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Abstract

This thesis aims to optimize the machine learning algorithms for predicting KPI metrics for
an organization. The organization is predicting whether projects meet planned deadlines
of the last phase of development process using machine learning. The work focuses on the
analysis of prediction models and sets the goal of selecting new candidate models for the
prediction system. We have implemented a system that automatically selects the best fea-
ture variables for learning. Trained models were evaluated by several performance metrics
and the best candidates were chosen for the prediction. Candidate models achieved higher
accuracy, which means, that the prediction system provides more reliable responses. We
suggested other improvements that could increase the accuracy of the forecast.

Abstrakt

Cielom tejto prace je optimalizacia strojového ucenia pre predikciu KPI metrik pre jednu or-
ganizdciu. Organizacia predpoveda oneskorenie terminov ukoncenia poslednej fazy projek-
tov v procese vyvoja pomocou strojového ucenia. Praca sa zameriava na analyzu predikénych
modelov a stanovi si za ciel vybrat nové kandidatne modely na predikciu. V ramci prace
sme implementovali systém, ktory automaticky vyberie najlepsie rysy pre ucenie. Naucené
modely sme vyhodnotili pomocou réznych vykonnostnych metrik a vybrali najlepsie kan-
diddtne modely. Kandidatne modely maja vyssiu presnost predpovede, ¢o pre organizaciu
znamend, ze sa zvysila déveryschopnost predpovede oneskorenia. V zavere prace sme navrhli
dalsie vylepsenia, ktoré by mohli zvysit presnost predpovede.
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Rozsireny abstrakt

Uvod

Cielom tejto prace je optimalizicia strojového ucenia pre predikciu KPI metrik pre jednu
organizaciu. Organizicia pouziva systém na predpoved oneskorenia terminov ukoncenia
poslednej fazy procesu vyvoja projektov pomocou strojového ucenia.

Na zaciatku prace sme sa venovali vykonnostnym metrikdm, ktoré sa pouzivaju v ramci
organizacii na sledovanie naplanovanych cielov. Popisali sme 4 typy vykonnostnych metrik.
Organizacia pouziva metriku, ktord sa nazyva Phase Gate Compliance (volne prelozené ako
sulad s fazovou brinou). Téato metrika odraza aktudlny stav projektov, ¢i su v silade s
naplanovanymi terminmi jednotlivych faz vyvoja. Organizacia predpovedd, s akou pravde-
podobnostou spliiaji aktivne projekty stanovené terminy poslednych faz vyvoja. Existujici
predikény systém sa pouziva, avsak bol implementovany rapidnym vyvojom. Tato praca
si stanovuje za ciel rozsirit dany systém o dalsie predikéné modely a taktiez optimalizovat
celkovy proces spracovania dat.

Zvysenie doveryhodnosti predpovede danej metriky je klicové pre organizaciu — od-
halenim potencidlnych problémov v skorsich fazach vyvoja projektu dokaze organizacia
minimalizovaf oneskorenie projektov a tym aj vstup produktov na trh.

Problém predpovede oneskorenia poslednej fazy vyvoja projektu je definovand ako bi-
narna klasifika¢nd tloha — projekty klasifikujeme do dvoch tried podla toho, ¢i ich faza
testovania skoncila s oneskorenim alebo nie. Z tohoto dévodu sme sa v tejto praci zame-
rali na klasifika¢né algoritmy strojového ucenia. Kazdy klasifikacny model sme dokladne
popisali a vyhodnotili ich vyhody a nevyhody. Préaca sa venuje taktiez aj teoretickému
rozboru nastrojov na vyhodnotenie klasifika¢nych modelov.

Popis riesenia

V druhej ¢asti prace sme popisali proces ziskania dit na ucenie. V organizécii sa pouzivaju
viaceré systémy na projektovy manazment, pricom kazdy systém uchovava int doménu in-
forméacii o danych projektoch. Na zdklade tuplnosti a kvality dat sme vybrali 3 systémy,
z ktorych budeme exportovat data sliziace na ucenie predikénych modelov. Exportované
data sme museli rozdelit podla biznisu a velkosti projektov (projekty tykajice sa termosta-
tov a bezpecnostnych panelov), pretoze proces vyvoja tychto skupin projektov sa moze lisit.
Ziskané data boli v surovom stave, ¢o nie je vhodné pre klasifika¢né modely — z tohto
dovodu bolo potrebné data predspracovat a normalizovat, aby s nimi modely dokézali pra-
covat. Programovacim jazykom prace je Python.

Exportované data obsahovali velky pocet dimenzii, ktoré sme museli zredukovat a vybrat
vhodné rysy (features). V ramci prace sme navrhli a implementovali systém, ktory auto-
maticky vyberie najlepsie rysy na predikciu. Jadro prace tvori implementéacia klasifika¢nych
modelov a ich ucenie. Na vyhodnotenie modelov pouzivame vizualizacné nastroje, ktoré
generuju grafy na vizualizaciu vykonu a tspesnosti danych modelov.

Vytvorili sme dve sady trénovacich mnozin:

e prva sada obsahovala projekty z rokov 2014 a 2015 — tato sada sa pouzila na ucenie
modelov, ktoré st momentalne nasadené v predikénom systéme;

e druhd sada obsahovala projekty z rokov 2014 az 2016 — sada pouzitd na ucenie novych
modelov.



Nésledne sme vytvorili testovaciu sadu tvoreni z projektov z roku 2017 (vieme, ¢i tieto
projekty skonéili s oneskorenim). Na tejto sade sme otestovali predikéni silu existujucich a
novych modelov.

Vysledky

Na konci prace sme porovnali nové modely s existujicimi modelmi. Modely, ktoré mali naj-
vysSiu presnost predpovede, sme navrhli ako kandiddtne modely do predikéného systému
organizacie. Vsetky kandidatne modely dosiahli vyssiu presnost predpovedi ako momen-
talne nasadené modely. Tato skutoc¢nost znamenad, ze vsetky kandidatne modely tspesne
vytvorili generalizacné pravidla, pomocou ktorych dokéazali uispesne klasifikovat projekty
podla oneskorenia poslednej fazy vyvoja.

Na dalsie vylepsSenie predik¢ného systému sme navrhli moznosti, ktoré by mohli zvysit
predikéna silu modelov. Jedno z moznych vylepseni spociva v dokladnejsej analyze vy-
branych rysov na uenie a zistenie, pre¢o nadobuidaju dané hodnoty. Dalsie vylepSenie
sa tyka Specifikacii poziadaviek. Organizdcia si uvedomuje, Ze vagne, nepresné a casto
meniace sa poziadavky znamenaji problémy pocas procesu vyvoja. Je potrebné nastavit
také metriky, pomocou ktorych by organizacia sledovala kvalitu poziadaviek a taktiez by
pomohli znizit pocet ziadosti o zmenu poziadaviek.
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Chapter 1

Introduction

The assignment of this thesis comes from an I'T company operating in the area of smart home
and IoT. Nowadays, in the field of smart home technologies is a significant competition going
on and to succeed in the market, one has to minimize the cycle time of products [29][3][50].
This company specializes on design and development of various smart home technologies.

Internally, every product is part of a project that is process-driven. The organization
implements the New Product Introduction (NPI) process which consists of six phases of
development, five of which are marketing and research and development (R&D) related and
the last phase is the manufacturing of final products. Any delay in development will delay
the delivery of the product to the target customers and thus jeopardize the success of the
product on the market.

The process of developing these devices (generally an IT product) is a complex task,
and in reality, it is often the case that due to problems, the project is delayed. Typically,
IT companies are having problems with incomplete, inaccurate, vague requirements or in-
adequate testing [11]. If the development expands to a more extended period, the company
may lose potential customers, and the project may end up in financial loss.

Management had set several performance metrics that track the development of projects.
One of these performance metrics is called Phase Gate Compliance which defines whether
the project is compliant with deadlines set during the project planning. The company had
to implement a program based on machine learning to reveal potential problems in earlier
development phases. This program is predicting the compliance status of projects in earlier
phases. Fortunately, this idea arose when the author of this thesis joined this company and
had the opportunity to participate in the development of this prediction system.

The goal of this thesis is to optimize this prediction system. We will focus on the
analysis of various classification algorithms and tools for their evaluation. After training
new models, we will summarize their achieved performance. According to these results, we
will suggest best candidate models for the prediction system.

In chapter 2 we will focus on measuring performance within an organization. Next, in
chapter 3 we will describe the organization where the assignment of this thesis comes from.
We analyze the NPI process to have a better insight of projects in this organization. Then,
we will introduce and define the Phase Gate Compliance metric and give more detail of the
existing prediction system. In chapter 4 we will dive into machine learning and describe
the main approaches for solving classification problems. Evaluation of model’s performance
and candidate selection will be covered also in this chapter. Chapter 5 contains data
preprocessing and feature selection. The implementation of prediction models are described
in chapter 6. Then, all the results of classification models are summarized in chapter 7. We



will evaluate the existing and newly created models and compare their results. According
to the result, we will choose candidate models which will be deployed in the organization.
Finally, in chapter 8 we will discuss possible improvements to the prediction system.



Chapter 2

Measuring performance

Measuring performance is a vital part of monitoring an organization’s progress. It contains
measuring the actual performance outcomes or results of an organization against its settled
goals [6]. The strategic plan provides performance targets for the organization, and it sets
the direction of the organization. Unfortunately, the strategic plan usually doesn’t set per-
formance measurement target for all levels of the organization. As a result, performance
improvement opportunities are overlooked to support the strategic plan, and the organi-
zation’s progress is therefore limited. The performance measurement adopted might have
no linkage to the critical factors of the organizations. Unfortunately, many companies are
working with the wrong measures, many of which are incorrectly termed key performance
indicators.
To be clear, we define terms measure and metric:

e Measure — a number derived from taking a measurement or the observed value of a
number at a point in time. Measures are raw numbers and data points found in data
or reports — on their own, measures deliver little value.

e Metric — a calculated number derived from measures. Typically, expressed as a
ratio, average, percentage etc.

There are 4 types of performance measures:

e Key result indicator (KRI) — tells how have been done in a perspective or critical
success factor,

e Result indicator (RI) — tells what have been done,
e Performance indicator (PI) — tells what to do,

¢ Key performance indicator (KPI) — tells what to do to increase the performance
dramatically.

2.1 Key result indicator (KRI)

They are often mistaken for KPI. They include measurements such as customer satisfaction,
net profit before tax, employee satisfaction or profitability of customers. A common char-
acteristic of these measures is that they are the result of many actions. Despite showing the
organization’s right direction, they do not tell what to do to improve these results. They



typically cover a more extended period than KPIs (reviewed on monthly/quarterly cycles,
not daily/weekly basis as KPIs). Between KRIs and KPIs are various performance and
result indicators. Although there can be many result indicators, only key result indicators
tell how one has done in a part of their business that is critical to meeting corporate goals

[12].

2.2 Result indicator (RI)

RIs typically summarize activities, all financial performance measures are Rls for instance.
They only tell what happened, but not why. Typical examples of Rls could be:

e daily or weekly sales analysis,

e customer complaints from key customers,
e net profit on key product lines,

e hospital bed utilization in week.

To fully understand what to increase or decrease, we need to look at the activities that
created the result, e.g., the sales.

2.3 Performance indicator (PI)

Whereas result indicators measure the results of many business actions as an aggregate,
performance indicators track specific actions or activities. They are metrics that inform
how a business is doing and what to do and what actions to take.

They help teams to align themselves with their organization’s strategy, but they are not
key to the business. Pls are non-financial and complement to the KPIs. Typical examples
of PIs could be:

e percentage increase in sales with top 10% customers,
e late deliveries to customers,

e number of employees’ suggestions implemented in last 30 days.

2.4 Key performance indicator (KPI)

Since there are many Pls produced in the organization, KPIs should only be the ones that
are necessary for business performance measurement. They should provide vital feedback
and actionable insight which directly drive business goals. They track essential items that
are considered critical to the success of the business [12].

KPIs represent a set of measures focusing on those aspects of organizational performance
that are the most critical for the current and future success of an organization. The reason
why lots of organizations fail to increase their performance could be the inability to recognize
KPIs.

According to [16] there are 7 characteristics of KPIs. KPIs:

e are non financial measures,



e are measured frequently,

e are acted on by the CEO and senior management team,
e clearly indicate what action is required by staff,

e are measures that tie responsibility down to a team,

e have a significant impact,

e encourage appropriate action.

KPIs should be monitored 24/7, daily or weekly for some. Monthly, quarterly or annual
measure cannot be a KPI, as it might be hard for business to react with a proper decision
promptly. KPIs are current or future-oriented measures. Most organizational measures are
very much past indicators measuring events of the last month or quarter. These indicators
cannot be and never was KPIs.

2.5 Difference between KPIs and KRIs

KPIs measure precise actions to take to obtain specific results, whereas KRIs inform about
the results of many activities. KRIs are backward looking and measure the effect of business
activities, but ignore the cause. KRIs measure business goals, KPIs do not — it is essential
to keep track of business goals, but it is not clear what is the cause of results. Actions and
activities that align with these goals have to be tracked — with the KPIs.



Chapter 3

Organization

This work relates to an organization, which operates in the IT sector. It mainly focuses on
research, development, and manufacturing of various smart home devices, e.g., thermostats.
First, we describe the process-driven development called NPT process, which is implemented
in this organization. Second, we explain, how does the management set business plans, how
do they track active projects and how do they manage the progress of the goals. At the
end of the chapter, we introduce a performance metric called Phase Gate Compliance,
through which management has an overview of the success how well its projects meet the
set deadlines. This metric is the subject of the prediction analysis of this thesis.

3.1 NPI process

A New Product Introduction (NPI) program encompasses all the activities within an orga-
nization to define, develop and launch a new or improved product. The product in our case
could be an intelligent thermostat with cloud connectivity and user comfort prediction.

The acronyms NPI (New Product Introduction) and NPD (New Product Development)
are used interchangeably by many organizations. In some cases, NPI activities begin after
design and development and merely deal with the product production launch and market-
ing. The NPI process can vary from organization to organization. In some cases, it can
vary within different divisions of the same company. For an NPI process to succeed it must
have the full active support of upper management in all divisions and departments [10].

Successful organizations realize the importance of NPI process. Today is the era of a
highly competitive market, and companies must develop the right product at right time
and right cost. Advantages of NPI process:

e Define — in this phase the product’s requirements are defined with the help of mar-
keting and product management divisions. These requirements are converted into
design specifications and they are integrated into one or more concepts to be re-
viewed by the project team. During this phase an initial business case is created -—
it should identify the market, customers etc,

e Feasibility — the purpose of this phase is to allow management an opportunity to
evaluate the project’s potential for success. During this phase, the project team re-
views the product design concepts and selects the one which fulfills previously defined
requirements. The business case is reviewed as well and redefined. The output of
this phase is a determination if the project and proposed product design should move
forward to the next phase, be redesigned or dropped,



e Develop — this phase is focused on advancing the product design into a more defined
form. A validation plan is also developed to evaluate the robustness of the design and
its ability to meet the requirements. The project team presents updated information
about the design, project timeline, risks, an updated business plan and financial
status. The management will determine if the project should move to the next phase
or change the design or test plan,

e Validate — during this phase product analysis and testing are performed. Design
changes are possible due to the results of validation testing but are very costly. Be-
sides, the manufacturing process is developing, and process risk is being analyzed;
significant steps of the manufacturing process are being developed and reviewed. At
the end of this phase, the team should review the project with the owner and stake-
holders. The purpose of this review is to gain approval to move the project to the
next phase,

e Implement — this phase of the NPI process refines and validates the manufacturing
processes through pilot builds and capability studies. In addition, process documen-
tation and quality control are being developed and implemented,

e Evaluate — during this phase the product is being produced or the service provided.
At this point in the NPI process, the team has an opportunity to tie up any remaining
documentation tasks, review process performance and collect customer feedback data.

