
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATIC SECCOMP SYSCALL POLICYGENERATOR
AUTOMATICKÝ GENERÁTOR POLITIKY SYSTÉMOVÉHO VOLÁNÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MAREK TAMAŠKOVIČ
AUTOR PRÁCE
SUPERVISOR Ing. LENKA TUROŇOVÁ
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
This thesis deals with design and implementation of the tool which transforms a system
call log into a policy that limits the system call usage in operating system GNU Linux. The
motivation raised as a need for automatic creation such policies. In this thesis, we dealt
with the intermediate data structure that represents the system call log. We dealt with
simplification of the data structure on which were used optimization algorithms. The first
implemented algorithm was minimax and the other was clustering algorithm DBSCAN. In
the last part of the thesis, the testing methods are described. We tested the particular
modules and the whole tool as a unit. During the testing, issues that prevent from complex
testing, arised.

Abstrakt
Táto práca sa zaoberá návrhom a implementáciou nástroju na preklad zoznamu systé-
mových volaní do politiky obmedzujúcej systémové volania v rámci operačného systému
GNU Linux. Motivácia pre takýto nástoj je automatizovať tvorbu bezpečnostných politík.
V práci je riešený spôsob interpretovania zoznamu systémových volaní v programe. Taktiež
spôsob ako optimalizovať a minimalizovať danú dátovú štruktúru. Na to boli použité tri
algoritmy. V jednom prípade bol použitý algoritmus minimax a v tom druhom bol použitý
zhlukujúci algoritmus DBSCAN. V poslednej časti tejto práce je riešená metodika testova-
nia nástroja a to testovanie modulov či programu ako celku. Počas testovania sa vyskytli
komplikácie, ktoré bránili v komplexnom testovaní vytvoreného nástroja.

Keywords
seccomp, libseccomp, strace, optimizer, clustering, C++, policy generator, system calls,
executable binaries limitations, catch2, american fuzzy lop, fuzzying

Kľúčové slová
seccomp, libseccomp, strace, optimalizátor, zhlukovanie, C++, generátor politík, systémové
volania, obmedzenie spustiteľných súborov, catch2, american fuzzy lop, fuzzying

Reference
TAMAŠKOVIČ, Marek. Automatic Seccomp Syscall Policy
Generator. Brno, 2018. Bachelor’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Ing. Lenka Turoňová

Rozšírený abstrakt
Táto práca sa zaoberá návrhom a implementáciou nástroju na preklad zoznamu volaných
systémových volaní do politiky obmedzujúcej systémové volania v rámci operačného sys-
tému GNU Linux. Tieto bezpečnostné politiky sa týkajú obmedzení resp. povolení systé-
mových volaní pre daný proces alebo program. Tieto opatrenia sú relevantné v prípade ak
daný program môže byť zneužitý útočníkom na spustenie nežiadúceho kódu. V takomto prí-
pade ak útočník použije systémové volanie, ktoré nespĺňa politiku programu, bude následne
celý program alebo proces ukončený. V niektorých prípadoch však môže nastať aj nechcená
terminácia procesu. Táto terminácia môže nastať ak je politika príliš striktná alebo bola
zle nakonfigurovaná.

Motivácia pre takýto nástroj je automatizovať tvorbu bezpečnostných politík. Táto
automatizácia môže byť implementovaná napríklad pri tvorbe kontajnerov, sledovaní tzv.
„Honeypot-ov” alebo pri zabezpečovaní spustiteľných binárnych súborov v podnikovej sfére,
kde môže byť porušenie politiky reportované správcovi systému.

Táto práca sa zaoberá analýzou programou, ktoré by mohli byť potencionálne použité
pri vývoji plánovaného nástroja. Tieto programy môžu byť použité pri generovaní vstupu
kde bol zvolený nástroj strace alebo výstup nášho nástroja môže byť použitý ako vstup
pre tieto programy. V našom prípade to je knižnica libseccomp. Práca sa tiež zaoberá
programami, ktoré sú použité pri testovaní nástroja ako napr. „Fuzzer-y”. Z fuzzerov bol
vybraný American Fuzzy Lop, ktorý generoval vstup pre parser a testoval jeho stabilitu.

Jedným z nástrojov, ktorý sa zaoberá obmedzením systémových politík, je secure com-
puting skrátene seccomp. Tento nástroj je implementovaný priamo v jadre operačného sys-
tému GNU Linux. Tento nástroj používa nerozšírený Berkley Packet Filter na filtrovanie
systémových volaní. Písanie BPF nie je nič jednoduché, a preto bola nad týmto nástrojom
vytvorená obálka. Táto obálka je implementovaná ako knižnica s názvom libseccomp pre
jazyky C/C++, Go a Python. Zvolili sme túto knižnicu ako formát výstupu pripravovaného
nástroju, pretože je o mnoho jednoduchšie a intuitívne písať zložité BPF.

Táto práca sa vo veľkej časti zaoberá návrhom a implementácie nástroju na preklad
zoznamu systémových volaní do bezpečnostnej politiky. V návrhu sa rieši aké rozhrania
budú mať jednotlivé komponenty. Ďalej sa venuje návrhu dátového modelu štruktúry, kde
sa budú ukladať informácie o systémových volaniach. Taktiež definuje vstupy a výstupy pre
navrhovaný nástroj. Nechýbajú ani popisy algoritmov, ktoré sú použité na optimalizáciu
vnútornej dátovej štruktúry.

Navrhované algoritmy sú tri. Prvý z nich je prevedenie vstupu na výstup v nezmenenej
forme. Druhý algoritmus spočíva v nájdení extrémov na jednotlivých pozíciách argumentov
a povoliť daný interval. Posledný navrhovaný algoritmus je implementácia zhľukovacieho
algoritmu DBSCAN.

V poslednej časti tejto práci je popísaná metodika testovania a aké nástroje sú použité
na testovanie vytvoreného nástroja. Testovacia sada testuje jednotlivé moduly a taktiež
program ako celok, kedy sa generujú politiky pre už existujúce nástroje a vyhodnocuje
sa či sú vôbec spustiteľné a či testovacie sady daných programov skončia úspešne. Testy
programov nie sú komplexné, ale testujú základné prípady. Pre nás sú však dostatočné aby
sme mohli komplexne otestovať náš vyvíjaný program.

Testovacia fáza nám odhalila viaceré problémy, ktoré bránia v komplexnom testovaní
programov. Jeden z problémov sa objavil počas testovania vytvorenej politiky slabým
algoritmom. Knižnica libseccomp nemá implementovanú možnosť povoliť interval hodnôt a
preto je náročné testovať danú politiku. Projekt libseccomp avšak má vytvorené rozšírenie,
ktoré pridáva túto funkcionalitu. Ďalší problém knižnice libseccomp je zlé ukončenie procesu

v multiprocesnej aplikácii v prípade ak proces poruší politiku. Tento problém bránil v
testovaní paralélnych aplikácií. V neposlednom rade sme našli nedostatok v interpretácii
politiky seccomp-om. Spočíva to v zabití programu aj v prípade, ktorý sme explicitne
povolili.

Počas tejto práce boli komunikované nedorozumenia, ktoré vznikli slabou dokumentá-
ciou knižnice libseccomp. Tieto nedorozumenia boli zdokumentované v závere tejto práce.
Taktiež bol vyvinutý tlak na autora knižnice na implementáciu nových funkcionalít, ktoré
by boli použité pri rozšírení tohto nástroja (povolenie intervalov, správne ukončenie pro-
cesov v multiprocesnej aplikácii). Niektoré by sa mohli objaviť už v ďalšej verzii tejto
knižnice.

V tejto práci boli taktiež navrhnuté rozšírenia pre tento projekt. Niektoré z nich sa
týkajú rozšírenia tvorby výstupu aj do iných jazykov ako je napríklad Go alebo Python.
Ďalej je to rozšírenie algoritmov na optimalizáciu vnútornej štruktúry. Diskutované bolo
aj rozšírenie, ktoré by podporovalo spracovávať aj adresy použité medzi parametrami v
prípade, kedy je vypnutá technológia ASLR v operačnom systéme.

5

Automatic Seccomp Syscall Policy
Generator

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ms. Ing. Lenka Turoňová (FIT BUT) and by Mr. Bc. Daniek Kopecek
(Red Hat, Inc.). The supplementary information was provided by Security Engineering
team. All the relevant information sources, which were used during preparation of this
thesis, are properly cited and included in the list of references.

. .
Marek Tamaškovič

July 26, 2018

Acknowledgements
I would like to thank my supervisor Ing. Lenka Turoňová (FIT) for guidance and formal
part of this thesis. I would like to thank and mention Bc. Daniel Kopeček (RedHat)
for technical guidance and as well thank to Paul Moore (RedHat) for patience he got in
discussions about libseccomp. And I would like to specialy notes of thanks to my friends
Rado, Marian and Martin, who keep me motivated during the works on this thesis.

Contents

1 Introduction 3

2 System Calls and Monitoring Tools 4
2.1 System Calls . 4
2.2 Monitoring . 5

3 Security Facilities in Linux 9
3.1 Systrace . 9
3.2 Seccomp . 9
3.3 Berkeley Packet Filter and Seccomp . 10
3.4 Libseccomp . 11

4 Solution Design 12
4.1 Requirements . 12
4.2 Architecture . 13

4.2.1 Parser . 14
4.2.2 Intermediate Data Structure . 14
4.2.3 Optimizer . 15
4.2.4 Pitfalls of Clustering . 18

4.3 Parsing Expression Grammar . 20

5 Development of strace2seccomp 21
5.1 Input . 21
5.2 Output . 22
5.3 Class Hierarchy . 22
5.4 Used software . 26

5.4.1 Compilers . 26
5.4.2 Dynamic and Static Code Analysis 27
5.4.3 Miscellaneous . 28

5.5 Usage . 29

6 Software Verification 31
6.1 Module Testing . 31

6.1.1 StraceParser Testing . 32
6.2 System and Acceptance Testing . 36

6.2.1 Testing on real programs . 36
6.2.2 Test Preparation . 37
6.2.3 Test Requirements . 38

1

6.2.4 Results . 38

7 Conclusion 42

Bibliography 43

A Comparison of libseccomp and raw BPF filtering 46
A.1 BPF . 46
A.2 libseccomp . 47

B Output of strace2seccomp 48
B.1 Example Output no.1 . 48

C Content of Attached Media 51

2

Chapter 1

Introduction

Nowadays, when malicious code or malware is becoming more and more sophisticated and
pressing security risk, it is really needed to control a program behavior and monitor what
the program is doing in a system. Monitoring program behavior can be done in many ways
and one of the easiest ways is to use Intrusion Detection System (IDS). IDS is an out-of-
the-box solution which can monitor i.e. where program wrote or read something, and it is
not allowed. After that, IDS is reporting this violation.

Another way is to monitor and block system calls (syscalls). Monitoring is performed
using tools mentioned in the next chapter. The actual blocking can be performed with
mandatory access control (MAC) (Apparmor, SELinux), sandboxing (seccomp) or others
mechanisms. MAC refers to a type of access control by which the operating system con-
straints the ability of a subject or initiator to access or generally perform some sort of
operation on an object or target. Seccomp is a Linux kernel module which allows a process
one-way transition to secure a state where the process can only use four syscalls. When
the process tries to call another syscall then one of the four member’s sets is terminated
with SIGKILL. The set of allowed system calls can be extended using seccomp-bpf. This
extension allows filtering system calls using a configurable policy implemented with Berkley
Packet Filter (BPF) rules. This last part is an area on which I would like to focus in my
thesis.

I aim to design and develop a tool which helps developers using libseccomp and seccomp-
bpf. I plan to create policies for a specific program in a format readable by libseccomp or
seccomp-bpf.

