
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

PORTING TANG TO OPENWRT
PORTOVANIE TANG NA OPENWRT

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR TIBOR DUDLÁK
AUTOR PRÁCE
SUPERVISOR Ing. ONDREJ LICHTNER
VEDOUCÍ PRÁCE

BRNO 2018





Abstract
The main objective of this work was to port and document the process of porting the Tang
server and its dependencies to OpenWrt system, which is designed for embedded devices
such as WiFi routers. This thesis describes the encryption and its application to secure the
computer’s hard drive. It describes the structure of the encrypted disk’s partition according
to the LUKS specification on Linux operating systems. The thesis focuses on describing
possibilities of automating the disk decryption process using an external server that enters
the process as a third party. It describes the principles of Key Escrow and Tang server.
Steps required to compile and configure the Tang server are described too. The thesis
also includes a documented process of contributing changes and newly created OpenWrt
packages to corresponding Open Source projects.

Abstrakt
Hlavným cieľom tejto práce je naportovať a zdokumentovať tento proces sprístupnenia
serveru Tang na vstavané zariadenia typu WiFi smerovač, s plne modulárnym operačným
systémom OpenWrt. Tým dosiahneme anonymnú správu šifrovacích kľúčov pre zabezpečené
domáce siete a siete malých firiem. Preto táto práca popisuje problematiku šifrovania
a jeho využitie na zabezpečenie pevného disku počítača. Oboznámuje čitateľa so štruktúrou
šifrovaného diskového oddielu podľa LUKS špecifikácie, na operačných systémoch typu
Linux. Práca rozoberá možnosti automatizácie odomykania šifrovaných diskov použitím
externého servera, ktorý vstupuje do procesu ako tretia strana. Sú v nej popísané princípy
serverov Key Escrow a Tang. Dosiahnutie hlavného cieľa je možné vďaka procesu porto-
vania a krížovej kompilácie na platforme Linux. Práca obsahuje zdokumentovaný postup
prispievania zmien a novo vytvorených balíkov pre OpenWrt do príslušných Open Source
projektov.

Keywords
porting, Tang, server, Clevis, client, Escrow, OpenWrt, operating system, embedded device,
router, xinetd, encryption, LUKS, hard drive, disk partition, encryption key, automation,
cross-compiling, buildroot, package system

Kľúčové slová
portovanie, Tang, server, Clevis, klient, Escrow, OpenWrt, operačný systém, vstavané za-
riadenie, smerovač, xinetd, šifrovanie, LUKS, pevný disk, diskový oddiel, šifrovací kľúč,
automatizácia, krížová kompilácia, buildroot, balíkový systém

Reference
DUDLÁK, Tibor. Porting Tang to OpenWrt. Brno, 2018. Bachelor’s thesis. Brno Univer-
sity of Technology, Faculty of Information Technology. Supervisor Ing. Ondrej Lichtner



Rozšírený abstrakt
Hlavným cieľom tejto práce je naportovať a zdokumentovať tento proces sprístupnenia
serveru Tang, na vstavané zariadenia typu WiFi smerovač, s plne modulárnym operačným
systémom OpenWrt. Tým dosiahneme anonymnú správu šifrovacích kľúčov pre domáce
siete a siete malých firiem. Dosiahnutie hlavného cieľa je možné vďaka procesu portovania
a krížovej kompilácie na platforme Linux.

Táto práca popisuje problematiku šifrovania a jeho využitie na zabezpečenie pevného
disku počítača. Oboznamuje čitateľa so štruktúrou šifrovaného diskového oddielu podľa
LUKS špecifikácie na operačných systémoch typu Linux. Práca rozoberá možnosti au-
tomatizácie odomykania šifrovaných diskov použitím externého servera Key Escrow alebo
Tang, ktorý vstupuje do procesu ako tretia strana.

Server Key Escrow slúži na ukladanie šifrovacích kľúčov. Na rozdiel od serveru Tang,
Key Escrow potrebuje zabezpečenú infraštruktúru a identifikovať každého používateľa,
ktorý chce jeho služby využívať. Server Tang poskytuje anonymnú obnovu kľúčov, a teda
žiaden z nich nepozná, iba poskytne matematickú operáciu klientovi, ktorý žiada o obnove-
nie. Operácie, ktoré server Tang vykonáva pri tejto obnove sú detailne opísané v práci.

Krížovú kompiláciu vykonáva upravený kompilátor, ktorý generuje binárny kód s mož-
nosťou spustenia na inej platforme, než je tá, na ktorej je spustený samotný preklad zdro-
jových kódov. Používa sa v prípadoch, keď sú zdrojové kódy spoločné pre viacero cieľových
platforiem, na ktorých môže byť program spustený (Linux a Microsoft Windows) alebo rov-
naký systém s rôznymi typmi procesorov (16bitový, 32bitový a 64bitový) alebo architektúr
(x86_64, MIPS, ARM). Často sa využíva na generovanie spustiteľných súborov pre vstavané
systémy a pri preklade na platformy, ktoré nie sú schopné kompilácie.

Tento kompilátor je spolu s linkerom a štandardnou knižnicou jazyka C hlavnou súčasťou
súboru počítačových programov, nástrojov alebo utilít, nazývaným aj tool-chain. Tool-chain
pre systém OpenWrt je možné vygenerovať použitím buildroot-u z GitHub repozitára
openwrt/openwrt. Tento buildroot obsahuje pomocné skripty a Makefile-y uľahčujúce au-
tomatizáciu procesu vytvárania inštalovateľného obrazu systému OpenWrt. Buildroot je
možné nakonfigurovať pre špecifické zariadenie podporované systémom OpenWrt.

Okrem schopnosti vytvárania obrazov systému OpenWrt je tento nástroj používaný
na vytváranie inštalovateľných softvérových balíkov pre túto platformu. Pre portnutie,
teda vytvorenie balíka, je potrebné vytvoriť adresárovú štruktúru v repozitári feeds. Táto
adresárová štruktúra obsahuje súbory zdrojového kódu pre rôzne softvérové projekty spolu
s Makefile-om, ktorý obsahuje direktívy buildroot-u pre spustenie krížovej kompilácie na
cielenú architektúru. Takto vytvorené balíky je možné následne nainštalovať na zariadenia
s nainštalovaným systémom OpenWrt.

Počas procesu balenia softvéru pomocou buildroot-u OpenWrt môže dôjsť k mnohým
chybám. Najčastejšie sú chýbajúce závislosti knižníc pre úspešné skompilovanie a prepínače
pre linker a kompilátor v Makefile pre OpenWrt. Tieto chyby sa riešia postupne, ako sa
počas kompilácie v buildroot-u vyskytnú, preto ich riešenie je aj časovo náročnejšie.

Pre úspešné skompilovanie softwéru Tang bolo potrebné zaistiť, aby všetky jeho závis-
losti boli dostupné pre OpenWrt. Pre získanie informácií o týchto softvérových závislostiach
a ich verziách sme využili Internetové stránky projektu Tang a koji obsahujúcej informácie
o balíčkoch pre distribúciu Fedora.

Niektoré softvérové závislosti už boli dostupné pre OpenWrt systém v jeho repozitároch.
Závislosť jansson potrebovala aktualizovať na novšiu verziu, čo sa nám aj podarilo. Ko-
munita náš pull-request prijala takmer okamžite. Knižnica libhttp-parser bola zdrojom



viacerých problémov, ktoré sa nám ale poradilo vyriešiť ako pre Tang, tak aj pri aktualizo-
vaní verzií a komunikácií s komunitou OpenWrt.

Závislosť knižnice a nástroja José si vyžadovala vytvorenie nového balíka, ktorý nebol
dostupný pre zariadenia OpenWrt. Túto závislosť sa nám podarilo portnúť a po komunikácii
s komunitou na GitHub-e je balík pripravený na posudok.

Po odstránení závislosti systemd pre Tang a problémov s knižnicou http-parser sa nám
nakoniec podarilo úspešne portnúť, a teda aj zabaliť softvér serveru Tang do balíka inšta-
lovateľného na platforme OpenWrt. Tento balík sme niekoľko krát upravovali a zariadili
tak to, že používateľovi sa automaticky po inštalácii vytvoria súbory potrebné pre správne
fungovanie serveru Tang. Konfigurácia serveru Tang taktiež nie je potrebná. Po-inštalačný
skript zaistí nie len vygenerovanie potrebných súborov, ale aj následnú konfiguráciu služby
tangd. Posledný krok používateľa pre aktiváciu služby tangd je reštartovanie služby xinetd.
Finálna verzia balíku Tang čaká na prijatie komunitou a následnú kontrolu jej vývojármi.

Nakoniec, so správnou konfiguráciou serveru Tang pre službu xinetd na našom zariadení
OpenWrt, je server Tang schopný obsluhovať klientov bez nutnosti ďalšieho počítača na sieti,
s obmedzeniami, ktoré táto konfigurácia na vstavané zariadenie priniesla.

5



Porting Tang to OpenWrt

Declaration
Hereby I declare that this term project was prepared as an original author’s work under the
supervision of Ing. Ondrej Lichtner. The supplementary information was provided by Jan
Pazdziora, Ph. D. All the relevant information sources, which were used during preparation
of this thesis, are properly cited and included in the list of references.

. . . . . . . . . . . . . . . . . . . . . . .
Tibor Dudlák
May 16, 2018

Acknowledgements
I am using this opportunity to express my gratitude to everyone who supported me through-
out the journey of completing this bachelor’s thesis. I am thankful for their aspiring guid-
ance, invaluable constructive criticism and friendly advice during the work. I am sincerely
grateful to them for sharing their truthful and illuminating views on a number of issues I
encountered, and reviewing the thesis text.

I express my thanks to adelton AKA Jan Pazdziora, Ph. D. and Ing. Ondrej Lichtner
for their support and guidance every time I encountered an issue. I would also like to thank
my colleagues Lukáš Slebodník and Stanislav Láznička and all the people who spent time
listening to things they did not had to, and even provided some thoughts.

I must not forget to thank my family for supporting my study and friends for not putting
my social life at risk. Special thanks to my room-mate PaRTik Segedy, for his curiosity
while going through the logs and sources with me when I was feeling helpless despite the
fact there might have been more interesting things for him to do (like sleep, for example,
although that would be hard with the light on), and Michal Ďurista alongside with Lukáš
Balog for grammar and sanity check.

Thank you all.



Contents

1 Introduction 3

2 How We Use Encryption 4
2.1 Encryption and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Hard Drive Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Disk Encryption with LUKS . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Automated Decryption 14
3.1 Key Escrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Tang Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Software portability 20
4.1 OpenWrt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 OpenWrt’s Tool-chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 OpenWrt’s Buildroot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Preparing the Host Environment . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Working with Buildroot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Porting the dependencies 29
5.1 Find the Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Update Outdated Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 New Package José . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Porting Tang 37
6.1 Socket Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Package the Tang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Configuring the Tang on OpenWrt 42
7.1 Install the Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Setting Up the Tang Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Configure Tang for Xinetd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Binding to the OpenWrt Device Running Tang . . . . . . . . . . . . . . . . 46
7.5 Tang’s Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Conclusion 48

Bibliography 50

A Contents of Attached CD 53

1



B Pre-installation enablement of hard drive encryption 54
B.1 Fedora 27 – Disc Encryption Option Selecting . . . . . . . . . . . . . . . . . 54
B.2 Fedora 27 – Determining the Key Encryption Key . . . . . . . . . . . . . . 55

C LUKS In-Place Encryption 56

D Setting Up the Repository 58

E OpenWrt Package’s Makefile 60

F List of Pull-requests 62

2



Chapter 1

Introduction

We spend our time searching for
security, and hate it when we get it.

John Steinbeck[26]

Nowadays, the whole world uses information technologies to communicate and to spread
knowledge in form of bits to the other people. But there are pieces of personal information
such as photos from family vacation, videos of our children as they grow, contracts or
testaments which we would like to protect.

Encryption, as described in chapter 2, protects our data and privacy even when we
do not realize that. An unauthorized party may be able to access secured data but will
not be able to read the information from it without the proper key. With an increasing
number of encryption keys to store and protect, it might be necessary to consider using
key management server. One of the possible solutions for persistent key management is to
deploy Key Escrow server described in section 3.1. Another solution is server Tang, whose
principles are mentioned in section 3.2.

Tang is completely anonymous key recovery service aiming to solve early boot decryp-
tion of system volumes encrypted with LUKS specification, described in section 2.3. In
contrast to Key Escrow server, Tang does not know any keys. It only provides mathemati-
cal operation for its clients to recover them.

The goal of this bachelor thesis is to port and document this process of porting Tang
server to the OpenWrt system. OpenWrt, characterized in section 4.1, is Linux-based op-
erating system for embedded devices such as wireless routers. Porting packages for the
OpenWrt as described in chapter 4 is done with cross-compilation tools available from
OpenWrt’s buildroot.

The process of porting missing dependencies for the Tang server is described in chapter 5.
Work required for the Tang itself is divided into chapter 6 and chapter 7. Section 7.5 sums
up not only the limitations that are present on OpenWrt platform but also generic limitation
that was discovered while testing the solution.

Result presented in this thesis allows us to automate process of unlocking encrypted
drives on our private home or small office network, therefore securing data stored on personal
computer’s hard drive and/or NAS (Network-attached storage) server if it is stolen. There
will be no need for any decryption or even Key Escrow server except the OpenWrt device
running the Tang server.

3



Chapter 2

How We Use Encryption

We may not realize this, but we use encryption every day. The purpose of encryption is
to keep us safe when we are browsing the Internet or just storing our sensitive information
on digital media. In general encryption is used to secure our data, whether transmitted
around the Internet or stored on our hard drives, from being compromised. Encryption
protects us from many threats.

It protects us from identity theft. Our personal information stored all over governmental
authorities should be secured with it. Encryption takes care for not revealing sensitive
information about ourselves, to protect our financial details, passwords along with others,
mainly when we bank online.

It looks after our conversation privacy, protecting our cell phone conversations from
eavesdroppers and our online chatting with acquaintances or colleagues. It also allows
attorneys to communicate privately with their clients and it aims to secure communication
between investigation bureaus to exchange sensitive information about lawbreakers.

If we encrypt our laptop or desktop computer’s hard drive, encryption protects our data
in case the computer or hard drive is stolen.

2.1 Encryption and Security
Security is not binary; it is a sliding scale of risk management. People are used to mark
things, for example good and bad, expensive, and cheap. But we know that people may
differ on image/sense. For example, there is no such thing as line or sign which tells us
that this part of town is secure, and this is not. The way we reason about security is by
studying environment, entering or observing it, and we begin to decide whether it is secure
or not. Encryption, on its own, might not be enough to make our data or infrastructure
secure but is definitely a critical aspect of security.

Companies define their own security strategies which may include encryption or may
not at all. Security strategies rely on company’s needs or will to take risks.

According to 2016 Global Encryption Trends Study, independently conducted by the
Ponemon Institute, the enterprise-wide encryption increased from 15 percent in February
2006 to 41 percent in February 2017. Also, the ratio of companies with no encryption
strategy at all decreased from 37 to 14 percent in these years. More than 60 percent
of companies are using extensively deployed encryption technologies to encrypt mostly
databases, infrastructure and laptop hard drives [28].

4



Passwords are the most common authentication method used for accessing computer
systems, files, data, and networks. As stated in article Solid IT control hygiene [24], it is
important to keep changing them in reasonable time and keep them secret to others. Still,
no matter the company’s security strategy, we keep seeing them on monitors or desktops
written on sticky notes, and this is absolutely not secure. In fact, users are the most
vulnerable part of securing our systems. To aid their memory, users often include part of a
phone number, family name, Social Security number, or even birth date in their passwords
[30]. They choose cryptographically weak passwords, dictionary words, which are easy to
remember but also easy to guess or to break with brute-force attacks in short period of
time. According to Splash Data, a supplier of security applications, the most common user
selected password in the year 2016 was “123456”. They claim that people continue to put
themselves at risk for hacking and identity theft by using weak, easily guessable passwords.
To create strong password, we may follow any trustworthy guide1 on the Internet. More
secure way to create passwords would be to generate cryptographically stronger cipher and
use it as a password. The only disadvantage is that it is hard to remember [25].

