
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

STATISTICAL MODEL CHECKINGOF APPROXIMATECOMPUTING SYSTEMS

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR SERGIO PÉREZ HERNÁNDEZ
AUTOR PRÁCE
SUPERVISOR Ing. JOSEF STRNADEL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019



Brno University of Technology
Faculty of Information Technology

 Department of Computer Systems (DCSY) Academic year 2018/2019
Bachelor's Thesis Specification

Student: Pérez Sergio H.
Programme: Shortterm study BSc.
Title: Statistical Model Checking of Approximate Computing Systems
Category: Modelling and Simulation
Assignment:

1. Summarize aspects and application areas of the so-called Statistical Model Checking (SMC) and
approximate computing (AC) systems.

2. Identify SMC instruments suitable for modeling and analysis of AC systems.
3. Model representatives of a selected class of AC systems (such as approximate algorithms or circuits),

check their properties by means of SMC and compare them with properties of "accurate" variants of such
systems.

4. Evaluate your approach and discuss it from the applicability and validity viewpoints.
Recommended literature:

According to the supervisor's recommendation.
Requirements for the first semester:

Complete items 1 and 2 of the assignment, propose a model of a simple approximate system.
Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Strnadel Josef, Ing., Ph.D.
Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: October 26, 2018

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/21362/2018/xperez07 Strana 1 z 1



Abstract
This thesis will be focused on the design, implementation and analysis of approximate
computing system. This kind of systems allows some errors but improving performance
and other aspects of it. UPPAAL SMC, a statistical model checking tool, will be used to
implement and test the models.

Abstrakt
This thesis will be focused on the design, implementation and analysis of approximate
computing system. This kind of systems allows some errors but improving performance
and other aspects of it. UPPAAL SMC, a statistical model checking tool, will be used to
implement and test the models.

Keywords
Approximate computing, statistical model checking, reliability, error rate, UPPAAL.

Klíčová slova
Approximate computing, statistical model checking, reliability, error rate, UPPAAL.

Reference
PÉREZ HERNÁNDEZ, Sergio. Statistical Model Checking of Approximate Computing Sys-
tems. Brno, 2019. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Josef Strnadel, Ph.D.



Statistical Model Checking of Approximate Com-
puting Systems

Declaration
I declare that I have prepared this Bachelor′s dissertation thesis independently, under the
supervision of Ing. Josef Strnadel, provided me with further information. I listed all of the
literary sources and publications that I have used.

. . . . . . . . . . . . . . . . . . . . . . .
Sergio Pérez Hernández

May 10, 2019

Acknowledgements
I would like to thank my supervisor Ing. Josef Strnadel for his effort and dedication in
helping me throughout the process of creating my thesis.



Contents

1 Introduction 2

2 Background 4
2.1 Statistical Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Approximate Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Selection of Implementation Areas and Means 9
3.1 Implementation Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Approximate logical multiplier . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 DRAM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Implementation Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 UPPAAL 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 UPPAAL 4.1 (SMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Other versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Proposed solutions 17
4.1 Approximate logical multiplier . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Gate Network approach . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Truth Table approach . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 DRAM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Evaluation 30
5.1 Tests on multiplier based on gate networks . . . . . . . . . . . . . . . . . . 30
5.2 Tests on multiplier based on truth tables . . . . . . . . . . . . . . . . . . . . 34
5.3 Comparison of the two implementations . . . . . . . . . . . . . . . . . . . . 38
5.4 Tests on DRAM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusion 42

1



Chapter 1

Introduction

Since its beginning, information technology has been evolving to become in an essential field
for the society of these days. Every moment, a huge amount of information is in movement,
which has to be processed and stored. This could generate some problems because is pos-
sible that the right tools are not available for manage that volume, sometimes exorbitant,
of data.
In this last decade, the ’Big Data’ concept has been developing. It refers to the set of data o
combinations of them which size, complexity and growing speed obstruct its capture, man-
agement, processing or analysis with conventional technologies and tools, such as relational
databases and conventional statistics in the time that this data is useful.(7)
This is one of the reasons why it is necessary to use approximate computing. With it, we
can sometimes admit a certain percentage of error in data processing so its size, complexity
and speed can be adjusted to our possibilities. It is our task to determinate the accuracy
that we can work with.
Approximate computing has been used in a variety of domains where the applications are
error-tolerant, such as multimedia processing, machine learning, signal processing, scientific
computing, etc.(13)

Figure 1.1: Approximate computing accuracy plot (4)

