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Abstract
This thesis deals with the topic of sequential and parallel grammars. Both of these groups
cover a large number of grammar families, most of which, however, are not widely used
because of the difficulties related to their processing. The thesis examines some of these
grammar types, such as scattered-context grammars, multigenerative systems, and inter-
active L-systems, with focus on their normal forms. Subsequently, it introduces a set
of algorithms utilising properties of the discussed grammar types as well as their normal
forms. These algorithms are based on the Cocke-Younger-Kasami algorithm for context-
free grammars, and are capable of parsing any grammar in the corresponding normal form.
Finally, a program implementing the proposed algorithms is presented.

Abstrakt
Táto práca sa zaoberá problematikou sekvenčných a paralelných gramatík. Obe skupiny
zastrešujú veľké množstvo gramatických tried, väčšina ktorých však nemá veľké uplatnenie
kvôli komplikáciám spojeným s ich spracovaním. Práca skúma niektoré takéto gramatiky,
ako napríklad gramatiky s rozptýleným kontextom, multigeneratívne gramatické systémy
a interaktívne L-systémy s dôrazom na ich normálne formy. Práca následne predstavuje
niekoľko algoritmov využívajúcich vlastnosti týchto gramatík, ako aj ich normálnych foriem.
Tieto algoritmy sú založené na Cocke-Younger-Kasami algoritme pre bezkontextové gra-
matiky a dokážu spracovať ľubovoľnú gramatiku v príslušnej normálnej forme. Posledná
časť práce predstavuje program implementujúci navrhnuté algoritmy.
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Rozšířený abstrakt
Táto práca sa zaoberá problematikou sekvenčných a paralelných gramatík, ako aj ich ap-
likácií. Jej cieľom je navrhnúť skupinu algoritmov schopných syntaktickej analýzy gra-
matík patriacich do týchto skupín, s dôrazom na nie-bezkontextové gramatiky. Predstavené
algoritmy sú založené na algoritme Cocke-Younger-Kasami pre bezkontextové gramatiky
v Chomského normálnej forme a dokážu spracovať ľubovoľnú gramatiku v korektnej nor-
málnej forme.

Pomocou Chomského hierarchie ako základu pre porovnanie sekvenčných gramatík táto
práca skúma typy gramatík, ktoré sú jej súčasťou, ale ležia aj mimo jej hraníc. Práca sa
zameriava na kontextové gramatiky, multigeneratívne neterminálovo-synchronizované gra-
matické systémy a gramatiky s rozptýleným kontextom. Následne sú skúmané L-systémy –
je popísaný ich význam a vlastnosti, ako napríklad paralelizmus a vetvenie. Preskúmané sú
hlavné triedy L hierarchie, najmä rozšírené a interaktívne systémy. Pre tieto typy gramatík
sú následne predstavené príslušné normálne formy.

Predstavené algoritmy pracujú už so spomínanými typmi gramatík, pričom využívajú
štrukturálnu podobnosť medzi Chomského normálnou formou a vhodnými normálnymi for-
mami príslušných typov gramatík. Každý z týchto typov však disponuje množinou špeci-
fických vlastností, ktoré vyžadujú aplikáciu dodatočných mechanizmov pre zaistenie spo-
ľahlivosti výsledkov algoritmov. Táto práca celkovo predstavuje päť algoritmov syntaktickej
analýzy.

Rozšírenie pre kontextové gramatiky pracuje s gramatikami v Kurodovej normálnej
forme. Keďže táto normálna forma predstavuje priame rozšírenie Chomského normálnej
formy, jadro algoritmu bolo rozšírené o manipuláciu s kontextovými pravidlami. V prípade,
ak by bol vo finálnom derivačnom strome použitý len jeden neterminál kontextového páru,
výsledky algoritmu by mohli byť nesprávne. Tomuto problému je predídené zavedením
množiny verzií spracúvanej matice. Vždy, keď sa nejaká množina kontextových pravidiel
aplikuje na dvojicu prvkov, vytvoria sa dve verzie matice – jedna, v ktorej je umelo zabrá-
nené aplikovaniu pravidla, a druhá, ktorá obsahuje len zredukované neterminály, bez prí-
tomnosti ich predkov; týmto vzniká potreba použiť oba neterminály pre prijatie vstupného
reťazca. Tento algoritmus dosahuje časovú zložitosť 𝑂(|𝐺| · 𝑛3).

Rozšírenie pre kanonické multigeneratívne neterminálovo-synchronizované systémy pra-
cuje so systémami pozostávajúcimi zo sekvencie bezkontextových gramatík v Chomského
normálnej forme. Keďže tieto systémy využívajú najľavejšiu deriváciu pre kontrolu prepiso-
vania, toto rozšírenie využíva dodatočný sled spracúvaných matíc pre jej zaznamenie –
jednu pre každú gramatiku, teda aj každú normálnu maticu. Proces syntaktickej analýzy
je obdobný algoritmu Cocke-Younger-Kasami s rozdielom, že redukované neterminály sú
ukladané do spomínaných dodatočných matíc. Tieto matice sú potom filtrované, aby ob-
sahovali len neterminály vzniknuté počas spätnej simulácie najľavejšej derivácie, ktoré sú
následne porovnané s kontrolnými sekvenciami, a opätovne filtrované. Nakoniec sa matice
synchronizujú s ohľadom na počet redukovaných prvkov, teda podreťazcov, a ich obsah
je uložený do zodpovedajúcich hlavných matíc. Kvôli nutnosti použitia sekvencie matíc,
časová zložitosť tohoto algoritmu dosahuje 𝑂(𝑁 · 𝑛3).

Posledné sekvenčné rozšírenie spracúva gramatiky s rozptýleným kontextom v 2-obme-
dzenej (2-limited) normálnej forme. Kvôli jej štruktúre toto rozšírenie simuluje aplikáciu
dvoch bezkontextových pravidiel v rôznych častiach spracovávanej matice. Avšak podobne
ako pri rozšírení pre kontextové gramatiky môže byť konzistencia matice narušená, ak
simulácia výsledného derivačného stromu obsahuje len jeden neterminál simultánne reduko-
vaného páru. Narozdiel od predošlého rozšírenia sú všetky redukcie vykonávané v rámci



jednej matice, nakoľko predošlý systém by viedol k neprimeranému zvýšeniu časovej zloži-
tosti algoritmu. Namiesto toho na konci spracovania algoritmus skúma pôvod všetkých
zredukovaných počiatočných symbolov, a odstráni tie, ktorých rodokmeň buď neobsahuje
všetkých očakávaných členov, alebo obsahuje duplicitné symboly. Kvôli semi-paralelnému
charakteru gramatík s rozptýleným kontextom je celková časová náročnosť pôvodného al-
goritmu umocnená na druhú, z čoho vyplýva relatívne vysoká zložitosť 𝑂(|𝐺| · 𝑛6).

Hlavný problém prispôsobenia algoritmu Cocke-Younger-Kasami pre paralelné grama-
tiky predstavoval už spomínaný fakt, že paralelizmus prítomný v tejto skupine gramatík
nie je možné simulovať sekvenčnými gramatikami. Podobne ako pri niektorých predošlých
rozšíreniach používa algoritmus pre rozšírené L-systémy dvojicu matíc – jednu, v ktorej
uchováva predošlú vetnú formu, a druhú, do ktorej ukladá vetnú formu, ktorá je práve
generovaná. Tieto matice sú periodicky obmieňané, vďaka čomu sú nadbytočné symboly
z predošlých vetných foriem odstránené. Taktiež, aby sa v matici predišlo prekrytiu re-
dukovaných vetných foriem, algoritmus pokračuje v prehľadávaní vpravo od predtým re-
dukovaných podreťazcov. Celková časová zložitosť tohoto rozšírenia dosahuje 𝑂(|𝐺| · 𝑛3).

Rozšírenie pre interaktívne systémy zdieľa algoritmické jadro s predchádzajúcim algorit-
mom. Oproti nemu však toto rozšírenie pridáva niekoľko kontrol orientovaných na prostredie.
Narozdiel od pojatia kontextu v sekvenčných gramatikách interaktívne L-systémy žiadnym
spôsobom nezasahujú do svojho prostredia; kvôli sekvenčnému charakteru algoritmu Cocke-
Younger-Kasami však prostredie v čase redukcie ešte nemusí existovať. Toto je riešené zave-
dením dvoch vĺn redukčných kontrol – najskôr je overované, či súčasná matica obsahuje
potomkov všetkých reťazcov prostredia svojho rodiča; následne je overované, či v tejto
matici existuje prostredie nutné pre vznik všetkých nových neterminálov. Predstavenie
týchto kontrolných mechanizmov zvyšuje časovú náročnosť rozšírenia až na celkovú hod-
notu 𝑂(|𝐺|2 · 𝑛3).

Posledná časť tejto práce je venovaná funkčnému prototypu, ktorý implementuje navrh-
nuté algoritmy. Je to program v jazyku C++ konfigurovateľný cez argumenty príkazového
riadku. Program využíva princípy objektovo-orientovaného programovania, a nasadzuje
množinu polymorfných tried zodpovedajúcich jednotlivým algoritmom a im príslušným ty-
pom gramatík. Je preberaná celková štruktúra hierarchie tried, ako aj detailný popis práce
jednotlivých modulov, ich cieľ a odvodené triedy. Nakoniec sú porovnávané experimentálne
hodnoty časovej a priestorovej zložitosti s ich teoretickými variantami.
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Chapter 1

Introduction

In the formal language theory, the concept of formal grammars has been established as a way
of describing various formal models. Based on their properties, there exists a wide vari-
ety of grammar types; however, the most notable criterion is the form of production rules
the individual grammars allow. Generally, the fewer restrictions are placed on the rule
form, the more languages can be described by the given grammar family, and the greater
the generative power of the family is. Another way to categorise formal grammars is the or-
der in which their sentential forms are rewritten – in case a single symbol is rewritten
at a time, the grammar in question is sequential; if the entire sentential form is replaced,
the grammar is parallel – also called an L-system. However, the less restricted a grammar
type is, the more complex the process of its parsing is, resulting in a lack of dedicated
parsing methods.

Syntax analysis, or parsing, can be utilised in many disciplines focused on string evalu-
ation; these include program compilation, speech analysis, or simulation of biological pro-
cesses. However, in practice it is usually limited by a number of factors – most algorithms
are designed for application on sequential, at most context-free, grammars. Even inside this
family, application of individual parsing algorithms is conditioned by the absence of var-
ious grammar properties, such as existence of left recursion, grammar ambiguity, symbol
erasing, or repeated occurrences of the right-hand side prefix in rules. Naturally, it is not
always possible to construct an equivalent grammar that meets these conditions.

However, there exists a specific group of parsing methods, called the general methods,
that are able to bypass these restrictions, and therefore process any grammar of the family
they were designed for. Parsing methods based on normal forms present a special subgroup
of the general parsing methods. These utilise the fact that for any grammar, an equiv-
alent grammar in a normal form can be constructed, and base their behaviour around
the specific production rule forms allowed by the individual normal forms. A well-known
representative of this group of parsing algorithms is the Cocke-Younger-Kasami parsing
algorithm for context-free grammars in the Chomsky normal form. To determine a string’s
correspondence to the specified grammar, the algorithm builds alternative parse trees for
the input string in a bottom-up way.

Because of the lack of dedicated parsing algorithms for non-context-free grammars, there
have been notions of adapting existing parsing algorithms to suitable grammar types with
an emphasis on the structural similarities between the original and adapted grammar family.
This notion can be represented by the extension of the Cocke-Younger-Kasami algorithm
for Watson-Crick grammars [18]. Naturally, the addition of the concept of context to parsing
results in increased temporal requirements in the algorithms; in this case, the original
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time complexity of the Cocke-Younger-Kasami algorithm is multiplied by a power of two.
However, there exist grammar types whose structure requires changes result in lower final
time complexity.

The aim of this thesis is to design a set of algorithms capable of making a decision
of whether a string belongs into the language generated by the specified non-context-
free grammar. These algorithms are all based on the Cocke-Younger-Kasami algorithm,
and work with grammars in normal forms most reminiscent of the Chomsky normal form
that the original algorithm was designed for.

The extensions of the Cocke-Younger-Kasami algorithm presented in this thesis work
with both sequential and parallel grammars. These sequential algorithms are designed
for context-sensitive grammars, scattered context grammars and multigenerative gram-
mar systems, whereas the parallel algorithms work with both non-interactive L-systems,
and L-systems with unlimited environment size. Apart from the core provided by the CYK
algorithm, each grammar type presents a set of complications that need to be prevented
for the algorithm to yield reliable results. However, despite these complications, the uni-
versality offered by the algorithm remains intact.

This thesis is composed of several chapters. The first part focuses on the individual
theoretical aspects of its background, followed by a theoretical introduction to the proposed
algorithms, and their implementation.

Chapter 2 presents a theoretical introduction to sequential grammars. First, it gives
an overview of formal terms used in the context of sequential grammars. Then it presents
the Chomsky hierarchy as a means of categorising sequential grammars based on their
generative power. Finally, it introduces some of the grammar types examined in this thesis
in greater detail, along with the corresponding normal forms.

Similarly, Chapter 3 presents an introduction to parallel grammars, their purpose,
and differences with sequential grammars. Then it presents the system of grammar descrip-
tors used to modify the properties of individual families, and by extension their generative
power. Finally, it examines some of the major grammar families; for these grammars, a set
of normal forms is introduced.

The theoretical background of this thesis is concluded by Chapter 4, which serves
as an introduction to parsing techniques. It examines the role of the parser in a com-
piler, and its role in general. Then it introduces basic terms used to define properties
of parsing techniques, such as parse tree or grammar ambiguity. Finally, it focuses on each
of the main types of parsing methods: the top-down methods, the bottom-up methods,
and lastly the general methods, which are represented by the Cocke-Younger-Kasami algo-
rithm. For this algorithm, graphical representation of the parsing process is supplied.

Chapter 5 presents the proposed extensions of the Cocke-Younger-Kasami algorithm.
For each of these extensions, an informal description is given; all major parts of the algo-
rithms are further represented by pseudocode descriptions. Finally, graphical representation
of the extensions’ progression, similar to that of the original algorithm, is offered. For each
of the algorithms, worst-case time and space complexity is derived.

Finally, Chapter 6 introduces the working C++ prototype implementing these algo-
rithms. The chapter first presents the overall architecture of the program with a focus
on the polymorphic classes. Then, it examines the individual modules of the program
responsible for input parsing, grammar and matrix representation, and implementation
of the parsing algorithms. The last part of the chapter then compares the time and space
complexity of the algorithm implementation to their theoretical counterpart.
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Chapter 2

Sequential Grammars

This chapter serves as an introduction to sequential grammars. The first part of the chapter
presents a survey of basic terms used in the formal language theory, followed by an intro-
duction to sequential grammars as perceived in this thesis. The later part of the chapter
presents the Chomsky hierarchy as a means of categorising grammar families based on their
generative power, followed by several sections focusing on significant families that are ei-
ther included in the hierarchy, or do not abide by the restrictions it places. The final part
of the chapter focuses on normal forms of the aforementioned grammar types.

2.1 Alphabet, Word, and Language
In the formal language theory, languages are defined using alphabets and words. An al-
phabet, Σ, is a finite non-empty set consisting of symbols, also called letters. A string,
or a word, is a finite sequence of symbols contained in the alphabet Σ [17]. This thesis uses
the terms interchangeably.

Definition 2.1.1. A word consisting of no symbols is called the empty word, denoted as 𝜀.
It is defined as follows:

∙ 𝜀 is a word over the alphabet, Σ,

∙ if 𝑤 is a string over the alphabet Σ, and 𝑥 ∈ Σ, 𝑤𝑥 is a string over Σ [12].

Definition 2.1.2. Let 𝑤 be a word over the alphabet, Σ. The length of the word denotes
the number of the symbols the word consists of, and is defined as follows:

∙ if 𝑤 = 𝜀, then |𝑤| = 0,

∙ if 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛, where 𝑛 ≥ 1 and 𝑎𝑖 ∈ Σ for some 1 ≤ 𝑖 ≤ 𝑛, then |𝑤| = 𝑛 [12].

Let Σ be an alphabet, where Σ = {0, 1}. Then, the string 𝜀, 0, 1, 001 are strings over Σ.

Definition 2.1.3. The set of all string over an alphabet, Σ, is denoted by Σ*; this set
includes the empty string, 𝜀. The set of all non-empty words in the alphabet, Σ, is denoted
as Σ+. It is defined as:

Σ+ = Σ* ∖ {𝜀} [17]. (2.1)
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Operations over Words

This subsection focuses on operations used to manipulate words. These operations present
the basis for formal language generation, and are used by the grammar types discussed
in the following sections.

Definition 2.1.4. Let 𝑤, 𝑥 be words over an alphabet, Σ. Then the concatenation of these
words is defined as follows:

∙ concatenation of 𝑤 and 𝑥 is equal to 𝑤𝑥,

∙ if 𝑥 = 𝜀, then 𝑤𝑥 = 𝑥𝑤 = 𝑤 [12].

Definition 2.1.5. Let 𝑤 be a word over the alphabet, Σ. Then, the power of 𝑤 is recursively
defined for non-negative integers as:

∙ 𝑤0 = 𝜀,

∙ 𝑤𝑖 = 𝑤𝑤𝑖−1 for some 𝑖 ≥ 1 [12].

Definition 2.1.6. Let 𝑤, 𝑥 be words over an alphabet, Σ. The word 𝑥 is a prefix of 𝑤 if
there exists a word, 𝑦, such that 𝑥𝑦 = 𝑤. If 𝑦 ̸∈ {𝜀, 𝑤}, the word 𝑥 is the proper prefix of 𝑤.

For a word, 𝑤, the function 𝑝𝑟𝑒𝑓𝑖𝑥(𝑤) denotes the set of all viable prefixes. It is defined
as follows:

𝑝𝑟𝑒𝑓𝑖𝑥(𝑤) = {𝑥 : 𝑥 is a prefix of 𝑤} [12]. (2.2)

Definition 2.1.7. Let 𝑤, 𝑥 be words over an alphabet, Σ. The word 𝑥 is a suffix of 𝑤 if
there exists a word, 𝑦, such that 𝑦𝑥 = 𝑤. If 𝑦 ̸∈ {𝜀, 𝑤}, the word 𝑥 is the proper suffix of 𝑤.

For a word, 𝑤, the function 𝑠𝑢𝑓𝑓𝑖𝑥(𝑤) denotes the set of all viable prefixes. It is defined
as follows:

𝑠𝑢𝑓𝑓𝑖𝑥(𝑤) = {𝑥 : 𝑥 is a suffix of 𝑤} [12]. (2.3)

Definition 2.1.8. Let 𝑤, 𝑥 be words over an alphabet, Σ. The word 𝑥 is a subword of 𝑤
if there exist two words, 𝑦 and 𝑦′, such that 𝑦𝑥𝑦′ = 𝑤. If 𝑥 ̸∈ {𝜀, 𝑤}, the word 𝑥 is a proper
subword of 𝑤.

For a word, 𝑤, the function 𝑠𝑢𝑏𝑤𝑜𝑟𝑑(𝑤) denotes the set of all its subwords. It is defined
as follows:

𝑠𝑢𝑏𝑤𝑜𝑟𝑑(𝑤) = {𝑥 : 𝑥 is a subword of 𝑤} [12]. (2.4)

For every word, 𝑤, in an alphabet, Σ, the following properties always hold:

∙ 𝑝𝑟𝑒𝑓𝑖𝑥(𝑤) ⊆ 𝑠𝑢𝑏𝑤𝑜𝑟𝑑(𝑤),

∙ 𝑠𝑢𝑓𝑓𝑖𝑥(𝑤) ⊆ 𝑠𝑢𝑏𝑤𝑜𝑟𝑑(𝑤),

∙ {𝜀, 𝑤} ⊆ 𝑝𝑟𝑒𝑓𝑖𝑥(𝑤) ∩ 𝑠𝑢𝑓𝑓𝑖𝑥(𝑤) ∩ 𝑠𝑢𝑏𝑤𝑜𝑟𝑑(𝑤) [12].

Languages, and Operations over Languages

This section introduces formal languages as a set of strings over an alphabet, Σ, followed
by a list of important language operations.

Definition 2.1.9. Let Σ be an alphabet, and let 𝐿 ⊆ Σ*. Then, 𝐿 is a language over Σ [12].
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By this definition, sets ∅ and {𝜀} both present languages. However, these languages
are not equal – the former contains no strings, whereas the latter contains a single empty
string. For any alphabet, Σ, the set Σ* presents a language of all its strings; such language
is called the universal language over Σ [12].

Definition 2.1.10. Let 𝐿 be a language. The language is finite if 𝑐𝑎𝑟𝑑(𝐿) = 𝑛, otherwise
it is infinite [12].

The operations utilised when dealing with formal languages can be also used to generate
new languages. Based on the fact that languages are actually sets of words, these operations
are inherited from Boolean algebra, such as union, intersection, or complement. For formal
languages, these are defined as follows:

𝐿1 ∪ 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 or 𝑤 ∈ 𝐿2}, (2.5)
𝐿1 ∩ 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 and 𝑤 ∈ 𝐿2}, (2.6)
𝐿1 ∖ 𝐿2 = {𝑤 : 𝑤 ∈ 𝐿1 and 𝑤 ̸∈ 𝐿2} [12]. (2.7)

The operations of power of language and language concatenation are defined analogously
to their word counterparts.

Definition 2.1.11. The power of the language, 𝐿, is defined for non-negative integers as:

∙ 𝐿0 = {𝜀},

∙ 𝐿𝑖 = 𝐿𝐿𝑖−1 for some 𝑖 ≥ 1 [12].

Definition 2.1.12. Concatenation of two languages, 𝐿1 and 𝐿2, is defined as follows:

𝐿1𝐿2 = {𝑤1𝑤2|𝑤1 ∈ 𝐿1, 𝑤2 ∈ 𝐿2} [12]. (2.8)

Definition 2.1.13. The closure and the positive closure of a language, 𝐿, are respectively
defined as:

𝐿* =
∞⋃︁
𝑖=0

𝐿𝑖, (2.9)

𝐿+ =
∞⋃︁
𝐼=1

𝐿𝑖 [12]. (2.10)

The rest of this thesis focuses on languages generated by formal grammars. These will
be discussed further in the following sections.

2.2 Grammar, and Derivation Relation
The following sections focus on formal grammars as a construct serving to transform strings
forming a language, as well as the automaton types capable of recognising them. These
are based on the definition of phase-structure grammars.

Phase-structure grammar is the most general type of sequential grammar, as well
as the main type of the Chomsky hierarchy. Its subfamilies are created by gradual re-
striction of its properties.

Definition 2.2.1. A phase-structure or type 0 grammar is a quadruple 𝐺 = (𝑁,𝑇, 𝑃, 𝑆),
where:
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∙ 𝑁 is a non-empty set of nonterminal symbols,

∙ 𝑇 is a set of terminal symbols, where 𝑁 ∩ 𝑇 = ∅,

∙ 𝑃 is a set of production rules in the form of 𝑣 −→ 𝑤, where 𝑣 ∈ (𝑁 ∪ 𝑇 )*𝑁(𝑁 ∪ 𝑇 )*,
𝑤 ∈ (𝑁 ∪ 𝑇 )*,

∙ 𝑆 is the start symbol [17].

Definition 2.2.2. For some 𝑣, 𝑤 ∈ (𝑁∪𝑇 )*, 𝛼 ∈ (𝑁∪𝑇 )*𝑣(𝑁∪𝑇 )*, 𝛽 ∈ (𝑁∪𝑇 )*𝑤(𝑁∪𝑇 )*,
𝑣 −→ 𝑤 ∈ 𝑃 , one can say that 𝛼 directly derives into 𝛽, written as 𝛼 =⇒𝐺 𝛽. If 𝐺 is implicit,
the index can be omitted. The reflexive and transitive closure of the derivation relation,
=⇒, can be written as =⇒* [12].

Definition 2.2.3. For some 𝑝 = 𝑣 −→ 𝑤 ∈ 𝑃 , 𝑣 is called the left-hand side of production,
𝑙ℎ𝑠(𝑝) = 𝑣. Analogously, 𝑤 is called the right-hand side, 𝑟ℎ𝑠(𝑝) = 𝑤 [12].