Chapter 2 describes syscalls and how to monitor them. In the chapter Chapter 3 of the
thesis, I will illustrate how security facilities in Linux, such as systrace and seccomp, work.
After the theoretical part, the design and development of a tool will follow. In conclusion,
methodology how this tool was tested is described.

3

Chapter 2

System Calls and Monitoring Tools

In this chapter, I will describe the term system call and make an overview of tools which
can monitor the system calls. We will focus in detail on the strace tool which will be used
as an input to my tool. The other applications are described briefly not as detailed as the
strace tool.

2.1 System Calls
In computer terminology, the term syscall is a way in which a computer program requests
a service of the operating system on which is executed on. In other words, system calls are
functions used in the kernel itself. The system call appears to a standard developer as a
C function call. This design is typical for monolithic kernels. We can find them on every
UNIX system. The system call can be called on Linux/i86 multiple ways. One of them is
to call interruption no. 0x80 with value of syscall in register eax. The second and third
one is by calling system calls syscall() or sysenter() and these syscalls are handled by
the kernel in a privileged mode. When a user invokes a system call, an execution flow is as
follows:

• Each syscall is vectored through a stub in libc. Some syscalls are more complicated
than others because of a variable length of the arguments, but the entry point and
the end point of syscall are still the same.

• In libc, the number of the syscall is then set to an eax register, and the stack frame
is also set up.

• An interrupt number 0x80 is called and transferred to the kernel entry point. The
entry point is the same for every system call.

• In the table of interrupts, a pointer to interruption handler is found. After that,
the execution of the interrupt handler follows which stores the content of the CPU
registers and checks if a valid syscall is called.

• The handler finds the corresponding offset in the table of interrupts _sys_call_table,
where a pointer to the syscall service is stored.

• Control is transferred to the syscall service.

• Syscall returns a value to the register EAX on a 32-bit architecture or RAX on a 64-bit
architecture.

4

User space

Kernel space

int
$0x80

libc

source.c

int main(){
printf(”42“)
return 0;

}

Interrupt
routine

Syscall
routine
write

Syscall
routine

read
Table

of
syscalls

Table
of

interrupts eax

Figure 2.1: Interruption handling in Linux

• At the end of the syscall, _ret_from_sys_call is called. This call is done before
returning to user space. It checks if the scheduler should be run, and if so, it calls it.

• Immediately after return from the system call to interrupt handler, syscallX() macro
checks for a negative return value from the syscall, if so it puts a positive copy of a
return value to a global variable _errno, for accessing from code like perror().

This procedure is illustrated in Figure 2.1. [24]

2.2 Monitoring
The most used and conventional method for monitoring is tracing, in other words watching
what a program is doing during the execution. Tracing involves a specialized logging to
record information, useful for debugging, about a program’s execution. This can be done
in multiple layers, from tracing which lines in the program was executed to individual
instructions run on a CPU. Collecting this information can be done with various tools, e.g.,
strace, ftrace etc.

Strace Strace [6] is a easy to use diagnostic, instructional and debugging tool. You can
monitor every syscall or signal made by the program you are tracking. Using this tool it
is possible to log what the observed program demanded from the kernel. The individual
recorded operations can be, e.g., an attempt to open a file or delete a content of CPU caches.

5

This tool also shows arguments for the called syscall and it can show data structures with
their elements, etc. The developer can perform a fault injection for the specified set of
syscalls as well, to simulate the program in faulty test cases. Another feature is that the
Strace can trace child processes of the observing program. The log on the output will
contain the system calls from the primary process and its child processes.

The main advantage of Strace tool is that it does not need any source codes. The
observing program has not to be compiled with extra flags nor object files. Also, it does
not matter if the application is statically or dynamically linked. This is useful because we
only need to execute the binary. These features are helpful for my tool, but this will be
more described in a later chapter. The usage of strace tool is straightforward, i.e., when
one wants to run ls with strace he types in a command line:

>$ strace ls

In this case, strace executes the ls command, and on the output, it shows which sys-
tem calls were called. An example of the strace output is in the next figure.

execve(”/usr/bin/ls“, [”ls“], 0x7ffd0cf4ba60 /* 59 vars */) = 0
open(”/etc/ld.so.cache“, O_RDONLY|O_CLOEXEC) = 3
fstat(3, { st_mode=S_IFREG|0644, st_size=202163, ...}) = 0
mmap(NULL, 202163, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fd781293000
close(3)

Strace grammar Strace produces structured output. Simplified version in extended
Backus–Naur form (eBNF) [12] you can see in Figure 2.2.

⟨grammar⟩ |= ⟨system_call⟩ | ⟨signal⟩ | ⟨exit_line⟩
⟨system_call⟩ |= ⟨sc_name⟩ ”(” {⟨argument⟩} ”)” ”=” ⟨digit⟩

⟨signal⟩ |= ”+++ killed with” ⟨signal_name⟩ ”+++”

⟨exit_line⟩ |= ”+++ exited with” ⟨digit⟩ ”+++”

Figure 2.2: Strace output grammar in eBNF

As you can see the grammar is composed of main parts that are system_call, signal
and exit_line. We are interested the first one (system_call). The system call is composed
of a name of syscall, arguments and return code. The argument can occur in a sequence
and it is considered of atomic types (value, constant, structure, array, string, address and
there can be find comments as well). The string is represented in a program as a place in
memory but strace can dereference this address and show it in analysis.

Ptrace Strace is using ptrace [5] system call. Ptrace is used to implement debuggers
and other tools for process monitoring. Basically, the strace call ptrace and attach to a
tracee (monitored process). When the connection is established the tracee is halted before

6

and after syscall. Now the tracer (strace) can observe and control the execution as well
as inspect memory and registers of (tracee). With this information, strace can determine
which syscall was called. During the second halt after syscall, the strace can get information
of return value from syscall.

Ftrace Ftrace [4] is an internal tracer which traces events in the kernel. It is designed for
developers to examine kernel events. The main feature of this tool is to measure latencies
and find issues that take place outside of the user-space. Ftrace is typically considered as a
function tracker, but it is a framework of several different tracing utilities. One neat feature
of ftrace is measurement of latency among interrupts, the lag between the time when the
task is woken up and time when the task is scheduled in. Another frequent use of ftrace is
event tracing. In the kernel, there is a massive amount of static event points that can be
enabled with a tracefs file system. The event points provide an interface to observe what
is going on in the various parts of the kernel.

Dtrace DTrace [3, 16] (shortcut for Dynamic Tracing) is a performance analysis and a
troubleshooting tool. It is included in various operating systems, such as FreeBSD, Mac
OS, Solaris and Linux. This tool instruments all software, not just user-level software but
also operating system kernel and device drivers. It supports dynamic tracing which means
dynamically patching while running instructions with an instrumentation code. Static
tracing is supported as well, but it needs to add tracepoints to the code. DTrace provides a
scripting language called ’D’ for writing scripts and one-liners. It is similar to C with AWK
elements. With this script, you can create filters and summarize data in the kernel before
passing to user-space. This design can decrease the overhead in performance of sensitive
systems.

For our purposes, DTrace is too complicated to setup or gather the information about
syscalls. You need to write some scripts to define which syscalls you want to be informed
with and in our use case, we need every system call.

SystemTap SystemTap [8] is a tracing and probing tool that allows to gather information
from probes injected into the kernel. It is similar to Dtrace. It started as a clone of Dtrace
because it has incompatible license for using in GNU Linux. One of the common things
with Dtrace is that both tools use some type of scripting language. In this case it is named
SystemTap. With this language you can specify what happens when some event occurs in
the kernel.

SystemTap works as daemon which communicates with a stap program. Stap is a small
program that translates the SystemTap script to a kernel module. It is done in a few steps.
At first it runs semantic analysis on the script. After that, stap tries to translate it into a
C code. The next step is to compile it as a kernel module and load it into the kernel. After
loading it is working and doing the useful part. When you send a signal to terminate the
stap program it will unload the kernel module and stop working.

Similar as Dtrace the SystemTap is too complicated to work as system call monitor and
it is not flawless. The Systemtap cannot dereference the pointer address in the system call
but the strace tool can.

Autrace The Linux Auditing System helps system administrators to create an audit
trail. Every action on workstation or server is logged into a log file. This tool can track

7

security-relevant events, record the events and detect misuses or unauthorized activities by
inspecting the audit log. You can also set which actions should or should not be reported.

Audit System is composed of two main parts. The first one 𝑎𝑢𝑡𝑟𝑎𝑐𝑒 is a kernel com-
ponent which intercepts system calls, records events and sends these audit messages to the
next part. The second component is an audit daemon working in user space. This part is
collecting the information emitted by a kernel component. Emitted data is then stored as
entries in a log file. As you can see this tool is not for monitoring one specific program, but
it is designed to monitor the whole system. In the output, there is specified who and when
executed the syscall, current working directory, uid, gid, etc. Above specified functionality
is useful for server administrators but not for our work.

Entry example in a log file:

1 type=SYSCALL msg=audit(1434371271.277:135496): arch=c000003e syscall=2
2 success=yes exit=3 a0=7fff0054e929 a1=0 a2=1fffffffffff0000 a3=7fff0054c390
3 items=1 ppid=6265pid=6266 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0
4 egid=0 sgid=0 fsgid=0 tty=pts0 ses=113 comm="cat"
5 exe="/usr/bin/cat" key="sshconfigchange"

Figure 2.3: Example of the log that can provide autrace

8

Chapter 3

Security Facilities in Linux

This chapter describes security facilities in GNU Linux operating system. First, we mention
an old tool named Systrace [20]. Later we will mention a secure computing module named
Seccomp [18]. The next topic will be Berkley Packet Filter (BPF) because it is used in
seccomp-bpf. The seccomp-bpf is an extension to basic seccomp. This extension can better
describe the behavior of seccomp. In the end, there will be a description of libseccomp
which is an easy to use library to the kernel syscall filtering.

3.1 Systrace
Systrace is security facility which limits an application’s access to the system. It is similar to
a newer tool named seccomp-bpf which will be described later. The restrictions of a program
are provided via system call blocking. The policy is generated interactively. Operations not
covered by the defined policy raise an alarm. When an alarm is raised the user can refine the
current policy. Systrace provides an option to generate policies automatically which can be
immediately used in sandboxing (Sandbox is a security mechanism for separating programs,
usually in order to mitigate system failures or software vulnerabilities from spreading.) 1.
It is not flawless, so it sometimes needs minimal manual post-processing.

This tool provides cybersecurity by providing intrusion prevention. One of the uses is
that you run systrace on the server. The systrace monitors all running daemons (daemon is
a computer program that runs as a background process, executed on system start up) and
can generate a warning when some incident occurs. These alerts can be sent to a system
administrator and can provide information what happened.

3.2 Seccomp
A large number of syscalls are exposed to user space of a process. Many of this syscalls
are unused for the entire lifetime of the process. This exposes a possibility to misuse some
syscalls to corrupt the process itself. A particular subset of applications benefits from a
reduced set of syscalls by reducing exposed kernel surface to process. The filtering is done
by seccomp. Seccomp filtering provides means for a process to reduce the set of syscalls
available to the process [9].

In most contemporary distribution, a kernel module named Seccomp [18] is enabled.
Sec-comp stands for the shortcut of Secure Computing Mode. This module provides one

1https://www.wikiwand.com/en/Sandbox_(computer_security)

9

way transition to a secure mode which restricts a thread to a few system calls read(),
write(), exit(), sigreturn(). If the thread tries to call another system call then the
one from the four-member set, the whole process is terminated with signal SIGTERM. The
drawback of this solution is that these four system calls are not enough for application to
run correctly.

