
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

TEST CASEMANAGEMENTWITH SUPPORT OF BDD
SPRÁVA TESTŮ S PODPOROU SCÉNÁŘŮ BDD

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. BARBORA BLOŽOŇOVÁ
AUTOR PRÁCE
SUPERVISOR Ing. ALEŠ SMRČKA, PhD.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav inteligentních systémů (UITS) Akademický rok 2018/2019
Zadání diplomové práce

Studentka: Bložoňová Barbora, Bc.
Program: Informační technologie Obor: Inteligentní systémy
Název: Správa testů s podporou scénářů BDD
 Test Case Management with Support of BDD
Kategorie: Analýza a testování softwaru
Zadání:

1. Nastudujte projekty pro správu požadavků a testovacích scénářů (např. TestLink, TestCube). Nastudujte
metodiku chováním řízeného vývoje programů (BDD, Behaviour Driven Development). Seznamte se
s nástroji pro evidenci chyb a problémů.

2. Analyzujte požadavky pro správu požadavků, testovacích případů využívající scénáře BDD a reportování
výsledků testování. Navrhněte informační systém pro správu požadavků a testů softwarových systémů.
Systém by měl podporovat automatizované spouštění testů.

3. Implementujte navržený systém jako webovou aplikaci. Integrujte webovou aplikaci s jedním z běžně
využívaných nástrojů pro evidenci chyb (např. Atlassian Jira).

4. Vytvořte automatizovanou testovací sadu pro všechny základní funkce webové aplikace.
Literatura:

C. Solis and X. Wang. A Study of the Characteristics of Behaviour Driven Development. 2011. 37th
EUROMICRO Conference on Software Engineering and Advanced Applications, Oulu, 2011, pp.
383-387. doi: 10.1109/SEAA.2011.76
Domovská stránka projektu TestLink: http://testlink.org/
Domovská stránka projektu TestCube: https://www.utest.com/tools/testcube
Domovská stránka projektu Jira: https://cs.atlassian.com/software/jira

Při obhajobě semestrální části projektu je požadováno:
První dva body zadání

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Smrčka Aleš, Ing., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 22. května 2019
Datum schválení: 1. listopadu 2018

Powered by TCPDF (www.tcpdf.org)

Zadání diplomové práce/21325/2018/xblozo00 Strana 1 z 1

Abstract
This thesis focuses on test management tools and automated testing. The project covers
analysis of existing open source tools and proposes its own BDD orientated test management
tool in the form of a web service. The project aims to specify and design this application
based on the process of Behaviour driven development. The resulting application Test-
BuDDy allows for test library management. Changes on the test library are projected onto
a remote repository of software under test (SUT) and triggers a test run (the test library
is being run against SUT by the BDD framework). TestBuDDy is able to save the test run
results, parse them into a report and generate and group found issues. The application also
allows requirement management and user management. The application is integrated with
the CI/CD tool Gitlab CI, the BDD framework JBehave and the issue tracker JIRA. The
application is designed to help testers during their work and also to be expandable within
the open source community.

Abstrakt
Tato práce se zabývá prostředky pro správu požadavků a testovacích scénářů pro automa-
tizované testování. Jejím cílem je na základě analýzy dostupných prostředků specifikovat
a navrhnout webovou službu založenou na procesu Behaviour driven development, která
pokryje jak správu požadavků testovaného softwaru, tak jeho automatizované testování.
Výsledná aplikace TestBuDDy umožňuje správu testovací knihovny, kdy promítá prove-
dené změny do vzdáleného repozitáře testovaného softwaru. Provedené změny spustí testy
testovací knihovny na testovaný software (spravováno BDD frameworkem) a aplikace je
schopna si interpretovat výsledky testů, uložit reporty a generovat a shlukovat nalezené
chyby. Aplikace též umožňuje správu požadavků vůči testovací knihovně a správu uži-
vatelů. Aplikace je integrována s CI/CD nástrojem Gitlab CI, BDD frameworkem JBehave
a nástrojem pro správu chyb JIRA. Aplikace je navržena tak, aby usnadnila práci testerům,
a s ohledem na budoucí expanzi v rámci open source komunity.

Keywords
testing, test management, Behaviour driven development, automation, Continuous Integra-
tion, web service, information system, Gherkin syntax, requirement management

Klíčová slova
testování, správa testů, Behaviour driven development, automatizace, Continuous Integra-
tion, webová služba, informační systém, Gherkin syntax, správa požadavků

Reference
BLOŽOŇOVÁ, Barbora. Test Case Management with Support of BDD. Brno, 2019. Mas-
ter’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Aleš Smrčka, PhD.

Test Case Management with Support of BDD

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Ing. Smrčka,PhD. with help of Daniel Šleis (Unicorn systems). All the
relevant information sources, which were used during preparation of this thesis, are properly
cited and included in the list of references.

. .
Barbora Bložoňová

May 22, 2019

Acknowledgements
I wish to express my gratitude to my supervisor and motivating advisor Ing. Smrčka,PhD.
that always helped me with his insightful comments and feedback. I would like to also thank
my Unicorn godfather Daniel Šleis for his support and knowledge from his test architect
practice during the initial stages of this thesis. Last, but definitely not least, I would love
to thank my family and friends for all the care, support and schnitzels that gave me the
courage.

Contents

1 Introduction 3

2 State of the Art 5
2.1 Software Testing . 5
2.2 Agile Methodologies . 8
2.3 Automatio of Testing . 9

3 Analysis of Existing Applications and Requirements 10
3.1 Test Management Tool . 10
3.2 Comparison of Existing Test Management Tools 11
3.3 Application Requirements . 12
3.4 Application Integration . 18

4 Analysis of Used Languages and Technologies 20
4.1 Web Applications . 20
4.2 Backend Framework . 21

5 Design of Application 24
5.1 Architecture and Communication . 24
5.2 Database Design . 25
5.3 Class Diagram and Scalability . 26
5.4 Test Library . 27
5.5 BDD Framework Integration . 28
5.6 Test Execution . 30
5.7 GUI Design for Future Expansions . 34

6 Implementation Details 36
6.1 Application Schema and File Structure . 36
6.2 REST API Endpoints . 37
6.3 User and Project Management . 39
6.4 Requirement Management . 39
6.5 Test Library . 39
6.6 Test Run Management and Reporting . 44
6.7 Incident Management: JIRA Integration . 45

7 Application Testing and Automated Test Suite 47
7.1 Acceptance Testing . 47
7.2 Automated Test Suite . 49

1

7.3 Usability Testing . 50

8 Conclusion 52

Bibliography 54

A Content of Enclosed DVD 56

B Installation and Manual 57
B.1 Prerequisites . 57
B.2 Deployment . 57
B.3 Demo initialisation . 58

C Database Model 59

D Swagger Documentation Example 62

E Output of The Automated Test Suite 64

2

Chapter 1

Introduction

With the gradual rise of technology usage in our daily life and growth in complexity of cur-
rent IT systems, there is also a significant increase in demand for higher quality software.
This need stems out the fact that it is almost impossible to guarantee 100% defect-free
software and it is one of the key responsibilities of the whole development team to minimise
such unexpected invalid behaviour. This is especially crucial in embedded systems that
are becoming more and more common, not only in commercial industries such as power
engineering or traffic control, but also in common modern households. While in the past,
there was an unspoken rule that programmers did not need to be able to test software and
testers were hired to only test the application with small technical background, the afore-
mentioned current trends require industry response to rapidly deliver reliable, maintainable
and secure software to the end customer as essential. Hence companies are heavily depen-
dent on the overall quality of their software development process, used methodologies and
the quality of software systems. In order to support new methodologies and approaches in
software testing, the need for a new test management tool has emerged. The tool’s primary
functions are to manage software that is under test, support and maintain its testing cycle
and support the cooperation of the testing team. The result application also has to connect
testing requirements with the test results. The application is based on the Behaviour Driven
Development (BDD) process. Another reason to implement this software development pro-
cess is to bridge the gap between business and technical parts of the software development
process [20]. BDD helps to resolve the communication issues between these two sides, and
consequently saves time and effort. At present, there are many commercially available apps
on the market such as Practitest1, qTest2, etc., but the targeted audience of this work is the
open source community in which only a few test management tools are active and supported
by its community to this day [1]. The project consists of an introduction, 7 main chapters
and a conclusion. Chapter 2 discusses the required theory for the project which includes
software testing, agile methodologies and finally puts these topics into context of automa-
tion. Chapter 3 analyses the existing test management tools and applications and gradually
builds up the result requirements. Chapter 4 is analysing and comparing various program-
ming languages and technologies that are used during implementation of the project. The
technologies are examined with respect to the application architecture. Chapter 5, the
application design, describes the application architecture, class diagram, scalability and
data storage. This chapter also outlines possible implementation problems that are further
1Available at: https://www.practitest.com/.
2Available at: https://www.qasymphony.com/software-testing-tools/qtest-manager/test-case-
management/.

3

https://www.practitest.com/
https://www.qasymphony.com/software-testing-tools/qtest-manager/test-case-management/
https://www.qasymphony.com/software-testing-tools/qtest-manager/test-case-management/

addressed. Chapter 6 examines the implementation details concerning the application in
general (endpoints, file structure, etc.) and describes implementation of application fea-
tures, especially its test library. This chapter also connects the requirements, design and
implementation, so that any potential users understand the project functions and flow. This
connection for example, is apparent in figure 6.3 where user action and its sent data trig-
gers multiple backend actions in relation to application design, BDD framework JBehave
(integrated within the application) and requirements. The chapter is closed with details
regarding application integrations Continuous integration/Continuous delivery tool Gitlab
CI and an issue tracking tool JIRA. Finally chapter 7 describes application testing, its
automated test suite and forms conclusions based on performed usability testing.

4

Chapter 2

State of the Art

This chapter introduces testing terminology and theory in order to put the context of
software testing and agile methodologies into the project. This whole chapter puts emphasis
on motivation to testing itself.

2.1 Software Testing
First, there are two terms worth mentioning to put testing into a software engineering
perspective:

Verification Validation
main focus a process of examination

and confirmation whether
the tested software results
conform to their set speci-
fied requirements

a process of examination
and confirmation whether
the results of tested soft-
ware in a final development
stage fulfil set specified re-
quirements

development phase all phases; the results are
defined as preconditions to
each development phase

final phases

aim the product is being built in
the right way

the right product was built

customer’s presence usually not needed yes; as a response to cus-
tomers’ demands

Table 2.1: Verification and Validation comparison

Verification and validation (V&V) recognise the following testing methods [9]:

1. Static analysis – oriented at the very form and structure of tested software without
its execution.

2. Dynamic analysis – involves execution, or simulation of tested software componen-
t/feature/function in order to detect potential faults in software.

3. Formal analysis – uses rigorous mathematical models to quantify various aspects of
tested software.

5

Software testing is a method of dynamic analysis of the tested software. According to book [7],
software testing is a process to identify whether the tested software is correct, complete and
of certain quality. In other words, it is an examination and analysis of the produced results
against the expected results. These expected results are called test requirements. These
requirements need to be set as part of the test design. Once the test or set of tests are
designed, it is executed on tested software (this is called a test run), that subsequently
produces a set of output values. The output values are then compared with test require-
ments and the result of the test is evaluated. The whole process of evaluating the test run
outputs represents one way to analyse and measure the quality of the developed software
in software testing.

2.1.1 Testing Vocabulary

Before fully looking into the next section, there are few terms from software testing termi-
nology ([19]) to be explained:

• Failure (or a defect, an error, a bug) of software or computer program causes the
program or software to produce unexpected incorrect results or behave in an unex-
pected incorrect way. Software faults are present since their implementation, but
visibly manifest later when the software is actually executed. Book [7] recognises
the difference between an error and a failure. Unlike an error that is viewed as an
internal manifestation of a system fault, the failure is viewed as an external, incorrect
manifestation of a fault with respect to the requirements in the specification. Defects
are measured by priority which represents how big of a consequence there is on the
developed software.

• Test plan ([7]) is a deliverable document for the customer that defines test objectives
and sums up all the activities related to testing of the project. Test plan defines test
strategy to be carried out, testing scope, schedule, roles and responsibilities, possible
risks and their priority and finally input and output criteria. Test plan can also be
split according to each stage of a development cycle.

• Test strategy describes testing approach used for selected tested software.

• Test suite is a set of test cases based on a common logical unit, or a feature on which
a test run will be executed.

• Test case is a test defined by a set of inputs (conditions, variables) and expected
outputs.

• Test scenario is a set of test steps. Test scenario is part of a test case.

• Test step is an action to be executed with set inputs (preconditions) and outputs
(results).

At first, a test suite is designed, test data is prepared, then the tested software is executed
with this test data and finally, the test run results are compared to the expected results
from the test suite.

6

2.1.2 Software Development Life Cycle and a Cost of a Defect

This section helps to further demonstrate the importance of testing in different stages of
a product development cycle. The whole process between the initial thought of a product
until its final delivery to the customer is known under the abbreviation SDLC, or Software
development life cycle. SDLC can be divided into several stages as the process involves
many tasks. SDLC’s main purpose is to improve quality of developed software and overall
development process [18]. At present there are multiple known models to deliver software
that mainly stand apart by different sequencing of their phases. The phases can run sequen-
tially or simultaneously. From the testing point of view, the V-model was introduced and
unlike fully sequential waterfall model [17], the V-model plans the testing phase in parallel
to each development phase of its cycle. Although the V-model is viewed as an extension of
its predecessor, it clearly distinguishes the connection of each phase of development with
its respective level of testing. The model activities are split between verification and vali-
dation. Another cause for introducing V-model is the fact that as its stages are progressing
during the software’s life cycle, the relative cost of fixing found defects has a logarithmic
dependency towards the time [14]. This fact was already known and measured in the past
([12]) and lead to the popularity of V-model over waterfall.