To observe the behaviour of some systems that use approximate computing, Statistical
Model Checking method will be used. It does simulations of a system in a stochastic
way, that is, non-deterministic, with certain conditions. Then, the results will be studied.
Quantitative properties of stochastic systems are usually specified in logic that allow one to
compare the measure of executions satisfying certain temporal properties with thresholds.
The model checking problem for stochastic systems with respect to such logic is typically
solved by a numerical approach that iteratively computes (or approximates) the exact
measure of paths satisfying relevant subformulas.(5)

2



In this thesis, I will try to prove that approximate computing systems are useful is some
specific fields. To do that, I will design some models of circuits that are used in computation
and check their properties. The tool that will be used for the implementation will be
UPPAAL, on version 4.1. It is an integrated tool environment for modelling, validation
and verification of real-time systems modelled as networks of timed automata.(9)

3



Chapter 2

Background

2.1 Statistical Model Checking

Model Checking is a recognized approach to guarantee the correctness of a system (6). It is
based on algorithms that check whether all executions of a system satisfy some properties
stated in specification logic. If this happens, the system is correct. Else, a bug is reported.
Model checking can detect all bugs of a system, but it is generally slower.
Classical model checking techniques are Boolean, but this view is now obsolete. This has
motivated the development of a series of new techniques, based in probability.

Statistical Model Checking has recently been proposed as an alternative to avoid an
exhaustive exploration of the state-space of the model. The main idea is to conduct some
simulations of the system, monitor them, and then use results from statistic area to decide
if the system satisfies the property or not with some degree of confidence. SMC is a
compromise between testing and classical model checking techniques. Furthermore, it is
very simple to implement, it doesn’t require extra modelling or specification effort and it
allows to model check properties that cannot be expressed in classical temporal logics.

Figure 2.1: Scheme of Statistical Model Checking (6)

Objective

A stochastic system S and a property 𝜑 are considered (5). An execution of S is a possibly
infinite sequence of states of S. The objective is to solve the probabilistic model checking
problem to decide if S satisfies 𝜑 with a probability greater or equal to a certain threshold
𝜃.

The possible solutions of this problem depend on the nature of S and 𝜑. There are three
cases:

4



∙ S is a white-box system, which means that one can generate as much executions of the
system as we want. It is also assumed that 𝜑 doesn’t contain probabilistic operators.

∙ 𝜑 can contain probabilistic operators.

∙ S is a black-box system, which means that part of the probability distribution is
unknown.

White-box system

We assume that S is a white-box system and 𝜑 is a bounded property. Let 𝐵𝑖 be a discrete
random variable with Bernoulli distribution of parameter p. This variable can only have
two different values: 0 and 1, with probabilities 𝑃 (𝐵𝑖 = 1) = 𝑝 and 𝑃 (𝐵𝑖 = 0) = 1 − 𝑝.
Each variable 𝐵𝑖 is associated with one simulation of the system. The outcome for 𝐵𝑖,
denoted 𝑏𝑖, is 1 if the simulation satisfies 𝜑 and 0 otherwise.

SMC with 𝜑 containing probabilistic operators

There are another three possible extensions in this section:

∙ Unbounded case: It is based in until property,that requires that a property 𝜑1 remains
valid until a property 𝜑2 has been seen. The problem is that the moment when 𝜑2
will be satisfied is unknown. Hence, one must reason on infinite executions.

∙ Nested case: It is considered the problem of checking whether S satisfied 𝜑 with a
probability greater or equal to 𝜃, but now it is assumed that 𝜑 cannot be decided on
a single execution. This means that 𝜑 cannot be model checked on a single execution,
but rather depends on another test, so a way to nest tests is needed. To do it, Younes
proposes the following theorem:
“Let 𝜓 = 𝑃≥𝜃(𝜑) be a property and assume that 𝜑 can be verified with Type-I error 𝛼’
and Type-II error 𝛽’, then 𝜑 can be verified with Type-I error 𝛼 and Type-II error 𝛽,
assuming that the indifference region is of size at least:

((𝜃 + 𝛿)(1 − 𝛼′), (1 − (1 − (𝜃 − 𝛿))(1 − 𝛽′)))”

Hence, one has to find a compromise between the size of the indifference region of the
inner test and the outer one. There are two facts about this:

– The above result only works for systems that have the Markovian properties.
– The complexity become exponential in the number of tests.

