · 𝛽,∅, (𝑛, 𝑥)]
if ∃(𝑦,𝑊 ) ∈ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 then

𝑊 := 𝑊 ∪ 𝑛𝑒𝑥𝑡𝑖𝑡𝑒𝑚
else

insert (𝑦, {𝑛𝑒𝑥𝑡𝑖𝑡𝑒𝑚}) to 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

for all (𝑠𝑦𝑚𝑏𝑜𝑙,𝑊 ) ∈ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 do
𝑊 := 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝑊 )

return 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

reference the original state in the set of lookahead sources. This way, when any state changes
its set of lookahead symbols, its successors in the automaton will be updated implicitly:
when the set of lookahead symbols for any successor is calculated, lookaheads from all
predecessors are added.

Algorithm 4.4 expand(𝑆, 𝑛)
Input: LS automaton 𝑆, 𝑛 ∈ N : 𝑆𝑛 ∈ 𝑆
Output: expanded LS automaton 𝑆

let 𝑆𝑛 = (𝐼,𝐺𝑂𝑇𝑂)
for all (𝑥, (𝐼 ′, 𝐺𝑂𝑇𝑂′)) ∈ 𝑛𝑒𝑥𝑡(𝑆𝑛) do

if ∃𝑗 : 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒((𝐼 ′, 𝐺𝑂𝑇𝑂′), 𝑆𝑗) then
for all 𝐼𝑘 = [𝑝, 𝑔, 𝑠] ∈ 𝑆𝑗 do

let (𝑝, 𝑔, 𝑠1) ∈ 𝐼 ′

𝐼𝑘 := [𝑝, 𝑔, 𝑠 ∪ 𝑠1]

insert (𝑥, 𝑗) to 𝐺𝑂𝑇𝑂
else

insert (𝑥, |𝑆| + 1) to 𝐺𝑂𝑇𝑂
insert 𝑆|𝑆|+1 = (𝐼 ′, 𝐺𝑂𝑇𝑂′) to 𝑆 (it becomes 𝑆|𝑆|)
𝑆 := 𝑒𝑥𝑝𝑎𝑛𝑑(𝑆, |𝑆|)

return 𝑆

Algorithm 4.4 describes the recursive procedure for generating states in the LS automaton.
We use a compatibility test to find an existing state that a successor state could be merged
with. We construct the compatibility tests so that there always exists at most one compatible
existing state. If a compatible state is found, we merge the lookahead source sets for each
item. This way, the lookaheads from both predecessors are found for this items and all its
successors in the automaton.

Algorithm 4.5 shows the creation of the LSLALR automaton. We begin by generating
the first state as the closure of [𝑆′ → ·𝑆$, {$},∅]. Then, we recursively generate the new
states’ successors and selectively merge them. Here, we set the compatibility test to

𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑆𝑥, 𝑆𝑦) ⇐⇒ 𝑖𝑠𝑜𝑐𝑜𝑟𝑒𝑠(𝑆𝑥, 𝑆𝑦)
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Algorithm 4.5 LSLALR automaton
Input: augmented context-free grammar (𝑁 ∪ {𝑆′}, 𝑇 ∪ {$}, 𝑃, 𝑆′)
Output: LSLALR LS automaton 𝑆
𝑆 := {𝑆1 = 𝑐𝑙𝑜𝑠𝑢𝑟𝑒({[𝑆′ → ·𝑆$, {$},∅]})}
𝑆 := 𝑒𝑥𝑝𝑎𝑛𝑑(𝑆, 1)
return 𝑆

to ensure that all isocores are merged.
Basic idea. The construction of the LSLALR automaton is analogous to Algorithm 3.15.
Instead of constructing sets of LR(0) items, we merge states with matching LR(0) items.
Generated lookaheads don’t play a role in this matching, because they will always be
the same for the same set of LR(0) items. They are the same because the procedure next
never transfers any generated lookaheads (see Algorithm 4.3), and the rest of generated
lookaheads is only generated from the LR(0) items contained in the LS items. Instead
of figuring out which lookaheads are generated, we already have this information enumerated
in the items. The third and fourth phases of 4.63 are simulated when getting the full
lookahead sets of each item.

next state
state [𝑝, 𝑔, 𝑠] lookaheads

1. 𝑆 → ·𝑎𝐴𝑎, {$}, ∅ S3
𝑆 → ·𝑏𝐴𝑏, {$}, ∅ S8
𝑆′ → ·𝑆$, {$}, ∅ G2

2. 𝑆′ → 𝑆 · $, ∅, {(1, 3)} { $ }
3. 𝑆 → 𝑎 ·𝐴𝑎, ∅, {(1, 1)} G6

𝐴 → ·𝑎, {𝑎}, ∅ S4
𝐴 → ·𝑎𝑎, {𝑎}, ∅ S4

4. 𝐴 → 𝑎·, ∅, {(3, 2), (8, 2)} {𝑎, 𝑏}
𝐴 → 𝑎 · 𝑎, ∅, {(3, 3), (8, 3)} S5

5. 𝐴 → 𝑎𝑎·, ∅, {(4, 2)} {𝑎, 𝑏}
6. 𝑆 → 𝑎𝐴 · 𝑎, ∅, {(3, 1)} S7
7. 𝑆 → 𝑎𝐴𝑎·, ∅, {(6, 1)} {$}
8. 𝑆 → 𝑏 ·𝐴𝑏, ∅, {(1, 2)} G9

𝐴 → ·𝑎, {𝑏}, ∅ S4
𝐴 → ·𝑎𝑎, {𝑏}, ∅ S4

9. 𝑆 → 𝑏𝐴 · 𝑏, ∅, {(8, 1)} S10
10. 𝑆 → 𝑏𝐴𝑏·, ∅, {(9, 1)} {$}

Table 4.1: LSLALR automaton for the grammar from Figure 4.1

In Table 4.1, we show a LSLALR for the grammar from Figure 4.1. We can see that
each state contains all predecessors that affect its items’ lookahead sets. We can trace
back through the states to obtain the full lookahead states. For example, the first item
of state 4 has the lookahead set {𝑎, 𝑏}, where lookahead symbol 𝑎 was generated in state 3
and 𝑏 was generated in state 8. Notice that if we applied left associativity to 𝑎 to resolve
the shift-reduce conflict in state 4, state 5 becomes unreachable.
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4.2.2 Phase 2: Conflict Detection

In the second phase, we detect all conflicts in all states. Only states with at least one
reduce item (that is, with an item where the dot is at the last position of the production)
is present. We calculate the lookahead set for each LS item and we decide which parser
actions this LALR parser would take. If there are any conflicts, we mark all lookaheads that
cause a reduce action in all of these conflicts for each item in these states. We will obtain
a set of conflicted symbols, which we will use in phase 3 to mark the conflicted lookahead
propagation paths.

Algorithm 4.6 Conflict detection
Input: LS automaton 𝑆
Output: a set of conflicted state indices 𝐶, and a function 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 : N× N → 2𝑇

𝐶 := ∅
𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑥, 𝑦) := ∅
for all 𝑆𝑖 = (𝐼,𝐺𝑂𝑇𝑂) ∈ 𝑆 do

if there is at least one reduce item in 𝐼 then
let 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = {(𝑠, 𝑗) : 𝐼𝑗 = [𝑋 → 𝑌 ·, 𝑥, 𝑦] ∈ 𝐼, 𝑠 ∈ 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑𝑠(𝑆, 𝐼𝑗 ,∅)}
let 𝑐 = {(𝑠, 𝑗) : ∃𝑘 ̸= 𝑗 : (𝑠, 𝑘) ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ∨ 𝐼𝑘 = [𝑋 → 𝑌 · 𝑠𝑍, 𝑥, 𝑦] ∈ 𝐼}
if 𝑐 ̸= ∅ then

𝐶 := 𝐶 ∪ {𝑖}
𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑖, 𝑗) := {𝑠 : (𝑠, 𝑗) ∈ 𝑐}

return (𝐶, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠)

We obtain the set of states with conflicts and which symbols the conflicts are on in Algo-
rithm 4.6. We examine all states with at least one reduce state. If there are multiple actions
possible on any symbol, we mark that state as conflicted and we add the conflicted symbols
to the reduce items where the symbol’s presence in the lookahead set causes that conflict.

As an example, in Table 4.1, there is a shift-reduce conflict on 𝑎 in state 3. Algorithm 4.6
will recognize the conflicted state 𝑆3, and will mark 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(4, 1) = {𝑎}. Because the shift
action will always be generated in all isocores, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(4, 2) will be empty.

4.2.3 Phase 3: Marking Conflict Contributions

In this phase, we will mark items with all symbols that they can potentially contribute
to conflicts with. We recursively iterate over lookahead sources and we mark non-generated
lookahead symbols that lead to conflicts in the LSLALR automaton. We will be able to use
this information to keep some states merged, and to split states that contribute to different
conflicts, or that change already existing conflicts.

Algorithm 4.7 defines the procedure for marking conflicts for individual items in the LS
automaton. We first check whether there are any lookahead sources for this item and whether
the set of conflicted symbols 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 isn’t empty. In case there are no lookahead
sources, this item’s lookahead set is fully dependent on its set of generated lookaheads. This
means that this item is not affected by any state merging. If the set of conflicted symbols is
empty, we have no more conflicts to mark. In either of these cases, we can return without
any modifications to the 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 function.

We remove all generated lookaheads from the set 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, because these lookaheads
are always propagated to successor states regardless of lookahead sources. We then add
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Algorithm 4.7 mark(𝑆, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠, 𝑖, 𝑗, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
Input: LS automaton 𝑆, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 : N× N → 2𝑇 , 𝑖 ∈ N, 𝑗 ∈ N, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ∈ 2𝑇

Output: 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 : N× N → 2𝑇

let [𝑝, 𝑔, 𝑠] = 𝑆[𝑖][𝑗]
if 𝑠 = ∅ ∨ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = ∅ then

return 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠
𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 := 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛− 𝑔
𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑖, 𝑗) := 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑖, 𝑗) ∪ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
if no new contributions were added to 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑖, 𝑗) then

return 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠
for all (𝑠𝑡𝑎𝑡𝑒, 𝑖𝑡𝑒𝑚) ∈ 𝑠 do

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 := 𝑚𝑎𝑟𝑘(𝑆, 𝑠𝑡𝑎𝑡𝑒, 𝑖𝑡𝑒𝑚, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

return 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 to this item’s 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. If no symbols were added, they have already
been marked in the item’s lookahead sources as well. Finally, we propagate 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
to all lookahead source states by recursively calling this procedure, modifying 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠
in every call.

Algorithm 4.8 Marking Conflict Contributions
Input: LS automaton 𝑆, a set of conflicted state indices 𝐶, and a function 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 :

N× N → 2𝑇

Output: 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 : N× N → 2𝑇

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑥, 𝑦) := ∅ for all 𝑥, 𝑦 ∈ N
for all 𝑖 ∈ 𝐶 do

let 𝑆𝑖 = (𝐼,𝐺𝑂𝑇𝑂)
for all 𝐼𝑗 ∈ 𝐼 do

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 := 𝑚𝑎𝑟𝑘(𝑆, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠, 𝑖, 𝑗, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑖, 𝑗))

We describe the method for marking all conflict contributions for all items in Algo-
rithm 4.8. We call 𝑚𝑎𝑟𝑘 for each item in all conflicted states.
Basic idea. At the end of this procedure, we have the function 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠. The set
𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑠, 𝑖) is the set of terminals that contribute to a potential conflict, if they
are passed to that item from any lookahead source. When 𝑗 ∈ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑠, 𝑖), then if
the terminal 𝑗 is in the lookahead set of 𝐼𝑖 ∈ 𝑆𝑠, there exists an item 𝐼𝑘 ∈ 𝑆𝑙 in the LSLALR
automaton where a reduce on 𝑗 will happen because of 𝐼𝑖. Not all such terminals are
marked here, just the ones that lead to a conflict in the LSLALR automaton. Items with no
lookahead sources aren’t affected by any state merging, so they aren’t marked.