Definition 2.2.4. For some 𝑝 ∈ 𝑃 , 𝑝 represents a left-recursive production if

𝑟ℎ𝑠(𝑝) ∈ {𝑙ℎ𝑠(𝑝)}(𝑁 ∪ 𝑇 )* [12]. (2.11)

Definition 2.2.5. For some 𝑝 ∈ 𝑃 , 𝑥 ∈ (𝑁 ∪ 𝑇 )* and 𝑦 ∈ (𝑁 ∪ 𝑇 )*, 𝑥lhs(𝑝)𝑦 directly
derives 𝑥rhs(𝑝)𝑦 according to 𝑝 in 𝐺, as denoted by

𝑥lhs(𝑝)𝑦 =⇒ 𝑥rhs(𝑝)𝑦 [12]. (2.12)

Definition 2.2.6. For some 𝑝 ∈ 𝑃 , 𝑥 ∈ 𝑇 * and 𝑦 ∈ (𝑁 ∪ 𝑇 )*, 𝑥lhs(𝑝)𝑦 directly derives
𝑥rhs(𝑝)𝑦 according to 𝑝 in 𝐺 in the leftmost way, as denoted by

𝑥lhs(𝑝)𝑦 =⇒𝑙𝑚 𝑥rhs(𝑝)𝑦. (2.13)

Analogously, 𝑦lhs(𝑝)𝑧 directly derives 𝑦rhs(𝑝)𝑥 according to 𝑝 in 𝐺 in the rightmost way,
as denoted by

𝑦lhs(𝑝)𝑥 =⇒𝑟𝑚 𝑦rhs(𝑝)𝑥 [12]. (2.14)

Definition 2.2.7. A string, 𝑤 ∈ (𝑁 ∪𝑇 )*, 𝑆 =⇒* 𝑤 is called a sentential form. If 𝑤 ∈ 𝑇 *,
it is also a sentence [12].

The language generated by a grammar, 𝐺, is a set of all sentences generated by 𝐺. It
is defined as:

𝐿(𝐺) = {𝑆 =⇒* 𝑤 | 𝑤 ∈ 𝑇 *}. (2.15)

Two grammars, 𝐺1 and 𝐺2, are equivalent if 𝐿(𝐺1) = 𝐿(𝐺2) [17].

2.3 Chomsky Hierarchy
The Chomsky hierarchy orders grammar types based on their generality, and consequently,
their generative power. Overall, the grammar type number increases as its power decreases.
It is divided into four sets:

∙ type 0, unrestricted or recursively-enumerable grammars,

∙ type 1, context-sensitive grammars,
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∙ type 2, context-free grammars,

∙ type 3, regular grammars [12].

For each of these types, there exists a type of automaton of an equivalent generative power –
it is capable of recognising languages generated by the family, but not one of a less restricted
types. The automaton types are as follows:

∙ type 0, Turing machine,

∙ type 1, linear-bounded automaton,

∙ type 2, push-down automaton,

∙ type 3, finite state automaton [12].

As such, the hierarchy still retains its importance despite it no longer being the only
means of grammar classification. Another example of a hierarchy of similar importance
is the L family system discussed in the following chapter. Properties of individual grammar
types present in the hierarchy can be found in Table 2.1.

UR CS CF REG
Union Y Y Y Y
Intersection Y Y N Y
Complement N Y N Y
Concatenation Y Y Y Y
Kleene * Y Y Y Y

(a) Closure properties.

UR CS CF REG
Equivalence N N N D
Inclusion N N N D
Membership N D D D
Emptiness N N D D
Finiteness N N D D

(b) Decidability properties.

Table 2.1: Properties of grammar families of the Chomsky hierarchy [17].

Naturally, not all types of sequential grammars adhere to the Chomsky hierarchy. An ex-
ample of this is the family of multigenerative grammar systems, or the family of scattered
context grammars. These will be further discussed in sections 2.6 and 2.7 respectively.

2.4 Unrestricted and Context-Sensitive Grammars
This section focuses on the family of unrestricted grammars, and the family of context-
sensitive grammars as their proper subset, focusing on the differences between these sets.

As mentioned at the beginning of this chapter, there are no restrictions on type 0
production rules other than that they need to contain at least one nonterminal on the left-
hand side of the rule. As such, they are identical with phase-structure grammars introduced
in the definition 2.2.1.

Definition 2.4.1. Context-sensitive grammar is an unrestricted grammar, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆),
such that every production rule, 𝑝 ∈ 𝑃 is in the form 𝛼𝐴𝛽 −→ 𝛼𝑤𝛽, where 𝐴 ∈ 𝑁 ,
𝛼, 𝛽, 𝑤 ∈ (𝑁 ∪𝑇 )*, 𝑤 ̸= 𝜀. In addition, 𝑃 may contain a rule in the form 𝑆 −→ 𝜀, in which
case 𝑆 does not appear on the right-hand side of any production [17].
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Language generated by an unrestricted grammar is defined as follows:

𝑈𝑅 = {𝐿 | ∃ an unrestricted grammar, 𝐺, such that 𝐿 = 𝐿(𝐺)}. (2.16)

Analogously, language generated by a context-sensitive grammar is defined as follows:

𝐶𝑆 = {𝐿 | ∃ a context-sensitive grammar, 𝐺, such that 𝐿 = 𝐿(𝐺)} [17]. (2.17)

Alternatively, type 1 grammars can be defined by placing conditions on the relative
length of the left-hand side and the right-hand side of their rules.

Definition 2.4.2. A length increasing (monotonous) grammar is a type 0 grammar,
𝐺 = (𝑁,𝑇, 𝑃, 𝑆), such that for each production 𝑝 = 𝑣 −→ 𝑤 ∈ 𝑃 , |𝑣| ≤ |𝑤|. In addition, 𝑃
may contain a rule in the form 𝑆 −→ 𝜀, in which case 𝑆 does not appear on the right-hand
side of any production [17].

The generative power of the family of context-sensitive grammars is equal to that
of monotonous grammars, thus they can be used interchangeably.

Turing Machines, and Linear-Bounded Automata

Turing machines, and their partially restricted version, the linear-bounded automata, pre-
sent the automata types whose generative power is equal to that of unrestricted and context-
sensitive grammars respectively.

Definition 2.4.3. A Turing Machine is an ordered system, 𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0,∆, 𝐹 ),
where 𝑄 is a finite set of states, Σ is the input alphabet, Γ is the tape alphabet, Γ∩𝑄 = ∅
and Σ ⊂ Γ, 𝑞𝑜 ∈ 𝑄 is the initial state, ∆ ∈ Γ ∖ Σ is the blank symbol, 𝐹 ⊆ 𝑄 is the set
of final states and 𝛿 is the transition function,

𝛿 : 𝑄× Γ −→ 𝒫(𝑄× Γ × {𝐿,𝑅}) [17]. (2.18)

The linear-bounded automata present a special case of Turing machines, analogously
to the relationship between unrestricted and context-sensitive grammars. The tape of these
machines contains read-only markers signalising the ends of the tape, marked as # and $
respectively. The differences in their behaviour can be seen in Figure 2.1.

The equivalence of Turing machines and unrestricted grammars is a logical consequence
of the Church-Turing thesis – any unrestricted grammar presents a procedure [17]. However,
the thesis is not formalised and therefore cannot serve as a proof of equivalence. Instead,
it is based on the possibility of conversion between the Turing machines and unrestricted
grammars.

Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be an unrestricted grammar, and 𝑀 be a three-tape Turing ma-
chine, such that 𝐿(𝐺) = 𝐿(𝑀). For an input string, 𝑤 ∈ 𝑇 *, 𝑀 nondeterministically
chooses a production 𝑝 = 𝑢 −→ 𝑣 ∈ 𝑃 and a position in the string 𝑤. If the right-hand
side of 𝑝, which is equal to 𝑣, is found at the randomly selected position of 𝑤, the substring
is rewritten. If, after a finite number of operations, the tape contains the start symbol, 𝑆,
the string is accepted.

Conversely, a Turing machine can be converted into a grammar, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), where

𝑁 = ((Σ ∪ {𝜀}) × Γ) ∪𝑄 ∪ {𝑆0, 𝑆1, 𝑆2}. (2.19)

and the production set, 𝑃 , is as follows:
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.co = {L I 3G grammar of type 0 such that L( G) = L}. 

Remark 1.1. Given an alphabet T, obviously .co(T) ~ P(T*). This inclusion 
is strict and, moreover, one can easily see that .co(T) is a denumerable set, 
whereas P(T*) is a nondenumerable set. Thus, in some sense, most of the 
languages over T cannot be generated by grammars of type O. 

Now we are going to present a fundamental result of Formal Language 
Theory, that is, the family .co is equal with the family RE of all recursively 
enumerable languages. We introduce the family RE using Turing machines, 
although there are many other formalisms for defining this family. Turing 
machines were introduced by Alan Turing in [133]. 

Definition 1.2. A Turing machine (TM) is an ordered system M = (Q, E, 
r, 8, qo, B, F) where Q is a finite set oj states, E is the input alphabet, r is 
the tape alphabet, rnQ = 0 and E c r, qo E Q is the initial state, B E r-E 
is the blank symbol, F ~ Q is the set oj final states and 8 is the transition 
junction, 

8: Q X r -----+ P(Q X r X {L,R}). D 

Intuitively, a Turing machine has a tape divided into cells that may store 
symbols from r (each cell may store exactly one symbol from r). The tape is 
bounded on the left (there is a leftmost cell) and is unbounded on the right. 
The machine has a finite control and a tape head that can read/write one 
cell of the tape during a time instant. The input word is a word over E and 
is stored on the tape starting with the leftmost cell and all the other cells 
contain the symbol B. 

Initially, the tape head is on the leftmost cell and the finite control is in 
the state qo. The machine performs moves. A move depends on the current 
cell scanned by the tape head and on the current state of the finite control. 
A move consists of: change the state, write a symbol from r to the current 
cell and move the tape head one cell to the left or one cell to the right. An 
input word is accepted iff after a finite number of moves the Turing machine 
enters a final state. 

Finite control 

(a) Turing machine.

192 A. Mateescu and A. Salomaa 

2.4 Linear bounded automata 

Linear bounded automata are a special type of Turing machines that accept 
exactly the context-sensitive languages. Linear bounded automata are closely 
related to a certain class of Turing space complexity, NSPACE(n). 

We start by considering some basic facts concerning Turing space com­
plexity. An off-line Turing machine is a Turing machine M that additionally 
has a read-only input tape with endmarkers # and $, see figure below. 

Initially, the input word is stored on the input tape, starting with the 
endmarker # and ending with the endmarker $. The machine cannot write 
on the input tape and all the computations are done on the work tape T. Let 
S be a function from nonnegative integers to nonnegative integers. M is said 
to be of space complexity S(n) if for every input word of length n, M uses at 
most S(n) cells on the work tape. 

The notions of determinism and nondeterminism are extended to concern 
off-line Turing machines. 

Input tape 

Finite control 

Wor-k tape 

Again, see [112], the nondeterministic off-line Turing machines are equiv­
alent to deterministic off-line Turing machines. That is, a language L is ac­
cepted by a nondeterministic off-line Turing machine iff L is accepted by a 
deterministic off-line Turing machine. 

Accordingly, the space complexity classes are defined as follows: 

NSPACE(S(n)) = {L I :lM, off-line Turing machine 

of space complexity S(n) with L(M) = L}, 

(b) Linear-bounded automaton.

Figure 2.1: Behaviour differences between a Turing machine, and its special case, the linear-
bounded automaton [17]. 𝐵 represents the blank symbol, ∆.

1. 𝑆0 −→ 𝑞0𝑆1,

2. 𝑆1 −→ (𝑎, 𝑎)𝑆1 for all 𝑎 ∈ Σ,

3. 𝑆1 −→ 𝑆2,

4. 𝑆2 −→ (𝜀,∆)𝑆2,

5. 𝑆2 −→ 𝜀,

6. 𝑞(𝑎,𝑋) −→ (𝑎, 𝑌 )𝑝 ⇐⇒ (𝑝, 𝑌,𝑅) ∈ 𝛿(𝑞,𝑋), such that 𝑎 ∈ Σ∪{𝜀}, 𝑞 ∈ 𝑄, 𝑋,𝑌 ∈ Γ,

7. (𝑏, 𝑍)𝑞(𝑎,𝑋) −→ 𝑝(𝑏, 𝑍)(𝑎, 𝑌 ) ⇐⇒ (𝑝, 𝑌, 𝐿) ∈ 𝛿(𝑞,𝑋), such that 𝑎, 𝑏 ∈ Σ ∪ {𝜀},
𝑝, 𝑞 ∈ 𝑄, 𝑋,𝑌, 𝑍 ∈ Γ,

8. (𝑎,𝑋)𝑞 −→ 𝑞𝑎𝑞, 𝑞(𝑎,𝑋) −→ 𝑞𝑎𝑞, 𝑞 −→ 𝜀, such that 𝑞 ∈ 𝐹 , 𝑎 ∈ Σ ∪ {𝜀}, 𝑋 ∈ Γ.

If the rewriting proceeds in three steps, first when rules 1−5 are used, second when the rules
6 − 7 are used, and the final, which uses the rule 8, the process simulates the rewriting
of the Turing machine [17, pg. 178-179]. This way, the equality of the languages is proven.

Analogously, since the linear-bound automaton cannot exceed the number of tape
cells provided at the beginning of the rewriting, the linear-bounded automaton simulates
the monotonousness of the context-sensitive grammars.

2.5 Matrix Grammars
A matrix grammar, 𝐺, is a context-free grammar containing an extra component, 𝑀 . This
component represents a final set of production sequences of 𝑃𝐺. During each derivation
step in this grammar, a sequence 𝑚 = 𝑝1𝑝2 . . . 𝑝𝑛 ∈ 𝑀 is chosen, and each of the contained
productions must be applied in the predefined order [11].

Definition 2.5.1. Let 𝐻 = (𝐺,𝑀) be a matrix grammar, and let 𝐺 allow a sequence
of context-free derivation steps as follows:

𝑢0 =⇒ 𝑢1[𝑝1] =⇒ 𝑢2[𝑝2] =⇒ · · · =⇒ 𝑢𝑛[𝑝𝑛] (2.20)
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and let 𝑚 = 𝑝1𝑝2 . . . 𝑝𝑛 ∈ 𝑀 be a sequence. Then 𝑢0 directly derives into 𝑢𝑛 in the matrix
grammar 𝐻 according to the matrix 𝑚, denoted as 𝑢0 =⇒ 𝑢𝑛[𝑚], also written as 𝑢0 =⇒
𝑢𝑛 [11].

Definition 2.5.2. Let 𝐻 = (𝐺,𝑀) be a matrix grammar.

∙ Let 𝑢 ∈ (𝑁 ∪ 𝑇 )*. Then 𝑢 derives in zero steps, written as 𝑢 =⇒0 𝑢[𝜀].

∙ Let 𝑢0, 𝑢1, . . . 𝑢𝑛 ∈ (𝑁 ∪ 𝑇 )* and 𝑢𝑖−1 =⇒ 𝑢𝑖[𝑝𝑖] for all 1 ≤ 𝑖 ≤ 𝑛. Then 𝑢0 derives
into 𝑢𝑛 in 𝑛 steps, written as 𝑢0 =⇒𝑛 𝑢𝑛[𝑝1𝑝2 . . . 𝑝𝑛] [11].

Definition 2.5.3. Let 𝐻 = (𝐺,𝑀) be a matrix grammar, where 𝐺 = (𝑁,𝑇, 𝑃, 𝑆). The lan-
guage generated by 𝐻, denoted as 𝐿(𝐻), is defined as:

𝐿(𝐻) = {𝑤 : 𝑤 ∈ 𝑇 * ∧ 𝑆 =⇒* 𝑤 in the matrix grammar 𝐻} [11]. (2.21)

For every matrix grammar, 𝐻, there exists an equivalent unrestricted grammar, 𝐻 ′,
and therefore their generative powers are equal [11]. This property can be used to derive
the generative power of multigenerative grammar systems discussed in the following section.

2.6 Multigenerative Grammar Systems
Multigenerative grammar systems are similar to the matrix grammars in the sense that
they take advantage of symbol sequences to direct rewriting. Because of this, an equiva-
lent matrix grammar can be constructed for any multigenerative grammar system – their
generative power is equal to that of the unrestricted grammars [11].

An 𝑛-generative grammar system is composed of 𝑛 context-free grammars rewritten
in parallel. During each derivation step, a production rule is applied on all current sentential
forms. These sentential forms are then compared to a control sequence of nonterminal
or production rules. Finally, once all sentences have been finalised, a language operation is
applied on the 𝑛 sentences to produce the overall result.

Generally, three main operations can be applied on the languages – union, concatenation,
and first. Based on the control mechanism, there exist two types of multigenerative systems
of equal power – nonterminal-synchronised and rule-synchronised systems [11]. All of these
types are capable of generating non-context-free grammars.

The main type of multigenerative grammar systems are the canonical systems. In these
systems, the rewriting is restricted to the use of the left derivation.

Definition 2.6.1. Canonical 𝑛-generative nonterminal-synchronised grammar system (𝑛-
NSG) is an (𝑛 + 1)-tuple defined as:

Γ = (𝐺1, 𝐺2, . . . 𝐺𝑛, 𝑄) (2.22)

where

∙ 𝐺𝑖 = (𝑁𝑖, 𝑇𝑖, 𝑃𝑖, 𝑆𝑖) is a context-free grammar for all 1 ≤ 𝑖 ≤ 𝑛,

∙ 𝑄 is a finite set of nonterminal control sequences in the form of (𝐴1, 𝐴2, . . . 𝐴𝑛, where
𝐴𝑖 ∈ 𝑁𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 [11].

Definition 2.6.2. Multiform for a multigenerative grammar system is defined as 𝜒 =
(𝑥1, 𝑥2, . . . , 𝑥𝑛), where 𝑥𝑖 ∈ (𝑁𝑖 ∪ 𝑇𝑖)

* for all 1 ≤ 𝑖 ≤ 𝑛.
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Definition 2.6.3. Let 𝜒 = (𝑢1𝐴1𝑣1, 𝑢2𝐴2𝑣2 . . . 𝑢𝑛𝐴𝑛𝑣𝑛) and 𝜒̄ = (𝑢1𝑥1𝑣1, 𝑢2𝑥2𝑣2 . . . 𝑢𝑛𝑥𝑛𝑣𝑛)
be multiforms of an 𝑛-NSG, 𝐴𝑖 ∈ 𝑁𝑖, 𝑢𝑖 ∈ 𝑇 *

𝑖 , 𝑣𝑖, 𝑥𝑖 ∈ (𝑁𝑖 ∪ 𝑇𝑖)
*, 𝐴𝑖 −→ 𝑥𝑖 ∈ 𝑃𝑖 for

all 1 ≤ 𝑖 ≤ 𝑛, and (𝐴1, 𝐴2, . . . , 𝐴𝑛) ∈ 𝑄. Then 𝜒 directly derives into 𝜒̄, denoted as
𝜒 =⇒ 𝜒̄ [11].

Definition 2.6.4. An 𝑛-language generated by Γ is defined as:

𝑛− 𝐿(Γ) = {(𝑤1, . . . 𝑤𝑛) : (𝑆1, . . . 𝑆𝑛) =⇒* (𝑤1, . . . 𝑤𝑛), 𝑤𝑖 ∈ 𝑇 *
𝑖 for all 1 ≤ 𝑖 ≤ 𝑛} [11].

(2.23)

As mentioned at the beginning of this section, the final language generated by a multi-
generative grammar system is created by applying an operation on the sentences generated
by the individual context-free grammars. Based on the applied operation mode, the gener-
ated language is defined as follows.

Definition 2.6.5. Let Γ = (𝐺1, 𝐺2, . . . , 𝐺𝑛, 𝑄) be a canonical 𝑛-generative nonterminal-
synchronised system. The language generated by Γ in the union mode is defined as:

𝐿𝑢𝑛𝑖𝑜𝑛(Γ) =
𝑛⋃︁

𝑖=1

{𝑤𝑖 : (𝑤1, 𝑤2, . . . , 𝑤𝑛) ∈ 𝑛− 𝐿(Γ)} [11]. (2.24)

Definition 2.6.6. Let Γ = (𝐺1, 𝐺2, . . . , 𝐺𝑛, 𝑄) be a canonical 𝑛-generative nonterminal-
synchronised system. The language generated by Γ in the concatenation mode is defined as:

𝐿𝑐𝑜𝑛𝑐(Γ) = {𝑤1𝑤2 . . . 𝑤𝑛 : (𝑤1, 𝑤2, . . . , 𝑤𝑛) ∈ 𝑛− 𝐿(Γ)} [11]. (2.25)

Definition 2.6.7. Let Γ = (𝐺1, 𝐺2, . . . , 𝐺𝑛, 𝑄) be a canonical 𝑛-generative nonterminal-
synchronised system. The language generated by Γ in the first mode is defined as:

𝐿𝑓𝑖𝑟𝑠𝑡(Γ) = {𝑤1 : (𝑤1, 𝑤2, . . . , 𝑤𝑛) ∈ 𝑛− 𝐿(Γ)} [11]. (2.26)

As opposed to the nonterminal-synchronised grammar systems, the production-syn-
chronised systems work by picking a production from the set of control sequences, 𝑄,
and applying it on a nonterminal in the processed sentential form.

Definition 2.6.8. Canonical 𝑛-generative production-synchronised grammar system (𝑛-
PSG) is an (𝑛 + 1)-tuple defined as:

Γ = (𝐺1, 𝐺2, . . . 𝐺𝑛, 𝑄) (2.27)

where

∙ 𝐺𝑖 = (𝑁𝑖, 𝑇𝑖, 𝑃𝑖, 𝑆𝑖) is a context-free grammar for all 1 ≤ 𝑖 ≤ 𝑛,

∙ 𝑄 is a finite set of production control sequences in the form of (𝑝1, 𝑝2, . . . 𝑝𝑛, where
𝑝𝑖 ∈ 𝑃𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 [11].

Definition 2.6.9. Let 𝜒 = (𝑢1𝐴1𝑣1, 𝑢2𝐴2𝑣2 . . . 𝑢𝑛𝐴𝑛𝑣𝑛) and 𝜒̄ = (𝑢1𝑥1𝑣1, 𝑢2𝑥2𝑣2 . . . 𝑢𝑛𝑥𝑛𝑣𝑛)
be multiforms of an 𝑛-PSG, 𝐴𝑖 ∈ 𝑁𝑖, 𝑢𝑖 ∈ 𝑇 *

𝑖 , 𝑣𝑖, 𝑥𝑖 ∈ (𝑁𝑖 ∪ 𝑇𝑖)
* for all 1 ≤ 𝑖 ≤ 𝑛. Follow-

ingly, let 𝑝𝑖 = 𝐴𝑖 −→ 𝑥𝑖 ∈ 𝑃𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 and (𝑝1, 𝑝2, . . . , 𝑝𝑛) ∈ 𝑄. Then 𝜒 directly
derives into 𝜒̄, denoted as 𝜒 =⇒ 𝜒̄ [11].
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So far, this section has dealt exclusively with canonical grammar systems, which always
apply the leftmost nonterminal in each of their grammars. The remaining system types
include the general grammar systems, and the hybrid systems.

As opposed to the canonical systems, the general systems are not limited to rewrit-
ing the leftmost nonterminal, and may therefore rewrite their sentential forms in any order.

The final type of multigenerative grammar systems are the hybrid systems. These
incorporate both of the previously mentioned approaches, and allow a combination of either
canonical or general rewriting in their grammars.

These systems are defined analogously to the canonical systems. However, this thesis
focuses on the canonical systems, and therefore, the other types will be omitted.

2.7 Scattered Context Grammars
The scattered context grammars present a form of semi-parallel grammars – they allow ap-
plication of several context-free rules at different positions of a sentential form at the same
time. Similarly to multigenerative grammar systems in the concatenation and union modes,
they are capable of generating non-context-free languages [14]. The generative power
of grammars of this family depends on several factors, such as the degree of context-
sensitivity and the presence of symbol erasure, both of which will be discussed in this
section.

Definition 2.7.1. A scattered context grammar is a quadruple 𝐺 = (𝑉, 𝑇, 𝑃, 𝑆) where:

∙ 𝑉 is the total alphabet,

∙ 𝑇 ⊂ 𝑉 is the set of terminals,

∙ 𝑃 is a finite set of productions in the form

(𝐴,1𝐴2, . . . 𝐴𝑛) −→ (𝑥1, 𝑥2, . . . 𝑥𝑛),

where 𝑛 ≥ 1, 𝐴𝑖 ∈ 𝑉 ∖ 𝑇 , 𝑥𝑖 ∈ 𝑇 * for all 1 ≤ 𝑖 ≤ 𝑛,

∙ 𝑆 ∈ 𝑉 ∖ 𝑇 is the start symbol [14].