Requirement analysis

Unit testing

Acceptance testing

System testing

Integration testing

Module testing

VALIDATION

VERIFICATION

Test design information

Architecture design
(High level design)

Subsystem design

Detailed design
(Low level desgin)

Implementation

Figure 2.1: V-model in the context of V&V ([7]). The test design information needed for
each testing phase refers to a test plan with test cases for each phase, etc.

Based on V-model, there are 4 main levels of testing:

1. Unit testing is the lowest level of testing that examines and measures the most basic
functions of software components with respect to their Low level design (LLD). Unit
tests are usually executed by developers. The aim is to discover defects due to the
lowest cost of bug fixing at this level.

2. Integration testing that assesses subsystem modules and their communication with
respect to their Subsystem design. The common sought-after defects are errors in
interface communication.

7

3. System testing that assesses the system as a whole with respect to its High level
design (HLD). The aim is to find defects in the architecture design and requirements.

4. Acceptance testing is a phase to validate and assess whether the completed software
fullfills its requirements from Requirement design. In case of client presence during
this phase, the term user acceptance testing (UAT) is used.

2.2 Agile Methodologies
Although V-model brings parallel planning, the reality of this high-discipline model is still
very sequential and rigid for software development. V-model is not suitable for projects
of such dynamic nature where there is a high risk of changing the requirements and the
whole project has to start its cycle anew. The changes are subsequently very time and cost
demanding which eventually lead to ”the software development crisis” during the 1990s.
The crisis gave rise to seek more ways to deliver software rapidly, so the agile methodologies
eventually emerged and had been commercially popularised.

Behaviour Driven Development

The main concept of Behaviour driven development (BDD) as a software develop-
ment process is to bridge the gap between business and technical point of view on tested
software [20]. BDD essentially tries to take the best practices from its ancestor Test driven
development (TDD). TDD’s main concept is to write a test before the source code, so the
test initially fails, until the developer provides the required implementation. On the other
hand, BDD puts emphasis on behaviour of the source code features by defining user sto-
ries and using ubiquitous language [16]. Domain specific language (DSL) uses constructs
from the natural language so that the customer and project manager can understand the
name and content of each test. User story is characterised as:

Demonstrative example of a story
As a role
I want a feature
So that benefit

By ”benefit” it is meant a benefit for the customer. Each test scenario is first written and
narrated as a story. This approach is heavily dependent on correct requirements specifica-
tion, therefore BDD also introduces a gherkin language and tools. Gherkin syntax has
”Given-When-Then” pattern - a demonstrative example shows these keywords in blue color:

Example of gherkin syntax
Scenario/Feature: Descriptive clear name
Given Precondition/situation I'm at
When I do action
And I do another action
Then I expect results of these actions

One line represents the BDD declaration of a step. Gherkin also supports parameters,
batch runs and other features. The story is then mapped to executable code of an automated
test, in other words a BDD definition is added to its BDD declaration. The process of
mapping is usually done with the use of a BDD support tool, or BDD framework [16].
Finally, a test run is executed and the final result exported into a test report.

8

2.2.1 Why to Test

The term ”quality” is often mentioned in the context of software. It is crucial to understand
that there is not one correct way to measure quality [7]. While the test team can only look
for a presence of a defect, there is no way to actually prove an absence of a defect. A test
engineer is a part of a development team and his fundamental job is:

1. to discover and report errors in software at the earliest stage possible to prevent late
costly changes in the product (this is done by an early installation and execution of
a test phase during Software Development Life cycle)

2. to communicate with developers that the tested functionality is defect-free

3. to communicate with management in terms of potential risks for the product and
internal processes

4. to communicate with the customer that the product behaves in a correct defined way
and adheres to its requirements

Together the test manager and a test engineer form a test team. These activities also show
the reasoning to have a tester role during the early stages of the product development cycle
1. The results of all of these activities lead to main testing motivation: to deliver software
of as high quality as possible to the end customer.

2.3 Automatio of Testing
Another important aspect of high quality software is its changeability. When the code
changes during SDLC, for instance by adding a new feature, the whole system has to
be thoroughly and repetitively tested to ensure that the new code has not brought any
new defects or did not negatively influence the rest of the system, this is called regression
testing. Although the initial budget of test automation is higher than manual regression
testing, an automated approach is more efficient and effective in the long run (as seen in [9,
Chapter 4]). Alongside agile practices, the development operations, or ”DevOps” are being
used in daily practice due to 2 main needs: not only to develop, but also to deliver and
deploy the software as quickly as possible and to allow smaller but more frequent changes
in software. Continuous Integration (CI), Continuous delivery (CDE) and Continuous
deployment (CD) define a set of tools and practices to mitigate discontinuities between
development, delivery and deployment [13]. Overall the key principles of DevOps as a set
of practices and tools are defined by the following key practices:

• having source code in a remote repository with use of a version control to integrate
developer’s new or changed code with remote source code of the produced software;
a part of the CI.

• faster, more frequent releases in forms of builds after smaller changes; this practice
belongs to CDE2.

• an automated test suite3; also a part of the CDE approach.
1This fact is known as ”early testing”.
2While the CDE approach allows us to build and deploy software through manual release, the CD’s approach
offers a continuous automated build process and deployment.

3The automated test suite is executed in an amount of time that the team productivity doesn’t drop [13].

9

Chapter 3

Analysis of Existing Applications
and Requirements

This chapter is divided into several sections: part one introduces, classifies and analyses
test management tools. Part two examines and compares available tools. Part three will
build upon this analysis and contains the result requirements for the project application
and finally section 3.4 discusses tool integration with other technologies.

3.1 Test Management Tool
According to [19, chapter 7], a test management tool ensures product specification, exe-
cution, prioritisation, categorisation and overall maintenance of test cases. Furthermore,
requirements can be linked to each test case. The main areas of focus for advanced test man-
agement tools are: requirements management, test specification, test execution,
test planning, incident management (to manage found failures) and configuration
management (to keep track of different versions and builds of the developed software).
According to software licensing, there are 2 main groups:

• proprietary/commercial, where the customer has to pay for the product. These
tools are usually paid as a service by means of subscription. The examples are many,
as of 2019, the most used are: Practitest, Microfocus ALM (known in the past as HP
Quality center)1 and the hybrid example, HipTest2 where the product is free for open
source projects, otherwise commercial.

• open-source, where the product is free in its full available version. As of 2019 [1],
the examples are Testlink3 (the most used) and unfortunately closed down project
Tarantula4.

The goal of this project is to design an open-source basis of a tool comparable to its commer-
cial counterparts. The tools can be also classified by their dependency on installation:

• web-based application, where the app does not need an installation and is ac-
cessible through a web browser. These applications can be further divided between

1Available at: https://www.microfocus.com/en-us/products/application-lifecycle-management/
overview.

2Available at: https://hiptest.com/.
3Available at: http://www.testlink.org/.
4Available at: http://www.testiatarantula.com/.

10

https://www.microfocus.com/en-us/products/application-lifecycle-management/overview
https://www.microfocus.com/en-us/products/application-lifecycle-management/overview
https://hiptest.com/
http://www.testlink.org/
http://www.testiatarantula.com/

cloud-based (application as service is operated remotely and a client can only access
the application) and client-based (client operates the application on his side). Exam-
ple of cloud-based applications are HipTest and Practitest, an example of client-based
application is Testlink.

• non web-based or desktop application, where the application needs to be in-
stalled on a local machine; example is Microfocus ALM.

• a hybrid, or the applications that are offered depending on a client’s offer. An example
is qTest that offers both desktop and web-based solutions.

From the approach towards the incident management there are apps offering integration
to existing issue trackers, or implementing their own issue tracking. These issue trackers
are further compared in section 3.4.2.

3.2 Comparison of Existing Test Management Tools
To better understand and set requirements for the project, the 3 competitors are compared
in table 3.1. Testlink was selected as the leading open source tool, Practitest as one of the
leading commercial software thanks to its number of active users and wide offer of features
and finally HipTest as a hybrid tool that is primarily orientated on BDD. The examined
categories are based on analysed basic functions of test management tools from the previous
section and serve as a base to form a full list of application requirements in the next section.

Testlink Practitest Hiptest
license open source proprietary free for open source

projects; otherwise
proprietary

project
management

management of mul-
tiple projects

management of mul-
tiple projects

management of mul-
tiple projects

requirements
management

requirements and
event logs; require-
ment mapping to
test cases

requirements and
event logs; require-
ments mapping to
test cases

native BDD support;
requirements in doc-
umentation

test planning test plan manage-
ment and versioning

test plan manage-
ment and versioning

no

test
specification

test case creation;
assigning keywords
(as library); test
suite management,
maintenance; test
runs

advanced test man-
agement and filter-
ing

scenario editor;
reusable steps and
step auto-completion
and re-factoring

test execution manual and auto-
mated test execution

test runs and cycles;
versioning; manual
and automated test
executions

data sets creation;
test creation and
generation

11

Testlink Practitest Hiptest
test reporting report generation;

metric support;
export

advanced reports
and dashboards;
metrics support;
export

advanced reports
and dashboards;
advanced metrics for
each test; export

configuration
management

build management CI tools integrations CI tools integrations

incident
management

defect recording;
integrated with
common issue track-
ers (JIRA,
Bugzilla,...)

fully integrated with
various issue track-
ers; anti-bug dupli-
cates and calls to test

integrated with
JIRA as a plugin

version control yes yes, including Git,
SVN, ...

yes; using local ser-
vice HipTest pub-
lisher

automation in-
tegration

integrated, but lim-
ited

PractiTest’s API;
fully integrated with
automation tools as
Selenium

fully integrated with
20+ automation
frameworks such as
Cucumber, Java/JU-
nit, Selenium

user and role
management

yes; integrated vari-
ous roles and test as-
signments

yes; integrated vari-
ous roles and test as-
signments

limited to adminis-
trator and users; in-
tegrated test assign-
ment

running
environment

web-based;
client-based

web-based;
cloud-based

web-based;
cloud-based

price free $35-45/month $24/month (with
BDD support)

Table 3.1: Comparison of selected test management tools - functionality requirements and
basic information.

3.3 Application Requirements
[17, Chapter 4] splits software requirements into the following categories:

1. user requirements (UR) that are usually written in natural language for a non-
technical audience.

1.1. functional that describe the functionality/behaviour of the system.
1.2. non-functional that represent constraints on product organisational and exter-

nal properties such as performance.

2. system requirements (SR) that describe system external behaviour in a technical
manner.

First, the user requirements are presented in detail on which the system requirements are
then built upon. The final list of requirements is therefore in section 3.3.3.

12

3.3.1 User Requirements - Functional Requirements (FR)

1. User and role administration:

1.1. assign test team users to a project,
1.2. create, edit, manage user accounts,
1.3. create, edit, manage team roles,
1.4. connect role(s) to a user account.

2. Project management:

2.1. create, edit and remove projects,
2.2. edit project information e.g. description, name, schedule, scope, etc.,
2.3. filter and list projects.

3. Test planning:

3.1. create, edit and remove test plans and their information e.g. test plan version,
description, etc.,

3.2. assign test cases to a test plan,
3.3. assign test plan to a project.

4. Test design (test specification)5:

4.1. create, edit and remove test modules6 in a test plan,
4.2. create, edit and remove test cases,
4.3. assign test cases to a test module,
4.4. add and manage test case information,
4.5. automatically edit test step definitions7 based on their usage in test module

within test plan for a project (test step definition are to be stored as a library
for a project),

4.6. create, edit and remove a test step8 within the test case. Each test step is
based on a test step definition and added input parameters (= BDD step
declaration9 that is connected to its BDD definition within BDD framework),

4.7. filter and list test step definitions, test modules and their test cases.

5. Test execution (test runs) management, test cases execution):

5.1. execute test run and save its results (possible results are: Success, Failed, Pend-
ing, etc.)

5.2. automated testing:
5All of the following actions are to be in sync with remote repository.
6A test module represents test cases folder structure in a test plan.
7A test step definition is the base of a test step.
8A test step is a template with concrete parameters.
9The expected results of a test step are saved as another BDD declaration in gherkin syntax:
Then [BDD declaration of the result].

13

5.2.1. add BDD step declarations10 to remote repository (via used test steps
in test case),

5.2.2. generate BDD declarations for the scenario test steps with failing, BDD
definitions, save the changes on remote repository, thus immediately issue
a test run (that fails),

5.2.3. issue a new test run (trigger a rerun),
5.2.4. view, filter and list results of all test runs.

6. Incident management:

6.1. automatically create bug out of failing test run (based on failing BDD step
definition),

6.2. connect to an issue tracker to monitor bug status,
6.3. assign a bug to a failed test step definition (used in test cases),
6.4. list and filter bugs for project.