3.3 Berkeley Packet Filter and Seccomp
The seccomp filter mode allows developers to write BPF programs that determine if a given
syscall will be allowed or not. That allowance can be based on a system call number or
specific syscall argument values. Only the passed values are available, as any pointer are
not dereferenced by the BPF. Filters can be installed using seccomp() or prctl(). First,
the BPF program should be constructed, then installed in the kernel. After that, every
system call triggers the filter code. The installed filter cannot be removed or modified.
Another property of applied filter is that the every child process inherits the filter from a
parent process when using fork(2) or exec(2).

A BPF language came in 1992 for a program called tcpdump which is a monitoring
tool for network packets. The volume of packet can be colossal, so it makes the transfer to
user-space expensive. The BPF provides a way to do filtering in the kernel and the user
space only handles those packets which is interested in.

The seccomp filter developers realised that they wanted a very similar task. After that,
the BPF was generalized to allow system call filtering. After the update, there is a tiny
BPF virtual machine in the kernel space that interprets the BPF instructions.

The next update of BPF was eBPF which stands for extended BPF. This update was
released in Linux Kernel 3.18 for tracepoints later in 3.19 for raw sockets and in 4.1 for
performance monitors. The eBPF brought the performance improvements and new capa-
bilities.

The eBPF virtual machine is widely used in the kernel for various filtering:

• eXpress Data Path (XDP) is a high performance, programmable network data path in
the Linux Kernel

• Traffic control,

• Sockets,

• Firewalling 𝑥𝑝𝑓_𝑏𝑝𝑓𝑚𝑜𝑑𝑢𝑙𝑒,

• Tracing,

• Tracepoints,

• kprobe dynamic tracing of a kernel function call,

• cgroups.

eBPF - Specification The eBPF virtual machine has a 64-bit RISC architecture de-
signed for one to one mapping to 64-bit CPUs. Instructions are similar to classic BPF for
simple conversion to eBPF. The old format had registers A and X instead of current 11
registers grouped by function as described below [23].

10

• R0 exit value for eBPF

• R1 - R5 function call arguments to in-kernel functions

• R6 - R9 callee-saved registers preserved by in-kernel functions

• R10 stack frame pointer (read only)

So far 87 internal BPF instructions were implemented. Opcode field has a room for new
instructions. Some of them may use 16/24/32 byte encoding.

Same as the original BPF (the new format runs within controlled environment) is de-
terministic and the kernel can easily prove that. The safety of a program can be verified in
two steps. First step does depth-first-search to forbid loops and Control flow graph (CFG)
validations. The second step starts from first instruction and descends all possible paths in
CFG. It simulates execution of every instruction and examines the state of registers and a
stack [23].

eBPF - Instruction Encoding. An eBPF program is a sequence of 64-bit instructions.
All eBPF instructions use the same design of instruction encoding which is shown in Figure
3.1. As you can see in the figure, there are 5 parts that are opcode (operation code), dst
(destination), src (source), offset, immediate [23].

32 16 12 8 0

LSB

64

MSB

offset src dst opcodeimmediate

Figure 3.1: eBPF instruction encoding

3.4 Libseccomp
Libseccomp [19] is easy to use library which provides a platform-independent interface to
the Linux Kernel’s syscall filtering. The libseccomp API is designed to abstract a user
from underlying BPF based syscall filtering and present a more conventional function-call
based filtering interface. The interface should be more familiar to and quickly adopted
by application developers. The comparison of libseccomp and raw BPF filter is shown in
Appendix A.1 and A.2.

The library accepts on input a set of rules which are later transformed into a BPF
format used in seccomp. One of the advantages of a libseccomp is that you can write a
function call-based filter. This filter is then translated to BPF and after that it is loaded
into seccomp as filter. This method is not transitive from function call filter to BPF. There
are some differences, but they are on so small-scale that they can be ignored.

Another advantages of seccomp is that it has a permissive mode in which every syscall
violation is reported to the user. This feature can be helpful if you want to obtain informa-
tion which syscalls was called. This use case is really similar to the syscall monitoring. But
it is really tough to depend on this output because it is in development and is dependent
on autrace.

11

Chapter 4

Solution Design

This chapter will describe the technical part of the thesis. We will discuss requirements
and particular parts, its architecture and issues, we have to deal with.

4.1 Requirements
We will require from the application to fulfill the following requirements:

1. Application will have only command line interface (CLI).

2. The application will be implemented in C++17 [11].

3. Application will be designed with consideration of good OOP.

4. Application will consist of these main parts:

(a) parser
(b) optimizer
(c) policy generator
(d) logger

5. Parser will be implemented using parsing expression grammar (PEG) [7] design.

6. Optimizer will have at least three optimizing methods:

(a) strict - without use of advanced methods,
(b) minimax - possibility to count an interval interval between minimum and maxi-

mum value found in a set of arguments,
(c) advanced - combination of above methods.

7. Policy will be generated with libseccomp [19] syntax as C language [13] code.

12

4.2 Architecture
The architecture of this application is based on architectural patterns. In this case, Pipe-
and-Filter [14] architectural pattern was used. This pattern best fits our problem. A
big inspiration came from compilers. They are very similar to this application. They
break down the processing required for input into separate components (or filters), each
performing a single task. By normalization the format of the data that each component
produces, this component can be arranged as a pipeline. The pattern is suitable for change
or adding components and reduces duplicit code. But in this case, this pattern is slightly
modified. The data in the pipeline is processed as the whole batch.

The similar components with compilers. They have got a parser, optimizer and output
generator as well and every component is dependent on a precedent component. There are
two main cases as shown in Figure 4.1.

optimizer
policy generator

strace.out

.c

parser

1.

a.

I.

II.

b.

Figure 4.1: Architecture of strace2seccomp

Without Optimizer. In this case, optimizer is not in the pipeline, a raw input is trans-
lated into libseccomp commands. This pipeline is shown in Figure 4.1 (path: a.1.b. in
Figure 4.1). There are no optimizations when optimizer is turned off.

The main problem of not using an optimizer is that a system call filter does not properly
work. There is a possibility that any minor change in system call parameters can results into
a program termination. In complex program, there is no way to be definitely sure whether
every syscall was caught. That can be a big problem in programs which use seccomp. That
is the main reason why this option is not recommended.

However, there are some users which may not want to optimize the strace. The reason
for not running the optimizer is that their application does not have variable parameters in
system calls. Every syscall is the same on any running instance of the application. Attentive
reader may notice that this option can be used only in small applications which have some
limited functionality.

The main disadvantage of this solution is that it is too robust to place it in a code and
is very strict. It can kill a program even in a false positive case when a user changes some
of the parameters that was not covered in strace input files.

13

With Optimizer. In this case when optimizer is turned on (path: a. I. II. b. in Figure
4.1), we can specify which type of optimization we want. As mentioned in Section 4.1, there
are two variants of optimization. Those variants can be switched with runtime arguments
in CLI.

The pitfalls of this case are allowing program to continue even in inappropriate circum-
stances. Invalid circumstances can be defined as a bad syscall argument treated as a valid.
It can happen when you allow a set of arguments for specific syscall. This is not secure
however, it is more suitable for work than the case without optimizer.

You can minimize these pitfalls by providing a lot of strace input files. The best case
is when you provide strace files from every major complex test case (with big prime path
coverage).

4.2.1 Parser

The parser is crucial part of the whole application because it will put everything in an IR
(intermediate representation). Input to the parser is an output from the Strace tool. The
output was described in Section 2.2 and correct configuration of strace to generate valid
output for strace2seccomp will be described in Section 5.1. As you can see the output
is in a structured form and has an unambiguous syntax which means that no error should
occur during the parsing part. When syntax error occurs, the program should inform where
the error is located in the input file. Next step should be a proper exit. Parser should have
an option to identify all errors in the input file which can be helpful for identifying more
errors at once. Another feature is that the parser can print structured parsed data.

4.2.2 Intermediate Data Structure

One of the main parts of strace2seccomp is an intermediate data structure (IDS) in which
the individual system calls are stored. The main idea of this abstract data type (ADT) is
to be simple and readable with smallest redundancy possible. This can be done only with
good abstraction and good design.

IDS is represented as a tree structure. In this structure, there are different information
about syscall represented at a different level in the tree. The root node has child elements
which represent individual system calls. In this case, we call these nodes system call node
(SCD). In SCD, information about a system call number is stored and it have multiple
children. The n-th level represents the n-th argument of a specific system call. The whole
system call (including arguments) can be read as a path from the root node to the leaf
node. The IDS representation is shown in Figure 4.2.

14

Algorithm 1: Strict optimization
Input: intermediate data structure
Output: intermediate data structure

1 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑖𝑛𝑝𝑢𝑡

Figure 4.3: Strict algorithm

IDS

write

fd2

buff2

17

buff1

3111

fd1

buff2

1513

buff1

1127

read

fd2

buff2

20

buff1

201315

fd1

buff2

8442

buff1

42

Figure 4.2: Visualized IDS as a tree

4.2.3 Optimizer

Optimizer is the main part of this tool. This part will reduce the intermediate data structure
(IDS). There are three approaches to reducing IDS (strict, advanced and minmax).

Strict optimization. Strict optimization is defined as 1:1 to strace input file. It means
that it will interpret every record in strace as a strict rule. So only that one case is only
possible to run. Every minor change in system call will kill the process.

Minmax optimization. Minmax optimization is the most basic one of this set of op-
timizations. The main idea is to find minimum and maximum for each argument of each
syscall. The model uses a simple technique to find extremes on every position of the system
call. Firstly, it serialize the arguments from 𝑛-th position. Then the serialization searches
for extremes.

The abstracted algorithm follows as this:

1. Serialize 𝑛-th argument position of a system call.

2. Search for extremes in serialization.

3. Increment 𝑛.

4. If 𝑛 is bigger than a number of arguments in syscall then exit.

5. Go to number 1.

15

Algorithm 2: Weak optimization - main loop
Input: intermediate data structure
Output: intermediate data structure

1 for 𝑠𝑦𝑠𝑐𝑎𝑙𝑙 ∈ 𝑖𝑛𝑝𝑢𝑡 do
2 𝑜𝑢𝑡𝑝𝑢𝑡.data[𝑠𝑦𝑠𝑐𝑎𝑙𝑙.name] ← 𝑠𝑦𝑠𝑐𝑎𝑙𝑙;
3 𝑜𝑢𝑡𝑝𝑢𝑡.data[𝑠𝑦𝑠𝑐𝑎𝑙𝑙.name].clustered ← 𝑓𝑎𝑙𝑠𝑒;
4 𝑜𝑢𝑡𝑝𝑢𝑡.data[𝑠𝑦𝑠𝑐𝑎𝑙𝑙.name].next ← bar(𝑠𝑦𝑠𝑐𝑎𝑙𝑙.next);
5 end

Algorithm 3: Weak optimization - bar
1 Function bar(vec :&std::vector<Argument>) : std::vector<Argument> is
2 foreach argument in the vec do
3 if argument.next.empty() ̸= 𝑡𝑟𝑢𝑒 then
4 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡.𝑛𝑒𝑥𝑡 ← bar(argument.next);
5 end
6 end
7 if vec type is INTEGER then
8 arg:Argument;
9 arg.valueFormat ← vec.front().valueFormat;

10 arg.valueType ← vec.front().valueType;
11 arg.key ← vec.front().key;
12 if vec size > 1 then
13 arg.value ← getMin(vec);
14 arg.value_b ← getMax(vec);
15 arg.numberType ← RANGE;
16 else
17 arg.value ← vec.front().value;
18 arg.numberType ← VALUE;
19 end
20 𝑟𝑒𝑡_𝑣𝑒𝑐.push_back(arg);
21 else
22 foreach item in the vec do
23 arg:Argument;
24 arg.valueFormat ← item.valueFormat;
25 arg.valueType ← item.valueType;
26 arg.key ← item.key;
27 arg.value ← iitem.value;
28 arg.next ← item.next;
29 arg.numberType ← VALUE;
30 𝑟𝑒𝑡_𝑣𝑒𝑐.push_back(arg);
31 end
32 end
33 return 𝑟𝑒𝑡_𝑣𝑒𝑐;
34 end

Figure 4.4: Weak algorithm

16

Clustering. Clustering is learning algoritm from a family of unsupervised machine learn-
ing. It is a bunch of numerous operations focused on decomposition of informations. When
we decompose information then we can classify it by classificators. One of them is cluster-
ing. Clustering has many definitions, e.g. in book about data mining from Carlo Vercellis
[2] is clustering defined as ”Clustering models is to subdivide the records of a dataset into
homo- geneous groups of observations, called clusters, so that observations belonging to
one group are similar to one another and dissimilar from observations included in other
groups.”.

