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Abstract
This thesis is focused on observing and simulating network congestion in laboratory condi-
tions, and on automated testing of the protocol stack in the Linux operating system during
network congestion. We perform a set of experiments to find the impact of network con-
gestion on the protocol stack. The simulation and emulation method of this network using
physical device will be described. The outcome of this thesis are various configurations of
devices and emulators for network congestion together with measurements and evaluation
of results. These configurations will be used for automated testing of the kernel of the
Linux operating system to catch development errors, network protocol stack errors and
card driver error earlier.

Abstrakt
Táto práca sa zaoberá štúdiom a simuláciou zahltenej siete v laboratorných podmienkach
a následne automatizovaným testovaním protokolového zásobníka v operačnom systéme
Linux na tejto sieti. Na základe sady experimentov zistíme, aký dopad na správanie pro-
tokolového zasobníku má zahltenie siete. Následne bude popísaný spôsob simulácie a emulá-
cie takejto siete fyzickým zariadením. Výstupom tejto práce budú rôzne konfigurácie strojov
a emulátorov pre zahltenie siete, a k ním priložená sada meraní s vyhodnotením výsledkov.
Tieto konfigurácie budú použité v automatizovanom testovaní jadra operačného systému
Linux, aby sa chyby vo vývoji a pri implementácii sieťových protokolov a ovládačov pre
sieťové karty našli rýchlejšie.
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Rozšírený abstrakt
V tejto práci sa zaoberáme dopadom zahltenia siete na výkonnosť protokolového zásobníka
v jadre Linuxu. Zahltenie siete nastáva v momente, keď sieťové zariadenia alebo služby
vyžadujú väčšiu šírku pásma ako poskytnutá sieť dokáže preniesť. Tento jav je očakávaný
hlavne z dôvodu, že poskytovatelia sieťových služieb poskytujú väčšiu šírku pásma ako ich
sieť naozaj dokáže preniesť. Poskytovatelia predpokladajú, že koncový užívatelia nebudú
používať celú poskytnutú šírku pásma po celý čas, ale len krátkych opakovaných intervaloch.

Podobnú situáciu môžeme vidieť aj v dátových centrách, kde niekoľko serverov je za-
pojených do jedného prístupového prepínača. Tento prepínač má väčšinou len niekoľko
spojení s distribučným prepínačom, cez ktorý zariadenia komunikujú s dátovými servermi
alebo inými zariadeniami na internete. Keď pripojené servery požadujú väčšiu priepustnosť
ako je dostupná nastane zahltenie.

Zákazníci spoločnosti Red Hat používajú operačný systém Red Hat Enterprise Linux
väčšinou v dátových centrách a cloudoch, kde zahltenie nastáva často. Chcú si byť istí, že
výkonnosť tohto produktu je dostačujúca aj v týchto podmienkach a hlavne, že sa výkon
v rámci vývoja nebude zhoršovať.

V tejto práci sme rozdelili naše pozorovania na dve časti. V prvej časti sme pozorovali
dopad zahltenia na fyzickú sieť (sieťové karty, prepínače). Chyby v sieti, ktoré sme hľadali
sú: strata dát, vysoké oneskorenie, zmena poradia odoslaných dát a poškodenie dát počas
prenosu. Pre účely pozorovania sme vytvorili experimentálnu sieť pozostávajúcu z dvoch
serverov a jedného prepínača. Prvý server bol pripojený pomocou dvoch liniek v LACP
skupine a druhý pomocou šiestich liniek, aby bolo možné vytvoriť zahltenie siete. Naše
experimenty sme vykonávali pomocou niekoľkých programov, ktoré generovali sieťovú pre-
vádzku a potom sme skontrolovali záznamy v sieťových prvkoch. Zistili sme, že v zahltenej
sieti sa objavuje strata dát a oneskorenie. Na tieto chyby sa zameriame v ďalších pokusoch.
V druhej časti pozorovaní sme sa zamerali na správanie protokolového zásobníka v jadre
Linuxu počas zahltenia siete. V experimentoch sme použili TCP a UDP transportný pro-
tokol, pretože sa najčastejšie používajú pri komunikácií. Všetky pokusy sme robili dva krát,
pre každý protokol zvlášť. Pomocou programu iPerf3 sme spúšťali niekoľko dátových tokov,
ktoré posielali dáta rôznou rýchlosťou, aby sme vyskúšali rôzne úrovne zahltenia. Z týchto
experimentov sme zaznamenávali rýchlosť a počet odoslaných a prijatých dát. Pomocou
programu ping sme merali oneskorenie v sieti.

Z výsledkov meraní UDP protokolu je jasne vidieť, že s rastúcim pomerom vyžadovanej
a dostupnej šírky pásma rastie aj počet stratených dát a oneskorenie v sieti. Percento
stratených dát sa asymptoticky blíži k 100%. Oneskorenie rastie až do hodnoty, ktorú
môžeme vypočítať ako veľkosť fronty portu / šírka pásme.

Vo výsledkoch meraní TCP protokolu je oveľa menej stratených dát, pretože TCP má
funkcie, ktoré kontrolujú prípadnú stratu v toku dát. Pri strate znížia rýchlosť prenášania
dát, aby predišli ďalšej strate. Priemerné oneskorenie počas testov má nižšiu hodnotu ako
pri UDP testoch. Je to spôsobené práve znižovaním rýchlosti prenosu dát. Detailná analýza
oneskorenia jedného TCP toku ukázala, že oneskorenie sa počas testu mení.

Na základe nameraných výsledkov sme vytvorili testovací scenár, ktorý simuluje zahlte-
nie siete. Pre simuláciu takejto siete sme použili Attero-X, ktoré vie obmedziť dátovú
priepustnosť a pridať oneskorenie do siete. Tento scenár pozostáva z viacerých skúmaných
oneskorení a priepustností. Scenár v prvom kroku nastaví simulátor siete a potom spustí
testovacie prípady pre jednotlivé transportné protokoly. Tento scenár budeme spúšťať na
páre strojov s rovnakou konfiguráciou komponentov. Sieťové karty používané pre tento



scenár sú od spoločnosti Intel s ovládačom ixgbe, pretože ma dlhodobo stabilné výsledky
výkonosti.

Pre vyhodnotenie užitočnosti a dôveryhodnosti tohto testovacieho scenára sme spustili
testy nad štyrmi distribúciami operačného systému RHEL. Tieto distribúcie sa líšili vo
verziách nainštalovaných balíkov, takže aj verziou jadra. Výsledky testov sme porovnali
našim tímovým nástrojom, ktorý vygeneroval web stránku s výsledkami v grafickej podobe.
Výsledky TCP testu vyzerajú stabilne a očakávane. V jednom teste sme dokonca odhalili
aj možnú regresiu. Tento scenár testuje protokolový zásobník počas zahltenia dokonca aj
v sieťach s veľmi vysokým oneskorením s vysokou priepustnosťou.

Výsledky UDP ukazujú zlý návrh tohto testovacieho prípadu. Pri návrhu sme použili
rovnaký konfiguračný objekt ako pri TCP, čo sa ale neosvedčilo. Priepustnosť s nízkymi
veľkosťami správ je malá pretože procesor nestíha spracovávať toľko dát. Veľké správy sa
musia rozdeliť na menšie časti a ak sa aspoň jedna časť stratí, celá správa je nepoužiteľná,
a to ma za následok malú priepustnosť.

Výstupom tejto práce je rozšírenie testovacieho programu o nový testovací scenár Stat-
icCongestion a testovací prípad iPerf3TCPTest. Tento scenár bude zaradený do testovania
postupným začleňovaním a bude spúšťaný niekoľko krát denne, aby odhalil chyby vo vývoji
v čo najmenšom čase.
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Chapter 1

Introduction

In this thesis we focus on network performance during network congestion. In Red Hat
Kernel Performance Quality Qngineering team there is currently no testcase designed for
automated testing of kernel protocol stack during network congestion. The goal of this
work is to create test scenarios and use them to increase the coverage of tested scenarios
and by that to increase the quality of the Linux kernel network stack.

In chapter 2, we discuss network basics which are important to understand properly this
thesis (e.g. OSI model, TCP). We also introduce the most important problematic which
is network congestion, described in local and remote networks with practical examples
when such situations can occur. Finally we explain the most common source of network
congestion.

Chapter 3 brings important information about the testing methods related to our re-
search. Although we can identify several possible errors during network congestion, this
thesis focuses on the four most common errors. In every section we include the theory
behind explaining the possibility of occurrence of specific error in first four layers of OSI
model. Higher layers are not a part of the kernel, but the user space, and are beyond
the focus of this thesis. The result of this chapter is data used for simulating of network
congestion. The various methods of network congestion simulation will be discussed further
in chapter 5.

In chapter 4, we observe behavior of the Linux protocol stack during congestion. The
experiments focus on two communication protocols: user datagram protocol, transmission
control protocol. The observed errors during congestion are data loss and network delay.
In TCP protocol behavior test we are interested in congestion window variable in network
with changing over-subscription ratio.

In chapter 5, we discuss test scenario requirements based on results of behavior tests
from chapter 4. We discuss several implementation possibilities of these requirements in new
test scenario. The most important part is simulation method of network during congestion.

Chapter 6 brings an insight to automated testing using continuous integration develop-
ment method. We discuss implementation details of our testing Beaker task, which prepares
persistent configuration for servers and run performance test of those servers after reboot.

In chapter 7, we discuss results of new test scenarios and compare several kernel versions.
Finally, we evaluate the asset of these scenarios and consider their inclusion into CI testing
process.
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Chapter 2

Network model

This chapter provides basic knowledge important for understanding the main concepts
of this thesis. In section 2.1, there is a quick overview of the OSI model application onto
network focused on Ethernet networks. This description concentrates mostly on application
of this model, not the ISO/OSI standard itself.

The next topics explained in this chapter are network congestion and congestion control
algorithms, which create core of this thesis.

2.1 OSI model application in network
Open systems Interconnection model is a conceptual model that divides the network com-
munication into seven specific layers for better understanding of interactions that happen
within the network. Abstracting and standardizing different responsibilities to separate
independent layers is the biggest asset of this model. This level of abstraction is highly
used for different media types in communication (e.g. Smartphone that communicates with
web server uses several different media types: radio, cooper cable, and various encapsula-
tions: 802.11 WiFi1, PPP2, 802.3 Ethernet). Each layer serves a different purpose, which
will be explained later in this section. We will focus only on Ethernet networks, which are
important for this work. Layer names and protocol examples are shown in table 2.1. OSI
model was developed by International Standards Organization (ISO) [9].

No. Layer Protocol example Devices Data unit
name

7 Application DNS, SMTP, POP3, HTTP - Data
6 Presentation SSL, TLS - Data
5 Session NetBIOS, PPTP - Data
4 Transport TCP, UDP, RTP Statefull firewall Segment
3 Network IPv4, IPV6, IPX, ICMP L3 switch, router Packet
2 Data link ARP, ATM, PPP, L2 switch, NIC Frame
1 Physical Bluetooth, Ethernet, ISDN Hub, repeater Bits

Table 2.1: Visual representation of layers in OSI model with protocol examples.
1802.11 is Standard for local wireless communication.
2PPP - point to point protocol
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Data units have specific name on different layers. Various name of data is used to
clearly specify data structure according to protocols in higher layers. Layers are able to
add headers to store important information for current layer. The example of data structure
name is shown in figure 2.1.

2.1.1 Physical layer

The first layer is responsible for converting data from upper layers into a physical signal
which can be carried by transfer media (ethernet cable, optical cable, wireless signal).
The signal represents the data encoded into bits. Speed and reliability of transmission is
determined by physical properties of the transmission media.

2.1.2 Data link layer

The second layer is responsible for communication within local networks and physical ad-
dressing. It is responsible for detection of errors which might happen in communication
in Layer 1. CRC algorithm is most commonly used to check errors in data transfer. In
Ethernet networks an address called MAC address is used. This address has to be unique in
local network and it is usually a part of NICs3 firmware. If two stations want to communi-
cate in local network 4 they need to know the MAC address of the opposite station. If two
stations want to communicate over IP in local network and they do not know MAC address
of opposite site, they need to discover it. For that reason ARP protocol was created. (There
is ICMPv6 protocol which is alternative to IPv4 in IPv6 network address space.) Its pur-
pose is to translate Network layer address (IPv4) to MAC address. From the perspective of
end-stations this layer of OSI model is the last layer implemented in the hardware (NIC).
Higher layers are implemented in software usually in kernel protocol stack.