7. Test reporting:

7.1. view test run reports from triggered automation11,
7.2. save test cases results and overall result of finished test run into a report,
7.3. filter and list reports.

8. Requirement management - to ascertain test coverage as a metric:

8.1. create, edit and remove requirements,
8.2. link requirement to a test case,
8.3. tag requirement and manage tags for project,
8.4. filter and list requirements.

3.3.2 User Requirements - Non-functional Requirements (NFR)

1. The application should be multiplatform.

2. Performance: The application is designed for testing teams ranging in size from
smaller teams to tens of members.

3. Executability: The application should be implemented as a web service.

4. Source code maintainability: The source code is to be written in a structured,
documented way.

5. Extensibility: The application’s architecture should be designed for future exten-
sions and changes respecting the integrations (CI/CD tool, Issue Tracker, etc.).

6. Pricing/licensing: The application’s target audience is an open source community.
10Mapped source code to its respective BDD declarations.
11Automation is triggered by committed changes on a remote repository of the developed software by CI/CD

tool, this is discussed in chapter 4.

14

3.3.3 System Requirements

This section connects user requirements to the final table of application requirements with
the use of application Use case diagram. The system requirements are modelled and
simplified into UML Use case ([17])12 and a summary list of system requirements. Use
case connects system requirements and their respective detailed user requirements from
the previous section. The use case in figures 3.1, 3.2 and 3.3, displays 3 main recognised
groups, each group represents 1 or more functionality groups of the application (from the
requirements in section 3.3) and is visually framed with a coloured rectangle. As seen
on figure 3.1, although the application recognises user roles (for example an administra-
tor, a test manager, and a tester) the Use case was mainly created for a general user.

Manage	projects

Manage	roles	for	user
accounts

Manage	user	accounts

Create	project

Manage	test	plans

Find	project

User

Figure 3.1: Section 1 of the application Use case: User and role administration, Project
management and Test planning groups.

Connect	requirement	with
test	case

Find	project

Find	test	plan

Find	test	case

Manage	and	view
requirements

Tag	requirements
User

View	bugs	and	connect
them	with	issue	tracker

Figure 3.2: Section 2 of the application Use case: Requirement management and reporting
groups13.

12Dashed arrow lines represent include relation.
13Incident management group from the user requirements is included and simplified within the actions of

this group.

15

Manage	test	library

Issue	automated	test	run

Generate	BDD	step
declarations	and	issue
automated	test	run

Push	BDD	step	definitions	
from	local	repository

Find	project	repositoryView	automation	test	run
results

Find	project

Manage	BDD	steps	within
test	case

User

Figure 3.3: Section 3 of the application Use case: Test specification and Test execution

The resulting list of final application requirements is displayed in table14 3.2.

Code Requirement Group Dependency
FR-01 Application supports user and role man-

agement.
User and role ad-
ministration

FR-02 Users can manage multiple projects. Project manage-
ment

FR-01

FR-03 Users can manage and view test plans. Test planning FR-02
FR-04 User can connect a test plan to a project

for future test run.
Test planning FR-03

FR-05 Users can add test modules to the test
plan and test cases to the test module.

Test planning FR-03
FR-08

FR-06 Users can manage and view the test li-
brary (test modules, test cases, test steps,
test step definitions).

Test specification
(design)

FR-05

FR-07 Users can add test steps to test case (that
triggers FR-13).

Test execution FR-05
FR-08

FR-08 User connects project to remote reposi-
tory (managed by CI/CD tool) and his
future actions in thesis application are
visible in connected remote repository.

Test execution FR-02
FR-04

14The column Group classifies each requirement into context of groups from previous sections. User contains
all roles such as tester, test architect or administrator.

16

Code Requirement Group Dependency
FR-09 Users can view generated bugs from

failed test step definitions based on af-
fected test cases.

Incident
management

FR-05
FR-08

FR-10 Users can link an issue tracker to a bug. Incident
management

FR-09

FR-11 Users can view results of a test run. Test reporting FR-07
FR-08
FR-10
FR-13

FR-12 Users can issue an automated test run =
trigger a rerun.

Test execution FR-08

FR-13 Users can generate BDD step declara-
tions based on the test library.

Test execution FR-06
FR-07
FR-08

FR-14 Application commits generated BDD
step declarations as changes into the
project repository and triggers an auto-
mated test run.

Test execution FR-08
FR-13

FR-15 Users can view results of triggered au-
tomation (a change was commited on the
project repository).

Test reporting FR-08
(FR-12)

FR-16 Users can manage requirements and their
tags.

Requirement
management

FR-05

FR-17 Users can link requirements to test cases
and tag them.

Requirement
management

FR-16

NFR-01 The application’s architecture design
should be scalable in case of future ex-
tensions.

non-functional

NFR-02 The application should be integrated
with a chosen CI/CD tool, a BDD frame-
work and an issue tracker.

non-functional NFR-01

NFR-03 The application should be multiplatform
as a web service.

non-functional

Table 3.2: The final table of requirements.

17

3.4 Application Integration
This section discusses the comparison of possible application integrations from diverse fields.

3.4.1 Comparison of Existing CI/CD Tool Providers

With reference to FR-08, FR-14 and this thesis orientation on automation, the CI/CD tools
that allow automation and version control has to be decided. As of 2019, amongst top open
source tools, there are 3 selected CI servers to be evaluated: Gitlab15 with support of its CI
Gitlab CI 16, Jenkins17 and Travis CI 18. Jenkins is one of the biggest open source CI tool
with a large support of various plugins. Jenkins also comes with a support of open-source
community and can be heavily customised to one’s needs. Travis CI offers its product not
only as a service, but also offers the possibility of its installation on client’s premises. While
Jenkins is fully open-source, Travis CI is free only for open-source projects. Although the
thesis’ resulting application is meant to be open-source, its project repositories don’t have
to necessary be the same. According to [8] report, Gitlab CI provides wide range of DevOps
tools and, although relatively new, has the strongest and still rising market presence and
was chosen as a leader in Continuous Integration. GitLab CI basic functionality is open-
source with full support for either small or large scale products [8]. In the end, Gitlab CI
was chosen, since Gitlab CI complies with the thesis’ requirements and shows high potential
in future.

3.4.2 Comparison of Existing Issue Trackers

Regarding the FR-10 requirement and overall thesis assignment, the integration with an
issue tracker needs to be decided. The lead existing issue trackers ([2]) are JIRA19 (for
commercial use) and open source issue trackers Bugzilla20 and Redmine21. Trackers were
mainly compared by their popularity (by number of professional job offers in the IT field,
number of website mentions and so on). My main requirement was to choose the most
used tracker (as of 2019) that is also a web service ergo, I’ve chosen JIRA because this
commercial issue tracker by far surpasses its open source competitors [5].

3.4.3 Comparison of BDD Frameworks

With respect to FR-12 and FR-14, I need to also choose a suitable BDD framework to be
integrated into the application. Usual flow of BDD framework is: write a story; map it to the
framework supported executable code (usually Java); configure which tests to run; run the
tests and view the report. Chosen open source competitors are: JBehave22, Cucumber23 and
Concordion24, these competitors were compared based on different categories on table 3.3.

15Available at: https://about.gitlab.com/.
16Available at: https://about.gitlab.com/product/continuous-integration/.
17Available at: https://jenkins.io/.
18Available at: https://travis-ci.com/.
19Available at: https://www.atlassian.com/software/jira.
20Available at: https://www.bugzilla.org/.
21Available at: https://www.redmine.org/projects/redmine.
22Available at: https://jbehave.org/.
23Available at: https://cucumber.io/.
24Available at: https://concordion.org/.

18

https://about.gitlab.com/
https://about.gitlab.com/product/continuous-integration/
https://jenkins.io/
https://travis-ci.com/
https://www.atlassian.com/software/jira
https://www.bugzilla.org/
https://www.redmine.org/projects/redmine
https://jbehave.org/
https://cucumber.io/
https://concordion.org/

JBehave Cucumber Concordion
project language Java based projects various languages various languages
automation desktop and web; su-

port for JUnit tests
only web-based desktop and web

story format
(stories,
scenarios)

text statements requirement state-
ments, test condi-
tions

HTML specification

Gherkin format yes and more yes yes
mapping code Java various Java
JUnit support yes yes yes
documentation extensive; but rather

hard to read
extensive; up to date poor; but up to date

Table 3.3: Comparison of BDD frameworks.

Since Unicorn25 uses Java26 as their main programming language for power engineering
projects, my choice was based mainly on the features of each framework. In the end JBehave
was chosen, because: it supports not only a pure BDD approach in the gherkin syntax27,
but also possesses many more features. Whilst JBehave is the oldest of these 3 frameworks,
it is still very popular.

25Company’s web pages: https://unicorn.com/cz/.
26Java SDK is available at: https://jdk.java.net/.
27Article [16] compares different BDD frameworks based on their support of the BDD characteristics. JBe-

have supports majority of these recognised characteristics.

19

https://unicorn.com/cz/
https://jdk.java.net/

Chapter 4

Analysis of Used Languages and
Technologies

The goal of this chapter is to analyse and decide programming languages and technologies
that are to be used in thesis implementation. The chapter is split into 2 parts: 4.1 that
discusses web applications and their composition, 4.2 that covers technologies for backend
development of the application that serves as the base of the resulting web service.

4.1 Web Applications
Based on NFR-03, the project will be implemented as a web service. As the World wide web
evolved during the last 30 years, it allowed us to develop more complicated web applications
[17, Chapter 1]. The current trends indicate the rising use of web development tools known
as web application frameworks. A framework’s main purpose is to provide a set of libraries
and tools that help to build a modern web application that can be further reused.

4.1.1 Backend and Frontend

General application architecture consists of client side, also called a frontend, and server
side, known as a backend. Client side views and interacts with the web page, whereas server
side consists of a server reacting to user’s requests, the application and its logic and finally
data storage in the form of a database and connection to it. These functions are described
in detail in section 5.1. Thesis application is to be implemented as a service, so it mainly
focuses on the backend side.

4.1.2 Model - View - Controller (MVC)

MVC is a popular architectural pattern based on division of the application logic and
interface. MVC splits the application into 3 sections:

• model is a central section that represents application logic and its data. Model
receives updates from the controller.

• view is a rendered representation of the model.

• controller receives and processes user input and decides what is then passed onto
the model or the view.

20

Figure 4.1 puts MVC pattern into a context of backend and frontend.

CONTROLLER

MODEL

VIEW

BROWSER

client server

Updates

Updates

DBS

Notifies

User Action

Updates

works
with
data

Figure 4.1: MVC versus client and server. ”User Action” is usually in form of HTTP
Request from a client browser to the server, the server then sends back HTTP Response,
this is more discussed in section 5.1.

4.1.3 ORM and Data Storing

The data is to be stored in relational database in the form of tables. Database is managed by
Database Management System (DBMS). One of the leading DBMS is MySQL [3] that uses
Structured Query Language (SQL). To connect a database to programming code, data needs
to be linked to the language abstraction. Object-relational mapping (ORM) is a practice to
map data from relational database to OOP (Object oriented programming) language.

4.2 Backend Framework
Before the actual choice of framework, a programming language for the backend of the
application needs to be decided.

4.2.1 Chosen Programming Language

PHP1 is an open source general purpose and server-side scripting language which is unfor-
tunately not suitable for large scale applications. Key features of this robust, easy-to-learn
language are: stability and support for various libraries and speed. PHP also offers full
integration with popular databases like MySQL. Unfortunately, PHP used to be the most
1Available at: https://secure.php.net/.

21

https://secure.php.net/

popular over the internet, but from [6] it is apparent its popularity - although large - is
steeply decreasing.
Another candidate is Java as this language is used by JBehave and has support for web
applications. Java is a general purpose language that also supports a large variety of in-
built frameworks like Spring, J2E, etc. Java source code is compiled into a byte code and
then interpreted by Java Virtual machinde, or JVM. Java offers not only OOP approach,
but also orientation on security (as opposed to PHP) and scalability suitable for large scale
applications. Java overall (dis)advantages are:

+ large range of addable frameworks

+ performance; JVM

+ built-in memory management

+ large developing community

− verbose coding style

− hard to set up at the beginning

− dependency on IDE (Integrated de-
velopment environment)

On the other hand the last candidate, Python2, is the fastest growing in use as
of 2017 [15]. Python is a high-level general purpose, interpreted3 and object oriented
programming language. Python’s main advantages are:

+ easy-to-learn

+ organised and readable code

+ extensive well-documented library

+ easy package management

+ offers a variety of additional mod-
ules, plugins and libraries for web de-
velopment

− in general as an interpreted language:
slower than PHP

The key priorities for the final choice were the learning curve and the potential to be
extended in future, the best possible choice for language was Python.