Definition 2.7.2. If 𝑢 = 𝑢1𝐴1 . . . 𝑢𝑛𝐴𝑛𝑢𝑛+1, 𝑣 = 𝑢1𝑥1 . . . 𝑢𝑛𝑥𝑛𝑢𝑛+1, 𝑝 = (𝐴1, . . . 𝐴𝑛) −→
(𝑥1, . . . 𝑥𝑛) ∈ 𝑃 , where 𝑢𝑖 ∈ 𝑉 * for all 1 ≤ 𝑖 ≤ 𝑛 + 1, then 𝐺 makes a derivation step from
𝑢 to 𝑣 according to 𝑝, written as 𝑢 =⇒𝐺 𝑣[𝑝] or simply 𝑢 =⇒𝐺 𝑣 [14].

Definition 2.7.3. Let 𝑝 = (𝐴1, 𝐴2, . . . , 𝐴𝑛) −→ (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑃 for some 𝑛 ≥ 1 be
a scattered context production. The length of the rule, 𝑙𝑒𝑛(𝑝) is equal to 𝑛 [14].

Definition 2.7.4. Let 𝐺 be a scattered context grammar. Then, the degree of context-
sensitivity of 𝐺 is equal to the number of productions, 𝑝 ∈ 𝑃 , such that 𝑙𝑒𝑛(𝑝) > 1 [4].

Let 𝑝 ∈ 𝑃 be a scattered context production. If 𝑙𝑒𝑛(𝑝) = 1, the production is context-free.
Consequently, if the degree of context-sensitivity of a scattered context grammar, 𝐺, is
equal to zero, the grammar is context-free.

Definition 2.7.5. A scattered context grammar, 𝐺, is propagating, if each production
𝑝 = (𝐴1, . . . 𝐴𝑛) −→ (𝑥1, . . . 𝑥𝑛) ∈ 𝑃 satisfies 𝑥𝑖 ∈ 𝑉 + for all 1 ≤ 𝑖 ≤ 𝑛 [14].
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Definition 2.7.6. Language generated by a scattered context-grammar, 𝐺, is defined as fol-
lows:

𝐿(𝐺) = {𝑥 : 𝑥 ∈ 𝑇 *, 𝑆 =⇒𝐺 𝑥} [14]. (2.28)

As mentioned previously, context-free grammars are a special case of scattered context
grammars. Consequently, by increasing the degree of context-sensitivity of a scattered
context grammar, its generative power increases. Thus, the family of context-free grammars
is properly contained in the family of propagating scattered context grammars, whose power
is equal to that of the context-sensitive grammars. Formally,

ℒ𝐶𝐹 ⊂ ℒ𝑃𝑆𝐶𝐺 ⊆ ℒ𝐶𝑆 [14]. (2.29)

Finally, for any unrestricted grammar, 𝐺, an equivalent scattered context grammar, 𝐺′,
containing at most six context-sensitive productions and six nonterminals, or seven context-
sensitive productions and five nonterminals, can be constructed [14]. This thesis will focus
on the family of propagating scattered context grammars, ℒ𝑃𝑆𝐶𝐺.

2.8 Normal Forms of Sequential Grammars
This section focuses on normal forms of the discussed sequential grammar types. Normal
forms of grammars present a uniform format of grammar representation, which allows easier
processing while maintaining the generative power of the grammars [12].

The following subsections discuss significant normal forms of the previously mentioned
grammar types in the same order as they were introduced. These normal forms share
the characteristic of being structurally similar to the Chomsky hierarchy discussed in the first
subsection. The similarities will be discussed in their respective subsections.

Context-Free Grammars and Multigenerative Systems

This subsection focuses on normal form of context-free grammars. First, the Chomsky
normal form, which is arguably the most significant normal form of context-free grammars,
is presented, followed by the Greibach normal form.

Definition 2.8.1. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. 𝐺 is in the weak
Chomsky normal form if each nonterminal rule has a right member in 𝑁* and each terminal
rule has a right member in 𝑇 ∪ {𝜀} [17].

Definition 2.8.2. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. 𝐺 is in the Chomsky
normal form if every rule, 𝑝 ∈ 𝑃 satisfies 𝑟ℎ𝑠(𝑝) ∈ (𝑇 ∪𝑁2) [12]. Based on this, grammar
in the Chomsky normal form has productions in one of the following forms:

∙ 𝐴 −→ 𝐵𝐶, where 𝐴,𝐵,𝐶 ∈ 𝑁 ,

∙ 𝐴 −→ 𝑎, where 𝐴 ∈ 𝑁 , 𝐴 ∈ 𝑇 [12].

Definition 2.8.3. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. 𝐺 is in the Greibach
normal form if every production 𝑝 ∈ 𝑃 satisfies

𝑟ℎ𝑠(𝑝) ∈ 𝑇𝑁* [12]. (2.30)

Originally, these normal forms were defined for the context-free grammars only. How-
ever, they can be applied to other grammar types, such as the multigenerative grammar
systems and matrix grammars, both of which are based on context-free grammars.
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Unrestricted and Context-Sensitive Grammars

The lack of structural limitations in unrestricted and context-sensitive grammars allows
them to contain more than one nonterminal on the left-hand side of their productions.
Naturally, this phenomenon is reflected in the normal forms used for these grammar families.
This subsection presents two such normal forms – the Kuroda normal form, and its special
case, the Penttonen normal form.

Definition 2.8.4. A grammar, 𝐺, is in the Kuroda normal form if its rules are in one
of the following forms:

∙ 𝐴𝐵 −→ 𝐶𝐷, where 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 ,

∙ 𝐴 −→ 𝐵𝐶, where 𝐴,𝐵,𝐶 ∈ 𝑁 ,

∙ 𝐴 −→ 𝑎, where 𝐴 ∈ 𝑁 , 𝐴 ∈ 𝑇 ,

∙ 𝐴 −→ 𝜀, where 𝐴 ∈ 𝑁 [12].

In the special case of the first rule form where 𝐴 = 𝐶, the grammar is also in the Penttonen
normal form [12].

To adapt the Kuroda normal form to context-sensitive grammars, the last rule form
introduced in the definition 2.8.4 is removed. This results in the grammar becoming non-
erasing, which satisfies the properties of context-sensitive grammars.

Scattered Context Grammars

The normal form used for scattered context grammars reflects the semi-parallelism of
the grammar type. The 2-limited normal form simulates application of two context-free pro-
ductions at different positions in the sentential form. However, as opposed to the Chomsky
normal form introduced in the definition 2.8.2, the normal form does not require the right-
hand side of productions to consist of a single symbol type.

Definition 2.8.5. The 2-limited normal defines rule forms as follows:

∙ (𝐴1, . . . 𝐴𝑛) −→ (𝑥1, . . . 𝑥𝑛) implies than 𝑛 ≤ 2, and for every 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ |𝑤𝑖| ≤ 2
and 𝑤𝑖 ∈ (𝑉 ∖ {𝑆})*,

∙ 𝐴 −→ 𝑤 implies 𝐴 = 𝑆 [14].

The final difference, when compared to the previously mentioned normal forms, lies
in the fact that the normal form requires all productions to be context-sensitive. Context-
free productions are allowed only at the beginning of the rewriting process, and are used
to generate the first pair of nonterminals.
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Chapter 3

Parallel Grammars

L-systems, or parallel grammars, were created as a result of the attempt to translate the phe-
nomenons of developmental biology to formal language theory. As such, L-systems allow
formal respresentation and mirroring of multicellular processes [6]. Based on defining prop-
erties of the processes, several language families were introduced. Notably, these include
the families of D0L, 0L, DT0L, E0L and EPIL languages, some of which will be discussed
in this chapter. Nowadays, the fundamental L families constitute a testing ground of sig-
nificance comparable to that of the Chomsky hierarchy [17].

As opposed to sequential grammars discussed in the previous chapter, L-systems re-
quire every symbol to be rewritten during a derivation step. This property could be par-
tially simulated by a sequence of sequential steps; however, some of the mechanisms, such
as the rewriting synchronisation, are not established in sequential operations. Therefore,
the parallelism cannot be simulated to its full extent [17].

An example of this behaviour can be demonstrated on the string 𝑎. Applying only
the rule 𝑎 −→ 𝑎𝑎, sequential rewriting would lead to the language {𝑎𝑖 | 𝑖 ≥ 1}. However,
if the same rule was to be applied in parallel, it would lead to the final language {𝑎2𝑖 |
𝑖 ≥ 0} [17]. Thus, the generated languages differ.

Biological processes do not always process in a linear way – cell division and death often
takes effect. To reflect the division, L-systems offer evolutionary branching mechanisms.
In textual representation, bounds of the new branch are marked with [, ] symbols; their
visual representation can be seen in Figure 3.1. However, this mechanism can only be used
for the non-interactive systems without further adjustments. The biological background
of interactive L-systems complicates their application, and significantly restricts it [6].

As mentioned at the beginning of this chapter, many new families of L-systems have
been introduced since their initial establishment, creating a hierarchy of importance compa-
rable to the Chomsky hierarchy, which was discussed in the previous chapter. The hierarchy
will be further discussed in Section 3.2. The following sections will focus on some of the core
families, such as the 0L and table systems, and other important families, such as the ex-
tended and interactive systems, discussed in sections 3.3 and 3.5 respectively. Finally,
the last part of the chapter will present normal forms of these types of grammars.
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3.1 Substitutions and 0L Systems
As opposed to sequential grammars, L-systems in their purest form do not differentiate
between types of symbols – the basic rewriting mechanism is the morphism. This section
introduces the term, and based on it, defines the simplest L-system family – the 0L systems.

Definition 3.1.1. A finite substitution 𝜎 over an alphabet Σ is a mapping of Σ* into the set
of all finite nonempty languages defined as follows. For each letter 𝑎 ∈ Σ, 𝜎(𝑎) is a finite
nonempty language, 𝜎(𝜀) = 𝜀, and for all words 𝑤1, 𝑤2 ∈ Σ*, 𝜎(𝑤1)𝜎(𝑤2) = 𝜎(𝑤1𝑤2) [17].

Definition 3.1.2. If none of the languages 𝜎(𝑎), 𝑎 ∈ Σ, contains the empty word, the sub-
stitution 𝜎 is referred to as 𝜀-free or non-erasing. If each 𝜎(𝑎) consists of a single word, 𝜎 is
called a morphism [17].

Customarily, letter-to-letter morphisms found in L-systems are called coding; morphisms
mapping each letter to a letter or to the empty word, 𝜀, are called the weak codings. Sub-
sequently, if 𝜎(𝑎) presents a morphism, the resulting rewriting process is deterministic [16].

The morphisms presented in this section are generally parallel – no part of the processed
string can remain unchanged. In L-systems this notion can be used to define generated
languages.

Definition 3.1.3. For all languages, 𝐿 ⊆ Σ*, the following stands:

𝜎(𝐿) = {𝑢 | 𝑢 ∈ 𝜎(𝑤), for some 𝑤 ∈ 𝐿} [17]. (3.1)

Definition 3.1.4. An 0L system is a triple 𝐺 = (Σ, 𝜎, 𝑤𝑜), where:

∙ Σ is an alphabet,

∙ 𝜎 is a finite substitution on Σ,

∙ 𝑤0, referred to as the axiom, is a word over Σ.

Definition 3.1.5. The language generated by the system, 𝐺, is defined as follows:

𝐿(𝐺) = {𝑤0} ∪ 𝜎(𝑤0) ∪ 𝜎(𝜎(𝑤0)) ∪ · · · =
⋃︁
𝑖≥0

𝜎𝑖(𝑤0) [17]. (3.2)

L Systems 255 

Following the general plan of this Handbook, our present chapter deals ex­
clusively with words, that is, with one-dimensional L systems. Two-dimensio­
nal systems (map L systems, graph L systems, etc.) were introduced quite 
early, see [RS1]. An interpretation mechanism is needed for one-dimensional 
systems: how to interpret words as pictures depicting stages of development? 
In the case of filamentous organisms this normally happens using branching 
structures. In the model below the matching brackets [, ] indicate branches, 
drawn alternately on both sides of the stem. 

We are now ready to present the mathematical model for Callithamnion 
roseum. The alphabet is E = {I, 2, 3, 4, 5, 6,7,8,9, [,]} and the rules for the 
letters: 1 ~ 23, 2 ~ 2, 3 ~ 24, 4 ~ 25, 5 ~ 65, 6 ~ 7, 7 ~ 8, 
8 ~ 9[3], 9 ~ 9. Beginning with the word Wo = 1, we get the following 
developmental sequence: 

Wo = 
Wl= 

W2 = 

W3 = 
W4 = 
'W5 == 
W6 = 
W7 = 
Ws = 
Wg = 

WIO = 
Wu = 
WI2 = 
WI3 = 

1 
23 
224 
2225 
22265 
222765 
2228765 
2229[3]8765 
2229[24]9[3]8765 
2229[225]9[24]9[3]8765 
2229[2265]9[225]9[24]9[3]8765 
2229[22765]9[2265]9[225]9[24]9[3]8765 
2229[228765]9[22765]9[2265]9[225]9[24]9[3]8765 
2229[229[3]8765]9[228765]9[22765]9[2265]9[225]9[24]9[3]8765 

Selected developmental stages (wo, W6, W7, ... , W15) are shown in the fol­
lowing picture [PK]. 

I 
Figure 3.1: L-system branching [17]. Angled lines represent new branches of the organism
development.
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D0L systems were one of the first established families. Despite their simplicity, they
offer valuable tools in modelling both biological processes and sequences.

Definition 3.1.6. A 0L system, (Σ, 𝜎, 𝑤0), is deterministic, or a D0L system, if 𝜎 is
a morphism [17].

Definition 3.1.7. Let (Σ, ℎ, 𝑤0) be a D0L system. The system, 𝐺 generates its language
𝐿(𝐺) in a specific order, as a sequence:

𝑤0, 𝑤1 = ℎ(𝑤0), 𝑤2 = ℎ(𝑤1), . . . . (3.3)

The sequence is denoted by 𝑆(𝐺) [17].

Definition 3.1.8. Let 𝐺1 and 𝐺2 be D0L systems. 𝐺1 and 𝐺2 are sequence-equivalent if
𝑆(𝐺1) = 𝑆(𝐺2). They are language-equivalent if 𝐿(𝐺1) = 𝐿(𝐺2) [17].

The determinism of D0L systems allows formation of periodicity in the generated lan-
guage. For example, let a word, 𝑤𝑖, appear twice in the same sequence, 𝑤𝑖 = 𝑤𝑖+𝑘.𝑗 for
some 𝑖, 𝑘 ≥ 0, 𝑗 > 0. Then, after the period 𝑗, the sequence starts repeating, which makes
the generated language finite. Consequently, the appearance of repetition in 𝑆(𝐺) presents
the necessary condition for finiteness of the generated language, 𝐿(𝐺) [17].

Definition 3.1.9. An infinite sequence of words, 𝑤𝑖, 𝑖 ≥ 0, is locally catenative if, for some
positive integers 𝑘, 𝑖1, . . . 𝑖𝑘 and 𝑞 ≥ 𝑚𝑎𝑥(𝑖1, . . . 𝑖𝑘), 𝑤𝑛 = 𝑤𝑛−𝑖1 . . . 𝑤𝑛−𝑖𝑘 whenever 𝑛 ≥ 𝑞.
A D0L system, 𝐺, is locally catenative if the sequence 𝑆(𝐺) is locally catenative [17].

This section serves as an introduction to the basic families of L-systems. However,
the hierarchy offers a wide variety of L-system property modifiers, which will be discussed
in the following section.

3.2 System Modifiers
0L and D0L systems, which were presented in the previous section, offer no means of regu-
lating the generated language. Considering the L-systems were created to mirror biological
processes, which do not differentiate between right or wrong states of the generated string,
this behaviour is to be expected. However, in the formal language theory, filtering mecha-
nisms similar to those present in sequential grammars are expected.

For this purpose, a number of filtering mechanisms were designed, such as the extended
L-systems and table L-systems, discussed in Sections 3.3 and 3.4 respectively. However,
these are not the only reasons for language property extension. The following list aims
to illustrate some of the commonly used modifiers:

∙ A. adult – adult word, adult language,

∙ C. coding – letter-to-letter morphism,

∙ D. deterministic,

∙ E. extended – discussed in Section 3.3,

∙ F. finite – a finite set of axioms,

∙ I. interactive – discussed in Section 3.5,
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∙ O. non-interactive,

∙ P. propagating – non-erasing, no cell death,

∙ T. table – discussed in Section 3.4,

∙ U. unary – alphabet consisting of one letter [17].

These modifiers can be combined at will – except for the obvious contradiction of inter-
active and non-interactive modifiers – to create a system of desired properties. However,
as opposed to the Chomsky hierarchy, the generative power of the individual families does
not increase in a linear matter. A comparison of their power can be seen in Figure 3.2.

3.3 Extended L-Systems
Extended L-systems introduce filtering mechanisms similar to those present in sequential
grammars – they divide the overall alphabet into two disjoint sets, terminals and nontermi-
nals. The use of nonterminals serves as a way to signalise that the examined string is not
yet complete [16]. From the biological point of view, the existence of extended L-systems
does not make sense, however, this problem is countered by the increase in generative power
the systems offer [6].

Definition 3.3.1. An E0L system is a quadruple 𝐺 = (𝑉,Σ, 𝑃, 𝑆), where:

∙ 𝑉 is the total alphabet,

∙ Σ is the finite set of terminals – the target alphabet,

∙ 𝑃 is the set of rules in the form 𝐴 −→ 𝑤, where 𝐴 ∈ 𝑉 , 𝑤 ∈ 𝑉 *,

HDOL = WDOL = 

= HPDOL = WPDOL = 
= HDFOL = WDFOL = 
= HPDFOL = WPDFOL 

= N DFOL = CDFOL 

= NPDFOL = CPDFOL 

/~ 
NDOL = NPDOL = CDOL EDFOL 
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~\~/~ 
CPDOL EDOL DFOL EPDFOL 

~/~/~/ 
EPDOL DOL PDFOL 

~~ 
PDOL 

In the nondeterministic case there is much more collapse in the hierarchy 
because the C-mechanism has in most cases the same generative capacity as 
the E-mechanism. (In the deterministic case the former is much stronger.) A 
rather surprising fact in the nondeterministic case is that, although EOL = 
COL, CPOL is properly contained in EPOL, which is the opposite what one 
would expect knowing the deterministic case. The key results are given in 
the next theorem, [NRSS] and [RSl]. 

Theorem 2.4. Each of the following families equals EOL: 

EOL = COL = NOL = WOL = HOL = NPOL = EPOL = WPOL = 
HPOL = EFOL = CFOL = NFOL = WFOL = HFOL = 
EPFOL = NPFOL = WPFOL = HPFOL. 

The family EOL lies strictly between context-free and context-sensitive lan­
guages and contains properly the mutually incomparable families CPOL and 
FOL. 0 

Thus, the family EOL contains properly the family of context-free lan­
guages. This fact follows because a context-free grammar can be transformed 
into an EOL system, without affecting the language, by adding the produc­
tion x -- x for each letter x. That the containment is proper can be seen 
by considering the language generated by the EOL system SYNCHRO. This 
fact should be contrasted with the fact that most finite languages are outside 
the family of OL languages. 

Figure 3.2: Hierarchy of generative power of L-system families. Power of classes on the same
level cannot be directly compared [17].
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∙ 𝑆 is the axiom [17].

A derivation step in the extended L-systems presents a middle ground between the par-
allel morphisms as per Definition 3.1.1 and the sequential derivation step as introduced
in Definition 2.2.5 – the rewriting happens for all symbols in parallel, however, only nonter-
minals may be rewritten into other symbols. Once the symbol is rewritten into a terminal,
the value is always replaced by itself [6].

In terms of generative power, E0L grammars are more powerful than 0L grammars.
Within the L hierarchy, their power is equal to that of the following families:

𝐸0𝐿 = 𝐶0𝐿 = 𝑁0𝐿 = 𝑊0𝐿 = 𝐻0𝐿 = 𝑁𝑃0𝐿 = 𝐸𝑃0𝐿 = 𝑊𝑃0𝐿

= 𝐻𝑃0𝐿 = 𝐸𝐹0𝐿 = 𝐶𝐹0𝐿 = 𝑁𝐹0𝐿 = 𝑊𝐹0𝐿 = 𝐻𝐹0𝐿

= 𝐸𝑃𝐹0𝐿 = 𝑁𝑃𝐹0𝐿 = 𝑊𝑃𝐹0𝐿 = 𝐻𝑃𝐹0𝐿 [17].

(3.4)

When compared to the Chomsky hierarchy, they are more powerful than the family of context-
free grammars, but less powerful than the family of context-sensitive languages,

ℒ(𝐶𝐹 ) ⊂ ℒ(𝐸0𝐿) ⊂ ℒ(𝐶𝑆) [6]. (3.5)

3.4 Table L-systems
In parallel rewriting, tables may be used to regulate the development. In this context,
a table is a set of production rules – as such, this notion is of no significance in sequential
grammars. A system has a finite number of tables, and during each step, a single table
must be used [17].

This mechanism mirrors the properties of real organisms, as they often require different
conditions during their development, or may simply behave in a different way [6].

Definition 3.4.1. T0L system is a triple 𝐺 = (Σ, 𝑆, 𝑤𝑜), where 𝑆 is a finite set of finite
substitutions such that, for each 𝜎 ∈ 𝑆, the triple (Σ, 𝑆, 𝑤0) is a 0L system. The language
of the T0L system, 𝐿(𝐺), consists of 𝑤0 and of all words in all languages 𝜎1 . . . 𝜎𝑘(𝑤0), where
𝑘 ≥ 1 and each 𝜎𝑜 belongs to 𝑆 – some of the 𝜎𝑖s may also coincide. If all substitutions
in 𝑆 are, in fact, morphisms then 𝐺 is deterministic or a DT0L system [17].

The definition above presents the notion of DT0L system, as opposed to DT0L language.
This is caused by the fact that the system uses a set of tables, whose order of use is not
defined. Therefore, the system does not generate a DT0L language in a sequence. To achieve
a deterministic language, the order of use must be defined in a special way [6].

Definition 3.4.2. For an infinite sequence 𝑤𝑖, where 𝑖 ≥ 0 of words, the function 𝑓(𝑛) =
|𝑤𝑛| – mapping the set of non-negative integers into itself – is termed the growth function
of the sequence [17].

The families of table L-systems present one of the most widely studied groups of families
in the L-hierarchy [17]. The hierarchy of the basic table families can be seen in Figure 3.3.

3.5 Interactive L-Systems
The class of interactive L-systems is unique in the notion that the individual cells, or sym-
bols, interact with environment – other cells on their sides. Overall, number of interacting
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The following two theorems summarize results concerning mutual reI ash­
ionships between "table families", [NRSS], [RSl]. The first of the theorems 
deals with deterministic families, and the second with nondeterministic fam­
ilies. 

Theorem 2.6. The following inclusions and equalities hold: 
DTOL C CDTOL= NDTOL= EDTOL= WDTOL= HDTOL, 

PDTOL C CPDTOL ~ NPDTOL ~ EPDTOL= WPDTOL= HPDTOL, 

DTFOL C CDTFOL= NDTFOL= EDTFOL= WDTFOL= HDTFOL, 

PDTFOL C CPDTFOL ~ NPDTFOL ~ EPDTFOL= WDPTFOL= HPDTFOL. 

The "pure" families (without any filtering) satisfy the following inclusion 
diagram: 

DTFOL 

/~ 
DTOL PDTFOL 

~/ 
PDTOL o 

Theorem 2.7. Each of the following families equals ETOL: 
ETOL= CTOL= NTOL= WTOL= HTOL= 

NPTOL= EPTOL= WPTOL= HPTOL= 
CTFOL= NTFOL= ETFOL= WTFOL= HTFOL 

NPTFOL= EPTFOL= WPTFOL= HPTFOL 
The families EOL, TFOL and CPTOL= CPTFOL are all stricly included 

~E~. 0 

The family ETOL is the largest widely studied L family, where rewriting is 
context-free (no cell interactions are present). It is also very pleasing mathe­
maticallyand has strong closure properties. (It is, however, not closed under 
the shufHe operation.) It was observed already in the early 70's that ETOL 
is contained in the family of indexed languages (see the preceding chapter of 
this Handbook for a description of indexed languages and see [En] for more 
general hierarchies) and, consequently, facts concerning indexed languages 
hold also for ETOL languages. The facts in the following theorem can be 
established rather easily. 

Figure 3.3: Hierarchy of the generative power of table L-systems without further filtering
mechanisms [17].

cells on either side does not matter when determining power of the system; only the total
environment size is important. Subsequently, the environment size increases the generative
power of the system. All of the following families are equal:

(4, 1)𝐿 = (3, 2)𝐿 = (2, 3)𝐿 = (1, 4)𝐿 [17]. (3.6)

However, the generative power of the (5, 0)𝐿 and (0, 5)𝐿 families, and by extension the other
(0, 𝑥) and (𝑥, 0) systems, is not comparable, as discussed in Section 3.6.