This layer adds Ethernet header where the destination and source MAC addresses are
specified together with others specific flags. It includes FCS5 field, which is important
for data integrity check. Data together with upper layer headers are encapsulated into
payload/data field.

2.1.3 Network layer

The third layer brings logical addressing into OSI model. The biggest responsibility of
this layer is end to end addressing in local and remote networks. Each end station needs
to have IPv4 or IPv6 address for communication with other end-stations. Routers, which
interconnect networks, operate on this layer. While the packet is traveling through the
network, this layer together with the upper ones stay almost unchanged. This behavior is
necessary in communication between remote networks. Routing protocols operate in this
layer too. Their purpose is to find the best path for data, which travels between remote
networks. Routers direct traffic according to destination IP address.

The network layer adds the internet protocol header with following important fields :
source IP address, destination IP address, header checksum and data. The header checksum
checks an integrity of header itself to avoid further sending of invalid data. The header of
upper layer together with payload are encapsulated into the data field.

3Network interface card
4Local network is meant to be a single broadcast domain.
5FCS - file checksum
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2.1.4 Transport layer

The fourth layer identifies the service or process, to which data is being be delivered. This
is done by using port numbers, which specify the unique process or service on a host. Data
lost during transmission can be sent again to guarantee data delivery. Communication
reliability is provided by several protocols. The most common used protocol for this type
of communication is TCP, which will be described further in section 2.3.1. If reliability of
data delivery is not required, UDP protocol, which does not resend the lost data, can be
used. This is the last layer, which is usually implemented in the kernel of the operating
system.

This is the first layer that adds header over the transferred data. The headers of both
protocols contains fields with source and destination port number and several specific flags.

2.1.5 Upper layers in OSI model

The fifth layer together with sixth and seventh is usually implemented in the application.
Compare to the OSI model, the TCP/IP model compress these layers into one Application
layer. The fifth layer (Session layer) is responsible for creating, maintaining and closing
connections between applications.

The sixth layer (Presentation layer) is responsible for syntax processing of message data
[22]. The original data can be converted into a different format, which is not in conflict
with other layers or network format. Data can be compressed or encrypted in this layer as
well.

The seventh layer (Application layer) creates the interface for processes and services
running in the system. Usually there is a standardized protocol, which can transfer data
between end-processes. This layer also checks the syntax of communication’s protocol. The
application layer is responsible for identifying participants in the communication.

2.2 Network congestion
Routers and switches use Best-effort delivery method to transfer the data. This
method does not prioritize packets. Intermediary devices do not guarantee packet delivery,
but try to deliver packets as quickly as possible [20]. Routers direct packets according to
entries in the routing table. In case of large networks (e.g. ISPs6) routing tables can be
very large. Most of the time they do not load-balance7 the traffic between more routes, so
data traveling from user to server uses the same route every time.

Congestion problems occur when too many users want to use the same path in the
network. Users have enormous requirements on network throughput while accessing internet
services (e.g. web, instant messaging, video streaming). When the requirement throughput
is higher than available throughput of some device, congestion occur on that device. The
incoming traffic can not be sent further, because the outgoing interface queue is already
full. That means some part of incoming traffic is dropped by the router. As a consequence
the user’s application or the server has to resend the data, which further complicates the
situation.

6Internet service providers
7Distribute the traffic between more routes
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2.2.1 Oversubscription

Congestion usually happens in internet networks, because ISPs provide to customers more
bandwidth than they are able to guarantee in their infrastructure [27]. This situation
applies to networks in data centers as well. The speed of inter switch link is usually much
slower than the bandwidth required by devices connected to switch.

Oversubscription exists due to costs savings [12]. Network and service architects assume
the service or the network are not fully utilized all the time. This is based on measurements
of the average utilization of a specific service. By using the oversubsription method they are
able to provide services for more customers with the same infrastructure, but with a higher
average utilization. Big companies (e.g. Cisco, IBM) publish white papers8 which describe

”The best Oversubscription practices“ for different type of networks. These describe the
design patterns of infrastructures for oversubscription with recommended oversubscription
ratios [12].

Let’s imagine a network with twenty five customers, each of them has provided speed of
internet connection 10Gbps. That is 250Gbps of required bandwidth, but the backbone of
ISP network is only 160Gbps. ISPs presume that all customers do not use the full bandwidth
capacity at once. However, sometimes the customer requirements on bandwidth are higher
than the network provider can provide. This usually happens for a short period of time.
These relatively small data burst are buffered and resent with delay or completely dropped.
The arithmetic mean of traffic speed passing through the ISP network should be lower than
the theoretical capacity of the network. The figure 2.1 shows how the transmission speed
is changed while crossing the device that buffers the over limit data.

Figure 2.1: The graph shows ingoing and outgoing throughput of intermediary device that
use data buffering method [26]

.

Network congestion can be present in data center network as well. Queuing principles
described above are now applied to network switches. Switches receive the frame in the same
way as the router, which means into incoming interface queue. In contrast to router, switch
decides where to forward the frame based on information from the second layer, instead
of the third layer. After processing, the frame is queued into an outgoing interface queue,
where network congestion can occur. This mostly happens on an interface or interface
group, which points to the neighbor switch (interface group connection example is show
in figure 2.2). Let’s imagine that the switch has 48 ports of speed 1Gbps. Four ports are
grouped together to provide connection to the other switch. Bandwidth of this interface

8White paper is technical documentation.
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bundle is 4 Gbps (8 Gbps in both directions). There are 44 devices connected to those
remaining ports in the switch. This topology is shown in figure 2.2. These devices want to
communicate with internal servers, placed behind the local access switch. Devices can not
use their full speed of connection at once, because the connection to other switch creates a
bottleneck for the data traffic.

Figure 2.2: Forty four hosts are connected to access switch and only four switch ports are
designated to be uplink ports.

2.3 Congestion control algorithms
Several methods were developed to avoid the network congestion. The most useful method
is TCP protocol. It is designed for reliable data delivery even in case the network nodes are
communicating during network congestion. TCP implements congestion control mecha-
nisms and is able to maintain throughput of the traffic between participants. This protocol
allows to send as much data as the network is able to transmit, which is equal to the
bottleneck bandwidth 9. More detailed description is in the section 2.3.1.

Compared to TCP, UDP does not maintain the sending speed and sends as much ap-
plication data as the NIC of the device allows. If all hosts in the exemplary network from
figure 2.2 start sending files via for example TFTP10 protocol, the access switch will drop
many UDP datagrams, because of an exhausted capacity of the switch connection. Only
small percentage of UDP datagrams will successfully travel through the connection between
switches. From this reason the network needs efficient methods or protocols, which are able
to handle the transmission speed.

2.3.1 TCP - Transmission control protocol

Transmission control protocol can be found on the fourth layer of OSI model. It cre-
ates an interface between the userspace application and the internet protocol. TCP is a
connection-oriented protocol, which means both participants have to create and accept the

9Bottleneck bandwidth between points A and B is the slowest bandwidth of single link in path between
A and B.

10TFTP protocol is trivial file transfer protocol. It use UDP for transferring files.
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Figure 2.3: The example of sliding window changes by congestion control algorithm [6]
.

new connection. Both participants also have to agree on closing the connection. If only one
of the hosts requests connection termination, the connection becomes half closed until the
second host stop sending data and request connection termination as well. The reason for
this, is to avoid situation, where one host is sending data and the second one is discarding
it without informing the sender.

Data travels between processes in the same or different host in multinetwork enviro-
ment [23].

Within the scope of this thesis the main characteristics are reliable data transfer and
flow control11 over non-reliable connectionless internet protocol. TCP implements reliable
data transmission using special ACK flag and ACK number. These attributes check which
data arrives to the receiver or which data is lost in the network. TCP will keep trying to
send the lost data, until it arrives to the receiving process or the connections time out.
TCP also has a feature responsible for black box analysis, verifying the data integrity by
calculating and comparing a checksum.

The communication stream of this protocol has an attribute called window size. It rep-
resents the amount of data possible to send, while TCP is waiting for the acknowledgement.
If an acknowledgement arrives in time, TCP sends more data of size equal to window size
and waits for their acknowledgement. If an acknowledgement does not arrive, the lost data
is resent. Window size value can be changed while processes are communicating through
TCP connection. The throughput of a TCP connection is proportional to the windows size
value.This feature is called sliding window, used for flow control. The sender and receiver
are able to change the transmission speed by changing the window size. Communication
speed increases with increasing window size and vice versa. Thanks to the sliding window,
receiver is allowed to lower the transmission speed, if data comes too quickly for processing.

The TCP protocol uses several congestion control algorithms [24]. These algorithms are
responsible for avoiding network congestion by changing the window size value. They are
also able to raise the transmission speed as high as the network is able to transmit, if needed.
The algorithms increase the window size, while the data arrives to the receiver without a

11Flow control is process, which allow to control transmission speed.
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problem. When data is lost the congestion control algorithms assume that the network
is overloaded and lower the window size. When this happens, the transmission speed
decreased. Network development community designed and implemented many congestion
control algorithms. We describe three most commonly used algorithm in sections below.
The example of New Reno congestion control algorithm in graph is visible in figure 2.3.

Tahoe

This congestion avoidance algorithm consists of three phases: slow-start phase, congestion
avoidance phase and fast retransmit. As mentioned above, this algorithm maintains sending
speed by changing congestion window (cwnd) value. It represents amount of data, which
can be sent and then sender waits for acknowledgment.

The first phase is slow-start, which is used directly after connection establishment or
when packet loss occurs. In this phase cwnd value rises exponentially. In the beginning of
this phase cwnd value is set to Maximum segment size (MSS) and initial value of ssthresh
can be arbitrarily high (e.q. advertised window) [24].

𝑐𝑤𝑛𝑑0 = 𝑀𝑆𝑆 (2.1)

Then with every received acknowledgment of sent packet, the cwnd is increased by MSS.

𝑐𝑤𝑛𝑑𝑛+1 = 𝑐𝑤𝑛𝑑𝑛 +𝑀𝑆𝑆 (2.2)

This phase stops when cwnd is larger than Slow-start threshold (ssthresh) and congestion
avoidance takes place.

The congestion avoidance phase uses cwnd value from previous phase. In this phase
transmission speed gets closer to speed, which may cause the congestion. Therefore, cwnd
value rises lineally and is incremented by 𝑀𝑆𝑆*𝑀𝑆𝑆/𝑐𝑤𝑛𝑑 every time the acknowledgment
is received [24].

𝑐𝑤𝑛𝑑𝑛+1 = 𝑐𝑤𝑛𝑑𝑛 +
𝑀𝑆𝑆 *𝑀𝑆𝑆

𝑐𝑤𝑛𝑑𝑛
(2.3)

Tahoe detects congestion by receiving three duplicate acknowledgments of lost packet
or expiring timer, which waits for acknowledgment. This situation triggers fast retransmit
phase, which immediately sends all data in sliding window, sets sstresh to value cwnd/2
and cwnd to value MSS.

𝑠𝑠𝑡𝑟𝑒𝑠ℎ =
𝑐𝑤𝑛𝑑

2
, 𝑐𝑤𝑛𝑑 = 𝑀𝑆𝑆 (2.4)

After fast retransmit Tahoe algorithm continues with slow-start phase again.

Reno

This algorithm extends behavior of Tahoe algorithm. It adds feature called fast recovery.
When three duplicate acknowledgments are received, the Reno shifts from congestion avoid-
ance phase to fast recovery. This phase sets sstresh to cwnd/2 and cwnd sets to sstresh +
three times MSS [24]. Then Reno continues in congestion avoidance phase. This feature
rises overall throughput of TCP connection, because it has higher congestion window after
packet loss, therefore Reno sends more data after congestion.

𝑠𝑠𝑡𝑟𝑒𝑠ℎ =
𝑐𝑤𝑛𝑑

2
, 𝑐𝑤𝑛𝑑 = 𝑠𝑠𝑡𝑟𝑒𝑠ℎ+ 3 *𝑀𝑆𝑆 (2.5)
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Figure 2.4: Graph of CUBIC function from equation 2.6, which calculates 𝑊𝑐𝑢𝑏𝑖𝑐 used for
cwnd increment.