3.2 Setting business goals

The organization consists of several businesses. Goals are set for each business which
can vary due to market differences and specifics. Management sets KPI metrics for all
businesses, tracks the performance of projects and monitors the success of meeting goals. If
a particular business does not meet the settled goals, managers ask for causes lower in the
hierarchy. The lower management is finding, analyzing and proposing solutions for reactive
and systemic (where possible) solutions for these causes.

For example, let’s assume that the global management wants to increase the effectivity
of development of their products and therefore to decrease the cycle time of projects to
withstand the competition on the market. They create a metric, which tracks which projects
are within a cycle time limit since cycle time represents the duration of a process. Figure
3.1 represents a box plot with the distribution of cycle time for each type of projects in the
given business. According to this statistics, they know what projects to target to increase
the overall development efficiency.

3.3 Phase gate compliance (PGC)

This metric was created in the organization to capture the actual state of compliance with
planned deadlines. PGC on a global level can be viewed as a result indicator, due to
reflecting the current state of compliance with all projects in the organization. However, in
a lower level of organization in a given business can be considered as a key result indicator,
because the main goal of a R&D unit is the on-time delivery of products.

During the development process, the management is setting the baseline dates of phase
gates. A baseline date is a fixed date, unlike a planned date. When a phase gate’s baseline



500 T J_

400 +
BDD——----H ---------- memed |sesceccdeanss

200 T T

cycle time

100 ¥

t t t t t
A B C D E
project types

Figure 3.1: This box plot shows the cycle time distribution of projects in given business.
Projects are grouped by their type. We can observe that project types B, D, and E meet
the metric — they are within the metric limit of 300 cycle time. The management has to
investigate, why do projects A and C have higher cycle time than the others.

is set, the planned date is also set to the same date. If the project must be delayed, the
planned date is postponed. The PGC is defined as:

PGC — {Compliant (Planned — Baseline) < 30days (3.1)

non-compliant otherwise

The problem is that if a project is labeled as non-compliant, it will stay non-complaint until
the end of the project. This is the point where the prediction system comes in.

If the management knows how to predict which project would be non-compliant, they
could deal with the project’s problems and thus shorten the eventual delay of the project
at later phases. Therefore, the management has instructed to implement such a prediction
system that helps to keep the set business goal, i.e., on-time delivery.

3.4 Existing prediction system

The organization has already implemented a prediction system that predicts PGC status
of phase 5 of active projects. The 5*" phase is essential for the organization because testing
ends and so the R&D phase ends, too. The project is then sent to the manufacturing for
which another part of the organization is responsible.

The prediction consists of 2 phases:

early - prediction before the end of phase 3,
late - prediction between phases 3 and 5.

In general, the sooner the system predicts, the better the forecast will be. However, our
goal is the opposite — we need to get the best forecast as soon as possible.

10



Despite the fact that this system is used by management to reveal and investigate
potential problems in earlier phases of projects, it was developed rapidly with no broader
analysis. Unfortunately, we do not know enough about the quality of the results the system
provides us.

In this work, we will focus on detailed data analysis, analysis of feature selection and
prediction models. At the end of this work, we compare current performance of the system
with the performance of the optimized prediction system.
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Chapter 4

Predictive models

The prediction of PGC status of projects is a binary classification problem — we classify
projects into those that meet defined deadlines (compliant) and those that do not meet
them (non-compliant). We have a four year (2013-2017) collection of project development
data in the organization. Due to a large number of attributes (~400) in the data file,
the problem is too complicated to use a rule-based system to solve this problem (due to
the curse of dimensionality which we describe later in this chapter). To come up with a
solution, we have to use machine learning that provides us the tools to handle a task of
such complexity.

In this chapter, we describe what machine learning is and what problems can it solve.
Since our problem is a classification problem, we will present some of the classification
methods that are used in machine learning. Later in this chapter, we will look at measuring
the performance of these models and describe how to select candidate models.

4.1 Introduction to machine learning

»Machine learning is a field of computer science that gives computers the ability to learn
without being explicitly programmed* [18]. It explores the study and creation of such algo-
rithms and techniques which has the ability to learn from data and make predictions on
data. These algorithms overcome following strictly static program instructions by making
data-driven predictions or decisions through building a model from sample inputs.[15]. Ma-
chine learning allows us to solve a wide range of computing tasks which are too complex or
infeasible to solve with explicit algorithms or rule-based approaches.

Next few sections will discuss the types of learning in machine learning. The figure
machine-learning-diagram shows the classification of machine learning algorithms by type
of learning with a couple of examples. Later in this chapter, we will focus on supervised
learning especially on classification algorithms.

4.1.1 Unsupervised learning

In this type of learning, we only have input data — there is no target variable. The aim
of these methods is to explore the structure of data and find patterns in them. There is
a structure to the input space such that certain patterns occur more often than others,
and we want to investigate what generally does generally happen and what does not. In
statistics, this is called density estimation.

12
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Figure 4.1: This diagram shows the classification of machine learning methods by type
of learning they use. This work is related to classification algorithms which belongs to
supervised learning. All the types of learning are discussed in section 4.1. Image taken
from [5].

One method for density estimation is clustering. Clustering is the task of grouping a
set of objects in such a way that objects in the same group (cluster) are more similar (in
some sense) to each other than to those in other groups (clusters) [2]. This technique is
used also to recognize outlying objects in the input data. Possible applications:

e customer segmentation,
e summarization of news,
e creation of fylogenetic trees in molecular biology,

e image compression [15].

4.1.2 Supervised learning

In this case, the computer is presented with example inputs and their desired outputs, given
by a ,teacher”, and the goal is to learn a general rule that maps inputs to desired outputs.
Desired output is also called target variable and it is chosen to represent the answer to a
question the organization would like to answer or a value unknown at the time the model is
used that would help in decisions. Sometimes supervised learning is also called predictive
modeling.

A training dataset is a dataset of examples used for training, that is to fit the parameters
(or weights) of a model. A testing dataset is a dataset independent of the training dataset,
but follows the same probability distribution as the training dataset. Supervised learning
involves:
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Classification - solves the problem of identifying to which of a set of classes (categories)
a new observation belongs. In this case, target variables are discrete variables of
categorical type. There are several types of classification according to the number of
classes:

e problem with 2 classes is often called two-class or binary classification problem
e.g. spam filtering,

e problem with more than 2 classes is called multi-class classification problem e.g.
classification of images of fruits which may be oranges, apples or pears,

e problem where an input is assigned multiple classes is called multi-label classifi-
cation problem e.g. recognizing topics in documents — text might be about any
of religion, politics, finance or education at the same time or none of these.

Regression - this type of models work with continuous target variables. Regression is an
approach for modeling the relationship between a dependent variable y (output/tar-
get variable) and 1 or more independent variable X (explanatory variable). The re-
lationship between dependent variable and independent variables are described using
predictor functions. According to the number of independent variables, we recognize
these types of regression:

o simple linear regression - 1 independent variable e.g. predict the employee’s
salary according to his years of experience. In this example salary is the de-
pendent variable (y) and years of experience represents the independent variable
(X).

e multiple linear regression - in the case of more than 1 independent variables. For
example predicting the price of a car. Inputs are the car attributes — brand,
year, engine capacity and mileage. The output is the price of the car. In this
example we have 4 independent variables.

e polynomial regression - previous regression types used linear functions to de-
scribe the relationship between variables. In cases where linear models are too
restrictive, one can use polynomial regression. As an example we could mention
the previous example of a car price prediction. If there is no linear relationship
between attributes of a car and its price, we could try polynomial regression
instead.

Machine learning algorithm optimizes the parameters of the predictor function in a
way that the approximation error is minimized, that is, our prediction is as close as
possible to the correct values given in the training dataset.

4.1.3 Reinforcement learning

It is an area of machine learning inspired by behaviorist psychology, concerned with how
software agents ought to take actions in an environment so as to maximize some notion of
cumulative reward. It differs from supervised learning in that correct input/output pairs
are never presented, nor sub-optimal actions explicitly corrected.

The output of the system is a sequence of actions. In such case, single action is not so
important than the sequence of correct action leading to the goal. There is no best action
in any intermediate state — an action is considered as good if it is part of a good policy. A
good application of reinforcement learning is game playing where a single move by itself is
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not important; it is the sequence of right moves that is considered good. A move is good
if it is part of a good game policy. An example of a game, where reinforcement learning
was successfully applied is chess. It is a game with a small number of rules but it is very
complex because of the large number of possible moves at each state and the large number
of moves that a game might contains. Once we have good algorithms that can learn to play
games well, we can also apply them to applications with more evident economic utility [15].

4.2 Classification algorithms

In this section we introduce several types of classification methods from which we choose
some candidate models which we use later in the prediction system to forecast PGC status
of projects in the organization.

4.2.1 Decision trees

A decision tree consists of internal decision nodes and terminal leaves. Each decision node
implements a test function with discrete output values labeling the branches. Each node
takes an input and applies the test and one of the branches is taken depending on the
result. This process starts at the root node and is repeated recursively until a leaf node is
hit, what represents the class where the input was classified. Figure 4.2 shows an example

of a decision tree.

A\

Male?
yes no
Adult? 3rd class?
no
3rd class?
yes yes no
ye's/ wo
20% 27% 100% 46% 93%

Figure 4.2: This figure shows an example of a decision tree classifying/predicting the sur-
vival likelyhood of a person on Titanic. From the results, it seems that one would have
quite a chance of being rescued from the ship if one is a female from 1%¢/2"4 class cabin or
a male child from 15¢/2" class cabin. Image was taken from [14].

Decision trees belong to a class of recursive partitioning algorithms which are simple to
describe and implement. Each variant of these algorithms share the following steps [14]:

1. For each candidate input variable, assess the best way to split the data into 2 or more
partitions, select the best split and divide the data into groups defined by the split.

2. For all groups repeat step 1 (recursively).
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3. Continue splitting until all records after a split belong to the same class or until
another stop condition is applied (statistical significance test or minimum record
count).

The key principle which differentiate various algorithms in this group of classifiers is the
way they do the split. They all provide a measure of purity of the class distribution [14].
Let’s describe the variants of decision tree algorithms.

ID3

This algorithm uses an information gain to decide which attribute goes into a decision
node. Gain measures how well a given attribute separates training samples into classes.
Attribute with the highest information is selected. Gain is a measure based on entropy
which measures the amount of information in an attribute [13].

Let S represent the training samples. Let A = {aj,ag,...,a,} represents a set of
individual values of attribute A. Then let S; be a subset of training samples for which
attribute A contains only values a;(j = 1,...,v) and s;; represents training samples of set
S;, which belong to class C;(i =1,...,m;j =1,...,v) [24]. We define the entropy for S

m ..
Entropy(S;) = — Z fgi‘ log, (’z]‘) (4.1)
i=1

Then we can express the requested information for classification based on splitting by
attribute A

Entropya(S Z ||S| Entropy(S;) (4.2)

After expressing the entropy for attribute A, we can compute the information gain after
splitting by attribute A

Gain(A) = Entropy(S) — Entropya(S) (4.3)

The ID3 algorithm chooses attribute A with the highest value of Gain(A). Alternatively,
one can choose attribute A with the lowest value of Entropya(S). This approach states
that value of attribute A with smaller probability of occurrence carries more information
than value of attribute with higher probability of occurrence [14].

Disadvantage of this method is that the Gain(S) depends on the number of unique values

in attributes. The more values an attribute contains the lower the value of Entropya(S) is
and the higher the value of Gain(S) is [24].

C4.5 and C5.0

Both variants improves the ID3 algorithm with a new way of computing the information
gain. The C4.5 algorithm uses Gain Ratio as the splitting criterion. It is a normalized
information gain and is defined as

. 15, =
SplitEntropy(A) = —> ‘|5\| log (|5\|) "
j=1
Gain(A)
. 4.
GainRatio(A) = Split Entropy(A) "
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The algorithm chooses the attribute with the highest value of GainRatio(A) [21].

This algorithm was improved by improvements in misclassification costs, cross-validation
and ensembling and it is called C5.0 or just C5. It also significantly improved the speed
of building the trees and built them with fewer splits while maintaining the same accuracy

[14].

Summary

According to [14] decision trees are among most popular classification methods. Since they
are considered easy to understand — they are made up of sequence of if-then-else rules,
which are more transparent for regular people than mathematical formulas. Decision trees
are easy to build and are scalable in contrast to other types of classifiers. They have the
ability to work with both numerical and categorical variables (some classification models
request only numerical (neural networks) or only categorical (naive bayes)).

Sometimes, decision trees are likely to create over-complex trees that do not generalize
the data well — this is called overfitting. In such cases, we could use techniques as pruning
or setting the minimum number of samples required at a leaf node or setting the maximum
depth of the tree to avoid overfitting [17].

4.2.2 Ensemble methods

They use multiple learning algorithms to obtain better predictive performance that could
be obtained from any of the constituent learning algorithms alone. A machine learning
ensemble consists of only a finite set of alternative models, but typically allows for much
more flexible structures to exist among those alternatives [1]. The goal of ensemble methods
is to combine the predictions of several base estimators built with a given learning algorithm
in order to improve the ability to generalize over a single estimator. We distinguish two
families of ensemble methods [17]:

Averaging (bagging) methods - their key principle is to build several estimators inde-
pendently and then to average their predictions. On average, the combined estimator
is usually better than any of the single base estimator due to reduced variance. Ex-
amples: bagging, forests of randomized trees, extremely randomized trees.

Boosting methods - in contrast to previous methods, base estimators are built sequen-
tially and one tries to reduce the bias of combined estimator. Key principle is to com-
bine several weak estimators to create a powerful ensemble. Examples: AdaBoost,
Gradient Boosting.

Random Forests

Despite decision trees are very popular classifiers, generally, with quite good results, they
might overfit to their training dataset. Random forests correct this problem of decision
trees. Random forests are ensemble learning method for classification (also for regression)
and other tasks, that operate by constructing multiple decision trees at training time and
outputting the class that is the mode of the classes [17].

Random forests are a way of averaging multiple deep decision trees, trained on different
parts of the same training dataset, with the goal of reducing the variance [35]. This comes
with the cost of small increase in the bias and some loss of interpretability, but generally
greatly boosts the performance in the final model.
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Random forests applies bagging to decision trees. Let X = {x1,x9,...,2,} be a set of
training samples with corresponding outputs Y = {y1, 2, ...,yn}, bagging repeatedly (M
times) select a random sample with replacement of X and fits trees to these samples; for
m=(1,...,M)

1. Sample, with replacement, n training samples from X, Y; call these X,,, Yy,.
2. Train a decision tree f,, on X,,, Y.

After training, predictions for unseen samples X " are determined by taking the majority of
votes of all trees.

While the outputs of a single tree are highly sensitive to noise in training samples, the
average of many trees is not if the trees are not correlated. Simply training many trees on
a single training set might give strongly correlated trees; bagging is a way of de-correlating
the trees by showing them different training sets. This leads to better performance because
it decreases the variance of the model without increasing the bias.

The approach above describes the original bagging algorithm for trees. Random forests
[18] differ in only one way: they use a modified tree algorithm that selects, at each candidate
split in the learning process, a random subset of the features. This process is sometimes
called feature bagging. Typically, for classification problem with N features, VN features
are used in each split [35].

Extremely Randomized Trees

Sometimes called EztraTrees. They add a further step of randomization to random forests.
They are trained like an ordinary random forest, but additionally the top-down splitting in
the tree learner is randomized also. Instead of computing the locally optimal feature/split
combination (based on entropy or Gini index'), for each feature a random value is selected
for the split. This value is selected from the feature’s empirical range (in the tree’s training
set i.e. the bootstrap sample) [32].

AdaBoost

Boosting is a general method for improving the performance of any given learning algorithm
[51]. AdaBoost was first introduced by Freund and Schapire [13] as first algorithm solving
many of the practical difficulties of early boosting algorithms. It is able to create a strong
classifier from several weak classifiers. Decision trees are the most commonly used machine
learning algorithms used with AdaBoost.