Definition 3.5.1. Let 𝑘 and 𝑙 be non-negative integers. A (k, l) system is a quadruple
𝐺 = (Σ, 𝑃, 𝑔, 𝑤0), where:

∙ Σ is the alphabet,

∙ 𝑃 is the set of productions, 𝑃 ⊂ (Σ ∪ {𝑔})𝑘 × Σ × (Σ ∪ {𝑔})𝑙 × Σ*,

∙ 𝑔 is the environment marker, 𝑔 ̸∈ Σ,

∙ 𝑤0 is the axiom,

such that for some 𝑝 = (𝑤1, 𝑎, 𝑤3, 𝑤4) ∈ 𝑃 , 𝑝 satisfies the following conditions:

∙ if 𝑤1 = 𝑤1𝑔 ¯̄𝑤1 for some 𝑤1, ¯̄𝑤1 ∈ (Σ ∪ {𝑔})*, then 𝑤1 ∈ {𝑔}*,

∙ if 𝑤3 = 𝑤3𝑔 ¯̄𝑤3 for some 𝑤3, ¯̄𝑤3 ∈ (Σ ∪ {𝑔})*, then ¯̄𝑤3 ∈ {𝑔}* [6].

To maintain the consistence of rule representation, this thesis will use the notation
𝑝 = 𝑤1 < 𝑎 > 𝑤3 −→ 𝑤4.

The family of interactive L-systems is specific in one more way – as mentioned at the be-
ginning of this chapter, the family does not allow development branching during the rewrit-
ing process, as this concept disrupts the biological background of the family [6].

Extended Interactive L-Systems

The addition of nonterminals further increases the power of the system. Furthermore,
this class of L-systems can serve as a simple interlink to sequential grammars. Union
of the system types presented in the previous sections yields the following definition.

Definition 3.5.2. Let 𝑘 and 𝑙 be non-negative integers. An extended (𝑘, 𝑙) system is
the quintuple 𝐺 = (𝑉,Σ, 𝑃, 𝑔, 𝑆), where:
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∙ 𝑉 is the total alphabet,

∙ Σ is the set of terminals,

∙ 𝑃 is the set of productions in the form 𝑤1 < 𝑎 > 𝑤3 −→ 𝑤4,

∙ 𝑔 is the environment marker, 𝑔 ̸∈ 𝑉 ,

∙ 𝑆 is the axiom.
It has been established that the EIL family generates all recursively enumerable lan-

guages. Furthermore, the family of EPIL – propagating EIL systems – produces the family
of context-sensitive languages [17].

3.6 Normal Forms of Parallel Grammars
This section focuses on normal forms of L-system families that were discussed earlier
in the chapter. The first part focuses on a normal form for E0L that has been introduced
in several publications [17, 16], along with its equivalent used in EIL systems; the second
part focuses on normalisation of environment size in IL systems.

Extended L-Systems

This section focuses on normal forms of extended L-systems. Considering normal forms
are a concept usually applied in sequential grammars, the normal form is very similar
to the Chomsky normal form.
Definition 3.6.1. An E0L system contains rules in one of the following forms:

∙ 𝐴 −→ 𝐵𝐶, where 𝐴,𝐵,𝐶 ∈ 𝑉 ∖ Σ,

∙ 𝐴 −→ 𝐵, where 𝐴,𝐵 ∈ 𝑉 ∖ Σ,

∙ 𝐴 −→ 𝑎, where 𝐴 ∈ 𝑉 ∖ Σ, 𝑎 ∈ Σ,

∙ 𝑎 −→ 𝐴 where 𝑎 ∈ Σ, 𝐴 ∈ 𝑉 ∖ Σ,

∙ 𝐴 −→ 𝜀 where 𝐴 ∈ 𝑉 ∖ Σ [17, 16].

Extended Interactive L-Systems

The normal form presented in the previous section can be further adapted to IL systems.
However, no steps are taken to regulate the context in any way.
Definition 3.6.2. The normal form for EPIL systems allows rules in one of the following
forms:

∙ 𝑤1 < 𝐴 > 𝑤3 −→ 𝐵𝐶, where 𝐴,𝐵,𝐶 ∈ 𝑉 ∖ Σ, 𝑤1, 𝑤3 ∈ 𝑉 *,

∙ 𝑤1 < 𝐴 > 𝑤3 −→ 𝐵, where 𝐴,𝐵 ∈ 𝑉 ∖ Σ, 𝑤1, 𝑤3 ∈ 𝑉 *,

∙ 𝑤1 < 𝐴 > 𝑤3 −→ 𝑎, where 𝐴 ∈ 𝑉 ∖ Σ, 𝑎 ∈ Σ, 𝑤1, 𝑤3 ∈ 𝑉 *,

∙ 𝑤1 < 𝑎 > 𝑤3 −→ 𝐴 where 𝑎 ∈ Σ, 𝐴 ∈ 𝑉 ∖, 𝑤1, 𝑤3 ∈ 𝑉 *,

∙ 𝑤1 < 𝐴 > 𝑤3 −→ 𝜀 where 𝐴 ∈ 𝑉 ∖ Σ, 𝑤1, 𝑤3 ∈ 𝑉 *.
With the removal of the last rule form, this normal form can be used for EPIL systems.
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Interactive L-Systems

Unlike the previously mentioned normal forms, the normal form for IL systems does not
focus on the form of the rules themselves, but on the environment surrounding them.

For every IL system, 𝐺, it is possible to find a nonnegative integer 𝑙 and a (1, 𝑙)L system,
𝐺̄, such that 𝐺 and 𝐺̄ are equal. This is done by creating a system that moves the bounds
of the environment until the desired stare is achieved [6].

This, however, only applies to systems that interact with environment on both sides –
it is not applicable to (𝑛, 0)𝐿 or (0, 𝑛)𝐿 systems.
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Chapter 4

Syntax Analysis

This chapter focuses on established methods of syntax analysis. First, it introduces the basic
terms and concepts concerning parsing methods, followed by an overview of some of the sig-
nificant methods based on the direction they work in. Finally, it introduces general parsing
methods, such as the Earley algorithm, and the Cocke-Younger-Kasami algorithm, which
is discussed in detail.

Generally speaking, syntax analysis is one of the central phases of compilation. Code
compilation is the process of translating a source program into a target program while
maintaining its semantics.

First, the lexer separates the source programs into lexemes, which are then reclassified
into tokens and gradually sent to the parser – the compiler component responsible for syntax
analysis. This module verifies whether the received sequence of tokens could present a valid
sentence of the compiler’s grammar, as well as detect any syntactical ambiguity of the input.
Based on the general approach of the compiler, this module either generates the parse tree,
which is then passed on for semantic analysis and code generation, or directs the processes
itself. In the latter case, the process is called syntax-directed translation [1].

Traditionally, compilation makes use of parsing methods created for context-free gram-
mars. However, application of syntax analysis is not limited to code compilation. Based
on the grammar type used, it can be utilised for a wide variety of processes focused on data
analysis; these will be further explored in the following chapter. The remaining part of this
chapter deals with parsing methods focused on context-free grammars.

CHAPTER 4. SYNTAX ANALYSIS 

4.1 Introduction 

In this section, we examine the way the parser fits into a typical compiler. We 
then look at typical grammars for arithmetic expressions. Grammars for ex- 
pressions suffice for illustrating the essence of parsing, since parsing techniques 
for expressions carry over to most programming constructs. This section ends 
with a discussion of error handling, since the parser must respond gracefully to 
finding that its input cannot be generated by its grammar. 

4.1.1 The Role of the Parser 

In our compiler model, the parser obtains a string of tokens from the lexical 
analyzer, as shown in Fig. 4.1, and verifies that the string of token names 
can be generated by the grammar for the source language. We expect the 
parser to report any syntax errors in an intelligible fashion and to recover from 
commonly occurring errors to continue processing the remainder of the program. 
Conceptually, for well-formed programs, the parser constructs a parse tree and 
passes it to the rest of the compiler for further processing. In fact, the parse 
tree need not be constructed explicitly, since checking and translation actions 
can be interspersed with parsing, as we shall see. Thus, the parser and the rest 
of the front end could well be implemented by a single module. 

Symbol 
Table 

Figure 4.1: Position of parser in compiler model 

intermediate - 
representatio6 

SOurce 

progra$ 

There are three general types of parsers for grammars: universal, top-down, 
and bottom-up. Universal parsing methods such as the Cocke-Younger-Kasami 
algorithm and Earley's algorithm can parse any grammar (see the bibliographic 
notes). These general methods are, however, too inefficient to use in production 
compilers. 

The methods commonly used in compilers can be classified as being either 
top-down or bottom-up. As implied by their names, top-down methods build 
parse trees from the top (root) to the bottom (leaves), while bottom-up methods 
start from the leaves and work their way up to the root. In either case, the 
input to the parser is scanned from left to right, one symbol at a time. 

token 
Lexical / parse ~~~t of 

-1 

Analyzer I Front End 

Figure 4.1: The role of the parser in the compiler [1].
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CHAPTER 4. SYNTAX ANALYSIS 

Figure 4.5: Two parse trees for id+id*id 

4.2.6 Verifying the Language Generated by a Grammar 

Although compiler designers rarely do so for a complete programming-language 
grammar, it is useful to be able to reason that a given set of productions gener- 
ates a particular language. Troublesome constructs can be studied by writing 
a concise, abstract grammar and studying the language that it generates. We 
shall construct such a grammar for conditional statements below. 

A proof that a grammar G generates a language L has two parts: show that 
every string generated by G is in L, and conversely that every string in L can 
indeed be generated by G. 

Example 4.12 : Consider the following grammar: 

It may not be initially apparent, but this simple grammar generates all 
strings of balanced parentheses, and only such strings. To see why, we shall 
show first that every sentence derivable from S is balanced, and then that every 
balanced string is derivable from S. To show that every sentence derivable from 
S is balanced, we use an inductive proof on the number of steps n in a derivation. 

BASIS: The basis is n = 1. The only string of terminals derivable from S in 
one step is the empty string, which surely is balanced. 

INDUCTION: Now assume that all derivations of fewer than n steps produce 
balanced sentences, and consider a leftmost derivation of exactly n steps. Such 
a derivation must be of the form 

The derivations of x and y from S take fewer than n steps, so by the inductive 
hypothesis x and y are balanced. Therefore, the string (x)y must be balanced. 
That is, it has an equal number of left and right parentheses, and every prefix 
has at least as many left parentheses as right. 

(a) Leftmost derivation.
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Figure 4.5: Two parse trees for id+id*id 

4.2.6 Verifying the Language Generated by a Grammar 

Although compiler designers rarely do so for a complete programming-language 
grammar, it is useful to be able to reason that a given set of productions gener- 
ates a particular language. Troublesome constructs can be studied by writing 
a concise, abstract grammar and studying the language that it generates. We 
shall construct such a grammar for conditional statements below. 

A proof that a grammar G generates a language L has two parts: show that 
every string generated by G is in L, and conversely that every string in L can 
indeed be generated by G. 

Example 4.12 : Consider the following grammar: 

It may not be initially apparent, but this simple grammar generates all 
strings of balanced parentheses, and only such strings. To see why, we shall 
show first that every sentence derivable from S is balanced, and then that every 
balanced string is derivable from S. To show that every sentence derivable from 
S is balanced, we use an inductive proof on the number of steps n in a derivation. 

BASIS: The basis is n = 1. The only string of terminals derivable from S in 
one step is the empty string, which surely is balanced. 

INDUCTION: Now assume that all derivations of fewer than n steps produce 
balanced sentences, and consider a leftmost derivation of exactly n steps. Such 
a derivation must be of the form 

The derivations of x and y from S take fewer than n steps, so by the inductive 
hypothesis x and y are balanced. Therefore, the string (x)y must be balanced. 
That is, it has an equal number of left and right parentheses, and every prefix 
has at least as many left parentheses as right. 

(b) Rightmost derivation.

Figure 4.2: Alternate parse trees for the sentence 𝑖𝑑 + 𝑖𝑑 * 𝑖𝑑 [1].

4.1 Derivation, and Parse Tree
A parse tree is a graphical representation of the order in which the sentential form, as per
Definition 2.2.7, is rewritten.

As mentioned at the beginning of this chapter, the parse tree is constructed mainly
for context-free grammars. As such, the individual nodes of the tree represent the nonter-
minal of the left-hand side of the applied rule, and the child nodes represent the individual
symbols on the right-hand side of the rule, as per Definition 2.2.3.

In top-down parsing methods, which will be discussed in Section 4.2, the tree is con-
structed starting from the grammar’s start symbol, which poses as the root of the tree.
Gradually, new nodes are added to the tree until either all leaves are represented by ter-
minals, in which case the sentence is syntactically correct, or there are no viable rules
to apply to the tree. In bottom-up parsing methods, discussed in Section 4.3, tree con-
structions starts with a sequence of terminals – or tokens – and the goal is to reach the root
of the tree [1].

Sentence Ambiguity

The final structure of the parse tree is determined by the order in which the production rules
are applied. During the rewriting process, the tree is usually constructed by the continuous
application of the leftmost derivation, in which case, it is constructed based on the left par-
se [1]. The sequence of rightmost derivations is defined analogously. In deterministic
grammars, there exists a single parse tree for every sentence in the generated language.
Otherwise, the grammar is ambiguous.

Let 𝐺 = ({𝐸}, {𝑖𝑑,+, *}, 𝑃, 𝐸) be a context-free grammar, such that

𝑃 = { 𝐸 −→ 𝐸 + 𝐸,

𝐸 −→ 𝐸 * 𝐸,

𝐸 −→ 𝑖𝑑 }.
(4.1)

For the input sentence 𝑖𝑑 + 𝑖𝑑 * 𝑖𝑑, there exist two distinct parse trees, which can be seen
in Figure 4.2. Most parsing methods used during the parsing process are not capable
of handling such ambiguity. However, some exceptions, such as the GLR method, exist [1].
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4.2 Top-Down Parsing Methods
Top-down parsing methods handle the creation of the parse tree by starting at the root
node, and gradually adding nodes, until all tokens of the input string have been handled.
In concrete terms, they find the leftmost derivation for the input sentence – in each step
of the process, the parser attempts to match the currently examined nonterminal to a pro-
duction rule, and subsequently match its right-hand side. These methods are not capable
of handling left recursion, as per Definition 2.2.4, because they are unable to determine
the required level of recursion, and may fall into an infinite loop [1].

The recursive-descent parsing presents one of the general forms of top-down parsing.
A recursive-descent program contains functions for every production rule in its grammar,
and uses recursion to simulate nonterminal rewriting. However, this method may require
backtracking to choose the correct production rule to expand, and thus they may require
several scans of the input string.

To avoid backtracking, predictive parsing methods use a fixed number of look-ahead to-
kens to deterministically choose the production rule to apply. These are usually constructed
for grammars of the 𝐿𝐿(𝑘) class, most notably the 𝐿𝐿(1) class.

𝐿𝐿(𝑘) Parsing Method

The 𝐿𝐿(𝑘) class parsers scan the input from left to right and construct the leftmost deriva-
tion. Intuitively, 𝑘 stands for the number of look-ahead tokens.

The construction of 𝐿𝐿(1) parsers requires the construction of FIRST and FOLLOW
sets. However, these sets can be utilised during the creation of bottom-up parsers as well;
these will be discussed in Section 4.3. During top-down parsing, these sets are used to de-
termine which production rule to apply. The FOLLOW set can be also used during error
recovery to estimate the position to continue the analysis [1].

The 𝐹𝐼𝑅𝑆𝑇 (𝛼) set, where 𝛼 is any sequence of symbols, is defined as the set of the string
that can be derived from 𝛼. If the sequence can be derived into 𝜀, 𝛼 =⇒* 𝜀, it is included
in the set. This set is used to determine which production rule should be applied.

The 𝐹𝑂𝐿𝐿𝑂𝑊 (𝐴) set, where 𝐴 is a nonterminal, is defined as the set of terminals that
can appear to the immediate right of 𝐴 in any sentential form; if any of the symbols can be
erased, the symbols following them are included as well. Moreover, if the nonterminal, 𝐴,
may pose as the rightmost symbol of any sentential form, the 𝐹𝑂𝐿𝐿𝑂𝑊 (𝐴) set includes
the end marker, $. Usually, this set is used to determine whether a part of the sentential
form has been erased and whether the production has been fully recognised.

A grammar, 𝐺, is 𝐿𝐿(1) if the following holds for any two productions, 𝐴 −→ 𝛼
and 𝐴 −→ 𝛽:

∙ there exists no terminal, 𝑎, such that both 𝛼 and 𝛽 start with 𝑎,

∙ at most one of the sequences 𝛼 and 𝛽 can derive into 𝜀,

∙ if 𝛽 =⇒* 𝜀, 𝛼 must most derive into a string starting with a terminal, 𝑎 ∈ 𝐹𝑂𝐿𝐿𝑂𝑊 (𝐴);
if 𝛼 =⇒* 𝜀, 𝛽 must not derive into a string starting with a terminal, 𝑏 ∈ 𝐹𝑂𝐿𝐿𝑂𝑊 (𝐴) [1].

The 𝐿𝐿(1) class of parsers covers a major part of programming languages. However, con-
sidering the grammar must not contain left recursion or ambiguity, it is not suitable for all
grammars.
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4.3 Bottom-Up Parsing Methods
Bottom-up parsing corresponds to the process of constructing a parse tree for the input
string starting with leaves and gradually working up to the root of the tree. Usually this
process is not done explicitly but as a part of syntax analysis.

This type of parsing methods is represented by the shift-reduce parsing approach, whose
major representative is the class of 𝐿𝑅(𝑘) parsers. Generally speaking, shift-reduce pars-
ing is the process of reducing the input string into the start symbol; during each step
of the process, the right-hand side of a production rule is matched and reduced. The core
of this approach lies in the decision of when to reduce the substring and what production
to apply [1].

During a left-to-right scan of the input string, the shift-reduce parser creates the right-
most derivation in reverse – a right parse. This is done by matching the right-hand side
of a rule, called a handle, and reducing it into its left-hand side. A right parse can be ob-
tained by handle pruning, that is by gradual reduction into the start symbol. For a sentence
𝑤 and a right parse of the length 𝑛, have the following right-parse:

𝑆 = 𝛾0 =⇒𝑟𝑚 𝛾1 =⇒𝑟𝑚 · · · =⇒𝑟𝑚 𝛾𝑛 = 𝑤. (4.2)

To reconstruct the derivation in reverse, the handle 𝛽𝑖 is found in 𝛾𝑖 and replaced by the com-
plete production. If, after a finite number of iterations, the sentential form contains only
the start symbol, the string is accepted [1]. This mechanism presents the core of shift-reduce
parsing.

Shift-Reduce Parsing

Shift-reduce parsing is a form of bottom-up parsing that uses a stack to hold a temporary
sequence of grammar symbols and a an input buffer holding the unprocessed part of the in-
put string. During the scan of the string, the parser shifts tokens onto the stack until
they can be reduced into a nonterminal. This process is repeated until either the string is
accepted, or no operations are available. The primary operations of a shift-reduce parser
include the following:

∙ shift – shift the next token on the stack,

∙ reduce – reduce a handle; the right end of the handle must be at the top of the stack,

∙ accept – accept the input string,

∙ error – reject the input string because of a syntax error [1].

Not all context-free grammars are suitable for use with shift-reduce parsers, as they may
cause operation conflicts. There exist two main types of such conflicts: the shift/reduce
conflicts, when the parser cannot determine whether to shift another token or to reduce
a handle, and reduce/reduce conflicts, when two productions share the same handle [1].

𝐿𝑅(𝑘) Parsing Method

The main representative of shift-reduce parsing is the 𝐿𝑅(𝑘) class. The parsers of this class
are table-driven and use a number of look-ahead tokens; however, because of the complexity
of these tables, usually no more than a single look-ahead token is used. Despite these
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limitations, the 𝐿𝑅(1) family of grammars presents a proper superset of the LL grammars
presented in Section 4.2.

An LR parser makes shift-reduce decisions by keeping state information on its position
in the parse. The states consist of a list of items – productions with a dot mark representing
the position in the parse. For example, for the rule 𝐴 −→ 𝐵𝐶, there exist the following
items:

𝐴 −→ ·𝐵𝐶, 𝐴 −→ 𝐵 · 𝐶, 𝐴 −→ 𝐵𝐶 · . (4.3)

These states are then used to construct an LR automaton. To define the transitions between
the states, the functions CLOSURE and GOTO are defined. The CLOSURE function is
used to determine the set of items the parser can move to when shifting a particular token,
whereas the GOTO function serves as a new entry point into the automaton after a handle
is reduced [1].

Based on the specifics of their work, there exist several types of LR parsers – 𝐿𝑅(1),
𝑆𝐿𝑅, 𝐿𝐴𝐿𝑅 and 𝐺𝐿𝑅. The 𝐿𝑅(1) parsers, while offering the greatest generative power,
are not widely used because the creation of their states is parameterised by the look-ahead
symbol, which subsequently results in a largely repetitive set of states. Some of the other
methods, such as the 𝐿𝐴𝐿𝑅 method, solve this problem to a degree by using the state set
as generated by the 𝐿𝑅(0) method, while sacrificing only a small portion of their generative
power. Because of its efficiency, the 𝐿𝐴𝐿𝑅 method is used by the parser generator software,
Bison [5]. Finally, the 𝐺𝐿𝑅 method is capable of handling grammar ambiguity [1].

4.4 General Parsing Methods
The parsing methods presented in the previous sections put a number of conditions
on the grammars they can be applied to, such as the absence of left recursion or ambi-
guity. There exists a group of parsing algorithms capable of surpassing these limitations,
and therefore of parsing any grammar – the general parsing methods. The representatives
of this group of algorithms include the Earley algorithm [8], which works in a top-down
way, and the Cocke-Younger-Kasami algorithm, which works in a bottom-up way. In their
base form, both of these methods present recognisers – methods only capable of recognising
the correspondence of the sentence to the specified grammar. The latter will be discussed
in detail.

Cocke-Younger-Kasami Algorithm

The Cocke-Younger-Kasami (CYK) algorithm is a representative of algorithms based on nor-
mal forms [15, 1]. The algorithm works in a bottom-up way with grammars in the Chomsky
normal form, as per Definition 2.8.2.

Given a grammar, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) in the Chomsky normal form and an input string,
𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛, where 𝑎𝑖 ∈ 𝑇 for some 1 ≤ 𝑖 ≤ 𝑛, the algorithm makes a decision of whether
the input string, 𝑤, can be generated by the grammar, 𝐺. It works by constructing a matrix
of sets 𝐶𝑌𝐾[𝑖, 𝑗] for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, where each set holds reduced nonterminals.

To populate these sets, the algorithm first reduces the individual terminals in the in-
put string, 𝑎𝑖 and adds them to their respective 𝐶𝑌𝐾[𝑖, 𝑖] sets. These nonterminals serve
as the base for further reductions – whenever 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗] and 𝐶 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘], such
that there exists a production 𝐴 −→ 𝐵𝐶 ∈ 𝑃 , the nonterminal 𝐴 is added to 𝐶𝑌𝐾[𝑖, 𝑘].
Considering that 𝐵 =⇒* 𝑎𝑖 . . . 𝑎𝑗 and 𝐶 =⇒* 𝑎𝑗+1 . . . 𝑎𝑘, the process results in gradual
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Figure 4.3: Application of the CYK algorithm. The final reduction is made by combining
the 𝑎1𝑎2 and 𝑎3 . . . 𝑎6 substrings, the input string was accepted.

reduction of longer substrings, in this case 𝐴 =⇒* 𝑎𝑖 . . . 𝑎𝑘. Finally, once no more nonter-
minals can be reduced, the 𝐶𝑌𝐾[1, 𝑛], which represents the root of the parse tree, is tested
for presence of the start symbol, 𝑆. If it is found, a tree exists for the input string, and it
is accepted. Otherwise, the string is rejected [13].