CUBIC

CUBIC algorithm is optimally designed for long fat networks, which have usually high link
speeds and high round trip times [21]. CUBIC inherits behavior from BIC algorithm [21],
but it uses simplified function, that calculates congestion window. The design process keeps
these principles [25] :

1. Function with a concave and a convex part is used to achieve stability and better
network utilization.

2. In the networks with short round trip times, CUBIC emulates behavior of standard
TCP protocols.

3. Share bandwidth linearly among TCP connections with different round trip time.

4. To keep balance between the scalability and speed of convergence, CUBIC sets the
multiplicative decrease factor appropriately.

In the beginning of TCP communication using CUBIC congestion avoidance algorithm,
slow start algorithm is used. When slow start reaches congestion, cwnd values is stored
into 𝑊𝑚𝑎𝑥, which indicates the last congestion cwnd. TCP CUBIC uses following cubic
function for calculating of increment to cwnd,

𝑊𝑐𝑢𝑏𝑖𝑐(𝑡) = 𝐶 * (𝑡−𝐾)3 +𝑊𝑚𝑎𝑥 (2.6)

where 𝐶 is a scaling factor, 𝑡 is elapsed time from the last congestion event, 𝑊𝑚𝑎𝑥 is cwnd
value right before the last congestion and 𝐾 is time period that 𝑊𝑐𝑢𝑏𝑖𝑐(𝑡) function takes to
achieve the last 𝑐𝑤𝑛𝑑 (stored in 𝑊𝑚𝑎𝑥) [25]. This makes CUBIC independent on the actual
RTT of network. This function is shown in figure 2.4. The 𝐾 value is evaluated with this
equation:

𝐾 =
3

√︂
𝑊𝑚𝑎𝑥 *

1− 𝛽

𝐶
(2.7)
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Figure 2.5: Graph of probability of packet drop according to queue length [7]
.

where 𝛽 is the CUBIC multiplicative decrease factor, used to set new 𝑐𝑤𝑛𝑑, when congestion
occurs.

𝑐𝑤𝑛𝑑 = 𝑊𝑚𝑎𝑥 * 𝛽 (2.8)

The function shown in equation 2.6 is divided by 𝑊𝑚𝑎𝑥 into two parts: concave and convex
part. In the concave part, cubic tries to slowly reach the point of last congestion. If
congestion occurs, 𝑊𝑚𝑎𝑥 is updated by current 𝑐𝑤𝑛𝑑 and 𝑐𝑤𝑛𝑑 is updated by equation 2.8.
If congestion does not occur, function comes to convex part and tries to achieve maximal
𝑐𝑤𝑛𝑑. The convex part is used mostly if some TCP stream finishes communication on the
shared connection and releases his allocated bandwidth.

Further explanation of CUBIC algorithm is beyond the scope of this thesis and can be
found in RFC 8312 [25].

2.3.2 TCP global synchronization

TCP is very efficient in maintaining congestion in the network. Let’s imagine a scenario of
Internet network from section 2.2. If there is a huge amount of TCP connections commu-
nicating through the shared link, the phenomenon called TCP global synchronization
occurs. The value of windows size attribute becomes equal across all TCP connections,
which lowers average throughput of TCP streams.

Random early detection is a mechanism, which tries to avoid the TCP global syn-
chronization. It is implemented by dropping randomly chosen data when the outgoing
interface queue of congested device is at least partially filled (queue length must exceed the
minimum threshold) [11]. The probability of dropping data increases with increasing queue
length until the maximum threshold is exceeded. This is the moment when the intermediary
devices (e.g. routers) start to drop every packet. The graph example of probability function
is shown in figure 2.5. Random drop of packets in different TCP streams tells the TCP
protocol that congestion occurs. Congestion control algorithms start avoiding congestion,
but at different time, which means the value of window size attribute is different across the
TCP streams and TCP global synchronization does not occur. This helps to keep higher
average throughput of TCP streams.

14



Chapter 3

Network congestion impact on
physical network

In this chapter we will observe a real life network and impact of congestion on it. Network
congestion can affect different layers of network. We describe various problems, which may
occur in the network. Our research is focused on four main types of errors, described in
table 3.1.

The congestioned network is observed to find any occurrence of these errors. Other
errors (e.g. jitter, etc.) are not part of this work. The experiments will use our testing
switched network without routers, therefore it crosses the first two layers of OSI model1,
because these layers belong to kernel space and device hardware. Higher layers are investi-
gated in following chapter.

This chapter is divided into sections by layers of OSI model. Each section includes
theoretical analysis of each listed error and results of measurements of our tests on the
experimental network.

A quick overview of measured results with description is visible in the last section of
this chapter in table 3.2.

Error type Description
Data loss Amount of data that are lost during congestion.
Delay Duration of delay caused by network congestion.

Data corruption Data is corrupted during transmission (some data bits are
changed)

Data reorder Data of one flow is divided into several smaller parts and sent,
but received in a different order.

Table 3.1: Error types that are observed in the network during congestion

3.1 The network used for experiments
For our experiments we used network with real servers described further in this section. The
experimental network tries to simulate the utilization of the network described in section
2.2. The network diagram shown in figure 3.1 is an abstract diagram to a real scenario shown

1This model is described in section 2.1
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Figure 3.1: The diagram of testing network.

in figure 2.2. In this network there are two servers connected through a switch. The switch
has 48 ports with 1Gb link speed. The server marked as Server1 is connected to the switch
with two physical links. Those links are aggregated together with LACP protocol described in
section 3.1.1. A hash function distributes data according to source IP address between
the two links. The second server called Server2 is connected to a switch using six 1Gb
connections. To reach simulated host’s requirements the connection to the first server is
slowed down to 100Mb per physical interface, which creates an aggregated interface of
200Mb link speed in each direction (400Mb in both directions). The ratio of available to
required bandwidth, which emulates an over-subscription ratio from section 2.2.1, is 1:11
(4:44) in the real scenario shown in figure 2.2. The ratio in our testing environment can be
variably modified from 1:1 to 1:30 (200:6000), so it is possible to simulate exactly the same
ratio as is shown in the real scenario.

3.1.1 LACP - link aggregation control protocol

Good practice in local area networks is creating backup connections between intermediary
devices, which eliminate a single point of failure. Adding backup connections into the
network creates bridging loops, which might cause broadcast storms in the network. There
is a solution of this problem. It is spanning tree (STP) protocol2, which blocks the additional
connections between switches to eliminate the bridging loop [19].

To utilize links blocked by STP, link aggregation takes place, which creates a virtual
link bundled from physical interfaces, where traffic load can be shared. The STP protocol
recognizes the virtual link as a single connection, which means both physical connections
are functional and used. An example of an aggregated link in network is shown in figure
3.1.

An example of link aggregation is the use of the LACP3 protocol, that maintains mem-
bership of physical connections in a virtual link. It is responsible for advertising the LACP

2Spanning tree protocol is defined by IEEE 802.1D standard [2].
3The LACP protocol is defined in IEEE 802.3ad standard [19].
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virtual connection to the neighbor device. It sends LACP packets between those devices,
which exchange necessary information for successful connection [19]. For successful cre-
ation of an LACP virtual link both sides of the connection have to be configured to use
this protocol (e.g. ”Server1“ and the switch have to use LACP protocol in aggregated
connection).

3.1.2 Software

Servers used in this setup use RHEL-7.4 operating system. Public alternative of this system
is CentOS, which is derived from RHEL sources4. Default congestion control algorithm in
this operating system is CUBIC, briefly described in section 2.3.1.

3.2 Physical layer
As we mentioned already at the beginning of this chapter, this work is focused on four
types of errors that can happen during network congestion. In this chapter we examine the
possible errors in testing environment. This section will focus firstly on the theoretical part
and afterwards we will share the results of the experiments which had been run.

Loss

In point-to-point Ethernet networks with full-duplex transmission mode the probability of
data loss is very low, but it depends on quality of cable, cable length and environment,
where cable is installed.

Data loss can be caused only by different transmission speed of NICs. However, nowa-
days it is impossible to create such situation, because NICs negotiate the transmission speed
before the link becomes operational. If there is a speed mismatch, NICs can not communi-
cate through this link. Simply said the NICs are built to receive as much data as they are
able to send. Data loss might happen on WiFi5 networks or other physical medium and it
is not part of this work.

Delay

Delay can occur due to the characteristic of propagation over media. We call this propaga-
tion delay. It can be expressed by formula, shown in equation 3.1 [10].

𝑑𝑒𝑙𝑎𝑦 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑠𝑝𝑒𝑒𝑑

𝑑𝑒𝑙𝑎𝑦3𝑚 =
3𝑚

177000𝑘𝑚
𝑠

.
= 16.94𝑛𝑠

𝑑𝑒𝑙𝑎𝑦500𝑚 =
500𝑚

177000𝑘𝑚
𝑠

.
= 2824.86𝑛𝑠

(3.1)

The calculated propagation delay is too small in Ethernet networks, even if very long
cable connections with repeaters are used, so it can be ignored in this work.

4https://www.centos.org/about/
5Wireless local area network.
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Corruption

Data corruption used to be a big problem of second-class and low cost un-shielded cables.
Data can be corrupted by electromagnetic interference from external sources or by the cable
itself. UTP cables consist of four pairs of wires, which can also influence themselves. These
days pairs of wires are twisted together and each pair has a different number of twists, which
eliminates the electromagnetic influence. This problem is only related to copper cables.

Probability of data corruption in optical cables by electromagnetic or radio-frequency
interference is very low. We do not investigate transmission behavior of optical cables in
this thesis.

Reorder

Due to the nature of the cable medium in point-to-point Ethernet network, the reorder of
data in this layer of OSI model can not happen. The reason is simple - each cable has just
two ends, which means if you send data in specific order from one device to another, data
is received exactly in the same order.

3.3 Measured results on physical layer
We did few experiments with the network during the congestion. According to limited
options for testing in physical layer, we tried to find only corruption error. For these tests
we use network topology shown in figure 3.1. The tests were performed exclusively using
the direct link connection. To perform this analysis it was necessary to keep sending a
large amount of data6 to get eligible results. According to results there were not any errors
during the test. The counters from interface are shown in listing 3.1

[root@uklizec1 ~]# ifconfig enp4s0f1
<output omitted>

RX packets 1663126831 bytes 1979120929996 (1.8 TiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 1590262300 bytes 1892412137783 (1.7 TiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Listing 3.1: ”The interface coutners from server1“

3.4 Data link layer
To test this layer of OSI model we connected the servers through a switch. The direct
point-to-point connections are ignored. To simulate the network congestion the server called
Server2 sends several TCP streams to server called Server1 using netperf 7 benchmark
[18]. Then Server2 tries to simulate network congestion using trafgen, which produces
a huge amount of UDP traffic. The measurements which are important to this layer are
gathered and analyzed in both environments.

6The test transferred 1.8TB of data in 1 day.
7Netperf is a benchmark used to measure the network performance and will be discussed later.
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Loss

Data loss might occur in network with a shared path, which can create a bottleneck, visible
in figure 2.2. This error type occurs when excessive amount of data income. This data is
not possible to distribute further because the outgoing interface is overloaded. For more
detailed description see section 2.2.

Delay

In any network delays are caused by incoming and outgoing interface buffers. Incoming
data is buffered before being processed. After processing data is queued into an outgoing
buffer of outgoing interface. The time data spends in those buffers is the cause of these
delays. During network congestion the delay is much longer - buffers are more utilized and
fuller, because they need to process large amount of data. The calculation of nodal delay
is shown in equation 3.2 [5].

𝑑𝑛𝑜𝑑𝑎𝑙 = 𝑑𝑝𝑟𝑜𝑐 + 𝑑𝑞𝑢𝑒𝑢𝑒 + 𝑑𝑡𝑟𝑎𝑛𝑠 + 𝑑𝑝𝑟𝑜𝑝 (3.2)

Corruption

Data corruption does not happen in this layer of OSI model. There is only a function
for verifying the data integrity by checking checksum. The intermediary devices calculate
its own checksum and if these two match, the data is proceeded to further processing. If
these two numbers do not match, corruption error occurs in physical layer and the frame
is dropped.

Reorder

We limit our speculations about reorder error to network shown in figure 3.1, where is only
one possible link for communication. Reorder error is searched only in one data flow. The
most used queuing mechanism is FIFO8, which keeps the data order. This mechanism does
not allow to create data reorder error in the network. Some of the NICs and switches use
more FIFO queues within the one interface and data from one flow is distributed between
the queues, which could create reorder error. Another possibility where reordering could
happen are aggregated links. These links create a virtual interface, recognized as only one
link by the intermediary device. For sending data to this virtual interface there is a hash
function that distributes data to its physical interfaces. The hash function distributes data
according to their addresses(MAC, IP, port number) contained in protocol headers. After
distributing by hash function, the basic FIFO queuing mechanism is used again.