AdaBoost takes as input a training set (x1,¥1), (x2,Y2), .- , (Zn, yn). Basic principle of
this algorithm is to maintain a set of weights over this training set [51]. Initially, all weights
are set equally, but after each round the weights of misclassified samples are increased so
that the weak learner is forced to ,focus“ on these samples in the training set. We take
each sample in the training set and assign it a weight:

1
w(x;) = N (4.6)
where z; is the i*! training sample and N is the number of training samples. Only binary
classification problems are supported so each weak classifier make a decision and outputs

L Gini index - eliminates the logarithm in the ID3’s gain index and uses a method based on probability.
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one of the two classes. Then, we can compute the misclassification rate:

(N -0)
N

where E stands for error (misclassification rate), N is the total number of training samples
and C' is the number of samples classified correctly by the model. We modify this equation
to use weighting of training samples:

E = (4.7)

_ 2o w(i) * By (i)
B=sss (4.8)

where E is a weighted average of misclassification rates, w(i) is the weight of i*" training
sample and E; is the i*? classification error which is defined as:

(4.9)

) 0 correctly classified sample
Et(z) B { y p

1 misclassified sample

Then, a stage value is calculated for the model to provide weighting for any prediction the
model makes. The stage value is calculated as follows

1-F
E

where s is the stage value used to weight predictions of the model and E is the misclas-
sification error of the model. The stage value adjusts the weights so that more accurate
models have more contribution to the final prediction.

The training weights are updated in such a way that incorrectly classified instances gain
more weight than correctly classified samples

s =In( ) (4.10)

w = w* 5 (4.11)

where w is the weight of the training sample, s is the misclassification rate for the weak
classifier and F; is the error the weak classifier made predicting the output variable for the
training sample. This has the effect of increasing the weight if the weak classifier incorrectly
classified the training sample. In the case of correct classification the weight will not be
changed.

Weak models are added sequentially, trained using the weighted training data. The
process continues until a pre-defined number of weak learners have been created or no
further improvement can be made on the training samples. Once completed, we get a pool
of weak learners each with a stage value. Predictions are made by calculating the weighted
average of the weak classifiers.

For a new input instance, each weak learner assigns a prediction value. Predicted values
are weighted by each weak learners stage value. The prediction for the ensemble model is
taken as a the sum of the weighted predictions. If the sum is positive, then the first class
is predicted, if negative the second class is predicted.

Stochastic gradient boosting

AdaBoost and other related methods were recast in a statistical framework first by Breiman
calling them ARCing algorithms (Adaptive Reweighting and Combining) [17]. This frame-
work was further developed by Friedman and called Gradient Boosting Machines [?] and
later become just gradient boosting. Gradient boosting involves three elements:
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1. a loss function to be optimized,
2. a weak learner to make predictions,
3. an additive model to add weak learners to minimize the loss function.

A loss function must be differentiable and it heavily depends on the type of problem being
solved which function to use. For example, regression may use squared error and for classi-
fication there is logarithmic loss function. Gradient boosting is a generic framework which
can use any differentiable loss function.

Such as in the case of AdaBoost, gradient boosting also uses decision trees as weak
learners. Trees as constructed in a greedy manner, choosing the best split points based on
scores such as Gini index [20]. At the beginning, very short decision trees were used that
only had a single split point called decision stump. Larger trees can be used generally with
4-8 levels. In order to ensure that weak learners remain weak enough, we have to constrain
them in specific ways — maximum number of layers, nodes, splits or leaf nodes.

Trees are added one at a time. Existing trees in the model are not changed. The goal
of this algorithm is to minimize the loss while adding trees. Neural networks use gradient
descent to minimize the weights of the network. In this case, we have weak learners —
decision trees. After calculating the loss (error), we add another tree to the model to reduce
the loss to perform the gradient descent procedure. This action is done by parametrizing
the tree, then modify the parameters of the tree and move in the right direction by reducing
the residual loss. The output of the new tree is added to the output of the existing sequence
of trees to improve the final output of the model.

Despite their very promising performance in variety of problems [15], gradient boosting
is a greedy algorithm and is likely to overfit and dataset quickly. Due to this problem,
several improvements were suggested. It can benefit from regularization methods that
penalize parts of the algorithm and improve the performance of the algorithm by reducing
overfitting [20]. Most significant improvements are:

Tree constraints - there is number of ways to constrain the trees — learners should have
skill but remain weak. There is a trade-off between number of trees and how much
they are constrained. The more constrained the tree creation is, the more trees the
model need. If less constrained tree creation, the fewer trees we need.

Shrinkage - the predictions of trees are added together sequentially. The contributions of
trees to this sum can be weighted to slow down the learning process — this weighting
is called shrinkage. As well as learning rate in stochastic optimization, shrinkage
reduces the contribution of each tree and leaves space for future trees to improve the
model [31].

Random sampling - we can reduce the correlation between the trees in the sequence
by allowing trees to be greedily created from subsamples of the training set. This
variation of boosting is called stochastic gradient boosting [20].

Gradient Boosting is a highly effective method both for regression and classification [20,
]. At Kaggle competitions?, gradient boosting is one of best performing model across
competitions [33]. They are used in a variety of areas including web search ranking and

2Kaggle is a platform for predictive modelling and analytics competitions in which data miners compete
to produce the best models for predicting and describing the datasets uploaded by companies and users.
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ecology [17]. These methods can work with mixed type data. The are quite robust to
outlier values via robust loss functions. Disadvantage of gradient boosting methods is the
inability to parallelize them due to their sequential nature [17].

4.2.3 Support Vector Machines (SVMs)

SVMs are a set of supervised learning methods used both for classification and regression
of linear and non-linear data. Linear SVM is used for binary classification and the classes
should be linearly separable and non-overlapping.

Assume we have a training set containing n-dimensional input vectors. Each of these
data points belongs to one of two classes. Our goal is to separate them with a n-1 di-
mensional hyperplane — this is called a linear classifier. There are, of course, plenty of
such classifiers that may satisfy this property. However, we want to find a hyperplane
with mazimum margin/separation between two classes — the distance between the hyper-
plane and the nearest data point is maximized. If such a hyperplane exists, it is called
the maximum-margin hyperplane and this linear classifier is known as a mazimum margin
classifier [11, 16]. Term support vectors are those vectors (data points) which lie nearest to
this hyperplane.

Later a modification of the maximum margin called soft margin was introduced [15].
In this case, some misclassifications are allowed but they penalize the function to minimize
with a factor that is proportional to a parameter C' and the distance of the mistakes to the
margin. With other words, SVM maximizes the margin between classes while minimizing
the penalization term weighted by parameter C which is a boundary for the number of
misclassifications.
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Figure 4.3: In this case, linear SVM is unable to find a hyperplane separating the two
classes even with soft margin. We must perform a so called kernel trick — we need to solve
the linear separation problem in a higher dimensional feature space. Image taken from [35].

Kernel trick

Consider data shown in figure 4.3. We can clearly see that data can be separated by a
circle. This is where we use an approach called kernel trick which says that a data set is
linearly inseparable in RY might be linearly separable in a higher dimension R™. We need
a mapping function ¢ that lifts the data set X to a higher-dimensional data set X  such
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that X' is linearly separable. In that case, we are able to train a linear SVM in X to find
a hyperplane W separating the data points in X '. Then, if one projects the hyperplane @
from RM back into the original input space RY one will get a non-linear hyperplane [37].
Figure 4.4 shows an application of a kernel trick on the example 4.3.

However, the only problem with this approach is the stepwise increase of dimensions
from RN to RM — with the increasing M we are getting into serious computational and
memory problems [37]. Fortunately, it turned out that there is no need to explicitly work
in higher dimensions at training or testing time. In [36] is shown that during training, the
process of finding the maximum margin only uses the training inputs to compute pair-wise
dot products® 7; e &; where 7,7 € RY. This knowledge is the key to perform the kernel
trick.

Figure 4.4: These images are capturing the solution of the linear separation problem we
faced with data in 4.3. We had to separate the data points in higher-dimension R? (a linear
boundary now became a plane instead of a line). This is shown on the left picture. All we
need to do is perform an inverse mapping of the plane back into the original input space
— getting a non-linear hyperplane (shown in green circle) separating the data points in the
original input space. Image taken from [38].

Kernel functions K (v,) are functions, which given two vectors @,4 € RY, implicitly
compute the dot product of ¥ and @ in a higher dimension RM without explicitly trans-
forming ¥ and @ to RM. Kernel functions solves the computational bounds and memory
problems we would have faced by explicit calculations in higher dimensions. Therefore,
we are able to efficiently learn non-linear decision boundaries for SVMs. There are several
kernel functions available [37], we mention two popular kernels:

e Polynomial ' '
K(0,@) = (yUe i) dimension (4.12)

where parameter v controls the characteristic distance of the influence of a single data
point [38]. Figure 4.5 shows tuning of parameters v and C.

e Sigmoid
K(¥,1) = tanh(kU ® 4 + ¢) (4.13)
where k > 0 and ¢ < 0.
3The dot product of 2 vectors @ = (ur,uz,...,up) and 0 = (v1,v2,...,v,) is defined as Tiox; = Y .| u;v;
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Figure 4.5: This figure captures the hyper-parameter tuning of SVM classifier.

Summary

SVMs are used for text classification tasks such as spam detection or sentiment analysis.
They are also commonly used for image recognition challenges and they are also used in
many areas of handwritten digit recognition such as postal automation services [16]. SVMs
are very effective in high dimensional spaces thanks to the kernel trick described above.
They use a subset of training samples in the decision function (support vectors), so are
they memory efficient.

In order to use SVMs one have to experimentally choose what kernel function and what
combination of hyper-parameters (v, C') best fit to his problem. Unfortunately, kernel func-
tions might be quite sensitive to over-fitting the model selection criterion [25]. Additionally,
SVMs do not directly provide probability estimates — calculated using an expensive 5-fold
cross-validation [17].

4.2.4 K-Nearest Neighbors (k-NN)

Described firstly in 1951 in this paper [30] (a work that was republished later in 1989).
This algorithm is a so-called ,lazy learner” since the training data itself is considered for
the model [14]. The ,K* in the name of this algorithm stands for the number of surrounding
data points needed for prediction. The key to this method is the computation of the distance
between the data point and its K nearest neighbors.

Since training inputs are represented with vectors of size n of numeric attributes input
vectors are point in a n-dimensional space. For each testing input the classifier projects the
testing data point into the same n-dimensional space and finds K nearest data points from
the training set and according to the majority of ,,votes“ of the nearest data points, classifies
the testing data point into the majority class. The bigger the number K is, smoother
predictions we get. For binary classification, it is common to use odd count of nearest
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neighbors to avoid ties in voting [14]. The number of neighbors are recommended to search

iteratively [14] since its hard to tell which number will suit best for our task. The proximity
of data points is defined by distance metrics. The primary and most commonly used
distance metric for k-NN is Euclidean distance [31]. Given two vectors U = (u1, ug, . .., up)
and V = (v1,vg,...,v,), the Euclidean distance is defined as:

dU,V) D (ui —vi)? (4.14)

i=1

There are some other distance metrics which are sometimes found in software libraries —
Manhattan, Hamming, Minkowski and Mahalanobis distance [14].

Data preprocessing

Since k-NN computes distances between vectors of numeric attributes of size n, it is sensitive
to features scaling. We have to normalize the values of all attributes in the training set
(then also the attributes of the testing set on equal ranges). We can use min-mazx scaling
[57] which is defined as follows:

ld :
v — ming . .
VY = ———————————(max}™ — miniY) + min’}" (4.15)
max g — ming

where v is the old and v is the new value of numeric attribute A; maz 4 and miny is
the maximum and minimum values of attribute A; max’}* and min’}*" are new maximum
and minimum values of attribute A. The advantage of min-max scaling is that we will have
guaranteed to have bounded maximum and minimum values. Another option is z-score

normalization:
old

prew = L HA (4.16)
0A
where v°? is the old and v™" is the new value of numeric attribute A; p4 is the average
and o4 is the standard deviation of attribute A. This method is most appropriate if the
data is normally distributed (because the mean and standard deviation used in the equation
assume normal distribution). Its interpretation can be as follows: each unit refers to 1 unit
of standard deviation from the mean [I14]. Before performing normalization, we must be
aware of heavily skewed data and outlier values.
k-NN requires all inputs to be numeric. Categorical variables must therefore be trans-
formed into numeric format. According to [23], we have 2 options:

label/integer encoding - used for ordinal variables. Each unique category value is as-
signed an integer value. Algorithms like decision trees or random forests can work
with this encoding. This process is also easily reversible.

one-hot encoding (dummy variables) - for non-ordinal categorical variables the label
encoding is not enough. This approach adds a new binary variable for each unique
numeric value. This method has the advantage that the result is binary rather than
ordinal and everything sits in an orthogonal vector space. However, the disadvantage
is that for high cardinality, the number of features can exponentially increase.

One of the challenges, generally, with distance-based algorithms is the number of inputs
used in building a model. With the increasing number of inputs the number of records
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needed to populate the data space increases exponentially. If the size of the space increases
without increasing the number of records to populate the space, records could be closer to
the edge of the data space than they are to each other, rendering many, if not all, records
as outliers. This is the curse of dimensionality [11, 57].

One solution to this problem is to keep dimensionality low — include only a few tens
of inputs in k-NN models. If too many irrelevant features are included, the distance will
be dominated by noise, thus reducing the contrast in distances between the target variable
values. One could perform correlation analysis® and exclude inputs that are highly corre-
lated with other inputs in the data — in a case of high correlation one could exclude one
of the two correlated variables, not both. However, reducing dimensionality too much will
result in poorer predictive accuracy in models.
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Figure 4.6: This figure shows an example of correlation analysis performed in a school
project. We were identifying application protocols in network flows using machine learning.
The left image shows the correlation matrix of original features of the network flow data.
Red and blue colored points in the correlation matrix represent positive and negative cor-
relation of two feature variables. The saturation of the color indicates the strength of the
relationship. Our goal is to iteratively remove those features which have strong relationship
with other features. Right image shows the leftover independent features. In such a way
we were able to reduce the dimensionality therefore we were able to build simpler classifiers
with preserved accuracy.

Summary

Since k-NN algorithm is a distance-based algorithm assigning each attribute an equal
weight, this algorithm might have low performance for noisy data or irrelevant attributes,
however it is insensitive to outliers. It is quite simple algorithm to explain and interpret
the results. k-NN can be used both for classification and regression.

4 Correlation analysis is a method of statistical evaluation used to study the strength of a relationship
between two (or more), numerically measured, continuous variables [57]. Correlation can be used to help
better understand associations in data, make prediction from data [28] and also to help to eliminate highly
correlated features used for predictions — severe multicollinearity is a problem because it can increase the
variance of the predictions and make them very sensitive to minor changes in the model i.e. standard errors
are likely to be high [7]. Figure 4.6 shows an example of feature variable reduction by correlation analysis
performed in a school project.
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Despite giving quite good result in different fields, it has some disadvantages. k-NN
has high memory requirements since it stores the training data. Predictions stage might be
slow especially for bigger K values. This algorithm requires only numerical data, but we
have the necessary tools to transform categorical values into numerical. Last, k-NN is also
sensitive to unscaled data — one have to consider normalizing the data using techniques
described in this subsection.

4.2.5 Naive Bayes

These methods are a set of supervised learning methods based on Bayes’ theorem. Due
to the assumption of independence between every pair of feature variables they are called
yhaive“. Bayes’ theorem states the following:

P(B | A)P(A)

P(A|B) = 1’3(3) (4.17)

where

P(A)? is the probability that A is true,

(
P(B) is the probability that B is true,
(
(

P(A | B) is the conditional probability that A is true given that B is true,

P(B | A) is the conditional probability that B is true given that A is true.