Consider Table 4.2. The reduce-reduce conflict on 𝑎 and 𝑏 in state 7 has two lookahead
sources and neither 𝑎, nor 𝑏 are generated lookahead symbols. We add 𝑎 and 𝑏 to the set
of conflict contributions for items 1 and 2 in state 7. State 6 has no generated lookaheads,
so both items are marked with the same conflict contributions. Items 4 and 5 in states
3 and 11 have no lookahead sources: even if some contributions remain after subtracting
the set of the individual items’ generated lookaheads, no state merging affects the lookaheads
of these items.
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state [𝑝, 𝑔, 𝑠] contributions
. . .

3. 𝑆 → 𝑎 ·𝐴, ∅, {(1, 1)} ∅
𝐴 → ·𝐶𝑎, ∅, {(1, 1)} ∅
𝐴 → ·𝐷𝑏, ∅, {(1, 1)} ∅
𝐶 → ·𝑥𝑥, {𝑎}, ∅ ∅
𝐷 → ·𝑥𝑥, {𝑏}, ∅ ∅

. . .

6. 𝐶 → 𝑥 · 𝑥, ∅, {(3, 4), (11, 4)} {𝑎, 𝑏}
𝐷 → 𝑥 · 𝑥, ∅, {(3, 5), (11, 5)} {𝑎, 𝑏}

7. 𝐶 → 𝑥𝑥·, ∅, {(6, 1)} {𝑎, 𝑏}
𝐷 → 𝑥𝑥·, ∅, {(6, 2)} {𝑎, 𝑏}

. . .

11. 𝑆 → 𝑏 ·𝐵, ∅, {(1, 2)} ∅
𝐵 → ·𝐶𝑏, ∅, {(1, 2)} ∅
𝐵 → ·𝐷𝑎, ∅, {(1, 2)} ∅
𝐶 → ·𝑥𝑥, {𝑏}, ∅ ∅
𝐷 → ·𝑥𝑥, {𝑎}, ∅ ∅

. . .

16. . . .

Table 4.2: Conflict contributions in LSLALR automaton for the grammar from Figure 4.2

4.2.4 Phase 4: Splitting States

Finally, we use the information obtained in the previous phases to split some states
of the LSLALR automaton to create the LSCELR automaton. We will reexamine transi-
tions to all states that contribute to a conflict and have multiple predecessors, and only
merge them with existing states if their lookahead symbols contribute to the same conflicts
on the same items.

In order not to introduce any new conflicts by merging two potentially conflicted states,
we must ensure that any conflict contributions in both states’ items are exactly the same.
If they are different, merging them will introduce or modify conflicts in one of their successors.
Recall that potential contributions affect conflicts created by merging states; in order to keep
the power of canonical parsers, only isocores with the same potential contributions may be
merged.

In this phase, we need to change the compatibility test. To determine whether two states
𝑆𝑥 and 𝑆𝑦 are compatible, we need to examine their lookaheads and compare their potential
conflict contributions. If they are the same for all items, we can merge them. Algorithm 4.9
describes the compatibility test for the fourth phase of the LSCELR algorithm. We use
the set of conflict contributions calculated from the LSLALR automaton to determine
whether the two states have identical contributions to potential conflicts. We find the isocore
state from that automaton by finding the isocore with the smallest index. From that index,
we are able to get the set of potentially conflicted lookaheads for each item. After performing
set intersection between this set and the full set of lookahead symbols for each item, we are
able to compare them between the two states.
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Algorithm 4.9 Compatibility test for phase 4 of LSCELR
Input: LS automaton 𝑆, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 : N × N → 2𝑇 , and LS states 𝑆𝑥 = (𝐼𝑥, 𝐺𝑂𝑇𝑂𝑥)

and 𝑆𝑦 = (𝐼𝑦, 𝐺𝑂𝑇𝑂𝑦)
Output: True or False

if 𝑆𝑥 and 𝑆𝑦 are not isocores, return False
let 𝑧 be the smallest number such that 𝑆𝑥 and 𝑆𝑧 = (𝐼𝑧, 𝐺𝑂𝑇𝑂𝑧) ∈ 𝑆 are isocores
for all 𝐼𝑗 = [𝑖, 𝑔, 𝑠𝑧] ∈ 𝐼𝑧 do

let [𝑖, 𝑔, 𝑠𝑥] ∈ 𝐼𝑥
let [𝑖, 𝑔, 𝑠𝑦] ∈ 𝐼𝑦
𝑙1 = 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑𝑠(𝑆, [𝑖, 𝑔, 𝑠𝑥],∅) ∩ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑧, 𝑗)
𝑙2 = 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑𝑠(𝑆, [𝑖, 𝑔, 𝑠𝑦],∅) ∩ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑧, 𝑗)
if 𝑙1 ̸= 𝑙2 then

return False
return True

Algorithm 4.10 Splitting States
Input: LSLALR automaton 𝑆, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 : N× N → 2𝑇

Output: the set of split lookahead sources 𝑠𝑝𝑙𝑖𝑡 ⊆ N× N, LS automaton 𝑆
𝑠𝑝𝑙𝑖𝑡 = ∅
for all 𝑆𝑛 = (𝐼,𝐺𝑂𝑇𝑂) ∈ 𝑆 do

let 𝐼[𝑥] = [𝑝𝑥, 𝑔𝑥, 𝑠𝑥] be a kernel item
if ∃𝐼𝑖 = [𝑝𝑖, 𝑔𝑖, 𝑠𝑖] ∈ 𝐼 : 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠(𝑛, 𝑖) ̸= ∅ ∧ |{𝑠 : (𝑠, 𝑐) ∈ 𝑠𝑥}| > 1 then

let 𝑎 be the smallest number such that (𝑎, 𝑏) ∈ 𝑠𝑖
for all 𝐼𝑗 = [𝑝, 𝑔, 𝑠] ∈ 𝐼 do

if 𝑠 ̸= ∅ then
if 𝑗 = 1 then

𝑠𝑝𝑙𝑖𝑡 := 𝑠𝑝𝑙𝑖𝑡 ∪ {𝑠− {(𝑎, 𝑐) ∈ 𝑠}} for all 𝑐
𝑠 := {(𝑎, 𝑐) ∈ 𝑠} for all 𝑐

return 𝑠𝑝𝑙𝑖𝑡, 𝑆

We remove all but the first lookahead source in states where there exists an item with
some potential conflict contributions, and there are at least two different lookahead source
states in the first kernel item. States with no conflict contributions don’t need to be split,
and states with only one lookahead source cannot be split, since they only have a single
predecessor in the automaton. States that satisfy both of these conditions could possibly
remove some conflicts if they were split into multiple different states. In Algorithm 4.10, we
iterate over all states that satisfy both of these conditions. We only keep the lookahead
source to the first source state, and we return the rest of the lookahead sources in the 𝑠𝑝𝑙𝑖𝑡
set.

The 𝑠𝑝𝑙𝑖𝑡 set now contains all states that need to be reexamined. Algorithm 4.11 shows
the procedure of adding the split states back to the automaton, creating the LSCELR
automaton. From the marked item, we learn the symbol that was skipped to reach the state
with conflict contributions and multiple lookahead sources. We generate the successor state
over that symbol from this state and we reexamine it using the new compatibility test.
If we cannot merge it with any existing state, we add this new state to the automaton and
call 𝑒𝑥𝑝𝑎𝑛𝑑 to generate its successors. 𝑒𝑥𝑝𝑎𝑛𝑑 uses the new compatibility test to merge
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Algorithm 4.11 Regenerating States
Input: LS automaton 𝑆, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 : N × N → 2𝑇 , the set of split lookahead sources
𝑠𝑝𝑙𝑖𝑡 ⊆ N× N

Output: LSCELR automaton 𝑆
for all (𝑖, 𝑗) ∈ 𝑠𝑝𝑙𝑖𝑡 do

let 𝑆[𝑖] = (𝐼,𝐺𝑂𝑇𝑂)
let 𝐼[𝑗] = [𝑋 → 𝑌 · 𝑧𝑍, 𝑔𝑗 , 𝑠𝑗 ], 𝑧 ∈ 𝑁 ∪ 𝑇
let (𝑧, 𝑆𝑛𝑒𝑥𝑡 = (𝐼𝑛𝑒𝑥𝑡, 𝐺𝑂𝑇𝑂𝑛𝑒𝑥𝑡) ∈ 𝑛𝑒𝑥𝑡(𝑆[𝑖])
if ∃𝑆𝑘 = (𝐼𝑘, 𝐺𝑂𝑇𝑂𝑘) ∈ 𝑆 : 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒(𝑆𝑘, 𝑆𝑛𝑒𝑥𝑡) then

for all 𝐼𝑖 = [𝑝, 𝑔, 𝑠𝑖] ∈ 𝐼𝑘 do
let [𝑝, 𝑔, 𝑠𝑛𝑒𝑥𝑡] ∈ 𝐼𝑛𝑒𝑥𝑡
𝑠𝑖 := 𝑠𝑖 ∪ 𝑠𝑛𝑒𝑥𝑡

𝐺𝑂𝑇𝑂(𝑧) := 𝑘
else

insert new state 𝑆𝑛𝑒𝑥𝑡 to 𝑆 (it becomes 𝑆|𝑆|)
𝐺𝑂𝑇𝑂(𝑧) := |𝑆|
𝑆 := 𝑒𝑥𝑝𝑎𝑛𝑑(𝑆, |𝑆|)

return 𝑆

new states as well, ensuring that no extra conflicts are created. In either case, we update
the 𝐺𝑂𝑇𝑂 function for the reexamined state so that it contains the correct successor state.
Basic idea. We split all but one source from states that contribute to conflicts in the LSCELR
automaton. The compatibility test doesn’t let us merge two states unless it contributes
the same lookaheads to potential conflicts. If we cannot merge a state, we insert it as a new
state to the automaton, and it becomes a new option for future state merging. Lookaheads
that are not marked as contributions in the original LALR state don’t matter when merging
states, because they didn’t cause any conflicts even when all isocores were merged. If a new
state is added, we expand it to insert its successors into the automaton. If its successor
states can be merged with the existing states, they will be. If they cannot, they will be
added as new states and recursively expanded further. This way, we avoid all conflicts
created or modified by merging two states.

In Table 4.3, we demonstrate splitting states as a continuation of Table 4.2. We
remove all lookahead sources from state 6’s items but the first, because these items have
both nonempty conflict contributions and they have multiple lookahead sources. We now
generate the successor state for items 4 and 5 in state 11. This generated state’s contributions
don’t match the contributions of the stripped state 6, so we add the new state to the state
machine. We modify state 11’s shift actions accordingly. Its successor state cannot be
merged with 6 for the same reasons and state 18 is created. By splitting these two states,
we have eliminated the reduce-reduce conflict.