2.2 Hard Drive Encryption
It all starts, as mentioned, with desire to keep our data to ourselves and as a secret to
others. More often than not, these secrets are stored on our hard drives.

Hard drive encryption is a technology provided by software performing sophisticated
mathematical functions or hardware that encrypts the data stored on a hard drive or a disk
volume. This technology is used to prevent unauthorized access by unauthorized persons or
service to an encrypted data storage without possession of the appropriate key or password.
Encrypting the hard drive means providing another layer of security against hackers and
other online threats.

To protect secret data, we usually encrypt this data by using an “encryption key”
– see Figure 2.1 Hard drive encryption in a nutshell. Every encryption key should be

Figure 2.1: Hard Drive Encryption in a Nutshell

unpredictable and unique set of bits able to “scramble” data in a way that it should be
impossible to recover data without the key. To satisfy this need, encryption keys are
generated by specialized algorithms such as AES (Advanced Encryption Standard2) for

1https://www.wikihow.com/Create-a-Secure-Password
2https://en.wikipedia.org/wiki/Symmetric-key_algorithm#Implementations

5



symmetric keys and RSA (Rivest–Shamir–Adleman3) for asymmetric. Changing encryption
key implies that all the data needs to be decrypted with the old key and re-encrypted with
the new one, every time the old key is compromised or a change is required. To avoid time-
consuming re-encryption whenever key change occurs, the encryption key is then wrapped
by the key encryption key.

Key encryption key is mostly generated using the user-provided password. This key
encryption key is then used to encrypt the encryption key which does the actual data
encryption. Again, the most insecure thing in this key hierarchy would be the user-provided
password which we can easily replace with using only cryptographically stronger key. This
principle has at least two advantages. Changing the key encryption key does not affect
encrypted data, and key can be changed whenever the user desires to, and redistributed to
all users or services that are supposed to decrypt this data, giving access to the encryption
key.

Hard drive can be encrypted as whole or per partition. Full disk encryption is done in
a way that all content on the hard drive except MBR (Master Boot Record) is encrypted.
Encrypting MBR would make it impossible to start boot sequence of operating system.
Boot sequence would prompt the user for key encryption key in order to load the operating
system from encrypted storage.

This could disrupt our daily workflow and might be the reason why most of us do not
use hard drive encryption, even when we know it will protect our data. There is a way to
automate the hard drive unlocking on early boot with a help from key management system.
We can get the key encryption key from some remote system, the Escrow server mentioned
in section 3.1, or recover it with Tang described in chapter 3.2. Before that, let us have a
look on most common hard drive encryption implementations.

2.2.1 Bit Locker

BitLocker is a closed source, full disk data protection feature that integrates with the
operating system Windows Vista and later. It is designed to protect data by providing
encryption for entire volumes and addresses the threats of data theft or exposure from
lost, stolen, or inappropriately decommissioned computers. By default, it uses the AES
encryption algorithm in cipher block chaining (CBC) or XTS mode with a 128-bit or 256-
bit key. CBC is not used over the whole disk; it is applied to each individual sector [17].

2.2.2 LibreCrypt

LibreCrypt is a LUKS (Linux Unified Key Setup-on-disk-format) compatible open source
“on-the-fly” transparent disk encryption software written mostly in Pascal programming
language. This project is based on original FreeOTFE project by Sarah Dean renamed in
version 6.2 to LibreCrypt and supports both 32 and 64 bit Windows. LibreCrypt is easy to
use even for inexperienced user through its GUI (Graphical User Interface) with support
of many languages.

LibreCrypt supports many ciphers including AES (up to 256 bit), Twofish4 (up to 256
bit), Blowfish5 (up to 448 bit), Serpent6 (up to 256 bit). It can create “virtual disks” on

3https://en.wikipedia.org/wiki/Public-key_cryptography
4https://en.wikipedia.org/wiki/Twofish
5https://en.wikipedia.org/wiki/Blowfish_(cipher)
6https://en.wikipedia.org/wiki/Serpent_(cipher)

6



our computer and anything written to these disks is automatically encrypted before being
stored on our computer’s hard drive[31].

Unfortunately this project seems to be abandoned by its developer. The source code of
LibreCrypt is available at GitHub.
https :// github .com/t-d-k/ LibreCrypt

2.2.3 Dm-crypt

The device-mapper crypt target (dm-crypt) provides transparent encryption of block devices
using the kernel crypto API (Application programming interface) supporting ciphers and
digest algorithms via standard kernel modules. Device-mapper is a part of the Linux kernel
that provides a generic way to create virtual layers of block devices, for example LVM
(Logical Volume Manager) logical volumes.

In Fedora and Red Hat Enterprise Linux distributions, user-space interaction with dm-
crypt is managed by a tool called cryptsetup, which uses the device-mapper infrastructure
to setup and operate on encrypted block devices. With modern versions of cryptsetup (i.e.,
since 2006), encrypted block devices can be created in two main formats, plain dm-crypt
format or the extended LUKS format.

Plain format has no meta-data on disk. When using any such encrypted device, all the
necessary parameters must be passed to cryptsetup from the command line, otherwise it
uses the defaults, which will only succeed if the device was created using default settings. It
derives (generates) the encryption key from the pass-phrase provided and then uses that to
decrypt or encrypt the sectors of the device, with a direct 1:1 mapping between encrypted
and decrypted sectors.

In contrast to previous Linux disk encryption solutions, LUKS stores all necessary setup
information in the partition header, enabling the user to transport or migrate their data
more easily.

2.3 Disk Encryption with LUKS
LUKS (Linux Unified Key Setup-on-disk-format) is a platform-independent disk encryption
specification. LUKS was created by Clemens Fruhwirth in 2004 and was originally intended
for Linux distributions only. It provides a standard on-disk-format for hard disk encryption,
which facilitates compatibility among Linux distributions and provides secure management
of multiple user passwords.

Referential implementation of LUKS is using a device-mapper crypt target (dm-crypt)
subsystem for bulk data encryption. This subsystem is not particularly bound to LUKS
and can be used for plain format encryption as mentioned in subsection 2.2.3.

It is important for us to know this specification a little more due to working with Linux
distribution and the implementation of the Tang server.

The advantages of LUKS over plain dm-crypt are better usability: automatic configura-
tion of non-default crypto parameters and the ability to add, change, and remove multiple
pass-phrases. Additionally, LUKS offers defenses against low-entropy pass-phrases with
salting and iterated PBKDF27 (Password-Based Key Derivation Function 2) pass-phrase
hashing[13]. With LUKS, encryption keys are always generated by the kernel RNG (Ran-
dom number generator); in contrast to plain dm-crypt where one can choose a simple

7https://www.ietf.org/rfc/rfc2898.txt

7



dictionary word and have an encryption key derived from that. One disadvantage of using
LUKS over plain is that it is readily obvious there is encrypted data on disk; the other is
that damage to the header or key slots usually results in permanent data loss. To mitigate
this risk the Backup of the LUKS header is the best option [5].

2.3.1 Creating LUKS Volume

Creating a LUKS volume with the cryptsetup tool is easy. On Fedora system it can be
installed using command:
# dnf install cryptsetup

Run this command with root privileges. After installation succeeds choose a partition to
encrypt. For demonstration, we will encrypt the /dev/xvdc patrtition using:
# cryptsetup -y -v luksFormat /dev/xvdc
WARNING !
========
This will overwrite data on /dev/xvdc irrevocably .

Are you sure? (Type uppercase yes ): YES
Enter LUKS passphrase :
Verify passphrase :
Command successful .

But converting existing non-encrypted disk to have full disk encryption if the system is
already installed might be quite tough. Hard drive partition must contain the LUKS header
just before the encrypted data. Let us sum up the easier way first.

In case we have not installed our Linux operation system yet, we could simply select
an option in time of installation. Then the installation wizard will most likely ask for pass
phrase – the key encryption key. To demonstrate this, screen shots with Fedora 28 system
installation can be found in appendix B.

If we have already system installed with lots of data on partition, process will probably
last longer and the procedure will be more complex. There is no way we can encrypt the
whole system disk with LUKS without unmounting a partition to encrypt. For this purpose
luksipc, the LUKS In-Place Conversion Tool, was developed. Steps to encrypt a disk using
luksipc are in the appendix C.

2.3.2 LUKS drive structure

The structure of LUKS partition is shown in Figure 2.2 LUKS volume structure for a
demonstration. At the the beginning of the device the LUKS format uses a meta-data
header, also marked as phdr, and 8 key slot areas. After header, there is a section with bulk
data, which is encrypted with the encryption key. Header contains information about the

bulk dataheader k0  k1 k2 k3 k4 k5 k6 k7

Figure 2.2: LUKS Volume Structure

cipher used, cipher mode, the key length, a uuid, and a encryption key check-sum. The pass-
phrases stored in the key slots, which structure is shown on Figure 2.3 LUKS Key Slot, are

8



used to decrypt a single key encryption key that is stored in the anti-forensic stripes. Anti-
forensic data storage, as described in article LUKS On-Disk Format Specification Version
1.1 [5], is a feature specially developed for LUKS by Clemens Fruhwirth. The idea of anti-
forensic information splitting in LUKS is to enlarge the size of every storage region for the
encryption key encrypted with one of the user key encryption keys such that all parts of
this storage region are required in order to recover the encrypion key.

Figure 2.3: LUKS Key Slot

Every key slot is associated with a key material section after the header. When a key
slot is active, the key slot stores an encrypted copy of the encryption key in its key material
section. This encrypted copy is locked by a user password or cipher. Supplying this user
password unlocks the decryption for the key material, which stores the encryption key.

2.3.3 Managing LUKS volume

To demonstrate LUKS volume management let us shot steps that can be used on our Fedora
27 system. For this demonstration we will use tools available for Fedora 27 such as:

∙ parted-3.2-28.fc27.x86_64

∙ cryptsetup-1.7.5-3.fc27.x86_64

To list hard drives for our system we will use the parted tool:
# parted -l
Model: NVMe Device (nvme)
Disk /dev/ nvme0n1 : 256 GB
Sector size ( logical / physical ): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
1 1049 kB 1075 MB 1074 MB primary ext4 boot
2 1075 MB 256 GB 255 GB primary

9



The output shows that on our system we have installed an NVMe (NVM Express) volume8

using the msdos, therefore MBR partition table. The NVMe is a specification for accessing
SSDs attached through the PCI Express bus. Our SSD drive has two partitions the first
is a boot partition and second should be our LUKS partition. To find out if the second
partition is LUKS volume, we will use cryptsetup tool with option isLuks:
# cryptsetup isLuks /dev/ nvme0n1p1 -v
Device /dev/ nvme0n1p1 is not a valid LUKS device .
Command failed with code 22: Invalid argument

Unless the -v option is used, this command produces no output. The actual result of the
command is returned as an exit code. The output shown reflects that our first partition is
not a valid LUKS volume. This is expected behavior, encrypting the boot partition would
make it impossible for the system to boot.
# cryptsetup isLuks /dev/ nvme0n1p2 -v
Command successful .

At this point, we have successfully identified the LUKSvolume. To dump the header infor-
mation of this LUKS volume, cryptsetup option luksDump can be used:
# cryptsetup luksDump /dev/ nvme0n1p2
LUKS header information for /dev/ nvme0n1p2

Version : 1
Cipher name: aes
Cipher mode: xts - plain64
Hash spec: sha256
Payload offset : 4096
MK bits: 512
MK digest : 85 b3 b9 71 b6 b7 51 18 60 39 78 db ac e8 82 97 0c 7b a2 3e
MK salt: 0d 22 53 83 56 0d a0 70 25 c2 bf fe 75 40 71 a9

75 f1 ae a3 67 e5 b2 a5 14 85 39 1d c6 74 00 a8
MK iterations : 52625
UUID: 267 c308e -5d64 -4acf -abf2 - f6e224e8febf

Key Slot 0: ENABLED
Iterations : 415583
Salt: 3e f9 7d 3b b6 08 60 9a eb dc 52 bb 8e 21 eb bf

b9 4d 80 a4 70 2d 4e 97 8e 47 c1 a3 04 45 74 d4
Key material offset : 8
AF stripes : 4000

Key Slot 1: DISABLED
Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED

From the listing we can assume that /dev/nvme0n1p2 has one key encryption key in key slot
0 and has other 7 slots (1-7) disabled. The advantage of LUKS is that if a team or group of
up to eight people has to work with a common encrypted volume, each team member may
use their own password. New user keys may be added to the encrypted volume and old user
keys may be removed. To add a new key, we will use cryptsetup with option luksAddKey
as shown:

8https://en.wikipedia.org/wiki/NVM_Express

10



# cryptsetup luksAddKey /dev/ nvme0n1p2
Enter any existing passphrase :
Enter new passphrase for key slot:
Verify passphrase :

The cryptsetup will derive the key encryption key from this passphrase and bind it to the
first available key slot in LUKS header. The dump of header will now contain information
similar to the exhibit below:
# cryptsetup luksDump /dev/ nvme0n1p2
LUKS header information for /dev/ nvme0n1p2

Version : 1
Cipher name: aes
Cipher mode: xts - plain64
Hash spec: sha256
Payload offset : 4096
MK bits: 512
MK digest : 85 b3 b9 71 b6 b7 51 18 60 39 78 db ac e8 82 97 0c 7b a2 3e
MK salt: 0d 22 53 83 56 0d a0 70 25 c2 bf fe 75 40 71 a9

75 f1 ae a3 67 e5 b2 a5 14 85 39 1d c6 74 00 a8
MK iterations : 52625
UUID: 267 c308e -5d64 -4acf -abf2 - f6e224e8febf

Key Slot 0: ENABLED
Iterations : 415583
Salt: 3e f9 7d 3b b6 08 60 9a eb dc 52 bb 8e 21 eb bf

b9 4d 80 a4 70 2d 4e 97 8e 47 c1 a3 04 45 74 d4
Key material offset : 8
AF stripes : 4000

Key Slot 1: ENABLED
Iterations : 1247257
Salt: 44 48 92 df 29 8a df 81 f6 44 f8 66 c5 c2 32 49

23 76 8a 37 48 85 33 2a 29 10 d8 cc 8f 45 0a 46
Key material offset : 1520
AF stripes : 4000

Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED

At this point, LUKS volume is accessible via two different passphrases. To remove the key
from LUKS header we will use cryptsetup with option luksKillSlot as shown:
# cryptsetup luksKillSlot /dev/ nvme0n1p2 0
Enter any remaining passphrase :

To successfully remove key from key slot 0, we have to enter any remaining pass-phrase. In
our case, we would enter the newly created pass-phrase which is bound to key slot 1. This
will result into having LUKS header in state like shown:
# cryptsetup luksDump /dev/ nvme0n1p2
LUKS header information for /dev/ nvme0n1p2

Version : 1
Cipher name: aes
Cipher mode: xts - plain64
Hash spec: sha256

11



Payload offset : 4096
MK bits: 512
MK digest : 85 b3 b9 71 b6 b7 51 18 60 39 78 db ac e8 82 97 0c 7b a2 3e
MK salt: 0d 22 53 83 56 0d a0 70 25 c2 bf fe 75 40 71 a9

75 f1 ae a3 67 e5 b2 a5 14 85 39 1d c6 74 00 a8
MK iterations : 52625
UUID: 267 c308e -5d64 -4acf -abf2 - f6e224e8febf

Key Slot 0: DISABLED
Key Slot 1: ENABLED

Iterations : 1247257
Salt: 44 48 92 df 29 8a df 81 f6 44 f8 66 c5 c2 32 49

23 76 8a 37 48 85 33 2a 29 10 d8 cc 8f 45 0a 46
Key material offset : 1520
AF stripes : 4000

Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED

As stated in section 2.1 password rotation is very important. To change LUKS key slot
pass-phrase use the cryptsetup’s option luksChangeKey:
# cryptsetup luksChangeKey /dev/ nvme0n1p2 -S 1
Enter passphrase to be changed :
Enter new passphrase :
Verify passphrase :

Note that pass-phrase to be changed and the slot number must be related to each other.
We could see a change in LUKS header after command succeeded:
# cryptsetup luksDump /dev/ nvme0n1p2
LUKS header information for /dev/ nvme0n1p2

Version : 1
Cipher name: aes
Cipher mode: xts - plain64
Hash spec: sha256
Payload offset : 4096
MK bits: 512
MK digest : 85 b3 b9 71 b6 b7 51 18 60 39 78 db ac e8 82 97 0c 7b a2 3e
MK salt: 0d 22 53 83 56 0d a0 70 25 c2 bf fe 75 40 71 a9

75 f1 ae a3 67 e5 b2 a5 14 85 39 1d c6 74 00 a8
MK iterations : 52625
UUID: 267 c308e -5d64 -4acf -abf2 - f6e224e8febf

Key Slot 0: DISABLED
Key Slot 1: ENABLED

Iterations : 1630572
Salt: cf 54 a9 77 ed 8b c5 75 ca 65 60 6b 31 cb 29 0f

4e 54 78 8c b1 9a db 3f 2f 6c aa 84 79 da 81 66
Key material offset : 512
AF stripes : 4000

Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED

12



Key Slot 6: DISABLED
Key Slot 7: DISABLED

More use-cases and examples how to use cryptsetup can be found the man page of the
tool9. Examples shown demonstrate basic key management for LUKS volumes and should
be sufficient for basic understanding of cryptsetup/LUKS behavior and usability on the
system with an encrypted drive.