Assume a data sample X = (1, z2,...x,) which has to be classified into 1 of classes
C1,Cy,...Cy. We classify X into C; if P(C; | X) returns the biggest likelihood. Because

P(X | C;)P(Cy)

P(C; | X) = 4.1
where P(X) is a constant, we are looking for the maximal P(X | C;)P(C;) [24].
First, we compute the likelihood of class C;
P(C;) = @ (4.19)
5]
where s; is the set of samples if class C; and S is the set of training samples.
Second, we compute the product of likelihoods of each variable in the sample X
n
P(X | Cy) :H (z1 | Cy) (4.20)

Finally, we classify the sample X to that class C; for which P(X | C;)P(C;) has maximal
value.

5This is the form usually presented in the litarature, but variables A and B are just placeholders for
actual conditions one find in the data.

®Note that P(A | B) is, in general, not equal to P(B | A) because these conditional probabilities expect
different subsets of data.
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Summary

Naive Bayes models are easy to implement. These models require categorical data — we
must perform binning on numerical data to obtain categories. We might get poor classifica-
tion accuracy in case of high correlation between feature variables. Naive Bayes models as-
sume feature independence [11] hence they are called naive. In spite of their over-simplified
assumptions, they have very promising results in many real-world problem especially in
document classification or spam filtering [17]. In comparison with other machine learning
models, they can be extremely fast.

The difference between Naive Bayes models and other machine learning models is that
Naive Bayes models consider only one class at a time. For each class they compute a
likelihood and the class with the largest probability is assigned to the sample.

4.2.6 Neural Networks (INN)

They are computer systems inspired by biological NNs that represent animal brains. These
systems are able to learn (improve their performance) tasks by considering examples, gener-
ally without task-specific programming [12]. They are universal tools of machine learning —
broad spectrum of data-intensive applications such as speech recognition, sales forecasting,
stock market prediction, fraud detection etc. [3].

A neural network is based on a collection of connected units called neurons. Each
connection between neurons called synapse can transmit signals from one to another. A
neuron that receives the signal can process it and then send signal to another one which
is connected to it. The signal is a real number and it is called weight of the synapse. At
the beginning, weights are randomly initialized and they are adapted during the learning
process. Each neuron has a transfer function (also called threshold functions [15]) and an
activation function (also called squashing function [11]). The transfer function computes
the net input of a neuron:

n
net = Zwimi + woxg (4.21)
i=1
where wy is the intercept value to make the model more general; it is generally modeled
as the weight coming from an extra bias unit zg, which is always +1. The activation
function defines the output of the neuron. An example of an activation function might be
the following function:

1 t>0
y = ne (4.22)
—1 otherwise

This function defines the output of a neuron with respect to the net input computed by
the transfer function.

Perceptron

A single neuron unit is also called perceptron. Perceptrons adapts as follows: change the
weights by an amount proportional to the difference between the desired output nad the
actual output:

wW(0) = random (4.23)

—

(i) = i — 1) + p(d(i) — §(0)7(0) (4.24)
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Figure 4.7: This figure represents a single neuron. A neuron is composed of an input
vector and a corresponding weight vector. The net input is calculated using the transfer
function 4.21 (there are also other transfer functions [12]). Then, according to the net
input and the given threshold the activation function computes the output of the neuron.
oj (we use y further in the text) represents the output of the neuron which is transmitted

to the successor neuron in a form of signal. Each neuron is simply an equation y =
N
p(wozo + wiT1 + ... + Wntn) = 93010 wizs) [14].

where p is the learning rate — it is a real number in range 0 < p < 1 [56] and it
determines how quickly or how slowly to update the weights. Usually, one can start with a
large learning rate, and gradually decrease the learning rate as the training progresses.

Perceptrons are able to adapt only problems with linearly separable input vectors. Oth-
erwise these networks do not converge [56] — they are not able to learn the XOR problem as
its data points are linearly inseparable. We have to add an additional layer (called hidden
layer) to the network. This helps to create more complex non-linear hyperplane, which can
separate these data points — this is shown in figure 4.8.

Multilayer perceptron (MLP)

In an MLP, neurons are organized in layers in a fully connected, feedforward network. A
key concept in MLP is the usage of continuous activation functions e.g. sigmoid function:

1

= T (4.25)

Yy
Continuous functions are differentiable which means that we can compute derivatives, an
essential property of neurons so that the learning algorithms used to train NNs can be
applied [14]. For classification modeling, the output layer neurons usually have the same
sigmoid activation function already described, one that transforms the neuron to a value
between 0 and 1. For continuous-valued prediction, however, implementations of NNs most
often use “linear” activation function, which means that no transformation is applied to
the linearly weighted sum transfer function.

After the network calculates the output for a given input, the error is calculated by a
loss or cost function. For classification, lots of implementations use cross-entropy as the
cost function instead of squared error due to more appropriate measure of error for a binary
classification problem [14].
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NOT AND gate

Figure 4.8: This is an example of a neural network learning the XOR, problem. You can see
that the neuron labeled as OR gate ensures that at least one of the inputs is on (numbers
inside neurons labeled as red are threshold values — the net input must be greater that
this value in order to activate the output), while the NOT AND gate ensures that both
are not on at the same time. The output from these neurons pass through a final AND
gate that makes sure that both conditions are met. This problem was solved by adding a
hidden layer of neurons, otherwise simpler NNs did not converge to the result. In other
words, they could not separate the data points in the XOR problem as they are linearly
inseparable. Neural network was taken from [9].

MLP uses an algorithm for learning called gradient descent [53]. It is an optimization
algorithm for finding the minimum of the loss function. To find a local minimum of a
function using gradient descent, one takes steps proportional to the negative of the gradient
of the function at the current point. In order to use this optimization algorithm, activation
function must be differentiable - this is the reason why MLP uses continuous activation
functions. Sigmoid satisfies this requirement. Formula for weight adaptation can be written
as:

AW = —uVE (4.26)

There are several variants of gradient descent algorithm [39] which differ in how much data
we use to compute the gradient of the loss function:

e batch - weights are updated after processing all inputs of the training set.
e mini-batch - weights are updated after a given number of inputs of the training set.
e stochastic - weights are updated after every processed input of the training set
All gradient descent approaches share the same workflow [56]:
1. Pick a sample from the training set
2. Input vector is set as input of neurons of input layer.

3. Layer by layer are calculated the outputs of neurons (feed forward); output of last
layer is the output of network.

4. Calculate the error E of the output.

29



5. Calculate gradient of the error function VE.
6. Update all weights of the network.

An epoch occurs when every record in the training data has passed through the neural
network and weights have been updated. Training a neural network can take even thousands
of training epochs [14] — hence the reputation for taking a long time to train. The training
time on commonly available computer hardware is acceptable for most problems.

Summary

NNs require numerical data and they can be very sensitive to feature scaling — we need
to transform all features into numeric and perform normalization. NNs have a non-convex
loss function where there exists more than one local minimum. Therefore different random
weight initializations can lead to different validation accuracy — we might consider using
an autoencoder’. They also require tuning a number of hyper-parameters such as the count
of hidden neurons, layers and iterations. NNs have the reputation of being “black boxes”
— it is not transparent why did NN predict such values. However, there are several ways of
determining the most important features of the input variables [11].

Generally, they are models with very promising performance in various fields, despite
disadvantages. NNs are capable to learn non-linear models and have the ability to learn
models in real-time (on-line learning). They can be used both for classification and regres-
sion. In some applications, NNs might outperform other statistical models [19].

4.3 Measuring model’s performance

To determine what is a good model depends on the interests of the organization and is
specified as the business success criterion. These criterions needs to be transformed to a
predictive modeling criterion in order to use it for selecting candidate models [11]. We use
measures of accuracy if we need highly accurate predictions. However, one may prefer to
have more transparent model in order to better understand the predictions. In such cases,
we use subjective measures instead which provides maximum insight. Some projects may
use a combination of both so that the most accurate model is not selected if a less accurate
but more transparent model with nearly same accuracy is available [14].

4.3.1 Confusion matrix and performance metrics

A confusion matrix provides a breakdown of classification errors through a table of actual
values and predicted values. Through this table we can reveal the types of errors the
classifier makes as well as the two ways the model is correct. Confusion matrix defines four
basic values:

True positives (TP) - cases when the model predicted True and the actual value is True,

True negatives (TIN) - cases when the model predicted Fualse and the actual value is
False,

" Autoencoder NN is an unsupervised learning algorithm that applies backpropagation, setting the target
values to be equal to the inputs i.e. y =z [1]
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False positives (FP) - cases when the model predicted True, but the actual value is False
(also known as Type I Error),

False negatives (FN) - cases when the model predicted False, but the actual value is
True (also known as Type II Error).

There are various performance metrics, which are calculated from the confusion matrix.
Here is a list of performance metrics which are often computed for a binary classifier:

TP+TN

Accuracy tells in overall, how ofter is the classifier correct. Defined as “ ;-

Misclassification Rate (Error Rate) tells in overall, how often is the classifier wrong.

Defined as % or also 1 — Accuracy.

True Positive Rate (Sensitivity/Recall) tells how often does the model predict True

. . TP _ _FP
if the actual value is True. Defined as Actual True = TPLFP-

False Positive Rate tells how often does the model predict True if the actual value is

FP _ __FP
False. Defined as g rore = FriTw-

Specificity tells how often does the model predict False if the actual value is False.
Defined as m or also 1 — False Positive Rate.

Precision tells how often is the model correct if it predicts True. Defined as %.

Prevalence tells how often does the True condition actually occur in data. Defined as
Actual True
Total

Positive Predictive Rate is very similar to precision, except that it takes prevalence is

account. In cases where classes are perfectly balanced (when prevalence = 50%), this
metric is equivalent to precision.

F Score (F-measure) isa weighted average of the true positive rate (recall) and precision.

Defined as ) I o
Fl—24 _ o, recall * precision (4.27)

1 1 . .
Recall + Precision recall + precision

4.3.2 ROC curve

A ROC (receiver operating characteristic) curve is created by plotting the true positive
rate (sensitivity) against the false positive rate at various threshold settings. It is the most
commonly used way to visualize the performance of a binary classifier [10]. There are
several things a ROC curve demonstrates [5]:

e closer the curve is to the diagonal of the ROC space, the less accurate the model is,

e closer the curve is to the left-hand border and the top border of the ROC space, the
more accurate model is,

e it shows the trade-off between sensitivity and specificity (any increase of sensitivity
will follow by a decrease in specificity).
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Figure 4.9: This figure shows a ROC curve; taken from [54].

4.3.3 Learning curve

A learning curve captures the training and testing score of a classifier for varying number
of samples. It is a handy tool to find out how much can we benefit by adding more training
data and if the classifier suffers more from a variance error or a bias error [17]. Left picture
of figure 4.10 captures a situation, when both the training and testing score converge to
a value that is too low on increasing number of training samples — we will probably not
benefit much from adding more training samples. However, if the training score is much
greater that the testing score for the maximum number of training samples, adding more
samples to the training will most likely increase the generalization power. On the right
picture of figure 4.10 there is a case, when we could benefit from adding more training
samples.

4.3.4 Model evaluation and hyper-parameter optimization

During candidate model selection process we would like to know how would a given model
perform on unforeseen data. An approach called cross validation does not uses the entire
data set when training. It removes some data from the training set before learning (vali-
dation data). Then, when training is over, we will test the performance of the model on
validation data. This is the basic idea of cross validation [52]. There is few variants of cross
validation:

Holdout method - this is the simplest cross validation. The data is divided into two
parts called training and testing set. The model is trained only on the training set.
The prediction model predicts the output of the testing set (it has never seen these
data before). To evaluate the model the mean absolute test error is calculated. The
disadvantage of this approach is that it might have high variance [52]. The evaluation
might depend heavily on which data end up in the training set and which in the
testing set, thus the evaluation may be significantly different depending on how the
data split was performed.
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Figure 4.10: Images taken from [17].

k-fold cross validation - the data set is split into & subsets and the holdout method is
repeated k times. Each iteration, one of the k subsets is used as the test set and
the other k-1 subsets are merged into the training set. The average error across all &k
iterations is calculated. The advantage of this approach in contrast with the holdout
method is that it matters less how the data is split. Each data point gets to be in
the test set exactly once and gets to be in the training set k-1 times. The larger £ is
set the lower the variance of the resulting estimate will be. However, the algorithm
has to be rerun k times from scratch, which means that it might be computationally
expensive depending what model we are evaluating and the data set size. A variant
of this method is to randomly split the data set into a training and test set k times.
The advantage of this variant is that one can independently choose how large each
test set is and how many iterations one average over.

leave-one-out cross validation - this approach is a special case of the previous one when
K equals to the number of data points in the set. Therefore, the model is trained on
all data except for one point and a prediction is made for that data point. As before
the average error is calculated and used to evaluate the model.

Majority of models require definition of hyper-parameters®. Since we could not know

what parameters yield the best resulting estimate for each model, we have to perform hyper-
parameter optimization (or hyper-parameter tuning) [27]. We will use an algorithm called
grid search (or parameter sweep). Grid search is simply an exhaustive searching through a
manually specified subset of the hyper-parameter space of a model. This algorithm has to
be guided by some performance metric, typically measured by cross validation.

As an example assume we want to use soft-margin SVM equipped with polynomial
kernel function. This kernel function has at least 2 hyper-parameters that need to be
tuned for good performance on unseen data: the regularization constant C' and kernel
parameter . For both hyper-parameters we define a set of values: C' € {10,100, 1000} and
v € {0.01,0.1,0.2,0.5,1.0}. Grid search then trains an SVM with each pair (C;,v;) € C x

8 Hyper-parameter is a parameter of a model whose value is set before the learning process begins. For
instance, consider the number of hidden layers in neural networks.
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and evaluates their performance. Finally, the grid search algorithm returns the settings
that achieved the highest score in the validation process.

The disadvantage of this method is the exhaustive search itself — if the parameter space
is too large, grid search is not effective. In such cases we can use randomized search, which
picks random combinations of parameters from the grid for a given maximum number of
times.

4.4 Candidate model selection

In order to choose among classification models, we will first analyze the data. There are
classification models requiring only categorical variables (Bayes) or only numerical variables
(SVM or NN). We have to also analyze the hyper-parameters of models. After selecting a
set of models which can be fit on our data, we will start a two phase process:

1. Evaluation of models in this phase we evaluate chosen models using cross vali-
dation. Since majority of models require setting of hyper-parameters, we use the
grid search algorithm described above. After model evaluation, we collect the best
evaluation scores of all models and then pick a subset of models with the highest
scores.

2. Candidate selection - after the evaluation we simply test the best models on real
data and analyze their results. High score at evaluation does not necessarily mean that
the model will have such accuracy on unforeseen real data. Some models may overfit
during the training which result in poor performance on real data. In this process
we pick those models, which yield best results in the prediction of PGC status of
projects.
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Chapter 5

Data preparation

The organization uses various cloud-based systems to keep track of active projects. Each
system collects a different type of information — one tracks all the requirements, another
collects issues and defects. There is also a platform for storing information about hours
each employee worked at given day. Since we wanted to collect all information we had
available about the projects, we had to create data collector scripts for all of these systems.
These scripts are storing information into a database.

In this thesis we have been working with Python language. It has very powerful modules
for data related tasks such as numpy' and pandas®.

5.1 Data sources

We have decided to use only 3 data sources on the basis of completeness and quality of data
in each system to cover as many projects as possible. Unfortunately, there are no strict
rules which system to use in the whole organization. We had to exclude systems, which
provided incomplete information or which were not used uniformly among businesses. At
the end we left off with 3 data sources from which 1 is used only for joining the other 2
systems:

System for project management - this system contains the majority of information we
have about projects. it contains:
e basic information such as project size, business unit, country, city etc.,

e information about people responsible for given project such as owner, team
leader, employees etc.,

information about project planning such as baseline dates and planned dates,

financial information

[ ]
System for reporting hours - this system records employee hours worked on projects.

System for additional project management information - this system is used only
for linking the previous systems together. Otherwise it does not contain any valuable
information we could use for prediction.