Because we only merge two states if their potentially conflicted lookaheads match, we can
safely cache the lookaheads of existing states and we don’t have to recompute them each time
we try to merge a new state with them. This is an important optimization of the algorithm,
since computing the full set of lookaheads is an expensive operation (we have to traverse
the predecessor states). Another minor optimization is early exit for the lookahead retrieval
algorithm when all potentially conflicted lookaheads have been found. Since potentially
conflicted lookaheads for items are usually a relatively small subset of terminals, we can

37



next state potential
state [𝑝, 𝑔, 𝑠] lookaheads contributions

. . .

3. 𝑆 → 𝑎 ·𝐴, ∅, {(1, 1)} G8 ∅
𝐴 → ·𝐶𝑎, ∅, {(1, 1)} G9 ∅
𝐴 → ·𝐷𝑏, ∅, {(1, 1)} G4 ∅
𝐶 → ·𝑥𝑥, {𝑎}, ∅ S6 ∅
𝐷 → ·𝑥𝑥, {𝑏}, ∅ S6 ∅

. . .

6. 𝐶 → 𝑥 · 𝑥, ∅, {(3, 4), (11, 4)} S7 {𝑎, 𝑏}
𝐷 → 𝑥 · 𝑥, ∅, {(3, 5), (11, 5)} S7 {𝑎, 𝑏}

7. 𝐶 → 𝑥𝑥·, ∅, {(6, 1)} {𝑎, 𝑏} {𝑎, 𝑏}
𝐷 → 𝑥𝑥·, ∅, {(6, 2)} {𝑎, 𝑏} {𝑎, 𝑏}

. . .

11. 𝑆 → 𝑏 ·𝐵, ∅, {(1, 2)} G14 ∅
𝐵 → ·𝐶𝑏, ∅, {(1, 2)} G15 ∅
𝐵 → ·𝐷𝑎, ∅, {(1, 2)} G12 ∅
𝐶 → ·𝑥𝑥, {𝑏}, ∅ S7 S17 ∅
𝐷 → ·𝑥𝑥, {𝑎}, ∅ S7 S17 ∅

. . .

17. 𝐶 → 𝑥 · 𝑥, ∅, {(11, 4)} S18 {𝑎, 𝑏}
𝐷 → 𝑥 · 𝑥, ∅, {(11, 5)} S18 {𝑎, 𝑏}

18. 𝐶 → 𝑥𝑥·, ∅, {(17, 1)} {𝑏} {𝑎, 𝑏}
𝐷 → 𝑥𝑥·, ∅, {(17, 2)} {𝑎} {𝑎, 𝑏}

Table 4.3: Splitting states to create the LSCELR automaton for the grammar from Figure 4.2

check if we haven’t already found all of them before continuing recursively looking up more
lookahead symbols.

4.2.5 Phase 5: Generating the Parser and Conflict Resolution

As a final step, we generate the parser. First, we calculate all lookahead symbols for all reduce
states using Algorithm 4.1 efficiently in ascending order, as described in Section 4.1. The rest
of the parser generation is similar to the existing algorithms described in the previous chapter.
The creation of the action and goto tables for LSCELR parsers is described in Algorithm 4.12.
The goto table is created from the GOTO function in each LS item. In the action table,
the reduce action is added to the items with the terminal symbols matching the lookahead
symbols in the state’s items.

4.3 Properties of LSCELR Parsers
With LSCELR parsers, we are able to achieve the power of canonical LR(1) parsers.
Canonical parsers often have a very large number of states, which makes them unsuitable
for practical use, and most practical applications use LALR parsing instead. LSCELR
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Algorithm 4.12 LSCELR action and goto
Input: augmented context-free grammar 𝐺, LSCELR automaton 𝑆
Output: the action and goto tables

The parsing actions for all states 𝑆𝑖 = (𝐼,𝐺𝑂𝑇𝑂) ∈ 𝑆 are determined as follows:
𝑙𝑎 := 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑𝑠(𝑆, 𝑆𝑖,∅)
All action entries are initialized as an error.
If [𝐴 → 𝛼·𝑎 𝛽, 𝑔, 𝑠] is in 𝐼, 𝑎 ∈ 𝑇 , 𝑎 ̸= $ and 𝐺𝑂𝑇𝑂(𝑎) = 𝑗, set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, 𝑎] := shift j
If [𝐴 → 𝛼·, 𝑔, 𝑠] is in 𝐼, 𝑎 ∈ 𝑙𝑎 and 𝐴 ̸= 𝑆′, set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, 𝑎] := reduce 𝐴 → 𝛼
If [𝑆′ → 𝑆·$, {$},∅] is in 𝐼, set 𝑎𝑐𝑡𝑖𝑜𝑛[𝑖, $] := accept
If any conflicting actions arise from the above rules and they cannot be resolved, we say
the grammar is not LSCELR.
The goto transitions are created using the rule: If 𝑆𝑖

𝑋∈𝑁−−−→ 𝑆𝑗 , then 𝑔𝑜𝑡𝑜[𝑖,𝑋] = 𝑗.
The initial state is 𝑆1.

parsers do not suffer from the deficiencies of LALR parsing, but they achieve this with an
order of magnitude fewer states than canonical parsers.

By changing the automaton model, we were able to avoid some explicit analysis
of the LALR automaton compared to IELR. Because of this change, the analysis of the au-
tomaton is relatively straightforward and some relationships between items are preserved
instead of needing to be recomputed. We were able to successfully generate minimal LR(1)
parsers using this new model. The core idea of the minimal LR(1) parser however remains:
all states that don’t change the nature of their conflicts are merged and all states that do
are split.

grammar LALR canonical LR LSCELR
Figure 4.1 10 12 11
Figure 4.2 16 18 18
GAWK 435 4861 613
ANSI C 479 2623 512

Table 4.4: Numbers of states for LALR, canonical and LSCELR parsers

In Table 4.4, we compare the number of states for existing parsing algorithms. The first
two rows contain the number of states for the two grammars from this chapter. These
are small grammars, so the number of states is comparable to canonical parsers. GAWK
is a text processing tool from the GNU collection. We have constructed the automatons
for its grammar obtained from [15]. Finally, we have the numbers of states for the latest
standard of ANSI C from 2011. The grammar was obtained from [2]. All of the automatons
were constructed using the implementation described in the last two chapters of this thesis.
We can see that the hypothesis of greatly reduced parser sizes is true for these practical
grammars. The ANSI C grammar doesn’t rely on associativity and precedence conflict
resolution (it has these concepts encoded in the grammar itself), and its LSCELR parser is
nearly identical to its LALR parser. The differences might indicate some bugs or reliance
on default Bison behavior in the grammar.

LSCELR parsers can be used to generate minimal LR(1) parsers that guarantee no
created conflicts over canonical parsers. Like IELR parsers, they work well with non-LR(1)
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grammars with conflict resolution and they don’t lose any accepted sentences by reducing
the number of states.

In its current implementation, the generation of LSCELR parsers is quite slow for large
grammars compared to IELR (benchmarks of IELR are in [4]). This only becomes an issue
for grammars with canonical LR parsers that have thousands of states. Even very large IELR
parsers can be generated in a fraction of a second, where LSCELR takes tens of seconds
on newer processors. There exist multiple areas for optimization in the LSCELR algorithm
that could resolve this issue, however. A hybrid approach where the explicit lookahead
model is used in an IELR implementation exclusively to avoid recomputing the preserved
properties of the automaton could solve this issue completely. We circumvent this issue in our
framework by providing a convenient way to generate a text representation of the parsing
tables as an additional optional step after translating translation grammars from their text
representation. The parsing tables can then be initialized from this representation, removing
the need to recompute the LSCELR parser on each initialization.

Like Denny and Malloy, we consider conflict resolution that is merge-stable. If conflict
resolution isn’t merge-stable (it makes decisions based on the full lookahead sets regardless
of the actual conflicted symbols), LSCELR could potentially merge two states that have
the same potential conflict contributions, but conflict resolution would behave differently
based on the other lookahead symbols. The conflict resolution used in Bison and in our
implementation is merge-stable, so this issue is not relevant here.

4.4 Other Parsing Algorithms via the LSCELR algorithm
Other parsers can be obtained by modifying the LSCELR algorithm. Here, we demonstrate
how to create the equivalents of LALR and Canonical LR parsers through the LSCELR
algorithm.

4.4.1 LSLALR Parsers

If we always skip phases 2, 3 and 4 from Section 4.2, we will obtain the LSLALR parser. This
parser has the same properties as a LALR parser, but takes advantage of the explicit model
during parser table construction. The original approach propagates lookaheads forwards
through the automaton, whereas we propagate lookaheads by references to predecessors.
Since LSCELR parsers are identical to LALR parsers for LALR grammars, generating LALR
parsers this way poses a risk: grammars that are not LALR may lose the ability to accept
some input sentences and new reduce-reduce conflicts may appear.

4.4.2 LS Canonical LR Parsers

If we skip phases 2, 3 and 4 from Section 4.2, and we set the compatibility test in phase 1 so
that two states are compatible when they are isocores and their corresponding items have
the same full lookahead sets, we obtain the LS canonical LR(1) parser. Here, the explicit
model doesn’t provide any advantages over canonical LR parsing. We do, however, get
the lookahead propagation paths if we want to inspect them during grammar construction
or debugging. The usefulness of this approach is mainly in studying canonical parsers.
Canonical parsers will yield many more states for the same recognition power as LSCELR
parsers.
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Chapter 5

Translation Grammars

This chapter introduces translation grammars and some of their properties. The following
is quoted from [17], with the exceptions of Section 5.1 and Section 5.2.3. The following
definition is a modification of the definition from [8], separating the input and output
terminal sets and changing the notation slightly.

Definition 5.0.1. A translation grammar is a quintuple

𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆)

where

∙ 𝑁 is an alphabet of nonterminals

∙ 𝑇𝐼 is an input alphabet of input terminals such that 𝑇𝐼 ∩𝑁 = ∅

∙ 𝑇𝑂 is an input alphabet of output terminals such that 𝑇𝑂 ∩𝑁 = ∅

∙ 𝑃 is a finite set of productions in the form

(𝐴,𝐴) → (𝑢0𝐵1𝑢1 . . . 𝐵𝑛𝑢𝑛, 𝑣0𝐵1𝑣1 . . . 𝐵𝑛𝑣𝑛)

for 𝑗 = 1, . . . , 𝑛, 𝐵𝑗 ∈ 𝑁 , for 𝑖 = 0, . . . , 𝑛, 𝑢𝑖 ∈ 𝑇 *
𝐼 and 𝑣𝑖 ∈ 𝑇 *

𝑂 (𝑛 = 0 implies
(𝐴,𝐴) → (𝑢0, 𝑣0))

∙ 𝑆 is the start symbol

Let (𝐴,𝐴) → (𝑖, 𝑜) ∈ 𝑃 , where 𝑖 ∈ (𝑁 ∪ 𝑇𝐼)* and 𝑜 ∈ (𝑁 ∪ 𝑇𝑂)*. Then, 𝐴 → 𝑖 is the input
production, 𝐴 → 𝑜 is the output production, 𝐴 is the left-hand side of the production, 𝑖 is
the input right-hand side of the production, and 𝑜 is the output right-hand side of the pro-
duction.
The direct derivation relation, denoted by ⇒ and defined from 𝑁×𝑁 to (𝑁∪𝑇𝐼)*×(𝑁∪𝑇𝑂)*,
is defined as (𝑞, 𝑟) ⇒ (𝑥, 𝑦) only when 𝑞, 𝑥 ∈ (𝑁 ∪𝑇𝐼)*, 𝑟, 𝑦 ∈ (𝑁 ∪𝑇𝑂)*, (𝐴,𝐴) → (𝑖, 𝑜) ∈ 𝑃 ,
𝑞 = 𝑥0𝐴𝑥1, 𝑟 = 𝑦0𝐴𝑦1, 𝑥 = 𝑥0𝑖𝑥1, 𝑦 = 𝑦0𝑜𝑦1, 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑥0, 𝑛) = 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑦0, 𝑛)
and 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑥1, 𝑛) = 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠(𝑦1, 𝑛) for all 𝑛 ∈ 𝑁 .
The set of all input sentential forms of 𝐺 if defined as