The goal of this method is to find subsets (clusters) in given set. Cluster is defined by
Paolo S. R. Diniz and group [15] as ”In describing a cluster, most researchers consider inter-
nal homogeneity and external separation, i.e., patterns in the same cluster should be similar
to each other, while patterns in different clusters should not. Similarities and dissimilarities
both should have the potential to be examined in a clear and meaningful way.”.

The classification of raw data can be done in multiple ways. Some basic methods are:

• Distribution models,

– Normal, Gaussian

• centroid models,

– K-Means,

• density based clustering,

– DBSCAN clustering,

• soft clustering,

– fuzzy clustering,

Advanced optimization. Advanced optimization is defined as combination of both strict
and weak optimizations. In some specific cases, it will use only the exact values and in other
cases, it will use weak optimizations. This combination should be stricter than the weak
optimization and weaker than the strict optimization.

In this case, DBSCAN clustering method is used [22]. The model introduced by DB-
SCAN uses a simple minimum density level estimation. It defines a threshold for the num-
ber of neighbors (minPts) within the radius 𝜖. Objects with more than threshold neighbors
within 𝜖 are treated as core points. The intention of DBSCAN is to find all areas, which
satisfy at least the minimum density separated by areas with lower density (noise). Every
point in 𝜖 radius is a part of the same cluster as a core point. If any neighbor is again
a core point, their neighborhoods are transitively included to a core point. This is very
simple and basic algorithm as you can see later in this section. The strength and weakness
of DBSCAN clustering is that it does not require a number of output clusters.

Figure 4.6 illustrates the model DBSCAN. Following parameters are defined:

• minPts is 4, and

• 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 is indicated by circles

In this picture you can see multiple points and four of them named A, B, C, N. Arrows
indicate direct density reachability. Points A, B, C are density connected and B, C points

17

Figure 4.5: Illustration of DBSCAN cluster model

are border points. N is not density reachable (it is not in any 𝜖 radius). Any point as N is
considered as noise point.

The abstracted algorithm is:

1. Find neighbors in 𝜖 radius of every point, and find core points with more that minimum
neighbors (minPts).

2. Find connected core points on the graph and merge them into clusters.

3. Assign every non-core point to a core point. If the non-core point is in 𝜖 radius of
that core-point else assign it to noise.

The whole algorithm is shown in Figure 4.6

4.2.4 Pitfalls of Clustering

The clustering of the arguments of system call has some pitfalls. Some of them are described
below.

Address space layout randomization. ASLR was introduced in 2001 by Page EXec
(PaX) team to defense over buffer overflow attack, [28, 10]. The goal of ASLR is to provide
randomness into address space of a given task. This will add another layer of protection
against exploits which uses buffer overflow to change behavior of attacked software.

The idea behind ASLR is that the memory segments (stack, heap, libraries, ...) are
located on different offsets during the runtime. With this technique you can achieve that
exploits cannot know where exactly is located, e.g., a stack segment in the memory. When
ASLR is enabled, the analysis of the addresses in a system call make no sense. You cannot
know on which offset any segment will be.

ASLR is by now implemented in many modern OS (MS Windows, GNU/Linux, NetBSD,
OpenBSD, MacOS). In Linux, this feature is enabled by a kernel. You can get information
if ASLR is enabled in file e.g.:

1 > cat /proc/sys/kernel/randomize_va_space

Figure 4.7: Reading the ASLR value that tells us what kind of level is turned on.

18

Algorithm 4: Pseudocode of Original Sequential DBSCAN algorithm
Input: 𝐷𝐵: Database
Input: 𝑠𝑦𝑚𝑏𝑜𝑙: 𝜀
Input: 𝑚𝑖𝑛𝑃𝑡𝑠: Density threshold
Input: 𝑑𝑖𝑠𝑡: Distance function
Data: 𝑙𝑎𝑏𝑒𝑙: Point labels, initiall 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

1 foreach point 𝑝 in database 𝐷𝐵 do // Iterate over every point
2 if 𝑙𝑎𝑏𝑒𝑙(𝑝) ̸= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 then continue; // Skip processed points
3 neighbors 𝑁 ← RangeQuery(DB, dist, p, 𝜀) //Find initial neighbors
4 if |𝑁 | < 𝑚𝑖𝑛𝑃𝑡𝑠 then // Non-core points are noise
5 𝑙𝑎𝑏𝑒𝑙(𝑝) ← Noise continue
6 end
7 𝑐 ← next cluster label //Start a new cluster
8 𝑙𝑎𝑏𝑒𝑙(𝑝) ← 𝑐
9 Seed set 𝑆 ← 𝑁 ∖ {𝑝} //Expand neighborhood

10 foreach 𝑞 in 𝑆 do
11 if 𝑙𝑎𝑏𝑒𝑙(𝑞) “ Noise then 𝑙𝑎𝑏𝑒𝑙(𝑞) ← 𝑐 ;
12 if 𝑙𝑎𝑏𝑒𝑙(𝑞) ̸= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 then continue;
13 neighbors 𝑁 ← RangeQuery(DB, dist, q, 𝜀)
14 𝑙𝑎𝑏𝑒𝑙(𝑞) ← 𝑐
15 if |𝑁 | < 𝑚𝑖𝑛𝑃𝑡𝑠 then continue; // Core-point check
16 𝑆 ← 𝑆 ∪ 𝑁

17 end
18 end

Figure 4.6: Illustration of DBSCAN cluster model

19

Value description:

• 0 ASLR is turned off,

• 1 ASLR is enabled only for Shared libraries, mmap(), VDSO, stack and heap,

• 2 ASLR is fully enabled.

String represented in memory The strings are represented in memory as an offset
where the string begins and ends with null termination. [13] For this reason seccomp
cannot operate with strings and we will skip string arguments as well.

4.3 Parsing Expression Grammar
Parsing expression grammar was introduced by Ford in 2004. PEG is a type of formal
analytic grammar which describes a formal language regarding a set of rules for recognizing
strings in the language. This type of grammar is similar to top-down parsing languages or
context-free grammars.

Easily constructed packrat parser can parse any language described by LLk or LRk
grammar. This parser can parse language that requires unlimited lookahead as well. The
packrat parser can be constructed easier than bottom-up LR parsers, and that design can be
quickly built by hand. Already stated parser, can efficiently solve common disambiguation
rules, e.g., longest-match, followed-by, and not-followed-by. These rules are challenging to
express in context-free grammar in linear-time.

The main advantage is that we can integrate lexical and hierarchical analysis into one
unified packrat parser. On the other hand, the main disadvantage is memory consumption.
The packrat parser has a similar worst-case asymptotic complexity to the conventional
algorithms (linear in the size of the input). Another disadvantage of the parser is its
algorithm which computes many results that are never needed. And because of this, the
order in which the results are computed should be carefully determined. And thus the
packrat parser can be labeled as a lazy derivation of a tabular algorithm that solves both
of these problems.

Addition ← Multiplication ’+’ Addition | Multiplication
Multiplication ← Primary ’*’ Multiplication | Primary
Primary ← ’(’ Addition ’)’ | Number
Number ← ’0’ | . . . | ’9’

Table 4.1: Example of a grammar for a trivial language

20

Chapter 5

Development of strace2seccomp

In this chapter, we will briefly describe some implementation details, and we will show the
reader how to get the strace logs that are used as input for strace2seccomp tool. Next, we
will take a look at what programs were used during the development phase. The whole
project is written in C++ and standard was chosen as the latest C++17. The whole
project is compiled with GNU compiler. However, the compiler can be easily switched in
build system for clang. As well in this chapter, we will describe the class hierarchy, and at
the end, we will describe how to run the strace2seccomp tool.

5.1 Input
As I mentioned earlier strace tool was chosen because it is easy to use system call monitoring
tool. It can monitor what observed program demanded from a kernel. With strace tool it
is possible to trace child processes. The main advantage of strace tool is that is does not
need any of the source code files, program is not compiled with extra flags or without any
library or it does not have to be statically linked. This were the reasons why I chose the
strace tool as an input for the strace2seccomp.

The output from strace tool has to be normalized before processing with strace2seccomp.
The normalization is done by providing a few runtime arguments to the strace tool. Ex-
ample:

1 > strace -s 0 -xx -o dataset -ff nautilus

Figure 5.1: Example of running strace on nautilus program

I would like to describe what they are doing in the first place[6].

-s is a string size. We are setting a string size to zero because the libseccomp does not
have the ability to work with strings. It does not know how long the string is or if it is really
a string. By this option the filenames are not affected. They are printed in full length.

-xx this option will switch the format of strings to a hexadecimal format. It is much
easier to parse strings in this format. It affects the filename as well. This option is used
because sometimes a non ASCII (UTF–8) character can occur in filename.

21

-f traces children processes.

-o is used for specifying the output file.

-ff is helpfull when you are tracing a multiprocess program. In this case it will create a
multiple files in format NAME.PID where NAME is a provided filename in option -o and
PID is a process id.

5.2 Output
The strace2seccomp tool is generating a source code for C/C++. In the source code seccomp
library to provide system call blocking is used. The example of a generated source code is
in Appendix B.1.

The source code can be generated in multiple ways. The basic settings are that it will
create only function calls with arguments. The extension to this it can add a function
prolog and a function epilog. This option is useful when you want to copy and paste the
output of strace2seccomp into your source code. The last thing which can be added into
output is multithread or multiprocess support. When this option is set up, in the output
code will be located part which turns on filter synchronization among threads or processes.

5.3 Class Hierarchy
This section provides information about class hierarchy in this project. The color of classes
in figures does not mean anything it is there only for better readability.

Figure 5.2: Class diagram that shows inner representation of runtime arguments in Params
class.

At the beginning is the Params class as we can see in Figure 5.2. In constructor of Params
class is executed getopt library to acquire a runtime arguments. The omitted arguments
are then saved in class variables. By this variables the whole tool is instrumented.

The next class diagram in Figure 5.3 show us an Intermediate Data Structure (IDS).
The IDS is handled with multiple components in this project, i.e., parser saves information
there, etc., description is in Section 4.2.2. As you can see the Argument class has three
constructors. Here could be used design pattern factory however, there are only two different

22

cases of creating an object so it was not needed. The Argument class contains individual
data about argument, e.g., the format value says if the argument is in ’key=value’ or
’value’ form. The actual value is stored in container std::variant that can contain two
types, unsigned long or std::string. This is the C++17 equivalent of enumeration in
C language.

Figure 5.3: Here we can see the intermediate data structure represented in class diagram.
The whole IDS class contains list of syscalls, and syscalls contains arguments represented
as a tree structure described in chapter earlier.

Syscall class in Figure 5.3 is dependant on the Argument. This class contains infor-
mation about syscall, e.g., name, number of arguments, and actual arguments. There is
defined print() method that can print structurized data from syscall.