! Numpy Python module available at http://www.numpy.org.
2 Pandas Python module available at https://pandas.pydata.org.
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5.2 Data separation

At a very high level we can recognize 2 businesses in the organization — thermostats and
security panels. Projects of these businesses can be divided into 2 groups by their size —
major and minor projects. Due to this fact, we had to separate the projects by business unit
and size in the prediction analysis since their data can differ sufficiently. The development
process of projects within these groups are different so differs their data. This separation
should ensure the preservation of projects’ typical characteristics.

Since we want to use supervised learning to make predictions, we distinguish training
and testing data. For training and model evaluation we take all projects ended between
2014 and 2017. Then, we will test our models on projects which has not ended yet.

5.3 Data preprocessing

Real world data in raw form cannot be used in prediction. Data have to be cleaned and
transformed into a form, which meets the requirements of prediction models. Raw data we
collected contain missing data, irrelevant columns and there are also significant differences
between ranges of numerical columns (e.g., number of hours worked vs. total project
investment). We will describe the process of data preprocessing, which we use for all
groups of data. This process starts right after we exported the raw data from systems
and inserted them into a database. Figure 5.1 shows the preprocessing workflow we used.
Preprocessing steps will be described in more detail in this section.

Primary Project Secondary Project
Management system Management System

|

Hours Reporting
System

select data

r
| foreach | Drop irrelevant Drop samples with

________ columns missing values
Raw Data () 9 ()
/ /

Add new columns

Drop date-time
columns

scaling

Normalized
Data

Figure 5.1: This figure captures the process of data preprocessing. We implemented several
Python scripts that export data from selected systems and then store them in a database.
We consider these data raw. According to the steps described, we gradually transform the
data into a form that suits to prediction models.
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5.3.1 Cleaning and column construction

First, we retrieve the raw data from the database via SQL select scripts. Second, we have to
remove some columns from the dataset containing project specific information — ID, name,
business unit, size. We also need to remove information related directly to the prediction
target, i.e., baseline planned and actual date of phase gate 5. This information is not
removed entirely, we keep them until the end of preprocessing process.

Third, we have to deal with missing data. The raw dataset contains some columns with
lots of missing data. Unfortunately, the best thing we can do is set a threshold value (we set
33%) according to which we decide whether we drop that given column. If a given column
has more than 33% of its rows empty, we drop that column. These columns are irrelevant
for the prediction because models cannot handle empty values effectively.

Aside from columns with missing data, raw dataset contains several irrelevant columns
for the prediction. These columns contain information such as:

e project IDs in systems,

e project description,

e project owners and creators,

e custom fields containing user inputs (majority of these columns contain sparse data),
¢ information available after phase gate 5.

We removed these columns from the dataset because they do not contain any valuable
information for the prediction. In the case of phase gate 5 related columns, we have to
remove them either, because we want to predict whether projects will miss or meet the
phase gate 5 deadline. We cannot provide this information to our models as they will be
used before the phase gate 5 will end.

Then, we create new columns which will aggregate information from few columns in the
dataset. We create these new columns:

e Project Length - this information is easily calculated from project start and end
date.

e Phase {1-4} Length - like the previous column, lengths of project phases are cal-
culated as difference of start and end dates of each project phase.

e Phase {1-4} Miss - this column contain boolean value and is calculated according
to PGC metric specification see 3.1.

After creating new columns, we can remove all columns containing date-time information.
We will not lose any information, because we have already aggregated them into columns
described above.

5.3.2 Transformations

At this point, we have to deal with different ranges of numerical columns and appropri-
ate representation of categorical columns. The problem with different ranges of numerical
columns is that they are not suitable for distance-based prediction models. A model could
prioritize columns with more extensive ranges and neglect ones with small spreads. This
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is the reason, why we need to scale and center (having mean = 0 and variance > 1) all
numerical columns. There is a long list of normalization methods [11]. We have already
described min-max and z-score in 4.2.4. In our implementation, we used min-max scaling
because our data are not normally distributed.

To handle categorical data, we transform them into numerical data. There are two
ways to perform this transformation, which were already described in 4.2.4. We decided
to prefer one-hot encoding (dummy variables) over the simple integer encoding, due to its
better characteristics. After applying the one-hot encoding to categorical columns, the
feature space was extended by lots of binary variables carrying information of the original
categorical data.

In the end, we merge the scaled numerical data and the one-hot encoded categorical
data. We have cleaned and normalized the raw data. Data are saved into CSV? files. The
scaling objects used at preprocessing are serialized to be able to use them later at prediction.

5.4 Dimensionality reduction

Although we have preprocessed normalized data, we cannot use them for prediction yet.
Data retrieved from the systems contained about 400 attributes. After preprocessing, the
original data was extended by another 800 variables due to the encoding of categorical
variables. This is a problem we have to solve with dimensionality reduction techniques.
There are two basic approaches to reduce the number of dimensions of our data — feature
selection and feature extraction. By reducing the high dimensionality, we can create more
accurate predictive models.

5.4.1 Feature selection

Feature selection helps us to choose features that will give as good or better model accuracy
while requiring fewer data. These methods can be used to identify and remove irrelevant
or redundant attributes from data that do not contribute to the accuracy of a predictive
model or may in fact even decrease the overall accuracy of the model. It is more desirable
to have fewer attributes because it reduces the complexity of models and simple models are
easier to understand and explain.

The main goals and benefits of feature selection are [22, 21]:

improve the performance of predictors,

provide faster and more cost-effective predictors — less data means that algorithms
train faster,

provide a better understanding of the underlying process of prediction,

reduces overfitting — less redundant data means less opportunity to make decisions
based on noise,

In this thesis we use 4 feature selector methods which implement 3 distinct approaches
of feature selection:

3CSV (comma-separated values) is a delimited text file using a comma (or other separator) to
separate values. It stores tabular data (numbers and text) in plain text.
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Figure 5.2: This figure captures the process of selecting the best features from given data
file. Resulting features are used for training and evaluation of prediction models.

Univariate selection - these methods work by selecting the best features based on uni-
variate statistical tests. These tests are used to select those features which have the
strongest relationship with the target variable. The sci-kit learn library in Python
provides SelectKBest class that can be used with a suite of statistical tests to select
a given number of features.

Recursive feature elimination - this approach is recursively removing attributes and
builds a model on remaining attributes. It uses the model accuracy to identify which
attributes contribute the most to predicting the target.

Feature importance - ensemble methods like Random forests or Extremely randomized
trees can be used to estimate the importance of features. These methods use a metric
called gini importance or mean decrease impurity. It is defined as the total decrease
in node impurity (weighted by the probability of reaching that node which is approx-
imated by the proportion of samples reaching that node) averaged over all trees of
the ensemble [19].

We implemented the following process to retrieve k best features from preprocessed
data. This process is shown on figure 5.2 and it is made of these steps:

1. Retrieve normalized data created at the phase of data preprocessing.

2. Fit feature selector models with data and retrieve m features with largest contribution
to model accuracy.

3. Merge selected features into one list and remove duplicate features.

4. Perform correlation analysis and remove highly correlated features. An example can
be seen on figure 5.3.

5. Visualize and compare data distributions of selected features on ended projects and
projects currently in progress. Keep features with equal or similar distribution.
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6. Use resulting k features for training and evaluation of models.
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(a) Selected merged unique features (b) Eliminated highly correlated features

Figure 5.3: We performed correlation analysis on selected features. On the left image we
can see that there are some features highly correlated to each other. We recursively remove
features which has higher correlation coefficients in absolute value than a given threshold
value ¢ (we use ¢ = 0.3) and correlates to the most features. The elimination process stops
once there are no such feature with higher correlation coefficient than ¢. The resulting set
of features are shown on the right image.

(a) Numeric feature 1 (b) Numeric feature 2 (c) Numeric feature 3

Figure 5.4: After removing highly correlated features, we have to compare the distribution
of data of ended projects and projects in-progress by each feature. We used wviolin plots*to
compare the distribution of numeric features and histograms for categorical features com-
parison. The first violin plot captures a feature which can be used safely for prediction due
to a similar distribution of values of ended and current projects. We can also use the second
feature, but the similarity of distributions are not so much the same. The last feature is
irrelevant because it contains information after PG5. We forgot to add it to the list of
irrelevant columns during preprocessing.

4Violin plot is a combination of box plot and a density plot that is rotated and placed on each side, to
show the distribution of data.
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5.4.2 Feature extraction

In this thesis, we used feature selection approaches to deal with a large number of di-
mensions. However, there is another approach called feature extraction. A well-known
algorithm of this approach is Principal component analysis (PCA). Generally, this is a data
reduction technique. A property of PCA is that we can choose the number of dimensions in
the transformed result. PCA tries to find correlated variables and describe them as Princi-
ple Components (PCs). When a PCA model is built, we can use 5 PCs instead of original
20 variables — we know that most of the information in the 20 variables are still present
in the 5 PCs. These PCs can be viewed as features of the original data, which provide a
different representation of the data for the models to use.
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(multidimensional) embedding

Figure 5.5: This figure captures PCA transformation. Blue points represent samples in
data. In this schematic, PCA reduces the dimensionality from 3 to 2. In particular, it
finds a pair of orthogonal vectors (red arrows) that define a lower-dimensional space (grey
plane) which captures as much variance as possible from the original dataset. The example
is taken from [55].

Despite being very useful as a feature extraction algorithm, PCA has several drawbacks
we have to be aware. First, PCA provides a linear projection of the data. If patterns in
the data are non-linear, PCA could even destroy them, producing worse models than the
original data would create [11]. In case we have fewer samples than variables PCA is an
inconsistent estimator — we need to regularize the given problem. PCA is not suitable to
use if data contain missing values. Then, PCA is provably an NP-hard problem[55].

Another drawback of PCA is the lack of interpretability it yields. Principal components
aggregate correlated variables in the data, and for this reason, we lose interpretability of
the prediction models since we do not know what features they are using to predict the
target variable. For this reason, we could not use PCA to extract features from the data.
We preferred feature selection methods due to better interpretability of the features and
prediction models.
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Chapter 6

Implementation

In this chapter, we will describe the implementation of the prediction system. Preprocessing
and feature selection was already described in the previous chapter. This chapter will cover
the implementation of:

e classification models and their training,
e hyper-parameter tuning of models,

cross-validation of models,

performance metrics and evaluation methods used to select candidate models,

prediction.
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Figure 6.1: This figure captures the workflow of the model training and evaluation process.
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6.1 Technology stack

The main programming language of this thesis was Python. We chose Python because
it has lots of robust and efficient libraries for data processing e.g. Numpy, Pandas or
Scipy. Python also has popular libraries for machine learning such as Sci-kit learn or Keras,
which natively supports previously mentioned data processing libraries. There are also
public visualization libraries written in Python. We used Matplotlib and Seaborn libraries.
The data science community of Python is quite large, which we appreciated during the
development.

The organization uses MySQL database for persistent storage. Python has a wide range
of libraries for database support. We used SqlAlchemy’s connection object called engine,
which can be combined with the Pandas library — we retrieved data from the database in
a pandas object (data-frame).

Trained models were deployed on an intern server as a small web application. This web
application is showing current projects and their phase gate compliance prediction in the
form of a dashboard. We used Python’s Flask web application library.

6.2 Classifiers

We have described various algorithms in section 4.2. In this section, we will focus on
their implementation. We used Keras library to implement neural networks. This library
is a wrapper above the popular Tensorflow deep learning library. Keras simplifies the
implementation of neural networks and it is very helpful in quick prototyping. Other
models were implemented with the sci-kit learn library.

KNeigborsCLF

’GaussianNaiveBayesCLF‘ A ClassifierB
assifierBase

\ _busi’ne:s_q“it: KerasNeuralNetworkBase
-pr :
SupportVectorCLF Prediction t

-prediction_type:
—classifier_obj: / +create_model(neurons: (Int),

D> -parameter_space: initializers: (str),
- constraints: ),

(
> +get_data() activations: (str),
- x : dropout_rates: (Int),
DecisionTreeCLF +get_target(): metrics: (str),
/ +get_features(): loss_fn:
+get_model(): / timi fn: :
/| +fit_model(): P keras. sequ )

del()
RandomForestCLF I§Z¥°c'v"°s§ures<)
+plot_charts():
ExtraTreesCLF / l\

’ GradientTreeBoostingCLF ‘ AdaBoostCLF Keras3LayerNeuralNetworkCLF ‘ Keras4LayerNeuralNetworkCLF

Figure 6.2: Figure shows the implementation of classification models in form of a class
diagram. All operations shared by all classification models are encapsulated in the
ClassifierBase class. Each classifier is instantiated with its object and parameter space.
In the case of neural networks they share a factory method.

Figure 6.2 shows the implemented hierarchy of classes. We can see that there is a

ClassifierBase class encapsulating shared operations within the classifiers. Specialized
classifier classes are initialized by these parameters:
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e business_unit, project_size and prediction_type — we need them to properly
load data and features.

e classifier_obj and parameter_space — each classifier class instantiates appropri-
ate classifier method and defines a dictionary of hyper-parameter values for their
tuning.

The following code snippet from the implementation shows an example of classifier class
specifically KNeighborsCLF class.

01 from sklearn.neighbors import KNeighborsClassifier
02

03 class KNeighborsCLF(ClassifierBase):

04 def __init__(self, data_group):

05 clf = KNeighborsClassifier()

06 clf _params = {

o7 "n_neighbors": [5, 7, 11], # number of neighbors

08 "weights": ["uniform", "distance"], # weight function

09 "p": [1, 2] # minkowski (1), euclidean (2) distances
10 }

11 super().__init__(data_group, clf, clf_params)

First, we instantiate a KNeighborsClassifier class with given parameters. Then, we define
the parameter space for the classifier, which will be used for the tuning. To construct the
parameter space for each classifier method, we had to properly understand what does a
given parameter do and what impact may it have on the performance of the model.

Other classifier classes are very similar except for neural network. They inherit ad-
ditionally from KerasNeuralNetworkBase class, which contain create_model method for
creating the neural network according to parameters of the method.

6.3 Cross validation and hyper-parameter tuning

As described in the previous section, we have created a classifier object and its parameter
space. These values are passed into the constructor of base class, which calls the following
method:

01 def fit_model(self) -> None:
02 grid_search = GridSearchCV(

03 self.classifier_obj, # classifier object

04 self.parameter_space, # classifier’s parameters space

05 cv=30, # number of cross-validation folds

06 refit=True, # refit the classifier with best hyper-parameters on whole dataset
07 n_jobs=-2, # number of parallel jobs (-1 = max)

08 return_train_score=True)

09 # fit the grid search with data
10 grid_search.fit(self.samples, self.target)

11 # set classifier with best hyper-parameters

12 self .model = grid_search.best_estimator_

13 # retrieve cross validation scores and best hyper-parameters

14 self.cv_results = self.get_scores(self.model.cv_results_, self.model.best_params_)
15 self.best_params = self.model.best_params_

This method uses sci-kit learn’s GridSearchCV class, which combines cross-validation with
hyper-parameter tuning. It uses StratifiedKFold, which is a variation of the k-fold
method that returns stratified folds — folds made by preserving the percentage of samples
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for each class [17]. GridSearchCV takes all n-tuples gradually from the cartesian product
of hyper-parameters and performs cross-validation for each n-tuple of hyper-parameters. It
collects all the cross-validation results during its run. With the parameter refit=True set,
it refits the classifier with best-found hyper-parameters on the whole dataset and returns
it. The best hyper-parameters are those that maximize the score of the testing data. We
have retrieved the average score and the standard deviation of scores of the classifier. An
example of the cross-validation scores and best parameters of the KNN model:

best_params = {"n_neighbors": 5, "p": 1, "weights": "uniform"}

cv_scores = {"mean_train_score": 0.8836, "std_train_score": 0.0016,
"mean_test_score": 0.8801, "std_test_score": 0.0462}

After the classifier with best parameters is already trained, we need to evaluate the
model to see how it performs with comparison to other models. In the next section, we will
cover the performance metrics and visualization tools used in our implementation.