𝐹𝐼(𝐺) = {𝑖 : 𝑖 ∈ (𝑁 ∪ 𝑇𝐼)*, 𝑜 ∈ (𝑁 ∪ 𝑇𝑂)*, (𝑆, 𝑆) ⇒* (𝑖, 𝑜)}

The translation defined by 𝐺 is denoted by 𝑇 (𝐺) and defined as

𝑇 (𝐺) = {(𝑖, 𝑜) : 𝑖 ∈ 𝑇 *
𝐼 , 𝑜 ∈ 𝑇 *

𝑂, (𝑆, 𝑆) ⇒*
𝐺 (𝑖, 𝑜)}
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The input language is defined as

𝐿𝐼(𝐺) = {𝑖 : (𝑖, 𝑜) ∈ 𝑇 (𝐺)}

The output language is defined as

𝐿𝑂(𝐺) = {𝑜 : (𝑖, 𝑜) ∈ 𝑇 (𝐺)}

The input grammar is a context-free grammar

𝐼𝐺 = (𝑁,𝑇𝐼 , {𝐴 → 𝑖 : (𝐴,𝐴) → (𝑖, 𝑜) ∈ 𝑃}, 𝑆)

Definition 5.0.2. A linear translation grammar is a translation grammar as described
in Definition 5.0.1 with productions in P in the forms

(𝐴,𝐴) → (𝑢, 𝑥)

and
(𝐴,𝐴) → (𝑢𝐵𝑣, 𝑥𝐵𝑦)

where 𝐴,𝐵 ∈ 𝑁 , 𝑢, 𝑣 ∈ 𝑇 *
𝐼 and 𝑥, 𝑦 ∈ 𝑇 *

𝑂

Translation grammars are essentially two context-free grammars with a common set
of nonterminals and linked sets of productions. Whereas grammars generate languages,
translation grammars generate binary relations called translations. Each production starts
from a single nonterminal and generates two strings. The input and output right-hand sides
of each production must contain the same nonterminals in the same order. Translation
grammars define translations 𝑇 (𝐺), and two languages 𝐿𝐼(𝐺) and 𝐿𝑂(𝐺). They can also
be used as language generating systems, as discussed in Section 5.3.

The complexity of the input and output languages of translation grammars and linear
translation grammars is the same as that of context-free and linear grammars, respectively.
This can be easily proven by comparing the definitions of translation grammars and context-
free grammars, or linear translation grammars and linear grammars. This implies that
on their own, input and output languages generated by translation grammars define the family
of context-free languages CF, and that input and output languages generated by linear
translation grammars define the family of linear languages LIN.

Definition 5.0.3. Let 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆) be a translation grammar. An augmented
translation grammar is a translation grammar

𝐺′ = (𝑁 ∪ 𝑆′, 𝑇𝐼 ∪ {$}, 𝑇𝑂 ∪ {$}, 𝑃 ∪ {(𝑆′, 𝑆′) → (𝑆$, 𝑆$)}, 𝑆′)

where 𝑆′ ̸∈ 𝑁 , $ ̸∈ 𝑇𝐼 ∪ 𝑇𝑂 and $ is the end of input symbol.

5.1 Attribute Translation Grammars
In this thesis, we introduce attribute translation grammars. In practical translation, it is
often necessary to attach additional attributes to terminals. For example, programming
languages often use integer literals, where the actual numeric value of that input token is
attached as an additional attribute. Here, we define a formal basis for working with these
attributes in the context of translation grammars. We extend the rule definition by adding
a function mapping input attributes to output attributes.

42



Definition 5.1.1. An attribute translation grammar is a quintuple

𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆)

where

∙ 𝑁 , 𝑇𝐼 , 𝑇𝑂 and 𝑆 have the same meaning as in translation grammars.

∙ 𝑃 is a finite set of productions in the form

[(𝐴,𝐴) → (𝑢0𝐵1𝑢1 . . . 𝐵𝑛𝑢𝑛, 𝑣0𝐵1𝑣1 . . . 𝐵𝑛𝑣𝑛), 𝐹 ]

for 𝑗 = 1, . . . , 𝑛, 𝐵𝑗 ∈ 𝑁 , for 𝑖 = 0, . . . , 𝑛, 𝑢𝑖 ∈ 𝑇 *
𝐼 and 𝑣𝑖 ∈ 𝑇 *

𝑂 (𝑛 = 0 implies
(𝐴,𝐴) → (𝑢0, 𝑣0)). 𝐹 : N → 2N is the attribute relay function. 𝐹 (𝑥) = ∅ for all
𝑥, where 𝑥 > |𝑢0𝐵1𝑢1 . . . 𝐵𝑛𝑢𝑛| or 𝑠𝑦𝑚𝑏𝑜𝑙(𝑢0𝐵1𝑢1 . . . 𝐵𝑛𝑢𝑛, 𝑥) ∈ 𝑁 . For all other 𝑥,
𝐹 (𝑥) is the set of indices of output terminals in 𝑣0𝐵1𝑣1 . . . 𝐵𝑛𝑣𝑛. During translation,
the attribute from 𝑥 is relayed to all output terminals marked in 𝐹 (𝑥).

5.2 Syntax-directed translation using translation grammars
To demonstrate the use of translation grammars in syntax-directed translation, this section
describes the use of translation grammars by modifying top-down predictive LL(1) parsing
and bottom-up LR(1) parsing. We have previously discussed both LL and LR parsing in
chapter 3. We modify these algorithms to both parse input and create output defined by a
translation grammar, creating predictive top-down translation and LR translation.

5.2.1 Two-stack Pushdown Automaton as a Translation Model

Using a two-stack pushdown automaton to simulate translation grammar top-down trans-
lation is similar to using a pushdown automaton to simulate top-down parsing of context-
free grammars. The following method for constructing two-stack pushdown automation
from translation grammars creates a two-stack pushdown automation that accepts a language
by empty input pushdown and final state. Algorithm 5.1 describes the construction of such
two-stack pushdown automata.
Basic idea. There are two groups of rules in 𝑅. If an input terminal symbol is on the top
of the input stack, one of the comparing rules in the form 𝑥|𝑦𝑠𝑥 → |𝑦𝑠 ∈ 𝑅, where
𝑥 ∈ 𝑇𝐼 , 𝑦 ∈ 𝑁 ∪ 𝑇𝑂, 𝑠 ∈ 𝑄 is applied. These rules compare the input symbol to the top
of the input nonterminal.

The other group of rules simulates the translation grammar’s productions. This group
of rules simulates the expansion of nonterminals on both input and output stacks. First,
the input of the production is reversed and pushed to the input stack, followed by a special
symbol #. Second, the correct nonterminal symbol is moved to the top of the output
stack by moving the top terminals and nonterminals from the top of the output stack
to the top of the input stack. When the correct nonterminal is on top of the output stack,
the output right-hand side of the production is reversed and pushed to the output stack.
Finally, the symbols moved to the input stack from the output stack are moved back
to the output stack until the special symbol # is encountered and removed from the input
stack. This group of rules ensures that the correct nonterminal is expanded in the output
stack. Note that this set of rules for each production in translation grammar 𝐺 does not
rely on the absolute position of the expanded nonterminal in the output stack.
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Algorithm 5.1 Two-stack pushdown automation simulating a translation grammar (based
on the algorithm on page 47 of [11])
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆)
Require: # ̸∈ (𝑁 ∪ 𝑇𝐼 ∪ 𝑇𝑂)
Output: two-stack pushdown automaton 𝑀 = (𝑄,Σ, 𝜏, 𝑅, 𝑠, 𝑆𝐼 , 𝑆𝑂, 𝐹 )
𝑆𝐼 := 𝑆
𝑆𝑂 := 𝑆
𝑄 := {𝑠,−}
Σ := 𝑇𝐼

𝜏 := 𝑁 ∪ 𝑇𝐼 ∪ 𝑇𝑂 ∪ {#}
𝐹 := {𝑠}
for all 𝑥 ∈ 𝑇𝐼 , 𝑦 ∈ 𝑁 ∪ 𝑇𝑂 do

Add 𝑥|𝑦𝑠𝑥 → |𝑦𝑠 to 𝑅

for all 𝑓, 𝑥 ∈ 𝑁 ∪ 𝑇𝑂 do
Add 𝑥|𝑓− → |𝑓𝑥− to 𝑅
Add #|𝑓− → |𝑓𝑠 to 𝑅

for all 𝑍 : (𝐴,𝐴) → (𝑏, 𝑐) ∈ 𝑃 , where 𝑍 is a unique rule label do
Add +𝑍 to 𝑄
for all 𝑑 ∈ 𝑁 ∪ 𝑇𝑂 do

Add 𝐴|𝑑𝑠 → 𝑒#|𝑑+𝑍 to 𝑅, where 𝑒 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑏)

for all 𝑥 ∈ 𝑁 ∪ 𝑇𝑂 ∪ {#} do
for all 𝐵 ∈ 𝑁 ∪ 𝑇𝑂, where 𝐵 ̸= 𝐴 do

Add 𝑥|𝐵+𝑍 → 𝑥𝐵|+𝑍 to 𝑅

Add 𝑥|𝐴+𝑍 → 𝑥|𝑒− to 𝑅, where 𝑒 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑐)

After the successful derivation of 𝑀 , the output produced by the simulated translation
grammar is on the output stack. The first terminal of the generated sentence is on the top
of the output stack.

5.2.2 Predictive Top-Down Translation

This section introduces the formal devices and algorithms used for predictive top-down
translation using translation grammars. LL grammars are a proper subset of context-free
grammars, which means that the described algorithms will only work for a proper subset
of translation grammars.

Definition 5.2.1. A translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆) is an LL translation gram-
mar if its input grammar 𝐺𝐼 = (𝑁,𝑇𝐼 , 𝑃

′, 𝑆) is an LL grammar and |𝑃 | = |𝑃 ′|.

Algorithm 5.2 describes the predictive top-down translation method. This method is
based on the two-stack automaton described in section 5.2.1 and algorithm 7.17 from [10].
The contents of stacks 𝑖𝑝𝑑 and 𝑜𝑝𝑑 are written head-first: the first symbol is the symbol
on top of the stack. In addition to regular stack functionality (POP, removing the top element
from the stack and PUSH ), both stacks support the operation REPLACE. The operation
REPLACE(𝑛, 𝑥), where 𝑛 ∈ 𝑁 , 𝑥 ∈ (𝑁 ∪𝑇𝐼 ∪𝑇𝑂)* replaces the symbol 𝑛 closest to the top
of the stack with the string 𝑥. The first symbol in 𝑥 will be closest to the top of the stack.
This behavior can be achieved with two stacks with only PUSH and POP (as described
in 5.2.1), but we introduce the operation REPLACE for brevity.
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Algorithm 5.2 Predictive top-down translation
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆), its predictive table 𝛼𝐺 and the input

string 𝑥, where 𝑥 ∈ 𝑇 *
𝐼 .