Algorithm 1 Cocke-Younger-Kasami Algorithm [13]
Input a context-free grammar, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) in the Chomsky normal form

𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 with 𝑎𝑖 ∈ 𝑇 , 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1
Output ACCEPT if 𝑤 ∈ 𝐿(𝐺)

REJECT if 𝑤 /∈ 𝐿(𝐺)

1: introduce sets 𝐶𝑌𝐾[𝑖, 𝑗] = ∅ for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
2: function CYK(𝑤)
3: for 𝑖 = 1 to 𝑛 do
4: if 𝐴 −→ 𝑎𝑖 ∈ 𝑃 then add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑖]

5: repeat
6: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾[𝑗+1, 𝑘], 𝐴 −→ 𝐵𝐶 ∈ 𝑃 for some 𝐴,𝐵,𝐶 ∈ 𝑁 then
7: add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑘]

8: until no change
9: if 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛] then

10: ACCEPT
11: else REJECT

The work of this algorithm can be seen in Figure 4.3. The triangles represent the indi-
vidual reductions. Not all reduced nonterminals are used in the final simulation of the parse
tree – in this case the reduction of the substring 𝑎1𝑎2𝑎3, represented by the bright orange
triangle, was omitted.
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Chapter 5

Extensions of the Cocke-Younger-
Kasami Algorithm

This chapter introduces the proposed extensions of the Cocke-Younger-Kasami algorithm,
which was first introduced in Section 4.4. The presented extensions work with both se-
quential and parallel grammars, and make use of the similarities between the normal forms
of the respective grammar types and the Chomsky normal form the Cocke-Younger-Kasami
algorithm was designed for.

The first part of this chapter presents the extensions for sequential grammar families
– context-sensitive grammars, multigenerative systems and scattered context grammars.
The later part introduces extensions for extended and interactive L-systems.

As opposed to the original algorithm, most of these grammar types incorporate the no-
tion of context. Consequently, the order in which the CYK matrix is scanned may alter
the results and is therefore strictly defined in all extensions. Moreover, every extension
deals with complications caused by the nature of the examined grammar type. These
complications, as well as their solutions, are discussed in their respective sections.

5.1 Extension for Context-Sensitive Grammars
The extension for context-sensitive grammars works with grammars in the Kuroda normal
form, as per Definition 2.8.4. This normal form presents a direct extension of the Chomsky
normal form, and adds the 𝐴𝐵 −→ 𝐶𝐷 rule form.

Intuitively, a major part of the algorithm’s behaviour remains unchanged. Application
of context-sensitive productions respects the purpose of the individual matrix elements –
these represent the nonterminals reduced using a substring of the input string whose bounds
are symbolised by the position of the matrix element. Otherwise, the parsing proceeds
analogously, as seen in Algorithm 2. However, this behaviour requires the addition of control
mechanisms tracking the origin of the nonterminals, as described later in the chapter.

Informal Description

Given a context-sensitive grammars, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) in the Kuroda normal form, the al-
gorithm makes a decision of whether an input string, 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 where 𝑎𝑖 ∈ 𝑇 for
some 1 ≤ 𝑖 ≤ 𝑛, is generated by the language 𝐿(𝐺) in a bottom-up way. It uses a matrix
of nonterminal sets, 𝐶𝑌𝐾[𝑖, 𝑗] for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. For each reduced nonterminal,
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Algorithm 2 CYK Algorithm Adapted for Context-Sensitive Grammars
Input a context-sensitive grammar, 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), in the Kuroda normal form

𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 with 𝑎𝑖 ∈ 𝑇 , 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1
Output ACCEPT if 𝑤 ∈ 𝐿(𝐺)

REJECT if 𝑤 /∈ 𝐿(𝐺)

1: introduce sets 𝐶𝑌𝐾[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 ◁ global working matrix
2: introduce sets 𝐶𝑌𝐾 ′[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 ◁ global alternative matrix
3: introduce set 𝑉 = ∅ ◁ global set of matrix versions
4: function CYKCS(𝑤)
5: for 𝑖 = 1 to 𝑛 do
6: if 𝐴 −→ 𝑎𝑖 ∈ 𝑃 for some 𝐴 ∈ 𝑁 then
7: add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑖] ◁ matrix initialisation
8: introduce set 𝑅𝐴 = ∅ ◁ set of nonterminals reduced from 𝐴

9: add 𝐶𝑌𝐾 to 𝑉
10: repeat
11: flag a member of the 𝑉 set as the working 𝐶𝑌𝐾 matrix
12: for 𝑙𝑒𝑣𝑒𝑙 = 1 to 𝑛− 1 do
13: for 𝑖 = 1 to 𝑛− 𝑙𝑒𝑣𝑒𝑙 do
14: let 𝑘 = 𝑖 + 𝑙𝑒𝑣𝑒𝑙
15: for offset = 0 to 𝑙𝑒𝑣𝑒𝑙 − 1 do
16: let 𝑗 = 𝑖 + offset
17: Reduce(𝑖, 𝑗, 𝑘)
18: 𝐶𝑌𝐾 ′[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 ◁ reset the alternative matrix
19: if 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛] then
20: ACCEPT
21: remove the working 𝐶𝑌𝐾 matrix from 𝑉
22: until 𝑉 = ∅
23: REJECT

𝐴, there exists an ancestor set, 𝑅𝐴, holding the nonterminals 𝐴 has been reduced from;
the contents of this set can be used to recursively track the nonterminal’s ancestry tree.

The algorithm starts by scanning the input terminals, 𝑎𝑖 for some 1 ≤ 𝑖 ≤ 𝑛, and adding
a nonterminal, 𝐴 to a set on the main matrix diagonal, 𝐶𝑌𝐾[𝑖, 𝑖] for every 𝐴 −→ 𝑎𝑖 ∈ 𝑃 .
Afterwards, the algorithm iterates through the matrix to try to reduce the rest of the sets.
For every combination of nonterminals representing neighbouring substrings, 𝐶 ∈ 𝐶𝑌𝐾[𝑖, 𝑗]
and 𝐷 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘], it is checked whether the nonterminals can be reduced using
a context-free rule. If so, the resulting nonterminal, 𝐴, is added to the 𝐶𝑌𝐾[𝑖, 𝑘] set
for any 𝐴 −→ 𝐶𝐷 ∈ 𝑃 . For every such nonterminal, 𝐴, a reduced-from set, 𝑅𝐴 =
{𝐶,𝐷} ∪ 𝑅𝐶 ∪ 𝑅𝐷, is constructed. Subsequently, the same test is executed for context-
sensitive productions, and the new nonterminals are added to the respective parent sets –
𝐶𝑌𝐾[𝑖, 𝑗] and 𝐶𝑌𝐾[𝑗 + 1, 𝑘]. In this case, the pair symbol, 𝐵, is added to the 𝑅𝐴 set for
any 𝐴𝐵 −→ 𝐶𝐷 ∈ 𝑃 as well.

However, a problem arises if only one nonterminal of a context-sensitive pair is used
in the final simulation of the parse tree; such state would never come into existence normally,
and continuing the parsing process based on it may lead to false acceptance of the input
string. To prevent this from happening, a version control system is introduced.
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Each time a context-sensitive rule is reduced, its left-hand side nonterminals are saved
to an alternate matrix, 𝐶𝑌𝐾 ′, holding a copy of the current parse. In this matrix, all
of the symbols’ ancestors are deleted using the 𝑅𝐴 sets, and as a result, both symbols
of the pair have to be used to finish the parsing successfully; this behaviour is demonstrated
in Algorithm 3. After all context-sensitive nonterminals have been reduced for a pair
of elements, the 𝐶𝑌𝐾 ′ matrix is added to the set holding alternate matrices, 𝑉 .

Algorithm 3 Nonterminal Reduction Used in the CYKCS function
Input matrix coordinates of the examined sets, 𝑖, 𝑗, 𝑘

1: procedure Reduce(𝑖, 𝑗, 𝑘)
2: if 𝐶 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐷 ∈ 𝐶𝑌𝐾[𝑗+1, 𝑘], 𝑟ℎ𝑠(𝑝) = 𝐶𝐷 for some 𝐶,𝐷 ∈ 𝑁 , 𝑝 ∈ 𝑃 then
3: if 𝐴 −→ 𝐶𝐷 ∈ 𝑃 for some 𝐴 ∈ 𝑁 then
4: add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑘]
5: introduce set 𝑅𝐴 = {𝐶,𝐷} ∪𝑅𝐶 ∪𝑅𝐷

6: if 𝐴𝐵 −→ 𝐶𝐷 ∈ 𝑃 for some 𝐴,𝐵 ∈ 𝑁 then
7: if ∃𝑋 ∈ 𝑅𝐶∪𝑅𝐷 and 𝑋 ∈ 𝐶𝑌𝐾 ′[𝑖′, 𝑗′] such that 𝑋 is context-sensitive then
8: continue
9: if 𝐶𝑌𝐾 ′[𝑖′, 𝑗′] = ∅ for all 1 ≤ 𝑖′ ≤ 𝑗′ ≤ 𝑛 then

10: let 𝐶𝑌𝐾 ′[𝑖′, 𝑗′] = 𝐶𝑌𝐾[𝑖′, 𝑗′]

11: for 𝐴 in 𝑅𝐶 ∪𝑅𝐷 do
12: remove 𝐴 from the corresponding CYK’ set
13: add 𝐴 to 𝐶𝑌𝐾 ′[𝑖, 𝑗]
14: add 𝐵 to 𝐶𝑌𝐾 ′[𝑗 + 1, 𝑘]
15: introduce set 𝑅𝐴 = 𝑅𝐶 ∪𝑅𝐷 ∪𝐵
16: introduce set 𝑅𝐵 = 𝑅𝐶 ∪𝑅𝐷 ∪𝐴

17: if 𝐶𝑌𝐾 ′[𝑖′, 𝑗′] ̸= ∅ for some 1 ≤ 𝑖′ ≤ 𝑗′ ≤ 𝑛 then
18: unset 𝐶𝑌𝐾 ′[𝑖′, 𝑗′] as context-sensitive
19: add 𝐶𝑌𝐾 ′ to 𝑉 ◁ context-sensitive production used

As opposed to the original algorithm, parsing does not end once a matrix fails – it is
repeated as long as the version set, 𝑉 , contains any viable matrices. However, once the set
is empty, the input string is rejected.

The behaviour of the extension is demonstrated in Figure 5.1. Pictures 1–3 show appli-
cation of a context-sensitive rule on the substrings 𝐶𝑌𝐾[2, 3] and 𝐶𝑌𝐾[4, 6], which sub-
sequently leads to the acceptance of the string. The last picture shows an example of false
acceptance caused by the use of an incomplete context-sensitive pair; this behaviour is
prevented by the introduced version control system.

Time and Space Complexity

The initialisation phase of the algorithm iterates through the width of the matrix once,
taking 𝑂(𝑛) time. In the worst case scenario, the algorithm generates a matrix for every
production rule, 𝑝 ∈ 𝑃 , and subsequently scans it. During each of these scans, the three
nested cycles are executing, bringing the time complexity of the block to 𝑂(|𝑃 | ·𝑛3). Thus,
the total time complexity is equal to:

𝑂(𝑡) = 𝑛 + |𝑃 | · 𝑛3, (5.1)
𝑂(𝑡) = |𝑃 | · 𝑛3. (5.2)
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Figure 5.1: Extension of the CYK algorithm for context-sensitive grammars. The first three
pictures show the progression of the algorithm with use of a context-sensitive production,
whereas the last picture demonstrates the need for control mechanisms.

In the instance described in previous paragraph, the algorithm generates |𝑃 | distinct
matrices. In case the input grammar is written in a way that allows all nonterminals to be
reduced in every matrix element, the space complexity of a single matrix reaches 𝑂(|𝑁 |·𝑛3).
Overall, the space complexity of the algorithm reaches:

𝑂(𝑠) = |𝑃 | · |𝑁 | · 𝑛2. (5.3)

5.2 Extension for Multigenerative Grammar Systems
A multigenerative system consists of a sequence of context-free grammars that are rewritten
in parallel. Because of this, the extension works with grammars in the Chomsky normal
form. The extension works with canonical nonterminal-synchronised systems, as per Defini-
tion 2.6.1. The generative power of all mentioned grammar systems is equal [11], and thus,
this type was chosen because of the convenience the canonical systems offer. Consider-
ing a multigenerative system consists of a sequence of context-free grammars, the parsing
core remains unchanged. However, synchronisation between individual grammars requires
implementation of auxiliary mechanisms, as discussed later in the section.

Informal Description

Given an 𝑛-generative nonterminal synchronised system, Γ = (𝐺1, 𝐺2, . . . , 𝐺𝑛, 𝑄) with
𝐺𝑚 in the Chomsky normal form for some 1 ≤ 𝑚 ≤ 𝑛, the algorithm makes a decision
of whether a sequence of input strings, 𝑤1, 𝑤2, . . . 𝑤𝑛 are generated by 𝐿(Γ), such that
𝑤𝑚 = 𝑎1𝑚𝑎2𝑚 . . . 𝑎|𝑤𝑚𝑚 and 𝐿(Γ) is not in an editing mode. The algorithm uses a sequence
of matrices, 𝐶𝑌𝐾𝑚 and 𝐶𝑌𝐾 ′

𝑚, each of which is composed of nonterminal sets, 𝐶𝑌𝐾𝑚[𝑖, 𝑗]
and 𝐶𝑌𝐾 ′[𝑖, 𝑗] respectively, for some 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤𝑚|.

The 𝐶𝑌𝐾𝑚 matrices are used to store permanent nonterminals – because of the semi-
parallel nature of the CYK algorithm, reduction are not made in a strict order. However,
canonical systems make use of comparison between leftmost nonterminals and control se-
quences. To accommodate this, a sequence of future matrices, 𝐶𝑌𝐾 ′

𝑚 is introduced. These
matrices are used to store the reduced nonterminals, which are filtered and moved back
to 𝐶𝑌𝐾𝑚 after each iteration.

The algorithm starts its work by scanning the input strings, 𝑤𝑚 for some 1 ≤ 𝑚 ≤ 𝑛,
and adding a nonterminal, 𝐴, to its respective 𝐶𝑌𝐾 ′

𝑚[𝑖, 𝑖] set for any 𝐴 −→ 𝑎𝑚𝑖 ∈ 𝑃𝑚.
The matrices are then filtered to contain only left-most nonterminals, and their correspon-
dence to control sequences is checked; remaining nonterminals are then moved to their
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respective 𝐶𝑌𝐾𝑚[𝑖, 𝑖] elements. In this step, it is not needed to synchronise the number
of reduced elements individually, as at most one nonterminal is reduced during each step.

Afterwards, the individual matrices are scanned and reduced in parallel. For every
combination of neighbouring nonterminals, 𝐵 ∈ 𝐶𝑌𝐾𝑚[𝑖, 𝑗] and 𝐶 ∈ 𝐶𝑌𝐾𝑚[𝑗 + 1, 𝑘],
a nonterminal 𝐴 is added to 𝐶𝑌𝐾𝑚[𝑖, 𝑘] for any 𝐴 −→ 𝐵𝐶 ∈ 𝑃𝑚.

Once no changes can be made in any of the matrices, the leftmost coordinate of the re-
duced substrings is found for every matrix; subsequently, nonterminals representing sub-
strings located further to the right are erased from their respective 𝐶𝑌𝐾 ′

𝑚 matrices. Af-
terwards, the remaining nonterminals are compared to the nonterminal control sequences,
𝑞 ∈ 𝑄, and any nonterminal that is not a part of a completed control sequence, 𝑞, is erased.
Finally, to maintain the synchronicity of the grammar system, the same number of non-
terminals needs to be reduced in every matrix. The individual sets, 𝐶𝑌𝐾 ′

𝑚[𝑖, 𝑗], represent
reduction options for their respective substrings; as such, only one member of each set may
be used in the final simulation of the parse trees. Because of this, the algorithm obtains
a global minimum of non-empty elements of 𝐶𝑌𝐾 ′

𝑚 – as opposed to the number of non-
terminals – and the elements exceeding this number are reset. Afterwards, the remaining
nonterminals are moved to their respective 𝐶𝑌𝐾𝑚 matrices, and the parsing process con-
tinues. The series of inspections can be seen in Algorithm 4.

The parsing ends once no matrix can be edited, and by extension, all 𝐶𝑌𝐾 ′
𝑚 matrices

are empty. In case a matrix gets completed earlier than the rest of the system, no control
sequences are matched, and all matrices are erased, resulting in a total halt. Finally,
the sequence of input string is accepted if 𝑆𝑚 ∈ 𝐶𝑌𝐾𝑚[1, |𝑤𝑚|], otherwise it is rejected.
The graphical representation of this extension can be seen in Figure 5.2.

Figure 5.2: Extension of the CYK algorithm for multigenerative grammar systems. The ex-
tension uses an extra set of matrices to keep track of new nonterminals; the nonterminals
are gradually moved to the main matrix, where the sequence of strings is accepted.
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Algorithm 4 CYK Algorithm Adapted for 𝑛-Generative Nonterminal-Synchronised Gram-
mar Systems
Input an 𝑛-generative nonterminal-synchronised system, Γ = (𝐺1, 𝐺2, . . . , 𝐺𝑛, 𝑄), with

𝐺𝑚 = (𝑁𝑚, 𝑇𝑚, 𝑃𝑚, 𝑆𝑚) for some 1 ≤ 𝑚 ≤ 𝑛 in the Chomsky normal form,
𝑤𝑚 = 𝑎𝑚1𝑎𝑚2 . . . 𝑎𝑚𝑥, with 𝑎𝑚𝑖 ∈ 𝑇𝑖, 1 ≤ 𝑖𝑚 ≤ 𝑥𝑚, for some 1 ≤ 𝑚 ≤ 𝑛, 𝑥 ≥ 1

Output ACCEPT if (𝑤1, 𝑤2, . . . 𝑤𝑚) ∈ 𝐿(Γ)
REJECT if (𝑤1, 𝑤2, . . . 𝑤𝑚) /∈ 𝐿(Γ)

1: introduce sets 𝐶𝑌𝐾𝑚[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖𝑚 ≤ 𝑗𝑚 ≤ 𝑥𝑚
2: introduce sets 𝐶𝑌𝐾 ′

𝑚[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖𝑚 ≤ 𝑗𝑚 ≤ 𝑥𝑚
3: function CYKNGS(𝑤1, 𝑤2, . . . , 𝑤𝑚)
4: repeat
5: for 𝑚 = 1 to 𝑛 do in parallel
6: for 𝑖 = 1 to 𝑥𝑚 do
7: if 𝐴 −→ 𝑎𝑚𝑖 ∈ 𝑃𝑚 for some 𝐴 ∈ 𝑁𝑚 then
8: add 𝐴 to 𝐶𝑌𝐾𝑚[𝑖, 𝑖] ◁ matrix initialisation
9: if ∃𝑖′′ : 𝑖′′ < 𝑖′ ∧ 𝐶𝑌𝐾 ′[𝑖′′, 𝑖′′] ̸= ∅ for some 1 ≤ 𝑖′′ ≤ 𝑥𝑚 then

10: let 𝐶𝑌𝐾 ′
𝑚[𝑖′, 𝑖′] = ∅

11: if @𝑞 = (𝐴1, 𝐴2, . . . 𝐴𝑚) ∈ 𝑄 such that 𝐴𝑖 ∈ 𝐶𝑌𝐾 ′
𝑚[𝑖′, 𝑖′] then

12: remove 𝐴𝑖 from 𝐶𝑌𝐾 ′
𝑚[𝑖′, 𝑗′]

13: until no change
14: repeat
15: for 𝑚 = 1 to 𝑛 do in parallel
16: for 𝑙𝑒𝑣𝑒𝑙 = 1 to 𝑥𝑚 − 1 do
17: for 𝑖 = 1 to 𝑥𝑚 − 𝑙𝑒𝑣𝑒𝑙 do
18: for 𝑗 = 𝑖 to 𝑖 + 𝑙𝑒𝑣𝑒𝑙 do
19: let 𝑘 = 𝑖 + 𝑙𝑒𝑣𝑒𝑙
20: if 𝐵 ∈ 𝐶𝑌𝐾𝑚[𝑖, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾𝑚[𝑗 + 1, 𝑘], 𝐴 −→ 𝐵𝐶 ∈ 𝑃𝑚 then
21: add 𝐴 to 𝐶𝑌𝐾 ′

𝑚[𝑖, 𝑘]

22: for 𝑚 = 1 to 𝑛 do in parallel
23: if ∃𝑖′′ : 𝑖′′ < 𝑖′ ∧ 𝐶𝑌𝐾 ′

𝑚[𝑖′′, 𝑗′′] ̸= ∅ for some 1 ≤ 𝑖′′ ≤ 𝑗′′ ≤ 𝑥𝑚 then
24: let 𝐶𝑌𝐾 ′

𝑚[𝑖′, 𝑗′] = ∅ for all 𝑖′ ≤ 𝑗′ ≤ 𝑥𝑚

25: if @𝑞 = (𝐴1, 𝐴2, . . . 𝐴𝑚) ∈ 𝑄 such that 𝐴𝑖 ∈ 𝐶𝑌𝐾 ′
𝑚[𝑖′, 𝑗′] for some 1 ≤ 𝑖′

≤ 𝑗′ ≤ 𝑥𝑚 then remove 𝐴𝑖 from 𝐶𝑌𝐾 ′
𝑚[𝑖′, 𝑗′]

26: let 𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑔𝑙𝑜𝑏𝑎𝑙({𝑥 : 𝐶𝑌𝐾𝑚[𝑖′′, 𝑗′′] ̸= ∅ for some 1 ≤ 𝑖′′ ≤ 𝑗′′ ≤ 𝑥𝑚}#)
27: let 𝑚𝑖𝑛𝑙𝑜𝑐𝑎𝑙 = {𝑥 : 𝐶𝑌𝐾𝑚[𝑖′′, 𝑗′′] ̸= ∅ for some 1 ≤ 𝑖′′ ≤ 𝑗′′ ≤ 𝑥𝑚}#
28: if 𝑚𝑖𝑛𝑙𝑜𝑐𝑎𝑙 > 𝑚𝑖𝑛 then
29: for 𝑖𝑡𝑒𝑟 = 1 to 𝑚𝑖𝑛𝑙𝑜𝑐𝑎𝑙 −𝑚𝑖𝑛 do
30: let 𝐶𝑌𝐾 ′[𝑖′, 𝑗′] = ∅ for some 1 ≤ 𝑖′ ≤ 𝑗′ : @𝑗′′ > 𝑗′ : 𝐶𝑌𝐾 ′[𝑖′, 𝑗′′] ̸= ∅
31: let 𝐶𝑌𝐾𝑚[𝑖, 𝑗] = 𝐶𝑌𝐾 ′

𝑚[𝑖, 𝑗] for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑥𝑚
32: let 𝐶𝑌𝐾 ′

𝑚[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑥𝑚

33: until no change
34: if 𝑆𝑚 ∈ 𝐶𝑌𝐾𝑚[1, 𝑥𝑚] for any 1 ≤ 𝑚 ≤ 𝑛 then
35: ACCEPT
36: REJECT
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Time and Space Complexity

An 𝑛-generative system consists of 𝑛 distinct context-free grammars used to rewrite 𝑛
input strings, 𝑥𝑖 for some 1 ≤ 𝑖 ≤ 𝑛. For each of these grammars, a matrix is initiated,
and the three nested cycles are executed. Subsequently, each of the matrices is scanned
again to erase non-leftmost symbols, nonterminals not conforming to a control sequence,
and excess elements, bringing the time complexity of the block to 𝑂(3|𝑥𝑖|). Overall, the time
complexity of the algorithm equals:

𝑂(𝑡) = 𝑛 · (𝑖 + 𝑖3 + 3𝑖) (5.4)
= 𝑛 · (4𝑖 + 𝑖3), (5.5)

𝑂(𝑡) = 𝑛 · 𝑖3. (5.6)

In the worst case scenario, the algorithm reduces every possible nonterminal during each
iteration. For an 𝑛-generative system, Γ = (𝐺1, 𝐺2, . . . 𝐺𝑛) such that 𝐺𝑖 = (𝑁𝑖, 𝑇𝑖, 𝑃𝑖, 𝑆𝑖)
for some 1 ≤ 𝑖 ≤ 𝑛, this means the creation of approximately 𝑖2 ·𝑁𝑖 new symbols. The total
space complexity of the algorithm therefore reaches:

𝑂(𝑠) = 𝑛 · 𝑖2 · |𝑁𝑖|. (5.7)

5.3 Extension for Scattered Context Grammars
The extension for scattered context grammars works with grammars in the 2-limited normal
form, as per Definition 2.8.5. Compared to the Chomsky normal form, the 2-limited form
allows application of up to two context-free productions in the string. Moreover, the right-
hand sides of these productions do not have to be composed of a single symbol type.

The main challenge of adapting the Cocke-Younger-Kasami algorithm to scattered con-
text grammars lies in the fact that the members of the scattered pair do not need to be
located next to each other. This introduces two problems – first, the respective right-hand
side strings are reduced individually, and second, most reductions are context-sensitive,
making the previous strategies not viable. The core of the extension can be seen in Algo-
rithm 5.