6.4 Performance metrics and visualization

We have implemented several performance measures and visuals to compare prediction
models. We encapsulated the implementation in the PerformanceMetrics class. Class
diagram is shown on figure 6.4.

We used functions from Sci-kit learn’s metrics module which contain implementations
of performance measures and more. PerformanceMetrics class implements:

e most significant classification performance measures — precision, recall and F-measure
using metrics.classification_report function. Given function calculates model’s
performance and returns the following output. An example of classification report of

KNeighborsClassifier:
classes precision recall F1_score support
False 0.74 0.92 0.82 38
True 0.84 0.57 0.68 28
avg/total 0.79 0.77 0.76 66

e plotting of confusion matriz. It is calculated using metrics.confusion_matrix func-
tion. Plotted confusion matrix is visualized on figure 6.3.

e plotting of ROC curve. This important performance descriptor is calculated by
metrics.roc_curve and metrics.auc functions. Plotted ROC curve is shown on
figure 6.3.

e plotting of learning curves. In order to plot the learning curve of a classifier, we used
previously collected cross validation scores of given classifier and passed them into Sci-
kit learn’s model_selection.learning_curve function. This function return value
can be passed right into Matplotlib’s plotting functions. An example can be viewed
on figure 6.3.

e plotting of neural network’s topology. Keras library’s function utils.vis_utils-
.plot_model makes easy for us to accomplish that.
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Figure 6.3: On left picture you can see the confusion matrix of validation performance of
KNeighborsClassifier on a given dataset. Middle picture shows its ROC curve and AUC
score. The right one captures the learning curve of given classifier.
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Figure 6.4: This figure shows the class diagram of class PerformanceMetrics.

6.5 Prediction

After we have trained our models, tuned their parameters and visualized their performance,
we describe the implementation of the most exciting part of this thesis — the prediction.
The workflow of the prediction process is shown in figure 6.5.

We encapsulated the whole implementation of prediction into a class called Prediction.
Class diagram is shown on figure 6.4. We selected all projects in the organization which are
in progress at the time of writing this thesis. We will describe these projects in the next
chapter.

The process of predicting the PG5 compliance of currently active projects are made of
these steps:

1. First, for each data group we retrieve active projects in the organization.
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Figure 6.5: Figure showing the workflow of the prediction process. First, we retrieve the
data of currently active projects from our database. We apply the same preprocessing steps
we used previously and select features. Then, we pass normalized data into classification
models and collect their predictions.

2. Then, we preprocess these samples using the same preprocessing steps as before.

3. Select features from data.

4. Predict PG5 compliance with each classification models and collect their predictions.
5. Save predictions into CSV file.

The following code is our implementation of the prediction process.

01 def make_predictions(self) -> None:
02 early_predictions, late_predictions = list(), list()

03 for data_group in self._get_data_groups(): # for each data group

04 raw_data = self._get_data(data_group) # load data from DB

05 for clf_name in self.classifiers[data_group]: # for each classification model
06 # preprocess each row and predict PG5 status

07 predict_datalclf_name] = raw_data.apply(

08 lambda row: self.preprocess_and_predict(row, clf_name, data_group),axis=1)
09 if "early" in data_group: # collect predictions

10 early_predictions.append(predict_data)

11 else:

12 late_predictions.append(predict_data)

13 # concatenate and set all predictions

14 self.early_predictions = pd.concat(early_predictions)

15 self.late_predictions = pd.concat(late_predictions)

16

17 def preprocess_and_predict(self, row, clf_name, data_group):

18 normalized_sample = self._preprocess(row, data_group) # preprocessing
19 testing_sample = normalized_sample.loc[:, self.features[data_groupl] # get features
20 return (self.classifiers[data_group] [clf_name] # prediction
21 .predict_proba(testing_sample).item(0) * 100)

It is very important to use the same preprocessing steps during the prediction as we
used during the training. This is the reason why did we serialize the scaler objects before
training — to use the same scaling technique and ranges. All predictions are shown in
appendix B.
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Chapter 7

Model evaluation

In this chapter, we will introduce existing prediction models which are used within the
company. We will describe their training performance and their prediction power. Existing
models are trained on projects ended between 2014 and 2015. These models were trained
using previously selected feature variables. We will test their prediction power on testing
set.

Next, we will evaluate new models trained on projects ended between 2014 and 2016.
We will test new models on the same testing set to be able to compare their performance
with previous models. New models were trained using new feature variables retrieved by
our feature selectors described in 5.4. According to training and testing results we will
choose best candidate models among new predictors.

At the end of this chapter, we will compare the performances of existing and new models.
Depending on the results, we will choose models with best prediction power. Abbreviation
used in this chapter are enlisted in table 7.1.

Abbreviation Classification Model

3LNN 3-layer Neural Network
4LNN 4-layer Neural Network
ADA AdaBoost

DTC Decision Tree

ETC Extremely Randomized Tree
GNB Gaussian Naive Bayes

KNN K-Nearest Neighbors

RFC Random Forest

SVM Support Vector Machine
XGB Extreme Gradient Boosting

Table 7.1: List of abbreviation used in this section

7.1 Training and testing sets

Training sets consisted of only NPI projects, which were not stopped or canceled during
the development. As already mentioned in section 5.2, training samples were divided by
business unit and project size. Existing models were trained on projects ended between
2014 and 2015. Then, we extended these training sets by projects ended in 2016. New
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models were trained on this extended training set. The number of samples in training sets
are following:

e major thermostats — 176,
e minor thermostats — 292,

e major security panels — 221.

7.2 Current models

In this section, we will evaluate the prediction performance of existing models in the orga-
nization. We have trained all models on projects ended between 2014 and 2015, but only
3 models were originally implemented during the rapid development — SVM, RFC and ETC
(we marked them with 1 in the following charts for better orientation). At each project
group, we will evaluate its models by their performance metric scores measured during
cross-validation and by their prediction performance.

We measured three performance metrics — AUC score, which is the area under ROC
curve of given model, F'1 Score, which represents the relationship between recall and pre-
cision of given model and the third metric is Accuracy reflecting the number of correctly
predicted values.

7.2.1 Major thermostat projects

Figure 7.1 shows major thermostat prediction models’ performance scores. We can see
that late models have higher scores than early ones. Late models were trained on features,
which contain information about phase 4. Bar charts show that some models increased
their scores, while some of them did not.

Figure 7.1: Current major thermostat models’ performance metrics

(a) Early models’ performance (b) Late models’ performance
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Although performance metrics are an important part of the model evaluation and help us
to the get better insight to models’ behavior, the prediction accuracy on real projects is the
final test, whether we choose given model for candidate model or not. Stacked bar charts on
figure 7.2 show prediction results on projects ended in 2017. The left bar contains mistakes
the model made during the prediction, and the right bar shows all correctly predicted
samples. Colors represent different values of the confusion matrix.
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Figure 7.2: Current major thermostat models’ predictions

(a) Early predictions (b) Late predictions
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Currently deployed models have quite good predictive power. We prefer models with
higher false negative rate than false positive rate. False negative errors serve as warnings
that something might not be okay with given projects.

7.2.2 Minor thermostat projects

Bar charts on 7.3 captures the performance of minor thermostat predictors measured by
cross-validation. We can see that late models have quite increased their performance with
the inclusion of phase 4 features. Late SVM model has achieved nearly 100% accuracy score.
Let’s analyze their prediction accuracy on projects ended in 2017.

Figure 7.3: Current minor thermostat models’ performance metrics

(a) Early models’ performance (b) Late models’ performance
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We can see that currently used early models in the organization has made quite a lot
of mistakes. However, some of the newly implemented early predictors have predicted with
higher accuracy — early models with the least mistakes are KNN and 3LNN. In contrast,
late models’ accuracy looks roughly the same except 3LNN — this network was unable to

generalize the given problem properly. Predictions are shown on stacked bar charts in figure
7.4.

7.2.3 Major security panel projects

Bar charts in 7.5 captures the performance scores of models calculated during cross-validation.
We can see that late models have increased their performance with information provided
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Figure 7.4: Current minor thermostat models’ predictions
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in phase 4 features. As it was in minor thermostat predictors, SVM has the highest cross-
validation scores. We will test its predictive power on 2017 projects.

Figure 7.5: Current major security panel models’ performance metrics
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If we take a look at prediction results visualized in stacked bar charts in 7.6, we see
that early models are not as accurate as the late models. It seems that in the case of major
security panel prediction, the knowledge of phase 4 feature is essential. We can see that
early SVM and GNB models are overfitted as they were unable to predict projects of 2017 —
it seems that these models always predicted negatively.

Figure 7.6: Current major security panel models’ predictions
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Among early models, DTC, KNN and XGB models performed very well. However, by adding
phase 4 features into the training set, the prediction accuracy has improved significantly.

7.3 New models

In this section, we will evaluate the prediction performance of newly trained models. We
have trained all models on training set consisted of projects ended between 2014 and 2016.
We will see whether models increased their prediction accuracy by including projects ended
in 2016. At each subsection, we will suggest the best candidate models for the prediction
system. Feature variables selected by feature selectors and their description are located in
appendix C.

7.3.1 Major thermostat projects

According to charts in 7.7, there is an increase of performance metric scores both on early
and late predictions. ADA has in both cases the highest score. To properly choose best
candidates for this project group, we need to evaluate the predictions on projects ended in
2017. RFC, ADA and 3LNN are models with the biggest improvement.

Figure 7.7: New major thermostat models’ performance metrics
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If we look at figure 7.8, we see that all models performed roughly the same except
DTC model. Models have higher false positive rate than false negative rate. However, the
accuracy has improved in comparison with current models. Late predictors have slightly im-
proved their prediction accuracy and reduced the false positive rate — this is true especially
for RFC, ADA, XGB, SVM, 3LNN and 4LNN.

We have carefully analyzed the performance metric scores and prediction accuracy of
new models. For the early models, we suggest ADA for the candidate model due to having
best performance scores of cross-validation and having the highest accuracy and lowest
false positive rate on projects of 2017. We could suggest ADA or neural networks for late
candidates — they have highest performance metric scores, and they also performed well
on 2017 projects.

°

re
°
o

°
~

7.3.2 Minor thermostat projects

In this subsection, we will analyze newly trained prediction models of minor thermostat
project group. According to performance metrics visualized on 7.9, models with best scores
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Figure 7.8: New major thermostat models’ predictions
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are DTC and SVM. Interestingly, late SVM has decreased in scores, late DTC in contrast, has in-
creased overall performance metric scores. Neural networks have quite high scores, too. We
will see how they predict 2017 projects and according to results, we will choose candidates
for the prediction system.

Figure 7.9: New minor thermostat models’ performance metrics
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Prediction of PG5 Miss by both early and late models are summarized in stacked bar
charts on figure 7.10. The early SVM model did not perform well on new data with predic-
tions. Also early models ETC and GNB have low accuracy — it seems that they predicted all
labels negatively. Unlike early models, the results of late models are very good. DTC, 3LNN,
and 4LNN could be chosen for candidates because they have the most accurate prediction
and their false positive rate is meager.

Among early models, we suggest one model of the following: ADA, 3LNN, XGB. Despite
having average performance metric scores compared to other models, they have performed
best on the testing data. All late models look quite the same according to prediction
accuracy. We suggest DTC or 3LNN for candidate, because they performed slightly better
than other models in this project group.

7.3.3 Major security panel projects

The testing set of this project group contain more missed projects than the other groups.
We will see, how well did our models learn to generalize this project group. First, we will
analyze the performance metric scores of prediction models, which are shown on figure 7.11.
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Figure 7.10: New minor thermostat models’ predictions
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Bar charts show, that models have quite the same performance scores. This is especially
visible on the right picture.

Figure 7.11: New major security panel models’ performance metrics
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In order to evaluate the prediction results we will evaluate how well did our models per-
form on 2017 projects. Figure 7.12 contains two stacked bar charts, where we summarized
the prediction results of models. We can see, that KNN had the best accuracy on the testing
set among early models. Late models, in the other hand, performed a lot better that the
early models.

Figure 7.12: New major security panel models’ predictions
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As we already mentioned above, we suggest KNN for the candidate model for the early
prediction. There are several late models, which performed equally well. We suggest ETC,
RFC or XGB for candidate models of major security panel prediction.

7.4 Comparison of current and new predictors

In previous sections, we have evaluated currently used and newly trained prediction models.
In this section, we will compare them and analyze whether they improved or not.

Although the organization implemented only three models (SVM, RFC, ETC), we have
trained the rest of the predictors on the same training set and feature set. In this way, we
could objectively compare currently used models with the new ones. We found out that in
some cases some other models had more accurate predictions than the currently deployed
models. For example, the company uses ETC model to predict Phase Gate 5 Miss of late
thermostats. ADA has made fewer mistakes and at the same time had a lower false positive
rate.

In table 7.2 we enlisted and compared selected candidate models with current models
of the prediction system. We have achieved higher prediction accuracy by:

e extending the original training set with projects ended in 2016,
e using new feature variables
e and considering wider range of prediction models.

Candidate models were able to create generalization rules successfully. Models have been
able to predict projects ended in 2017 with high accuracy using these generalization rules.
Cross-validation results of candidate models are shown on figures in D.

Current model Candidate model
Name | Accuracy (%) | FP rate (%) | Name | Accuracy (%) | FP rate (%)
Major Early | ETC 66.67 55.56 ADA 17917 1 88.89
Late | ETC 83.33 14.44 ADA 1 80.58 Il
Thermostats i Early | ETC 11.94 71.43 3LNN 183.87 71.43
Minor 5 FTC 77.42 100.00 3LNN 100.32 1 28,57
Security Major Early | ETC 53.33 7.14 KNN 176.67 114.28
Panels Late | ETC 76.67 714 ETC 1 86.67 7.14

Table 7.2: This table contains the comparison of current models and selected candidate
models. We compared the prediction accuracy of candidate models with the currently
deployed model in the company — ETC predictor. In each category, new candidate models
achieved higher accuracy than the current model.
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Chapter 8

Further improvements

We have successfully trained and evaluated new prediction models and chosen new candi-
dates for the prediction. In this chapter, we will think about the possibilities, how could
we obtain more accurate predictions. What could we do to improve the predictive power
of models? We have tried various models with different approaches to solving our classifi-
cation problem. We identified and chose the best candidates. There are two ways we could
improve our prediction accuracy.

First, we should analyze our feature variables in more detail to get better insight — why
did we get such feature variables; why are they more relevant than others. For example,
let’s analyze Phase 4 Length feature. It reflects the length of phase 4 of the development
process, however, it is only a result metric. Typically, the longer the length of phase 4, the
higher the probability of Phase Gate 5 Miss. This can be seen in figure 8.1. However, what
are the causes of phase gate length extension?

Phase 4 Length Distribution of NPI Projects

PG5
I Missed
N 0K

Phase 4 Length

T T
Major Minor
Projects

Figure 8.1: Figure captures the Phase Gate 4 Length distribution for major and minor NPI
projects in the organization. We can see that projects which met Phase Gate 5 schedule
have lower Phase Gate 4 Length. Values were scaled to not reveal confidential information.

It can be the case, that major projects are more challenging to manage. If this is true,

we could suggest changing the development process of major projects — we could divide
these projects into two smaller projects. For example, let’s consider we want to break down
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the development of a thermostat with lots of features into two parts. The first project will
have the responsibility to develop a basic version of the thermostat, while the second will
update the basic version with the rest of the features. However, the question is whether
the basic version would have success on the market — if yes, it would worth to adopt this
development process change.

Let’s consider Phase Gate 4 Miss feature. It says whether a project meets planned
phase gate 4 schedules, however, we have no information about the causes of delays. We
have to undertake a more in-depth analysis, whether there are problems with suppliers, for
instance, — we should carefully analyze the risks that suppliers do not deliver components
on time.