Output: output string 𝑟 ∈ 𝑇 *
𝑂{$} if 𝑥 ∈ 𝐿𝐼(𝐺), ERROR otherwise

𝑖𝑝𝑑 := 𝑆$, 𝑜𝑝𝑑 := 𝑆$
𝑟 := 𝜀
𝑛 := 1
repeat

let 𝑋 denote the current 𝑖𝑝𝑑 top symbol
let 𝑡 := 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥$, 𝑛)
switch X:

case 𝑋 = $:
if 𝑡 = $ then SUCCESS, else ERROR

case 𝑋 ∈ 𝑇𝐼 :
if 𝑡 = 𝑋 then increment 𝑛 and POP 𝑖𝑝𝑑, else ERROR

case 𝑋 ∈ 𝑁 :
if 𝛼(𝑋, 𝑡) = 𝑛𝑢𝑙𝑙 then

ERROR
else

𝛼(𝑋, 𝑡) = (𝑋,𝑋) → (𝑖, 𝑜)
REPLACE(𝑋, 𝑖) in 𝑖𝑝𝑑
REPLACE(𝑋, 𝑜) in 𝑜𝑝𝑑

until SUCCESS or ERROR
if SUCCESS then

repeat
let 𝑠 denote the current 𝑜𝑝𝑑 top symbol
𝑟 := 𝑟𝑠
POP 𝑜𝑝𝑑

until 𝑜𝑝𝑑 is empty

5.2.3 LR(1) Translation

Algorithm 5.3 describes the predictive bottom-up translation method. This is an application
of the LR(1) algorithm as introduced in this thesis. The stacks 𝑖𝑝𝑑 and 𝑜𝑝𝑑 are the same as
in the previous section.
Basic idea. The first half of the algorithm is an implementation of the LR(1) parsing
algorithm. Its output are the productions to achieve the rightmost parse in reverse. If
the parsing portion of the algorithm has been successful, we now have the reversed rightmost
parse productions on the output stack. We reverse them by putting them on the input
stack one by one behind a special separator. We now have the rightmost parse productions
available on the input stack.

Then, we start applying the productions on the output stack. As it is a rightmost parse,
we store the output of each productions on the output stack reversed. That way, we always
replace the rightmost nonterminal. After we are done applying the productions, we now
have the reversed output sentence stored on the output stack. We can now pop them one
by one and add the symbols to the beginning of the output sentence. After we have emptied
the output stack, we now have the output of the translation.

45



Algorithm 5.3 Bottom-up LR translation
Input: translation grammar 𝐺 = (𝑁,𝑇𝐼 , 𝑇𝑂, 𝑃, 𝑆), its 𝑎𝑐𝑡𝑖𝑜𝑛𝐺 and 𝑔𝑜𝑡𝑜𝐺 tables and the in-

put string 𝑥, where 𝑥 ∈ 𝑇 *
𝐼 .

Output: output string 𝑟 ∈ 𝑇 *
𝑂{$} if 𝑥 ∈ 𝐿𝐼(𝐺), ERROR otherwise

𝑖𝑝𝑑 := 0, 𝑜𝑝𝑑 := 𝜀
𝑟 := 𝜀
𝑛 := 1
repeat

let 𝑠𝑡𝑎𝑡𝑒 denote the current top of 𝑖𝑝𝑑
let 𝑡 := 𝑠𝑦𝑚𝑏𝑜𝑙(𝑥$, 𝑛)
switch 𝑎𝑐𝑡𝑖𝑜𝑛𝐺[𝑠𝑡𝑎𝑡𝑒, 𝑡]:

case 𝑆𝑈𝐶𝐶𝐸𝑆𝑆:
SUCCESS

case 𝑒𝑟𝑟𝑜𝑟:
ERROR

case 𝑠ℎ𝑖𝑓𝑡 𝑖:
PUSH 𝑖 to 𝑖𝑝𝑑 and increment 𝑛

case 𝑟𝑒𝑑𝑢𝑐𝑒 𝑋 → (𝑖, 𝑜):
PUSH 𝑋 → (𝑖, 𝑜) to 𝑜𝑝𝑑
POP |𝑖| symbols from 𝑖𝑝𝑑
let 𝑠𝑡𝑎𝑡𝑒 denote the current top of 𝑖𝑝𝑑
PUSH 𝑔𝑜𝑡𝑜𝐺[𝑠𝑡𝑎𝑡𝑒,𝑋] to 𝑖𝑝𝑑

until SUCCESS or ERROR
if SUCCESS then

push a separator ‖ to 𝑖𝑝𝑑
move the contents of 𝑜𝑝𝑑 to 𝑖𝑝𝑑, reversing them in the process
𝑜𝑝𝑑 := 𝑆$
repeat

let 𝑋 → (𝑖, 𝑜) denote the current 𝑖𝑝𝑑 top symbol
REPLACE(𝑋, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑜))
POP 𝑖𝑝𝑑

until ‖ is at the top of 𝑖𝑝𝑑
while 𝑜𝑝𝑑 is not empty do

let 𝑠 be the top symbol of 𝑜𝑝𝑑
𝑟 := 𝑠𝑟
POP 𝑜𝑝𝑑
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5.3 Descriptional Complexity of Translation Grammars
This section demonstrates that translation grammars can be used to define any recursively
enumerable language (RE) by simulating queue grammars.

Lemma 5.3.1. Recall Lemma 2.38. in [13]. Let 𝑄′ be a queue grammar. Then, there exists
a queue grammar

𝑄 = (𝑉, 𝑇,𝑊 ′ ∪ {$, 𝑓}, {𝑓}, 𝑅, 𝑔)

such that 𝐿(𝑄′) = 𝐿(𝑄), where 𝑊 ′ ∩ {$, 𝑓} = ∅, each (𝑎, 𝑏, 𝑥, 𝑐) ∈ 𝑅 satisfies 𝑎 ∈ 𝑉 − 𝑇
and

∙ either 𝑏 ∈ 𝑊 ′, 𝑥 ∈ (𝑉 − 𝑇 )*, 𝑐 ∈ 𝑊 ′ ∪ {$, 𝑓}
∙ or 𝑏 = $, 𝑥 ∈ 𝑇 and 𝑐 ∈ {$, 𝑓}

The symbol $ ̸∈ 𝑊 ′ denotes the state where only terminals are generated and the symbol
𝑓 ̸∈ 𝑊 ′ is the new and only final state.

Lemma 5.3.2. For every queue grammar 𝑄, there exists a linear translation grammar 𝐺
such that

𝐿(𝑄) = {𝑥 : (𝑥, 𝑦) ∈ 𝑇 (𝐺), 𝑦 ∈ 𝐷}

Proof. Without any loss of generality, assume that the queue grammar 𝑄 satisfies the con-
ditions described in Lemma 5.3.1.

𝑄 = (𝑉, 𝑇,𝑊 ′ ∪ {$, 𝑓}, {𝑓}, 𝑅, 𝑔)

Then we construct a linear translation grammar 𝐺 in the following way:

𝐺 = (𝑊 ′ ∪ {$, 𝑓, 𝑆}, 𝑇, {0, 1}, 𝑃, 𝑆)

where 𝑆 ∪𝑊 ′ = ∅. Set 𝑛 = |𝑉 |.
Introduce the bijective homomorphism 𝛼 from 𝑉 to {0, 1}𝑛 ∩ 0+10*1. Expand its domain
to 𝑉 * so that 𝛼(𝑎𝑏) = 𝛼(𝑎)𝛼(𝑏), for any 𝑎 ∈ 𝑉, 𝑏 ∈ 𝑉 * and 𝛼(𝜀) = 𝜀. Let 𝜔 be the bijective
homomorphism defined as 𝜔(𝑥) = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝛼(𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑥))), where 𝑥 ∈ 𝑉 *.
𝑃 is constructed as follows:

1. For 𝑔 = 𝑘𝑙, 𝑘 ∈ 𝑉 , 𝑙 ∈ 𝑊 ′, add (𝑆, 𝑆) ⇒ (𝑙, 𝛼(𝑘)𝑙) to 𝑃 .

2. For each (𝑎, 𝑏, 𝑥, 𝑐) ∈ 𝑅, where 𝑎 ∈ 𝑉 − 𝑇 , 𝑏 ∈ 𝑊 ′ ∪ {$}, 𝑥 ∈ (𝑉 − 𝑇 )* ∪ 𝑇 and
𝑐 ∈ 𝑊 ∪ {𝑓}, add (𝑏, 𝑏) ⇒ (𝑐, 𝛼(𝑥)𝑐𝜔(𝑎)) to 𝑃 .

3. For each 𝑡 ∈ 𝑇 , add (𝑓, 𝑓) ⇒ (𝑡𝑓, 𝑓𝜔(𝑡)) to 𝑃 .

4. Finally, add (𝑓, 𝑓) ⇒ (𝜀, 𝜀) to 𝑃 .

Basic idea. The constructed translation grammar 𝐺 simulates the queue grammar 𝑄 that
satisfies the properties described in Lemma 5.3.1. The production from 1, applied only once,
initialises the derivation. The production 4 terminates the derivation. The productions
from 2 simulate the rules applied by 𝑄. Finally, productions from 3 generate the simulated
terminals to the input string in the order generated by 𝑄.
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Claim A. G can generate every (𝑥, 𝑦) ∈ 𝑇 (𝐺) where 𝑦 ∈ 𝐷 in this way:

(𝑆, 𝑆 )

⇒ (𝑙, 𝛼(𝑘)𝑙 )

⇒* ($, 𝛼(𝑎0..𝑎𝑘..𝑎𝑘+𝑚)$ 𝜔(𝑎𝑘..𝑎0))

⇒* (𝑓, 𝛼(𝑎0..𝑎𝑘+𝑚𝑥1..𝑥𝑚)𝑓 𝜔(𝑎𝑘+𝑚..𝑎0))

⇒* (𝑥𝑓, 𝛼(𝑎0..𝑎𝑘+𝑚𝑥1..𝑥𝑚)𝑓 𝜔(𝑥𝑚..𝑥1𝑎𝑘+𝑚..𝑎0))

⇒ (𝑥, 𝛼(𝑎0..𝑎𝑘+𝑚𝑥1..𝑥𝑚) 𝜔(𝑥𝑚..𝑥1𝑎𝑘+𝑚..𝑎0))

Where 𝑘,𝑚 ≥ 1, 𝑎𝑖 ∈ 𝑉 − 𝑇 for 𝑖 = 0, . . . , 𝑘 + 𝑚; 𝑔 = 𝑘𝑙 : 𝑘 ∈ 𝑉 − 𝑇, 𝑙 ∈ 𝑊 ′; 𝑎0 = 𝑘;
𝑥 = 𝑥1..𝑥𝑚, 𝑥𝑖 ∈ 𝑇 * for 𝑖 = 1, . . . ,𝑚;

𝑦 = 𝛼(𝑎0..𝑎𝑘+𝑚𝑥1..𝑥𝑚)𝜔(𝑥𝑚..𝑥1𝑎𝑘+𝑚..𝑎0)

𝑦 = 𝑣𝑤,𝑤 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙(𝑣)

Proof of claim A. Examine the construction of G. Observe that every successful derivation
begins with application of production 1, followed by applying productions from 2, followed
by applying productions from 3. Every successful derivation ends with a single application
of production 4.