3.5 Measured results on data link layer
For searching data loss errors, the logs from NICs of the servers and the switch interfaces
were checked to detect if any error occurred during network congestion.

8First in first out.
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Data loss

In logs there are frame drops in outgoing queue of the switch interface, which points towards
the first server. This confirms our expectations based on theory explained in section 2.2.
The show command applied in the switch is shown in listings 3.2.

duchodce(config-if)#do show inter port-chann 1
<output omitted>
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops:
→˓ 35933202

Listing 3.2: Output drops captured in the switch.

Data corruption error

We did not find any data corruption errors in the logs from NICs and switch. Output of
show command applied in the switch is pasted below.

[root@uklizec1 ~]# ifconfig bond0
<output omitted>
RX packets 7300325393 bytes 8693376275152 (7.9 TiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 8597112660 bytes 8676956810520 (7.8 TiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Listing 3.3: The log from interface in uklizec1 LACP interface

Data reorder error

To test data reorder we developed a simple special utility which uses UDP socket. This
utility consists of two programs (sender, receiver). Within the payload of our UDP
datagram we transmit increasing sequence number with an unimportant payload. The
receiver program receives the datagram and checks the sequence number by comparing it to
the previously received sequence number. If the number from the current frame is different
than last number +1, we have detected a data reorder error. We ran our experiments for
one hour and did not detect a single reorder error.

Source codes of these two programs can be found in appendixes on CD.

Delay in the congested network

The delay in the network was measured using the ICMP9 protocol, which is able to determine
the nodal delays. Based on the test that we ran for about one hour, the average delay in
non-fully utilized network was 0.169𝑚𝑠. Compare to congested network this measured
delay is significantly lower. In fully utilized network with TCP streams the average delay is
27.364𝑚𝑠 (this value is the result of the test executed for about an hour). The average delay
in network congested by UDP stream is 37.085𝑚𝑠. The biggest part of the measured delay
is caused by overloaded buffer. The delay rises with length of outgoing interface buffer,
until the buffer gets full. Once the buffer is full, the delay remains at its maximum value.

Ping test output of non-congested network is pasted below. There is a very small delay
in the network, because buffers in the switch are almost empty.

9Internet control message protocol is an error detection protocol defined in RFC 792.
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--- 192.168.10.11 ping statistics ---
36000 packets transmitted, 36000 received, 0% packet loss, time 3599899ms
rtt min/avg/max/mdev = 0.098/0.169/0.638/0.021 ms

Listing 3.4: The round trip time of the non-congested network.

Ping test output of TCP congested network is pasted below. Average round trip time
is enormously bigger compare to round trip time in non-congested network.

--- 192.168.10.11 ping statistics ---
36000 packets transmitted, 35779 received, 0% packet loss, time 3621928ms
rtt min/avg/max/mdev = 9.366/27.364/62.892/7.744 ms

Listing 3.5: The round trip time of the network congested by TCP protocol.

Ping test output of UDP congested network is pasted below. Average round trip time
is even bigger than in TCP congested network.

--- 192.168.12.1 ping statistics ---
128310 packets transmitted, 67541 received, 47% packet loss, time 1199992ms
rtt min/avg/max/mdev = 0.575/37.085/40.816/8.157 ms, pipe 8

Listing 3.6: The round trip time of network congested by UDP protocol.

3.6 Evaluation of the results
In the first layer of OSI model there were no serious errors that could be simulated by the
network emulator. We were not able to simulate the packet reorder error in network with
LACP aggregated interface. Possibility of packet reorder error occurs in WAN10 network,
where MPLS11 technology is used or in routed(L3) networks where routing protocols use
loadbalance feature to utilize the links more efficiently.

We were not able to simulate packet corruption error caused by hardware in the first
or second layer of OSI model either. The quality of today’s copper cables is much higher.
For longer distances are usually used optical cables, which are capable to transfer data
for greater distances with higher speed. The optical cables do not suffer from crosstalk or
EMI12/RFI13.

From the results measured in section 3.4 describing errors in the data layer is clearly
visible that the error with the biggest impact to the network was data loss. The reason why
this happened was a larger amount of data coming to the switch, which had no resources
to distribute this data further. Some data was lucky enough to be queued to outgoing
buffer. However, this almost full buffer caused significantly higher delay. These two errors
are worth to be investigated further under various circumstances (over-subscription ratio,
transport protocol, etc.). These errors are great candidate for network congestion simulation
in created testing network, which we will discuss and describe in chapter 5.

The overview of measured results is visible in table 3.2.

10World area network
11Multi protocol layer switching
12Electro magnetic interference
13Radio frequency interference
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Network hardware

Error
OSI layer Physical Data link

Loss 8 4 - TX queue <0% - 100%)
Delay 4 - small, propagation (17ns) 4 - TX queue OS buffers
Corruption 8 8

Reorder 8 8

8 - the error was not found
3 - the error occurs

Table 3.2: Errors that were investigated in experiments with the network during congestion.
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Chapter 4

Linux protocol stack behavior
during network congestion

In this chapter we describe several experimental test scenarios, which try to analyze behav-
ior of protocol stack in network during congestion. Our interest is focused on two categories
of protocols: connection-less (UDP) and connection-oriented (TCP) protocols. These pro-
tocols are observed in testing network with different values of oversubscription ratio, where
every abstract customer tries to achieve full provided bandwidth.

The results of measurements from this chapter will be used in the next chapter for
designing test scenario for CI testing of kernel project.

4.1 Network used for experiments
The network used for testing is easily changed compared to testing network1 used for
measurements of impact to physical network. According to experiments from chapter 3, we
decided to focus only on two errors (data loss, transmission delay), because only these two
really happen in Ethernet network during congestion. It also appeared that the data reorder
error does not occur, therefore we replaced aggregated link by LACP with connection that
consists of single wire. Link speed of all interfaces in the switch is set to 100 Mbps. On
all interfaces of both servers we turn off tcp-segmentation-offload to be able to capture
each TCP segment and evaluate network delay by Wireshark. It evaluates the delay by
subtracting time stamp of sent segment from time stamp of received acknowledgment. If
tcp-segmentation-offload is turned on, NIC takes care of segmentation and in traffic capture
we see only single large segment. In this situation Wireshark is not able to exactly evaluate
round trip time in the network.

4.2 iPerf3 - testing tool
iPerf3 is network testing tool, which measures various characteristics of network, but is
mostly used for measure achievable network bandwidth [3]. It can use several protocols
(TCP, UDP, SCTP) for testing and reports the amount of transferred data, the amount of
lost data, average bandwidth, and many others. It is also able to set options for specific
testing protocol (e.q. maximum segment size, sizes of buffers, etc.). iPerf3 can store output
log in JSON format, which is easy to process in evaluation in CI testing.

1Network diagram of previous network is shown in figure 3.1
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Figure 4.1: The diagram of testing network after changes.

4.3 Behavior of connection-less and connection-oriented pro-
tocols

For the network communication are used two different groups of protocols. The main
differences between these groups are reliable data delivery and establishment of connection
for data transmission. These protocols exist in the fourth layer of OSI model. In this section
we are going to observe behavior of User Datagram Protocol (UDP) and Transmission
Control Protocol (TCP).

UDP does not guarantee data delivery and does not use any control flags to inform
sender that receiver lost the data. UDP just sends datagrams to specific destination port
and does not care about anything else. UDP finds its justification in several services and
solutions, where data loss is accepted or required.

The first highly used scenario of UDP usage is voice over IP, which is very sensitive to
network delay. If small amount of data is lost during voice call over IP, the users would not
even recognize the data is lost. It is useless to resend lost data because it is too late for
decoding voice signal to receiving user.

The second very often used example of UDP communication are video streams, which
are similar to voice communication. Streamed video data is divided into smaller segments
and sent to network. Video receiver is still able to reconstruct the original video even if
small percentage of data is lost.

The last example of usage of UDP protocol is VXLAN tunnel. This type of tunnel
varies from others. Each endpoint may have more tunnel destinations hidden behind one
IPv4/IPv6 address. VXLAN tunnel uses UDP protocol to separate traffic from different
hosts especially in virtual environment.

As we can see UDP protocol is highly used for different services, therefore UDP protocol
is the subject of our experiments to discover its behavior during network congestion.

The connection oriented protocols are often used for reliable network communica-
tion. They are used by various applications, which are not sensitive to delay and also needs
reliable data delivery. There are various protocols which meet requirements of reliable and
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connection-oriented protocol (e.g. TCP, SCTP, RDP). The most used connection-oriented
protocol is Transmission Control Protocol (TCP). This protocol is used for web browsing,
file transfer, mail communication, telnet and many others. All of these services need reliable
data delivery to keep an integrity of transmitted information.

Reliability and congestion control

Before sending data, TCP establishes connection, which is used for tracking sent and lost
data during communication. The reliability is guaranteed by retransmission of lost data,
which may cause additional delay in communication. TCP is described in section 2.3.1.
TCP tries to avoid congestion in the network using special algorithms, which limit the
amount of transmitted data.

4.3.1 Testing methodology

For the observations of UDP and TCP behavior we simulate two potential customers by
UDP/TCP streams of various bandwidth. Experiments are focused mostly on two errors :
data loss and network delay. Programs used for testing and measurements are ping and
iperf3 2 and netperf. Two UDP/TCP streams run in parallel from Server2, where several
Ipsef3 services run in background to Server1, the initiator of stream. This test simulates
two virtual machines in cloud environment, that try to send stream of data in constant
speed to external recipients. They both have the same shared connection to the outside
network, which creates a bottleneck for network connectivity of virtual machines.

Throughput

We run several tests with different over-subscription ratio, accomplished by various UDP
streams bandwidth. Bash script used for starting the UDP streams is visible in Listings
4.1. The script has one command line argument - the bandwidth. This script runs two
parallel iperf3 UDP streams with the same bandwidth. The logs from tests inform about
how much data is sent and how much data is lost with sending and receiving bandwidth.

#!/bin/bash
iperf3 --client 192.168.12.11 --bind 192.168.12.1 --udp --reverse --time 20
→˓ --bandwidth $1 --port 10001 | tee -a udp1_$1.log &

iperf3 --client 192.168.13.11 --bind 192.168.13.1 --udp --reverse --time 20
→˓ --bandwidth $1 --port 10002 | tee -a udp2_$1.log &

Listing 4.1: Script used for starting two parallel UDP stream.

Latency

While UDP/TCP test is running, the ping test, which measures round trip time in the
network, is running as well. The ping command is ran in Server2 and travels in the same
wire as the first UDP stream. The round trip time measures the transmission delay in
both ways of transfer (Server2 -> Server1 -> Server2 ). This delay is very small in non
congested network, therefore it is neglected. The ping test returns statistic about round
trip time (minimal, maximal, average, standard deviation), which shows fullness of switch

2This program is described in section 4.2.
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buffers during the test. This test runs 15 seconds and sends ping packet of size 1450 bytes
every 1ms. Output of every test is saved for further investigation.

ping 192.168.12.1 -s 1450 -i 0.001 -w 15

Listing 4.2: Ping command used in UDP behavior testing.

In the TCP test we additionally run netperf test called TCP_CRR (connect/re-
quest/response) to be sure the results from ping are correct. This test creates new TCP
connection for each request to server and measures time, which server takes to respond to
the request. This test is usually used to simulate HTTP requests [18].

netperf -t TCP_RR -H 192.168.12.11 -- -r 1400,1400

Listing 4.3: Ping command used in UDP behavior testing.

The result of netperf test is in transactions per second unit, which is converted to delay
by equation 4.1.

𝑑𝑒𝑎𝑙𝑦𝐶𝑅𝑅 =
1

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
(4.1)

Window scaling

The TCP has congestion control algorithms3, which can modify transmitting throughput by
changing congestion window to effectively utilize network. The experiment, which observes
behavior of these algorithms, consists of two TCP streams, sharing same connection. The
over-subscription ratio in this set is 2. The first test runs for 30 seconds and the second
stream runs for only 15 seconds, but it is ran 5 seconds later than the first one. The example
of testing script is visible in listings 4.4.