4.2.2 Chosen Python Framework

From a framework point of view, there are several frameworks to be taken into consideration:
Django4, Pyramid5 and Flask6. Although Django offers out-of-the-box support of ORM
and wide range of modules for web development, compared to Flask it is more demanding
by means of memory and space usage. On the other side, there is a microframework, Flask,
that does not need a bootstrapping tool and is more orientated on the programmer’s own
choice of storing data and which components to choose for your application. As of 2017
[10], Flask has gotten more popular than Django on StackOverflow7. For these reasons,
I’ve chosen Flask as my backend framework. Here is a summary of its advantages:
2Available at: https://www.python.org/.
3Python does not need to compile before running.
4Available at: https://www.djangoproject.com/.
5Available at: https://docs.pylonsproject.org/projects/pyramid/en/latest/.
6Available at: http://flask.pocoo.org/.
7IT oriented ask and answer website

22

https://www.python.org/
https://www.djangoproject.com/
https://docs.pylonsproject.org/projects/pyramid/en/latest/
http://flask.pocoo.org/

+ lightweight, flexible and simple

+ less out-of-the-box approach, so the programmer has more control over the application

+ programmer chooses how to store data

+ Jinja2 8 templates support for dynamic web pages

+ on average [10] less verbose than Django

As a framework, Flask also brings another useful technique for web development: routing.
Routing helps the developer to remember URLs composition in his application. On code
snippet 4.1, there is an example of routing, where route() decorator binds /hello URL rule
to a function hello_world(), thus when a user visits http://localhost:5000/hello/9,
in other words a client requests this page, the function is rendered in a browser.

@app.route("hello")
def hello_world():

return "hello world"

Listing 4.1: Example of Flask endpoint.

Flask is based on Werkzeug toolkit10 that implements many functions including client’s
request and server’s response object. Werkzeug toolkit adheres to recognised Python web
application development standard WSGI 11. The last thing to be considered in scope of
framework is its integration with ORM with a toolkit SQLAlchemy12. Instead of writing
an abundance of SQL statements to perform operations over a database, SQLAlchemy
loads the database into Python OOP schema, therefore each object references its respective
database table. In example 4.2, the object Animals inherits from base class for all Flask
models db.Model and loads animal data into its variables. If a query to retrieve data from
database is executed, each animal object will contain animal data. The query to load all
animal objects can use framework function Animals.query.all() that is equivalent to
SQL query SELECT * FROM ’animals’.

db = SQLAlchemy(app) # initialise SQLAlchemy as db object
class Animals(db.Model): # initiate Animals object

id = db.Column('animal_id', db.Integer, primary_key = True)
fullname = db.Column(db.String(128))

if __name__ == '__main__':
db.create_all()

Listing 4.2: Flask example.

Flask has support for a range of DBMS including MySQL and SQL Lite. For the purposes
of the project, MySQL was chosen as it possesses scalability and a wide range of features.

8Jinga2 is web templating engine for Flask.
9Flask uses port 5000 by default.
10Available at: http://werkzeug.pocoo.org/.
11Python Web Server Gateway Interface; available at: https://www.python.org/dev/peps/pep-0333/.
12Available at: https://www.sqlalchemy.org/.

23

http://werkzeug.pocoo.org/
https://www.python.org/dev/peps/pep-0333/
https://www.sqlalchemy.org/

Chapter 5

Design of Application

The aim of this chapter is to present the application design from different aspects. First,
the application architecture is presented in connection to general communication within,
followed by an aspect of data storage in section 5.2. Section 5.3 discusses the application
scalability and shows the design of application class diagram and an example of general
communication amongst objects. Section 5.4 sets basic rules for the test library as the
main focus of the application. Section 5.5 familiarises the reader with the BDD framework
JBehave and its design that is integrated into TestBuDDy. Section 5.6 focuses on test run
management with the perspective of CI/CD tool. Section 5.6.1 addresses the course of
action in case of emerged problem with conflicting changes in the project (SUT repository).
The system design adheres to final requirements from section 3.3.3. Finally, reporting and
incident management designs are presented and explained.

5.1 Architecture and Communication
The application schema is a simplification of MVC schema in 4.1 in order to sum up
chosen technologies within the application architecture. It has been decided to refer to the
application under the name TestBuDDy for its BDD focus and orientation on the user.
As stated, the chosen backend technology is a microframework Flask. The application is
implemented as a service that is ready to be connected to a frontend in the future, as
specified in requirement NFR-03. Flask communicates with its MySQL database through
ORM and toolkit SQLAlchemy. Section 5.1.1 is dedicated to REST, here is a general
scenario as an example: client (browser) makes a HTTP request of type GET to view
an image. Request is expected in a RESTful format on server side. Flask polls for the
resource saved in the database through SQLAlchemy and if the image is successfully found,
the backend returns the image object in its response to the client. In case that the data was
not found, the server returns a negative response with an error code. The whole schema is
displayed in figure 5.1.

5.1.1 REST API Design

[17, Chapter 19] states, that the REST (REpresentational State Transfer) is an ar-
chitectural style of web services based on the HTTP protocol. RESTful web services, or
REST API, recognise the main term: a resource. A resource is represented by a URI 1. The
1Universal Resource Identifier is as string of characters that represent a resource.

24

Frontend Backend

web client

web application
framework -
 Python Flask

RESTful API

HTTP request

Response

ORM mapper
and SQL
toolkit -

SQL Alchemy

DBS
communication

layer

DBS -
 MySQL

Figure 5.1: Application model.

client sends a request to this URI by means of a HTTP method (GET,POST, etc.) and
the state of the resource can change. The created REST API is also further discussed in
implementation section 6.2.

5.2 Database Design
The relational database was modelled with regards to future expansions of the application
based on requirements NFR-01 and NFR-02, thus more complex database schema are in
the form of an ER diagram2, as shown in appendix C. The ER diagram of the complete
database model in figure C.3 can be split into several inter-connected groups:

• user management and project management (FR-01, FR-02) - in figure C.1.

• requirement management (FR-16, FR-17) - also in figure C.1.

• test reporting (FR-11, FR-15) and incident management (FR-09, FR-10); in fig-
ure C.2.

• test design, test execution and test planning (FR-04 - FR-08, FR-11, FR-13, FR-14)
- also in figure C.2.

The database section that is worth mentioning is displayed on figure 5.2. This section
consists of test step table and its step definition table. Test step is based on its generated
step definition. The test step definition is designed as a ”blueprint” base for the concrete
step in test case. Test step definitions are saved as an active library for the each project.
Test step definition only exists if there is at least one step using it. Blueprint is
then used by multiple different steps throughout the project. Test step fills in its designated
parameters within its definition. A relationship is defined by a dashed line, where its
cardinality is portrayed as 2 lines (crossing the dashed line) for ”one” and line and a ”fork”
for ”many”.
2Entity relationship diagram

25

test_step

id INT

content VARCHAR(256)

test_case_id INT

order INT

test_step_definition_id INT

parameters VARCHAR(1024)

Indexes

test_step_definition

id INT

content VARCHAR(256)

project_id INT

param_count INT

Indexes

Figure 5.2: ER diagram of the database model: test step and test step definition. From
the code point of view, test step definition refers to BDD declaration and its BDD
definition within the BDD framework.

5.3 Class Diagram and Scalability
The application consists mainly of Flask endpoints (unique project URLs) and a main
object, Core, used for the majority of project functionality, the exact project file division
is discussed in section 6.1. Respecting the NFR-02 requirement, one of the OOP patterns
used during the thesis implementation is a structural OOP pattern Adapter. Adapter (as
stated in [11]) is an interface that binds its adaptees (the classes that inherit from this
interface) to implement its methods. Client object Core contains concrete adaptee as its
class variable and requests its methods. Thesis uses adapter pattern for:

• BDD framework, or GherkinProcessor,

• CI/CD tool, or CICommunicator,

• IssueTracker.

Figure 5.2 illustrates how Core communicates with its adapters and facilitates requested
actions from each endpoint. The detailed communication is further discussed in implemen-
tation section 6.5.1.

CoreCreatorEndpoints Core
JBehaveGherkinProcessor

(adaptee)

requests Core

Core	instance

Figure 5.3: General class communication with example of BDD framework adaptee.

Another used OOP pattern is a creational OOP pattern Factory Method. First, based
on project information (requested Adapter type), CoreCreator uses different factories for

26

each Adapter and prepares a concrete adaptee for Client Core. Endpoint then calls for
adaptee functions wrapped in Core. The result class diagram is in figure 5.4.

CICommunicatorFactory
(ci_communicators.py)

BaseCICommunicatorAdapter

GitlabCICommunicator

CoreCreator Core

GherkinProcessorFactory
(processors.py) BaseGherkinProcessorFactory

JBehaveGherkinProcessor
IssueTrackerFactory
(issue_trackers.py)

BaseIssueTrackerAdapter

JiraIssueTracker

ORM	general	model
(map_database.py)

TestBuDDy	ORM	model
(base_objects.py)

Legend

composition (has)

association (creates)
realisation (implements)

Figure 5.4: TestBuDDy Class diagram.

5.4 Test Library
By test library, it is meant the management of projects, test plans, test modules, test cases,
test steps and their test definitions. Based on FR-03, FR-04, FR-05, FR-06 and FR-07, the
following figure 5.5 shows the expected flow of user actions in the application test library.
These additional rules are set as:

• A user has to first connect his empty existing remote repository to a project in appli-
cation3. This is done during project creation.

• A user then initialises TestBuDDy files4.

• A user can proceed to manage his test library within the new project. User actions
are to be reflected on the remote repository.

3Otherwise the application loses its main focus on automation (requirement FR-08).
4request: <root_url>/project/<proj_id>/init_repo

27

• There can be only one test plan connected to the project as the application presumes
work with the newest version of the project code on the project remote repository.

Create project

Create and assign
test plan

Modify test module
info or erase test

module
Modify test case info

or erase test caseCreate test case

Add new steps Erase stepsModify scenario or
steps

Project remote
repository is
available.

Create test module

Modify tp info or
erase test plan

Figure 5.5: User actions within test library. Each action can be also final. Issues and
algorithms connected with design are further investigated in section 6.5.

5.5 BDD Framework Integration
The thesis is implemented to work with the Java framework JBehave. Once the project
is connected to an empty repository, a user is expected to call:

<root_url/projects/<project_id>/init_repo

to initialise the section of the repository reserved for TestBuDDy. This reserved section
of the repository is divided into 2 main sections: the root of the repository, where the file
pom.xml and a file needed for CI/CD tool5, are initialised, and a folder src/test that is
further divided into:

• java, a folder with:

– file to run stories TestbuddyRunnerTest.java
– each module step definitions under name:

<module_name>_<module_id>Steps.java6. This means that module test cases
share this file for implementations of their step definitions.

5in Gitlab CI integration case, a YAML file
6Module and story files are without spaces.

28

• resource/stories, with folder <module_name>_<module_id> for each module that
contains its test cases (scenarios saved in story files) saved under names
<story_name>_<test_case_id>.story.

The figure 5.6 illustrates this test library design.

TEST STEP DEFINITION TEST STEP DEFINITION TEST STEP DEFINITION

STEP

TEST CASE
(SCENARIO)

TEST MODULE TEST MODULE

TEST CASE
(SCENARIO)

TEST CASE
(SCENARIO)

STEP STEP STEPSTEP

Figure 5.6: Module files consists of test step definitions of test steps in all of module test
cases. All modules belong to the test plan of their project.

Scenario Parsing

Each test case can be augmented by adding a scenario7 with test steps. An example of such
a scenario is:

Scenario: Logging in the application XYZ
Given User is on [logging] screen
When User uses [test@test.com] account and [test] password
Then User is redirected to [home] screen

Listing 5.1: Example of a test case scenario.

The scenario is then parsed and in case of new steps within the module, missing test step
definitions are generated, an example of such a definition is in listing 5.4.

Generated BDD Declarations

Test step definitions (BDD declarations and their BDD definitions) are generated sur-
rounded by TestBuDDy footer and header comments. Users are NOT authorised to change
these comment lines. A step consists of a step definition (template) and its parameters.
For example the step from listing 5.2 would have the step definition8 from listing 5.3, where
param1 is an input parameter used in the test step.

Then User is redirected to [home] screen

Listing 5.2: Example of a test step.

7In case of multiple scenarios within a test case, the parser accepts the first one and ignores the rest.
8Test step definition has its gherkin_type saved in connected table of the same name.

29

User is redirected to {param1} screen

Listing 5.3: Example of a test step definition.

An example of a generated step definition for this step is in listing 5.4, where 123 in the
comments is a step definition internal unique ID.

/*---testbuddy---step---123---*/
@Then("User is redirected to [$param_1] screen")
public void stepCode123(@Named("param_1") String param_1) {

/* BBD definition that is subsequently filled in by a tester locally*/
Assert.assertTrue(true);

}
/*---testbuddy---step---123---*/

Listing 5.4: Generated step definition that consists of BDD declaration and BDD definition.

This JBehave design produces several issues to be resolved, this is fully described in 6.5.3.

5.6 Test Execution
Based on requirements FR-10, FR-11, FR-12, FR-13, FR-14, FR-15, the key functionality
of the project is related to automated test runs. Test execution, or Test Run Management,
is connected to the SUT remote repository. The remote repository consists of the tested
software project and section reserved for TestBuDDy9. There are several scenarios to be
considered:

• Test run is triggered automatically when BDD declarations are generated (or changed),
so there is a new (or changed) test suite to be executed.

• Test run is issued by a user through TestBuDDy endpoint, this case usually involves
retesting of existing test suite and will be furthermore referred as test rerun.

• Test run is triggered from CI/CD tool, whenever there were some changes done in the
project and test repository. These changes involve supplying new BDD definitions of
test steps by a user. This case also belongs to test run scenario, as the test suite is
re-executed.