Observe that during application of rules in 2 and 3, the output side is as follows: 𝑤𝑖 ∈ 𝑉
for 𝑖 = 0, . . . , 𝑘 + 𝑚; 𝑘,𝑚 ≥ 1; 𝑁 ∈ 𝑊 ′ ∪ {$, 𝑓}

𝛼(𝑤0..𝑤𝑘..𝑤𝑘+𝑚)𝑁𝜔(𝑤𝑙..𝑤0)

To satisfy 𝑦 ∈ 𝐷, only productions that put 𝜔(𝑤𝑘+1) to the right of the nonterminal are
applicable.
Claim B. Q generates every ℎ ∈ 𝐿(𝑄) in this way: 𝑔 = 𝑎0𝑞0

𝑎0𝑞0

⇒𝑎1𝑦1𝑞1 (𝑎0, 𝑞0, 𝑧0, 𝑞1)

⇒𝑎2𝑦2𝑞2 (𝑎1, 𝑞1, 𝑧1, 𝑞2)

. . .

⇒𝑎𝑘+1𝑦𝑘+1𝑞𝑘+1 (𝑎𝑘, 𝑞𝑘, 𝑧𝑘, 𝑞𝑘+1)

⇒𝑎𝑘+2𝑦𝑘+2𝑥1$ (𝑎𝑘+1, 𝑞𝑘+1, 𝑥1, $)

. . .

⇒𝑎𝑘+𝑚𝑥1 . . . 𝑥𝑚−1$ (𝑎𝑘+𝑚−1, $, 𝑥𝑚−1, $)

⇒𝑥1 . . . 𝑥𝑚𝑓 (𝑎𝑘+𝑚, $, 𝑥𝑚, 𝑓)

where 𝑘,𝑚 ≥ 1; 𝑎𝑖 ∈ 𝑉 − 𝑇 for 𝑖 = 0, . . . , 𝑘 + 𝑚; 𝑦𝑖 ∈ (𝑉 − 𝑇 )* for 𝑖 = 1, . . . , 𝑘 + 𝑚 − 1;
𝑥𝑗 ∈ 𝑇 * for 𝑗 = 1, . . . ,𝑚; 𝑧0 = 𝑎1𝑦1; 𝑦𝑖𝑧𝑖 = 𝑎𝑖+1𝑦𝑖+1 for 𝑖 = 1, . . . , 𝑘; 𝑔 = 𝑎0𝑞0; 𝑞𝑖 ∈ 𝑊 ′ for
𝑖 = 0, . . . , 𝑘;
Proof of claim B. Recall that Q satisfies the properties given in Lemma 5.3.1. These
properties imply that Claim B holds.
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Claim C. Let G generate (ℎ, 𝑦) ∈ 𝑇 (𝐺), 𝑦 ∈ 𝐷 in the way described in Claim A; then,
ℎ ∈ 𝐿(𝑄).
Proof of claim C. Let (ℎ, 𝑦) ∈ 𝑇 (𝐺), 𝑦 ∈ 𝐷. Consider the generation of ℎ as described
in Claim A. Examine the construction of 𝑃 to see that at this point 𝑅 contains (𝑎0, 𝑞0, 𝑧0, 𝑞1),
. . . , (𝑎𝑘, 𝑞𝑘, 𝑧𝑘, 𝑞𝑘+1), (𝑎𝑘+1, 𝑞𝑘+1, 𝑥1, $), . . . , (𝑎𝑘+𝑚, $, 𝑥𝑚, 𝑓), where 𝑧0, . . . , 𝑧𝑘 ∈ (𝑉 − 𝑇 )*,
and 𝑥1, . . . , 𝑥𝑚 ∈ 𝑇 *. Then, 𝑄 makes the generation of ℎ in the way described in Claim B.
Claim D. Let Q generate ℎ ∈ 𝐿(𝑄) in the way described in Claim B; then, (ℎ, 𝑦) ∈ 𝑇 (𝐺),
𝑦 ∈ 𝐷.
Proof of claim D. Let ℎ ∈ 𝐿(𝑄). Consider the generation of ℎ as described in Claim B.
Examine the construction of 𝑃 to see that at this point 𝑃 contains

(𝑆, 𝑆) ⇒ (𝑞0, 𝛼(𝑎0)𝑞0),

(𝑞0, 𝑞0) ⇒ (𝑞1, 𝛼(𝑧0)𝑞1𝜔(𝑎0)),

. . . ,

(𝑞𝑘, 𝑞𝑘) ⇒ (𝑞𝑘+1, 𝛼(𝑧𝑘)𝑞𝑘+1𝜔(𝑎𝑘)),

(𝑞𝑘+1, 𝑞𝑘+1) ⇒ ($, 𝛼(𝑥1)$𝜔(𝑎𝑘 + 1)),

. . . ,

($, $) ⇒ (𝑓, 𝛼(𝑥𝑚)𝑓𝜔(𝑎𝑘+𝑚)),

(𝑓, 𝑓) ⇒ (𝑥1𝑓, 𝑓𝜔(𝑥1)),

. . . ,

(𝑓, 𝑓) ⇒ (𝑥𝑚𝑓, 𝑓𝜔(𝑥𝑚))

where 𝑧0, . . . , 𝑧𝑘 ∈ (𝑉 − 𝑇 )*, and 𝑥1, . . . , 𝑥𝑚 ∈ 𝑇 *. Then, 𝐺 makes the generation of (ℎ, 𝑦)
in the way described in Claim A.

Claims A through D imply that 𝐿(𝑄) = {𝑥 : (𝑥, 𝑦) ∈ 𝑇 (𝐺), 𝑦 ∈ 𝐷}, so this lemma
holds.

Lemma 5.3.2 implies that any queue grammar can be simulated by a linear translation
grammar. Since linear queue grammars define the family of recursively enumerable languages
RE, linear translation grammars can be used to define any recursively enumerable language.
Because of this descriptional complexity, any grammar or rewriting system defining any
subset of recursively enumerable languages can be simulated by a linear queue grammar.
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Chapter 6

Translation Framework

For this thesis, we implemented a grammar-based translation framework ctf (C tf ain’t
a Translation Framework). In this chapter, we will discuss its features, its translation
specification language and we will compare the approach to translation to existing tools like
GNU Bison.

6.1 Translation Framework Features
The framework is designed as a runtime library for modern C++. Because non-general
top-down predictive translation covers a relatively small subset of translation grammars,
ctf implements bottom-up LR(1) translation as its primary translation algorithm. We let
the user choose between canonical LR, LSCELR and LALR translation, and we default
to LSCELR. The input languages for both canonical LR and LSCELR translation are
relatively unrestricted and don’t present many obstacles for grammar designers. Resolv-
ing conflicts with precedence and associativity annotations adds even more convenience
for the development of grammars and even reduces the number of steps the translator has
to make when accepting grammars that specify expressions — only a single nonterminal
represents the expression instead of one for each precedence level.

In ctf, translation is defined by an attribute translation grammar with precedence and
associativity for conflict resolution. This leads to a slightly different approach to syntax-
directed translation compared to existing context-free grammar-based tools. We discuss these
differences in Section 6.3. The user provides three components to define a full translation:
a lexical analyzer, an attribute translation grammar and an output generator.

The lexical analyzer divides the input into lexemes and translates them into tokens, some
of which have attributes (see page 11 in [9]). The framework does not implement a lexical
analyzer generator. It does, however, provide a base class for user implemented lexical
analyzers that reads text input and keeps track of input position automatically. Errors
and warnings are also handled by this base class. It is recommended that users implement
a recursive descent lexical analyzer or a state machine lexical analyzer.

The attribute translation grammar defines the core of the translation. We choose attribute
translation grammars for their ability to transfer attributes from the input string of tokens
to the output string of tokens. Users can use the text format described in Section 6.2
to specify these grammars. The translation algorithm uses this grammar to translate
the string of input tokens provided by the lexical analyzer to a string of output tokens.
The output tokens contain output terminals and their attributes.
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The output generator receives the output of the translation defined by the translation
grammar and produces final output. For straightforward translation, such as translating
between two markup languages, this could be as simple as printing the text representation
of output tokens. For more complicated applications such as compilers, the output generator
will likely contain a semantic analyzer, a code generator etc. Because output is only
available when the input has been parsed successfully, output has a well defined form
defined by the output grammar. The output generator needs to correctly parse the output
string to form its output. If the associated translation grammar was written well, parsing
the output will be relatively straightforward: users are free to put separation markers
between sections and other arbitrary symbols to their output languages to make parsing
the output easier. For applications where a syntax tree is necessary, it is possible to define
the output to be in postfix notation that is then converted to the syntax tree by the output
generator as a preparation step. The framework provides a base class for output generators
with convenience methods for text output, warnings and errors handling.

Since ctf is not yet as mature as existing tools and frameworks, there exist large
grammars for which the runtime cost of creating the parser tables is very high (almost 30
seconds for the GAWK grammar when using LSCELR). ctf provides the option of saving
and loading parsing tables to and from text representation. This operation is very fast and
bypasses the issues with potentially slow parser construction. The user can add custom
parsing error messages by constructing the translation objects with their custom error
message function as an optional parameter. Error recovery is currently not implemented,
but is ready for use if any users implement it in a subclass of the translation control classes.

6.2 Grammar Specification
Specifying a translation grammar in the form of a programming language source file is
neither easy, nor maintainable. We introduce a language for specifying attribute transla-
tion grammars for our framework. This language was inspired by the BISON grammar
specification language, as well as the YAML markup language (see [6] and [19]).

𝑎𝑟 = {(1, {1})} ∪ {(𝑥,∅) : 𝑥 ̸= 1}
𝑃 =⎧⎪⎪⎨⎪⎪⎩

0 : [(𝑆′, 𝑆′) → (𝐴,𝐴)$,∅],
1 : [(𝐴,𝐴) → (𝑎, 𝑎), 𝑎𝑟],
2 : [(𝐴,𝐴) → (𝑎𝐴𝐵, 𝑐𝐴𝑑𝐵𝑒), 𝑎𝑟],
3 : [(𝐵,𝐵) → (𝑏, 𝑏), 𝑎𝑟]

⎫⎪⎪⎬⎪⎪⎭
Figure 6.1: An attribute translation gram-
mar for {(𝑎𝑛+1𝑏𝑛$, 𝑐𝑛𝑎(𝑑𝑏𝑒)𝑛$) : 𝑛 ≥ 0}

grammar grammar_name

A:
’a’
’a’ A B | ’c’ A ’d’ B ’e’

1

B:
’b’

Figure 6.2: Representation of Figure 6.1

Each grammar specification file (*.ctfg) contains the name of the translation grammar,
its optional precedence and associativity specifications, and its productions. The name
of the translation grammar is in snake_case and determines the name of the output source
files and the namespace they’ll be put in. The starting nonterminal is always the left-hand
side nonterminal of the first production. Nonterminals are always CamelCase, and we
can put the symbol ’ in the name, except for the first position. Terminals are denoted
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as ’terminal’, where we can put almost any symbols between the ’ characters. Whitespace
symbols such as newlines or tabs are forbidden in terminal names, with the exception
of spaces. Indentation is always done using tab characters, and comments start with the #
character and end at the end of line. The full grammar for translating this format is specified
in this format in Appendix B.

6.2.1 Precedence

precedence: # optional precedence specifications
none ’unary -’ # highest precedence
right ’^’
left ’*’ ’/’
left ’+’ ’-’ # lowest precedence

Figure 6.3: Example of precedence specification

Precedence can be specified after the grammar name and before grammar productions
as a list of descending precedence levels, specifying precedence and associativity for groups
of terminals. Each precedence layer has an associativity specification as discussed in
Section 3.4.6. Figure 6.3 shows a specification of precedence levels.