2.3.4 LUKS Security

In August 2012, Ubuntu Privacy Remix Team did a deep analysis of LUKS/cryptsetup
in Ubuntu environment. cryptsetup in version 1.4.1 used by Ubuntu 12.04 LTS has been
chosen for the analysis. The team wrote the programs luksanalyzer and hashtest for the
purpose of the analysis.

The analysis lead to conclusion that cryptsetup with LUKS is a highly secure program
for encrypting whole data media or partitions. The encryption algorithms, and other secu-
rity mechanisms it implements, comply with the current state of the art in cryptography.
No back door, or security-related mistakes were found in the published source code. If we
use this program in a secure environment, the passwords are strong, and the attacker does
not apply highly advanced methods below the layer of the operation system, such as BIOS
root-kits, hardware key-loggers or video surveillance, we may assume with high certainty
that no one can get access to the data stored in our volumes. A special strong point of
cryptsetup with LUKS is its high power of resistance against dictionary attacks[27].

9https://linux.die.net/man/8/cryptsetup

13



Chapter 3

Automated Decryption

As article Inductive programming meets the real world [6] states, that we should try to
automate everything we can in order to avoid repetitive tasks. Even though disc encryption
provides another layer of security to our data, it is used less. Typing one more pass-phrase
when accessing some removable storage seems like too much work. More crucial would be
full disk encryption. In order to boot the system, we need to have storage with system
decrypted – provide another pass-phrase every time the computer is turned off and on
again. The Tang server aims to solve struggles with the early boot decryption of system
volumes. Before Tang, automated decryption was usually handled by a Key Escrow server.

3.1 Key Escrow
The Key Escrow server (also known as a “fair” cryptosystem) is providing escrow service for
encryption keys. A client using Key Escrow usually generates a key, encrypts data with it
and then stores the key encryption key on a remote server. Unfortunately there are couple
of security concerns.

To transfer the encryption keys we want to store on an Escrow server, we have to encrypt
the channel on which we send them. When transmitting keys over an insecure network
without an encrypted link, anyone listening to the network traffic could immediately fetch
the key. This should signal security risks, and, of course, we do not want any third party to
access our secret data. Usually we encrypt a channel with TLS (Transport Layer Security)
or GSSAPI (Generic Security Services Application Program Interface) as shown on a Figure
3.1 Escrow model. Unfortunately, this is not enough to have the communication secure.

Client

Key Escrow

GSSA
PI/T

LS

KDC/CA

Backup

Backup

Figure 3.1: Escrow Model

This server has to have its identity verified, and the client has to authenticate to this server

14



too. The increasing amount of keys implicates a need for Certification Authority server
(CA) or a Key Distribution Center (KDC) to manage all of them.

Only with the infrastructure in place and keys produced, the server can verify if the
client is permitted to get their key, and the client is able to identify a trusted server. This
is a fully stateful process.

The complexity of this system increases the attack surface and for such complex system
it would be unimaginable not to have backups. The Escrow server may store lots of keys
from lots of different places, users and services.

3.2 Tang Server
With key escrow, a third party gets copies of a cryptographic key. People might not be
comfortable with any third party having this ability and that “technical” problems vex the
key escrow solution. Tang’s key recovery, on the other hand, lets us just “backup” and
restore cryptographic keys anonymously and without any third party possesing our key.

Tang is a very lightweight network service using systemd’s socket activation as described
in section 6.1. Its purpose is to provide anonymous key recovery to clients over the network.
This key recovery can be used with a help of the Tang’s client descibed in subsection 3.2.4
Clevis client to unlock data storages with LUKS encryption. The Tang server is an open
source project implemented in C programming language.

We can see on Figure 3.2 that the Tang model is very similar to the escrow seen on Figure
3.1 but with some things missing. In fact, there is no longer need for TLS channel to secure

Figure 3.2: Tang Model

communication between the client and the server, and that is because Tang implements the
McCallum-Relyea exchange as described below.

Tang server advertises asymmetric keys on the network and a client is able to get the
list of these signing keys by HTTP (Hypertext Transfer Protocol) GET request. All tang
communication is performed using the HTTP protocol with the message body in JWK
(JSON Web Key) format defined by RFC 7517 [8]. Getting advertised keys is the first step
of the McCallum-Relyea exchange protocol summed up in table 3.1. This protocol has two
phases, provisioning and recovery.

15



Provisioning Recovery
client’s side server’s side client’s side server’s side

𝑆𝜖𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝑅[1, 𝑝− 1] 𝐸𝜖𝑅[1, 𝑝− 1]
𝑠 = 𝑔 * 𝑆 𝑥 = 𝑐+ 𝑔 * 𝐸

← s x →
𝐶𝜖𝑅[1, 𝑝− 1] 𝑦 = 𝑧 * 𝑆
𝑒 = 𝑔 * 𝐶 ← y

𝑘 = 𝑔 * 𝑆 * 𝐶 = 𝑠 * 𝐶 𝑘 = 𝑦 − 𝑠 * 𝐸
Discard: K, C

Retain s, c
*capital is private key; g stands for generate

Table 3.1: McCallum-Relyea Exchange Protocol

Provisioning The server key pair generation is represented by equation 3.1, capital is
private key; lowercase is public key; g stands for generate.

𝑠 = 𝑔 * 𝑆 (3.1)

After the server generates key pair, it is advertising the public part of it. The client then
selects one of the Tang server’s exchange keys (we will call it sJWK; identified by the use of
deriveKey in the sJWK’s key_ops attribute). The lowercase “s” stands for server’s public
key and JWK is format of the message. The client then generates a new (random) JWK
(cJWK; c stands for client’s key pair).

𝑐 = 𝑔 * 𝐶 (3.2)

The client performs its half of a standard ECDH exchange producing kJWK – see equation
3.3, which it uses to encrypt the data. Afterwards, it must discard the kJWK and the
private key from cJWK.

𝑘 = 𝑠 * 𝐶 (3.3)
The client has to store cJWK for later use in the recovery step. Generally speaking,
the client may also store other data, such as the URL of the Tang server or the trusted
advertisement signing keys called also binding keys.

Recovery Mathematically capital letter is private key; g stands for generate. When the
client wants to access the encrypted data, it must be able to recover encryption key. To
recover kJWK after discarding it, the client generates a third ephemeral key (eJWK) as the
equation 3.4 represent. This key is used to hide the client’s public key and the binding key.

𝑒 = 𝑔 * 𝐸 (3.4)

The ephemeral key is generated for each execution of a key establishment process. Using
eJWK, the client performs elliptic curve group addition of eJWK and cJWK, producing
xJWK represented in the equation 3.5. The client POSTs xJWK to the server.

𝑥 = 𝑐+ 𝑒 (3.5)

The server then performs its half of the ECDH key exchange using xJWK and sJWK,
producing yJWK reflected in the equation 3.6. The server returns yJWK to the client.

𝑦 = 𝑥 * 𝑆 (3.6)

16



The client then performs half of an ECDH key exchange between eJWK and sJWK, pro-
ducing zJWK as the equation 3.7 shows.

𝑧 = 𝑠 * 𝐸 (3.7)

Subtracting zJWK from yJWK produces dJWK shown in the equation 3.8.

𝑘 = 𝑦 − 𝑧 (3.8)

Finally, the client has calculated the key value. So the Tang server never knows the value
of the key and literally nothing about its clients.

3.2.1 Security

As shown in table 3.2, Tang compared to Escrow is stateless and doesn’t require TLS
or authentication. Tang also has limited knowledge. Unlike escrows, where the server
has knowledge of every key used, Tang never sees any client keys. Tang never gains any
identifying information from the client.

Escrow Tang

Stateless No Yes
SSL/TLS Required Optional
X.509 Required Optional
Authentication Required Optional
Anonymous No Yes

Table 3.2: Comparing Escrow and Tang

Thanks to McCallum-Relyea exchange protocol summed up in the table 3.1 Tang is
resistant to the man in the middle attack. In case of the eavesdroppers, they see the client
send xJWK and receive yJWK. Since these packets are blinded by eJWK, only the party
that can un-blind these values is the client itself (since only it has eJWK’s private key).
Thus, the attack fails.

It is of utmost importance that the client protects cJWK and the Tang server must
protect the private key for sJWK.

3.2.2 Building Tang

Tang is originally packaged for Fedora operating system version 23 and later but we can of
course build it from source. It relies on few other software libraries listed in section 5.1.

The steps to build the Tang from sources include downloading the source from project’s
GitHub or cloning it. Make sure all required dependencies are installed and then run:
$ autoreconf -if
$ ./ configure --prefix =/ usr
$ make
# make install

Optionally tests can be run with:
$ make check

17



3.2.3 Server Enablement

Enabling a Tang server is a two-step process. First step is to enable the Tang services.
Start the key update service which is watching the database directory using systemd:
# systemctl enable tangd - update .path --now

Enable service using systemd socket activation:
# systemctl enable tangd. socket --now

After this, systemd will handle the sockets and the Tang’s key rotation procedure.
Second, generate a signing key using dependency tool jose and store it in a default

directory expected by tang:
# jose gen -t ’{" alg ":" ES256 "}’ -o /var/db/tang/sig.jwk

Do not forget to generate an exchange key:
# jose gen -t ’{" kty ":" EC"," crv ":"P -256" ," key_ops ":[" deriveKey "]}’ \

-o /var/db/tang/exc.jwk

These commands results into change in the Tang’s database directory now containing the
sig.jwk and the exc.jwk. The tangd-update.path service will trigger regeneration of the
cache, stored in /var/cache/tang/ directory, using /usr/libexec/tangd-update script.

Now we are up and running. The server is ready to send an advertisement on client’s
demand or even using curl:
curl -f http :// tang.local/adv

Tang now advertises its exc.jwk key signed using the sig.jwk.

3.2.4 Clevis Client

Clevis provides a pluggable key management framework for automated decryption and has
full support for Tang. It can handle automated unlocking of LUKS volumes. Clevis lets us
encrypt data with a simple command:
$ clevis encrypt PIN CONFIG < PLAINTEXT > CIPHERTEXT .jwe

In clevis terminology, a PIN is a plugin which implements automated decryption. We
simply pass the name of the supported pin here. Besides tang PIN clevis also supports
a PIN for performing escrow using HTTP or an SSS PIN to provide a way to mix pins
together to provide sophisticated unlocking policies by using an algorithm called Shamir
Secret Sharing (SSS).

Second, CONFIG is a JSON object which will be passed directly to the PIN. It contains
all the necessary configuration to perform encryption and setup automated decryption.

PIN: tang – Here is an example of how to use Clevis with the Tang server:
$ echo hi | clevis encrypt tang ’{" url ": "http :// tang.local "}’ > hi.jwe
The advertisement contains the following signing keys:

Apb39FO1vey9FyUe_fEd8lVDABs

Do you wish to trust these keys? [ynYN] y
$ clevis decrypt tang ’{" url ": "http :// tang.local "}’ < hi.jwe
hi

18



In this example, we encrypt the message “hi” using the tang PIN. The only parameter
needed in this case is the URL of the Tang server. During the encryption process, the tang
PIN requests the key advertisement from the server and asks us to trust the keys. This
works similarly to SSH.

Alternatively, we can manually load the advertisement using the adv parameter. This
parameter takes either a string referencing the file where the advertisement is stored, or the
JSON contents of the advertisement itself. When the advertisement is specified manually
like this, Clevis presumes that the advertisement is trusted.

3.2.5 Binding LUKS Volumes with Clevis

Tang’s main purpose is to enable early boot decryption of the LUKS volumes and clevis is
the client solution for it. Clevis can be used to bind a LUKS volume using a PIN so that
it can be automatically unlocked.

Clevis automatically generates a new, cryptographically strong key using the Tang’s
advertisement. This key is added to LUKS as an additional passphrase. Clevis then encrypt
this key using Tang’s advertisement, and store the output JWE (JSON Web Encryption)
inside the LUKS header using LUKSMeta library. Here is an example where we bind
/dev/vda2 using the tang PIN:
# clevis bind -luks /dev/vda2 tang ’{" url ": "http :// tang.local "}’
The advertisement is signed with the following keys:

kWwirxc5PhkFIH0yE28nc -EvjDY

Do you wish to trust the advertisement ? [yN] y
Enter existing LUKS password :

Upon successful completion of this binding process, the disk can be unlocked using one
of the unlockers described below.

Dracut Install it to Fedora using:
# dnf install clevis - dracut

The Dracut unlocker attempts to automatically unlock volumes during early boot. This
permits the automated root volume encryption. To unlock Fedora, initramfs must be rebuilt
after installing Clevis using:
# dracut -f

Upon reboot, we will be prompted to unlock the volume using a password. In the back-
ground, Clevis will attempt to unlock the volume automatically. If it succeeds, the password
prompt will be canceled and boot will continue.

UDisks2 After installation, UDisks2 unlocker runs in a Fedora desktop session. There is
no need to manually enable it; just install the Clevis UDisks2 unlocker and restart desktop
session.
# dnf install clevis - udisks2

The unlocker should be started automatically. This unlocker works almost exactly the
same as the Dracut unlocker. If we insert a removable storage device that has been bound
with Clevis, it will attempt to unlock it automatically in parallel with a desktop password
prompt. If automatic unlocking succeeds, the password prompt will be dissmissed without
user intervention.

19



Chapter 4

Software portability

Ideally, any software would be usable on any operating system, platform, and any processor
architecture. Existence of term “porting”, derived from the Latin portāre which means
“to carry”, proves that this ideal situation does not occurs that often, and the actual process
of “carrying” software to a system with a different environment is often required. Porting
is process required to adapt software designed for specific platform to another platform.
Porting is also used to describe process of converting computer games to become platform
independent[32].

Software porting process might be hard to distinguish from building software. The
reason might be that in many cases, re-building software on the desired platform is enough.