All of these scenarios involve triggering a new pipeline in CI/CD tool. The pipeline will
be implemented as part of the Gitlab CI integration. TestBuDDy internally recognises
3 pipeline trigger types for each aforementioned scenarios: commit for TestBuDDy test
run (TestBuDDy commited changes of the test library that triggered this pipeline), trig-
gered_run for test rerun (the pipeline was triggered on an already existing commit), other
for all other user actions executed on the remote repository. The visual demonstration of
these cases is portrayed in figures 5.7 and 5.8. The possible problems of this design are
discussed and resolved in the following section 5.6.1.
9These 2 sections are divided by folder structure.

30

TestBuDDy service CI/CD pipeline

local repository

add step definitions (step bodies)

test management

sync test run results

reporting

TEST RERUN (triggered pipeline)

initiate automation

generate or update BDD step
declarations (+ push)

test run execution

push

TestBuDDy service CI/CD pipeline

local repository

add step definitions (step bodies)

test management

reporting

initiate automation

generate or update BDD step
declarations (+ push)

test run execution

push

TEST RUN (TestBuDDy push)

sync test run results

Figure 5.7: Test run scenario. A tester designs his test library using the TestBuDDy
service. Whenever the tester adds, modifies, or removes new test steps to a test case;
modifies or erases active10 test cases within a test module; modifies or erases active test
modules11, it affects the test step definition library. Changed BDD step declarations are
pushed onto the remote repository and executed (even in case of new BDD declarations
without their definitions, which means that the test run fails as part of the Test Driven
Development approach). The CI/CD tool then executes the test run as a new pipeline.
When the user wants to view the result of a finished test run, the user calls the appropriate
endpoint to sync and renew the test run database of TestBuDDy. The results are visible
as part of the test reporting function. When the tester supplies their BDD step definitions
(test steps bodies) from their local repository to the remote repository, another test run is
triggered and a user can sync their test run database when in need.

TestBuDDy service CI/CD pipeline

local repository

add step definitions (step bodies)

test management

sync test run results

reporting

TEST RERUN (triggered pipeline)

initiate automation

generate or update BDD step
declarations (+ push)

test run execution

push

TestBuDDy service CI/CD pipeline

local repository

add step definitions (step bodies)

test management

reporting

initiate automation

generate or update BDD step
declarations (+ push)

test run execution

push

TEST RUN (TestBuDDy push)

sync test run results

Figure 5.8: Test rerun. A tester can also issue a new rerun of their existing test library.

31

5.6.1 Issuing a Test Run versus New Changes

This design brings several problems to solve. What happens when there are conflicting
changes done both from TestBuDDy (new or changed BDD declarations that had just been
pushed into a remote repository) and changes from a local repository (changed BDD decla-
rations or definitions during an already issued automated test run)? There are 3 possible
outcomes of this scenario:

1. new local changes are ignored

2. new local changes are allowed, changes interrupt the ongoing test run and a new test
run with these changes is issued

3. merge of both changes onto the remote repository and a new test rerun

In case of the 2nd and 3rd outcome, the results would have to be reported back to the
service that also changes it’s current test plan. Due to this unwanted functionality, the
first option is the most appropriate. The tester is supposed to create and change
the BDD step declarations within the TestBuDDy service and then fill in the BDD step
definitions locally, hence when the test run is running and the tester wants to update their
local changes that are now obsolete, the tester has to first pull and merge changes from
the TestBuDDy commit(s) to their local repository. Only then, the tester can again fill in
the BDD step definitions, and trigger a new test run by their manual push.

Each test run is saved in the database in the ci_run table for each pipeline of the
project. When a user syncs their TestBuDDy test run database with the CI/CD tool, the
application renews status of the now finished test runs (the pipelines that did not finish
their activity are in a pending status). The user is expected to use an endpoint to sync with
the CI/CD tool12. Test run library synchronisation is further discussed in implementation
section 6.6.

13 14

5.6.2 Reporting

Based on FR-15, the application has to analyse and parse results of finished pipelines. A
report for each test run (pipeline) can have 3 different final results:

1. CI build failed - when Gitlab ”build“ job15 failed, so JBehave tests weren’t even
compiled and executed

2. success - all tests were executed with a successful result

3. failed - there is at least one test that failed

In the latter 2 cases, the report saves the results of each executed test case. This is done
by parsing the tracefile from Gitlab CI job ”test“ (TestBuDDy suggests to use ”test“ job
in the user’s CI file). If the test case fails, the report also saves information about which
step had failed, this is visible in listing 5.5 The report needs to be generated based on the
finished failed or successful test run (pipeline). Reports are generated against saved test
12<root_url>/projects/<project_id>/ci_runs/<pipeline_id>/sync
13Active test case is a test case with test steps.
14Active test modules is a module with at least one active test case.
15A logical unit or a phase in Gitlab CI YAML file.

32

runs and are parsed based on the used BDD framework and the CI/CD tool. Reports can
be printed for the project or one report can be viewed for a specific test run (CI Run)16.

"result": "failed",
"test_cases": {

"stories/LoginModule_42/LoggingintheapplicationXYZ123.story": {
"failed_at_step": "Given User is on [logging] screen ",
"result": "failed"

},
"stories/WeatherMod_6/UglyDay1.story": {

"result": "success"
},
"stories/WeatherMod_6/SunnyDay4.story": {

"failed_at_step": "When Show [temperature] for [Sunday] option is [
disabled]",

"result": "failed"
}

}

Listing 5.5: Example of failed test run report body with executed test cases (story files).

5.6.3 Incident Management

Based on FR-09, SUT (Software under test) bugs are automatically generated from reports.
For TestBuDDy, a bug is a test step (test step definition with certain input parameters)
broken in at least one or more test cases. Bugs are also printed out with reference to the
project specific test run (requested by its pipeline identifier in endpoint) or for the whole
project. An example of a bug is in the following listing 5.6.

"ci_runs_affected": [
{

"id": 34,
"pipeline_id": 1791

},
{

"id": 33,
"pipeline_id": 1790

}
],
"data": {

"broken_step": "Given User is on [home] screen ",
"test_cases_affected": [

"stories/LoginModule_42/Loggingintheapplication123.story",
"stories/LoginModule_42/RolesLogin12.story",
"stories/BasicFunctions_66/ApplicationSmokeTest345.story"

]
},
"id": 2,

16At the endpoint level, a CI Run is always referred to by its pipeline ID within project for users convenience.

33

"link": "SUT-123",
"status": "open"

Listing 5.6: Example of bug body.

5.7 GUI Design for Future Expansions
Although the application is designed as a service, the service is meant to be used with a
frontend GUI in the future. The application GUI design is inspired by the BDD orientated
tool Hiptest and the test management tool Testlink. The GUI is organised based on the
requirement groups from section 3.3. The wireframe example of the GUI is in figure 5.9.
The UI is split into:

1. menu (left side), that also contains application logo on top. Menu categories are
based on set requirements and each menu option opens up its respective screen with
content.

2. main content (rest), which is a screen that will always contain the user manage-
ment section on top. The user management section contains information on who is
logged in, log out button, etc.

Figure 5.9: Wireframe of GUI exemplary design for the TestBuDDy application: dashboard.
Dashboard screen main content shows test reports with regards to test cases and a test plan.

34

The TestBuDDy endpoints are designed using HTTP methods GET, POST, PUT and
DELETE. Modern browsers only support sending GET and POST type requests, there-
fore in order to fully connect a GUI frontend with the TestBuDDy, it is recommended to
use Javascript17 scripting language. The reason for this choice is that the popularity of
Javascript grew until the point, where its client-side version is used on over 95% of web
pages since 2018 [4].

17Available at: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference.

35

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

Chapter 6

Implementation Details

This chapter mainly serves to provide detailed information regarding interesting or cru-
cial parts of a TestBuDDy implementation. Sections 6.1 and 6.2 provide general project
implementation details about application file structure and REST API endpoints. The re-
maining sections address either set requirements from section 3.3, or discuss specific issues
that became apparent during design implementation and needed to be further addressed,
or closely looked into current TestBuDDy integrations in context of test run management,
reporting and incident management functionalities. Section 6.5 is fully dedicated to design
issues with the test library, specifically what happens when simultaneous test step changes
are sent to a TestBuDDy test case (in form of a scenario), removal of a test module, or a test
case, etc. Section 6.6 pays attention to the test run library during synchronisation between
the CI/CD tool and the application. Section 6.7 closes up the implementation chapter with
few details regarding its JIRA integration. This chapter also summarises available func-
tions that a user can do within the application. Each action is atomically represented by its
responsible endpoint. The complete documentation of each endpoint is visually available
via the Swagger tool that is discussed further in section 6.2. On top of the corresponding
source code, there are also comments with requirement tags for each covered requirement
from table 3.2 (example of such comment within a source code is in listing 6.1).

TestBuDDy-Requirements-coverage
NFR-01, NFR-02

Listing 6.1: Example of requirements coverage comment.

6.1 Application Schema and File Structure
The application is run and deployed by the container platform Docker1. Docker helped to
ship and connect all required application dependencies and database. There are 2 docker
containers: backend, where the application functionality resides, and the database, where
the database is deployed2. Schema in figure 6.1 portrays both containers and overall project
file structure. Docker commands to deploy TestBuDDy can be found in appendix B (man-
ual). File run.py is an executable file that runs the TestBuDDy application.
1Available at: https://www.docker.com/.
2There is also a third container unittest that is reserved for unit tests. Section 7 desribes this in further
detail.

36

https://www.docker.com/

issue_tracking/

ci_communication/

processing/

dbs/ init_dbs.sql

projects.py

test_execution.py

reports.py

routes.py

base_objects.py

core.py

run.pyconfig.py

map_database.py

jbehave_src/

processors.py

issue_trackers.py

gitlabci_src/

ci_communicators.py

app.py

endpoints/

...

...

...

backend/

database/

...

...

Figure 6.1: TestBuDDy project file structure. Files are divided into folder groups. Con-
tainers are shown in bold. There are multiple backend subfolders: endpoints contains
all endpoints, ci_communication contains the CI/CD tool connection3, processor is re-
lated to BDD framework and BDD language processing connection and issue_tracking
contains issue tracker connection.

6.2 REST API Endpoints
TestBuDDy is a web service that provides its functionality and communicates with a user
through specific endpoints (specific URL addresses).
3TestBuDDy also refers to processor as language processor or gherkin processor.

37

6.2.1 Endpoint Design

REST API endpoints are designed in plural form. Each endpoint is meant to fully represent
each resource tree, thus it is explicitly required to fill in all needed valid source identifica-
tions. For example, by calling the following endpoint which accepts a GET request:

<root_url>/projects/<project_id>/plans/<testplan_id>
an existing test plan with a set ID belonging to an existing project with a set ID is shown,
otherwise an error code and an error message is returned in response. A real example of
this endpoint could then look like this:

127.0.0.1:5000/projects/1/plans/16
where the project with an id of 1 is supposed to have its assigned test plan with and id of
16.

JBehaveGherkinProcessor

JiraIssueTracker

GilabCICommunicatorCoreendpoints

Figure 6.2: Example of communication amongst endpoints, Core and its class object in-
stances for chosen integrations.

6.2.2 Response

In case of a negative response, an error code and an error message /text/html are returned.
The error message can also contain specific exception information which can be helpful to
users4. In case of a positive response, a response code 200 and a JSON object is returned:

{”message“: <response message>, ”object“: <requested object>}.
Returned response codes adhere to HTTP standard: 200 for a positive result of the opera-
tion, 500 for an internal server error, 404 for when a requested resource was not found, etc.
The result summary for possible TestBuDDy responses are as follows:

• 200 OK; requested resource returned,

• 400 NOT OK; insufficient request body parameters,

• 404 NOT OK; resource not found or the parent resources are not valid5,

• 415 NOT OK; unsupported media type,

• 500 NOT OK; other TestBuDDy error.
4TestBuDDy own general exception is called RuntimeError.
5For example when requesting a test plan, its parent project was not found under its provided path ID.

38

6.2.3 Swagger Doc

The detailed REST API for the whole project is documented with the Swagger tool6 and
visible by calling the root endpoint (<root_url>7). Endpoints were divided amongst several
categories, based on the groups from the project requirements table 3.2. Examples of the
Swagger screen are shown in figures D.1 and D.2. As mentioned in section 5.3, the Core
object communicates with its instance objects upon the request call. An example of this
communication with current TestBuDDy integrations is located in figure 6.2.

6.2.4 SQL Alchemy and Endpoints

Endpoints are designed to exclusively commit persistent changes into the database. An
endpoint always opens a new session for database transactions, then uses Core to implement
requested endpoint functionality and finally commits all database changes that were up to
this point only pending transactions (Core and all of its parts are only flushing pending
changes). By default, session.flush is part of the session.commit command as part of
the autoflush option in settings, but it was possible to fully divide these operations and
gain full control over which changes were committed and which were not. This approach
was mainly used because of the possible rollback function in case any errors had occurred
during TestBuDDy actions. Rollback is used to annul executed flushes, protecting the
database from any discrepancies between the test library in the repository and the state
of the repository.

6.3 User and Project Management
A user is able to manage and view users within the system, as discussed in part 3.3. User
management is created to be general, as TestBuDDy is designed to be run mainly as a
service. Nevertheless for future scalability, the database and endpoints were designed to
deliver role support, where role management is provided and a user can have a role, or a
test case assigned, or the assignment can be removed, etc. These functions are executed
when calling their appropriate endpoints (please see further details in Swagger doc, sections
User and role management and Project management).