#!/bin/bash
iperf3 --client 192.168.12.11 --bind 192.168.12.1 --reverse --time 30 --
→˓ bandwidth $1 --port 10001 &

sleep 5
iperf3 --client 192.168.13.11 --bind 192.168.13.1 --reverse --time 15 --
→˓ bandwidth $1 --port 10002 &

sleep 25

Listing 4.4: This script runs two TCP streams to create network congestion.

Whole test is captured by tcpdump for further analysis by Wireshark4, which is able to
evaluate round trip time of TCP communication by calculating difference of timestamp of
sent data and timestamp of received data acknowledgment.

Congestion window variable is not included inside the TCP communication, but it is a
part of socket attributes in the linux kernel. For tracking this variable we use specialized
kernel module called tcpprobe, which appends information about specific socket to a file [4].

Workflow

The testing workflow is described step by step in algorithm 1. By using this algorithm we
observe behavior of UDP protocol in congested and non-congested network. In the first

3The congestion control algorithms are described in section 2.3.1.
4Wireshark is network analyzing and troubleshooting tool [15].

26



Figure 4.2: Sending and receiving throughput of UDP test in different over-subscription
ratio.

place we need to create a list of over-subscription ratios, which will be tested. Then follows
the algorithm 1 to get results of UDP behavior tests.

For TCP behavior test we use the same list of over-subscription ratios by algorithm 2.
iPerf3 –udp parameter is removed to run TCP stream test and netperf TCP_CRR test runs
together with ping.

4.4 Results evaluation of connectionless protocols
Selected over-subscription ratio values are : [0.4, 0.6, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0,
3.0, 4.0]. These values capture network before and during congestion. For measurement is
used algorithm 1, with defined values. Detailed description of measured results is in the
following sections focused on throughput, data loss and round trip time during different
over-subscription ratios.

Throughput and loss

From measurement is visible that sending and receiving throughput in the network, where
the over-subscription ratio is small (0.4, 0.6), has at the same value with no data loss. The
sending and receiving throughput from observations are in table 4.1 and chart from this
value is visible in figure 4.2. Table 4.2 together with table 4.3 contain number of transmitted
and received data. There is real and theoretical data loss as well. The real data loss for
current over-subscription ratio is calculated by equation 4.2.

𝐿𝑜𝑠𝑠𝑟𝑒𝑎𝑙 =
𝑑𝑎𝑡𝑎𝑠𝑒𝑛𝑡 − 𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑑𝑎𝑡𝑎𝑠𝑒𝑛𝑡
(4.2)
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Algorithm 1: UDP behavior testing algorithm.
UDPTest (ratios)

input : list of over-subscription ratios, which are going to be measured
output: records of send/receive bandwidth and amount of data, statistics of

round trip time
start iperf3 services in Server1 on ports 10001, 10002, 10003, 10004;
foreach 𝑟𝑎𝑡𝑖𝑜 ∈ 𝑟𝑎𝑡𝑖𝑜𝑠 do

if 𝑟𝑎𝑡𝑖𝑜 <= 2 then
𝐵 ← 𝑟𝑎𝑡𝑖𝑜 * 100𝑀𝑏𝑝𝑠/2;
// run 2 instances of iperf3 UDP stream test with 𝐵 bandwidth
iperf3 –client 192.168.12.11 –bind 192.168.12.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10001 & ;

iperf3 –client 192.168.13.11 –bind 192.168.13.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10002 & ;

else
if 𝑟𝑎𝑡𝑖𝑜 <= 3 then

𝐵 ← 𝑟𝑎𝑡𝑖𝑜 * 100𝑀𝑏𝑝𝑠/3;
// run 3 instances of iperf3 UDP stream test with 𝐵

bandwidth
iperf3 –client 192.168.12.11 –bind 192.168.12.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10001 & ;

iperf3 –client 192.168.13.11 –bind 192.168.13.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10002 & ;

iperf3 –client 192.168.14.11 –bind 192.168.14.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10003 & ;

else
𝐵 ← 𝑟𝑎𝑡𝑖𝑜 * 100𝑀𝑏𝑝𝑠/4;
// run 4 instances of iperf3 UDP stream test with 𝐵

bandwidth
iperf3 –client 192.168.12.11 –bind 192.168.12.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10001 & ;

iperf3 –client 192.168.13.11 –bind 192.168.13.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10002 & ;

iperf3 –client 192.168.14.11 –bind 192.168.14.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10003 & ;

iperf3 –client 192.168.15.11 –bind 192.168.15.1 –udp –reverse –time 20
–bandwidth 𝐵 –port 10004 & ;

wait 2 seconds; // wait till UDP streams start
/* start ping test for 15 seconds with message size 1450 and

interval 1ms */
ping 192.168.12.1 -s 1450 -i 0.001 -w 15 ;
record ping RTT output (min, avg, max, stdev);
foreach 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∈ 𝑖𝑃𝑒𝑟𝑓3𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do

record results of the test ()send/receive bandwidth, sent/received data) ;
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Algorithm 2: TCP behavior testing algorithm.
TCPTest (ratios)

input : list of over-subscription ratios, which are going to be measured
output: records of send/receive bandwidth and statistics of round trip time
start iperf3 services in Server1 on ports 10001, 10002, 10003, 10004;
foreach 𝑟𝑎𝑡𝑖𝑜 ∈ 𝑟𝑎𝑡𝑖𝑜𝑠 do

if 𝑟𝑎𝑡𝑖𝑜 <= 2 then
𝐵 ← 𝑟𝑎𝑡𝑖𝑜 * 100𝑀𝑏𝑝𝑠/2;
// run 2 instances of iperf3 TCP stream test with 𝐵 bandwidth
iperf3 –client 192.168.12.11 –bind 192.168.12.1 –reverse –time 20
–bandwidth 𝐵 –port 10001 & ;

iperf3 –client 192.168.13.11 –bind 192.168.13.1 –reverse –time 20
–bandwidth 𝐵 –port 10002 & ;

else
if 𝑟𝑎𝑡𝑖𝑜 <= 3 then

𝐵 ← 𝑟𝑎𝑡𝑖𝑜 * 100𝑀𝑏𝑝𝑠/3;
// run 3 instances of iperf3 TCP stream test with 𝐵

bandwidth
iperf3 –client 192.168.12.11 –bind 192.168.12.1 –reverse –time 20
–bandwidth 𝐵 –port 10001 & ;

iperf3 –client 192.168.13.11 –bind 192.168.13.1 –reverse –time 20
–bandwidth 𝐵 –port 10002 & ;

iperf3 –client 192.168.14.11 –bind 192.168.14.1 –reverse –time 20
–bandwidth 𝐵 –port 10003 & ;

else
𝐵 ← 𝑟𝑎𝑡𝑖𝑜 * 100𝑀𝑏𝑝𝑠/4;
// run 4 instances of iperf3 TCP stream test with 𝐵

bandwidth
iperf3 –client 192.168.12.11 –bind 192.168.12.1 –reverse –time 20
–bandwidth 𝐵 –port 10001 & ;

iperf3 –client 192.168.13.11 –bind 192.168.13.1 –reverse –time 20
–bandwidth 𝐵 –port 10002 & ;

iperf3 –client 192.168.14.11 –bind 192.168.14.1 –reverse –time 20
–bandwidth 𝐵 –port 10003 & ;

iperf3 –client 192.168.15.11 –bind 192.168.15.1 –reverse –time 20
–bandwidth 𝐵 –port 10004 & ;

wait 2 seconds; // wait till TCP‘ streams start
/* start ping for 15 sec with msg size 1450 and interval 1ms */
ping 192.168.12.1 -s 1450 -i 0.001 -w 15 &;
/* start netper TCP_CRR test to measure delay in the network

differently */
netperf -H 192.168.12.1 -l 15 -t TCP_CRR ;
record ping RTT output (min, avg, max, stdev);
record netperf TCP_CRR output ;
foreach 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∈ 𝑖𝑃𝑒𝑟𝑓3𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do

record results of the test (send/receive bandwidth) ;
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TX throughput RX throughput
ratio A B C D Total A B C D Total
0.4 20 20 0 0 40 20 20 0 0 40
0.6 30 30 0 0 60 30 30 0 0 60
0.8 40.1 40.1 0 0 80.2 35.7 38.4 0 0 74.1
0.9 45.1 45.1 0 0 90.2 42.3 36.9 0 0 79.2
1 50 50 0 0 100 35.8 31.3 0 0 67.1
1.1 55 55 0 0 110 33.9 38.7 0 0 72.6
1.2 60 60 0 0 120 40.1 44.8 0 0 84.9
1.4 69.9 70.1 0 0 140 45.5 46.2 0 0 91.7
1.6 80 80.1 0 0 160.1 48.5 45.1 0 0 93.6
1.8 89.9 90.1 0 0 180 41.8 52.8 0 0 94.6
2 95.4 94.4 0 0 189.8 39.1 55.9 0 0 95
3 94.5 95.4 95.4 0 285.3 24.7 46 24.5 0 95.2
4 95.4 95.4 94.5 95.4 380.7 20.3 10.4 33.4 31.1 95.2

Table 4.1: The sending and receiving bandwidth of UDP test.

Theoretical data loss, used for comparing the real loss, is calculated by function, described
in equation 4.3, where n is current ratio.

𝑓𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐿𝑜𝑠𝑠(𝑛) =

{︃
0 if 𝑛 < 1

1− 1
𝑛 𝑒𝑙𝑠𝑒

(4.3)

The comparison of real and theoretical data loss is visible in chart in figure 4.3. It is clearly
visible that the data loss approximates to value 1, which means 100% data loss.

With rising over-subscription ratio data loss error occurs. However, it appears with
ratios [0.8, 0.9, 1.0], which should not cause data loss. This is due to implementation of
sending algorithm in iPerf3, which sends burst of data in the first time period and in the
second iPerf3 waits and sends nothing, because it sends more data in the first time period
than it should. This behavior is similar to pulse wave modulation known in embedded
systems. Captured example is visible in figure A.1. If iPerf3 wants to send data stream
of 50Mbps it will send UDP stream of 50+Mbps in the first time period and then stop
sending till overall average throughput will become 50Mbps again. According to testing
algorithm, there are two UDP streams in one testrun, so if they both try to send 50Mbps
(over-subscritpion ratio 1.0) and send time slots overlap each other, the data loss appears
in the outgoing buffer of switch interface.

When over-subscription ratio crosses value 1.0, the network would get to congested state.
The results from the test proves it. In figure 4.2 is evident that the receiving bandwidth
(over-subscription ratio : 1.1, 1.2, 1.4) is lower than transmitting bandwidth. But receiving
bandwidth is even lower than link speed of interface. This behavior is due to iPerf3 sent
policing algorithm again.

Receiving throughput converges to link speed with higher over-subscription ratio (1.6,
1.8, 2, 3, 4). In the testruns, where the iPerf3 sent algorithm was not used, the real and
theoretical loss is almost the same value. The UDP streams were sent at full bandwidth
and decision about data drop remained to the switch, which drop data equally.
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Figure 4.3: Amount of lost data in different over-subscription ratio during UDP behavior
test.

TX messages
ratio A B C D Total
0.4 34555 34556 0 0 69111
0.6 51860 51861 0 0 103721
0.8 69184 69185 0 0 138369
0.9 77837 77837 0 0 155674
1 85759 86328 0 0 172087
1.1 94962 94398 0 0 189360
1.2 103634 103665 0 0 207299
1.4 120757 120846 0 0 241603
1.6 136659 138065 0 0 274724
1.8 154743 155515 0 0 310258
2 164658 163031 0 0 327689
3 163086 164659 164674 0 492419
4 164660 162906 163087 164671 655324

Table 4.2: Number of sent messages during UDP behavior test.

31



RX messages Loss
ratio A B C D Total Real Theoretical
0.4 34555 34556 0 0 69111 0.000 0.000
0.6 51860 51802 0 0 103662 0.001 0.000
0.8 61633 66325 0 0 127958 0.075 0.000
0.9 73008 63768 0 0 136776 0.121 0.000
1 61892 54126 0 0 116018 0.326 0.000
1.1 58613 66801 0 0 125414 0.338 0.091
1.2 69242 77383 0 0 146625 0.293 0.167
1.4 78581 79727 0 0 158308 0.345 0.286
1.6 83698 77931 0 0 161629 0.412 0.375
1.8 72133 91226 0 0 163359 0.473 0.444
2 67435 96497 0 0 163932 0.500 0.500
3 42588 79493 42339 0 164420 0.666 0.667
4 35090 17896 57722 53720 164428 0.749 0.750

Table 4.3: Number of received messages and data loss in UDP behavior test in different
over-subscription ratio.