Nowadays, the goal should be to develop software which is portable between preferred
computer platforms (Linux, UNIX, Apple, Microsoft). If the software is considered as not
portable, it does not have to mean that it is not possible, just that the time and resources
spent porting already written software are almost comparable, or even significantly higher
than writing software as a whole from scratch. Effort spent porting some software product
to work on a desired platform must be little, such as copying already installed files from
one computer to another and run/re-build it. This kind of approach might most probably
fail, due to not present dependencies of third party libraries on the destination computer.
Despite dominance of the x86 architecture, there is usually a need to recompile software
running, not only on different operating systems, to make sure we have all the dependencies
present.

Number of significantly different central processor units (CPUs), and operating systems
used on the desktop or the server is much smaller than in the past. However, on embedded
devices market, there are still much more various architectures available including ARM1

or MIPS2.
To simplify portability, even on processors with distant instruction sets, modern com-

pilers translate source code to a machine-independent intermediate code. But still, in the
embedded system market, where OpenWrt operating system belongs to, porting remains a
significant issue [14].

1https://www.arm.com/products/processors
2https://www.mips.com/products/classic/

20



4.1 OpenWrt System
OpenWrt is Linux distribution for embedded devices especially for wireless routers. It was
originally developed in January 2004 for the Linksys WRT54G with buildroot from the
uClibc project. Now it supports many more models of routers. OpenWrt is a registered
trademark which is held by the Software in the Public Interest (SPI) in the name of the
OpenWrt project.

Installing OpenWrt system means replacing our router’s built-in firmware with the Linux
system which provides a fully writable filesystem with package management3. This means
that we are not bound to applications provided by the vendor. A router (the embedded
device) with this distribution can be used for anything that an embedded Linux system can
be used for, from using its SSH Server for SSH Tunneling, to running lightweight server
software (e.g. IRC server) on it. In fact, it allows us to customize the device through the
use of packages to suit any application. [19]

4.1.1 OpenWrt and LEDE

The LEDE Project (“Linux Embedded Development Environment”) is a Linux operating
system emerged from the OpenWrt project. Its announcement was sent on 3th May 2016
by Jo-Philipp Wich to both the OpenWrt development list and the new LEDE development
list4. It describes LEDE as “a reboot of the OpenWrt community” and as a “spin-off of the
OpenWrt project” seeking to create an embedded-Linux development community “with a
strong focus on transparency, collaboration and decentralisation”5.

The rationale given for the reboot was that OpenWrt suffered from longstanding issues
that could not be fixed from within—namely, regarding internal processes and policies. For
instance, the announcement said, the number of developers is at an all-time low, but there
is no process for on-boarding new developers and no process for granting commit access to
new developers.

At the moment, the latest release of OpenWrt is 15.05.1 (code-named “Chaos Calmer”)
released in March 2016. LEDE developers continued to work separately on their upstream
release and they delivered LEDE “Reboot” with version 17.01.0 on February 22nd 2017.

The remerge proposal vote was passed by LEDE developers in June 20176. After long
and sometimes slowly moving discussions about the specifics of the re-merge, with multiple
similar proposals but little subsequent action, projects formally announced on LEDE forum
in January 20187. OpenWrt and LEDE projects agreed upon their unification under the
OpenWrt name. After merge, OpenWrt upstream repository started to show signs of life.

Today (April 2018) the stable LEDE 17.01.4 “Reboot” release of OpenWrt released in
October 2017 using Linux kernel version 4.4.92 runs on many routers [20].

4.1.2 Why Use OpenWrt

Custom router firmware may be more stable than our hardware’s default firmware from the
vendor. Not even that, but probably more secure with regular security updates. Besides

3https://openwrt.org/docs/guide-quick-start/factory_installation
4https://lwn.net/Articles/686180/
5https://www.phoronix.com/scan.php?page=news_item&px=OpenWRT-Forked-As-LEDE
6http://lists.infradead.org/pipermail/lede-adm/2017-June/000552.html
7https://forum.lede-project.org/t/announcing-the-openwrt-lede-merge/10217

21



OpenWrt, there is another open source Linux based firmware available such as Tomato or
DD-WRT.

In the past OpenWrt has supported only CLI (command line interface) configuration,
therefore, it was best match for software developers, network admins, or advanced users. A
user not acquainted with Linux or even not comfortable with CLI may find the OpenWrt
platform hard to use and may turn to other available solutions.

The Tomato firmware is the best match for unexperienced users providing rich GUI and
many other features, specifically live ”visual” traffic monitoring, allowing easy visibility on
inbound/outbound traffic in real-time. Big disadvantage of the Tomato is that the list of
supported devices is quite poor.

DD-WRT on the other hand, is compatible with more routers than any other third
party firmware. Compared to Tomato, DD-WRT is reported to have more bugs and less
intuitive GUI. The DD-WRT was known as the most feature rich firmware until OpenWrt
came along.

OpenWrt turns our router in a fully capable GNU/Linux computer, not just a network
“magic” box. Recently, the OpenWrt platform has come a long way in making itself more
accessible to all user levels. It has an Luci8 Web UI(user interface) now. Users that are less
experienced with Linux can easily set up their network using Luci. OpenWrt is capable of
running lightweight services like an IRC bouncer or samba/ftp file sharing (some routers
have USB ports able to power HDD) or even run software build on our own[29].

The goal of this thesis would be to port a lightweight Tang daemon, described in the
section 3.2, to OpenWrt system. Tang server will help us unlock our encrypted volumes
while on safe home or office network without a need for extra PC running it but having it
on our tiny OpenWrt “server”. With Tang, we do not have to care about typing passphrases
over and over to unlock LUKS drives in a safe environment.

4.2 OpenWrt’s Tool-chain
Compilation is done by set of tools called tool-chain and it consists of:

∙ compiler

∙ linker

∙ a C standard library

Embedded devices are not meant for building on them because they do not have enough
memory nor computation resources as ordinary personal computers do. For example device
specification see Table 4.1. Building on such device would be time consuming and may
result in overheating, which could cause the hardware to fail. For this particular reason,
package building is done with cross-compiler.

Cross-compiler is a programming tool capable of creating an executable file that is
supposed to run on a “target” architecture, in a similar or completely different environment,
while working on a different “host” architecture. It can also create object files used by linker.
The reason for using cross-compiling might be to separate the build environment from the
target environment as well. OpenWrt tool-chain uses gcc compiler, and it is one of the most
important parts of tool-chain.

8https://github.com/openwrt/luci

22



Most common C standard libraries are: GNU Libc, uClibc musl-libc, or dietlibc. They
provide macros, type definitions and functions for tasks such as input/output processing
(<stdio.h>), memory management (<stdlib.h>), string handling (<string.h>), mathemat-
ical computations (<math.h>), and many more9. The OpenWrt’s cross-compilation tool-
chain uses musl-libc.

For porting to “target” system (OpenWrt) this tool-chain has to be generated on “host”
system. The tool-chain can be created in many different ways. The easiest way is un-
doubtedly to find a .rpm (.deb or any distribution specific package available) package and
have it installed on our “host” system. If a binary package with desired tool-chain is not
available for our system or is not available at all, there might be a need to compile a custom
tool-chain from scratch10.

In case of OpenWrt, we have an available set of Makefiles and patches called buildroot
which is capable of generating tool-chain.

4.3 OpenWrt’s Buildroot
OpenWrt’s buildroot is a build system capable of generating the tool-chain, and also a root
file-system (also called sysroot), an environment tightly bound to the target. The build
system can be configured for any device that is supported by OpenWrt.

The root file-system in general is a mere copy of the file system of target’s platform. In
many cases, just having the folders /usr and /lib would be sufficient, therefore we do not
need to copy nor create the entire target file system on our host.

It is a good idea to store all these things, the tool-chain and the root file-system in
a single place. With using OpenWrt’s buildroot we will have this covered. Be tidy and
pedantic, because cross-compiling can easily become a painful mess![3]

4.3.1 Buildroot Prerequisites

Let us demonstrate minimum requirements of space and size of RAM for building packages
for Openwrt using its buildroot. For generating an installable OpenWrt firmware image file
with a size of e.g. 8 MB, we will need at least:

∙ ca. 200 MB for OpenWrt build system

∙ ca. 300 MB for OpenWrt build system with additional packages

∙ ca. 2.1 GB for source packages downloaded during build from the Feeds

∙ ca. 3-4 GB to build (i.e. cross-compile) OpenWrt and generate the firmware file

∙ ca. 1-4 GB of RAM to build Openwrt

Table 4.1 lists the specifications of embedded device TL-WR842Nv3, a regular wireless
router manufactured by TP-LINK, which was used to test all packages related to Tang
server porting effort.

9https://en.wikipedia.org/wiki/C_standard_library#Header_files
10tools like crosstool-ng (https://github.com/crosstool-ng/crosstool-ng) may help

23



Model TL-WR842N(EU)
Version v3

Architecture: MIPS 24Kc
Manufacturer: Qualcomm Atheros

Bootloader: U-Boot
System-On-Chip: Qualcomm Atheros QCA9531-BL3A

CPU Speed: 650 MHz
Flash chip: Winbond 25Q128CS16
Flash size: 16 MiB
RAM chip: Zentel A3R12E40CBF-8E
RAM size: 64 MiB
Wireless: Qualcomm Atheros QCA9531

Antennae(s): 2 non-removable
Ethernet: 4 LAN, 1 WAN 10/100

USB: 1 x 2.0
Serial: No

Table 4.1: TL-WR842Nv3 Specifications

Comparison of available storage space on wireless router to the actual sum of space
required only for buildroot to work correctly, which is about 6.4 GB, should demonstrate
why the building for embedded devices is done with cross-compiling. Another reasons, not
to just compare internal storage which might be extended11, are device’s minimalistic RAM
size and low computation capability of the CPU.

4.4 Preparing the Host Environment
To start with cross-compilation on the host system, we need to set up an environment for
it. As the OpenWrt buildroot is a set of scripts, it has run-time dependencies. We need to
install these dependencies first. To install buildroot dependencies on Fedora 27 system run:
# dnf install binutils bzip2 gcc gcc -c++ \

gawk gettext git -core flex ncurses -devel ncurses -compat -libs \
zlib -devel zlib - static make patch perl -ExtUtils - MakeMaker \
perl -Thread -Queue glibc glibc -devel glibc - static quilt sed \
sdcc intltool sharutils bison wget unzip openssl -devel

Some packages might be not available over git but only via other versioning tools like svn
(subversion) or mercurial. In our case this will not be necessary but if we want to obtain
their source-code, we need to install svn and mercurial as well:
# dnf install subversion mercurial

These commands have to be run by a user with root privileges.

4.4.1 Getting Buildroot

OpenWrt system has SDK (Software development kit) buildroots available for every released
version of OpenWrt system. It is good to consider using OpenWrt’s SDK in order to build
the software application for specific release of the target system. For example when we

11https://wiki.openwrt.org/doc/howto/extroot

24



are using a “stable” release of OpenWrt 15.05.1 with code-name “Chaos Calmer” on TL-
WR842N(EU) device, we should probably end up in “Supplementary Files” section of the
OpenWrt archives12 looking for the SDK. While porting an upstream projects (such as
Tang) for latest target release a bleeding edge buildroot would be the best solution.

If we have a host platform which aims to be on the bleeding edge, such as OS Fedora,
we will probably encounter issues with dependencies. These issues are appearing because
an older version of the dependencies are required for this old SDK to work and might not
be available for our host platform anymore. In this case, we would have to install or even
build an older version of required packages. We will work with trunk version buildroot and
build for the latest LEDE 17.01.4 release. To clone upstream buildroot run command:
$ git clone https :// github .com/ openwrt / openwrt .git

4.5 Working with Buildroot
Working with Openwrt’s buildroot requires some basic knowledge of the git version con-
trol system13 and processes of upstream project development using GitHub14. A short
description of how to fork and set up repository can be found in appendix D Setting up the
repository. All work related to this thesis has been done using GitHub account Tiboris15

therefore following command to get our fork of buildroot would be:
$ git clone https :// github .com/ Tiboris / openwrt .git ~/ buildroot - openwrt

After we have the environment ready to be worked on, all required dependencies installed
and fork of our buildroot downloaded on host system, it would be useful to have these 4
rules in mind, to not break our environment in any way.

1. Do everything in buildroot as non-root user!

2. Issue all OpenWrt build system commands in the <buildroot> directory,
e.g. ∼/buildroot-openwrt/

3. Do not build in a directory that has spaces in its full path.

4. Change ownership of the directory where we downloaded
the OpenWrt to other than root user

4.5.1 Setting Feeds

In OpenWrt, a feed is a collection of packages which share a common location. Feeds
may reside on a remote server, in a version control system, on the local file-system, or
in any other location addressable by a single name (path/URL) over a protocol with a
supported feed method. Setting the feeds is the most important step to do before starting
cross-compilation. Listing 4.1 shows, a list of usable feeds configured by default.

12https://archive.openwrt.org/chaos_calmer/15.05.1/ar71xx/generic/
13https://git-scm.com/docs/gittutorial
14https://guides.github.com/introduction/flow/
15https://github.com/Tiboris/

25



src -git packages https :// git. openwrt .org/feed/ packages .git
src -git luci https :// git. openwrt .org/ project /luci.git
src -git routing https :// git. openwrt .org/feed/ routing .git
src -git telephony https :// git. openwrt .org/feed/ telephony .git
#src -git video https :// github .com/ openwrt /video.git
#src -git targets https :// github .com/ openwrt / targets .git
#src -git management https :// github .com/openwrt - management / packages .git
#src -git oldpackages http :// git. openwrt .org/ packages .git
#src -link custom /usr/src/ openwrt /custom -feed

Listing 4.1: Content of feeds.conf.default

Custom OpenWrt packages are located in packages feed – see the first line of the listing
4.1. To work with our own fork of the packages feed, we can simply change the line to point
to our fork repository. Feeds can point to a special branch of our choice:
src -git packages https :// github .com/ Tiboris /packages - OpenWrt .git; new_pkgs

or commit hash in repository:
src -git packages https :// github .com/ Tiboris /packages - OpenWrt .git^ dbdfc99

Changing this feed to our custom branch will reduce effort spent on getting all new depen-
dencies to the buildroot’s feeds/packages directory.

The feeds are “managed” with the script available in builroot’s scripts directory,
feeds. To download the feeds, run this script with command update and option -a as
shown. Remember to invoke it from the buildroot directory(∼/buildroot-openwrt).
$ ./ scripts /feeds update -a

To make any package available for the build, we shall “install” it using the same feeds
script:
$ ./ scripts /feeds install <PACKAGENAME >

or we can use option -a instead of the <PACKAGENAME> and make all of the packages
available for the build. If for some unknown reason the issued update of packages does not
seems to show all the updates, it might be helpful to clean the buildroot’s tmp/ directory[23].
$ rm -rf tmp/

4.5.2 The Menuconfig

For OpenWrt menuconfig provides a simple, yet powerful, environment for the configuration
of individual builds. Working with menuconfig is very intuitive. Even the most specialized
configuration requirements can be met by using it. Depending on the particular target plat-
form, package requirements, and kernel module needs, the standard configuration process
will include modifying:

∙ Target system

∙ Package selection

∙ Build system settings

∙ Kernel modules

26



Start the menuconfig interface shown on Figure 4.1 menuconfig by issuing the following
command:
$ make menuconfig

The make menuconfig will collect package information first. Afterwards, the following
window will appear in our terminal and there we can start configuring the image using
menuconfig:

Figure 4.1: Menuconfig

Image can be configured with three options: y, m, n which are represented as follows:

∙ pressing y sets the <*> built-in label
This package will be compiled and included in the firmware image file.

∙ pressing m sets the <M> package label
This package will be compiled, but not included in the firmware image file. (E.g. to
be installed with opkg after flashing the firmware image file to the device.)

∙ pressing n sets the < > excluded label
The source code will not be processed.