The second improvement is related to requirements. At the beginning of the Phase Gate
Compliance prediction, we have chosen three systems, from which we gather data and use
them for the prediction. We have decided to choose these systems by completeness and
quality of data covering as many projects in the organization as possible. However, some
information is missing from these data. For example, we did not include any information
about requirements of projects — project managers use several systems to keep track of
requirements, what causes inconsistency in data processing.

We suggest to focus on requirements analysis and to create several performance metrics,
which would help to keep track of their quality. In this way, we could also set metrics
focusing on the reduction of requirements change requests during the project development
process.
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Chapter 9

Conclusion

This work was created in cooperation with an I'T company operating in the area of smart
homes and IoT devices. The organization is predicting whether projects meet planned
deadlines of the last phase of development process using machine learning in earlier phases
of development. The already implemented prediction system works, but it was created
under rapid development. The goal of this thesis was to optimize this prediction system
since no broader analysis was made and the company does not know enough about the
quality of the predictions.

At the beginning of this work, we focused on performance metrics in an organization.
Then, we outlined how the company sets its business goals and how it uses performance
metrics to track the success of meeting business goals. We introduced a metric called Phase
Gate Compliance that determines whether a given project meets planned schedules. Next,
we dived into machine learning and analyzed the existing classification algorithms. Then,
we defined how we will measure the performance of classification models and how we will
select candidate models.

In the second part of the thesis, we characterized the data sources we used during the
training of predictive models. We have described in detail the way of data pre-processing
and the selection of the best feature variables. We have also described the implementation
of predictive models, implementation of training and performance evaluation. We also
specified how did we implement the prediction of Phase Gate Compliance. In the last part
of the thesis, we have described and compared the existing and newly trained prediction
models and suggested further improvements how could we increase the prediction power of
models.

The original training set included NPI projects ending between 2014 and 2015. By
extending the training set with projects ended in 2016, we have achieved a slight increase
in prediction accuracy. It means that NPI projects ended between 2014 and 2016 have
some characteristics in common. The prediction models were able to create generalization
rules successfully. An essential part of the optimization is an automatic selection of the
best features.

At the end of the work, we outlined how the organization could increase the prediction
power of the models. One of the options is to focus on a more profound analysis of selected
features, according to which models predict project delays. Another option is to design some
performance metrics to help the organization monitor the quality of project requirements,
which would reveal possible problems at earlier stages of development and thus reduce the
risk of delaying the project. Suggested metrics could help reduce the number of change
requests of requirements.
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Appendix A

DVD content

All the source code was created within the organization. Since Python scripts are gather-
ing data from databases of the organization, scripts are working only within their intern
network. Scripts were modified to not reveal confidential information. The source codes
on the DVD were implemented by the author of this thesis. DVD contains all the source
codes written in Python, charts of current and current prediction models, source codes of
the thesis text and the thesis in PDF format.

/
l___ src/ ... source codes in Python language
classifier.py
feature_selection.py
main.py
prediction.py
preprocessing.py

s— charts/

current_models/ ... charts of current prediction models
new_models/ ... charts of new prediction models
doc/ .. tex source codes of the thesis text

I: thesis.pdf
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Appendix B

Predictions

In this chapter we attached two tables with predictions — early and late predictions. Rows
in these tables represent projects ended in 2017. These projects have already ended and
we know their final PG5 compliance. PG5 Miss column represents the true labels and
we are going to compare our predictions against them. PG5 Miss column was calculated
according to definition 3.1. Prediction models return a probability of the predicted class —
we calculated the predicted label as follows

False < 50%
prediction (PG5 Miss) = { e = o (B.1)

True  otherwise
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Table B.1: Early major thermostat predictions

# | PG5 Miss | GNB | DTC | RFC | ETC | KNN | ADA | XGB | SVM | 3LNN | 4LNN
1 True 100% | 100% | 100% | 80% | 80% | 71% | 88% | 76% 82% 85%
2 True 100% 0% | 80% | 65% | 80% | 53% | 57% | 72% 53% 55%
3 True 100% | 100% | 80% | 79% | 80% | 57% | 79% | 8% 84% 95%
4 True 100% | 100% | 100% | 92% | 100% | 57% | 90% | 73% 1% 76%
5 True 100% | 100% | 80% | 85% | 80% | 56% | 89% | 76% 88% 90%
6 True 100% | 100% | 90% | 73% | 80% | 62% | 7% | 75% 78% 78%
7 True 100% | 100% | 90% | 79% | 100% | 63% | 76% | 85% 93% 98%
8 True 100% | 100% | 90% | 88% | 100% | 76% | 87% | 83% 94% 96%
9 True 100% | 100% | 90% | 74% | 80% | 72% | 88% | 78% 85% 91%
10 True 100% | 100% | 90% | 86% | 100% | 63% | 74% | 83% 88% 92%
11 True 100% 0% | 80% | 1% | 80% | 70% | 86% | 77% 83% 89%
12 True 100% | 100% | 90% | 90% | 100% | 56% | 86% | 69% 60% 51%
13 True 100% | 100% | 90% | 79% | 80% | 72% | 88% | 80% 88% 93%
14 True 100% | 100% | 100% | 75% | 80% | 57% | 89% | 75% 85% 86%
15 True 100% | 100% | 90% | 89% | 100% | 76% | 87% | 73% 70% 69%
16 True 100% | 100% | 100% | 82% | 100% | 63% | 89% | 81% 92% 94%
17 True 100% | 100% | 100% | 89% | 100% | 77% | 86% | 83% 95% 97%
18 True 100% | 100% | 100% | 91% | 100% | 78% | 86% | 70% 63% 49%
19 True 100% | 100% | 90% | 91% | 100% | 64% | 89% | 82% 91% 94%
20 True 100% | 100% | 100% | 85% | 60% | 71% | 8% | 7% 82% 84%
21 True 100% | 100% | 40% | 60% | 80% | 48% | 54% | 68% 39% 30%
22 True 100% | 100% | 100% | 81% | 80% | 72% | 87% | 7% 83% 86%
23 True 100% 0% | 60% | 49% | 60% | 51% | 57% | 7% 58% 83%
24 True 100% | 100% | 100% | 88% | 100% | 65% | 82% | 89% 91% 96%
25 True 100% 0% | 80% | 72% | 100% | 54% | 68% | 75% 62% 70%
26 True 100% | 100% | 90% | 72% | 60% | 64% | 85% | 84% 91% 98%
27 True 100% 0% | 70% | 54% | 60% | 51% | 75% | 60% 29% 13%
28 True 100% 0% | 90% | 68% | 60% | 51% | 66% | 70% 47% 52%
29 True 100% | 100% | 90% | 75% | 80% | 57% | 81% | 73% 74% 4%
30 True 100% | 100% | 80% | 84% | 100% | 63% | 86% | 84% 86% 96%
31 True 100% 0% | 80% | 52% | 80% | 53% | 40% | 63% 23% 22%
32 True 100% 0% | 80% | 63% | 80% | 53% | 59% | 71% 45% 44%
33 True 100% | 100% | 100% | 91% | 100% | 77% | 88% | 85% 95% 98%
34 True 100% 0% | 40% | 80% | 80% | 44% | 67% | 57% 24% 18%
35 True 100% | 100% | 60% | 60% | 60% | 54% | 63% | 68% 53% 57%
36 True 100% | 100% | 80% | 76% | 60% | 54% | 85% | 81% 88% 96%
37 True 100% | 100% | 60% | 79% | 80% | 51% | 8% | 69% 59% 67%
38 True 100% 0% | 70% | 63% | 60% | 67% | 42% | 84% 55% 94%
39 True 100% | 100% | 70% | 65% | 80% | 57% | 56% | 7% 50% 2%
40 False 100% | 100% | 100% | 70% | 100% | 62% | 87% | 72% 7% 65%
41 False 100% | 100% | 40% | 40% | 60% | 50% | 46% | 75% 52% 78%
42 False 100% | 100% | 80% | 77% | 100% | 55% | 74% | 81% 2% 7%
43 False 100% | 100% | 90% | 88% | 100% | 64% | 89% | 81% 90% 94%
44 False 100% | 100% | 60% | 56% | 80% | 53% | 53% | 74% 55% 7%
45 False 100% | 100% | 90% | 83% | 100% | 56% | 5% | 77% 74% 82%
46 False 100% | 100% | 90% | 89% | 60% | 76% | 87% | 70% 74% 60%
47 False 100% | 100% | 70% | 82% | 100% | 66% | 59% | 72% 35% 50%
48 False 0% | 100% | 80% | 60% | 100% | 53% | 74% | 73% 19% 5%
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Table B.2: Early minor thermostat predictions

# | PG5 Miss | GNB | DTC | RFC | ETC | KNN | ADA | XGB | SVM | 3LNN | 4LNN
1 True 0% 0% | 94% | 79% | 100% 53% 51% 50% 67% 61%
2 True 0% 0% | 74% | 68% | 100% 52% 51% 51% 1% 62%
3 True 0% 0% | 84% | 68% | 100% | 51% | 51% | 50% 1% 62%
4 True 0% 0% | 86% | 60% | 100% | 53% | 51% | 50% 62% 54%
5 True 0% 0% | 68% | 73% | 100% 52% 51% | 42% 60% 54%
6 True 0% 0% | 84% | 70% | 100% 53% 51% | 49% 65% 57%
7 True 0% 0% | 74% | 48% 82% 53% 51% 50% 58% 50%
8 True 0% 0% | 74% | 67% | 100% | 54% | 51% | 50% 62% 54%
9 True 0% 0% | 64% | 60% 82% | 52% | 51% | 49% 60% 49%
10 True 0% 0% | 80% | 73% 81% 52% 51% | 45% 61% 52%
11 True 0% 0% | 64% | 59% | 100% 48% 51% | 49% 59% 50%
12 True 0% 0% | 78% | 68% | 100% 52% 51% 50% 67% 60%
13 True 0% 0% | 92% | 72% | 100% | 53% | 51% | 51% 1% 62%
14 True 0% 0% | 94% | 80% | 100% | 53% | 51% | 50% 73% 70%
15 True 0% 0% | 74% | 68% | 7% | 51% | 51% | 47% 57% 45%
16 True 0% 0% | 90% | 73% | 100% 52% 51% 50% 1% 63%
17 True 0% 0% | 72% | 68% 7% 51% 51% | 48% 61% 50%
18 True 0% 0% | 86% | 75% | 100% | 51% | 51% | 46% 68% 59%
19 True 0% 0% | 62% | 43% | 100% 51% 51% 50% 54% 43%
20 True 0% 0% | 86% | 71% | 100% 54% 51% 51% 68% 58%
21 True 0% 0% | 58% | 53% | 100% 52% 51% 50% 55% 42%
22 True 0% 0% | 66% | 54% 79% 51% 51% 50% 59% 50%
23 True 0% 0% | 68% | 62% 81% | 52% | 51% | 49% 60% 50%
24 True 0% 0% | 78% | 66% 80% | 52% | 51% | 49% 54% 42%
25 False 0% 0% | 56% | 55% 2% 51% 51% | 49% 58% 50%
26 False 0% 0% | 86% | 71% | 100% 53% 51% 50% 64% 55%
27 False 0% 0% | 74% | 57% 83% 51% 51% | 49% 57% 45%
28 False 0% 0% | 78% | 68% 80% | 50% | 51% | 31% 49% 41%
29 False 0% 0% | 88% | 63% 86% | 53% | 51% | 50% 61% 53%
30 False 100% 0% | 58% | 56% | 100% 48% 51% | 46% 48% 47%
31 False 100% 0% | 80% | 71% | 100% 52% 51% | 48% 78% 84%
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Table B.3: Early major security panel predictions

# | PG5 Miss | GNB | DTC | RFC | ETC | KNN | ADA | XGB | SVM | 3LNN | 4LNN
1 True 94% 0% | 61% | 62% 74% 50% 61% 55% 65% 49%
2 True 4% 0% | 64% | 64% 83% 53% 58% 73% 95% 93%
3 True 3% 0% | 16% | 20% 28% 49% 17% 42% 29% 21%
4 True 7% 0% | 47% | 20% 52% 51% 49% 59% 69% 64%
5 True 0% 0% | 17% | 18% 18% | 49% 13% | 49% 43% 43%
6 True 90% | 100% | 60% | 66% 65% | 50% | 47% | 52% 58% 39%
7 True 79% 0% | 30% | 28% 56% | 49% | 35% | 49% 43% 27%
8 True 90% 0% | 50% | 58% 64% 50% 57% 54% 63% 47%
9 True 86% 0% | 26% | 36% 54% 49% 27% 47% 44% 26%
10 True 0% 0% | 31% | 18% | 28% | 48% | 23% | 48% 5% 2%
11 True 0% 0% | 61% | 52% 75% 51% 50% 78% 96% 98%
12 True 92% | 100% | 67% | 68% 81% 51% 70% 52% 59% 41%
13 True 57% 0% | 40% | 36% 34% 49% 54% 54% 62% 57%
14 True 84% 0% | 56% | 62% 74% 50% 58% 63% 83% 75%
15 True 76% 0% | 53% | 62% 2% | 51% | 60% | 62% 83% 75%
16 True 70% 0% | 21% | 26% 44% 49% 13% 48% 42% 27%
17 False 60% 0% | 23% | 18% 43% 49% 19% 53% 52% 41%
18 False 6% 0% | 21% | 18% 35% 49% 17% 33% 10% 3%
19 False 100% 0% | 64% | 46% 65% 53% 72% 79% 1% 84%
20 False 63% 0% | 29% | 36% 46% 50% 28% 31% 12% 2%
21 False 27% 0% | 2% | 34% 45% 49% 15% 29% 9% 1%
22 False 6% 0% | 29% | 22% 23% 49% 48% 44% 40% 28%
23 False 0% | 100% | 37% | 32% 31% | 50% | 30% | 44% 7% 4%
24 False 0% 0% | 29% | 24% 31% | 48% | 27% | 50% 29% 24%
25 False 100% 0% | 36% | 30% 37% | 50% 19% | 57% 5% 4%
26 False 54% 0% | 10% | 16% 26% | 48% | 30% | 39% 24% 11%
27 False 0% 0% | 30% | 38% 37% 49% 13% 54% 76% 1%
28 False 93% | 100% | 63% | 66% 83% 51% 78% 59% 75% 64%
29 False 1% | 100% | 27% | 16% 33% 49% 27% 43% 21% 12%
30 False 0% 0% | 19% | 10% 22% 48% 22% 36% 1% 0%
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Table B.4: Late major thermostat predictions