Informal Description

Given a context-sensitive grammar, 𝐺 = (𝑉,Σ, 𝑆, 𝑃 ) in the 2-limited normal form, the al-
gorithm makes a decision of whether an input string, 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 where 𝑎𝑖 ∈ Σ for
some 1 ≤ 𝑖 ≤ 𝑛, belongs to the language generated by 𝐺, 𝐿(𝐺). The algorithm uses
a matrix of nonterminal sets, 𝐶𝑌𝐾[𝑖, 𝑗] for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, as well as sets of partial
productions, 𝑃𝐿 and 𝑃𝑅. These sets are populated before the parsing begins; for every
(𝐴,𝐵) −→ (𝑤1, 𝑤2) ∈ 𝑃 , it adds the production 𝐴 −→ 𝑤1 to 𝑃𝐿 and 𝐵 −→ 𝑤2 to 𝑃𝑅.
Moreover, for every reduced nonterminal, 𝐴, there exists an ancestor set, 𝑅𝐴, holding
the nonterminals 𝐴 was reduced from. If the nonterminal, 𝐴, was reduced using a scattered
production, a pair nonterminal, 𝑆𝐴 is defined as well.

At the beginning of the parsing process, the input tokens, 𝑎𝑖, for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
are scanned. For any 𝐴 −→ 𝑎𝑖 ∈ 𝑃𝐿, the right partial scan is triggered. Whenever an 𝑎𝑗
is found such that 𝐵 −→ 𝑎𝑗 ∈ 𝑃𝑅 and (𝐴,𝐵) −→ (𝑎𝑖, 𝑎𝑗) ∈ 𝑃 , the nonterminals 𝐴 such that
𝑆𝐴 = 𝐵 and 𝐵 such that 𝑆𝐵 = 𝐴 are added to sets 𝐶𝑌𝐾[𝑖, 𝑖] and 𝐶𝑌𝐾[𝑗, 𝑗] respectively.
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Afterwards, the matrix is scanned in a linear way. For every symbol, 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗]
such that 𝐴 −→ 𝐵 ∈ 𝑃𝐿 or a pair of neighbouring symbols 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗] and 𝐶 ∈
𝐶𝑌𝐾[𝑗 + 1, 𝑘] such that 𝐴 −→ 𝐵 ∈ 𝑃 or 𝐴 −→ 𝐵𝐶 ∈ 𝑃𝐿, an analogous search for right
partial derivation is triggered, as seen in Algorithm 6. For every matched partial rule, 𝐵 −→
𝑤𝐵 ∈ 𝑃𝑅 such that (𝐴,𝐵) −→ (𝐵,𝑤) ∈ 𝑃 or (𝐴,𝐵) −→ (𝐵𝐶,𝑤) ∈ 𝑃 , these partial context
free productions are applied at their respective positions in the matrix, e.g. 𝐴 is added
to 𝐶𝑌𝐾[𝑖, 𝑗] or 𝐶𝑌𝐾[𝑖, 𝑘], depending on the length of the handle; the coordinates of 𝐵 are

Algorithm 5 CYK Algorithm Adapted for Scattered Context Grammars
Input a 2-limited propagating scattered context grammar, 𝐺 = (𝑉,Σ, 𝑆, 𝑃 )

𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 with 𝑎𝑖 ∈ 𝑇 , 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1
Output ACCEPT if 𝑤 ∈ 𝐿(𝐺)

REJECT if 𝑤 /∈ 𝐿(𝐺)

1: introduce sets 𝑃𝐿 = ∅, 𝑃𝑅 = ∅ ◁ global set of partial productions
2: introduce sets 𝐶𝑌𝐾[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 ◁ global working matrix
3: function CYKSC(𝑤)
4: if (𝐴,𝐵) −→ (𝑥𝐴, 𝑥𝐵) for some 𝐴,𝐵 ∈ 𝑉 ∖ Σ, and 𝑥𝐴, 𝑥𝐵 ∈ 𝑉 * then
5: add 𝐴 −→ 𝑥𝐴 to 𝑃𝐿

6: add 𝐵 −→ 𝑥𝐵 to 𝑃𝑅

7: for 𝑖 = 1 to 𝑛− 1 do ◁ matrix initialization
8: if 𝐴 −→ 𝑥𝑖 ∈ 𝑃𝐿 for some 𝐴 ∈ 𝑉 ∖ Σ then
9: for 𝑗 = 𝑖 + 1 to 𝑛 do

10: if 𝐵 −→ 𝑥𝑗 ∈ 𝑃𝑅 and (𝐴,𝐵) −→ (𝑥𝑖, 𝑥𝑗) ∈ 𝑃 for some 𝐵 ∈ 𝑉 ∖ Σ then
11: add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑖]
12: add 𝐵 to 𝐶𝑌𝐾[𝑗, 𝑗]
13: introduce sets 𝑅𝐴 = ∅, 𝑅𝐵 = ∅
14: let 𝑆𝐴 = 𝐵, 𝑆𝐵 = 𝐴

15: repeat
16: for 𝑙𝑒𝑣𝑒𝑙 = 1 to 𝑛− 1 do
17: for 𝑖 = 1 to 𝑛− 𝑙𝑒𝑣𝑒𝑙 do
18: let 𝑘 = 𝑖 + 𝑙𝑒𝑣𝑒𝑙
19: for offset = 0 to 𝑙𝑒𝑣𝑒𝑙 − 1 do
20: let 𝑗 = 𝑖 + offset
21: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐴 −→ 𝐵 ∈ 𝑃𝐿 then
22: GetScatteredPair(𝑖, 𝑗, 𝑗) ◁ call for the nonterminal
23: if 𝑗 < 𝑛− 𝑙𝑒𝑣𝑒𝑙 then ◁ enough remaining tokens
24: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘], 𝐴 −→ 𝐵𝐶 ∈ 𝑃𝐿 then
25: GetScatteredPair(𝑖, 𝑗, 𝑘)
26: if 𝐵 ∈ 𝐶𝑌𝐾[1, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑛], 𝑆 −→ 𝐵𝐶 ∈ 𝑃 then
27: add 𝑆 to 𝐶𝑌𝐾[1, 𝑛]
28: introduce set 𝑅𝑆 = 𝑅𝐵 ∪𝑅𝐶 ∪ {𝐵,𝐶}
29: until no change
30: CleanAncestry( )
31: if 𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛] then
32: ACCEPT
33: REJECT
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Figure 5.3: Extension of the CYK algorithm for scattered context grammars. The non-
terminal pairs reduced at the same time are colour-matched. Subsequently, they are used
to reduce the start symbol located in the upper right-hand corner.

decided in the same way. For each of these nonterminals ancestor sets are created to allow
ancestry backtracking during the last phase of the parsing. The algorithm does no checks
to assure the matrix consistency at the time of the reductions – most of the productions
used are context-sensitive, and therefore, a control mechanism executed during reduction
would increase the time complexity exponentially.

Once no more changes can be made to the matrix, the ancestry of all start symbols,
𝑆 ∈ 𝐶𝑌𝐾[1, 𝑛] is validated, as seen in Algorithm 8. During this scan, the 𝑅𝑆 sets are
recursively searched to reconstruct the parse tree. If a paired symbol, 𝑆𝐴, is not found for
some 𝐴 ∈ 𝑅𝑆 , or there exists a substring of the input string, 𝑤, that was not reduced during
the process, the symbol is erased. For this purpose, symbols with different predecessor
sets, 𝑅𝑆 , are considered distinct. Finally, if the 𝐶𝑌𝐾[1, 𝑛] set still contains an instance
of the start symbol, 𝑆, the input string, 𝑤, is accepted. Otherwise, it is rejected.

The work of the algorithm, including the application of a scattered-context rule, can
be seen in Figure 5.3. In this example, the substrings 𝑎3 and 𝑎5𝑎6 are reduced first, followed
by the reduction of substrings 𝑎1𝑎2 and 𝑎4. Finally, a context-free rule is applied to complete
the reduction.

Algorithm 6 Coordinates of the Scattered Set Lookup
Input matrix coordinates of the left reduction sets, 𝑖, 𝑗, 𝑘

1: procedure GetScatteredPair(𝑖, 𝑗, 𝑘)
2: for 𝑙𝑒𝑣𝑒𝑙 = 1 to 𝑛− 1 do
3: for 𝑖′ = 𝑖 + 1 to 𝑛− 𝑙𝑒𝑣𝑒𝑙 do
4: let 𝑘′ = 𝑖′ + 𝑙𝑒𝑣𝑒𝑙
5: for offset = 0 to 𝑙𝑒𝑣𝑒𝑙 − 1 do
6: let 𝑗′ = 𝑖′ + offset
7: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖′, 𝑗′], 𝐴 −→ 𝐵 ∈ 𝑃𝑅 then
8: Reduce(𝑠𝑝𝑙𝑖𝑡, 𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑗′) ◁ call for the nonterminal
9: if 𝑗 ≤ 𝑛− 𝑙𝑒𝑣𝑒𝑙 then ◁ not the last set on the diagonal

10: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖′, 𝑗′], 𝐶 ∈ 𝐶𝑌𝐾[𝑗′ + 1, 𝑘′], 𝐴 −→ 𝐵𝐶 ∈ 𝑃𝑅 then
11: Reduce(𝑠𝑝𝑙𝑖𝑡, 𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′)
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Algorithm 7 Nonterminal Reduction Used in the CYKSC procedure
Input coordinates of the left reduction sets, 𝑖, 𝑗, 𝑘

coordinates of the right reduction sets, 𝑖′, 𝑗′, 𝑘′

1: procedure Reduce(, 𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′)
2: introduce sets 𝑃𝑅𝐿 = ∅, 𝑃𝑅𝑅 = ∅ ◁ applicable partial reductions
3: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], (𝑗 = 𝑘, 𝑝 = 𝐴 −→ 𝐵) or (𝐶 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘], 𝑝 = 𝐴 −→ 𝐵𝐶)

for some 𝑝 ∈ 𝑃𝐿 then add 𝑝 to 𝑃𝑅𝐿

4: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖′, 𝑗′], (𝑗′ = 𝑘′, 𝑝 = 𝐴 −→ 𝐵) or (𝐶 ∈ 𝐶𝑌𝐾[𝑗′ + 1, 𝑘′], 𝑝 = 𝐴 −→ 𝐵𝐶)
for some 𝑝 ∈ 𝑃𝑅 then add 𝑝 to 𝑃𝑅𝑅

5: if 𝐴 = 𝑙ℎ𝑠(𝑝𝐿), 𝐵 = 𝑙ℎ𝑠(𝑝𝑅), 𝑙ℎ𝑠(𝑝) = (𝐴,𝐵) for some 𝑝𝐿 ∈ 𝑃𝑅𝐿, 𝑝𝑅 ∈ 𝑃𝑅𝑅,
𝑝 ∈ 𝑃 then

6: add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑘]
7: add 𝐵 to 𝐶𝑌𝐾[𝑖′, 𝑘′]
8: introduce set 𝑅𝐴 = 𝑟ℎ𝑠(𝑝𝐿) ∪ 𝑟ℎ𝑠(𝑝𝑅)
9: introduce set 𝑅𝐵 = 𝑟ℎ𝑠(𝑝𝐿) ∪ 𝑟ℎ𝑠(𝑝𝑅)

10: let 𝑆𝐴 = 𝐵, 𝑆𝐵 = 𝐴

Algorithm 8 Ancestry Cleanup Used in the CYKSC procedure
1: procedure CleanAncestry( )
2: for 𝐴 in 𝐶𝑌𝐾[1, 𝑛] do
3: if 𝐴 ̸= 𝑆 then continue
4: for 𝐴 ∈ 𝑅𝑆 do
5: if @𝐵 ∈ 𝑅𝑆 such that 𝑆𝐴 = 𝐵 then ◁ not all pairs covered
6: remove 𝑆 from 𝐶𝑌𝐾[1, 𝑛]

7: if @𝐴 ∈ 𝑆𝑆 such that 𝐴 −→ 𝑎𝑖 for any 1 ≤ 𝑖 ≤ 𝑛 then ◁ not all tokens covered
8: remove 𝑆 from 𝐶𝑌𝐾[1, 𝑛]

Time and Space Complexity

The algorithm uses three nested cycles to search for left partial reductions. After a reduction
has been detected, the same sequence of cycles is run to find the right partial reduction,
bringing the time complexity of the step to 𝑂(𝑛6). Once the reduction of the matrix is
complete, the ancestry tree needs to be scanned. In case it contains duplicities and a preva-
lence of unary partial derivations, the scan may cover the entire matrix, making the time
complexity 𝑂(𝑛3). Overall, the time complexity of the algorithm reaches:

𝑂(𝑡) = |𝑃 | · (𝑛6 + 𝑛3), (5.8)
𝑂(𝑡) = |𝑃 | · 𝑛6. (5.9)

In the worst case scenario, every element of the matrix is populated by all possible nonter-
minals, as well as the ancestry tree. In this case, the space complexity of each part is equal
to 𝑂(𝑛2 · |𝑁 |), bringing the total space complexity to:

𝑂(𝑠) = 2𝑛2 · |𝑁 |, (5.10)
𝑂(𝑠) = 𝑛2 · |𝑁 |. (5.11)
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5.4 Extension for EP0L Systems
Systems of the EP0L family use a normal form similar to the Chomsky normal form, as per
Definition 3.6.1. Therefore, the only change that needs to be done to the base algorithm
is the addition of the unary rule form, 𝐴 −→ 𝐵. Other than this property, it is necessary
to simulate the base properties of the L-systems – parallelism and synchronised rewriting.

As mentioned in Chapter 3, parallelism cannot be fully simulated by context-free gram-
mars alone, which is solved by the addition of a future matrix, 𝐹𝐶𝑌 𝐾, holding the cur-
rently generated sentential form. Another problem arises from the fact that the Cocke-
Younger-Kasami algorithm generates alternate nonterminals for all matched handles, re-
gardless of their order or overlapping, which proved problematic when dealing with multiple
reductions per sentential form.

Informal Description

Given an EP0L system, 𝐺 = (𝑉,Σ, 𝑃, 𝑆) in normal form per Definition 3.6.1, the algorithm
makes a decision of whether an input string, 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 where 𝑎𝑖 ∈ Σ for some
1 ≤ 𝑖 ≤ 𝑛, belong to the language generated by 𝐺, 𝐿(𝐺). For its work, the algorithm uses
a pair matrix of nonterminal matrices, 𝐶𝑌𝐾[𝑖, 𝑗] and 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,
as well as a set of past matrix states, 𝑉 .

The algorithm starts its work by scanning the input string, and for every 𝑎𝑖 for some
1 ≤ 𝑖 ≤ 𝑛 such that 𝐴 −→ 𝑎𝑖 ∈ 𝑃 , adding the nonterminal, 𝐴, to 𝐶𝑌𝐾[𝑖, 𝑖]. From this
point on, the matrix is only used for reading until the iteration.

Subsequently, the rest of the matrix is scanned. For every 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗] such that
𝐴 −→ 𝐵 ∈ 𝑃 for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, the nonterminal 𝐵 is added to 𝐹𝐶𝑌 𝐾[𝑖, 𝑗]; for every
𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗] and 𝐶 ∈ 𝐶𝑌𝐾[𝑗+1, 𝑘] such that 𝐴 −→ 𝐵𝐶 ∈ 𝑃 , the nonterminal 𝐴 is added
to 𝐹𝐶𝑌 𝐾[𝑖, 𝑘]. Whenever all substring combinations have been inspected for a combination
of substring bounds 𝑖 and 𝑘, the value of the left bound, 𝑖, is adjusted to be located
to the immediate right value of the shortest reduced substring during the step, as seen
in Algorithm 9. Considering the 𝐹𝐶𝑌 𝐾 matrix contains an entire sentential form, this
mechanism is required to avoid reduction overlapping, and by an extension, false acceptance
of the input string, 𝑤.

At the end of each iteration, the future matrix, 𝐹𝐶𝑌 𝐾, is tested for presence of the start
symbol, 𝑆. If it is found, the string is accepted. Otherwise, the contents of the 𝐶𝑌𝐾 matrix
are replaced by the 𝐹𝐶𝑌 𝐾 matrix, which is in turn erased. Because of this mechanism,
if a part of the sentential form is not rewritten, a blank space in the matrix is created,
which ultimately leads to rejection of the input string. Before the swap is executed, how-
ever, the algorithm checks whether the previous version set, 𝑉 , contains a matrix identical
to 𝐹𝐶𝑌 𝐾. If so, the grammar contains a loop, and the string will never be reduced suc-
cessfully. In this case, as well as in the case the 𝐹𝐶𝑌 𝐾 matrix is empty, the input string,
𝑤, is rejected. Otherwise, the 𝐹𝐶𝑌 𝐾 matrix is added to 𝑉 , and the parsing continues until
one of the previous conditions is satisfied.

Progression of the algorithm can be seen in Figure 5.4. The 𝐶𝑌𝐾 matrix uses shades
of orange, the 𝐹𝐶𝑌 𝐾 matrix is blue.

Time and Space Complexity

The potentially most expensive part of this algorithm is the matrix switching – during each
iteration, one of the matrices is reset, whereas the other scanned again. In case only one
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Algorithm 9 CYK Algorithm Adapted for EP0L systems
Input an EP0L system, 𝐺 = (𝑉,Σ, 𝑃, 𝑆), in the normal form per Definition 3.6.1

𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 with 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 𝑛, for some 𝑛 ≥ 1
Output ACCEPT if 𝑤 ∈ 𝐿(𝐺)

REJECT if 𝑤 /∈ 𝐿(𝐺)

1: introduce sets 𝐶𝑌𝐾[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
2: introduce sets 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
3: introduce set 𝑉 = ∅ ◁ past matrices
4: function CYKEP0L(𝑤)
5: for 𝑖 = 1 to 𝑛 do
6: if 𝐴 −→ 𝑎𝑖 ∈ 𝑃 for some 𝐴 ∈ 𝑉 ∖ Σ then
7: add 𝐴 to 𝐶𝑌𝐾[𝑖, 𝑖] ◁ matrix initialisation
8: repeat
9: for 𝑙𝑒𝑣𝑒𝑙 = 0 to 𝑛− 1 do ◁ unary productions

10: for 𝑖 = 1 to 𝑛− 𝑙𝑒𝑣𝑒𝑙 do
11: for 𝑗 = 𝑖 to 𝑛− 𝑙𝑒𝑣𝑒𝑙 do
12: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐴 −→ 𝐵 ∈ 𝑃 for some 𝐴,𝐵 ∈ 𝑉 ∖ Σ then
13: add 𝐴 to 𝐹𝐶𝑌 𝐾[𝑖, 𝑗]

14: for 𝑙𝑒𝑣𝑒𝑙 = 1 to 𝑛− 1 do ◁ distance from the main diagonal
15: let 𝑖0 = 1
16: for 𝑖 = 𝑖0 to 𝑛− 𝑙𝑒𝑣𝑒𝑙 do ◁ starting position of the first substring
17: let 𝑖0 = ∞ ◁ reset the value
18: for 𝑗 = 𝑖 to 𝑖 + 𝑙𝑒𝑣𝑒𝑙 do
19: let 𝑘 = 𝑖 + 𝑙𝑒𝑣𝑒𝑙
20: let 𝑢𝑛𝑎𝑟𝑦 = (𝐹𝐶𝑌 𝐾[𝑖, 𝑗] ̸= ∅) ◁ substring offset indicator
21: if 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗], 𝐶 ∈ 𝐶𝑌𝐾[𝑗+1, 𝑘], 𝐴 −→ 𝐵𝐶 ∈ 𝑃 for some 𝐴,𝐵,𝐶

∈ 𝑉 ∖ Σ then
22: add 𝐴 to 𝐹𝐶𝑌 𝐾[𝑖, 𝑘]

23: if 𝑢𝑛𝑎𝑟𝑦 then 𝑖0 = 𝑚𝑖𝑛(𝑖0, 𝑗 + 1) ◁ skip only the first substring
24: else 𝑖0 = 𝑚𝑖𝑛(𝑖0, 𝑘 + 1) ◁ skip the whole reduced substring
25: if 𝑆 ∈ 𝐹𝐶𝑌 𝐾[1, 𝑛] then ◁ axiom reduction test
26: ACCEPT
27: if 𝐹𝐶𝑌 𝐾 ∈ 𝑉 then
28: REJECT
29: add 𝐹𝐶𝑌 𝐾 to 𝑉
30: let 𝐶𝑌𝐾[𝑖, 𝑗] = 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 ◁ matrix swap
31: let 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] = ∅ for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
32: until 𝐶𝑌𝐾[𝑖, 𝑗] = ∅ for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
33: REJECT

production rule is applied during a scan, the matrices can be switched |𝑃 | times in total.
Overall, this brings the algorithm time complexity to:

𝑂(𝑡) = |𝑃 | · 𝑛3. (5.12)

At any given time, the algorithm uses two active matrices – one for reading, and one
for writing; each element in these matrices may contain a total of |𝑁 | nonterminals. More-
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Figure 5.4: Extension of the CYK algorithm for EP0L systems. Orange hues represent
the 𝐶𝑌𝐾 matrix, whereas blue ones represent the 𝐹𝐶𝑌 𝐾 matrix. The input string is
accepted once the start symbol is found in 𝐹𝐶𝑌 𝐾[1, 𝑛].

over, the matrix history set, 𝑉 , may hold a total of |𝑃 | fully used matrices. In total, this
brings the space complexity of the algorithm to:

𝑂(𝑠) = 2𝑛 · |𝑁 | + 𝑛2 · |𝑃 | · |𝑁 | (5.13)
= 𝑛 · |𝑁 | + 𝑛2 · |𝑁 | · |𝑃 | (5.14)
= (𝑛 · |𝑁 |) · (1 + 𝑛 · |𝑃 |), (5.15)

𝑂(𝑠) = 𝑛2 · |𝑁 | · |𝑃 |. (5.16)

5.5 Extension for EPIL Systems
EPIL systems use an extended version of the normal form presented in the previous sec-
tion extended by environment conditions, as per Definition 3.6.2. The extension is based
on the same principle as the one for EPOL systems – it saves the newly reduced nontermi-
nals to the future matrix, 𝐹𝐶𝑌 𝐾, and moves them back to the main matrix, 𝐶𝑌𝐾, at the
end of the iteration. However, EPIL systems require a certain degree of context-sensitivity
unseen in EP0L systems. This is achieved by using ancestor sets, 𝑅𝐴 for some nonterminal
𝐴, as previously introduced in section 5.1.

Informal Description

Given an EPIL system, 𝐺 = (𝑉,Σ, 𝑃, 𝑔, 𝑆) in a normal form per Definition 3.6.2, the algo-
rithm makes a decision of whether an input string, 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 where 𝑎𝑖 ∈ Σ for some
1 ≤ 𝑖 ≤ 𝑛 is generated by 𝐿(𝐺). For its work, it uses a pair of matrices, 𝐶𝑌𝐾[𝑖, 𝑗]
and 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, used to store present and future variations
of the generated sentential forms respectively, as well as a set of past matrix versions, 𝑉 .

At the start of the parsing process, the 𝐶𝑌𝐾 matrix is initialised by scanning the input
string, and adding a nonterminal, 𝐴, to the respective 𝐶𝑌𝐾[𝑖, 𝑖] set for any 𝐴 −→ 𝑎𝑖 ∈
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𝑃 . As there exists no previous sentential form at this point, the reductions are saved
to the 𝐶𝑌𝐾 matrix immediately. Once the initialisation phase is complete, the 𝐶𝑌𝐾
matrix is used only to detect production handles until the end of each iteration.

Afterwards, the 𝐶𝑌𝐾 matrix is scanned, and for every nonterminal, 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗] for
some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 such that 𝑤1 < 𝐴 > 𝑤3 −→ 𝐵 ∈ 𝑃 , the nonterminal 𝐴 is added
to 𝐹𝐶𝑌 𝐾[𝑖, 𝑗], and set 𝑅𝐴 = {𝐵} ∪ 𝑅𝐵 is introduced. Similarly, for every pair of neigh-
bouring nonterminals, 𝐵 ∈ 𝐶𝑌𝐾[𝑖, 𝑗] and 𝐶 ∈ 𝐶𝑌𝐾[𝑗 + 1, 𝑘] for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛
such that 𝑤1 < 𝐴 > 𝑤3 −→ 𝐵𝐶 ∈ 𝑃 , the nonterminal 𝐴 is added to 𝐹𝐶𝑌 𝐾[𝑖, 𝑘], and set
𝑅𝐴 = {𝐵,𝐶}∪𝑅𝐵∪𝑅𝐶 is introduced. Once all reductions have been made for a pair of sub-
string bounds, 𝑖 and 𝑘, the bounds of the scanned substring are moved to the immediate
right of the shortest reduced substring. No environment checks are executed at this time,
as the environment needed to reduce individual nonterminals may not exist yet because
of the linear character of the matrix scan.