Target system is selected from the extensive list of supported platforms, with the numerous
target profiles – ranging from specific devices to generic profiles, all depending on the
particular device at hand. In our case, we should browse the Target Profile selection
and find our targeted device (TP-LINK TL-WR842N/ND v3).

Package selection has the option of either ’selecting all packages’, which might be un-
practical in certain situations, or relying on the default set of packages will be adequate or
make an individual selection. It is here worth mentioning that some package combinations
might break the build process, so it can take some experimentation before the expected
result is reached. Added to this, the OpenWrt developers are themselves only maintaining

27



a smaller set of packages – which include all default packages – but, the feeds-script makes
it very simple to handle a locally maintained set of packages and integrate them in the
build-process.

The final step before the process of compiling the intended image would be to exit the
menuconfig tool – this also includes the option to save a specific configuration or load an
already existing, and pre-configured, version. Exit the UI, and choose to save the settings.
When we save our configuration, the file .config will be created in the buildroot directory
according to desired configuration [22].

4.5.3 Building Single Packages

When developing or packaging software for OpenWrt, it is convenient to be able to build
only the package in question (e.g. with package cups):
$ make package /cups/ compile V=s

For a rebuild run:
$ make package /cups /{ clean ,compile , install } V=s

It does not matter what feed the package is located in, this same syntax works for any
available package.

If for some reason the build fails, the easiest way to spot the error is to do:
$ make package /cups /{ clean ,compile , install } V=s 2>&1 | \

tee build.log | grep -i error

This pipeline shown invocates the rebuild of the package forwarding the ouput to build.log
file with tee, looking for case insensitive string “error” with grep. Complete guide can be
found on OpenWrt Wiki16.

16https://wiki.openwrt.org/doc/howto/build

28



Chapter 5

Porting the dependencies

Programs don’t run in a vacuum but they interact with the outside world. The view of this
outside world differs from environment to environment. Things like host-names, system
resources, and local conventions could be different.

When we start porting a code to a specific target platform, in our case OpenWrt, it is
likely that we will face the first problem: satisfying missing dependencies. This problem
is easy to solve in principle, but can become complex fast. If the code depends on some
library that is not in the root file-system, we need to add it.

Dependencies can be satisfied in two ways: with static libraries or with shared libraries.
We could find a binary package providing what we need (i.e. the library files and the
header files), but most often we will have to cross-compile from the source code on our own.
Either way, we end up with one or more binary files and a bunch of header files. There
are a few different situations that can happen, but basically everything reduces to having
dependencies in buildroot’s root file-system.

Having dependencies in a separate folder could be an interesting solution to keep the
libraries that we cross-compiled on our own separated from the system libraries. We must
then remember to provide the compiler and linker programs the paths where header files
and binary files can be found. With static libraries, this information is only needed at
compile and link time, but if we are using shared libraries, this won’t suffice. We must also
specify where these libraries can be found at run time.

If we are satisfying the dependencies with shared libraries (“.so” files), having depen-
dencies in root file-system is probably the most common solution. In case of OpenWrt,
we will use this approach. When everything will be up and running, these libraries must
be installed somewhere in the file system of the target platform. It is natural to install
dependencies in the target’s root file-system, for example in /usr/lib (the binary shared
files) and /usr/include (the header files) or in any other path that allows the loader to find
those libraries when the program executes. We shall not forget to install them in the file
system of the actual target machine, in the same places, in order to make everything work
as expected. Please note that static libraries (“.a” files) do not need to be installed in the
target file system since their code is embedded in the executable file when we cross-compile
a program[3].

29



5.1 Find the Dependencies
To port Tang to OpenWrt system we have have all its dependencies available and installed
in buildroot. We should find out if dependencies for our software project we are about to
port, are available for the target’s platform. Usually every software project has its pages
and all its dependencies should be found there. Let us find these dependencies at Tang’s
GitHub pages1 first:

∙ http-parser

∙ systemd’s socket activation

∙ José – dependent on:

– jansson
– openssl
– zlib

We will compare versions of all packages required for Tang using rpm information available
from the Fedora’s koji site2. All packages available for OpenWrt can be found in OpenWrt
GitHub repositories. We will find out that OpenWrt system has already packages openssl,
zlib, http-parser, and jansson. The openssl and zlib packages packaged for OpenWrt are in
versions already sufficient for Tang.

Search for ’http-parser’ does not find this package in base OpenWrt’s repository. The
reason is that ’http-parser’ is not located in OpenWrt’s GitHub repository openwrt/openwrt.
After searching repository openwrt/packages for ’http-parser’ we will find out that it is
named as ’libhttp-parser’ and in version 2.2.3. This naming convention is really common
in Linux and could be predictable as the http-parser is, in fact, only a library. Compared
to koji ’http-parser’ needs to be updated to version 2.7.1 to satisfy Tang’s requirements.

Jansson package was only available in version 2.7 which is too outdated for Tang’s
dependency José because it requires at least jansson version 2.10.

Packages José, Tang and systemd are not listed in OpenWrt’s packages. Porting of the
systemd would be huge effort but Tang’s requirements are only for the socket activation. We
should be able to work with xinetd’s socket activation as this package is already packaged
for OpenWrt. Finally, José and Tang will required to be added into package feeds.

Let us clone the fork of openwrt/packages repository outside of the buildroot environ-
ment:
$ git clone git@github .com: Tiboris /packages - OpenWrt .git

We will use this fork so we can have a branch for every new package and package change
and one special branch new_pkgs set up as a feed for buildroot. This will allow us to easily
create an upstream pull-request for each package separatelly.

To build the packages we used OpenWrt buildroot3 with latest upstream commit hash
030a23001b74ede5fa2e6070a8fb04f3feccfbbd. The OpenWrt buildroot has to have a
packages feeds set to point to repository with available OpenWrt packages. We used up-
stream packages4 with latest commit hash 580053888235713dd95b96b37169926bffedce0b.

1https://github.com/latchset/tang
2https://koji.fedoraproject.org/koji/rpminfo?rpmID=10772363
3https://github.com/openwrt/openwrt
4https://github.com/openwrt/packages

30



5.2 Update Outdated Packages
Finding some of dependencies already available for our desired target platform will definitely
make us satisfied. We would agree that starting with something already built for OpenWrt is
the best thing to do when we are approaching unknown platform. In following subsections,
we will use all things we know from section 4.5. Let us start with missing update of José’s
dependency, package jansson.

5.2.1 Update jansson

Jansson is a C library for encoding, decoding and manipulating JSON data. The latest
release of the jansson is v2.11 released on 11th of February 2018[15].

However, at the beginning of the Tang porting effort the latest release was v2.10. To up-
date mentioned OpenWrt available jansson package version v2.7 to 2.10 change to package’s
fork directory and create a new branch for changes:
$ cd ~/ packages - OpenWrt
$ git checkout -b jansson - update

In order to tell the OpenWrt buildroot how to build a program, we need to create a special
Makefile in the appropriate directory. The appendix E OpenWrt package’s Makefile illus-
trate its content. We shall now find the jansson package Makefile in the repository using
for example:
$ git grep jansson | grep PKG_NAME
libs/ jansson / Makefile : PKG_NAME := jansson

The PKG_NAME variable identifies the package for OpenWrt buildroot[21]. List of all
available variables can be found on the OpenWrt wiki page5. We can assume that the jans-
son library related files are located in libs/jansson directory of the packages repository.
Now we can update the Makefile.

We will find the variable PKG_VERSION and change the old version number (in
our case 2.7) to the new version number (2.10). This edit will result in changing the
PKG_SOURCE variable in Makefile. Variables PKG_SOURCE and PKG_SOURCE_URL
are used to identify the location of the archive with sources for specified version from
where the sources would be downloaded. After the downaload, the OpenWrt buildroot
checks the file integrity. The PKG_HASH and PKG_MD5SUM variables serve this pur-
pose. As the new version of archive with sources will be downloaded, we need to change
the PKG_HASH/PKG_MD5SUM variable as well. For some reason, OpenWrt upstream
developers required the use of PKG_HASH variable and the bz2 archive for the jans-
son package. In general, it would be sufficient to change only the version and the ap-
propriate PKG_HASH/PKG_MD5SUM variable. We changed the filename extension for
PKG_SOURCE variable from “.tar.gz” to “.tar.bz2”. Now download the archive containing
sources and get the archive hash using sha256sum:
$ wget http :// www.digip.org/ jansson / releases /jansson -2.10. tar.bz2 -P /tmp
$ sha256sum /tmp/jansson -2.10. tar.bz2 | cut -d " " -f1
241125 a55f739cd713808c4e0089986b8c3da746da8b384952912ad659fa2f5a

Last but not least, commit the changes and push the changes into our fork.
$ git commit -a
$ git push --set - upstream origin jansson - update

5https://wiki.openwrt.org/doc/devel/packages

31



Before submitting the pull request we should try to build the updated package first.
The following step is not necessary because update of jansson package has been already
merged upstream6 where the diff can be wieved. But to do so, let us remember that we
have special branch set up for buildroot feeds – the new_pkgs branch. In general, to test
updated or new packages we will use this branch to merge our newly created branch into
it using:
$ git checkout new_pkgs
$ git merge jansson - update

After successful merge we have updated jansson package available in our custom feeds.
Trigger the update with the feeds script and make jansson, that is now updated, available
in menuconfig with:
$ ./ scripts /feeds update packages
$ ./ scripts /feeds install jansson

To finally build updated package we shall run the command:
$ make package / jansson /{ clean , compile } V=s

After successful build, the most important part would be to contribute changes to
the upstream as we already did through merged pull-request mentioned above. With a
knowledge of buildroot and the contribution guidelines, the effort spent on such updates
may be quite minimal.

5.2.2 Update http-parser

Tang uses this parser library for both parsing HTTP requests and HTTP responses. Sources
can be found on its GitHub page7.

The latest release available was version v2.7.1 until 9th February 2018 release of v2.8.0
which update will be demonstrated below. Fedora is still using version v2.7.1 with Tang
server, so compared to last available version on OpenWrt, which was v2.3.0, an update is
needed. Hoping for the best, we first try to update the libhttp-parser to version v2.7.1 to
match Fedora version similar way as with jansson. Only updating version of the package
may suffice but the case of libhttp-parser as dependency was special as you will notice in
subsection 6.2.1 Obstacles of delivering Tang. To upgrade this package, we will do the
same as with jansson package. First, make sure that we are still in packages repository and
create branch for the change:
$ git checkout -b libhttp -parser - update master

Let us locate the http-parser Makefile:
$ git grep http - parser | grep PKG_NAME
libs/libhttp - parser / Makefile : PKG_NAME := libhttp - parser

Find out the source url to download the archive containing a new version of http-parser
and get the archive hash using sha256sum:
$ wget https :// github .com/ nodejs /http - parser / archive /v2 .8.0. tar.xz -P /tmp
$ sha256sum /tmp/v2 .8.0. tar.gz | cut -d " " -f1
83 acea397da4cdb9192c27abbd53a9eb8e5a9e1bcea2873b499f7ccc0d68f518

6https://github.com/openwrt/packages/pull/4289/files
7https://github.com/nodejs/http-parser

32



Please note the file extension in the old makefile and download the same file-type for
upgrade.

Before committing the changes we also found that the owner of the repository changed
from joyent to nodejs so we addressed these changes as well by editing proper sections in
the Makefile. We shall now commit the changes and push them into our fork.
$ git commit -a
$ git push --set - upstream origin libhttp -parser - update

Again following step to merge the libhttp-parser-update branch with feeds branch is not
necessary because the submitted pull-request8 containing these changes has been already
merged to the upstream:
$ git checkout new_pkgs
$ git merge libhttp -parser - update

After the package is available in our feeds, trigger the update with the feeds script and
make new version of libhttp-parser package available in menuconfig:
$ ./ scripts /feeds update packages
$ ./ scripts /feeds install libhttp - parser

Finally, build an updated libhttp-parser running:
$ make package /libhttp - parser /{ clean , compile } V=s

Unfortunately, as we will see in subsection 6.2.1 Obstacles of delivering Tang, the successful
build of the updated package may not be enough. Especially when the built package is also
a dependency for other packages.

5.3 New Package José
After updating of jansson and libhttp-parser we are familiar with OpenWrt’s Makefiles. As
José package is not packaged for OpenWrt, now comes the time to write a new makefile on
our own.

José is a C-language implementation of the Javascript Object Signing and Encryption
standards. Specifically, José aims towards implementing the following standards:

∙ RFC 7520 - Examples of JSON Object Signing and Encryption (JOSE) [18]

∙ RFC 7515 - JSON Web Signature (JWS) [9]

∙ RFC 7516 - JSON Web Encryption (JWE) [11]

∙ RFC 7517 - JSON Web Key (JWK) [8]

∙ RFC 7518 - JSON Web Algorithms (JWA) [7]

∙ RFC 7519 - JSON Web Token (JWT) [10]

∙ RFC 7638 - JSON Web Key (JWK) Thumbprint [12]

JOSE (Javascript Object Signing and Encryption) is a framework intended to provide
a method to securely transfer claims (such as authorization information) between parties.
Tang uses JWKs in comunication between client and server. Both POST request and reply
bodies are JWK objects[16].

8https://github.com/openwrt/packages/pull/5446

33



5.3.1 Create José

First, let us create a feature branch and a directory for a new package:
$ git checkout -b libhttp -parser - update master
$ mkdir -p utils/jose

It does not matter whether the new Makefile will be placed in the libs or utils section for
the build purposes. We can simply change it as upstream developers would require.

To start with such a work, it is good to have some kind of the template. For the José we
used the jansson’s Makefile as a template. Place this “template” Makefile into utils/jose
directory and start editing.