Class Ids in Figure 5.3 describes the whole IDS. In this class is located class variable
of type std::map<std::string, Syscall> wich hold syscall data. This means that Ids
class is dependant on class Syscall. The Ids class includes methods, e.g., for structuralized
print of whole class, or syscall only. It has implemented method for inserting new Syscall
object into the map.

23

The Figure 5.4 illustrate dependency and generalization in class hierarchy in the opti-
mizer. As you can see the Optimizer is dependent on Algorithm class. The Algorithm
class is generalized by specific algorithms, e.g., Algo_strict class or Algo_advanced class.
The optimizer contains a pointer to the Algorithm. By this mechanism, it is really sim-
ple to change the algorithm in the optimizer and keep the logical structure. It contains
methods for initializing and removing algorithm from an object. The algorithms have to
override the optimize method in Algorithm class thus it is pure virtual in the base class.
Because of that the compiler requests the implementation of optimize method in a new
class that inherits from Algorithm class. The generalization is used for simple extension
of algorithms in the current solution. Every algorithm includes supportive methods for the
optimization, e.g., Algo_weak has implemented method , e.g., getMinMax.

24

Figure 5.4: In this picture we can see a class diagram that describes a relationship among
algorithms and optimizer. The optimizer contains pointer to the Algorithm class. The Al-
gorithm class is used as an interface for the specific implementations. The implementations
of algorithms, e.g, weak inherits the interface from Algorithm class and thus the optimizer
can optimize with different algorithm implementations.

In the Policy generator is used the same approach as in the optimizer. The hierarchy
among classes in policy generator shows the Figure 5.5. As we can see there is Generator
class which is using d-pointer pattern. Generator class contains a pointer to the Output
class which implements the specific output generator. This design supports a natural ex-
pansion of generator implementations for other languages as well, e.g., Go or Python.

In our case, we created support for C/C++ language and this support is implemented in
a class named outputCPP. This class contains multiple methods, some of them are used for
clustered IDS, and some of them are used for unclustered IDS. Here are located filenames

25

of a template for C/C++ function wrapper of the generated filter. The output file can be
changed with a setOutput method. The printing into a file is implemented in batches. It
means that multiple rules for one syscall are printed at once.

Figure 5.5: In this Figure we can see relationship between generator and output imple-
mentation. Here is used the same approach as in the optimizer. The Generator contains
pointer to the Output class which is interface for policy. In our case we implemented the
policy generator for the C/C++.

5.4 Used software
In this section, I want to mention which software I used to develop a strace2seccomp
tool. Firstly, I mention compilers used in this project and after that valuable tools for
developments.

5.4.1 Compilers

In this project, I used two compilers. The reason is simple. Every compiler can detect
a different set of errors and warnings during the compilation. And at the time of doing
project one of the reasons of compiling with two compilers was to compare the execution
times with optimizations turned on.

In the project, libc++ and libc++ ABI from LLVM project was used. The reason for
using implementation from LLVM project was that in the GNU implementation, there was

26

a bug which affected a C++17 functionality1 2. However, during the later development
phase was the bug fixed and both implementation of the library can be used.

GNU Compiler Collection. GNU Compiler Collection is a part of the GNU project.
It aims to improve compiler used in the GNU ecosystem. GCC3 uses an open development
environment. It includes front ends for C, C++, Objective-C, Go etc. as well as libraries
for these languages. It was firstly written for GNU operating system4. The compiler
collection is released under the GPL license, other components, e.g., as runtime libraries
are distributed under various free licenses.

LLVM/Clang. The goal of Clang5 project is to provide a new C based language front-
end (C, C++, Objective-C,) for the LLVM6 compiler. It is released under NCSA Open
Source license. Clang is designed to be highly compatible with GCC. It supports most of
the GCC compilation flags and unofficial language extensions7.

5.4.2 Dynamic and Static Code Analysis

For correct development is necessary to find as many bugs as possible during this phase.
This goal was achieved by ussing dynamic and static analysis tools. For static analysis was
used an LLVM project named clang-tidy and for

LLVM/Clang-tidy. Clang-tidy is a clang-based ”linter” tool8. Its purpose is to diagnose
and fix typical programming errors, like interface misuse, style violation, or bugs that can
be deduced via static analysis. Clang-tidy diagnostics are designed to assert code that has
invalid coding standard or is otherwise problematic. It has options to disable some false
positive warnings (e.g. \\NOLINT).

AddressSanitizer. AddressSanitizer9 (ASan) is a memory error detector for C/C++
developed by Google. ASan is very fast and the average slowdown of the instrumented
program is ~2x. The tool consists of a runtime library which replaces the malloc function
and compiler module (currently as LLVM pass). The tool supports multiple architectures,
e.g., x86, x86_64, ARM, ARM_64, MIPS, PowerPC64, etc. It is part of the both compilers
mentioned above in Subsection 5.4.1.

Usage of ASan is very straightforward. You have to only add compiler arguments:

-fsanitize=address,undefined -fno-omit-frame-pointer

The first parameter turns on the ASan and sanitizer for undefined behavior. The second one
prints a nicer stack trace in error messages. It is advised by developers to use optimization,
e.g., -O1, to get reasonable performance.

1https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=877838
2https://gcc.gnu.org/viewcvs/gcc?view=revision&revision=258854
3https://gcc.gnu.org/
4https://www.gnu.org/gnu/thegnuproject.html
5https://clang.llvm.org/
6http://www.llvm.org/
7https://clang.llvm.org/docs/LanguageExtensions.html
8http://clang.llvm.org/extra/clang-tidy/
9https://github.com/google/sanitizers/wiki/AddressSanitizer

27

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=877838
https://gcc.gnu.org/viewcvs/gcc?view=revision&revision=258854
https://gcc.gnu.org/
https://www.gnu.org/gnu/thegnuproject.html
https://clang.llvm.org/
http://www.llvm.org/
https://clang.llvm.org/docs/LanguageExtensions.html
http://clang.llvm.org/extra/clang-tidy/
https://github.com/google/sanitizers/wiki/AddressSanitizer

5.4.3 Miscellaneous

This section describes miscellaneous software used in the project, e.g., Artistic Style, . . .

Git Git10 is a source code manager (SCM). It stands out of the group of SCMs by its
branching model. Git allows and encourage you to have multiple local or remote branches
that can be entirely independent. This provides features like:

• Context Switching

• Feature Based Workflow

• Role-based Codelines

• Disposable Experimentation

Other benefit of Git is that it does nearly all operations locally. This gives the tool huge
speed advantage. Git was built to work with Linux kernel, that means it can effectively
handle large repositories. The st2se used repository hosting on GitHub.

Artistic Style Astyle11 is a source code formatter and beautifuller. Works with C, C++
Objective-C, C# and Java programming languages. The motivation to use this tool is to
have uniform code style. Some of the editors by default insert spaces instead of tabs when
pressing a key. Other editors have the abillity to insert space before tab lines to visually
enhance the code (Emacs). The solution to this problem is to use Artistic Style formatter.
It can normalize the source code by rules defined in a configuration file provided by a
developer of the project.

LCOV and GCOV LCOV12 is an extension to GCOV, a GNU tool which can determine
what parts of a program was executed while running particular testcase. It can provide
information about how many times that part of program was executed. LCOV implements
to GCOV following additional functionality:

• HTML based output with coverage rates indicated by specific color, i.e., green is 100%
and red is 0% coverage.

• Support for large projects. It allows you to browse over overview pages that shows
coverage data by providing: a directory view, a file view and a source code view.

LCOV was designed like Git to support Linux kernel, but works as well on standard user
space applications. This tool uses line coverage technique and it is the poorest coverage
from the coverage types point of view.

10https://git-scm.com/about
11http://astyle.sourceforge.net/
12http://ltp.sourceforge.net/coverage/lcov.php

28

https://git-scm.com/about
http://astyle.sourceforge.net/
http://ltp.sourceforge.net/coverage/lcov.php

5.5 Usage
This section describes how to run the strace2seccomp tool, what runtime arguments it has
and how to turn on different optimization algorithms.

General options
short format long format description
-h ––help print this message
-v ––verbose turn on verbose mode
-d ––debug turn on debug mode
-t ––tracing turn on tracing mode
-A ––analyze-grammar analyze grammar
-o=FILE ––output=FILE set output file

Table 5.1: General options overview

Configuration options
short format long format description
-w ––weak use weak algotirthm
-s ––strict use strict algotirthm
-a ––advanced use advanced algotirthm

––thread generate function prolog
––prolog add filter synchronization among

threads/processes

Table 5.2: Configuration options overview

Examples

In Figure 5.6, we can see that verbose mode is turned on and minimax algorithm was
chosen for the optimizer. The output of the program will be stored in source.cpp. Files
filename1 and filename2 will be used as input.

1 > ./st2se -v -w --output=source.cpp filename1 filename2

Figure 5.6: Running st2se with verbose mode, weak optimization, policy will be printed
into source.cpp file, and input will read from filename1 and filename2.

The command in Figure 5.7 diverges only in the output format and used optimization
algorithm. The –thread will generate support for multithread or multiprocess applications
and –prolog switch ensures that the filter will be located in function. This behavior is
helpful for copy & paste output into an existing program. The -a turns on the advanced
algorithm for IDS optimization.

29

1 > ./st2se -a --output=source.cpp filename --thread --prolog

Figure 5.7: Running st2se with advanced optimization algorithm, output will be printed
into a source.cpp file, filename will be used as input file, ––thread switch will enable
the synchronization of the policy among threads, ––prolog switch will generate function
wrapper for copy and paste policy into the code.

When we want to check if the grammar in the parser is correct, we can use a built-in
tool in parser library. This tool of the parser can be turned on with switch -A. Afterwards
on standard output will be printed number of found issues. This behavior we can see in
Figure 5.8

1 > ./st2se -A

Figure 5.8: Example of running st2se with option -A which turns on a grammar analysis.
This functionality is provided from the parser library and is useful when we want to edit
the parsing grammar and check for errors in it.

30

Chapter 6

Software Verification

This chapter will describe activities used to assure quality control of the developed tool.
First, I want to introduce on which aspects we will focus. One of the aspects is module
testing. The main purpose of module testing is to detect errors in submodules, in com-
munication among them and in passing data through data structures. Another aspect of
verification is system testing merged with acceptance testing. In this type of testing, we will
check if the strace2seccomp tool has a valid architectural design. Next, we will check code
with static analysis tool and get information about errors in code. Static analysis is type
of testing which does not require to run the program but requires a source code of the tool.
The static analyzer will analyze the source codes with different heuristics and produces a
list of detected errors.

6.1 Module Testing
Module testing is a part of the whole quality control process. This testing can provide us
how functional are particular components and if they meet the requirements. Table 6.1
shows us the description of module’s test suits.

Module / Component Test descriptiom
Argparse Validity of recognized runtime arguments
Generator Check methods functionality
IDS Validity of constructors and class methods
Output Check the validity of generated policy
States Check the getters and setter of states
StraceParser Validity of all parser states by fuzzing

Table 6.1: Test plan

For module testing was chosen Catch1 framework. This framework was chosen for its
essential features which are:

• one header library,

• no external dependencies,

• only one core assertion macro,
1https://github.com/catchorg/Catch2

31

https://github.com/catchorg/Catch2

• tests can be tagged, and you can run only selected groups of tests,

• supports BDD2 and TDD3 which can be used for next development cycle.

Params Testing Testing of the parameters was done manually which means by systemat-
ically picking border values or some invalid ones and providing them as runtime arguments
for the strace2seccomp tool. It was automated with a handmade script.

Generator This test insists on setting class variables with class methods. The only reason
for this is that this class is used as abstract and thus we check only setters.

IDS This module test has multiple test cases. Here are tested constructors for Argument
structure, it has tree constructors. Next, there are tested comparison operators for Argument
class. After that, there is a test for insertion into Ids. Another test case consists of support
functions of IDS module.