6.2.2 Productions

Expression:
’integer’ # input and output are the same and implicitly connected
Expression ’-’ Expression |

Expression Expression ’-’
3 # we connect the ’-’ terminals

’-’ Expression | Expression ’unary -’
precedence ’unary -’ # different precedence for this production
- # we explicitly don’t connect anything to the input ’-’

’float cast’ ’integer’ | ’integer’ ’float cast’
2
1

Figure 6.4: Example of production specification

Figure 6.4 shows an example of a group of productions. We group productions with
the same left-hand side nonterminals in the same group. A group of productions starts with
the left-hand side nonterminal of the production, followed by a : character. Then follow
the productions, indented by one tab and separated by newlines. There exist two forms
of production specification: if both input and output right-hand sides of the production are
the same, we only specify the input right-hand side, and the output is set to the same string
of terminals and nonterminals. All attribute relays in such rules are automatically set so
that the corresponding terminals are connected. The second form specifies both input and
output, separated by the | symbol. The output part of a rule can be put on a new line,
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indented by one extra tab symbol. We explicitly denote the empty string in either input or
output as -.

Rules have the implicit precedence of their last input terminal, or the end of input terminal
if there aren’t any. We can explicitly specify a different terminal symbol as the production
precedence. This is useful when two different symbols share the same terminal on input,
but have different semantic meaning (for example negation and subtraction).

We can specify attribute relays for terminals. Like precedence specification for produc-
tions, they follow the input and output on next lines, indented by an extra tab. We can
specify attribute relays for all (or a prefix of) terminals in the input. Each attribute relay is
a list of integers separated by commas. Each number represents the corresponding symbol
in the output and it must be a terminal. The attribute from that input terminal will be
distributed to all target nonterminals. We can explicitly give empty relay sets to terminals
by using the - symbol. If multiple output terminals are targets of multiple relays, the
behavior is undefined. If both precedence specification and attribute relays need to be
specified, precedence specification always goes first.

6.3 Syntax-directed Translation
We redefine the concept of syntax-directed translation as understood from the perspective
of syntax-directed parsing (see Figure 1.8 in [9]) for the context of translation grammars.
In this section, we will discuss the approach to translation in this framework and compare it
to GNU Bison as a representative of existing parsing tools.

GNU Bison associates applications of productions with user-defined function calls. This
lets us create the syntax tree and, in general, perform almost any action upon reducing
any rule. This can lead to semantics checks during the parsing process. In ctf, we simply
define the relationship between the input and output tokens and their attributes. Semantic
meaning of language constructs is separated from translation itself completely and only
has effect when generating output after the translation has been successful. This feature is
admittedly an issue for some languages that inherently rely on their semantics for parsing
(e.g. C, C++ or Java), but for other applications, this strict separation of syntax from
semantics could lead to better maintainability of the translator. The output generator
in translation grammar-defined translation is a component that is completely separated
from the translation algorithm: the same output generator can be used for both top-down
and bottom-up translation algorithms.

In traditional parsers, the parse tree is always constructed according to the specification
of the context-free grammar. On the other hand, the actions on each reduce or the construc-
tion of the abstract syntax tree are not formally specified. When using translation grammars
as the formal base, we generate output according to that formal specification. A different
challenge with parsing that formally defined output arises: parsing the output string is left
up to the output generator, becoming the informally defined part of the translator. For most
applications, postfix notation can be used for expressions and other similar concepts, so that
their syntax trees can be trivially constructed from the output string. Generating the postfix
notation does not need to correspond to the syntax tree with translation grammars, so we
gain some flexibility in defining translations this way. Most other concepts can be clearly
communicated in parts of the output separated by special output terminals. The difficulty
of parsing the output is determined by the formal specification of the translation itself.
A potential advantage of this can be that the grammar can be heavily restructured, but
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when the output language stays the same, we can reuse existing output generators without
any changes.

The set of input grammars we can parse in ctf with LSCELR is the same as the set
of context-free grammars we can parse in GNU Bison when using IELR. There are two
main differences between the two tools. The first difference is the inherent difference
in approach to translation. There exist applications where it is desirable to be able to run
custom code on reducing a production, and there exist applications where processing a flat
translation output is more convenient (such as simple translators). For most applications,
both approaches are applicable and are simply a matter of preference. The second difference
is more substantial: GNU Bison is simply a parser generator, whereas ctf is a runtime C++

framework. While it is certainly possible and convenient to construct programs that do what
a Bison-generated parser would do, we also have the option of constructing translations
during runtime.

The use of modern C++ could also prove to be an advantage in the context of practical
compilers. Many compilers use the LLVM framework (see [7]) for target code generation.
While it is possible to emit text representation of the LLVM intermediate code, the native
C++ interface is bound to be more convenient for compiler developers.

6.4 Table Compression
Fully enumerated LR parsing tables are mostly filled with error or empty items. Practical
implementations (such as GNU Bison) don’t typically store LR parsing tables as 2D arrays
of actions. In this section, we propose a method of LR table compression that keeps all
enumerated actions, while reducing the size of the tables for most practical parsers.

We store the action and goto tables as an array of sorted arrays. Each table is implemented
with two arrays: the first array 𝑎 stores pairs of symbols and their actions or gotos where
only nonempty items are stored (error items are considered empty in the action table).
The second array 𝑖 stores the beginning and end indices for each state. For example, items
for state 𝑛 are stored between 𝑎[𝑖[𝑛]] and 𝑎[𝑖[𝑛 + 1]]. Items are stored sorted by their key
(terminals for the action table and nonterminals for the goto table).

Item lookup is implemented as binary search in the subrange of 𝑎 determined by the state
and has the time complexity 𝑂(𝑙𝑜𝑔(𝑀)), where 𝑀 = |𝑇 | for action tables and 𝑀 = |𝑁 | for
goto tables. In practical grammars, very few states have more than 𝑥 ≥ |𝑇 |

2 actions or 𝑥 ≥ |𝑁 |
2

gotos. This lets use less total memory, while preserving all nonempty table items. Total
time for lookup of an item for state 𝑛, where there are 𝑗 ·𝑀 non-empty items is 𝑙𝑜𝑔2(𝑗 ·𝑀)
and assuming the storage needed to save an item is the same as storage needed to store
a terminal or a nonterminal, we save (1 − 2𝑗) ·𝑀 units of memory. With a conservative
average of 𝑗 = 0.3, this reduces memory usage to 0.6 times the original space requirements.
Further space conservation could be achieved by having a flat representation of actions and
gotos in states where more than half of symbols yield a valid action or goto. This was not
deemed necessary, as states where that is true are extraordinarily rare for tested practical
grammars.

Compressed LR tables are implemented in ctf_lr_table.hpp. Each table contains
both goto and action tables in compressed form as described in this section. LR tables
have the type of automaton from which they’re constructed as a template parameter. Class
aliases for LALR, LSCELR and Canonical LR parsing tables are defined in that source
file, with variants with and without conflict resolution. Table classes can be saved to a file
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and loaded using a simple serialization format. Table deserialization is not checked for
correctness, and manually changing the saved parser tables will lead to undefined behavior.
This allows for faster deserialization.

6.5 Implementation
This section contains a brief description of the implementation of ctf and its associated
tools. We also discuss some features of the framework that are not a core part of its
design. A practical use of the framework is demonstrated in the description of the grammarc
syntax-directed translator.

We were able to use the implementation of the translation framework from [17] as a basis
for the implementation for this thesis. The framework has since been heavily modified and
the supported translation algorithms have been changed completely. The final implementa-
tion is in C++17 and will likely be compatible with newer standards of C++ in the future.

The framework is designed to be easy to add as a dependency. For that reason, the whole
implementation can be included as a single header file. This removes any potential issues
with different compiler or ABI versions and can be used with any compiler that supports
C++17. This design decision has a negative impact on compile times: the whole framework is
compiled for every translation unit it’s included in. This is a deliberate tradeoff: translation
is an unlikely operation to be needed in large parts of any large system. When the framework
is included exclusively in files that handle translation, the ease of use outweighs the build
times issue.

6.5.1 Application Program Interface

The complete program documentation is available in the Doxygen-generated documentation.
The project has a Makefile target for generating the documentation, which can be run
as make doc. We represent terminals and nonterminals as instances of class Symbol. Symbols
are often used to index tables, so they are represented by unsigned integers, where the two
most significant bits denote whether they are terminals, nonterminals or the end of input
symbol. Tokens are instances of class Token, and they contain the symbol they represent,
their program location and an optional attribute. Attributes are stored as Attribute and
can store any arbitrary type. The standard library type std::any is used as the underlying
storage for attributes; this makes sure that access to stored attributes is type-safe.

Translations are instances of class Translation and can be run with different sets of input
and output streams. The lexical analyzer, translation algorithm and output generator types
are template type parameters of Translation, and any instance takes ownership of all three
of these objects. The constructor also makes a copy of the translation grammar that defines
the translation. The function load makes it convenient to supply saved parser tables instead
of constructing the translation from the translation grammar itself. When an instance
of Translation has been constructed, it is ready to run translation. We can also optionally
supply a function for printing symbols as their text representation; this is useful both during
debugging, when we can see which symbols cause issues, and during production: the default
parsing error messages use this function to communicate which symbol was unexpected and
which symbols would be acceptable. The method run takes three streams as parameters:
the input, output and error streams. We can also optionally provide the name of the input
stream, which is added to symbol locations.

55



The project contains classes LexixalAnalyzer and OutputGenerator. These classes
contain the default implementations of their respective functionalities. They provide
a convenient interface for implementing the user-defined lexical analyzers and output
generators. Both classes provide a mechanism for warnings, errors and unrecoverable errors
that print additional info with the user-supplied messages. The lexical analyzer class also
provides an input buffer that stores the input and automatically tracks the symbol locations,
as well as a method for constructing tokens with this information automatically added.

6.5.2 Tools

There exist two ctf tools that make using it more convenient: grammarc and parsergen.
The former lets us specify attribute translation grammars in the format specified in Section 6.2
and translate that representation to a pair of C++ source files. The latter is a convenience tool
for large parsers; it takes source files from grammarc and converts them to text representation
of parsing tables for a chosen translation algorithm.

Grammar Translation Tool

Section 6.2 specifies a translation grammar text representation format. The framework
doesn’t currently support loading translation grammars from files; grammarc is a tool that
converts this input into the appropriate C++ source files. The framework is designed around
this tool; it is possible to use it without this tool, but it is far less convenient. We generate
the grammar itself, as well as several convenience functions. The name of the grammar
dictates the names of the generated source files and the namespace all symbols will be put
in: grammar example will generate two source files example.cpp and example.h.

The generated header file contains custom string literal functions ""_t and ""_nt for both
terminals and nonterminals defined in the translation grammar. This can be useful for lexical
analyzers and output generators, as they can use these literals to construct symbols. We
generate a function to_string for printing symbols that associates symbols with their
string representation. Finally, the header file contains a declaration of the grammar itself.
The generated source file contains the translation grammar itself. The construction uses
the custom literals defined in the header to make the program representation slightly more
legible.

Because this tool performs translation, it is implemented with ctf. The translation
grammar it uses is in Appendix B and translates the representation to an easy to parse
sequence of output tokens.