# | PG5 Miss | GNB | DTC | RFC | ETC | KNN | ADA | XGB | SVM | 3LNN | 4LNN
1 True 100% | 100% | 89% | 84% | 100% | 83% | 97% | 97% 98% | 100%
2 True 100% 0% | 73% | 8% | 80% | 65% | 73% | 88% 85% 98%
3 True 100% | 100% | 79% | 86% | 100% | 80% | 87% | 94% 96% | 100%
4 True 100% | 100% | 84% | 80% | 80% | 67% | 95% | 82% 95% | 100%
) True 100% | 100% | 86% | 80% | 100% | 80% | 96% | 97% 98% | 100%
6 True 100% | 100% | 84% | 84% | 100% | 69% | 83% | 75% 87% 87%
7 True 100% | 100% | 92% | 90% | 100% | 74% | 95% | 98% 99% | 100%
8 True 100% | 100% | 93% | 88% | 100% | 80% | 98% | 97% 99% | 100%
9 True 100% | 100% | 87% | 82% | 100% | 83% | 93% | 94% 94% | 100%
10 True 100% | 100% | 91% | 90% | 100% | 74% | 94% | 93% 98% | 100%
11 True 100% 0% | 87% | 72% | 100% | 80% | 97% | 96% 96% | 100%
12 True 100% | 100% | 84% | 84% | 80% | 69% | 94% | 52% 87% 87%
13 True 100% | 100% | 88% | 80% | 100% | 80% | 96% | 98% 99% | 100%
14 True 100% | 100% | 85% | 78% | 100% | 74% | 90% | 92% 97% | 100%
15 True 100% | 100% | 90% | 78% | 80% | 85% | 97% | 58% 84% 90%
16 True 100% | 100% | 91% | 86% | 100% | 74% | 97% | 97% 99% | 100%
17 True 100% | 100% | 91% | 88% | 100% | 76% | 97% | 93% 97% | 100%
18 True 100% | 100% | 91% | 88% | 80% | 75% | 96% | 43% 87% 75%
19 True 100% | 100% | 91% | 88% | 100% | 79% | 94% | 91% 97% | 100%
20 True 100% | 100% | 88% | 84% | 100% | 80% | 97% | 97% 98% | 100%
21 True 100% 0% | 60% | 76% | 80% | 5% | 53% | T1% 76% 68%
22 True 100% | 100% | 68% | 72% | 100% | 31% | 54% | 71% 80% 70%
23 True 100% 0% | 51% | 64% | 80% | 65% | 23% | T4% 32% 56%
24 True 100% | 100% | 91% | 90% | 100% | 74% | 96% | 94% 98% | 100%
25 True 100% 0% | 79% | 76% | 100% | 76% | 94% | 96% 95% | 100%
26 True 100% | 100% | 71% | 82% | 80% | 64% | 7% | 91% 78% 99%
27 True 100% 0% | 74% | 72% | 100% | 86% | 89% | 85% 87% 98%
28 True 100% 0% | 34% | 60% | 80% | 24% | 14% | 83% 79% 91%
29 True 100% 0% | 80% | 76% | 100% | 78% | 81% | 87% 93% 98%
30 True 100% | 100% | 87% | 84% | 100% | 70% | 96% | 96% 99% | 100%
31 True 100% 0% | 1% | 62% | 80% | 4% | 72% | 54% 70% 81%
32 True 100% 0% | 77% | 80% | 100% | 1% | 86% | T6% 74% 82%
33 True 100% | 100% | 93% | 88% | 100% | 80% | 98% | 98% 99% | 100%
34 True 100% 0% | 61% | 70% | 80% | 78% | 80% | 48% 51% 48%
35 True 100% 0% | 29% | 54% | 80% | 25% | 10% | 59% 56% 25%
36 True 100% | 100% | 87% | 82% | 100% | 78% | 95% | 98% 95% | 100%
37 True 100% 0% | 73% | 76% | 100% | 80% | 94% | 88% 93% | 100%
38 True 100% 0% | 65% | 62% | 80% | 50% | 74% | 89% 39% 99%
39 True 100% | 100% | 69% | 68% | 80% | 71% | 26% | 41% 15% 3%
40 False 100% | 100% | 60% | 68% | 100% | 19% | 18% | 20% 53% 1%
41 False 100% 0% | 27% | 52% | 80% | 25% % | 93% 4% 99%
42 False 100% | 100% | 49% | 68% | 100% | 20% 5% | 19% 27% 0%
43 False 100% | 100% | 75% | 78% | 100% | 28% | 60% | T7% 90% 90%
44 False 100% 0% | 67% | 56% | 60% | 68% | 82% | 47% 3% 1%
45 False 100% | 100% | 45% | 60% | 100% | 18% | 28% | 18% 29% 0%
46 False 100% | 100% | 59% | 68% | 80% | 29% | 40% 5% 46% 0%
47 False 1% 0% | 28% | 46% | 80% | 25% | 12% ™% 12% 0%
48 False 0% 0% | 32% | 60% | 80% | 24% 6% 2% 23% 0%
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Table B.5: Late minor thermostat predictions

# | PG5 Miss | GNB | DTC | RFC | ETC | KNN | ADA | XGB | SVM | 3LNN | 4LNN
1 True 100% | 100% | 97% | 92% | 100% | 76% | 92% | 97% 99% | 100%
2 True 100% | 100% | 97% | 90% | 100% | 76% | 97% | 100% | 100% | 100%
3 True 100% | 100% | 90% | 76% | 100% | 74% | 84% | 94% 96% 99%
4 True 100% 0% | 79% | 80% | 100% | 54% | 92% | 73% 41% 4%
5 True 100% | 100% | 95% | 96% | 100% | 74% | 72% | 100% | 100% | 100%
6 True 100% | 100% | 98% | 100% | 100% | 75% | 91% | 100% | 100% | 100%
7 True 100% | 100% | 87% | 86% | 100% | 74% | 95% | 98% 99% | 100%
8 True 100% | 100% | 97% | 84% | 100% | 74% | 96% | 92% 95% 99%
9 True 100% | 100% | 98% | 88% | 100% | 76% | 96% | 98% 99% | 100%
10 True 100% | 100% | 93% | 92% | 100% | 74% | 84% | 98% 98% | 100%
11 True 100% | 100% | 86% | 80% | 100% | 68% | 74% | 98% 83% 99%
12 True 100% | 100% | 96% | 84% | 100% | 74% | 73% | 98% 97% | 100%
13 True 100% | 100% | 98% | 86% | 100% | 75% | 96% | 94% 98% 99%
14 True 100% | 100% | 89% | 98% | 100% | 74% | 94% | 100% | 100% | 100%
15 True 100% | 100% | 89% | 88% | 100% | 71% | 50% | 94% 95% 96%
16 True 100% | 100% | 94% | 92% | 100% | 76% | 93% | 99% | 100% | 100%
17 True 100% | 100% | 97% | 92% | 100% | 74% | 87% | 9% 98% | 100%
18 True 100% | 100% | 93% | 92% | 100% | 59% | 90% | 92% 94% 97%
19 True 100% | 100% | 84% | 94% | 100% | 73% | 91% | 100% | 100% | 100%
20 True 100% | 100% | 95% | 88% | 100% | 76% | 96% | 91% 91% 94%
21 True 100% | 100% | 91% | 88% | 100% | 57% | 86% | 87% 94% 93%
22 True 100% | 100% | 96% | 88% | 100% | 73% | 94% | 96% 98% | 100%
23 True 100% | 100% | 91% | 84% | 100% | 72% | 92% | 98% 99% | 100%
24 True 100% | 100% | 90% | 96% | 100% | 75% | 90% | 98% 99% | 100%
25 False 100% 0% | 70% | 72% | 80% | 55% | 9% | 81% 31% 2%
26 False 100% | 100% | 84% | 80% | 80% | 67% | 68% | 86% 43% 88%
27 False 100% 0% | 79% | 86% | 100% | 57% | 87% | 86% 43% 14%
28 False 100% 0% | 78% | 84% | 100% | 54% | 74% | 82% 14% 1%
29 False 100% 0% | 76% | 82% | 100% | 55% | 91% | 81% 45% 10%
30 False 100% 0% | 72% | 94% | 100% | 51% | 60% | 100% | 100% | 100%
31 False 100% | 100% | 88% | 86% | 81% | 69% | 48% | 100% 98% | 100%
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Table B.6: Late major security panel predictions

# | PG5 Miss | GNB | DTC | RFC | ETC | KNN | ADA | XGB | SVM | 3LNN | 4LNN
1 True 100% | 100% | 100% | 77% | 100% | 57% | 95% | 81% 90% 96%
2 True 100% | 100% | 80% | 73% | 100% | 63% | 97% | 92% 98% | 100%
3 True 100% 0% | 10% | 34% | 30% | 49% | 22% | 54% 45% 50%
4 True 100% | 100% | 30% | 69% | 87% | 51% | 23% | 67% 51% 74%
5 True 99% | 100% | 40% | 45% | 41% | 72% | 84% | 97% 99% | 100%
6 True 100% | 100% | 90% | 84% | 85% | 57% | 86% | 73% 84% 90%
7 True 100% 0% | 30% | 47% | 68% | 51% % | 2% 7% 91%
8 True 100% | 100% | 80% | 85% | 89% | 54% | 91% | 81% 90% 96%
9 True 100% | 100% | 70% | 83% | 87% | 61% | 99% | 84% 92% 98%
10 True 0% | 100% | 90% | 58% | 38% | 53% | 67% 0% 1% 1%
11 True 100% | 100% | 90% | 81% | 100% | 54% | 98% | 92% 96% | 100%
12 True 100% | 100% | 100% | 96% | 100% | 60% | 100% | 83% 92% 97%
13 True 100% 0% | 70% | 67% | 86% | 56% | 97% | 98% 98% | 100%
14 True 100% | 100% | 70% | 80% | 85% | 63% | 98% | 92% 97% | 100%
15 True 100% 0% | 100% | 81% | 100% | 70% | 51% | 79% 91% 96%
16 True 100% 0% | 60% | 55% | 58% | 51% | 28% | 79% 84% 95%
17 False 100% | 100% | 40% | 35% | 58% | 51% | 11% | 15% % 0%
18 False 0% 0% | 20% | 13% 0% | 42% 5% 2% 0% 0%
19 False 100% | 100% | 100% | 91% | 85% | 54% | 96% | 59% 45% 40%
20 False 100% 0% | 10% | 15% | 14% | 43% 3% 1% 0% 0%
21 False 0% 0% | 10% | 11% 0% | 36% 0% 0% 0% 0%
22 False 100% 0% | 40% | 35% | 14% | 44% 2% | 33% 27% 10%
23 False 0% | 100% 0% | 11% | 14% | 39% | 12% 6% 1% 0%
24 False 0% | 100% 0% | 19% 0% | 34% 8% | 10% 1% 0%
25 False 0% 0% | 10% | 11% 0% | 35% 8% 0% 0% 0%
26 False 100% 0% | 20% | 33% | 59% | 43% 0% | 61% 7% 88%
27 False 0% 0% | 10% | 31% | 29% | 47% 2% | 62% 81% 99%
28 False 100% 0% | 50% | 24% | 84% | 54% | 19% | 29% 22% 2%
29 False 46% 0% | 10% | 25% | 12% | 50% | 12% | 31% 19% 13%
30 False 0% | 100% | 20% | 17% | 10% | 42% 3% 0% 0% 0%
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Appendix C

Features

This chapter contains tables with features — all features with their description and the
other tables enlists features used during the training for each project group.
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Feature Name

Description

5 Year NPV Current

Net Present Value after 5 years

ACT Association

whether the project receives a tax advantage by being developed
by SW developers in Europe; indirectly, it is a SW project that
has a tax advantage

Design Center

place, where the project is being developed

Design Group

whether HW or SW is the main part of the project

First Pass Yield Goal (%)

how many % of pieces may be defective in the production of
testing pieces, the higher the target, the harder to meet the
goal and then accomplish PG5

Greater China Project

project is serving China market

Gross Margin Current

gross margin

High Growth Regions

whether it is a product for high growth regions such as Africa or
Russia; these products may have reduced quality or functionality
for reduced price

Idea Type whether it is a customization - development of new feature on ex-
isting product, value engineering - price reduction or new prod-
uct

IRR Phase 3 Internal Return Rate at phase 3 - early quality issues

ISC Region ISC (Integrated Supply Chain) - place, where the project will

be manufactured

Market Attractiveness

how attractive is the product for given market

Micro Suppliers Count

count of micro suppliers

On Spec Flag

whether the project has a requirement change

Phase {1-4} Length

lengths of phases of project

Phase {1-4} Miss

whether there was a delay on phase gates

Planned Cycle Time Gate {1-4}

planned cycle time on gates {1-4}

Project Classification

whether it is a brand new, customization or incremental product

Project Cost {1-4}

project cost during phases 1-4

Project Cost Say-Do

whether the guaranteed maximum project costs are met; if a
supplier cannot deliver some components on time, Project Health
may change, but project costs stay the same

Project Health

captures the project managers subjective view on project’s con-
dition

Project Length

total length of the project

Program

name of program the project is part of

Tech-forward Content

whether the product has features which are new to the industry

Total Cannibalized Revenue

revenue gained by reducing the sales volume or market share of
one product as a result of introduction of a new product

Total Project Investment

total project investment

Table C.1: Table showing selected features by feature selectors. In this table we merged
all features in order to describe them, but each data group has a different subset of these

features.
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# | Early Features Late Features

1 | 10 Year NPV Phase 3 ACT Association (Yes)

2 | ACT Association (Yes) Design Center (Golden Valley)
3 | First Pass Yield (%) Goal First Pass Yield (%) Goal

4 | Greater China Project (Yes) Greater China Project (No)

5 | Gross Margin Incremental Phase 3 | Idea Type (New Product)

6 | HGR Mid Segment (No) Planned Cycle Time Gate 2

7 | Idea Type (New Product) Planned Cycle Time Gate 4

8 | Planned Cycle Time Gate 2 Product Cost Say-Do (R)

9 | Product Cost Say-Do (G) Program (Connected Home)
10 | Program (Connected Home) Project Classification (Incremental)
11 | Project Cost - Gate 3 Project Cost - Gate 3

12 | Project Health (R) Project Health (G)

13 | Total Project Investment Total Project Investment

14 | Phase 1 Length Phase 1 Length

15 | Phase 2 Miss Phase 3 Length

16 | Phase 3 Length Phase 4 Length

17 | Project Length Phase 4 Miss

18 Project Length

Table C.2: Features of major thermostat projects selected during training.

# | Early Features Late Features

1 | ACT Association (No) Design Center (Emmen)

2 | Cycle Time Gate 3 Design Center (Golden Valley)

3 | Design Center (Emmen) Gross Margin % Incremental Current
4 | IRR Phase 3 IRR Phase 3

5 | Planned Cycle Time Gate 3 Idea Type (New Product)

6 | Product Cost Say-Do () Product Cost

7 | Project Classification (Customization) | Project Classification (Incremental)
8 | Project Health (G) Project Health (G)

9 | Total Incremental Revenue Phase 3 Total Project Investment

10 | Phase 3 Length Phase 3 Length

11 | Project Length Phase 4 Length

12 Phase 4 Miss

Table C.3: Features of minor thermostat projects selected during training.
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# | Early Features Late Features

1 | Cycle Time Goal ACT Association (Yes)

2 | Design Center (Shanghai) Cycle Time Gate 4

3 | Design Group (Hardware) Design Group (Hardware)

4 | First Pass Yield (%) Goal First Pass Yield (%) Goal

5 | Greater China Project (Yes) Idea Type (New Product)

6 | ISC Region (Americas) Planned Cycle Time Gate 2
7 | Planned Cycle Time Gate 3 Planned Cycle Time Gate 3
8 | Program Planned Cycle Time Gate 4
9 | Project Classification (Incremental) | Project Category (Electrical/Mechanical)
10 | Project Cost - Gate 3 Project Cost Say-Do (G)

11 | Project Health (R) Project Health (R)

12 | Total Cannibalized Revenue Phase 3 | Total Project Investment
13 | Phase 3 Length Phase 1 Length

14 | Project Length Phase 3 Length

15 Phase 3 Miss

16 Phase 4 Length

17 Phase 4 Miss

18 Project Length

Table C.4: Features of major security panel projects selected during training.
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Appendix D

Candidate models

Figure D.1: Early major thermostat candidate model (ADA) CV results

(a) Confusion matrix (b) ROC curve (c¢) Learning curve
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Figure D.2: Late major thermostat candidate model (ADA) CV results

(a) Confusion matrix (b) ROC curve (c) Learning curve
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Figure D.3: Early minor thermostat candidate model (3LNN) CV results

(a) Confusion matrix (b) ROC curve (c) Loss
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Figure D.4: Late minor thermostat candidate model (3LNN) CV results

(a) Confusion matrix (b) ROC curve (c) Loss
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Figure D.5: Early major security panel candidate model (KNN) CV results

(a) Confusion matrix (b) ROC curve (c¢) Learning curve

KNeighborsClassifier Confusion matrix KNeighborsClassifier ROC curve KNeighborsClassifier Learning curve

.
. » E 0ss
= 15 3
= 075
AL W © 10 070
065 —e— Training score
s —@— Cross-validation score
False o0 20 40 60 100 120
Figure D.6: Late major security panel candidate model (ETC) CV results
(a) Confusion matrix (b) ROC curve (c¢) Learning curve
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