Round trip time

The average round trip time in the network with different over-subscription ratio is visible
in figure 4.4. The data used to create the chart is in table 4.4. With rising over-subscription
ratio the average round trip time converges to value 42.9 ± 0.2𝑚𝑠. This delay is caused
by full-filled buffer of outgoing switch interface. The test-runs with over-subscription ratio
in the interval < 0.4, 1.8 > have big standard deviation in results of ping command. As
discussed above in the throughput section, the iPerf3 use special algorithm to achieve given
bandwidth. When data burst of both UDP streams overlap, buffer is filled fully and delay
of value 42.9 ± 0.2𝑚𝑠 appears in the network. When data streams gets idle, buffers are
practically empty and there is no delay caused by interface buffer. The average round trip
time refers to mean of repeated values [0.2𝑚𝑠, 42.9𝑚𝑠] by Monte Carlo method [14].

4.5 Results evaluation of connection oriented protocol
For observing connection-oriented protocol behavior we use the same over-subscription
ratio list as in connection-less protocols test. The list can be found in section 4.4. For
measurement is used algorithm 2, with defined values. Detailed description of measured
results is in the following sections focused on throughput, amount of retransmitted data
and round trip time during different over-subscription ratios.

Throughput

In the results from TCP test is visible the sending throughput is the same as receiving
throughput. With over-subscription ratios, which should not create congestion5, sending
and receiving throughput are equal to requested value. Results from throughput tests can
be visible in table 4.5 and chart from this table is visible in figure 4.5.

5The ratio is lower than 1.
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Figure 4.4: Round trip time in different over-subscription ratio during UDP behavior test.

Latency
ratio min avg max stdev
0.4 0.639 2.051 28.063 4.966
0.6 0.64 4.282 38.749 8.885
0.8 0.624 7.701 42.942 12.732
0.9 0.627 9.934 43.041 14.136
1 0.636 6.25 42.948 12.849
1.1 0.623 7.908 43.018 14.367
1.2 0.629 14.859 43.042 17.649
1.4 0.647 29.312 43.034 17.411
1.6 0.676 35.455 43.189 14.195
1.8 0.682 40.113 42.998 8.835
2 42.582 42.777 43.024 0.263
3 42.589 42.772 42.983 0.284
4 42.492 42.73 42.934 0.197

Table 4.4: The network delay measured in the network during UDP behavior test.
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When network congestion occurs6, congestion control algorithms start to lower trans-
mission speed to avoid unnecessary data loss. They try to fully utilize network, therefore
total sending/receiving throughput is near to bottleneck bandwidth.

Figure 4.5: Sending and receiving throughput during connection oriented protocol test.

TX throughput RX throughput
pf A B C D Tx Total A B C D Rx Total
0.4 20 20 0 0 40 20 20 0 0 40
0.6 30 30 0 0 60 30 30 0 0 60
0.8 40 40 0 0 80 40 40 0 0 80
0.9 45 45 0 0 90 45 45 0 0 90
1 50 42.4 0 0 92.4 49.9 42.4 0 0 92.3
1.1 46.5 46.6 0 0 93.1 46.4 46.5 0 0 92.9
1.2 40.9 52.2 0 0 93.1 40.8 52.1 0 0 92.9
1.4 51.7 41.5 0 0 93.2 51.6 41.3 0 0 92.9
1.6 57 36.2 0 0 93.2 56.9 36 0 0 92.9
1.8 37.8 55.2 0 0 93 37.7 55.1 0 0 92.8
2 48.2 44.9 0 0 93.1 48.1 44.8 0 0 92.9
3 30.2 36.2 27.9 0 94.3 30 35.9 27.7 0 93.6
4 21.5 23.5 26.5 22.7 94.2 21.4 23.4 26.4 22.7 93.9

Table 4.5: Sending and receiving throughput in different over subscription ratio during
connection oriented protocol test.

6The ratio is higher or equal to 1.
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Figure 4.6: Round trip time in different over-subscription ratio during connection oriented
protocol test.

Round trip time

The network device cannot send data at specific speed. It can only send at link speed (or
it can not send data at all). If network hardware wants to slow down transmission speed
to specific rate, it regularly switches between sending and silent period to reach the ratio
between sending and silent period, which corresponds to transmission speed at specific rate.
When several streams share the same connection with the same or lower link speed and
want to use this method to lower transmission rate, congestion may occur. Results from
tests with oversubscription ratio [0.4, 0.6, 0.8, 0.9] prove it. The results of tests are visible
in figure 4.6. The round trip time in the network rises with higher oversubscription ratio.
There is high standard deviation of results caused by the above described behavior. When
only one of two streams sends data, the round trip time is low. When two streams send
data at the same time, congestion occurs and buffers get full, which correspond to higher
round trip time.

The results with ratios, which cause congestion, show the average delay is 27.5± 2𝑚𝑠.
This value corresponds to fullness of outgoing switch interface buffer, where data is tem-
porarily stored until interface can send it. TCP tries to fully utilize network, but tries to
avoid congestion as well, therefore throughput of streams still get bigger or lower. This
competition of bandwidth makes the streams send data at bottleneck bandwidth speed.
Interface buffer does not get empty, but creates delay.
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Latency CRR TX Retransmits
pf min avg max stdev tpm delay A B C D
0.4 0.623 1.856 25.458 4.07 772.15 1.295 0 0
0.6 0.626 3.777 33.614 7.456 510 1.961 5 6
0.8 0.624 9.076 32.468 11.06 230.48 4.339 8 8
0.9 0.619 18.956 32.285 10.589 78 12.821 13 29
1 9.195 26.325 32.756 4.372 38.73 25.820 13 30
1.1 19.082 27.023 31.988 3.14 36.02 27.762 17 23
1.2 15.765 27.783 31.928 2.712 34.8 28.736 17 21
1.4 18.688 27.837 31.892 2.921 35.98 27.793 16 31
1.6 19.293 27.615 31.975 2.974 35.89 27.863 13 28
1.8 19.809 27.412 32.136 2.901 36.47 27.420 23 18
2 22.398 27.739 31.921 2.571 34.67 28.843 21 17
3 21.409 27.931 31.72 2.433 34.8 28.736 22 15 18
4 19.332 29.084 31.968 1.779 34.39 29.078 27 26 25 38

Table 4.6: Latency in the network during connection oriented protocol test.

Window scaling

In figure 4.8 is visible rapid growth of round trip time at fifth second. At this time the
second iPerf3 stream starts to send data, creates congestion and fills interface buffer, which
creates high delay. Due to congestion some data is lost, therefore congestion avoidance
algorithm starts to control transmission speed. It rapidly increases congestion window to
achieve similar throughput in delayed network. The congestion window during test is visible
in figure 4.7. The maximal theoretical throughput of TCP with current congestion window
and round trip time can be calculated by equation 4.4.

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 <=
𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
(4.4)

During congestion TCP algorithm maintains transmission speed and round trip time is
about 27± 2𝑚𝑠 as we expected. Created over-subscription ratio is 2.

When second TCP stream ends and over-subscription ratio gets back to 1, which means
there should not be network congestion, some data is still in interface outgoing buffer and
causes delay in the network. The first TCP stream sends data at link speed without creating
congestion, whereupon the switch does not have the opportunity to empty the buffer and
delay in the network still exists.

4.6 Conclusion
From the results of connection-less oriented protocols is clearly visible, that the delay caused
by outgoing switch buffer exists in the network, where over-subscription ratio is equal
or higher to 1. Based on low standard deviation we expected the delay during network
congestion would be constant. Part of lost data increases with over-subscription ratio as
well, because UDP protocol does not implement any congestion control mechanism.

From the results of connection oriented protocols is visible that the available bandwidth
is shared between all TCP connections. Amount of lost data is much lower compared to
connection-less protocols, because TCP implements congestion control algorithms, which
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Figure 4.7: TCP congestion window during window scaling test.

Figure 4.8: TCP round trip time during window scaling test.
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try to avoid unnecessary data loss. Due to these algorithms, delay during network conges-
tion caused by connection-oriented protocols is developed not statically but dynamically.

The window scaling test shows us the most interesting and unexpected behavior. The
network delay exists even network congestion is finished. When the second TCP stream
ends communication, the over-subscription ratio is decreased to 1 and the first TCP stream
raises its transmission speed to bottleneck bandwidth. Network should not be congested,
but the delay caused by outgoing interface buffer is still high.

These results give us description of protocol stack behavior during congestion. We are
able to create suitable test case/test cases, which test protocol stack performance during
network congestion.
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Chapter 5

Test case for protocol stack in
congested network

In this chapter we define test requirements for test scenarios, which will be created for
automated testing of the linux protocol stack. The test requirements are based on our
network setup during experiments from chapter 4 and we consider the usability of this test
scenario in CI testing.

In section 5.2, we discuss several possibilities of implementation of created test scenarios.
We based our decision mostly on scalability option of current solution.

5.1 Test case requirements
Test case suitable for CI testing, which tests part of kernel protocol stack we are interested
in - especially congestion control algorithms, has to meet these requirements :

∙ The test case must simulate network congestion by increasing delay
and decreasing available throughput.

∙ The network impairments must not change during the test case.

∙ The test case must use IPv4 and IPv6 protocol.

∙ The test case must test TCP and UDP protocol.

The test case has to meet these requirements to fit our testing process :

∙ The test case must bind testing tool to specific CPU for stability
of results.

∙ The test case must use pair of two servers with exactly the same
hardware configuration (CPU, MB, NICs).

5.2 Test case design
In this section we consider possibilities of creating the test case. We focus mostly on
implementation of network simulation, network performance measuring tools and network
setup used for testing.
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5.2.1 Congestion simulation

The first problem is how to create network congestion without using too many servers/de-
vices, necessary for testing congestion control algorithms. Quality of this simulator has the
biggest impact to the validity of network congestion model.

This simulator causes delay, which is constant during test case run. This rule applies
to throughput limit as well.

Netem

In the Linux operating system community develops a special enhanced traffic queue called
netem [17]. It can limit transmission speed, add delay to communication and much more.
This makes it a great candidate for simulating network congestion using only software.

Attero

The second option for simulating network congestion is to use hardware solution, indepen-
dent on current version of operating system, which may have some bugs even in netem
simulator. The SPIRENT company created a hardware solution called Attero for simu-
lating network errors and special conditions. This device is able to create delay and limit
transmission speed as well, which satisfies the first requirement. It gives us a scalability
option for the next development of more complex test cases in the future.

5.2.2 Testing tool

There are several benchmarks for network performance testing (e.g. netperf, iperf3, ttcp) 1

and many of them meet requirements for testing tool. We decided to use iPerf3 (described
in section 4.2) to keep consistency of measurements from chapter 4 and newly created
measurements. This tool is well supported and new features are still being developed. The
biggest benefit is that the output log can be encoded to JSON format, which is very easy
to store and also to load result to be processed later on. It also gives us scalability option
for the next test cases created in the future (e.g. iPerf3 can omit the first 𝑛 seconds of test,
use 𝑛 parallel streams, and other features).

5.2.3 Network setup

For this test case we create special hardware configuration shown in figure 5.1. This setup
consists of two exactly the same servers and Attero-X emulator. Whole network environ-
ment used for testing is sealed off from other traffic, which may influence the results of
tests. This isolation protects the whole lab network from congestion state.

A network interface card should have stable driver in kernel to avoid interference of
measurements by defective kernel module. We use 10Gb NIC with ixgbe driver from Intel,
which has stable and good performance results2 in non congested network.

1https://wiki.linuxfoundation.org/networking/performance_testing
2This argument is based on our performance test of current NIC, but the results are not public.
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Figure 5.1: Network diagram show connection setup of servers and network simulator.

5.3 Test scenario
The test cases will simulate two different network impairments: delay and bottleneck band-
width. These errors are defined by tester and can be variably changed. In our newly created
test scenario we simulate various over-subscription ratios: 2, 4, 8, which give us bandwidth
on 10 Gb link: 5 Gbps, 2.5 Gbps, 1.25 Gbps respectively.

In this scenario we use several delays: 0.3ms, 3ms, 30ms. These delays are based on
measurements from chapter 4, where 30ms delay is rounded delay measured in 100 Mbps
link. Other delays simulate latency of links with higher speed and the same buffer length
(1𝐺𝑏𝑝𝑠→ 3𝑚𝑠, 10𝐺𝑏𝑝𝑠→ 0.3𝑚𝑠).