The lexical analyzer is implemented as a recursive descent lexical analyzer. Because
the input language uses indentation, we must also keep track of the indentation level
in the lexical analyzer. Special tokens ’INDENT’ and ’DEDENT’ represent the start and end
of a specific indentation level. When a new line starts with more tab symbols than the pre-
vious one, we cache and subsequently emit that many ’INDENT’ tokens after the ’NEWLINE’
token, and we do the same with ’DEDENT’ tokens when there are fewer tabs on the beginning
of a line. The rest of the lexical analyzer is implemented in standard fashion. Attributes
of tokens are either missing, strings or unsigned integers.

The output generator performs two passes over the output: In the first pass, we parse
the optional precedence declaration and collect all nonterminals and input terminals and
output terminals (terminals used purely for precedence are considered output terminals).
We then map the symbols to their integer representations. With this information, we are
able to generate the header file. In the second pass, we generate the translation grammar
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itself. We pass over the individual rules and generate the contents of the source file.
The grammar outputs special tokens that denote ends of major sections of the output,
such as ends of individual rules, ends of groups of rules etc. These separators greatly
simplify the generation of output. The tool checks for correctness in the individual rules:
nonterminals in input and output must match.

The first iteration of this tool was implemented with the program representation
of the translation grammar. Now, the implementation is self-hosting and its translation
grammar is generated from a source file in its own format. The implementations of both
the lexical analyzer and the output generator, as well as creating and running the translation
are located in tools/grammar/main.cpp and they provide an example of usage of ctf.

Parser File Generator

LSCELR parsing tables are slow to create for grammars that yield hundreds of states.
To support loading parser tables created from text representation of translation grammars,
parsergen can create either of the chosen translation algorithms and create the saved
parsing table with the help of source files created by grammarc. These generated parsers can
be used as text input in raw string literals when creating translations, or they can be loaded
from files. The parser tables are created by generating a short ctf program using the two
source files from grammarc in a temporary directory and saving the parser tables to a file.
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Chapter 7

Conclusion

In this thesis, we provided a short overview of the existing parsing algorithms for languages
generated by context-free grammars. The LR family of parsing algorithms covers the largest
set of these languages; because of this, we have chosen LR parsing as the basis for our
translation algorithms. The traditional approach to translation, where we create an abstract
syntax tree from the productions used in parsing and transfer input tokens’ attributes, is
used by most existing tools today. We provided a short summary of the techniques that are
used in these kinds of parsers.

We designed an original minimal LR(1) parsing algorithm LSCELR based on the IELR
parsing algorithm. We designed a new representation of the LR automaton, the LS au-
tomaton. We embedded additional information about the relationships between items
in the LS automaton, which allow us to perform analysis of the automaton’s properties. We
provided a complete set of procedures and algorithms necessary for creating and working
with LS automatons. The LS automaton is the model for both LSLALR and LSCELR
parsing. The structure of LS automatons is well-suited for splitting states, which we utilize
in the creation of the LSCELR parser. We detect all conflicts in the LSLALR parser,
mark all items that contribute to those conflicts and finally split states that cause different
conflicts. LSCELR parsers are able to parse the same subset of grammars as canonical LR
parsers, but with an order of magnitude fewer states for most practical grammars.

We provided a comprehensive definition of translation grammars. As a new addition, we
also introduced attribute translation grammars for practical use in translation. Practical
translation often defines attributes for some input terminals and the ability to additionally
define the relationships between input and output symbols’ attributes is important for prac-
tical translation tools. Attribute translation grammars allow us to formally define these
relationships in the scope of individual productions. We designed a modification of selected
parsing algorithms to create translation algorithms: top-down predictive translation and
bottom-up LR translation. We presented the use of two-stack automata for simulating
translation grammars. We presented a formal proof of the generational power of translation
grammars first introduced in [17] that suggests that translation grammars can generate
recursively enumerable languages.

We designed a translation framework based on attribute translation grammars and
the original parsing and translation algorithms discussed in this thesis. The C++17 translation
framework ctf is a runtime framework for translation that implements LSCELR, LSLALR
and canonical LR translation. We designed a language for specifying attribute translation
grammars for this framework. This language lets us specify the productions and attribute
relays of attribute translation grammars, as well as the precedence and associativity of their
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terminals and productions. We implemented a compiler grammarc from this language
to the source representation for ctf. We used the framework itself to perform the translation,
making grammarc self hosting. We check semantic correctness of the grammar specification,
and emit appropriate error messages for specific semantic errors. We implemented a tool
for creating saved parsing tables from the output of grammarc that lets us efficiently initialize
translations for even large grammars, where the speed of the current implementation could
become an issue.

As far as we know, this definition of attribute translation grammars hasn’t been used
for defining translation in existing translation tools or frameworks. The success of this
approach to translation, as opposed to using context-free grammars and constructing abstract
syntax trees, depends largely on the quality of translation output languages. A comprehensive
set of recommendations for constructing easily parseable output languages and formal devices
for parsing these output languages (such as predicting possible next symbols based on output
context) could be a large contribution to the popularity of translation grammars in practical
tools. This could be a subject of future work on this project, as the construction of output
languages is currently left up to the creators of translation grammars.

Further improvements and extensions to the framework can be made. Here, we will
detail other tasks for future work on this project. The implemented parsing techniques
only work with a subset of translation grammars. Although most practical concepts can
be easily defined for LSCELR translation by attribute translation grammars with conflict
resolution, there may still exist use cases where a general translation algorithm is needed.
Implementing general or backtracking versions of either LL or LR parsing algorithms would
allow us to translate all languages generated by translation grammars. LSCELR parsing
would be a suitable basis for a general or backtracking parsing algorithm because of its
minimization of both conflicts and invalid actions.

We currently don’t implement error recovery in ctf. Future work should provide a suit-
able implementation of some existing LR error recovery algorithms for our LR translation
algorithms. A mechanism for selecting the error recovery algorithm should be a part
of the framework after implementing error recovery. Another area of improvement is
in the framework’s error messages. The current implementation enumerates the expected
terminal symbols on error. Although some practical parsers use this approach, it would be
desirable to provide a convenient way to generate custom error message functions for our
framework. We suggest implementing a tool similar to merr that generates the error function
from short samples of source code with the help of the parser and the lexical analyzer. Since
we already support generating parsing tables from the text representation of attribute trans-
lation grammars, generating the error message functions could also be handled by a similar
tool.

We prioritized correctness over efficiency when developing the LSCELR algorithm.
As a result of this prioritization, there unfortunately exist inefficiencies in both its design
and implementation. Future work could improve the utilization of LS automatons for their
benefits and getting rid of the inefficiencies in the generation of LSCELR parsers. One
possible approach would be to adopt some of the approaches and analysis algorithms
from IELR parsing and using LS automata purely to preserve the lookahead propagation
information so that no recomputation of these dependencies is required in phase 1 of the IELR
algorithm. Alternatively, modifications to the current implementation and efficient caching
of the full lookahead sets and potential contributions could yield better results even with
the current design of the LSCELR algorithm.
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The translation framework as-is should serve as a practical and usable tool for creating
parsers and translators. We acknowledge that the existing tools and parser generators are
widely used and powerful, although they generally represent a single approach to translation.
We provide a fresh take on translation with the use of attribute translation grammars, and
the approach we introduce here may prove more fitting for many translation purposes over
the use of context-free grammars. Our framework should hopefully make the development
of both simple and complex translation tools easier and ultimately prove useful in the large
field of competitors.
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Appendix A

Contents of the Included CD

∙ ctf - this folder contains the implementation of the translation framework ctf

∙ ctf/tools/grammar - this folder contains the implementation of the translator
for attribute translation grammars using ctf

∙ ctf/README.md - This file describes the dependencies of ctf and the steps needed
to test the framework and to compile and run grammarc. It also contains a short
tutorial for creating translation tools with ctf.

∙ grammars - this folder contains the translation grammars used in Table4.4. Only
the input languages are specified here without any conflict resolution.
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Appendix B

Translation Grammar
for grammarc

# CTF Grammar Tool Grammar
# translation from this grammar format to C++
# author: Radek Vit
grammar ctfgc

# Keywords
## grammar, precedence, none, left, right
# Tokens in Python Regex
## ’grammar name’: [a-z](_[a-z]+)*_?
## ’nonterminal’: [A-Z][a-zA-Z’]*
## ’terminal’: ’([^\s\"\\]| |\\[bfnrt\"’\\])+?’

# disambiguate empty lines before optional precedence declaration
precedence:

none ’NEWLINE’

# rules and precedence levels are always indented with the ’tab’ character

GrammarC:
’NEWLINE’ GrammarC | GrammarC
’grammar’ ’grammar name’ ’NEWLINE’ Precedence Rules |

’grammar’ Precedence Rules
-
1

# ’NEWLINE’ has higher precedence than EOF, so the second rule
# will be picked before the first rule if both are viable.
Precedence:

-
’NEWLINE’ Precedence | Precedence
’precedence’ ’:’ ’NEWLINE’ ’INDENT’ PrecedenceLevels ’DEDENT’ |

’precedence’ PrecedenceLevels ’precedence end’
1
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PrecedenceLevels:
-
’NEWLINE’ | -
Associativity TokenList ’NEWLINE’ PrecedenceLevels |

Associativity TokenList ’level end’ PrecedenceLevels

Associativity:
’none’
’left’
’right’

TokenList:
’terminal’
’terminal’ TokenList

Rules:
’NEWLINE’ Rules | Rules
Rule
Rule Rules’

Rules’:
’NEWLINE’ | -
’NEWLINE’ Rules’ | Rules’
Rule
Rule Rules’

Rule:
’nonterminal’ ’:’ ’NEWLINE’ ’INDENT’ RuleClauses ’DEDENT’ |

’nonterminal’ RuleClauses ’rule block end’
1
-
-
-
3

RuleClauses:
-
# empty line or comment
’NEWLINE’ RuleClauses | RuleClauses
RuleClause RuleClauses | RuleClause ’rule end’ RuleClauses

RuleClause:
String ’NEWLINE’ | String
String ’NEWLINE’ ’INDENT’ PrecedenceAttribute ’DEDENT’ |

String PrecedenceAttribute
String ’|’ OutputString
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String:
’-’ | ’string end’

1
’terminal’ | ’terminal’ ’string end’

1, 2
’nonterminal’ | ’nonterminal’ ’string end’

1, 2
’nonterminal’ String
’terminal’ String

OutputString:
’NEWLINE’ ’INDENT’ String ’NEWLINE’ ’DEDENT’ | String
’NEWLINE’ ’INDENT’ String ’NEWLINE’ Attributes ’DEDENT’ | String Attributes
String ’NEWLINE’ | String
String ’NEWLINE’ ’INDENT’ Attributes ’DEDENT’ | String Attributes

Attributes:
RulePrecedence | ’attributes’ RulePrecedence ’attribute list end’
AttributeList | ’attributes’ AttributeList ’attribute list end’
RulePrecedence AttributeList |

’attributes’ RulePrecedence AttributeList ’attribute list end’

PrecedenceAttribute:
RulePrecedence | ’attributes’ RulePrecedence ’attribute list end’

RulePrecedence:
’precedence’ ’terminal’ ’NEWLINE’ | ’precedence’ ’terminal’

1
2

AttributeList:
Attribute
Attribute AttributeList

Attribute:
’-’ ’NEWLINE’ | ’attribute end’

-
1

IntList ’NEWLINE’ | IntList ’attribute end’
2

IntList:
’integer’
’integer’ ’,’ | ’integer’

1
’integer’ ’,’ IntList | ’integer’ IntList

2
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