6.4 Requirement Management
A user can manage, tag and view their requirements as mentioned in chapter 3.3. The
user can also create, view and manage their project tags. These functions are executed
when calling their appropriate endpoints (please see further details in Swagger doc, section
Requirement management).

6.5 Test Library
Once a user has connected their project with their remote repository, the user can proceed
with their test library management. Test library management involves test specification
and test execution. The design of the test library from 5.4 highlighted several issues to
resolve.
6Available at: https://swagger.io/.
7By default, the root_url consists of a localhost address and the default Flask port (5000).

39

https://swagger.io/

6.5.1 Test Step Management

One of the core TesBuDDy functionalities is generation of test step definitions when a user
simultaneously adds, modifies or erases test steps within an existing test case. Although
step management actions are all atomic within the test case, the user wants to send the
whole scenario with all of these possible actions for each step in the test case. A scenario
is sent whole (an example of such a scenario was already shown in figure 5.1) for the users
convenience. The whole process of test step management within the test case is summarised
in diagram 6.3. The diagram shows all actions that the backend has to execute, from when
the user supplies a new or changed scenario with test steps until a request response (the
response is not portrayed in the figure, as the figure is mainly focused on backend actions).

The question is, how to manage all of the step actions done within one test case scenario
at the same time? Imagine when the user edits the test case scenario, the first phase is to
analyse new test step definitions used within the scenario to uncover any duplicates with
the current test step definitions. The second phase is to analyse the test steps themselves.
There are 2 possible resolutions to solve the test step analysis:

1. Analyse all current (now old) test case steps. If the step was:

• modified, find all steps that still use its step definition and if there are any,
generate a new step definition, otherwise modify the step and its step definition
(in the database and on the repository)

• erased, find all steps that still use this step definition and if there are none,
erase this step and its definition (similar to algorithm 2).

2. Atomic approach: Erase all current (now old) test case steps on the database layer
and create all new steps according to algorithm 1 (in this section), this includes
reuse of current test step definitions and final cleanup of now unused step definitions
in the database and on the repository.

Algorithm 1: Creating/modifying test steps.
Result: new test step and its definition processed

1 foreach new test step do
2 try to find its test step definition (from current step definition database)
3 if test step definition found then
4 create test step
5 assign found step definition to step
6 else
7 create test step definition
8 create test step
9 assign created step definition to step

10 update changes on database

The second option was evaluated as more appropriate, not only because it follows
the atomicity of TestBuDDy actions throughout the service, but also because it is an easier
solution to implement with the desired effect on TestBuDDy functionality.

40

User

Scenario:	Screen	Orientation
Given	[Home]	screen	[is]	shown
When	User	clicks	on	menu_tab_upload]
Then	User	is	redirected	to	[Upload]	screen

When	User	clicks	on	[button_upload]
Then	[Upload	modal	window]	is	shown

POST	(request	body)

inputs

127.0.0.1:5000	/projects	/2/plans	/4/mods	/42/cases	/7

DATABASE

ScreenOrientation_7.story

TestbuddyRunnerTest.java

if model not in runner file
>> add

ScreensmodSteps_42.java

if exists >> work with file content
else >> generate new

/src/test/java/

AnotherStory_1.java

/resources/stories/
SreensModule_42/

OthersmodSteps_66.java

...

...

SUT repository

TestBuDDY

JBehaveGherkinProcessor

GitlabCICommunicator

2 erase old steps,
analyse new steps,
determine which
test step definitions
to generate;
create new steps
and definitions

BACKEND

if exists >> erase
create new

1a validate scenario
1b parse new steps

3 clone

4 generate new step
definitions;
erase unused definitions
(from their modules)

5 add changes:
git commit and
push

Figure 6.3: Diagram describes the whole process when a user adds/modifies/removes steps
within an existing test case. A POST request with a scenario is sent. Each dashed box
represents a TestBuDDy action that is carried away in sequence that is marked with bold
numbers.

41

In case of a scenario modification, the user can first view (or copy) the current test case
scenario (if any was provided) by calling the appropriate endpoint to view their test case
information. User first calls the following endpoint of a GET type:

<root_url>/projects/<proj_id>/plans/<tp_id>/mods/<tm_id>/cases/<tc_id>

The request needs its full path of correct identifiers for the project proj_id, the test plan
tp_id and the test case tc_id. Then the user can proceed with step processing and endpoint
generation as shown in diagram in figure 6.3. The endpoint did not change, but the request
type, POST, differs and the user sends his scenario in the body of the request.

The Core object is requested from the endpoint which uses its instance objects for
the communication with the CI/CD tool, the BDD framework and the issue tracker. The
user sends the whole scenario in the request body as mentioned above in this section. An
example of communication during step modification of the test case is in figure 6.4.

GitlabCICommunicatorCore JBehaveGherkinProcessor

parse scenario

test steps + step definitions

analyze
steps to
generate

refresh runner file

get processor
files info

processor
files info

sync CI files

push changes
and save test run

Figure 6.4: Communication diagram when a user changes test steps in the test case8.

6.5.2 Test Step Definitions Library

The design also implied that a user will want to see their current test step definitions in
use. For this purpose, the user is able to view their current test step definition library as
requested by FR-06. The test step definition can be viewed with respect to the project
or the test definition unique identifier. This functionality is executed when calling the
appropriate endpoint (please see full Swagger doc for further details, section Test library -
cases and steps).
8This includes adding new test steps, modifying them or remove within test case scenario.

42

6.5.3 Test Case and Test Module Removal

As mentioned before, test case steps consist of step declarations and arguments. Each
declaration has its own definition that contains source code of a step definition. As discussed
in 5.5 the source code of each test step definition is saved within a test module file whose
test case first used this test step definition. In other words, module test cases share one
module file, as visible in figure 5.6 from previous chapter. One of the addressed design issues
is removal of an existing active9 test case. Algorithm 2 describes actions when removing a
test case.

Algorithm 2: Removing a test case and its steps from a test module
Result: test case, its steps and module unused test step definitions removed

1 remove story file
2 erase all its test steps (update database)
3 get all test step definitions of test module (that test case belongs to)
4 foreach test step definition (and its gherkin type) do
5 foreach test module in test plan (that test case belongs to) do
6 try to find test step definition
7 if test step definition found then
8 erase test step definition10(from module file)

9 erase test step definition (update database)

Alternatively, when creating a new test step, TestBuDDy always looks whether its
definition is not already in the project (in another module), thus a test step definition does
not need to be generated. Another issue shown in algorithm 3 is the removal of a test
module and all of its active test cases.

Algorithm 3: Removing a test module
Result: test module removed and all still used test step definitions moved to other

module
1 foreach test case in module do
2 remove test case as in algorithm 2

3 get all remaining test step definitions of test plan (that test module belongs to)
4 foreach test step definition do
5 find test step definition in module file
6 if test step definition found then
7 move test step definition from module file to first found active module in test

plan
8 remove module from runner file

9Test case with test steps.
10a test step definition = a BDD declaration and a BDD definition; surrounded by a header and a footer

comment with a test step definition unique ID.

43

6.6 Test Run Management and Reporting
A user can view currently saved test runs by calling the appropriate endpoint:

<root_url>/projects/<project_id>/ci_runs
This endpoint only returns a list of test runs in the database. To have the list of test
runs refreshed, a synchronisation with the CI/CD tool needs to be called. As indicated in
section 5.6.1, the user is expected to use the endpoint to synchronise with the used CI/CD
tool’s current data using the following endpoint of a POST request type:

<root_url>/projects/<project_id>/ci_runs/<pipeline_id>/sync
This request synchronises the TestBuDDy database with current pipelines and their states
within the CI/CD tool, then creates reports and in case of a failed report generates and
refreshes found bugs and synchronises them with the connected issue tracker (if any). A de-
fault request setup is to synchronise all, nevertheless the user can modify its request query
parameters for selective synchronisation. The communication diagram in 6.5 describes the
full process of ongoing synchronisation. During the implementation of reporting, it was
discovered that reports always need to be evaluated and when required refreshed against
current data in the CI/CD tool in order to always have a valid report for all finished test
runs. Reports are also optimised in a way that they are created only if the test run is in
the finished state. The user can view currently saved test runs by calling the following
endpoint:

<root_url>/projects/<project_id>/ci_runs/reports

GitlabCICommunicatorCore JBehaveGherkinProcessor IssueTracker

get updated pipelines

pipelines info

reports

parse new pipelines results

update linked bugs (state)

linked bugs info

update test runs

update reports

update bugs update modified linked bugs

Figure 6.5: A communication diagram for the synchronisation with the CI/CD tool. Green
arrows represent the action based on the dependency on the source of the arrow.

6.6.1 Gitlab CI Integration

Gitlab CI returns a complete list of pipelines including the ones that could have been re-
freshed in previous synchronisation. TestBuDDy optimises this long process: only new

44

pipelines and the pipelines with an unfinished state (any other state than ”success“ or

”failed“) are refreshed, the rest is simply processed. Because the synchronisation can take
some time, TestBuDDy also informs the user about its current operation in the service
CLI11, an example of logging output is in figure 6.6. The user can also view reports and
bugs separately or in respect to the current project test run library (without synchronisa-
tion), this functionality is executed when calling each appropriate endpoint (please see full
Swagger doc for further details).

Figure 6.6: Example of TestBuDDy logging during synchronisation with the CI/CD tool.
Full refresh of test management library including reports and bug generation.

6.7 Incident Management: JIRA Integration
Issues, or bugs, are automatically generated with regards to the specific broken test step.
Each issue keeps information about the test cases which were affected by this issue, which
means they failed. Bugs are always generated based on current reports in the database
(synchronisation can be issued as part of a synchronisation request from the previous sec-
tion). Based on the requirement FR-10, each bug can be provided with a link to an existing
bug within the issue tracker to allow cross referencing. When the issues are synchronised,
the cross referencing with an issue tracker is called to update bug related information (af-
fected pipelines) on the tracker and vice versa. TestBuDDy also updates the status of each
linked bug based on its current JIRA data. Cross referencing in JIRA integration is done
by adding bug reports in the form of a comment on the linked issue tracker bug. The
whole process of issue synchronisation updates on both sides is triggered as part of test run
management synchronisation from the previous section and can also be triggered selectively
based on the current test run library (also as part of the same synchronisation endpoint
from the previous section). An example bug report in JIRA GUI is in figure 6.7
11Command line interface

45

Figure 6.7: TestBuDDy generated comment with current bug status when the bug library
was updated on both sides (full synchronisation).

46

Chapter 7

Application Testing and
Automated Test Suite

An integral part of the application development cycle was its testing phase. This phase can
be split into 3 main stages:

1. acceptance testing, where the compliance with the application requirements is val-
idated,

2. automated test suite, where all endpoints are being tested,

3. usability testing, where users evaluated the application.

7.1 Acceptance Testing
TestBuDDy has undergone the acceptance testing phase in order to ensure its compliance
with the set functional requirements from table 3.2. Additionally, scenarios/actions within
the application were created and connected to the requirements that each scenario covers.
The results are summarised in tables 7.1 and 7.2. The acceptance testing was executed
manually.

depen-
dency

id scenario expected result req.
cover-
age

state

AT-1 Create a project. Ini-
tialise its repository.

Project created. Repos-
itory initialised.

FR-02
FR-08

OK

AT-1 AT-2 Create a test plan. As-
sign the test plan to the
project.

Test plan created. FR-03
FR-04

OK

AT-2 AT-3 Create a test module. Module created. FR-05 OK
AT-3 AT-4 Create a test case. Test case created. FR-05 OK
AT-4 AT-5 Add, erase or modify

scenario (test steps) to
the test case.

Steps added. Reposi-
tory changed.

FR-06
FR-07
FR-13
FR-14

OK

AT-2 AT-6 Rename the module. Repository changed. FR-06 OK

47

depen-
dency

id scenario expected result req.
cover-
age

state

AT-2 AT-7 Erase the module. Repository changed. FR-06 OK
AT-3 AT-8 Rename the test case. Repository changed. FR-06 OK
AT-3 AT-9 Erase the test case. Repository changed. FR-06 OK
AT-4 AT-10 Synchronise the test

run library.
Test runs synchronised.
Reports and issues syn-
chronised. Linked is-
sues updated on the
side of the application
and the issue tracker (if
any connected).

FR-15 OK

AT-10 AT-11 View test runs. Test runs shown. FR-11 OK
AT-10 AT-12 View reports. Test reports shown. FR-11 OK
AT-10 AT-13 View generated issues,

if any.
Generated issues
shown.

FR-09 OK

AT-10 AT-14 Add issue tracker infor-
mation to the project.
Link a bug to an issue
tracker bug.

Project information
updated. The bug
is linked to the issue
tracker bug.

FR-10 OK

AT-5 AT-15 View and manage the
test library (test plan,
test, case, test module,
test step definitions.)

Requested resource(s)
shown. Requested ac-
tion executed.

FR-06 OK

AT-1 AT-16 Trigger a new test run. The test run was trig-
gered.

FR-12 OK

Table 7.1: Part I. of the acceptance testing table. The table describes possible basic
scenarios/actions within TestBuDDy and connects them with the requirements (column
requirement coverage).