Algorithm 10 Matrix Filtering for EPIL systems
1: procedure MatrixCleanup( )
2: if ∃𝐴 ∈ 𝐹𝐶𝑌 𝐾[𝑖, 𝑘] for some 𝐴 ∈ 𝑉 ∖ Σ, 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛 such that 𝑅𝐴 ̸= ∅ then
3: for 𝑅 in 𝑅𝐴 do
4: let 𝑤1 = 𝑤1 such that 𝑅 was reduced using 𝑤1 < 𝑅 > 𝑤3 −→ 𝑤4 ∈ 𝑃
5: let 𝑤3 = 𝑤3 such that 𝑅 was reduced using 𝑤1 < 𝑅 > 𝑤3 −→ 𝑤4 ∈ 𝑃
6: if !isEnvFound(𝑤1, 𝑖, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒) or !isEnvFound(𝑤3, 𝑘, 𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒) then
7: remove 𝐴 from 𝐹𝐶𝑌 𝐾[𝑖, 𝑘]

8: if ∃𝐴 ∈ 𝐹𝐶𝑌 𝐾[𝑖, 𝑘] for some 𝐴 ∈ 𝑉 ∖ Σ, 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛 such that 𝑅𝐴 ̸= ∅ then
9: let 𝑤1 = 𝑤1 such that 𝐴 was reduced using 𝑤1 < 𝐴 > 𝑤3 −→ 𝑤4 ∈ 𝑃

10: let 𝑤3 = 𝑤3 such that 𝐴 was reduced using 𝑤1 < 𝐴 > 𝑤3 −→ 𝑤4 ∈ 𝑃
11: if !isEnvFound(𝑤1, 𝑖, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) or !isEnvFound(𝑤3, 𝑘, 𝑓𝑎𝑙𝑠𝑒, 𝑓𝑎𝑙𝑠𝑒) then
12: remove 𝐴 from 𝐹𝐶𝑌 𝐾[𝑖, 𝑘]

Once no more changes can be made to the 𝐹𝐶𝑌 𝐾 matrix, the algorithm validates
whether all nonterminals respect the constraints presented by the production rule that
was used to reduce them. The validation consists of two waves, both of which can be seen
in Algorithm 10. First, the algorithm checks that for every reduced nonterminal, the matrix
contains children of it’s ancestors’ environment. This assures that environment remains
consistent thorough the iterations. Second, the nonterminals’ own environment is checked
to assure the environment constraints, 𝑤1 and 𝑤3 for some 𝑤1 < 𝐴 > 𝑤3 −→ 𝑤4 ∈ 𝑃 , are
satisfied. The matched environment symbols must be located next to each other, as seen
in Algorithm 11.

Finally, the 𝐹𝐶𝑌 𝐾 matrix is tested for the presence of the start symbol, 𝑆. If the non-
terminal is found, the string is accepted. Otherwise, it is tested whether the 𝐹𝐶𝑌 𝐾 matrix
is a member of 𝑉 . If so, the grammar contains a loop, and therefore, the string is rejected. If
not, it is added to the set, and its contents are used to replace the 𝐶𝑌𝐾 matrix. In this way,
the algorithm assures that whenever a part of the processed sentential form is not reduced,
a blank space is created in the matrix; subsequently, this leads to rejections of the final
string. Once the 𝐶𝑌𝐾 matrix is updated, the parsing continues analogously until a decision
is made.

The progression of the algorithm can be seen in Figure 5.5. It uses the same base gram-
mar as Figure 5.4, this time, however, the environment checks are employed, and ultimately
lead to the rejection of the input string.
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Algorithm 11 Environment Test Used for EPIL Systems
Input 𝑤 – scanned environment string

𝑝𝑜𝑠0 – starting position to scan
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 – scan modificators

1: function isEnvFound(𝑤, 𝑝𝑜𝑠0, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦)
2: if |𝑤| = 0 then return true
3: let ℎ𝑒𝑎𝑑 = 𝑎1 such that 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑚
4: let 𝑏𝑜𝑑𝑦 = 𝑎2 . . . 𝑎𝑚 such that 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑚
5: if ℎ𝑒𝑎𝑑 = 𝑔 then return true ◁ no more environment requirements
6: if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 then
7: for 𝑗 = 𝑝𝑜𝑠0 − 1 downto 0 do
8: if 𝑗 = 0 then return false
9: for 𝑖 = 𝑗 downto 1 do

10: if 𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 and ∃𝐴 ∈ 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] such that ℎ𝑒𝑎𝑑 ∈ 𝑅𝐴 and isEnv-
Found(𝑏𝑜𝑑𝑦,𝑖, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) then return true

11: else if !𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 and ℎ𝑒𝑎𝑑 ∈ 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] and isEnvFound(𝑏𝑜𝑑𝑦, 𝑖,
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) then return true

12: else
13: for 𝑖 = 𝑝𝑜𝑠0 + 1 to 𝑛 + 1 do
14: if 𝑖 > 𝑛 then return false
15: for 𝑗 = 1 to 𝑛 do
16: if 𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 and ∃𝐴 ∈ 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] such that ℎ𝑒𝑎𝑑 ∈ 𝑅𝐴 and isEnv-

Found(𝑏𝑜𝑑𝑦, 𝑖, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) then return true
17: else if !𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 and ℎ𝑒𝑎𝑑 ∈ 𝐹𝐶𝑌 𝐾[𝑖, 𝑗] and isEnvFound(𝑏𝑜𝑑𝑦, 𝑖,

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) then return true

Figure 5.5: Extension of the CYK algorithm for EPIL systems. Orange hues represent
the 𝐶𝑌𝐾 matrix, whereas blue ones represent the 𝐹𝐶𝑌 𝐾 matrix. In the example, an en-
vironment check fails, causing nonterminals deletion and subsequent string rejection.
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Time and Space Complexity

The core of this algorithm proceeds identically to the algorithm introduced in Section 5.4.
However, after every iteration, the symbols’ environment and their ancestors’ environment
is checked. In worst scenario, that means checking 2|𝑁 | symbols |𝑃 | times. Overall, the time
complexity of the algorithm reaches:

𝑂(𝑡) = |𝑃 | · 𝑛3 · |𝑃 | · 2|𝑁 | (5.17)
= |𝑃 |2 · |𝑁 | · 𝑛3, (5.18)

𝑂(𝑡) = |𝑁 | · |𝑃 |2 · 𝑛3. (5.19)

In terms of spatial requirements, the algorithm needs to save a total of 2𝑛 symbols, as the en-
vironment is never bigger than the matrix itself. As a result, the time complexity of the al-
gorithm is equal to:

𝑂(𝑠) = 𝑛2 · |𝑁 | · |𝑃 | · 2𝑛 (5.20)
= 2𝑛3 · |𝑁 | · |𝑃 |, (5.21)

𝑂(𝑠) = 𝑛3 · |𝑁 | · |𝑃 |. (5.22)
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Chapter 6

Implementation of Working
Prototype

This chapter focuses on the working prototype implementing the algorithm extensions pre-
sented in the previous chapter. The prototype was implemented using the C++ program-
ming language [7] as a console application configurable through command line arguments.
The configuration files are specified using the YAML mark-up language [3].

The first part of this chapter introduces the overall architecture of the application, with
a focus on the roles of the individual modules. These are then discussed in further detail,
and the differences between implementation of support systems required by the individual
grammar and parser types are compared.

Finally, experimental data representing the time and space complexity of the individual
algorithms is presented. The data is then compared to the theoretical values presented
in Chapter 5.

6.1 Program Architecture
The program consists of several major modules responsible for different parts of its work,
ranging from configuration validation, through its parsing and internal representation,
to application of parsing algorithms, as seen in Figure 6.1. The entry point of the program
is presented by the Configurator class, which is responsible for management of the config-
uration file parsing class, DocParser, and subsequent initialisation of the parsing module
based on the user-defined parameters. The module consists of several polymorphic classes,
such as the Grammar and Production classes, managed by an instance of the CykParser
child class. The details of their implementation will be discussed later in the chapter.

6.2 Configuration Parser
As mentioned before, this module represents the entry point to the program’s work, and is
used to initialise the modules used for parsing. It is responsible for validation of configura-
tion files supplied by the user as command line arguments, and their subsequent transfor-
mation into the internal data model. The module is managed by the Configurator class,
which server as an interlink between the DocParser class used to parse the configuration
files and the rest of the program.
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Figure 6.1: General architecture of the prototype. Classes marked by red headers are
polymorphic, and their implementation depends on the grammar type they are used with.

Once the DocParser has finished its work successfully, the Configurator instance
uses a factory method to create a CykParser instance based on the determined gram-
mar type. Finally, it passes the completed Grammar instance and the sequence of input
tokens to the parser object, and returns it to the main program flow.

Grammar Configuration Parsing

After accessibility of the configuration files has been established, a DocParser object at-
tempts to process their contents. The program uses two configuration files – a text file
containing the input string, and a grammar specification file in the YAML 1.2 language [3].
The YAML language was chosen because of the high level of human readability and a high
content-to-syntax ratio it offers. The format of the grammar configuration file can be found
in Appendix C.

First, the grammar file is processed using the yaml-cpp library [2]. It is parsed to deter-
mine the used grammar type, and an instance of the corresponding grammar class is created,
as discussed in Section 6.3. Then, the instance proceeds to validate and save the gram-
mar’s terminals and nonterminals, as well as the start symbol. When scanning the two
symbol sets, their disjunction is continuously checked; the parsing is executed in a way
that allows easy validation of the grammar. Finally, the production rules are processed.
Based on the saved symbol sets, their validation and handling is managed by the previously
created Grammar instance.

In case the program is working with a multigenerative grammar system, this process is
repeated for each of its specified grammars; subsequently, the set of control sequences is
scanned. For each of these sequences, it is checked whether its length is equal to the size
of the system, and whether all used nonterminals are defined in their respective grammars.
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Input String Parsing

After the grammar configuration has been completed, the input string is processed. It is
divided into input tokens based on the delimiter specified in the configuration file. If a multi-
generative grammar system was used, the contents of the file are first separated into a se-
quence of input strings based on the user-defined delimiter; naturally, the global and the to-
ken delimiters must differ. This step concludes the work of the DocParser class. Once it is
done, the results are acquired by the Configurator class.

6.3 Grammar Management Module
This module serves as the internal representation of a formal grammar. As such, it is
responsible for storing all symbols, productions and other properties defined by the gram-
mar, and posing as a mediator for their manipulation. The module works with several
classes representing the individual components of a formal grammar – the Terminal class
representing symbols, the Production class combining defined symbols into production
rules, and finally, the Grammar class, which serves as an intermediary between these classes
and the rest of the program.

Symbol Representation

The symbols used in formal grammars are represented by two classes – Terminal and Non-
terminal, each of which represents the corresponding symbol type. To facilitate use of in-
stances of these classes, the Nonterminal class is inherited from the Terminal class, and it
works with the same set of member variables. Because of this, the two classes can be used
interchangeably.

These classes manage all information related to the symbol their instances represent.
Naturally, they store information about the symbol name and its “derivability” – ability
to be located on the left-hand side of a production. Other than these, the class keeps track
of the activity of a symbol, which represents its ability to be used to reduce any symbols.
This property is used to simulate symbol deletion while preventing it from being reduced
again. Finally, the classes store information about the symbol’s ancestors and its paired
symbol.

Throughout the program, symbols are usually stored in instances of std::unorder-
ed_set, which uses the std::hash function to determine the position of individual in-
stances inside the container. Since the symbol classes are not a part of the std namespace,
the std::hash function was extended to cover these classes; the function ignores the ac-
tivity flag of the instances to simulate permanent deletion of a symbol. By using this it,
the need for an explicit comparison function was prevented.

Production Representation

The production rules of a formal grammar are represented by the Production class and its
derived classes. Based on the corresponding grammar type, there exist several subclasses
with different compositions. Each of these classes stores pointers to the symbols on their
left-hand side and right-hand sides, represented by the lhs and rhs member variables
in their respective order, and offers its own implementation of the corresponding getter
and setter methods. There exist the following production rule classes:
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∙ Production – Context-free production rule usable in multigenerative grammar sys-
tems and EP0L systems. Its lhs member is a pointer to a single nonterminal, whereas
its rhs member contains a std::vector of nonterminal pointers.

∙ SensitiveProduction – Context-sensitive production. It extends the Production
class; its lhs member is shadowed to contain a std::vector of nonterminal pointers.

∙ ScatteredProduction – Production type used in scattered context grammars. It
extends the SensitiveProduction class, and its rhs member is shadowed to contain
a two-dimensional std::vector of symbol pointers.

∙ InteractiveProduction – Production type used in EPIL systems. It is based on the Pro-
duction class, however, with the addition of left and right environment members
and corresponding getter and setter methods.

Validation of production forms is handled by the Grammar subclasses, as the production
often lacks necessary information to make the decision itself, such as the size of the envi-
ronment, or symbol definition and type.

ProductionProduction

SensitiveProductionSensitiveProduction

InteractiveProductionInteractiveProduction

ScatteredProductionScatteredProduction

+appendLhs(symbol: String)
+appendRhs(symbol: String)

+appendLeftEnv(symbol: String): void
+appendRghtEnv(symbol: String): void

+appendRhs(symbol: String[], are_derivable: 
boolean[]): void

Figure 6.2: Inheritance hierarchy of the Production class responsible for production rule
representation.

Grammar Representation

The Grammar class serves as a base class for the classes representing the individual grammar
types the program works with. Because of this, definitions of most of its methods are empty,
and are overridden in each of the derived classes to create a unified interface with the rest
of the program.

Each class is responsible for determining the type of the added rule based on the phase
of its application, as well as validating whether its form respects the normal form used
with its respective grammar type. During the parsing, the class is used to find all possible
reductions based on the contents of the provided nonterminal sets; for each valid combina-
tion of symbols, it creates a structure containing information about the reduced symbols
and the symbols they were reduced from, ReductionInfo, which can be later used to detect
their ancestry. The specifics of the derived classes are discussed below.
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ExtendedGrammar and InteractiveGrammar Classes

The ExtendedGrammar class is based on EP0L systems as presented in Section 5.4. Consid-
ering it is almost identical with context-free grammars, the class is also used to represent
the individual grammars of a multigenerative grammar system. It uses basic context-free
production rules, represented by the Production class. Based on the time of their applica-
tion, the rules are divided into three std::vector members:

∙ terminal_productions – productions applied during the initialisation phase of the ma-
trix; the right-hand side is composed of a single terminal,

∙ unary_productions – applied during the first part of matrix reduction; the right-
hand side is composed of a single nonterminal,

∙ nonterminal_productions – productions used during the final part of matrix reduc-
tion; the right-hand side is composed of two nonterminals.

For each of the presented production types, there exists a separate reduction method –
getTerminalLhs(), getUnaryLhs(), and getBasicLhs() in their respective order.

The InteractiveGrammar class represents the EPIL systems as presented in Section 3.5.
The behaviour of this class extends the ExtendedSystem class, and adapts it to work
with InteractiveProduction class. Otherwise, most of their behaviour is shared, as the en-
vironment requirements in an EPIL system are ignored until the final part of a parsing
iteration.

ContextSensitiveGrammar Class

This class represents context-sensitive grammars as presented in Section 2.4. Considering
the members of an EP0L system are similar to context-free grammars, this class extends
the behaviour offered by the ExtendedGrammar class.

Other than the production types used by the base class, the ContextSensitiveGrammar
class contains the binary_productions member, which is composed of SensitivePro-
duction instances. These productions are used during the final part of reduction checks

GrammarGrammar

ContextSensitiveGrammarContextSensitiveGrammar

MultigenSystemMultigenSystem

ExtendedGrammarExtendedGrammar

InteractiveGrammarInteractiveGrammar

ScatteredContextGrammarScatteredContextGrammar

#left_env_size: int
#right_env_size: int

+addProduction(lhs: String[], rhs: String[]): boolean
+addStartSymbol(symbol: String): boolean
+getStartSymbol(): Nonterminal

-binary_productions: ScatteredProduction[]

+addProduction(lhs: String[], rhs: String[]): boolean

-binary_productions: ScatteredProduction[]

+addProduction(lhs: String[], rhs: String[]): boolean

-nonterminal_productions: InteractiveProduction[]
-unary_productions: InteractiveProduction[]
-terminal_productions: InteractiveProduction[]

+addProduction(lhs: String, rhs: String[], lenv: 
String[], renv: String[]): boolean

-nonterminal_productions: Production[]
-unary_productions: Production[]
-terminal_productions: Production[]

+addProduction(lhs: String, rhs: String[]): boolean

-nonterminal_productions: ScatteredProduction[]
-terminal_productions: ScatteredProduction[]
-starting_productions: Production[]

+addProduction(lhs: String[], rhs: String[]): boolean

Figure 6.3: Inheritance hierarchy of the Grammar class, which is responsible for internal
representation of formal grammars and their management.
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in an iteration by the getBinaryLhs() method. As opposed to the previous methods, this
method generates two separate sets of reduced nonterminals – one for each source set.

MultigenSystem Class

This class represents multigenerative nonterminal-synchronised grammar systems as pre-
sented in Section 2.6. It is composed of a sequence of ExtendedGrammar instances repre-
senting the individual context-free grammars, and a two-dimensional std::vector of non-
terminals representing the control sequences.

During the parser configuration process, the components of the individual grammars
are created separately. To facilitate creation of complete instances stored by the Multi-
genSystem class, methods used to signalize their initialisation and completion have been
introduced by the class – these are the startGrammar() and addGrammar() methods re-
spectively. By using these methods, the need for explicit creation of an ExtendedGrammar
instance inside the configuration parser is also prevented, leading to lower coupling between
the classes.

ScatteredContextGrammar Class

This class represents scattered context grammars as presented in Section 2.7. As opposed
to the previous types, scattered context grammars are semi-parallel, and apply multiple
context-free productions during a single reduction. To simulate this behaviour, the class
uses production form represented by the ScatteredProduction class. Based on the time
of their application, the rules are divided into three std::vector members:

∙ terminal_productions – productions applied during the initialisation phase; the right-
hand side strings are composed exclusively from terminals,

∙ nonterminal_productions – productions applied during the parsing process,

∙ starting_productions – context-free productions used to reduce the start symbol.

For both of the scattered context containers, there exist corresponding partial left-hand
side getters similar to the ones mentioned in the previous classes. These are accompanied
by the existsTerminalRule() and existsNonterminalRule() methods to check the ex-
istence of a complete production rule.

6.4 Matrix Manipulation Module
This module is responsible for representation of the matrices utilised by the Cocke-Youn-
ger-Kasami algorithm. This includes the individual elements of a matrix, the matrices
as a whole, and management of matrix versions. These are represented by the Element,
Matrix and Version classes in their respective order.

Parsing Matrix Representation

The matrices used by the Cocke-Younger-Kasami parsing algorithm are composed of non-
terminal sets represented by the Element class. The class uses an std::unordered_set
to simulate the corresponding element of the 𝐶𝑌𝐾 matrix. It also offers allowing manipu-
lation of the element’s contents and checks required by the parsing algorithms.

52



The Matrix class represents a two-dimensional grid of Element instances simulated
by a one-dimensional std::vector, whose size is equal to the second power of the input
string length. This class is used as an intermediary between the parser classes and the non-
terminal sets, and is used to handle individual elements as well as recursive operations, such
as search and deactivation of the predecessor tree. During the parsing, the Matrix instance
is used for acquisition of nonterminal sets at given two-dimensional coordinates, and sub-
sequently adding the new nonterminals to the corresponding elements. The individual
Element instances do not know their own coordinates; the Matrix class uses a coordinate
mapping function for correct element acquisition.

Version Control System

A major part of the implemented algorithms utilises a matrix version set. This set is
represented by the Version class, which is used to manage instances of the Matrix class.
It works with three fields – the scanned matrix, current, the currently edited alternate
matrix, constructed, and a list of alternate matrices waiting to be scanned. It also offers
functionality for copying matrices, resetting their elements individually, and appointing
a new working matrix.

Appointment of working matrices is achieved by using the setCurrent() method.
The method attempts to appoint the last added alternate version as the new working
matrix, and returns a bool based on its success. The Matrix instance is picked from
the end of the std::vector to assure the lowest possible number of operations is needed
to finish parsing the matrix.

In parsing methods that do not remove unsuccessful matrices, the class also offers func-
tionality to save past matrix states; this can be utilised to determine whether the parsing
process has entered an infinite loop and must therefore be halted. This part of its function-
ality is managed by the addMatrix() and containsVersion() methods respectively.

6.5 Grammar Parsing Core
This module is represented by the CykParser class, and is responsible for implementation
of the algorithms introduced in Chapter 5. The CykParser class serves as an abstract base
class for the classes implementing individual algorithms, and provides a unified interface
between the main program flow, which does not need to know what type of grammar it
is dealing with, and the implementation of the parsing methods. There exist five derived
parser classes, one for each algorithm; each of these classes contains an instance of the corre-
sponding grammar class, and instances of both the Matrix class, represented by the matrix
field, and the Version class, represented by the versions field.

Generally, the parsing process is divided into three separate phases – matrix initiali-
sation, nonterminal reduction, and success checking. These are carried out by the init-
Matrix(), parseMatrix(), and checkSuccess() methods in their respective order. During
the first two phases, the matrix is scanned in the order defined by the individual algorithms,
and reduced nonterminals are acquired using the corresponding left-hand side getter meth-
ods. These are then inserted into their destination Element instances, and if needed, their
ancestry and paired symbol are recorded. Implementation of the last phase differs based
on the grammar type.
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CykParserCykParser

ContextSensitiveParserContextSensitiveParser

MultigenParserMultigenParser

ExtendedSystemParserExtendedSystemParser

InteractiveSystemParserInteractiveSystemParser

ScatteredContextParserScatteredContextParser

-tokens: String[]
-global_tokens: String[]

#checkSuccess(): boolean
+setGrammar(grammar: Grammar): void
+setTokens(tokens: String[]): void
+initMatrix(): void
+parse(): boolean

Figure 6.4: Inheritance hierarchy of the CykParser class, which is responsible for imple-
mentation of the individual parsing algorithms.

ContextSensitiveParser Class

This class implements the parsing algorithm for context-sensitive grammars in the Kuroda
normal form introduced in Section 5.1. It works with an instance of the ContextSensitive-
Grammar class, and uses the Version class for matrix handling.

During the initialisation phase, the program iterates through the tokens list, and at-
tempts to reduce the individual tokens using terminal productions of the bundled gram-
mar. Each of the resulting nonterminals is then inserted into the corresponding element
of the matrix field.

The parsing phase is separated into two parts: first, context-free reductions are made
in a way analogous to the previous phase. Then, the symbols reduced using context-sensitive
rules are acquired. An inactive copy of both nonterminals is added to the scanned matrix,
matrix, to prevent their repeated reduction. In the constructed matrix, the ancestry tree
of both nonterminals is deactivated to assure their use, and active copies of both reduced
nonterminals are saved.

Once the value of the matrix field can no longer be changed, it is checked whether
the start symbol of the grammar can be found in the element representing the upper right-
hand corner of the matrix. If so, the string is accepted. Otherwise, if the version list contains
any Matrix instances, a new one is moved to the matrix field, and parsing continues. If no
more matrices are left, the string is rejected.

MultigenParser Class

This class implements the parsing algorithm for multigenerative grammar systems
in the Chomsky normal form introduced in Section 5.2. It works with an instance of the Mul-
tigenSystem class, as well as a sequence of current matrices, current_matrices, and a se-
quence of working matrices, candidate_matrices. For parallel matrix reduction, it utilises
the std::thread functionality.

During the initialisation phase, the individual tokens of all grammars are scanned and re-
duced, and the resulting nonterminals are inserted into the corresponding Element in-
stances. This phase is executed sequentially, as the resource cost of the thread creation is
quite high compared to the cost of the phase itself.

The parsing phase, however, is executed in parallel – for each of the candidate ma-
trices, a separate std::thread worker is created. After the matrices have been reduced
and filtered to contain only leftmost symbols, the checkControlSequences() method is
called. This method creates a list of sought control nonterminals for each matrix based
on their position in the multigenerative system, and launches a sequence of std::async
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worker threads whose purpose is to delete nonterminals not found in the control sequence.
Once all threads have returned flags indicating local success of individual control sequence
checks, these are combined into a global flag. Again, incomplete sequences are removed.
Finally, a global minimum of non-empty elements is found, and excess elements are reset.
Remaining nonterminals are then moved to their respective main matrices, and parsing
continues.

Once no nonterminals are added at the end of the iteration, the parsing is complete.
The program then checks if all grammars have been reduced into a start symbol located
in the symbolic upper right-hand corner of the matrices. If it is found in all main matrices,
the sequence of input strings is accepted.