Our idea of testing process is shown in algorithm 3. The designed algorithm iterates
through every simulated delay and over-subscription ratio and calls iPerf3 TCP and UDP
test case. The test scenario settings are stored in configuration object, where can be found
the list of simulated delays, list of simulated over-subscription ratios, list of tested message
sizes, number of iperf3 test for one message size and many others.

Algorithm 3: StaticCongestion
StaticCongestion (cfg)

input : Configuration object of test case
output: Measured throughput of each iPerf3 stream.
foreach delay ∈ cfg.delays do

foreach ratio ∈ cfg.ratios do
SetupAttero(delay, ratio);
iPerfTest(cfg, tcp);
iPerfTest(cfg, udp);

end
end

Algorithm 4 explains how iPerf3 measures the network. The network is already set,
when iPerfTest is run, therefore this algorithm do not setup any network impairments.
This test iterates through several message sizes and for each message size runs five iperf3
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tests to verify the stability of results. Results of each iperf3 test are saved to be processed
later.

Algorithm 4: iPerfTest
iPerfTest (cfg, stream)

input : Configuration object of test case
output: Measured throughput of each iPerf3 stream.
res = ResultContainer();
foreach size ∈ cfg.messsage_sizes do

foreach run ∈ cfg.runs do
if stream == tcp then

iperf3 –client cfg.dst.ip –bind cfg.srcip –time cfg.testduration –len size;
else

iperf3 –client cfg.dst.ip –bind cfg.srcip –time cfg.testduration –len size
–udp;

end
store result of iPerf3 test to res;

end
end
return res;
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Chapter 6

Implementation

In this chapter we describe CI process implemented for kernel testing used by our team. We
use several modules/programs in CI process with key testing project called Beaker. These
programs are quickly described in section 6.1.

We implement new test scenario and test case into this CI process based on test scenario
design from chapter 5. Implementation details of this test case are in section 6.2 together
with description of project responsible for preparing server for test and executing network
performance tools.

6.1 Automated testing
Software needs to be tested to maintain the quality and reliability as high as possible. In
old software development models (e.g. Waterfall model) the testing phase takes place after
development of project requirements. If the testers find a wrong behavior (bug), the soft-
ware development process steps back into the development phase, fixes the bug and comes
back into testing phase. This process is quite slow and extends the period between soft-
ware releases. The next step in evolution of software development management are Agile
methodologies. These iterative methodologies (e.g. Scrum) make the time period between
releases shorter and they easily adapt to evolving customer’s needs through project devel-
opment. In agile, the testing phase does not take place after development as in Waterfall
model, but testing and development phases exist in parallel.

6.1.1 Continuous integration

The developers merge their work into one repository several times a day to detect integration
errors and also to provide the newest progress in their work to testers. This process is
called Continuous integration. The greatest benefit of this process is earlier detection
of possible bugs [8], if tests are run with the new version of project. Continuous integration
does not necessarily add more quality assurance to project, but with suitable automated
tests can save the time wasted by the integration of code and testing the project manually.

6.1.2 CI testing of kernel performance

Continuous integration process is used in kernel development, which helps to find bad
commit/version. A pipeline, that triggers and evaluates the test results, used by our team,
is shown in figure 6.1. New kernel version is build by Brew, which informs Jenkins (described
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Figure 6.1: The process of continuous integration testing used in our team [28].

in section 6.1.4) about new version of kernel. Jenkins runs Jobcreator (described in section
6.1.6), which generates test job for each test case. These jobs are submitted to beaker
(described in 6.1.5), which performs test case execution. Output data from test cases
is stored into data server, where program named reporting (described in section 6.1.7)
compares test case result to baseline and creates web report. This report is stored into
database (described in section 6.1.8), where it is evaluated whether it passed or failed
performance criteria.

6.1.3 Koji/Brew

Koji is system for building packages [13]. It was created by Fedora project. It focuses
only on RPM packages. Koji uses Mock1 to build packages for different architectures and
distributions. The build process is independent of the host operating system, which runs
Koji.

1https://github.com/rpm-software-management/mock/wiki
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6.1.4 Jenkins

Jenkins is an open-source project, which helps with automation of CI/CD process. The
major component of this project is automation server, which can be used to automate all
tasks needed in CI/CD process (e.g. building, testing, delivering or deployment tasks) [1].
This automation server can be easily extended by plugins, which adjust the server to project
requirements.

The biggest benefit of this project is that testers can spend more time with test devel-
opment and results analysis and they can forget about the test orchestration or running
the tests manually.

6.1.5 Beaker

Beaker is a tool for automated managing of servers and computers in lab environment. It is
mostly used for automated installation of system and task execution. Beaker provides web
user interface for maintaining hardware inventory, system provisioning, task scheduling and
viewing task results [16].

Beaker has its own TFTP server with available image of operating systems for auto-
mated installation. This is provided through PXE2 during automated installation process.
User of Beaker system has to ensure that installed system has correctly set boot order (sys-
tem should try to boot from network at the first place), otherwise automated installation
will not work. Beaker must have access to the management of installed device to be able
to power on/off or reboot the current system automatically. When Beaker starts instal-
lation process of some system, it powers on this system and creates special configuration
file for this system in the TFTP server. Server downloads this file via PXE and starts the
installation process according to this file.

Beaker Job

Beaker Job contains recipe set and description system or several systems, where recipe set is
being run. System can be specified by several parameters, for example hostname, if recipe
should run on specific system, or hardware restrictions, or random system, which satisfies
these restrictions.

The recipe set contains one or more recipes, which are run in parallel [16]. Each recipe
contains test system specifications (e.g. hostname, number of CPU, NICs, amount of RAM,
etc.), specification of distribution and ordered sequence of tasks. Example of a Beaker job
for one specific server is shown in listings B.1.

Beaker Task

Beaker recipe task is the smallest unit of work and status (PASS/FAIL) is reported to
Beaker server [16]. In tasks, users are able to implement their own executable programs or
tests, which will run inside jobs. Beaker provides unified calling methods using Makefile.
In the beginning of task execution it calls make build to install or prepare application for
execution. In the next step it calls make run, which should execute task. User or tester is
responsible for implementing of build and run dependencies.

2Preboot execution environment.
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Beaker scheduler

Beaker is responsible for matching the correct system and executes job on that systems.
For this purpose Beaker scheduler was created. This module creates simple FIFO queue,
which cannot be prioritized (only if jobs match the same system) [16].

Beaker keeps hardware specifications of each system in a database. Based on these
specifications scheduler choose proper system for current job.

When scheduler executes job on target system, as the first step it installs test distri-
bution. Then tasks of current job are being run and evaluated sequentially. Each task is
saved in Beaker database server and target system installs current task from this database.
Beaker project was developed especially for software testing and developers supposed the
task was test scenario or test case. Therefore Beaker stores result (PASS/FAIL) of each
executed task to database.

6.1.6 JobCreator

JobCreator is our internal tool generating jobs for Beaker system. The job describes the
whole automated process, which contains installed distribution, installed and executed tasks
and others. This job is stored in XML format. JobCreator is able to submit job directly
using remote procedural call, which transfers job encoded in XML via HTTP protocol.

6.1.7 Reporting

The main role of reporting module is to compare several results and create web report,
which shows the results graphically. Most of the time it compares just two results : new
results from CI test of kernel and baseline. These comparisons are stored in data server
and links to these reports are stored in CQE database . This module supports generating
of results manually for special purposes (e.g. report of several kernels of specific test case,
report on demand).

6.1.8 CQE database

CQE is database for links to reports and information about testrun (e.g. rpms, distribution,
tags, hostnames of devices). On the top of this database web interface is implemented. It
can be used to filter results according to users needs. This database serves to testers and
to managers as well. We can filter results, that need to be reviewed, or we can create CQE
link with only specific kernel/distribution as a status of our testing.

6.2 Test case implementation
In this section we quickly describe implementation of our testing task to Beaker called
network_perftest. It is used during the whole testing phase. It setups testing servers and
runs sequentially thousands of performance tests with various options. Output of these tests
are processed during testing phase and the most important parts are stored for comparison
to baseline result.

6.2.1 Testing

For implementation of various network setups our team created python project, responsi-
ble for setup servers with variable operating system and many others. For each scenario
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Name Description
SSH keys We add the same ssh key during setup to enable the access to

server without password.
Kdump Kdump is set to send vmcore of crashed kernel to data server for

later analyzes.
Sysctl variables These variables are set during setup phase.
Packages List of packages, which will be installed during setup by yum.
Services Testing program starts/stops various services running on the sys-

tem (e.g. lldpad, netperf, irqbalance).
Repositories These repositories contains required packages, therefore are

added to system.
IP addresses Each interface has assigned unique IPv4 and IPv6 address, there-

fore testing program is able to exactly find correct interface for
data stream of performance test.

Paths Paths is list of pairs (source, destination) of IPv4/IPv6 addresses,
which describe route of testing stream for performance measure-
ment tool.

Test cases List of test cases executed during this scenario.
Logging Several show commands are executed in the end of testing phase.

They are stored together with test results for later analyzes if
problem occurs.

Table 6.1: The most important system settings, which are adjusted during setup.

and each server used by this scenario we create special configuration object, which stores
information needed for system setup. Quick example of the most important adjustments
are shown in table 6.1. All the set adjustments are persistent and after setup phase the
system is rebooted and no additional adjustments are set.

The test case has configuration object as well. It specifies: paths3 for performance
tests, duration of single performance test, tested message sizes and number of executed
performance test for each message size. This checks deviation of measured results.

The testing phase takes place after reboot. The server pair is prepared according to test
scenario needs, therefore the testing phase just runs performance tests. It reads test cases
from configuration and starts to perform test cases sequentially. Each test case iterates
through: paths, message sizes and number of test run and run performance test for each
combination of values. Test case object reads these values from configuration and it may
be different across all test cases.

Performance test is executed by using special object. It abstracts creation of shell
command and execution of this command in new process running in the system. The
process is created by using subprocess python library, which allows spawning new process,
catch the return code and connect the input/output/error pipes4. All necessary variables
are set in the main test case cycle and test object is executed. When performance test
finishes the execution, output is parsed by the performance test object itself and returns
data in dictionary.

3Path is pair of source and destination address.
4https://docs.python.org/2/library/subprocess.html
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The test case creates tree structure of results in python dictionaries, which are stored
together with the next test case results in XML format in the end of testing. The testing
program adds meta information about testing environment and runs all logging commands,
which will be packed to results as well. The final result directory contains following files:

∙ store.xml - results of performance tests

∙ meta.xml - information about system under test

∙ attachments.tgz - logs from various services and programs

6.2.2 Synchronization

The installation process usually takes different time. If one server of testing pair is installed
and set earlier, testing process starts earlier as well. This causes several faulty measurements
in the beginning of testing. To avoid this situation our team developed a synchronization
tool, which ensures the both systems are ready before the testing phase starts. This tool
creates synchronization barrier, which means both testing servers ask the synchronization
server if the second server is ready to test.

6.2.3 Spirent Attero-X

Attero-X is a key component of StaticCongestion test scenario. It simulates bottleneck
bandwidth and delay in the network. This test case is added into automated CI testing,
therefore configuration of Atterro-X has to be automated as well. Calnex and Spirent com-
panies developed attero python library, which makes API for communication with Attero-X.
This library was modified by our team to fit into CI process. We created several abstract
functions, which wrap the creation of Attero-X commands and network communication
with program that controls Attero-X. In StaticCongestion scenario, Attero-X is config-
ured before running test case.

6.2.4 Features implemented for this thesis

Creation of StaticCongestion test scenario requires implementing several python classes
and objects. In the first step, we had to create class, which wraps calling of iPerf3 per-
formance tool. Usage of this class instance is described in section 6.2.1. This object has
the same attributes as iPerf3 command line arguments. During command line creation,
responsible method just takes object’s attributes and adds these attributes to command in
required format.

In the second step, we needed to create configuration objects for designated server pair
with configuration for StaticCongestion test scenario. This configuration object copies
almost all settings from All NIC’s drivers test scenario. Only differences are path list,
which contains only single route traveling through Attero-X, and test scenario list, which
contains iPerf3 TCP and UDP StaticCgonestion test scenarios.