Let us go through it from the top to the bottom. This is the first non comment line in
the file:
include $( TOPDIR )/ rules.mk

Without this include, our Makefile would not work, so we will leave it as it is. The next
are the package name, version and release variables. This has to be the first thing to edit:
PKG_NAME := jose
PKG_VERSION :=10
PKG_RELEASE :=1

As we defined the version of the package which we desire, we should visit the José project
pages and browse for the release archive. José’s upstream releases lives on GitHub9. Visit
the site and copy link location of the tar.bz2 archive for José release 10. Now download the
archive and as we did when updating packages run sha256sum:
$ wget -P /tmp \

https :// github .com/ latchset /jose/ releases / download /v10/jose -10. tar.bz2
$ sha256sum /tmp/jose -10. tar.bz2 | cut -d " " -f1
5 c9cdcfb535c4d9f781393d7530521c72b1dd81caa9934cab6dd752cc7efcd72

This manual step is reflected in the Makefile as shown:
PKG_SOURCE :=$( PKG_NAME )-$( PKG_VERSION ). tar.bz2

PKG_SOURCE_URL :=\
https :// github .com/ latchset /$( PKG_NAME )/ releases / download /v$( PKG_VERSION )/

PKG_HASH :=\
5 c9cdcfb535c4d9f781393d7530521c72b1dd81caa9934cab6dd752cc7efcd72

The PKG_SOURCE variable now contains the value of the source archive name. The
PKG_SOURCE_URL provides the whole path to archive stored on GitHub server and the
PKG_HASH is used to verify the file integrity.
PKG_INSTALL :=1
PKG_BUILD_PARALLEL :=1

PKG_FIXUP := autoreconf
include $( INCLUDE_DIR )/ package .mk

Setting PKG_INSTALL to “1” will call the package’s original “make install” to the direc-
tory defined with PKG_INSTALL_DIR variable. The PKG_FIXUP performs the impor-
tant autoreconf -f -i for the project using autotools. And again, without including the
makefile package.mk, the buildroot would not know how to continue the build. It is a good
practice to divide it into two packages, the library and the tool package:

9https://github.com/latchset/jose/releases

34



define Package / libjose
SECTION := libs
TITLE := Provides a full crypto stack ...
DEPENDS :=+ zlib + jansson + libopenssl
URL := https :// github .com/ latchset /jose
MAINTAINER := Tibor Dudlak <tibor. dudlak@gmail .com >

endef

define Package /jose
SECTION := utils
TITLE := Provides a full crypto stack ...
DEPENDS :=+ libjose +zlib + jansson + libopenssl
URL := https :// github .com/ latchset /jose
MAINTAINER := Tibor Dudlak <tibor. dudlak \ @gmail .com >

endef

To add a description for both packages, we should add defines to Makefile with proper text:
define Package /jose/ description

... description text ...
endef

define Package / libjose / description
... description text ...

endef

The Build/Configure section can be skipped, if the source doesn’t use configure or has
a normal config script. Otherwise, we can put our own commands here or use $(call
Build/Configure/Default,) to pass in additional arguments after the comma for a standard
configure script.
define Build/ Configure

$(call Build/ Configure / Default )
endef

Every library package should have the section Build/InstallDev. This section is important
for linker and buildsystem especially to work correctly when library would be used as a
dependency (static libs, header files) for other tools or packages. This section has no use
on the target device.
define Build/ InstallDev

$( INSTALL_DIR ) $(1)/ usr/lib
$( INSTALL_DIR ) $(1)/ usr/ include
$( INSTALL_DIR ) $(1)/ usr/ include /$( PKG_NAME )
$( INSTALL_DIR ) $(1)/ usr/lib/ pkgconfig
$(CP) $( PKG_INSTALL_DIR )/ usr/lib/lib$( PKG_NAME ).so* $(1)/ usr/lib
$(CP) $( PKG_INSTALL_DIR )/ usr/ include /$( PKG_NAME )/*.h \

$(1)/ usr/ include /$( PKG_NAME )
$(CP) $( PKG_BUILD_DIR )/*. pc $(1)/ usr/lib/ pkgconfig

endef

Section Package/<package>/install contains set of commands to copy files into the device
file-system represented by the $(1) directory. As a source, we can use relative paths which
will install software from the unpacked and compiled source, or $(PKG_INSTALL_DIR)
which is where the files in the Build/Install (not used here) step ends up.
define Package / libjose / install

$( INSTALL_DIR ) $(1)/ usr/lib
$(CP) $( PKG_INSTALL_DIR )/ usr/lib/lib$( PKG_NAME ).so* $(1)/ usr/lib/

endef

35



define Package /jose/ install
$( INSTALL_DIR ) $(1)/ usr/bin
$( INSTALL_BIN ) $( PKG_INSTALL_DIR )/ usr/bin/$( PKG_NAME ) $(1)/ usr/bin/

endef

At the bottom of the file we put BuildPackage, a macro setup by the earlier include state-
ments. BuildPackage only takes one argument directly – the name of the package to be
built. All other information is taken from the define blocks.
$(eval $(call BuildPackage , libjose ))
$(eval $(call BuildPackage ,jose ))

At this point, our first Makefile for José is ready. Let us merge this changes to feeds and
try to build our freshly created package.
$ git commit -a
$ git push --set - upstream origin add -jose
$ git checkout new_pkgs
$ git merge add -jose

In buildroot run:
$ ./ scripts /feeds update packages
$ ./ scripts /feeds install jose
$ make menuconfig
$ make package /jose /{ clean , compile }

Note that feeds script with an install option will install also missing dependencies of José to
be available in buildroot. The new packages will be available in the Extra packages section
of the menuconfig as you can see on Figure 5.1 Extra packages. José’s build takes some

Figure 5.1: Extra Packages

time, since it has openssl library as a dependency which also needs to be compiled. The
pull request for adding the José package to OpenWrt can be found in its repository10.

10https://github.com/openwrt/packages/pull/4334

36



Chapter 6

Porting Tang

After successful cross-compilation of José we have all the dependencies packaged except
the systemd. The systemd is only one of many implementations (inetd, launchd, ucspi-tcp,
xinetd) of a server providing socket activation.

6.1 Socket Activation
Socket activation is a technology provided by a super-server (also called a service dispatcher
daemon). It uses very few resources when in idle state and starts other services when needed
as well, normally with access to them checked by a TCP wrapper. A service designed for
the socket activation would behave as bare CLI application with input read from stdin
(standard input) and output written to stdout (standard output). Tang is exactly this kind
of application and because of that, we need to configure socket activation.

The xinetd implementation is already packaged for OpenWrt and we will try to configure
the Tang to use it later.

6.1.1 Xinetd

xinetd listens for incoming requests over a network and launches the appropriate service
for that request. Requests come to network ports and xinetd usually launches another
daemon to handle the request. This is reflected on Figure 6.1 xinetd socket activation
below. xinetd features access control mechanisms such as TCP Wrapper ACLs (access

stdin 

xinetd 

stdout 

server  
application

client  
application network port

stdin 

stdout 

Figure 6.1: Xinetd Socket Activation

control lists), extensive logging capabilities, and the ability to make services available based
on time. It can place limits on the number of servers that the system can spawn. xinetd
is listening on behalf of the services. Whenever a connection comes in, an instance of the
respective service will be spawned using stdin and stdout of the service application[2].

37



6.2 Package the Tang
Similarly to José, we need to create a new package for OpenWrt. Let us create a branch
and utils/tang directory where binary programs like Tang belong:
$ git chechout -b add -tang master
$ mkdir -p utils/tang/

The Tang project is owned by the same owner on GitHub as José. We should visit the
project releases page1 and get the Tang version v6. Then add following lines to the Makefile
similarly as with José’s Makefile:
include $( TOPDIR )/ rules.mk

PKG_NAME := tang
PKG_VERSION :=6
PKG_RELEASE :=1

PKG_SOURCE :=$( PKG_NAME )-$( PKG_VERSION ). tar.bz2
PKG_SOURCE_URL :=\
https :// github .com/ latchset /$( PKG_NAME )/ releases / download /v$( PKG_VERSION )/

PKG_HASH :=1 df78b48a52d2ca05656555cfe52bd4427c884f5a54a2c5e37a7b39da9e155e3

PKG_INSTALL :=1
PKG_BUILD_PARALLEL :=1

PKG_FIXUP := autoreconf

include $( INCLUDE_DIR )/ package .mk

Do not forget to add the package description which should have section dependencies filled.

∙ libhttp-parser – used for parsing HTTP requests.

∙ José – the library and tool for the JavaScript Object Signing and Encryption.

∙ xinetd (a run-time dependency)

∙ bash (a run-time dependency)

The actual build proccess of the Tang does not require xinetd’s libraries but will be con-
figured to use its socket activation available in run-time. The bash dependency is there
for the reason that Tang’s tangd-update and tangd-keygen executables are bash scripts.
These scripts are complex and are using data structures that are not available for Open-
Wrt’s default shell - ash. Having run-time dependencies listed in the Makefile will ensure
that they are installed to the device before the Tang.
define Package /tang

SECTION := utils
TITLE := tang v$( PKG_VERSION ) - daemon for binding data to a third party
DEPENDS :=+ libhttp - parser + xinetd +jose +bash
URL := https :// github .com/ latchset /tang

endef

The Tang package will be present in utils section of the openwrt/packages repository. Let
us add a brief description to our new package using description define:

1https://github.com/latchset/tang/releases/

38



define Package /tang/ description
Tang is a small daemon for binding data to the presence of a third party

endef

The buildroot should know where to install the Tang’s binaries. Let us define the install
section and use the standard tangd binary location as on Fedora OS:
define Package /tang/ install

$( INSTALL_DIR ) $(1)/ usr/ libexec
$( INSTALL_BIN ) \

$( PKG_INSTALL_DIR )/ usr/lib/tangd* $(1)/ usr/ libexec /
endef

Do not forget the last line which allows the actual ”magic“ to happen:
$(eval $(call BuildPackage ,$( PKG_NAME )))

We can now merge these changes to feeds and try to build our freshly created Tang package:
$ git commit -a
$ git push --set - upstream origin add -tang
$ git checkout new_pkgs
$ git merge add -tang

The new package tang will be available in the Extra packages section of the menuconfig
after updating feeds:
$ ./ scripts /feeds update packages
$ ./ scripts /feeds install tang
$ make menuconfig
$ make package /tang /{ clean , compile }

After the first try to build the tang package, we will encounter the systemd dependency
error:
configure : error: Package requirements ( systemd ) were not met:

No package ’systemd ’ found

Consider adjusting the PKG_CONFIG_PATH environment variable if you
installed software in a non - standard prefix .

We did not define systemd dependency for Makefile, but the cross-compilation of the pack-
age will try to configure and compile downloaded sources. Compiler will try to find the
systemd dependency, as it is defined as a dependency in the configure.ac file in Tang
repository. We shall remove this builtime dependency.

To do so, we will remove a requirement for systemd from the Tang’s configure.ac and
Makefile.am file. These patches are too extensive to be demonstrated. Makefile_am.patch
and configure_ac.patch can be found in submitted pull-request files2 on GitHub.

To have sources patched before the compilation, we have to crate a directory for them
in the package’s feeds repository we forked on branch containing commit adding the Tang
and copy them to the created directory:
$ cd packages - OpenWrt
$ git checkout add -tang
$ mkdir -p utils/tang/ patches

Patches included in this directory are automatically applied on the sources downloaded
from the mirror in the build time.

2https://github.com/openwrt/packages/pull/5447/files

39



To have these changes in our feeds in buildroot, commit and push them to the add-tang
branch. After these changes have been pushed and merged with new_pkgs branch, a rebuild
of the tang package will succeed. Now we have the Tang package ready to be installed on
our device.

We are avoiding troubles by using the libhttp-parser in version 2.8.0. These problems
are described in following subsection 6.2.1. The most important part after a successful
build would be to configure it correctly.

6.2.1 Delivering the Tang Package

The upstream world is not always ideal. Soon after this porting effort started, OpenWrt
upstream was in a bad shape and almost dead for reasons we described in subsection 4.1.1.
The active part of OpenWrt developers decided to focus on LEDE project and submitting
a pull-request to the OpenWrt was painful. Working with outdated buildroot (or an SDK)
was not ideal. We decided to use the upstream version of buildroot after re-merge. It solved
many issues with outdated dependencies that occured.

Outdated buildroot caused many issues with dependencies, but as we installed the
older version of them, the build could be triggered. The most time consuming thing was
to run a build over and over and collect linker and compiler errors and adding additional
flags into Makefile such as:
+ CFLAGS += -fhonour -copts
+ TARGET_CFLAGS += $(FPIC) -std=gnu99
+ TARGET_LDFLAGS += -Wl ,-rpath -link=$(1)/ usr/lib

Same flags and running a build over an over were happening with José and with the Tang.
In case of Tang, there was one additional TARGET_CFLAGS option:
-D_GNU_SOURCE

Without this option Tang was issuing compilation errors with implicit declaration of the
functions:
dprintf ()
vdprintf ()

Using uptream buildroot solved these issues for good.

libhttp-parser dependency has been in its latest version 2.7.1 when the effort started.
Unfortunately, building the Tang package with libhttp-parser updated to version 2.7.1 failed
on the dependency and has thrown an error:
checking for http_parser .h... no
configure : error: http - parser required !

We found out that Fedora’s package http-parser contains one patch3 to add the functionality
required by the Tang to the http-parser. Actual checking of the header was in configure.ac
file of the Tang package:
AC_CHECK_HEADER ([ http_parser .h], [],

[ AC_MSG_ERROR ([http - parser required !])] , [
# include <http_parser .h>
# ifndef HTTP_STATUS_MAP

3https://github.com/nodejs/http-parser/pull/337

40



#error HTTP_STATUS_MAP not defined !
#endif
])

We first considered applying the very same patch from Fedora package to the http-parser
in version 2.7.1 in OpenWrt but in the end, the release 2.8.0 solved the dependency error
for a HTTP_STATUS_MAP macro. On the other hand, it brought an another issue:
Package tang is missing dependencies for the following libraries :
libhttp_parser .so .2.8

Adding a symbolic link to the libhttp-parser’s install sections of the Makefile will suffice.
ln -s libhttp_parser .so.$( PKG_VERSION ) libhttp_parser .so .2.8

41



Chapter 7

Configuring the Tang on OpenWrt

Having the installable packages in our buildroot is only the half of the work done. We
need to install them on the actual device and setup the environment especially for the Tang
server to work correctly. The installation of the packages on OpenWrt is done with the
opkg package manager.

The opkg (Open Package Management System) is a lightweight package manager used
to download and install OpenWrt packages. These packages could be stored somewhere
on device’s file-system or the package manager will download them from local package
repositories or ones located on the Internet mirrors. Users already familiar with GNU/Linux
package managers like dnf, yum, apt/apt-get, pacman, emerge etc. will recognize the
similarities. It also has similarities with NSLU2’s Optware, also made for embedded devices.

Opkg attempts to resolve dependencies with packages in the available repositories/mir-
rors. If the opkg fails to find the dependency, it will report an error, and abort the instal-
lation of selected package.

By removing systemd lines from sources, we end up not having automatic updates of
the Tang’s cache and we will need the xinetd’s socket activation to be set up.

7.1 Install the Packages
The packages that have been built in our buildroot are not available in any online mirror
yet. To make them available for OpenWrt we should create a pull-request with the change
and work with the community to accept it. Before we do so, we have to make sure that the
built packages are working by trying to install them and test their functionality.

To get our newly built packages to the target device running the OpenWrt, we can
upload them by using scp to device’s file-system. After the successful build, the packages
are present in the bin/packages/mips_24kc/packages/ directory (the location is bound
to device configuration):
$ scp bin/ packages / mips_24kc / packages /*. ipk \

root@192 .168.0.1:/ root/custom - packages /

This command will upload every package built before in builroot to the device’s directory
/root/custom-packages/. The buildroot should contain at least these files:
$ ls bin/ packages / mips_24kc / packages /
bash_4 .4.12 -1 _mips_24kc .ipk
jansson_2 .10 -1 _mips_24kc .ipk
jose_10 -1 _mips_24kc .ipk
libhttp - parser_2 .8.0 -1 _mips_24kc .ipk

42



libjose_10 -1 _mips_24kc .ipk
Packages
Packages .gz
Packages . manifest
Packages .sig
tang_6 -1 _mips_24kc .ipk
xinetd_2 .3.15 -5 _mips_24kc .ipk

After the successful upload, connect to the device and install packages. We recommend
installing only newly built or updated packages. opkg will resolve known dependencies from
the mirrors and will install them. The /root/custom-pacakges is not set up as custom
opkg feed, thus we need to install tang and ist depencencies manually in order:
opkg install /root/custom - packages / jansson_2 .10 -1 _mips_24kc .ipk
opkg install /root/custom - packages /jose_10 -1 _mips_24kc .ipk
opkg install /root/custom - packages /libhttp - parser_2 .8.0 -1 _mips_24kc .ipk
opkg install /root/custom - packages /tang_6 -1 _mips_24kc .ipk

The opkg tool will resolve other known dependencies and install them as well. After pack-
ages are installed, we can now proceed to the enviroment setup.

7.2 Setting Up the Tang Keys
The Tang server is packaged with scripts which help us to generate keys and cache for the
Tang daemon. OpenWrt has no realpath available, therefore the tangd-update script did
not work on OpenWrt.
bash: realpath : command not found

Simply replacing it with readlink -f solved the issue and the script with such change is
capable of generating cache. We have to create a diff file for this change and add it into
utils/tang/patches directory.