Output The output module test checks if the generated output is the same as expected
output. This test is considered as complicated because it depends on insertion arguments
into IDS, reading data from IDS and setting up the output generator. This module test
includes a test for setting class variables as well as the module tests mentioned above.

States This module is crucial for the parser, so it is essential to have good module test.
In this test, we are checking the constructor, setters and getters and class methods.

Module tests execution In Figure 6.1, you can see how to run module tests from project
root directory.

1 > make check

Figure 6.1: Example of running module tests from project root directory.

Results For module testing was implemented eleven test cases. In these test cases were
tested almost every class method and other functions in modules. Some test cases were
small, and they were testing only small methods and the others were more complex and
was designed to test the whole module. In conclusion, there were eleven test cases with
forty-two assertions, and all of them were satisfied.

6.1.1 StraceParser Testing

StraceParser module is responsible for parsing the strace output and translating it into an
intermediate data structure. Testing of this module can be done with various techniques.
First one which is used is fuzzy testing or fuzzing described in the section below 6.1.1.

2behavior Driven Development
3Test Driven Development

32

Fuzzing

The term fuzzing was first used by professor Barton Miller who used fuzzing to test robust-
ness of UNIX applications in 1989 [27, 17]. Fuzzing is a testing method which generates
an unexpected input on tested software and then is observing if the software crashes. The
whole process is typically automated or semiautomated which involves repeatedly manipu-
lating and supplying input data to the targeted program. Some modern fuzzers (programs
that generates a stochastic input) record every crash or halt of a tested program. The
stochastic data are in the most cases invalid to observer thus he can see how application
handles invalid states and boundary conditions. The name comes from modern applica-
tions tendency to fail due to random input caused by line noise on fuzzy telephone lines
[27, 1, 26]. In other literature, fuzzing can be named by these terms:

• Negative testing

• Syntax testing

• Dirty testing

• Robustness testing

• Protocol mutation

• Fault injection

Fuzzers can be divided into two large groups:

• Generation-based fuzzers creates test suite from scratch by modeling the target
grammar.

• Mutation-based fuzzers needs an (in)valid input file. The file is mutated by various
techniques. The mutation can be e.g. bitflip, byte change, duplicate or swap some
chunks in the input file. The mutated test case is then provided to a tested program.

For us Mutation-based group is interesting because it is easier to setup and is more
available in open source community. There are many options to choose so here is a little
comparison of most popular fuzzers:

• Bunny the Fuzzer4 is a closed loop, general purpose fuzzer for C programs. The
fuzzer uses compiler-level integration which means that it injects reliable instrumen-
tation hooks into an object file. Those hooks enable the fuzzer to trace the program,
and can provide real-time feedback. This architecture provides a possibility to con-
siderably improve coverage of testing process. The injection of the hooks needs to be
done by the compiler scripts. This fuzzer subset of American Fuzzy Lop. This project
is now deprecated.

• American Fuzzy Lop5 is a security oriented fuzzer that add compile-time instru-
mentation. It is supperset to really similar Bunny the Fuzzer. The fuzzer has im-
plemented many researched fuzzing capabilities (bit / byte flips, simple arithmetics,
known integers, test case splicing, . . .). Compared to other instrumented fuzzers it

4https://code.google.com/archive/p/bunny-the-fuzzer/
5http://lcamtuf.coredump.cx/afl/

33

https://code.google.com/archive/p/bunny-the-fuzzer/
http://lcamtuf.coredump.cx/afl/

has moderate overhead and as little configuration as possible. The disadvantage of
the tool is that it needs to be executed multiple times to achieve multiprocess or
multithread fuzzing.

• Honggfuzz6 is an evolutionary, security oriented, easy to use fuzzer with analysis
options. The main advantage of this mutation based fuzzer is that it is multi-process
and multi-threded without need to run multiple copies of fuzzer. The file corpus is
automatically shared and improved among the processes / threads. Authors of the
fuzzer says that it is blazing fast when it works in persistent fuzzing mode’. For
monitoring of target (process under test) it uses a low-level interface (e.g ptrace in
Linux). It supports several hardware based (Intel BTS, Intel PT) and software based
fuzzing methods.

• Radamsa is fuzzing tool7 developed at the Oulu university. The motivation for build-
ing this fuzzer was to make robustness testing accessible to independent developers.
The existing tools were considered hard to use and to customize to fit the project.
The fuzzer is a command line tool, on input it expects multiple files (samples), and
generates mutated files. So, by the output Radamsa is considered as a mutation-based
fuzzer. The tool includes feature aiding in automatizing test runs. This is achieved
by specifying number of wanted test runs with unique mutated files. Another pa-
rameter that can be set is a random seed for mutation. On the other hand, the tool
does not provide an option to monitor target (program under test). Radamsa is a
multiplatform so it is built for Windows and Linux [29].

• Oss-fuzz is a complex project developed by Google8. The architecture of this project
is that the ClusterFuzz (fuzzer tools) automatically pulls the newest source code
from repository and it will starts fuzzers and sanitizers 9. When some bug or fault
occurs, it is automatically reported to the OSS-fuzz issue tracker. Project owners are
then notified with an email about the issue. When the fix is submitted ClusterFuzz
automatically verifies the fix, adds a comment to issue tracker and closes the issue.

Fuzzing results

The chosen fuzzer was AFL for its ability of fast deployment and easy of use. The opposite
example is Oss-fuzz which is the whole infrastructure for fuzzing and bug hunting.

In fuzzed program, only parsing was enabled every other module was turned off. The
fuzzer run straight twenty-one days and during this time it was discovered three false
positive hangs and no crashes. Fuzzing runs in four threads on Intel Core i7-4810MQ.
Overall the fuzzed program was executed 3,567,228,619 times.

The number of executions per second was not stable on master thread because it was
necessary to instrument other three processes. This instability can be seen among Figures
6.2, 6.3, 6.4 and 6.5.

6http://honggfuzz.com/
7https://github.com/aoh/radamsa
8https://github.com/google/oss-fuzz
9Dynamic testing tool that can detect bugs and faults during the execution. Typical sanitizers are ASan,

DFSan, . . .

34

http://honggfuzz.com/
https://github.com/aoh/radamsa
https://github.com/google/oss-fuzz

0

500

1000

1500

2000

2500

Feb 28

00:00

Mar 02

00:00

Mar 04

00:00

Mar 06

00:00

Mar 08

00:00

Mar 10

00:00

Mar 12

00:00

Mar 14

00:00

Mar 16

00:00

Mar 18

00:00

Mar 20

00:00

 execs/sec

Figure 6.2: Execution speed on thread no.1. As we can see, the execution speed is not
constant, but it oscilates due to instrumentation of other threads.

0

500

1000

1500

2000

2500

Feb 28

00:00

Mar 02

00:00

Mar 04

00:00

Mar 06

00:00

Mar 08

00:00

Mar 10

00:00

Mar 12

00:00

Mar 14

00:00

Mar 16

00:00

Mar 18

00:00

Mar 20

00:00

 execs/sec

Figure 6.3: Execution speed on thread no.2. We can see that the execution speed is constant.

0

500

1000

1500

2000

2500

3000

Feb 28

00:00

Mar 02

00:00

Mar 04

00:00

Mar 06

00:00

Mar 08

00:00

Mar 10

00:00

Mar 12

00:00

Mar 14

00:00

Mar 16

00:00

Mar 18

00:00

Mar 20

00:00

 execs/sec

Figure 6.4: Execution speed on thread no.3. We can see that the execution speed is constant.

35

0

500

1000

1500

2000

2500

Feb 28

00:00

Mar 02

00:00

Mar 04

00:00

Mar 06

00:00

Mar 08

00:00

Mar 10

00:00

Mar 12

00:00

Mar 14

00:00

Mar 16

00:00

Mar 18

00:00

Mar 20

00:00

 execs/sec

Figure 6.5: Execution speed on thread no.4. We can see that the execution speed is constant.

6.2 System and Acceptance Testing
In the book of Software Acceptance Testing, acceptance testing is defined as: ”Acceptance
testing is the formal testing activity that presents the product to the customer by enterprise
(many times it includes stakeholders as well). This activity represents demonstration of a
software product and shows to the customer that the requirements fulfilled its obligations.
By this activity you can decide if the product is ready for deployment. The software items
must be examined to ensure that the provided product is complete, i.e., the architecture
must be audited to check if it accurate reflects the software configuration. The test results
are audited by functional configuration audit to certify that the software product satisfies
its specification etc.” [21].

Acceptance testing will consist of steps as generate policies, i.e., a whitelist of system
calls from strace of given program and applying the whitelist into carefully picked pro-
grams. Afterwards, we run the testsuite provided for that program and by this way we can
immediately see if the generated whitelist works correctly.

6.2.1 Testing on real programs

For this testing four programs was picked. RedHat Inc. demands one, and that is USB-
Guard10. USBGuard is an open source project developed under GNU GPL v2.0 license.
It implements USB device authorization which can be set up locally or with centralized
management [25]. USBGuard has a sophisticated architecture which is complicated enough
for use in this testing. Another advantage of USBGuard is that it has large enough testsuite
which will be helpful in the evaluation of generated policies by strace2seccomp. In this
project, we will focus only on a daemon because it is most involved in the whole project.

Next program is called cp which is part of a GNU project called coreutils11. The cp is
a program used for copying files across filesystem typically on POSIX operating systems.
One of the advantages of this project is that it has a relatively big testsuite. The drawback
of this program is that it is a part of a big project and is tough to acquire strace logs from
testsuite. This problem I solved by manually patching the Makefile which was responsible

10https://usbguard.github.io/
11https://www.gnu.org/software/coreutils/coreutils.html

36

https://usbguard.github.io/
https://www.gnu.org/software/coreutils/coreutils.html

for running tests. The patch will add strace command with appropriate flags before the
invocation of cp.

Another program is find from GNU project called findutils12. The find is a program
used to locate files or directories in filesystem. It is specific for GNU Linux as well as cp.
This program has good testsuite as a coreutils project does. The drawback of the project
complexity is similar to coreutils. In find is a high number of system calls that differ only
in provided arguments thus it will test the robustness of clustering in the strace2seccomp
tool.

The last program is a school project from Network Applications class called testovac13.
This project was chosen for its multithreaded architecture. With this program, we can test
if the filter is successfully distributed on other threads. The testovac does not have a good
testsuite thus we only run it in one scenario. However, the point of this test is to see if the
provided seccomp filter works on multithreaded applications.

6.2.2 Test Preparation

For the testing, we need to set up an environment. For this purpose, we have a script
which will download software on which will be stare2seccomp tested. The script is named
./setEnv and is located in testsuite folder. The script has multiple subcommands:

• prep will download, extract and configure tested programs (coreutils, findutils, USB-
Guard, testovac)

• applyPolicy will patch source codes with generated policies

• make will run make for all tested programs

• tests will run testsuits

• clean will clean the testing folder

• revertPatches will revertPatches

• straceON will turn on strace output while running testsuite

• straceOFF will turn off strace output while running testsuite

prep straceON make tests

straceOFFapplyPolicymaketests

Figure 6.6: Steps to set environment, gather strace logs, make binaries, run tests
12https://www.gnu.org/software/findutils/
13https://github.com/tammar96/ISA-testovac

37

https://www.gnu.org/software/findutils/
https://github.com/tammar96/ISA-testovac

6.2.3 Test Requirements

Requirements for the testing are:

1. Internet connection - used for download tested software (findutils, coreutils, usb-
guard).

2. Computer with x86 architecture - For testing purpose was chosen machine with x86
architecture.

6.2.4 Results

During testing phase, multiple issues was discovered. The first issue is caused by the lib-
seccomp library which is not supporting intervals (ranges) in any way. The libseccomp
architecture specifies that in one function seccomp_rule_add is logical and among partial
expressions. Among the functions seccomp_rule_add is logical or. Moreover, in one func-
tion seccomp_rule_add argument position can be mentioned only once which means that
it is not possible to write intervals as shown in Figure 6.7.