ScatteredContextParser Class

This class implements the parsing algorithm for scattered context grammars in the 2-limited
normal form introduced in Section 5.3. It works with an instance of the ScatteredContext-
Grammar class, and is the only algorithm to use a single parsing matrix.

During the initialisation phase, the input tokens are first scanned to find all reductions
made using the left partial terminal rules. First, this is done for unary productions, con-
taining a single terminal on their right-hand side, followed by a scan for binary productions
composed of a pair of neighbouring symbols. For each matched partial rule, an analogous
search for the right partial derivation is triggered using the rest of the input tokens. Once
a right reduction has been found, it is checked whether a complete production composed
of the two partial productions exists. If so, the nonterminals are saved; for each saved non-
terminal, its ancestors and paired symbol are recorded as well. In addition to the reduced
nonterminals, the token itself is added into each matrix element.

The parsing phase works analogously with the initialisation phase, with the addition
of starting productions – for each pair of neighbouring elements, the algorithm attempts
to reduce the start symbol; the symbol has only ancestors, but no paired symbol.

Once the reduction has been completed, the start symbols located in the upper right-
hand corner of the matrix are scanned. For each of these nonterminals, the ancestry tree
is scanned recursively, and the paired symbol of every right ancestor is recorded in a std-
::unordered_set. Subsequently, the same scan is executed for the left ancestors – if they
are not found in the set, or if they are found more than once, the ancestry tree is invalid,
and the symbol is erased. Finally, if the examined element still contains any instances
of the start symbol, the input string is accepted.

ExtendedSystemParser Class

This class implements the parsing algorithm for EP0L systems introduced in Section 5.4.
It works with an instance of the ExtendedSystem class, and adds an additional matrix
– the future_matrix, holding the currently reduced sentential form; it also uses a list
of previous matrices represented by the Version class.

During the initialisation phase, the input tokens are scanned and reduced; the resulting
nonterminals are then inserted into their respective elements. The parsing phase is com-
posed of two parts: first, unary reductions are found for a substrings; this phase is executed
first because in case an unary reduction has been made, the following step of the pars-
ing process must start to the immediate right of the reduced symbol to prevent creation
of empty spaces in the sentential form. Then, the same is done for a pair of neighbouring
substrings using productions whose right-hand side is composed of two nonterminals.
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Finally, once the future_matrix has been completed, it is checked whether it contains
the start symbol in its upper right-hand corner, and therefore, the input string can be
accepted. Subsequently, it is checked whether an identical matrix can be found in the version
list. If so, it means the grammar is repeating, and will never lead to an accepted string.
In this case, the string is rejected. Otherwise, the matrix is added to the version list,
the matrix field is replaced by its value, and the parsing continues.

InteractiveSystemParser Class

This class implements the parsing algorithm for EPIL systems introduced in Section 5.5.
It extends the ExtendedSystemParser class, and therefore, most of the classes’ behaviour
is shared. The InteractiveSystemParser class presents two additions to the behaviour
of the base class.

The first difference is applied during the reduction phase. When saving nonterminals,
the addEnvRequirements() method is called. This method is not implemented in the par-
ent class, however, the InteractiveSystemParser uses it to save the value and relative
positions of the nonterminals checked at the end of the iteration. This data is acquired
from the ReductionInfo structure obtained from the left-hand side getter method.

The other difference is present at the end of the iteration, when the validateCon-
text() is called. Again, the method is implemented only in the derived class. First,
the method iterates through the reduced nonterminals, and finds their parents in the mat-
rix field representing the previous state of the sentential form. For each of the found
parents, it checks whether there exist nonterminals in the future_matrix field reduced
using their environment. If not, the nonterminals are removed. Then, a second scan through
the reduced nonterminals is executed, this time confirming existence of the symbols’ own
environment in the future_matrix field.

6.6 Experimental Results
This section presents experimental values of time and space complexity of the implementa-
tions of the presented algorithms. For each of the algorithms, the tests were run for every
combination of input strings and used grammars presented. To simulate the worst case sce-
nario the complexities were derived for, the grammars used work with the same alphabet
as the input string, however, the strings are never accepted.

The experimental values were acquired using the perf tool available on Linux systems;
specifically, the perf-stat and perf-mem tools were used to measure time and space com-
plexity respectively. The tests were performed on a system running the Ubuntu 19.04 op-
erating system, using the kernel version 5.0.0-13-generic. The values given in the tables
represent the mean values of five independent runs.

Experimental results for context-sensitive grammars can be seen in Table 6.1a; the com-
parison of these values to their theoretical counterparts presented in Chapter 5 be sub-
sequently seen in Figure 6.5. Analogous tables for the remaining sequential grammar
types, along with their visual representation, can be found in Appendix A. As visible
from the figure, the increase in the consumed resources follows the same trend in both ver-
sions of the complexities. Apparently, the use of recursive ancestry checks in the context-
sensitive and scattered context algorithms causes a drastic increase of the consumed re-
sources for longer input strings. However, due to the nature of ancestry checks in the fi-
nal phase of the scattered context parsing algorithm, the current implementation presents
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|𝐺| |𝑤| Time [Instr] Space [MB]
0 0 5,164,957 0.023
0 5 5,388,150 0.024
0 10 6,446,883 0.026
0 15 34,487,940 0.031
5 0 221,149,957 0.049
5 5 6,164,597 0.025
5 10 12,109,167 0.026
5 15 612,760,524 0.078
10 0 10,017,377,826 1.136
10 5 6,909,997 0.025
10 10 13,507,768 0.027
10 15 647,651,809 0.128
15 0 7,435,454,589 0.662
15 5 7,653,079 0.026
15 10 14,309,873 0.071
15 10 1,058,657,848,216 696.038

(a) Values for the context-sensitive parsing algorithm.

|𝐺| |𝑤| Time [Instr] Space [MB]
0 0 5,315,901 0.024
0 5 5,509,703 0.024
0 10 5,982,849 0.024
0 15 6,759,919 0.024
5 0 6,014,984 0.024
5 5 7,330,312 0.024
5 10 9,480,175 0.025
5 15 12,763,288 0.026
10 0 6,753,253 0.024
10 5 8,269,055 0.025
10 10 10,828,568 0.026
10 15 14,857,878 0.026
15 0 7,294,814 0.024
15 5 8,900,354 0.024
15 10 11,520,127 0.025
15 15 16,047,356 0.026

(b) Values for the EP0L system parsing algo-
rithm.

Table 6.1: Experimental complexities of the implemented algorithms. The values are given
based on the size of the grammar, 𝐺, and length of the input string, 𝑤.

a compromise between the amount of saved data and length of the run time for all imple-
mented algorithms.

Similarly, the values for the extension for EP0L systems can be seen in Table 6.1b;
the visualisation of the presented values, along with the comparison to the theoretical
complexities and the results for EPIL systems can be found in Appendix B.
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Figure 6.5: Experimental results of time and space complexity of the context-sensitive
parsing algorithm (green) compared to the respective theoretical values (purple).
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Chapter 7

Conclusion

This thesis examines the properties of sequential and parallel grammars, and the appli-
cations of these grammars. Its aim is to design and present a set of algorithms capable
of parsing grammar types belonging to these groups, with a focus on grammars that are
not context-free. These algorithms are based on the Cocke-Younger-Kasami algorithm
for context-free grammars in the Chomsky normal form and are capable of parsing any
grammar in the corresponding normal form.

Using the Chomsky hierarchy as a base for comparison of sequential grammars, it dis-
cusses grammar types both presented as a part of the hierarchy, and not fully respecting
the bounds placed by it. The thesis focuses on context-sensitive grammars, multigene-
rative nonterminal-synchronised grammar systems, and scattered context grammars. For
each of the grammars outside the hierarchy, their generative power is compared to that
of the family of unrestricted grammars, which represents its the major grammar type.

Then, normal forms of the presented sequential grammar types are inspected. First,
the normal forms for context-free grammars are discussed, as the algorithms presented later
in the thesis utilise the similarities between the normal forms of their respective grammar
types and the normal forms for context-free grammars. Specifically, the Chomsky normal
form and the Greibach normal form are presented; because of the structural similarities
between the grammar types, these can be also applied to multigenerative grammar systems.
Subsequently, the Kuroda normal form, and its special case – the Penttonen normal form –
used for unrestricted and context-sensitive grammars are presented; these present a direct
extension of the Chomsky normal form, and add a single binary rule form. Finally, the 2-
limited normal form for scattered context grammars, using rule form similar to a sequence
of two context-free productions in the Chomsky normal form, is presented.

Subsequently, parallel grammars – also called the L-systems – are examined. Their
purpose and properties, such as parallelism and system branching, are discussed; languages
generated by L-systems are compared to their sequential equivalent, and the inability of se-
quential grammars to simulate parallel rewriting because of a lack of synchronising mech-
anism is stated.

As opposed to sequential grammars, which form a sequence of proper subsets in the or-
der strictly defined by the Chomsky hierarchy, a list of grammar modifiers, forming the L
hierarchy, is given along with a comparison of generative powers of significant grammar
types created by their combination. Contradictory to the Chomsky hierarchy, the gener-
ative power of some families proves to be incomparable. Finally, three major families are
discussed – these are the extended systems, which act as a parallel counterpart to context-
free grammars; table systems, which are unique to the L-systems; and finally, interactive
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systems, comparable to context-sensitive and unrestricted grammars of the Chomsky hier-
archy.

A normal form for extended L-system similar to the Chomsky normal form is pre-
sented; it is subsequently adapted to work with extended interactive L-systems, allowing
the extension of the Cocke-Younger-Kasami algorithm to these grammar types. To outline
the significance of the environment in interactive systems, a final normal form focused on its
size is presented.

As the final part of the theoretical background of this thesis, various types of parsing
methods are discussed. After introducing the basic terms used in the context of pars-
ing techniques, the chapter introduces top-down parsing methods, gives a brief overview
of their work, and finally discusses the restrictions placed by some of their representatives.
Subsequently, bottom-up parsing methods, working from input string up to the reduction
of the start symbol, are introduced in a similar way. Finally, the group of parsing meth-
ods capable of parsing any grammar of the corresponding family – the general methods –
are introduced. Their representative, the Cocke-Younger-Kasami algorithm, which serves
as the core for parsing methods presented in this thesis, is introduced. It is accompa-
nied by an informal description of its work, the corresponding pseudocode representation,
and a graphical demonstration of its progression. These serve as a base of comparison
to the presented parsing methods.

The following part of the thesis presents the proposed extensions of the Cocke-Younger-
Kasami algorithm. These extensions work with grammar types introduced previously,
and utilise the similarities between the Chomsky normal form and the respective normal
forms of the individual grammar types. However, each of these types presents a set of unique
properties that require the addition of mechanisms assuring the reliability of results offered
by the algorithms. Overall, the thesis presents five distinct parsing algorithms.

The extension for context-sensitive grammars works with grammars in the Kuroda nor-
mal form. As this normal form presents a direct extension of the Chomsky normal form,
the parsing core of the algorithm only needs to be extended to handle the binary production
form. However, in case a single nonterminal of a context-sensitive pair is used in the final
parse tree, the reliability of the algorithm’s result is compromised. To counter this problem,
the algorithm employs a set of matrix versions; every time a set of context-sensitive produc-
tions is applied on a pair of elements, two versions of the matrix are created – the former,
which is artificially prevented from the applying the productions, and the latter, which
contains only the reduced nonterminals, but none of their ancestors – resulting in the need
to use both of these nonterminals to finish the parsing successfully. This algorithm reaches
the time complexity of 𝑂(|𝐺| · 𝑛3).

The extension for canonical multigenerative nonterminal-synchronised systems works
with systems composed of context-free grammars in the Chomsky normal form. Considering
these systems compare the results of leftmost derivation to the attached control sequences,
the extension uses an additional sequence of parsing matrices – one for each grammar,
and therefore for each normal parsing matrix. The parsing process is analogous to that
of the original algorithm, with the difference that reduced nonterminals are saved into
the additional matrices. These are then filtered to contain only nonterminals resulting
from the reverse simulation of leftmost derivation, which are then compared to control
sequences and filtered further. Finally, the matrices are synchronised to contain the same
number of reduced elements – and therefore substrings – and their contents are moved
to the corresponding main matrices. Because of the need for a sequence of matrices, the time
complexity of this algorithm for a system of size 𝑁 reaches 𝑂(𝑁 · 𝑛3).
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The final sequential extension works with scattered context grammars in the 2-limited
normal form. Because of its structure, the extension simulates the application of two
context-free rules at different positions of the parsing matrix. However, similarly to the ex-
tension for context-sensitive rules, the consistency of the matrix is disrupted if the simula-
tion of the resulting parse tree contains only one nonterminal of the simultaneously reduced
pair. As opposed to the previous extension, all reductions are made inside a single matrix,
as the previous system would lead to a vast increase of the time complexity of the algorithm.
Instead, at the end of the parsing, the algorithm scans the ancestry of all reduced start
symbols, and removes the ones whose ancestry tree is either lacking expected members,
or contains duplicate symbols. Because of the semi-parallel nature of scattered context
grammars, the time complexity of the original algorithm is squared, resulting in the rela-
tively high complexity of 𝑂(|𝐺| · 𝑛6).

The main challenge of adapting the Cocke-Younger-Kasami algorithm to parallel gram-
mars proved to be the fact that, as described earlier in the thesis, the parallelism of this group
of grammars cannot be simulated by context-free grammars. Similarly to some of the pre-
vious extensions, the algorithm for extended L-systems uses a pair of matrices – one to hold
the previous sentential form, and one to hold the sentential form that is currently being
reduced. These matrices are periodically switched, and therefore, the leftover symbols from
previous sentential forms are removed. Moreover, to prevent reduction of overlapping sen-
tential forms in a matrix, the algorithm always scans the substring located to the right
of the previously reduced symbols. Overall, the time complexity of this extension reaches
𝑂(|𝐺| · 𝑛3).

The extension for EPIL systems shares the core behaviour of the previous algorithm.
Compared to it, this extension adds several environment-related checks. As opposed
to the notion of context in sequential grammars, interactive L-systems do not alter their
environment in any way; moreover, because of the sequential nature of the parsing method,
the environment may not exist at the time of the reduction. This is countered by two waves
of reduction checks – first, it is checked whether the current matrix contains descendants
of all environment strings; then, it is checked whether the environment of all new non-
terminals exists. The addition of these control mechanisms increases the time complexity
of the extension, bringing it to the overall value of 𝑂(|𝐺|2 · 𝑛3).

The final part of the thesis is dedicated to the working prototype implementing these
algorithms. It is a C++ program configurable through command line arguments. The pro-
gram utilises the principles of object-oriented programming, and employs a set of polymor-
phic classes mirroring the individual algorithms and their corresponding grammar types.
First, the overall structure of the class hierarchy is discussed, followed by a detailed de-
scriptions of the work of individual modules, their purpose, and derived classes. Finally,
the experimental values of time and space complexity of the algorithms are compared
to their theoretical counterparts.

This thesis deals with a complex topic, and while it yields significant results, it does
not exhaust the topic completely. As such, it may be used as a basis for further research;
the following topics may prove interesting during related future research:

∙ extension of the Cocke-Younger-Kasami algorithm to other grammar types, such
as matrix grammars, or unrestricted grammar with restricted erasing,

∙ extension to other normal forms, such as the Greibach normal form, which offers
an easily processable rule form while covering relatively long substrings,

∙ extension to different parsing algorithms, i.e. the algorithms of the LR family.

60



Bibliography

[1] Aho, A. V.; Lam, M. S.; Sethi, R.; et al.: Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison-Wesley. 2006. ISBN 0-321-48681-1.

[2] Beder, J.: yaml-cpp: A YAML parser and emitter in C++. Accessed: March 12,
2019.
Retrieved from: https://github.com/jbeder/yaml-cpp

[3] Ben-Kiki, O.; Evans, C.; döt Net; I.: YAML: YAML Ain’t Markup Language.
Accessed: May 09, 2019.
Retrieved from: https://yaml.org/

[4] Fernau, H.; Meduna, A.: A simultaneous reduction of several measures of
descriptional complexity in scattered context grammars. Information Processing
Letters. vol. 86, no. 5. 2003: pp. 235–240.

[5] Free Software Foundation: Bison - GNU Project. Accessed: May 02, 2019.
Retrieved from: https://www.gnu.org/software/bison/

[6] Herman, G. T.; Rozenberg, G.: Developmental Systems and Languages.
North-Holland. 1975. ISBN 0-7204-2806-8.

[7] ISO/IEC: ISO/IEC 14882:2011 — Programming language C++. International
Organization for Standardization. 2011.
Retrieved from: https://www.iso.org/standard/5037.html

[8] Jurafsky, D.; Martin, J. H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall. 2009. ISBN 978-0-13-187321-6.

[9] Klobučníková, D.: General Grammars: Normal Forms with Applications. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. 2017.
Retrieved from: http://www.fit.vutbr.cz/study/DP/BP.php?id=18090

[10] Klobučníková, D.: Sequential and Parallel Grammars: Properties and Applications.
Term project. Brno University of Technology, Faculty of Information Technology.
2019.

[11] Lukáš, R.: Multigenerative Grammar Systems. PhD. Thesis. Brno University of
Technology, Faculty of Information Technology. 2006.

[12] Meduna, A.: Automata and Languages: Theory and Applications. Springer. 2000.
ISBN 978-1-85233-074-3.

61

https://github.com/jbeder/yaml-cpp
https://yaml.org/
https://www.gnu.org/software/bison/
https://www.iso.org/standard/5037.html
http://www.fit.vutbr.cz/study/DP/BP.php?id=18090


[13] Meduna, A.: Elements of Compiler Design. Auerbach Publications. 2008. ISBN
978-1-4200-6325-7.

[14] Meduna, A.; Techet, J.: Scattered Context Grammars and Their Applications. WIT
Press. 2010. ISBN 978-1-84564-426-0.

[15] Rekers, J.; Schuerr, A.: A graph grammar approach to graphical parsing. In
Proceedings of Symposium on Visual Languages. IEEE. 1995. ISBN 0818670452. pp.
195–202.

[16] Rozenberg, G.; Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press. 1980. ISBN 0-12-597140-0.

[17] Rozenberg, G.; Salomaa, A.: Handbook of Formal Languages. vol. 1. Springer. 1997.
ISBN 978-3-642-63863-3.

[18] Zulkufli, M.; Liyana, N.; Sherzod, T.; et al.: Watson–Crick Context-Free Grammars:
Grammar Simplifications and a Parsing Algorithm. The Computer Journal. vol. 61,
no. 9. 01 2018: pp. 1361–1373. ISSN 0010-4620.

62



Appendix A

Experimental Results for
Sequential Grammars

Experimental Results
This appendix presents the experimental values of time and space complexity of imple-
mentation of the corresponding sequential parsing algorithms. Fist, the data is presented
in the tabular form, followed by its graphical representation and comparison with the theo-
retical values. Data for the context-sensitive algorithm can be found in Table 6.1a and Fig-
ure 6.5.

|𝐺| |𝑤| Time [Instr] Space [MB]
0 0 7,772,303 0.40
0 5 8,417,602 0.037
0 10 10,452,359 0.038
0 15 14,654,074 0.039
5 0 10,191,619 0.036
5 5 13,480,018 0.046
5 10 20,039,445 0.053
5 15 37,968,424 0.066
10 0 12,346,996 0.035
10 5 31,906,507 0.099
10 10 106,031,248 0.167
10 15 326,667,795 0.249
15 0 6,882,497 0.026
15 5 26,322,047 0.071
15 10 120,340,804 0.165
15 15 356,510,584 0.262

(a) Values for multigenerative grammar systems.

|𝐺| |𝑤| Time [Instr] Space [MB]
0 0 5,900,367 0.024
0 5 5,981,543 0.024
0 10 10,042,903 0.026
0 15 19,896,480 0.028
5 0 6,476,144 0.023
5 5 8,169,710 0.024
5 10 19,498,876 0.027
5 15 49,471,827 0.032
10 0 7,622,626 0.024
10 5 30,754,922 0.029
10 10 176,586,524,785 k 19633.453
10 15 980,512,327,594 k 173636.37
15 0 8,927,581 0.024
15 5 17,410,782 0.026
15 10 190,252,526 M 19207.563
15 15 2,379,851,377 M 217045.462

(b) Values for scattered context grammars.

Table A.1: Experimental complexities of sequential algorithms. The values are given based
on the size of the grammar, 𝐺, and length of the input string, 𝑤. Multigenerative grammar
systems work present a global sum of found values.
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Visualisation of the Acquired Results
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Figure A.1: Experimental values of time and space complexity of the parsing algorithm
for multigenerative grammar systems (green) compared to their theoretical counterpart
(purple). The visual representation does not consider the number of nonterminals in a sys-
tem.
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Figure A.2: Experimental values of time and space complexity of the parsing algorithm
for scattered context grammars compared to their theoretical counterpart.

64



Appendix B

Experimental Results for Parallel
Grammars

This appendix presents the experimental values of time and space complexity of imple-
mentation of the corresponding parallel parsing algorithms. Fist, the data for EPIL sys-
tems is presented in the tabular form, followed by the graphical representation of both
EP0L and EPIL algorithm results and their comparison with the theoretical values. Data
for the context-sensitive algorithm can be found in Table 6.1b.

Experimental Results

|𝐺| |𝑤| Time [Instr] Space [MB]
0 0 5,445,486 0.024
0 5 5,590,554 0.024
0 10 6,004,689 0.024
0 15 6,666,704 0.025
5 0 6,348,203 0.024
5 5 6,655,790 0.025
5 10 7,141,648 0.024
5 15 8,030,734 0.025
10 0 7,171,710 0.024
10 5 7,877,296 0.025
10 10 9,630,884 0.025
10 15 11,733,910 0.026
15 0 8,044,261 0.025
15 5 8,717,743 0.025
15 10 11,622,802 0.026
15 15 14,354,274 0.028

Table B.1: Experimental complexities of the parsing algorithm for EPIL systems. The val-
ues are given based on the size of the grammar, 𝐺, and length of the input string, 𝑤.

65



Visualisation of the Acquired Results
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Figure B.1: Experimental values of time and space complexity of the parsing algorithm
for EP0L systems (green) compared to their theoretical counterpart (purple).
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Figure B.2: Experimental values of time and space complexity of the parsing algorithm
for EPIL systems compared to their theoretical counterpart.
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Appendix C

Examples of Grammar
Configuration Files

This appendix demonstrates the syntax of the gramma configuration files. First, a general
example is given using all configurable fields; these do not have to be used at the same time.
Subsequently, an example of multigenerative grammar system configuration, using multiple
grammars, is given. The configuration files are written in the YAML mark-up language.

General Configuration File Example

1 ---

2 gtype: cs | sc | eol | epil

3 delimiter: ' '

4 grammar:

5 nonterminals: ['S', 'A', 'B', 'C']

6 terminals: ['a', 'b', 'c']

7 start: 'S'

8 environment: [1, 1]

9 productions:

10 - lhs: ['S']

11 rhs: ['A', 'B']

12 - lhs: ['S', 'A']

13 rhs: ['B', 'C']

14 - lhs: ['S']

15 rhs: ['A', 'B']

16 lenv: ['B']

17 renv: ['C']

18 # continued

19 ...

1
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Multigenerative Grammar System Configuration Example

1 ---

2 gtype: mg

3 delimiter: ' '

4 string_delim: '\n'

5 grammars:

6 - nonterminals: ['S', 'A', 'B', 'C']

7 terminals: ['a', 'b', 'c']

8 start: 'S'

9 productions:

10 - lhs: ['S']

11 rhs: ['A', 'C']

12 # continued

13 - nonterminals: ['S', 'A', 'B', 'C']

14 terminals: ['a', 'b', 'c']

15 start: 'S'

16 productions:

17 - lhs: ['S']

18 rhs: ['A', 'B']

19 # continued

20 - nonterminals: ['S', 'A', 'B', 'C']

21 terminals: ['a', 'b', 'c']

22 start: 'S'

23 productions:

24 - lhs: ['S']

25 rhs: ['B', 'C']

26 # continued

27 control:

28 - ['A', 'S', 'S']

29 - ['S', 'C', 'B']

30 ...

1
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Appendix D

Contents of the Attached Storage
Medium

The attached medium contains the following directories and files:

∙ bin/ – directory containing the parserium executable and example grammar config-
uration files,

∙ doc/ – directory containing the LATEX source codes and all other files needed to com-
pile this document,

∙ pdf/ – directory containing the electronic and print-ready version of this document,

∙ src/ – directory containing the program source codes and used libraries,

∙ README – text file containing instructions for compilation and execution of the pro-
gram.
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