The OpenWrt Makefile can define section Package/$(PKG_NAME)/postinst. This sec-
tion usually contains a short shell script to tweak the package after installation to make
the package work out of the box. We can place this short script to the Tang’s Makefile to
run the keys and cache generation after installation:
define Package /tang/ postinst
#!/ bin/sh
if [ -z "$${ IPKG_INSTROOT }" ]; then

mkdir -p /usr/share/tang/db && mkdir -p /usr/share/tang/cache
KEYS=$(find /usr/share/tang/db/ -name "*. jw*" -maxdepth 1 | wc -l)
if [ "${KEYS }" = "0" ]; then # if db is empty generate new key pair

/usr/ libexec /tangd - keygen /usr/share/tang/db/
elif [ "${KEYS }" = "1" ]; then # having 1 key should not happen

(>&2 echo " Please check the Tang ’s keys in /usr/share/tang/db \
and regenate cache using /usr/ libexec /tangd - update script .")

else
/usr/ libexec /tangd - update /usr/share/tang/db/ /usr/share/tang/cache/

fi
fi
endef

43



7.3 Configure Tang for Xinetd
We need xinetd’s socket activation for Tang to work. To do so, we will need a configuration
file for the tangd service for xinetd daemons shown in listing 7.1.
service tangd
{

port = 8888
socket_type = stream
wait = no
user = root
server = /usr/ libexec /tangd
server_args = /usr/share/tang/cache
log_on_success += USERID
log_on_failure += USERID
disable = no

}

Listing 7.1: Configuration of Tang service for xinetd

This is configuration to run /usr/libexec/tangd after a request comes to port 8888. The
server will be spawned with one argument, the cache directory. Please note that we used a
diffent directory compared to Fedora. We need to have Tang keys stored on persistent data
storage. The /var/ location is only a symbolic link to the /tmp directory on OpenWrt de-
vice. The developers on IRC channel proposed to use the persistent /usr/share/ directory
for that purpose. The last step before starting the Tang service on OpenWrt would be to
setup /etc/services:
# echo -e "tangd\t\t8888/tcp" >> /etc/ services

and add the very same thing to post-installation script to have Tang completelly set up
after installation:
(cat /etc/ services | grep -E "tangd .*8888\/ tcp ") > /dev/null \

|| echo -e "tangd\t\t8888/tcp" >> /etc/ services

In case of the accidental removal of /etc/services file, we have to copy the backup of the
file from devices ROM and edit it again.
# cp /rom/etc/ services /etc/ services

Now we shall restart the xinetd daemon using the xinetd script located in /etc/init.d/
directory to enable tangd service using xinetd’s socket activation:
# /etc/init.d/ xinetd stop
# /etc/init.d/ xinetd start

To test that the service is running, we can use the telnet to the device on port defined in
the xinetd configuration. The server should advertise its public key. It can be retrieved
with a simple GET request for /adv content from the server or using telnet to the device,
then write “GET /adv HTTP/1.1” and confirm this with two newlines (return key). The
output similar to following should appear:
$ telnet 192.168.0.1 8888
Trying 192.168.0.1...
Connected to 192.168.0.1.
Escape character is ’^]’.
GET /adv HTTP /1.1

<unknown > GET /adv => 200 (src/tangd.c:85)

44



HTTP /1.1 200 OK
Content -Type: application /jose+json
Content - Length : 956

{" payload ":" eyJrZXlzIjpbeyJhbGciOiJFQ01SIiwiY3J2IjoiUC01MjEiLCJrZXlfb3BzIjpb
ImRlcml2ZUtleSJdLCJrdHkiOiJFQyIsIngiOiJBR3V2amxUZmpYaDBraWFEa19Tak1vMGhYUm1R
dzFZNkVkNE9yN3Fza2J2c1h6QUlvRTl5ZnRwR2xRVng1OVlxZ1gtR3hQSE8tdzVLVXFmanRGQkVV
ZVByIiwieSI6IkFiNE9NNTBhQ1Y4NkdZVW1PdHBua1VTanNXNUFleENXZG5PZFEyakl0Z1RGNXNq
MG1TSFZCYXhsd2w1N3ZTUEdrSExiRl96SFlUVzlvVzNoTFJyeXRRNmYifSx7ImFsZyI6IkVTNTEy
IiwiY3J2IjoiUC01MjEiLCJrZXlfb3BzIjpbInZlcmlmeSJdLCJrdHkiOiJFQyIsIngiOiJBQVpS
ZmNlNUhLaFYyck1OQzhqLW5iVW1pdlh4NDRjcU1qX2Jvbk5OdnNTcXdBRjhFcGoyTFM0cFpfdUNR
VDJGVDRUSHJnX1Y4VHBKci1PQW41Z05CaUZNIiwieSI6IkFTMjJSdVJZZXVOU1ZtSkdfSmcwSW1n
by1LREd2QVFPZV9Vdk9fT3RZS3lGeUVoSWI1U0FLd3cwSEF0QjJFX2FTMG5pcWV3UUlod1QyanR5
eklCaWdkQU0ifV19 "," protected ":" eyJhbGciOiJFUzUxMiIsImN0eSI6Imp3ay1zZXQranNvb
iJ9 "," signature ":" ADpGOjYeB45MznQOxA6Pw9MXTMYQ649UkRSi_RsP8KPKosl - eA7GmOIiBM
FOoPnCNX - cGjhyDBbQuvESUCJ_3txjANf - srntxFAX5p72Eip - kROGrlCdLrVLnlg36itQUBFx7S
UyB_7I6CX6gdpWyJ - wtro8f2Snu6wwMGl -8 V3ylWYr "}

The content of the first line from the server response should be suspicious to us. According
to the RFC 2616, the HTTP header should not contain such line[4].
<unknown > GET /adv => 200 (src/tangd.c:85)

After some investigation done in the Tang sources, we found out that the line contains
debug information from the Tang daemon which were written to the /dev/stderr. From
this we can assume that xinetd is sending also /dev/stderr to the network socket. To
bypass this beavior, we should write a wrapper script which will redirect the /dev/stderr
output somewhere else. We decided that this output may be helpful for debugging purpose
and forwarded it to the log file in the /var/log/ directory of the device using this script:
#!/ bin/bash
echo "==================================" >> /var/log/tangd.log
echo ‘date ‘: >> /var/log/tangd.log
/usr/ libexec /tangd $1 2>> /var/log/tangd.log

Let us name this wrapper script the tangdw.
To get Tang to work, we need to put invocation of this script in place where tangd binary

was configured to. Move the script to the /usr/libexec directory where the tangd binary is,
to have it in one place and edit the line of xinetd configuration to run the wrapper:

server = /usr/ libexec / tangdw

The last thing would be to change the script’s permissions on the device to allow the
execution.

We did a lot of changes to the configuration. The Tang for the OpenWrt platform needs
a xinetd configuration which, for the ease of use, could be packaged with it. Do the same
with the new wrapper script in order to have the service working correctly. There is a way
to add new files for each package and package them for the OpenWrt’s opkg to install. To
do so, we will crate a directory for the files in the package’s feeds repository we forked on
branch containing commit adding the Tang and copy files there.
$ cd packages - OpenWrt
$ git checkout add -tang
$ mkdir -p utils/tang/files

As the new files are copied there, we also need to edit a Package/tang/install section to
install these files in proper directories (config file into dedicated /etc/xinetd.d/; wrapper
into /usr/libexec/) as shown:

45



define Package /tang/ install
$( INSTALL_DIR ) $(1)/ usr/ libexec
$( INSTALL_DIR ) $(1)/ etc/ xinetd .d/
$( INSTALL_BIN ) \

$( PKG_INSTALL_DIR )/ usr/lib/tangd* $(1)/ usr/ libexec /
$( INSTALL_BIN ) ./ files/ tangdw $(1)/ usr/ libexec /
$(CP) ./ files/ tangdx $(1)/ etc/ xinetd .d/

endef

After all changes done, we need to amend a commit on a branch, update the feeds in the
buildroot, rebuild the Tang package, upload and re-install it on our device running the
OpenWrt. See the submitted pull-request1 which includes all the changes.

7.4 Binding to the OpenWrt Device Running Tang
Let us now bind the client to the Tang server which is up and running on our OpenWrt:
# clevis luks bind -d /dev/ nvme0n1p2 \

tang ’{" url ": "http ://192.168.0.1:8888"} ’
The advertisement contains the following signing keys:

Apb39FO1vey9FyUe_fEd8lVDABs

Do you wish to trust these keys? [ynYN] y
Enter existing LUKS password :

Clevis will add a new key encryption key to the first available LUKS header key slot. After
rebuilding the initramfs on our Fedora client, the early boot decryption will work.

Clevis client does not have option to unbind encrypted volume bound to Tang server.
We have to make sure that the key encryption key we are about to remove from the LUKS
header key slot is the one added by Clevis. To do so, please run cryptsetup with the
option luksDump before and after binding with the Tang.
# cryptsetup luksDump /dev/ nvme0n1p2

The manual step to remove a key from a key slot was demonstrated in subsection 2.3.3:
# cryptsetup luksKillSlot /dev/ nvme0n1p2 1
Enter any remaining passphrase :

7.5 Tang’s Limitations
Let us sum up the limitations that we found. Platform specific limitations are there because
of the systemd replacement with xinetd implementation of super-server. We also found
one platform independent limitation of the Tang’s solution to full disk description on early
boot.

Key exchange and generation of cache must be manual but can be automated with
inotifytools to watch the directory for a change and run update script automatically. But
this means that the embedded device with such configuration will have another process
always running. We decided not to implement an automated update of the cache to save
the computation resources.

1https://github.com/openwrt/packages/pull/5447

46



xinetd forwarding the /dev/stderr output to the socket is a little problem as well.
To have tang working correctly, we wrote a wrapper running the shell script redirecting
the /dev/stderr into log file. Running some shell script takes some time compared to only
running the binary file, but for xinetd it is necessary.

Early boot decryption using Wi-Fi network is a platform independent chicken-egg
problem caused by information about wireless network being encrypted on system volume.
The information needed to connect to wireless network needs to be decrypted, but in order
to decrypt them automatically, we need to connect to the network exposed to Tang server.
It could be solved using a TPM to store the information about such network, but it is a
security vulnerability and must be considered with a caution.

47



Chapter 8

Conclusion

Porting to OpenWrt platform is done using cross-compilation tools available in the Open-
Wrt’s buildroot. Buildroot is configured using the menuconfig tool for a specific device.
Buildroot is capable of creating packages as well as the Image of the OpenWrt system,
which are then directly installable. Using outdated buildroots (SDKs) may cause some
troubles, it is recommended to use an SDK while porting to older OpenWrt system release.

To port software to the OpenWrt, the user has to create a Makefile in a feed directory
corresponding to the software usage. After creating the Makefile for the OpenWrt buildroot,
the actual build of the package should be triggered. If the build succeeded, we have the
package ready to be tested on our device.

Software may require a dependencies. To be able to build our desired software appli-
cation, we have to check whether these dependencies are available for our target platform,
the OpenWrt. In our case, porting of Tang requires an update of existing packages from
the OpenWrt feeds to newer versions and creating one new dependency package there as
well.

Every OpenWrt software can be modified before build time. This is done by having new
files and patch files in the package’s directory. Patch files, used to change original sources,
are automatically applied when placed in a proper patches directory. New files located in
the files directory of the package should be processed by directives in the package’s Makefile.

After successful build of the Tang package, we also needed to configure it. The socket
activation on xinetd is working on similar principle as systemd’s. We created new con-
figuration file for tangd service and a wrapper script. Having post install script in the
Tang’s Makefile will ensure that the Tang will have generated files required for run-time
after installation. The only thing that the user has to do, is to re-start the xinetd daemon.

Every change we did to accomplish the goal of this thesis is reflected in separate pull
requests against the openwrt/packages repository upstream. The update of the jansson
package can be found in pull-request with number 42891. A pull-request containing update
of libhttp-parser package has number 54462. New packages for the OpenWrt José and Tang
are waiting for community to accept. José can be found in pull-request with number 43343.
And finally, the Makefile for the Tang server package is in pull-request 54474.

1https://github.com/openwrt/packages/pull/4289/
2https://github.com/openwrt/packages/pull/5446/
3https://github.com/openwrt/packages/pull/4334/
4https://github.com/openwrt/packages/pull/5447/

48



With correct configuration of xinetd daemon for Tang’s socket activation, the Tang
server is working on OpenWrt with some platform specific changes and limitations, and it
is able to serve its clients on the network.

49



Bibliography

[1] Bauer, J.: LUKS In-Place Conversion Tool. [Online] Accessed 3 May 2017.
Retrieved from: http://www.johannes-bauer.com/linux/luksipc/

[2] Braun, R.: xinetd. [Online] Accessed 1 May 2017.
Retrieved from:
http://web.archive.org/web/20051227095035/http://www.xinetd.org:80/

[3] Dini, F.: cross compile tutorial. [Online] Accessed 27 April 2018.
Retrieved from: http://www.fabriziodini.eu/posts/cross_compile_tutorial/

[4] Fielding, R.; Gettys, J.; Mogul, J.; et al.: Hypertext Transfer Protocol – HTTP/1.1.
Technical Report 2616. June 1999. obsoleted by RFCs 7230, 7231, 7232, 7233, 7234,
7235, updated by RFCs 2817, 5785, 6266, 6585.
Retrieved from: http://www.ietf.org/rfc/rfc2616.txt

[5] Fruhwirth, C.: LUKS On-Disk Format Specification Version 1.1. Changes. vol. 1.
2005: pp. 22–01,. [Online] Accessed 22 April 2018.
Retrieved from: http://tomb.dyne.org/Luks_on_disk_format.pdf

[6] Gulwani, S.; Hernández-Orallo, J.; Kitzelmann, E.; et al.: Inductive programming
meets the real world. Communications of the ACM. vol. 58, no. 11. 2015: pp. 90–99.
ISSN 0001-0782. doi:10.1145/2736282.

[7] Jones, M.: JSON Web Algorithms (JWA). Technical Report 7518. May 2015.
Retrieved from: http://www.ietf.org/rfc/rfc7518.txt

[8] Jones, M.: JSON Web Key (JWK). Technical Report 7517. May 2015.
Retrieved from: http://www.ietf.org/rfc/rfc7517.txt

[9] Jones, M.; Bradley, J.; Sakimura, N.: JSON Web Signature (JWS). Technical Report
7515. May 2015.
Retrieved from: http://www.ietf.org/rfc/rfc7515.txt

[10] Jones, M.; Bradley, J.; Sakimura, N.: JSON Web Token (JWT). Technical Report
7519. May 2015.
Retrieved from: http://www.ietf.org/rfc/rfc7519.txt

[11] Jones, M.; Hildebrand, J.: JSON Web Encryption (JWE). Technical Report 7516.
May 2015.
Retrieved from: http://www.ietf.org/rfc/rfc7516.txt

50

http://www.johannes-bauer.com/linux/luksipc/
http://web.archive.org/web/20051227095035/http://www.xinetd.org:80/
http://www.fabriziodini.eu/posts/cross_compile_tutorial/
http://www.ietf.org/rfc/rfc2616.txt
http://tomb.dyne.org/Luks_on_disk_format.pdf
http://www.ietf.org/rfc/rfc7518.txt
http://www.ietf.org/rfc/rfc7517.txt
http://www.ietf.org/rfc/rfc7515.txt
http://www.ietf.org/rfc/rfc7519.txt
http://www.ietf.org/rfc/rfc7516.txt


[12] Jones, M.; Sakimura, N.: JSON Web Key (JWK) Thumbprint. Technical Report
7638. September 2015.
Retrieved from: http://www.ietf.org/rfc/rfc7638.txt

[13] Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0.
Technical Report 2898. September 2000.
Retrieved from: http://www.ietf.org/rfc/rfc2898.txt

[14] Lehey, G.: Porting UNIX Software: From Download to Debug. Sebastopol, CA, USA:
O’Reilly & Associates, Inc.. 1995. ISBN 1-56592-126-7.