1 seccomp_rule_add(
2 ctx,
3 SCMP_ACT_ALLOW,
4 SCMP_SYS(write),
5 2,
6 SCMP_A0(SCMP_CMP_GE, 1), SCMP_A0(SCMP_CMP_LE, 5) // interval
7);

Figure 6.7: Possible range expression

This issue was partially solved in this pull request14. The problem with this pull request
is that it is not confirmed if it will be merged into libseccomp. Because of that, in this thesis
a downstream version of libseccomp which has to be manually installed on the system is
used. In the downstream version, interval can be expressed as shown in Figure 6.8.

1 seccomp_rule_add(
2 ctx,
3 SCMP_ACT_ALLOW,
4 SCMP_SYS(write),
5 1,
6 SCMP_A0(SCMP_CMP_IN_RANGE, 1, 5) // interval
7);

Figure 6.8: Proposed operator SCMP_CMP_IN_RANGE

Another issue is that the libseccomp operators as SCMP_CMP_GT/GE/LT/LE are not de-
signed to work with negative values provided to system calls. This issue is as well reported
to the libseccomp project15. Luckily this problem is not as critical as the previously stated

14https://github.com/seccomp/libseccomp/issues/94
15https://github.com/seccomp/libseccomp/issues/69

38

https://github.com/seccomp/libseccomp/issues/94
https://github.com/seccomp/libseccomp/issues/69

one. In the end the the kernel is passing the arguments as unsigned and the interpretation
of these values is on the implementation of system call.

This situation we can see in particular cases. Very often it is a mmap or llseek. The
problem is nicely visible on the x86_64 / amd64 architecture. The system call numbers
are 64bits wide numbers, and BPF used in the kernel uses only 32bits wide registers.
Libseccomp is generating a comparison of 64-bit number as a two 32-bits unsigned numbers.
We can prove this with libseccomp code or by disassembling BPF instructions generated
by libseccomp.

Imagine that we have a clear filter so every system call would be killed. We add only
one rule which is shown in Figure 6.9. This rule means that fifth argument must be in the
range [−2, 3] including border values.

1 ret |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(mmap), 1,
2 SCMP_A4(SCMP_CMP_IN_RANGE, -2, 3)
3);

Figure 6.9: Only rule we are adding into a libseccomp filter

In Figure 6.10, we can see the generated BPF code. The interesting part begins on line 5.
Here we can see that the rule which we specified in C/C++ code begins. On line 6, we store
upper 32 bits of a number in accumulator. On line 7 begins we are comparing accumulator
with value 0xffffffff and then on line 8 with zero. This behavior is invalid and should
be mentioned in documentation.

1 line | CODE | JT | JF | K
2 =================================
3 0000: 0x20 0x00 0x00 0x00000004 A = arch
4 0001: 0x15 0x00 0x0b 0xc000003e if (A != ARCH_X86_64) goto 0013
5 0002: 0x20 0x00 0x00 0x00000000 A = sys_number
6 0003: 0x35 0x00 0x01 0x40000000 if (A < 0x40000000) goto 0005
7 0004: 0x15 0x00 0x08 0xffffffff if (A != 0xffffffff) goto 0013
8 0005: 0x15 0x00 0x07 0x00000009 if (A != mmap) goto 0013
9 0006: 0x20 0x00 0x00 0x00000034 A = args[4] >> 32 <--- storing upper 32bits

10 0007: 0x35 0x00 0x05 0xffffffff if (A < 0xffffffff) goto 0013
11 0008: 0x25 0x04 0x00 0x00000000 if (A > 0x0) goto 0013
12 0009: 0x20 0x00 0x00 0x00000030 A = args[4] <--------- storing lower 32bits
13 0010: 0x35 0x00 0x02 0xfffffffe if (A < 0xfffffffe) goto 0013
14 0011: 0x25 0x01 0x00 0x00000003 if (A > 0x3) goto 0013
15 0012: 0x06 0x00 0x00 0x7fff0000 return ALLOW
16 0013: 0x06 0x00 0x00 0x00000000 return KILL

Figure 6.10: Disassembled BPF filter on amd64 machine

As development continued, we discovered another issue that prevents from correct func-
tionality. This issue is occurring when we try to load seccomp filter in a multithread
application, and we want to synchronize it across threads or processes. Already stated
issue is mentioned in libseccomp issue tracker16 and there is a working solution to this

16https://github.com/seccomp/libseccomp/issues/93

39

https://github.com/seccomp/libseccomp/issues/93

issue. However, there were many conflicts in code when applying those patches, and even
if we applied those patches, it was in conflict with a previously applied patch that was the
workaround for ranges. Thus we decided to stick with range patch (it is more important
than thread support), and not with the multithread patches. In the end, there is still im-
plemented the multithread support in the developed tool without regard to functionality in
libseccomp. As we cannotice, one of the involved programs for complex testing, testovac,
cannot be tested.

In the testing phase was discovered issues in the generated filter as well. We processed
the strace logs for the cp command from coreutils projects and manually checked with
strace logs, and it was correctly created. The troubles occurred when we tried to run the
cp. Immediately after start, it was terminated with signal SIGSYS and error message ’bad
system call’ was emitted. We decided to troubleshoot where the problem occurs. When
we run strace on cp without runtime arguments, it shows us in Figure 6.11 that it was
terminated when demanding system call openat.

1 prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) = 0
2 seccomp(SECCOMP_SET_MODE_STRICT, 1, NULL) = -1 EINVAL (Invalid argument)
3 seccomp(SECCOMP_SET_MODE_FILTER, 0, {len=281, filter=0x22fdaf0}) = 0
4 openat(AT_FDCWD, "/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = ?
5 +++ killed by SIGSYS (core dumped) +++
6 [1] 1941 invalid system call (core dumped) strace ./cp

Figure 6.11: Part of the strace log of cp command

The openat has three arguments which are constant, path, and bitfield. The path is
not processed by our tool, so we will aim for the other two arguments. The first one is
AT_FDCWD and it is defined in source file ’/include/uapi/linux/fcntl.h’ with value ’-
100’. The bitfield is located in file ’/include/uapi/asm-generic/fcntl.h’ and the macro
O_RDONLY has value ’0’, and the O_CLOEXEC macro has value ’02000000’. We dumped the
bpf filter with libseccomp API and examined it. We tried to emulate the system call with
the seccomp-tools project as shown in Figure 6.12.

1 > seccomp-tools emu --arch amd64 ./seccomp_filter.bpf 257
18446744073709551516 0 02000000

Figure 6.12: Seccomp-tools emulation of the openat syscall

We will break down that command. The emu –arch amd64 arguments say that it will
emulate an amd64 architecture, and after that is exported bpf filter. The four last numbers
are syscall number and its arguments. The openat syscall has value 257, and the long
number afterward is -100 transformed in 64-bit unsigned number. The second argument
is zero but can be any number because in the second position is the path and that is not
processed in our filter, and the last one is our bitfield. When we run the emulation tool,
and afterward we get the opposite result as we expected. The result is that the system
call will be allowed, but that does not correspond with binary. Next, we should check the
generated filter we put in the source code, shown in Figure 6.13.

We can see that the filter has the rule for allowance that system call with that combi-
nation of arguments. When we edit that rule manually as shown in Figure 6.14, we can

40

1 ret |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(openat), 2,
2 SCMP_A0(SCMP_CMP_EQ, AT_FDCWD),
3 SCMP_A2(SCMP_CMP_MASKED_EQ, O_RDONLY|O_CLOEXEC)
4);

Figure 6.13: Rule in generated filter by strace2seccomp

see that after running the cp command that it is stoped at another syscall. That system
call is mmap. In generated filter (Figure 6.15) we can find that mmap is not allowed with
that value. However, the value was not present in the strace logs, and when we change it,
then our program is behaving correctly. We can continue this way to the point where we
remove all issues with the generated filter. Those issues are not a product of the incorrect
handling in strace2seccomp tool, but they are the product of the small testsuite provided
by the project coreutils. The only thing that can be discussed is a problem when handling
file descriptors. Sometimes the program opens the same file on a different file descriptor;
thus it should not be processed.

1 prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) = 0
2 seccomp(SECCOMP_SET_MODE_STRICT, 1, NULL) = -1 EINVAL (Invalid argument)
3 seccomp(SECCOMP_SET_MODE_FILTER, 0, {len=236, filter=0x23af210}) = 0
4 openat(AT_FDCWD, "/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
5 fstat(3, {st_mode=S_IFREG|0644, st_size=209526528, ...}) = 0
6 mmap(NULL, 209526528, PROT_READ, MAP_PRIVATE, 3, 0) = ?
7 +++ killed by SIGSYS (core dumped) +++

Figure 6.14: Part of the strace log of cp command

1 ret |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(mmap), 1,
2 SCMP_A1(SCMP_CMP_IN_RANGE, 16u, 3926752u)
3);

Figure 6.15: Rule in generated filter by strace2seccomp

This analysis points to the conclusion that there is a reason to check the advanced
algorithm DBSCAN because seccomp incorrectly interpreted even the minimax algorithm
generated by strace2seccomp tool. There is no point even in testing the find tool because
there would be the same problem.

41

Chapter 7

Conclusion

Nowadays, if we want to block malicious software we can use some software that will
terminate the process based on its behavior in system or we can use in-compiled policy that
will terminate the program when it starts calling system call which was not allowed. This
is done by seccomp by manually creating such policies.

Within this thesis, We succesfully designed and implemented a tool that can translate
a strace log into the libseccomp policy. To achieve the translation, we had to solve multiple
problems. First of them was to create a simple inner data structure which will represent the
whole strace log without duplicit information. The other problem we faced was to parse the
strace log. In our case, we used PEGTL library which was not the fastest solution, but it was
simple to prototype grammar with it. Another issue was to optimize and simplify the data
structure. We implemented three algorithms (strict, weak, advanced). The implementation
was designed with design patterns to be easily extended with new optimization algorithms.
The last problem of development phase was to create policy generator. We implemented
the same design pattern as in the optimizer, to provide extensibility of policy generator
for other languages. We decided to implement the policy generator that creates policy in
C/C++.

The most interesting part of this thesis is the testing phase. During this phase we
discovered multiple issues that prevent from correct policy interpretation. One of them is
that the libseccomp library does not provide in range operator yet. This operator prevents
the correct policy generation for weak algorithm. The other discovered problem was the
interpretation of the policy by seccomp. The seccomp terminated system call even if the
policy contained the rule that allows the syscall. These issues were preventing us from
complex testing of the developed tool.

This thesis can be extended with another optimization algorithms or different imple-
mentations of policy generator, i.e, add support for other languages (Go). These extensions
can be done as another dedicated thesis.

42

Bibliography

[1] Fuzzing; brute force vulnerabilty discovery. Scitech Book News. vol. 31, no. 4. 2007.
ISSN 01966006.

[2] Clustering. chapter 12. Wiley-Blackwell. 2009. ISBN 9780470753866. pp. 293–315.
doi:10.1002/9780470753866.ch12.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470753866.ch12.
Retrieved from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470753866.ch12

[3] dtrace(1) Linux User’s Manual. November 2017. version 3.1-5.fc26.

[4] ftrace(1) Linux User’s Manual. November 2017. version 0.4-56.fc26.

[5] ptrace(2) Linux User’s Manual. November 2017. version 4.09.

[6] strace(1) Linux User’s Manual. November 2017. version 4.19.