The tables were also split by their importance whilst the requirement groups from
chapter 3.3 were taken into consideration.

depen
-dency

id scenario expected result req.
cover-
age

state

(AT-1) AT-16 Manage projects (cre-
ate, modify, delete).

Requested action exe-
cuted.

OK

AT-17 Manage users (create,
modify, delete).

Requested action exe-
cuted.

OK

AT-2 AT-18 Manage user roles (cre-
ate, modify, delete).

Requested action exe-
cuted.

OK

AT-17 AT-19 Assign a role to a user. The role assigned to the
user.

OK

48

depen
-dency

id scenario expected result req.
cover-
age

state

AT-3
AT-17 AT-20 Assign the test case to

a user.
The test case assigned
to the user.

OK

AT-21 View assigned roles and
test cases for the user.

Requested resource
shown.

FR-01 OK

AT-1 AT-22 Manage requirements
(create, modify, delete).

Requested action exe-
cuted.

FR-16 OK

AT-3
AT-22

AT-23 Assign a requirement to
the test case.

The test case has the re-
quirement assigned.

FR-17 OK

AT-1 AT-24 Manage tags (create,
modify, delete).

Requested action exe-
cuted.

FR-16 OK

AT-1 Tag a requirement. The tag assigned to the
requirement.

FR-16 OK

Table 7.2: Part II. of the acceptance testing table.

7.2 Automated Test Suite
TestBuddy is equipped with an automated set of unit tests for each endpoint and all its
supported HTTP methods. The automated test suite can be found in file tests.py (in
backend image) and is executed once the TestBuDDy application has started as part its
docker container unittest. Each endpoint is tested from a happy day scenario perspective
in order to cover the whole range of possible endpoint-HTTP method combinations. The
endpoints mutually depend on each other, thus for example in order to access test case,
project, test plan and test module have to be correctly initialised and connected. A positive
response with status code 200 is always expected. An excerpt of an output of the automated
test suite is in figure 7.1. An example of the full output of the automated test suite
is in appendix E. The test suite is consists of endpoint groups (based on groups from
chapter 3.3) and final cleanup of the database and the tested repository1.

Figure 7.1: Example of the output of the automated test suite.
1This repository is also used as part of the initialisation for the TestBuDDy demonstration, please see
section B.3 from appendix for further details.

49

7.3 Usability Testing
TestBuddy was tested by 5 subjects. The goal of the usability testing was to evaluate the
application user flow. Each subject was given 1 complex scenario that represented the main
focus of the application: BDD declarations generation and test run management. Each sub-
ject had a technical background and was presented with TestBuDDy general information,
given Swagger doc, an example of a JBehave scenario (similar to the one from figure 6.3)
and had to perform following tasks:

1. Initialise your data: <root_url>/init-data

2. Initialise your chosen project repository2: <root_url>/projects/<proj_id>/init_repo

3. View test plans.

4. Modify test module information.

5. Create a test case.

6. Add test steps for your created test case (see the provided scenario for example).

7. Synchronise your test run library.

8. View reports.

9. View bugs.

Table 7.3 describes the usability testing process. Results of usability testing are:

• Swagger doc needs to be fully documented into further details.

• Synchronisation of test run library, reports and issues has to be more visible within
the thesis and thesis should clearly document the difference between the simple listing
of current saved test runs and the synchronised test runs.

• It is recommended to create a frontend design for future expansions.

These results were incorporated during the thesis documentation period. In case of future
application expansion of frontend, the next targeted user group are users with no technical
background.

2User was expected to first view list of projects.

50

1 2 3 4 5 6 7 8 9 observation feedback
U1 X X X X X X X X X I knew what you were

working on so I already
expected the user flow.
Worked OK.

U2 X X X X -
X

-
-
X

X X X Needed help to create
test case. The pro-
vided scenario was not
descriptive enough.

Swagger doc was OK,
but the expected end-
points inputs should
have mandatory fields.
Full endpoint paths
were quite verbose.
Provided scenario was
a bit puzzling, applica-
tion only returns some
parsing error.

U3 X X X X X X -
X

X X First wanted to see the
test runs before their
synchronisation.

The synchronization is
done only if I request
it, maybe some syn-
chronous sync could
help. I liked work-
ing with test library.
Could use frontend.

U4 X X X - - X -
X

X X Used other already
created test case.
First wanted to see
the test runs before
their synchronisation.

I’m not really into web
app design, although
I really liked the con-
nection with repository
and Gitlab integration.

U5 X X X X X X X X -
X

Synchronized test runs
and reports, but not is-
sues at first, had to go
back to sync.

The sync endpoint
Swagger doc was not
sufficient documenta-
tion. Overall JSON
syntax is helpful,
verbose.

Table 7.3: Usability testing. Scenario tasks are marked by numbers, users as U. Observa-
tion represents TestBuDDy creator’s point of view during user’s work on tasks, feedback
represents user’s shortened feedback. X represents success, - represents a failed try.

51

Chapter 8

Conclusion

The aim of this thesis was to specify, design and implement a new BDD orientated test
management tool based on the analysis of existing proprietary and open source competitors.

First, a theoretical part discussed required testing terminology with the emphasis on
the BDD process. Also the existing test management tools were analysed, categorised and
compared alongside integrated tools for issue tracking and BDD approach. The analysed
findings provided information to help to determine the final list of requirements for the
application where the requirements were set and categorised with the help of Use case di-
agrams. Additionally, the technologies and languages that were used in implementation
were analysed, compared and selected whilst taking into consideration the application ar-
chitecture. The application design described the application from various perspectives:
from the general architecture and REST API, through OOP design, up to the main fo-
cus of the application: the test library management and the test run reporting. The test
library is discussed including its connection to the source code of tests on the SUT (Soft-
ware under test) remote repository. Next, the chosen integrations for the BDD framework
JBehave and the CI/CD tool Gitlab CI were discussed and possible problematic scenarios
that could occur during implementation were addressed. The following chapter digressed
into application implementation details and connected the test library with the user flow
and devised procedures and resolutions for emerged test library issues. Another important
part of implementation was data synchronisation with the CI/CD tool. Based on acquired
data, the reports are created and issues are analysed and generated. Finally, the testing of
the resulting application was described and its automated test suite documented.

The final output of this thesis is the TestBuDDy application which is implemented as
a web service and offers a way to ease up workload of a testing team. Project managers or
other team members with small technical backgrounds can use TestBuDDy to input business
requested BDD scenarios to their software used to test SUT. TestBuddy creates all the
needed source code for the BDD framework (that testing team had chosen) and updates the
SUT repository to correspond with its current test library. The CI/CD tool that manages
the repository then runs the new version of the SUT test suite. TestBuDDy generates
BDD declarations for each test step definition and also their failing BDD definitions as
part of the test driven development approach. Test engineers with a technical background
are subsequently expected to input the BDD definitions and update the project remote
repository. TestBuDDy is able to acquire repository test run data from the CI/CD tool.
During this synchronisation, the application creates test run reports, analyses them and
automatically generates and groups found issues. These issues can be further synchronised
with an integrated issue tracker, JIRA at current.

52

Although the application offers said features, the first major possible future expansion
could be to add a frontend GUI, that was already outlined and shown in the design section
based on findings from usability testing. A frontend GUI would hide verbose REST API
endpoint design and the system could control more the user actions within the application.
Another possible expansion is to build upon the current basic TestBuDDy user and role
management functionality - also implement authentication and access control within the
GUI. The second larger expansion would be to fully support application scalability. At
present, the endpoints use and modify the core functionality, but it would be beneficial to
further divide the core functionality so that the endpoints would only use this core function-
ality (without any modifications on the endpoint layer). A third major expansion could be
related to supported integrations - broaden the support for other BDD frameworks, CI/CD
tools and issue trackers, so that TestBuDDy could measure up to commercial software. A
fourth bigger expansion could be to implement selective test run management, where the
user would actively choose which test case, test module, etc. should be executed as opposed
to the current state where the whole suite is executed as a batch. Other possible expansions
could also be to add support for more test plans in relation to the project and support of
different git branches.

To summarise the system features: TestBuDDy provides means to manage the whole
test library (test plans, test cases, test steps, test step definitions), test run library, its re-
ports and issues. Test library management is successfully projected onto a BDD framework
of a SUT project repository. The application is able to be synchronised with the CI/CD
tool and also the issue tracker. The application also allows users to manage their projects,
project requirements and provides support for user and role management in regard to pos-
sible expansions in the future. Based on the aforementioned system features, the resulting
application is in concordance with the thesis assignment. TestBuDDy has the potential to
help testers during their work flow, saving time and effort.

53

Bibliography

[1] Best 25 Test Management Tools in 2019. [Online; visited 03.01.2019].
Retrieved from: https://www.guru99.com/top-20-test-management-tools.html/

[2] Bugzilla vs JIRA vs Redmine System Properties Comparison. [Online; visited
07.01.2019].
Retrieved from:
https://project-management.zone/system/bugzilla,jira,redmine/

[3] DB–Engines Ranking. [Online; visited 03.01.2019].
Retrieved from: https://db-engines.com/en/ranking/

[4] Historical trends in the usage of client-side programming languages for websites.
[Online; visited 03.01.2019].
Retrieved from: https:
//w3techs.com/technologies/history_overview/client_side_language/all

[5] Issue Management Tools - Popularity Ranking. [Online; visited 07.01.2019].
Retrieved from: https: // project-management .zone/ ranking/ category/ issue/

[6] PHP Usage Statistics. [Online; visited 07.01.2019].
Retrieved from: https: // trends .builtwith .com/ framework/ PHP/

[7] AMMAN, P.; OFFUTT, J.: Introduction to software testing. Cambridge University
Press. 2008. ISBN 978-0-521-88038-1.

[8] CONDO, C.; LECLAIR, A.: The Forrester Wave: Continuous Integration Tools, Q3
2017. 2017.

[9] DASSO, A.; FUNES, A.: Verification, Validation and Testing in Software
Engineering. IGI Global. 2007. ISBN 978-1-59140-851-2.

[10] DWYER, G.: Flask vs. Django: Why Flask Might Be Better. February 2017.
[Online; visited 06.01.2019].
Retrieved from: https: // www .codementor .io/ garethdwyer/ flask-vs-django-
why-flask-might-be-better-4xs7mdf8v/

[11] FREEMAN, E.; ROBSON, E.; BATES, B.; et al.: Head first design patterns.
O’Reilly Media, Inc.. 2004.

[12] KANER, C.; FALK, J.; QUOC NGUYEN, H.: Testing computer software. Van
Nostrand Reinhold. second edition. 1993. ISBN 978-0-442-01361-5.

54

https://www.guru99.com/top-20-test-management-tools.html/
https://project-management.zone/system/bugzilla,jira,redmine/
https://db-engines.com/en/ranking/
https://w3techs.com/technologies/history_overview/client_side_language/all
https://w3techs.com/technologies/history_overview/client_side_language/all
https://project-management.zone/ranking/category/issue/
https://trends.builtwith.com/framework/PHP/
https://www.codementor.io/garethdwyer/flask-vs-django-why-flask-might-be-better-4xs7mdf8v/
https://www.codementor.io/garethdwyer/flask-vs-django-why-flask-might-be-better-4xs7mdf8v/

[13] MEYER, M.: Continuous Integration and Its Tools. IEEE Software. vol. 31, no. 3.
May 2014: pp. 14–16. ISSN 0740-7459. doi:10 .1109/MS .2014 .58 .

[14] PATTON, R.: Software testing. Indianapolis: Sams Publishing. second edition. 2006.
ISBN 0-672-32798-8.

[15] ROBINSON, D.: The Incredible Growth of Python. September 2017. [Online; visited
07.01.2019].
Retrieved from:
https: // stackoverflow .blog/ 2017/ 09/ 06/ incredible-growth-python/

[16] SOLIS, C.; WANG, X.: A Study of the Characteristics of Behaviour Driven
Development. In 2011 37th EUROMICRO Conference on Software Engineering and
Advanced Applications. Aug 2011. ISSN 1089-6503. pp. 383–387.
doi:10 .1109/SEAA.2011 .76 .

[17] SOMMERVILLE, I.: Software engineering 9th edition. Edinburgh: Addison-Wesley.
9 edition. 2011. ISBN 978-0-13-703515-1.

[18] SORAPAK, P.: The Comparative Study of Collaborative Learning and SDLC Model
to develop IT Group Projects. TEM Journal. vol. 6, no. 4. 2017: pp. 800–809. ISSN
2217-8309. doi:10 .18421/TEM64-20 .
Retrieved from: http: // search .proquest .com/ docview/ 2155128342/

[19] SPILLNER, A.: Software testing foundations : a study guide for the certified tester
exam: foundation level, ISTQB compliant. Santa Barbara, CA: Rocky Nook. fourth
edition. 2014. ISBN 978-1-937-53842-2.

[20] WYNNE, M.; HELLESØY, A.: The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. Santa Barbara, CA: Pragmatic
Programmers, LLC. second edition. 2012. ISBN 978-1-934356-80-7.

55

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
http://search.proquest.com/docview/2155128342/

Appendix A

Content of Enclosed DVD

Enclosed DVD contains following files1:

• doc folder - to store documentation

• src folder - to store project files:

/src
backend......................................project sources (includes tests)

ci_communication................................CI/CD tool connection
doc ... Swagger doc, documentation
endpoints..all endpoint requests
issue_tracking..................................issue tracker connection
processing BDD framework connection

jbehave_src .. JBehave files
database..persistent database folder
dbs...database initialising script

init_dbs.sql

1The detailed file structure is also described and shown in section 6.1.