[15] Lehtinen, P.: jansson. [Online] Accessed 1 May 2017.
Retrieved from: https://github.com/akheron/jansson

[16] McCallum, N.: jose. [Online] Accessed 1 May 2017.
Retrieved from: https://github.com/latchset/jose

[17] Microsoft: BitLocker. [Online] Accessed 21 April 2018.
Retrieved from: https://docs.microsoft.com/en-us/windows/security/
information-protection/bitlocker/bitlocker-overview

[18] Miller, M.: Examples of Protecting Content Using JSON Object Signing and
Encryption (JOSE). Technical Report 7520. May 2015.
Retrieved from: http://www.ietf.org/rfc/rfc7520.txt

[19] OpenWrt: About OpenWrt. [Online] Accessed 27 April 2018.
Retrieved from: https://openwrt.org/

[20] OpenWrt: LEDE 17.01.1 - First Service Release - April 2017. [Online] Accessed 27
April 2018.
Retrieved from: https://openwrt.org/releases/17.01/notes-17.01.1

[21] OpenWrt Wiki: Creating packages. [Online] Accessed 28 April 2018.
Retrieved from: https://wiki.openwrt.org/doc/devel/packages

[22] OpenWrt Wiki: How to build. [Online] Accessed 26 April 2018.
Retrieved from: https://wiki.openwrt.org/doc/howto/build

[23] OpenWrt Wiki: OpenWrt Feeds. [Online] Accessed 28 April 2018.
Retrieved from: https://wiki.openwrt.org/doc/devel/feeds

[24] Perry, P.: Solid IT control hygiene. Healthcare Financial Management. vol. 71, no. 2.
2017: pp. 54–55. ISSN 07350732.

[25] SplashData: Worst Passwords of 2016. [Online] Accessed 15 May 2017.
Retrieved from:
https://www.teamsid.com/worst-passwords-2016/?nabe=4587092537769984:
2,6610887771422720:1&utm_referrer=https%3A%2F%2Fwww.google.cz%2F

[26] Steinbeck John, e. b. S. S.; Benson., J. J.: Of men and their making. London: Allen
Lane The Penguin Press. 2002. ISBN 07-139-9622-6.

51

http://www.ietf.org/rfc/rfc7638.txt
http://www.ietf.org/rfc/rfc2898.txt
https://github.com/akheron/jansson
https://github.com/latchset/jose
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
http://www.ietf.org/rfc/rfc7520.txt
https://openwrt.org/
https://openwrt.org/releases/17.01/notes-17.01.1
https://wiki.openwrt.org/doc/devel/packages
https://wiki.openwrt.org/doc/howto/build
https://wiki.openwrt.org/doc/devel/feeds
https://www.teamsid.com/worst-passwords-2016/?nabe=4587092537769984:2,6610887771422720:1&utm_referrer=https%3A%2F%2Fwww.google.cz%2F
https://www.teamsid.com/worst-passwords-2016/?nabe=4587092537769984:2,6610887771422720:1&utm_referrer=https%3A%2F%2Fwww.google.cz%2F


[27] Team, U. P. R.: Security Analysis of Cryptsetup/LUKS. 2012. [Online] Accessed 22
April 2018.
Retrieved from:
https://www.privacy-cd.org/analysis/cryptsetup_1.4.1-luks-analysis-en.pdf

[28] Thales: Global Encryption Trends Study. [Online] Accessed 10 May 2018.
Retrieved from: http://enterprise-encryption.vormetric.com/rs/480-LWA-970/
images/2017-Ponemon-Global-Encryption-Trends-Study-April.pdf

[29] vpnpick: DD-WRT vs. Tomato vs. Open WRT? [Online] Accessed 26 April 2018.
Retrieved from: https://vpnpick.com/dd-wrt-vs-tomato-vs-open-wrt/

[30] Wakefield, R. L.: Network Security and Password Policies. The CPA Journal. vol. 74,
no. 7. 07 2004: pp. 6–6,8. copyright - Copyright New York State Society of Certified
Public Accountants Jul 2004; Last updated - 2011-07-20;
SubjectsTermNotLitGenreText - United States; US.
Retrieved from:
https://search.proquest.com/docview/212314970?accountid=17115

[31] Wikipedia: Free On The Fly Encryption. [Online] Accessed 3 May 2017.
Retrieved from: https://en.wikipedia.org/wiki/FreeOTFE

[32] Wikipedia: Porting. [Online] Accessed 1 May 2017.
Retrieved from: https://en.wikipedia.org/wiki/Porting

52

https://www.privacy-cd.org/analysis/cryptsetup_1.4.1-luks-analysis-en.pdf
http://enterprise-encryption.vormetric.com/rs/480-LWA-970/images/2017-Ponemon-Global-Encryption-Trends-Study-April.pdf
http://enterprise-encryption.vormetric.com/rs/480-LWA-970/images/2017-Ponemon-Global-Encryption-Trends-Study-April.pdf
https://vpnpick.com/dd-wrt-vs-tomato-vs-open-wrt/
https://search.proquest.com/docview/212314970?accountid=17115
https://en.wikipedia.org/wiki/FreeOTFE
https://en.wikipedia.org/wiki/Porting


Appendix A

Contents of Attached CD

∙ text/ – containing LATEX sources and files used in this text

∙ buildroot/ – containing openwrt buildroot repository

∙ packages/ – containing packages repository

∙ changes/ – containing changed packages from packages repository

∙ README – short information about directories

53



Appendix B

Pre-installation enablement of
hard drive encryption

B.1 Fedora 27 – Disc Encryption Option Selecting

Figure B.1: Checking Option

54



B.2 Fedora 27 – Determining the Key Encryption Key

Figure B.2: Determining Key

55



Appendix C

LUKS In-Place Encryption

It takes 4 steps to perform an in place encryption with luksipc [1]:

1. Unmounting the filesystem

2. Resizing the filesystem to shrink about 10 megabytes (2048 kB is the current LUKS
header size – but do not trust this value, it has changed in the past!)

3. Performing luksipc

4. Adding custom keys to the LUKS key-ring

Step 1 – Unmounting There should not be any problems unmounting partition, unless
you want to encrypt / – the root partition, which in our case (to lock whole disk) will be
necessary. To do so we need to restart our computer and boot any other or live distribution
capable of completing these next steps.
# umount /dev/vda2

Step 2 – Resizing There are plenty tools for re-sizing, essentially for partitioning as
whole (fdisk, e2fsck, etc.). Demonstrating how this is done for ext 2, 3, 4 here:
# e2fsck /dev/vda2
# resize2fs /dev/vda2 -s -10M

Delete and recreate shrank partition with fdisk:
# fdisk /dev/vda
Welcome to fdisk (util -linux 2.23.2).

Changes will remain in memory only , until you decide to write them.
Be careful before using the write command .

Command (m for help ):

Check the partition number with typing the p:
Command (m for help ): p
Disk /dev/vda: 407.6 GiB , 437629485056 bytes , 854745088 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size ( logical / physical ): 512 bytes / 4096 bytes
I/O size ( minimum / optimal ): 4096 bytes / 4096 bytes
Disklabel type: dos

56



Disk identifier : 0 x5c873cba
Partition 2 does not start on physical sector boundary .

Device Boot Start End Blocks Id System
/dev/vda1 * 2048 1026047 512000 83 Linux
/dev/vda2 1026048 1640447 307200 8e Linux LVM}

Step 3 – Encrypting After this, luksipc comes into play. It performs an in-place en-
cryption of the data and prepends the partition with a LUKS header. Firt we have to
download luksipc or install it with package manager.
$ wget https :// github .com/ johndoe31415 / luksipc / archive / master .zip
$ unzip master .zip
$ cd luksipc - master /
$ make

Now run it with parameters like:
# ./ luksipc -d /dev/vda2

luksipc will have created a key file /root/initial_keyfile.bin that you can use to gain access
to the newly created LUKS device:
# cryptsetup luksOpen --key -file /root/ initial \ _keyfile .bin \

/dev/vda2 fedoradrive

Step 4 – Adding key DO NOT FORGET to add key to LUKS volume:
# cryptsetup luksAddKey --key -file /root/ initial \ _keyfile .bin /dev/vda2

57



Appendix D

Setting Up the Repository

To save our work progress and be able to contribute to the upstream repository (in our case
openwtr/openwrt and openwrt/packages) we should have a own fork of it. A fork is a copy
of a repository that we can manage. It lets us make changes to a project without affecting
the original (upstream) repository. We can fetch updates from the upstream or submit
changes to the original repository with pull requests. These pull request are generated from
the “devel” branch that we should have in our fork.

To fork OpenWrt’s buildroot we should have our GitHub account set up1, visit the
OpenWrt’s project upstream repository2, and click on ”Fork“ button in the top-right corner
of the page. Before cloning our fork it is recommended to set up git enviroment3 on host
machine and upload the SSH keys4 to our account to minimize pushing effort to our fork.
All work related to this thesis has been done using GitHub account Tiboris5 therefore
output of following commands are bound to it.
$ git clone https :// github .com/ Tiboris / openwrt .git ~/ buildroot - openwrt

Please note that this command will clone the openwrt repository of the GitHub user Tiboris
to the ∼/buildroot-openwrt directory on our host.

To catch up with changes made upstream we should consider to configure a remote that
points to it. Configured remote allows us to sync changes made in the original repository
with the fork and vice versa. Make sure you are in the buildroot directory and add remote6

called upstream:
$ cd ~/ buildroot - openwrt
$ git git remote add upstream \

https :// github .com/ openwrt / openwrt .git

To verify that remote is present run:
$ git remote -v
origin git@github .com: Tiboris / openwrt .git (fetch)
origin git@github .com: Tiboris / openwrt .git (push)
upstream https :// github .com/ openwrt / openwrt .git (fetch)
upstream https :// github .com/ openwrt / openwrt .git (push)

1https://github.com/join
2https://github.com/openwrt/openwrt
3https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
4https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
5https://github.com/Tiboris/
6https://help.github.com/articles/configuring-a-remote-for-a-fork/

58



With the remote configured correctly we can now sync with upstream repository. To down-
load latest upstream changes use the ”fetch“ option and the ”merge“ option to apply them
to our fork’s branch7.
$ git fetch upstream master
remote : Counting objects : 4376 , done.
remote : Compressing objects : 100% (2/2) , done.
remote : Total 4376 (delta 1776) , reused 1775 (delta 1775) ,

pack - reused 2599
Receiving objects : 100% (4376/4376) , 1.27 MiB

| 743.00 KiB/s, done.
Resolving deltas : 100% (2932/2932) , completed

with 809 local objects .
From https :// github .com/ openwrt / openwrt

* branch master -> FETCH_HEAD
36 fb0697e2 .. d089a5d773 master -> upstream / master

$ git merge upstream / master

The detailed description can be found on original GitHub pages8.

7https://help.github.com/articles/syncing-a-fork/
8https://help.github.com/articles/working-with-forks/

59



Appendix E

OpenWrt Package’s Makefile

This is an example of what OpenWrt Makefile for package could look like. The following
makefile is slightly edited makefile from the tutorial1 on the web.
##############################################
# OpenWrt Makefile for helloworld program
#
#
# Most of the variables used here are defined in
# the include directives below. We just need to
# specify a basic description of the package,
# where to build our program, where to find
# the source files, and where to install the
# compiled program on the router.
#
# Be very careful of spacing in this file.
# Indents should be tabs, not spaces, and
# there should be no trailing whitespace in
# lines that are not commented.
#
##############################################

include $(TOPDIR)/rules.mk

# Name and release number of this package
PKG_NAME:=helloworld
PKG_RELEASE:=1

# This specifies the directory where we’re going to build the program.
# The root build directory, $(BUILD_DIR), is by default the build_mipsel
# directory in your OpenWrt SDK directory
PKG_BUILD_DIR := $(BUILD_DIR)/$(PKG_NAME)

include $(INCLUDE_DIR)/package.mk

# Specify package information for this program.
# The variables defined here should be self explanatory.
# If you are running Kamikaze, delete the DESCRIPTION
# variable below and uncomment the Kamikaze define
# directive for the description below
define Package/helloworld

SECTION:=utils

1https://www.gargoyle-router.com/old-openwrt-coding.html

60



CATEGORY:=Utilities
TITLE:=Helloworld -- prints a snarky message

endef

# Uncomment portion below for Kamikaze and later delete DESCRIPTION variable above
define Package/helloworld/description

If you can’t figure out what this program does, you’re probably
brain-dead and need immediate medical attention.

endef

# Specify what needs to be done to prepare for building the package.
# In our case, we need to copy the source files to the build directory.
# This is NOT the default. The default uses the PKG_SOURCE_URL and the
# PKG_SOURCE which is not defined here to download the source from the web.
# In order to just build a simple program that we have just written, it is
# much easier to do it this way.
define Build/Prepare

mkdir -p $(PKG_BUILD_DIR)
$(CP) ./src/* $(PKG_BUILD_DIR)/

endef

# We do not need to define Build/Configure or Build/Compile directives
# The defaults are appropriate for compiling a simple program such as this one

# Specify where and how to install the program. Since we only have one file,
# the helloworld executable, install it by copying it to the /bin directory on
# the router. The $(1) variable represents the root directory on the router running
# OpenWrt. The $(INSTALL_DIR) variable contains a command to prepare the install
# directory if it does not already exist. Likewise $(INSTALL_BIN) contains the
# command to copy the binary file from its current location (in our case the build
# directory) to the install directory.
define Package/helloworld/install

$(INSTALL_DIR) $(1)/bin
$(INSTALL_BIN) $(PKG_BUILD_DIR)/helloworld $(1)/bin/

endef

# This line executes the necessary commands to compile our program.
# The above define directives specify all the information needed, but this
# line calls BuildPackage which in turn actually uses this information to
# build a package.
$(eval $(call BuildPackage,helloworld))

Listing E.1: Makefile for Helloworld.

61



Appendix F

List of Pull-requests

Here is a list of all pull requests realated to the Tang porting effort.

Package zlib Created pull-request that was not relevant because of zlib located in main
OpenWrt repository see:
https :// github .com/ openwrt / packages /pull /4290/ files

Package jansson Update of the package jansson was successful and merged upstrem in
pull request:
https :// github .com/ openwrt / packages /pull /4289/ files

Package libhttp-parser This pull request was not relevant and not merged because of
http-parser already been located in packages repository under name libhttp-parser:
https :// github .com/ openwrt / packages /pull /4304/ files

Closed and not merged due to another pull request merged with bump into same version
but without upstream patch containing HTTP_STATUS_MAP macro:
https :// github .com/ openwrt / packages /pull /4335/ files

Sucessfully merged bump into libhttp-parser version 2.8.0 containing the upstrem patch
with HTTP_STATUS_MAP macro:
https :// github .com/ openwrt / packages /pull /5446/ files

Package jose Still open (not merged yet) and waiting for review (12th May 2018):
https :// github .com/ openwrt / packages /pull /4334/ files

Package tang Still open (not merged yet) and waiting for review (12th May 2018):
https :// github .com/ openwrt / packages /pull /5447/ files

62


	Introduction
	How We Use Encryption
	Encryption and Security
	Hard Drive Encryption
	Disk Encryption with LUKS

	Automated Decryption
	Key Escrow
	Tang Server

	Software portability
	OpenWrt System
	OpenWrt's Tool-chain
	OpenWrt's Buildroot
	Preparing the Host Environment
	Working with Buildroot

	Porting the dependencies
	Find the Dependencies
	Update Outdated Packages
	New Package José

	Porting Tang
	Socket Activation
	Package the Tang

	Configuring the Tang on OpenWrt
	Install the Packages
	Setting Up the Tang Keys
	Configure Tang for Xinetd
	Binding to the OpenWrt Device Running Tang
	Tang's Limitations

	Conclusion
	Bibliography
	Contents of Attached CD
	Pre-installation enablement of hard drive encryption
	Fedora 27 – Disc Encryption Option Selecting
	Fedora 27 – Determining the Key Encryption Key

	LUKS In-Place Encryption
	Setting Up the Repository
	OpenWrt Package's Makefile
	List of Pull-requests