[7] A. Moss: Derivatives of parsing expression grammars. Electronic Proceedings in
Theoretical Computer Science, EPTCS. vol. 2. 2017: pp. 180–194. ISSN 20752180.
doi:{10.4204/EPTCS.252.18}.

[8] Domingo, D.; Cohen, W.: SystemTap 3.0. [Online, accessed 21.2.2018].
Retrieved from:
https://sourceware.org/systemtap/SystemTap_Beginners_Guide.pdf

[9] Drewry, W.: SECure COMPuting with filters. [Online, accessed 27.11.2017].
Retrieved from:
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

[10] Ganz, J.; Peisert, S.: ASLR. 2017.

[11] Information technology - Programming languages - C++. Standard. International
Organization for Standardization. Geneva, CH. December 2017.

[12] Information technology - Syntactic metalanguage - Extended BNF. Standard.
International Organization for Standardization. Geneva, CH. March 2011.

[13] Information technology - Programming languages - C. Standard. International
Organization for Standardization. Geneva, CH. March 2011.

[14] J. Andrés Díaz-Pace and Marcelo, R, Campo: ArchMatE: from architectural styles to
object-oriented models through exploratory tool support. ACM SIGPLAN Notices.
vol. 40. 2005: page 117. ISSN 03621340. doi:{10.1145/1103845.1094821}.

43

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470753866.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470753866.ch12
https://sourceware.org/systemtap/SystemTap_Beginners_Guide.pdf
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

[15] Lam, D.; Wunsch, D. C.: Chapter 20 - Clustering. In Academic Press Library in
Signal Processing: Volume 1Signal Processing Theory and Machine Learning,
Academic Press Library in Signal Processing, vol. 1, edited by R. C. Paulo
S.R. Diniz, Johan A.K. Suykens; S. Theodoridis. Elsevier. 2014. pp. 1115 – 1149.
doi:https://doi.org/10.1016/B978-0-12-396502-8.00020-6.
Retrieved from:
https://www.sciencedirect.com/science/article/pii/B9780123965028000206

[16] Leventhal, A.; et al.: About DTrace. [Online, accessed 2.10.2017].
Retrieved from: http://dtrace.org/blogs/about/

[17] Marhefka, M.: Automatizované fuzz testování aplikací komunikujících přes systém
D-Bus. 2013.
Retrieved from: http://hdl.handle.net/11012/55032

[18] markus@chromium.org: seccompsandbox - overview.wiki. [Online, accessed 2.10.2017].
Retrieved from:
https://code.google.com/archive/p/seccompsandbox/wikis/overview.wiki

[19] Moore, P.: Libseccomp. [Online, accessed 30.11.2017].
Retrieved from: https://github.com/seccomp/libseccomp

[20] Provos, N.: Systrace - Interactive Policy Generation for System Calls. [Online,
accessed 2.10.2017].
Retrieved from: http://www.citi.umich.edu/u/provos/systrace/

[21] Schmidt, R. F.: Chapter 20 - Software Acceptance Testing. In Software Engineering,
edited by R. F. Schmidt. Boston: Morgan Kaufmann. 2013. ISBN 978-0-12-407768-3.
pp. 335 – 341. doi:https://doi.org/10.1016/B978-0-12-407768-3.00020-3.
Retrieved from:
https://www.sciencedirect.com/science/article/pii/B9780124077683000203

[22] Schubert, E.; Sander, J.; Ester, M.; et al.: DBSCAN Revisited, Revisited: Why and
How You Should (Still) Use DBSCAN. ACM Trans. Database Syst.. vol. 42, no. 3.
July 2017: pp. 19:1–19:21. ISSN 0362-5915. doi:10.1145/3068335.
Retrieved from: http://doi.acm.org.ezproxy.lib.vutbr.cz/10.1145/3068335

[23] Schulist, J.; Borkmann, D.; Starovoitov, A.: Linux Socket Filtering aka Berkeley
Packet Filter (BPF). [Online, accessed 11.12.2017].
Retrieved from:
https://www.kernel.org/doc/Documentation/networking/filter.txt

[24] Silberschatz, A.; Galvin, P. B.; Gange, G.: Operating System Concepts. Hoboken, NJ:
Wiley. 9 edition. 2013. ISBN 9781118063330.

[25] Sroka, R.: Extend USBGuard to Support External Authorization Policy Sources.
Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
2018.
Retrieved from: http://www.fit.vutbr.cz/study/DP/BP.php?id=21006

[26] Takanen, A.: Fuzzing: the Past, the Present and the Future.

44

https://www.sciencedirect.com/science/article/pii/B9780123965028000206
http://dtrace.org/blogs/about/
http://hdl.handle.net/11012/55032
https://code.google.com/archive/p/seccompsandbox/wikis/overview.wiki
https://github.com/seccomp/libseccomp
http://www.citi.umich.edu/u/provos/systrace/
https://www.sciencedirect.com/science/article/pii/B9780124077683000203
http://doi.acm.org.ezproxy.lib.vutbr.cz/10.1145/3068335
https://www.kernel.org/doc/Documentation/networking/filter.txt
http://www.fit.vutbr.cz/study/DP/BP.php?id=21006

[27] Takanen, A.; DeMott, J.; Miller, C.: Fuzzing for Software Security Testing and
Quality Assurance. Norwood, MA, USA: Artech House, Inc.. first edition. 2008. ISBN
1596932147, 9781596932142.

[28] Team, P. E. P.: PaX Address Space Layout Randomization (ASLR). 2001. [Online,
accessed 21.4.2018].
Retrieved from: https://pax.grsecurity.net/docs/aslr.txt

[29] Vimpari, M.: An evaluation of free fuzzing tools. 2015.
Retrieved from: http://jultika.oulu.fi/files/nbnfioulu-201505211594.pdf

45

https://pax.grsecurity.net/docs/aslr.txt
http://jultika.oulu.fi/files/nbnfioulu-201505211594.pdf

Appendix A

Comparison of libseccomp and raw
BPF filtering

A.1 BPF

int myapp_seccomp_raw_start(void)
{
struct sock_filter filter[] = {

BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 4),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, AUDIT_ARCH_X86_64, 0x00, 0x12),
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 0),
BPF_STMT(BPF_JMP+BPF_JGE+BPF_K, 0x40000000, 0x10, 0x00),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, __NR_open , 0x0e, 0x00),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, __NR_close, 0x0d, 0x00),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, __NR_read, 0x00, 0x0d),
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 20),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, 0, 0x00, 0x0b),
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 16),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, 0, 0x00, 0x09),
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 28),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, 0, 0x00, 0x02),
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 24),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, 0, 0x05, 0x00),
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 36),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, (SSIZE_MAX >> 32), 0x00, 0x02),
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 32),
BPF_STMT(BPF_JMP+BPF_JEQ+BPF_K, (SSIZE_MAX & 0xffffffff), 0x01, 0x00),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL),

};
struct sock_fprog prog = {

.len = (unsigned short)(sizeof(filter)/sizeof(filter[0])),

.filter = filter,
};
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0)

46

return -errno;
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog) < 0)

return -errno;
return 0;
}

Listing A.1: Using raw BPF filtering

A.2 libseccomp

int myapp_libseccomp_start(void)
{

int rc;
scmp_filter_ctx ctx;
ctx = seccomp_init(SCMP_ACT_KILL);

if (ctx == NULL)
return -ENOMEM;

rc = seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(open), 0);

if (rc < 0)
goto out;

rc = seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(close), 0);

if (rc < 0)
goto out;

rc = seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(read), 3,
SCMP_A0(SCMP_CMP_EQ, STDIN_FILENO),
SCMP_A1(SCMP_CMP_NE, 0x0),
SCMP_A2(SCMP_CMP_LT, SSIZE_MAX)

);

if (rc < 0)
goto out;

rc = seccomp_load(ctx);

out:
seccomp_release(ctx);
return rc;

}

Listing A.2: Using simpler libseccomp wrapper

47

Appendix B

Output of strace2seccomp

B.1 Example Output no.1

/*
* Generated seccomp template with initialized filter using st2se.
* link with -lseccomp
*/

#ifdef __cplusplus
#define NULL nullptr
#include <cstdio>

#else
#include <stdio.h>

#endif

#include <seccomp.h>

int setup_seccomp_whitelist(){

scmp_filter_ctx ctx = seccomp_init(SCMP_ACT_KILL);
int rc = 0;

// seccomp rules
//---
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(access), 2,

SCMP_A0(SCMP_CMP_EQ, 0),
SCMP_A1(SCMP_CMP_IN_RANGE, 0, R_OK)

);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(arch_prctl), 1,

SCMP_A0(SCMP_CMP_IN_RANGE, 0, ARCH_SET_FS)
);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(brk), 0);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(execve), 2,

SCMP_A0(SCMP_CMP_EQ, 0),
SCMP_A1(SCMP_CMP_EQ, 0)

48

);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit_group), 1,

SCMP_A0(SCMP_CMP_GE, 0), SCMP_A0(SCMP_CMP_LE, 0)
);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(mmap), 5,

SCMP_A1(SCMP_CMP_IN_RANGE, 0, 14576),
SCMP_A2(SCMP_CMP_IN_RANGE, 0, PROT_READ|PROT_WRITE),
SCMP_A3(SCMP_CMP_IN_RANGE, 0, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS),
SCMP_A4(SCMP_CMP_IN_RANGE, -1, 0),
SCMP_A5(SCMP_CMP_IN_RANGE, 0, 0)

);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(mprotect), 2

SCMP_A1(SCMP_CMP_IN_RANGE, 0, 4096),
SCMP_A2(SCMP_CMP_IN_RANGE, 0, PROT_READ)

);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(mprotect), 2

SCMP_A1(SCMP_CMP_IN_RANGE, 16384, 2093056),
SCMP_A2(SCMP_CMP_IN_RANGE, 0, PROT_READ)

);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(munmap), 1

SCMP_A1(SCMP_CMP_IN_RANGE, 0, 213488)
);
rc |= seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(openat), 3

SCMP_A0(SCMP_CMP_IN_RANGE, 0, AT_FDCWD),
SCMP_A1(SCMP_CMP_EQ, 0),
SCMP_A2(SCMP_CMP_IN_RANGE, 0, O_RDONLY|O_CLOEXEC)

);
//---

if (rc != 0) {
goto out;

}

if (seccomp_load(ctx) != 0) {
rc = 2, goto out;

}
return rc;

out:
seccomp_release(ctx);
return rc;

}

int main()
{

// setup and load seccomp whitelist
if (setup_seccomp_whitelist() != 0) {

return 1;
}

49

// Put your code below
return 0;

}

Listing B.1: Example output of strace2seccomp

50

Appendix C

Content of Attached Media

The attached medium consists of these folders:

• Text – Contains LATEXsources of this thesis.

• Sources – Contains sources of the strace2seccomp project.

• xtamas01.pdf – Thesis itself.

• st2se – Result of this thesis.

51

	Introduction
	System Calls and Monitoring Tools
	System Calls
	Monitoring

	Security Facilities in Linux
	Systrace
	Seccomp
	Berkeley Packet Filter and Seccomp
	Libseccomp

	Solution Design
	Requirements
	Architecture
	Parser
	Intermediate Data Structure
	Optimizer
	Pitfalls of Clustering

	Parsing Expression Grammar

	Development of strace2seccomp
	Input
	Output
	Class Hierarchy
	Used software
	Compilers
	Dynamic and Static Code Analysis
	Miscellaneous

	Usage

	Software Verification
	Module Testing
	StraceParser Testing

	System and Acceptance Testing
	Testing on real programs
	Test Preparation
	Test Requirements
	Results

	Conclusion
	Bibliography
	Comparison of libseccomp and raw BPF filtering
	BPF
	libseccomp

	Output of strace2seccomp
	Example Output no.1

	Content of Attached Media