56

Appendix B

Installation and Manual

TestBuddy sources are available in enclosed CD, folder src/.

B.1 Prerequisites
Application is multiplatform, but it is recommended to use Windows type of an operation
system. Users need to have Docker and a modern web browser installed on their local
machine. In case of Linux system, docker and docker-compose are necessary dependencies.
Please copy the src/ folder from the enclosed DVD.

B.2 Deployment
A user is expected to use following commands to correctly start TestBuDDy (its containers
for the backend, the database and tests) from src/.

• docker-compose build - first, the docker containers have to be built.

• docker-compose up - to start TestBuDDy; in case when the user wants to not only
start the application, but also execute its unit tests (for endpoints)1.

• docker-compose down - to stop the application and destroy the containers.

• docker-compose up backend - to only start TestBuDDy application (with no changes
on the database).

• docker-compose up ––build - to start TestBuDDy, run tests and build the applica-
tion containers in one command

User can view all REST API endpoints in Swagger API documentation on root_url of
the project, which is set to 127.0.0.1:5000. An example of the Swagger documentation
is also in appendix D. An example of available endpoints are also visible form the output
of the automated test suite in appendix E. Swagger allows user to test every endpoint and
defines expected results of a request call. Is is also possible to use API development tool
Postman2, alternatively cUrl CLI tool3.
1The test suite duration can take up around 2 minutes. The test suite also cleans the application database.
2Available at: https://www.getpostman.com/.
3Available at: https://curl.haxx.se/.

57

https://www.getpostman.com/
https://curl.haxx.se/

B.3 Demo initialisation

Test Library

For demonstrative purposes, there is an initialising endpoint (POST type of a request)
provided:

127.0.0.1:5000/init-data

2 active public project repositories are already set up for the user when working with their
test library:

• https://pajda.fit.vutbr.cz/testos/testbuddy-sut

• https://pajda.fit.vutbr.cz/xblozo00/testing_repo

Upon the creation of both projects, TestBuDDy uses the Gitlab CI generated token, that
will be available for next few months. It is also recommended to first initialise your projects’
repository by the following endpoint of a POST type:

127.0.0.1:5000/projects/<proj_id>/init_repo

The project has its test library already created until the test case level (in the database layer),
so a user can view current test cases and add a new scenario of their choice, or,if preferred,
create their own test cases and so on.

Test Run Management and Gitlab CI

The repositories were already used in the past, so when working with its test run library,
there are also historic pipeline records and reports processed and shown. These records are
shown when synchronising with Gitlab CI by calling an endpoint of a POST type:

127.0.0.1:5000/projects/<proj_id>/ci_runs/sync

Requirement Management

Requirements and tags were also created, so user is free to manage them, connect them
with existing test cases etc.

Incident Management and JIRA Integration

For the purpose of TestBuDDy demonstration of incident management, JIRA page was
created: https://tesbuddy.atlassian.net/. User can log in using these credentials:

• username: testbuddyBUT@gmail.com

• password: gherkinisawesome

58

https://pajda.fit.vutbr.cz/testos/testbuddy-sut
https://pajda.fit.vutbr.cz/xblozo00/testing_repo
https://tesbuddy.atlassian.net/

Appendix C

Database Model

user

id INT

username VARCHAR(64)

password_hash VARCHAR(45)

name VARCHAR(45)

surname VARCHAR(45)

Indexes

user_has_role

user_id INT

role_id INT

Indexes

role

id INT

name VARCHAR(45)

Indexes

user_has_project

user_id INT

project_id INT

Indexes

requirement_has_tag

requirement_id INT

tag_id INT

Indexes

requirement

id INT

content VARCHAR(128)

project_id INT

Indexes

tag

id INT

content VARCHAR(256)

category VARCHAR(256)

project_id INT

Indexes

test_module

id INT

test_plan_id INT

name VARCHAR(128)

name_no_spaces VARCHAR(128)

Indexes

requirement_has_test_case

requirement_id INT

test_case_id INT

Indexes

user_has_test_case

test_case_id INT

user_id INT

Indexes

test_plan

id INT

description VARCHAR(512)

project_id INT

name VARCHAR(128)

Indexes

test_step_definition

test_case

project

id INT

name VARCHAR(128)

repo_url VARCHAR(256)

language_processor VARCHAR(45)

ci_communicator VARCHAR(45)

ci_params TEXT

issue_tracker VARCHAR(256)

issue_tracker_params TEXT

Indexes

test_step

Figure C.1: Application database section I.: User, project and requirement management
groups + connection to model.

59

result_state

trigger_type

ci_run

id INT

data TEXT

trigger_type_id INT

project_id INT

result_state_id INT

run_by_user VARCHAR(256)

pipeline_id INT

Indexes

ci_run_has_test_case

ci_run_id INT

test_case_id INT

Indexes

ci_run_has_bug

ci_run_id INT

bug_id INT

Indexes

test_step_definition_has_gherkin_type

test_step_definition_id INT

gherkin_type_id INT

Indexes

report

id INT

date DATETIME

dir VARCHAR(256)

fullpath VARCHAR(256)

parsed_info TEXT

content_raw TEXT

1 more...

Indexes

gherkin_type

bug

id INT

link VARCHAR(256)

status VARCHAR(128)

data TEXT

project_id INT

Indexes

project

id INT

name VARCHAR(128)

repo_url VARCHAR(256)

language_processor VARCHAR(45)

ci_communicator VARCHAR(45)

ci_params TEXT

issue_tracker VARCHAR(256)

issue_tracker_params TEXT

Indexes

test_step_definition

id INT

content VARCHAR(256)

project_id INT

param_count INT

Indexes

test_step

id INT

content VARCHAR(256)

test_case_id INT

order INT

test_step_definition_id INT

parameters VARCHAR(1024)

Indexes

test_plan

test_case

id INT

test_module_id INT

priority_id INT

name VARCHAR(128)

description VARCHAR(256)

scenario_name VARCHAR(256)

scenario_content VARCHAR(8196)

Indexes

Figure C.2: Application database section II.: Test specification, test execution, report and
incident management groups + connection to model.

60

u
se
r

u
se
r_
h
as
_
ro
le

u
se
r_
h
as
_
p
ro
je
ct

ro
le

re
q
u
ir
em
en
t_
h
as
_
ta
g

re
q
u
ir
em
en
t

te
st
_
p
la
n

p
ro
je
ct

b
u
g

ta
g

re
p
o
rt

te
st
_
st
ep
_
d
ef
in
it
io
n

te
st
_
m
o
d
u
le

ci
_
ru
n
_
h
as
_
b
u
g

re
q
u
ir
em
en
t_
h
as
_
te
st
_
ca
se

u
se
r_
h
as
_
te
st
_
ca
se

te
st
_
st
ep
_
d
ef
in
it
io
n
_
h
as
_
g
h
er
ki
n
_
ty
p
e

ci
_
ru
n

tr
ig
g
er
_
ty
p
e

te
st
_
st
ep

te
st
_
ca
se

g
h
er
ki
n
_
ty
p
e

ci
_
ru
n
_
h
as
_
te
st
_
ca
se

p
ri
o
ri
ty

re
su
lt
_
st
at
e

Figure C.3: ER diagram of overall database schema.

61

Appendix D

Swagger Documentation Example

Figure D.1: Example of incorporated Swagger doc for all endpoints in root url of Test-
BuDDy.

62

Figure D.2: Detail of Swagger endpoint - a creation of a requirement. A user is expected
to fill in the path parameters and the JSON body of this POST type request. Request has
expected responses and their codes already predefined.

63

Appendix E

Output of The Automated Test
Suite

Example of the full output of the automated test suite - unit tests of all available endpoint-
HTTP methods within TestBuDDy.

--------------------------TESTBUDDY---TESTS---------------------------
--------------------------Demo endpoints------------------------------
GET http://localhost:5000
POST http://localhost:5000/clean-data
POST http://localhost:5000/init-ci
POST http://localhost:5000/init-projects
POST http://localhost:5000/init-requirements
POST http://localhost:5000/init-testlibrary
POST http://localhost:5000/clean-data
POST http://localhost:5000/init-data
--------------------------Project management--------------------------
POST http://localhost:5000/projects
GET http://localhost:5000/projects/173
PUT http://localhost:5000/projects/173
DELETE http://localhost:5000/projects/173
POST http://localhost:5000/projects
GET http://localhost:5000/projects
POST http://localhost:5000/projects/170/purge_repo
POST http://localhost:5000/projects/170/init_repo
------------Test execution, reporting, incident management------------
POST http://localhost:5000/projects/170/ci_runs/sync
POST http://localhost:5000/projects/170/ci_runs/trigger_pipeline
GET http://localhost:5000/projects/170/ci_runs
GET http://localhost:5000/projects/170/ci_runs/reports
GET http://localhost:5000/projects/170/ci_runs/2003
GET http://localhost:5000/projects/170/ci_runs/2003/reports
GET http://localhost:5000/projects/170/bugs
GET http://localhost:5000/projects/170/bugs
GET http://localhost:5000/projects/170/bugs
----------------------------Test library------------------------------
GET http://localhost:5000/projects/plans
GET http://localhost:5000/projects/170/plans
POST http://localhost:5000/projects/174/plans
PUT http://localhost:5000/projects/170/plans/117
POST http://localhost:5000/projects/170/plans/117/mods
PUT http://localhost:5000/projects/170/plans/117/mods/638
DELETE http://localhost:5000/projects/170/plans/117/mods/638
GET http://localhost:5000/projects/170/plans/117
GET http://localhost:5000/projects/170/plans/117/mods/636/cases
POST http://localhost:5000/projects/170/plans/117/mods/636/cases
POST http://localhost:5000/projects/170/plans/117/mods/636/cases/844
PUT http://localhost:5000/projects/170/plans/117/mods/636/cases/844
GET http://localhost:5000/projects/170/stepdefinitions

64

GET http://localhost:5000/projects/170/stepdefinitions/25/steps
DELETE http://localhost:5000/projects/170/plans/117/mods/636/cases/844
------------------------Requirement management------------------------
GET http://localhost:5000/projects/170/tags
POST http://localhost:5000/projects/170/tags
GET http://localhost:5000/projects/170/tags/488
PUT http://localhost:5000/projects/170/tags/488
GET http://localhost:5000/projects/170/requirements
POST http://localhost:5000/projects/170/requirements
GET http://localhost:5000/projects/170/requirements/1515
PUT http://localhost:5000/projects/170/requirements/1515
POST http://localhost:5000/projects/170/requirements/1515/assign-tag
DELETE http://localhost:5000/projects/170/requirements/1515/assign-tag
POST http://localhost:5000/projects/170/plans/117/mods/636/cases/845/requirements/ass ⌋

ign-requirement→˓
GET http://localhost:5000/projects/170/plans/117/mods/636/cases/845/requirements
DELETE http://localhost:5000/projects/170/plans/117/mods/636/cases/845/requirements/ass ⌋

ign-requirement→˓
DELETE http://localhost:5000/projects/170/tags/488
DELETE http://localhost:5000/projects/170/requirements/1515
----------------------User and role management------------------------
GET http://localhost:5000/users/roles
POST http://localhost:5000/users/roles
GET http://localhost:5000/users/roles/78
PUT http://localhost:5000/users/roles/78
GET http://localhost:5000/users
POST http://localhost:5000/users
GET http://localhost:5000/users/95
PUT http://localhost:5000/users/95
POST http://localhost:5000/users/95/assign-project
DELETE http://localhost:5000/users/95/assign-project
POST http://localhost:5000/users/95/assign-role
DELETE http://localhost:5000/users/95/assign-role
POST http://localhost:5000/users/95/assign-testcase
DELETE http://localhost:5000/users/95/assign-testcase
DELETE http://localhost:5000/users/roles/78
DELETE http://localhost:5000/users/95
--------------------------Final cleanup-------------------------------
POST http://localhost:5000/projects/170/purge_repo
POST http://localhost:5000/clean-data
--------------------------TESTBUDDY---TESTS--DONE---------------------

65

	Introduction
	State of the Art
	Software Testing
	Agile Methodologies
	Automatio of Testing

	Analysis of Existing Applications and Requirements
	Test Management Tool
	Comparison of Existing Test Management Tools
	Application Requirements
	Application Integration

	Analysis of Used Languages and Technologies
	Web Applications
	Backend Framework

	Design of Application
	Architecture and Communication
	Database Design
	Class Diagram and Scalability
	Test Library
	BDD Framework Integration
	Test Execution
	GUI Design for Future Expansions

	Implementation Details
	Application Schema and File Structure
	REST API Endpoints
	User and Project Management
	Requirement Management
	Test Library
	Test Run Management and Reporting
	Incident Management: JIRA Integration

	Application Testing and Automated Test Suite
	Acceptance Testing
	Automated Test Suite
	Usability Testing

	Conclusion
	Bibliography
	Content of Enclosed DVD
	Installation and Manual
	Prerequisites
	Deployment
	Demo initialisation

	Database Model
	Swagger Documentation Example
	Output of The Automated Test Suite