In the last step, we had to implement test scenario classes. For better maintainability
we created an abstract class called StaticCongestion, that just prepares Attero-X according
to scenario configuration object and calls test case method, which is not implemented. To
test TCP and UDP protocol we created two classes (one for each protocol), which inherit
from StaticCongestion class and implement test case method. When test driver calls run
method of TCP or UDP StaticCongestion, it prepares Attero-X and executes test case
measurements.
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Chapter 7

Evaluation of testing scenario
results

In this chapter we discuss reports created from test scenario called StaticCongestion. We
had run this scenario four times with different distributions and kernels to check if perfor-
mance of protocol stack changed during the development. Kernel versions and distributions
used for testing are shown in table 7.1. We used these distributions to check performance
difference between many patches. In CI testing the amount of tested patches is much lower.

Generated web reports are very large, therefore are not part of this printed document
and can be found in included CD.

Distribution kernel version
RHEL-6.7 kernel-2.6.32-573.el6.x86_64
RHEL-6.9 kernel-2.6.32-696.el6.x86_64
RHEL-7.3 kernel-3.10.0-514.el7.x86_64
RHEL-7.5 kernel-3.10.0-862.el7.x86_64

Table 7.1: Kernel versions in various RHEL GA distributions.

7.1 RHEL-6.7 vs RHEL-6.9
These two distributions are different only in version of installed packages, which contain
kernel as well. To check kernel versions of these distributions see table 7.1. These two
kernels differs in 123 versions and too many patches.

7.1.1 TCP

In the TCP test cases, performance of these distributions is very similar. In test cases with
30𝑚𝑠 delay, results do not achieve bottleneck bandwidth. The Bandwidth-delay product is
probably too large and decreasing TCP throughput. The test result of this measurement is
visible in figure 7.1. Acceptable regression is no more than 5% and this report shows that
the newer RHEL-6 kernel passes the test.
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Figure 7.1: Low TCP throughput due to high bandwidth-delay product in test case: Net-
work impairment emulation above IPv4 over Intel Corporation 82599ES[delay: 30 ms, bot-
tleneck: 2500000 kbps]

7.1.2 UDP

Performance results of UDP protocol show very low throughput in test cases various over-
subscription ratios. It looks like the delay has no performance effect on throughput. In
non-processed results we can see high percentage of lost data (50% in small message size
without, 95±2in higher message size). UDP is not able to reconstruct fragmented datagram
if one part is missing, therefore amount of lost data is enormously high. It is clearly visible
that UDP protocol suffers during network congestion, because it has no congestion control
mechanism.

7.2 RHEL-7.3 vs RHEL-7.5
These distributions differ only in version of packages. Kernel used in these distributions is
based on fork of 3.10 upstream kernel. Full kernel versions of these distributions are shown
in table 7.1.

7.2.1 TCP

In TCP stream results with 0.3𝑚𝑠 delay, we can see similar performance between these
distributions on higher message sizes. In lower message sizes, performance is slower, which
might be caused by NIC driver.

In TCP stream results with 3𝑚𝑠 delay and 5𝐺𝑏𝑝𝑠 bottleneck bandwidth, there is re-
gression at all message sizes. Test results in chart are shown in figure 7.2. Performance
with lower bottleneck bandwidth looks similar and passes testing criteria.
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RHEL7 has similar performance as RHEL6 with 30𝑚𝑠 delay. Long fat networks have
enormous bandwidth-delay products, therefore congestion window variable is probably set
to the highest value. This stops raising congestion window, which is proportional to
throughput (equation 4.4 shows evaluation of throughput). Therefore TCP stream does
not achieve even bottleneck bandwidth transmission rate.

Figure 7.2: Regression in TCP test: Network impairment emulation above IPv4 over Intel
Corporation 82599ES[delay: 3 ms, bottleneck: 5000000 kbps]

7.2.2 UDP

UDP stream test shows similar results as RHEL6. Network throughput is also very low in
simulated networks with various delays and over-subscription ratios. Our thoughts about
this behavior are in section 7.1.2.

7.3 Test scenario conclusion
Designed test cases are successfully implemented in development branch of our testing
project. Web reports of experiments results bring more detailed information about protocol
stack behavior during network congestion.

Results from TCP test case are stable (low standard deviation) and expected. They
show us behavior of congestion control algorithms in network during congestion and in long
fat networks.

From results of UDP test case is clearly visible the bad design of test case. Methods
applied on TCP test case can not be shared with UDP test case. iPerf3 UDP test usually
uses message size equal to MTU or 1460𝐵. Very low message size consumes lot of CPU
time and higher message sizes has to be fragmented (it is offloaded to NIC). If a fragment
is lost the whole UDP datagram is lost.
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Chapter 8

Conclusion

The goal of this thesis was to study and understand networks during congestion and to cre-
ate suitable test scenario for testing Linux kernel protocol stack under these circumstances.
Red Hat customers using Red Hat Enterprise Linux operating system want to be sure about
network performance of this product. They create hundreds of VMs or containers inside
dozens of servers, all connected into one switch. This switch creates bottleneck, where
congestion may occur.

For understanding the behavior of each network device, we created lab environment
simulating over-subscribed network in datacenter with several file servers. We simulated
scenario with many users downloading files from file servers at one time, which caused
network congestion. In our lab we had two servers simulating users and file servers. Total
throughput of file server could be 6 Gbps, but user server was connected to switch using
100Mbps connection. It is obvious that congestion occurred in outgoing interface buffer
in the switch. In this network we observed statistics of the congested interface buffer and
throughput of UDP and TCP protocol. On servers we ran iPerf3 performance tool and
ping to observe throughput and latency. Congestion window was observed by special kernel
module reading this variable from socket descriptor when data arrived to server. In TCP
protocol we were interested especially in congestion control algorithms, how efficiently they
were able to utilize congested network. These observations and measurements done in
network during congestion are described in chapters 3 and 4.

The most important outcome of this thesis are test scenario designs, which test Linux
kernel protocol stack during congestion with various delays and over-subscription ratios.
We considered two possibilities of congestion simulation: software and hardware method.
We chose hardware method, because we already had network emulation device (Attero-X).

We implemented several python modules to enhance existing testing project with new
test scenarios. These test scenarios firstly set up network, servers and network emulator.
After this phase they ran iPerf3 performance tests using TCP and UDP protocol. Results
from iPerf3 tests are compared to baseline to detect regression.

To see the asset of new test scenarios we ran several OS distributions with various kernel
versions and generated web reports with comparisons. Results of TCP test case are as we
expected and stable. This test scenario will be added into CI testing of protocol stack and
will be run several times a day. Results of UDP test case show very low performance caused
by bad design of UDP test case. It is not possible to use the same testing configuration as
in TCP test case.
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8.1 Possible enhancement to this thesis
This topic offers another possibilities for further research, which we had to leave aside,
because it would exceed the scope of this thesis.

∙ UDP test scenario fix - To find proper configuration (message sizes, over-subscription
ratios, delays) with low standard deviation of test results. Test scenario results should
show adequate throughput of UDP protocol.

∙ Observe network with routers configured with RED - Random early detection
may significantly decrease delay in the intermediary device. Probability function
decides packet loss, when queue is partially filled. This informs congestion control
algorithm about congestion, which starts to lower transmission speed. Earlier packet
drop may cause lower overall throughput. This type of network should be observed
to understand protocol stack behavior in this network and to check the performance
impact.

∙ Observe network with enabled load-balancing - Routing protocols may find
more than one equal route to the same destination. Routers are able to use more
routes to the same destination by using load-balancing feature, which can use round
robin algorithm to choose the path. This algorithm does not guarantee the usage of
the same path for the same data flow, therefore out of order delivery may occur.

∙ Create Dynamic Congestion test scenario - Network congestion is not constant
event. Due to the reaction of congestion control algorithms it is a recurring event.
Therefore over-subscription ratio and delay change in time. New Dynamic Congestion
test scenario should change delay and bottleneck bandwidth during the test according
to configuration pattern. This should create the same network behavior for each test.
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Appendix A

Wireshark charts

In this chapter there is shown UDP send algorithm during transmission captured by wire-
shark.

Figure A.1: Sending UDP stream by iPerf3.
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Appendix B

Beaker examples

Listings B.1 shows beaker job just for one server, otherwise the example will be very long.

<?xml version=’1.0’ encoding=’ASCII’?>
<job user="atomasov" group="perf-test" retention_tag="60days">
<whiteboard>**NET** - *RHEL-7.5 (CI Kernel: ‘None‘, Family: ‘RHEL7‘)* - **
→˓ StaticCongestion** - hosts=[[brusic1.slevarna.tpb.lab.eng.brq.redhat
→˓ .com](https://beaker.engineering.redhat.com/view/brusic1.slevarna.
→˓ tpb.lab.eng.brq.redhat.com), [brusic2.slevarna.tpb.lab.eng.brq.
→˓ redhat.com](https://beaker.engineering.redhat.com/view/brusic2.
→˓ slevarna.tpb.lab.eng.brq.redhat.com)], tag=‘None‘, devel=‘False‘

---
</whiteboard>
<recipeSet priority="Normal">
<recipe kernel_options="" kernel_options_post="" ks_meta="beah_no_ipv6"
→˓ role="" whiteboard="[brusic1.slevarna.tpb.lab.eng.brq.redhat.com](
→˓ https://beaker.engineering.redhat.com/view/brusic1.slevarna.tpb.lab.
→˓ eng.brq.redhat.com)">

<watchdog panic="None"/>
<packages>
<package name="pciutils"/><package name="screen"/><package name="tcpdump"/>
→˓ <package name="iptraf-ng"/><package name="tmux"/><package name="mc"/
→˓ ><package name="psmisc"/><package name="vim"/><package name="wget"/>
→˓ <package name="lldpad"/><package name="tuned"/><package name="rsync"
→˓ /><package name="xterm"/>

</packages>
<ks_appends/>
<repos/>
<distroRequires>
<and>
<distro_name op="=" value="RHEL-7.5"/>
<distro_variant op="=" value="Server"/>
<distro_arch op="=" value="x86_64"/>
</and>
<distro_virt op="=" value=""/>
</distroRequires>
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<hostRequires force="brusic1.slevarna.tpb.lab.eng.brq.redhat.com"/>
<partitions><partition fs="xfs" name="/boot" size="4" type="part"/></
→˓ partitions>

<task name="/distribution/install" role="STANDALONE"><params/></task>
<task name="/distribution/crashes/enable-abrt" role="STANDALONE"><params/><
→˓ /task>

<task name="/performance/perf_synchronization" role="STANDALONE"><params><
→˓ param name="SYNC_ARGS" value="--server netperf-services.slevarna.tpb
→˓ .lab.eng.brq.redhat.com --port 8000"/></params></task>

<task name="/performance/libres" role="STANDALONE"><params/></task>
<task name="/performance/configure_attero" role="STANDALONE"><params><param
→˓ name="ATTERO_ACTION" value="stop"/></params></task>

<task name="/performance/network_perftest" role="STANDALONE"><params><param
→˓ name="NETWORK_PERFTEST_ARGS" value="--meta Family RHEL7 --meta
→˓ Workflow compose setup StaticCongestion"/></params></task>

<task name="/performance/network_perftest" role="STANDALONE"><params><param
→˓ name="NETWORK_PERFTEST_ARGS" value="--meta Family RHEL7 --meta
→˓ Workflow compose run --sync --scenario NetperfTCPSanity
→˓ StaticCongestion"/></params></task>

<task name="/distribution/utils/reboot" role="STANDALONE"><params/></task>
<task name="/performance/network_perftest" role="STANDALONE"><params><param
→˓ name="NETWORK_PERFTEST_ARGS" value="--meta Family RHEL7 --meta
→˓ Workflow compose run --sync --submit StaticCongestion"/></params></
→˓ task>

</recipe>
</recipeSet>
</job>

Listing B.1: Example of Beaker Job in XML for one server only.
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Appendix C

CD Contents

Included CD corresponds to this tree structure:
/

BeakerJob/.................................................Beaker job example
Reports/ ................................................ Generated web reports

RHEL-6.7-vs-RHEL-6.9
RHEL-7.3-vs-RHEL-7.5

Results/...................................................XML data from test
README.txt................................Instructions for running test scenarios
codes/ ............................................................ source codes

configure_attero/.......................Python library for setting Attero-X
libres/.......................................Library for storing test results.
reporting/...................................Tool for generating web reports
sequence-checker/ .......... Program for checking data loss and reorder error
testing/.....................................Beaker task for network testing

latex/................................................Source code of this thesis
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