∙ Boolean combination: Only the conjunction and negation operations are considered.
Younes also propose the two following theorems:

– Conjunction theorem: “Let 𝜑 be the conjunction of n properties 𝜑1,...,𝜑𝑛. As-
sume that each 𝜑𝑖 can be decided with Type-I error 𝛼𝑖 and Type-II error 𝛽𝑖.
Then, 𝛼 can be decided with Type-I error 𝑚𝑖𝑛𝑖(𝛼𝑖) and Type-II error 𝑚𝑎𝑥𝑖(𝛽𝑖)”
With this idea, if we claim that the conjunction is not satisfied, this means that
we have deduced that one operands is not. Furthermore, if we claim that the
conjunction is satisfied, this means that it is concluded that all operands are
satisfied.

5



– Negation theorem: “To verify a formula ¬𝜓 with Type-I error 𝛼 and Type-II
error 𝛽, it is sufficient to verify 𝜓 with Type-I error 𝛽 and Type-II error 𝛼”

Black-box system

This kind of systems are the ones whose probability distribution is not totally known and
cannot be observed. It can be seen as a finite set of executions pre-computed and for which
no information is available. Type errors indifference region cannot be used.
A solution to this problem is to conduct a SSP test assuming that the parameter n is fixed to
the number of simulations that are given in advance. There are techniques to verify nested
formulas over black-box systems. However, a technique for the verification of unbounded
properties is still needed.

2.2 Approximate Computing
Approximate computing is a research agenda that seeks to better match the accuracy in
system abstractions with the needs of approximate programs (8). The main challenge
in approximate computing is forging abstractions that make imprecisions controlled and
predictable without sacrificing its efficiency benefits. The objective is to design hardware
and software around approximation.
The research in this area combines insights from hardware engineering, architecture, system
design, programming languages, etc. Some of them are:

∙ Tolerance studies: This category shows how different parts of the application have
different impacts on reliability and fidelity. Certain program components, especially
those involve in control flow, need to be protected from all of approximation’s effects.

∙ Exploit resilience in architecture: Hardware techniques for approximation can lead to
gains in energy, performance, manufacturing yield or verification complexity. Hardware-
based approximation strategies can be categorized according to the hardware compo-
nent they affect: computational units, memories or the entire system architecture.

∙ Memory: Persistent Memories, where their storage cells can be worn out, approximate
systems can reduce the number of bits they flip to lengthen the useful device lifetime.
Also, memories like flash can use its probabilistic properties while hiding them from
software. This memory approximation techniques typically work by exposing soft
errors and other similar effects.

∙ Relaxed fault tolerance: Some circuit design techniques can be used to reduce the cost
of redundancy by providing it selectively for certain instructions in a CPU, certain
blocks in DSP or components of a GPU. Other use is to select critically information
to allocate software-level error detection and correction resources.

∙ Microarchitecture: One set of techniques uses external monitoring to allow errors even
in processor control logic. Other approaches compose separate processing units with
different levels of reliability.

∙ Stochastic computing: It is an alternative computational model where values are
represented using probabilities. A challenge in stochastic circuits is that reading and
output value requires a number of bits that is exponential in the value’s magnitude.

6



Approximate systems

Most of work in approximate system architectures focuses on computation. Error tolerance
in transient and persistent data is present in a broad range of application domains, from
server software to mobile applications.
Memories have significant costs in performance, energy, area and complexity. It is because
they need to ensure perfect data integrity 100% of the time.

Techniques that exploit data accuracy trade-offs are proposed to provide approximate stor-
age and gain performance, energy and capacity:

1. Use multi-level cells in a way that enables higher density or better performance at
the cost of occasional inaccurate data retrieval.

2. Use blocks with failed bits to store approximate data. To mitigate the effect of failed
bits on overall value precision, the correction of higher-order bits is prioritized.

Approximate storage is applied to files and databases storage as well as transient data
stored in main memory.

Interfaces for approximate storage: Modern non-volatile memory technologies ex-
hibit properties that make them candidates for storing data approximately. By exploiting
the synergy between these properties an application-level error tolerance, we can alleviate
some of these technologies’ limitations: limited device lifetime, low density and slow writes.
When an application needs strict data fidelity, it uses traditional precise storage. Then, the
memory guarantees a low error rate when recovering the data. When the application can
tolerate occasional errors in some data, it uses the memory’s approximate mode, in which
data recovery errors may occur win non-negligible probability.
In approximate storage like Phase-change RAM and other solid-state, non-volatile memo-
ries, the application must determinate which data can tolerate errors and which data needs
“perfect” fidelity.

Approximate Main Memory: Phase-change RAM and other fast, resistive storage
technologies may be used as main memories. A wide variety of applications, from image
processing to scientific computing, have large amounts of error-tolerant stack and heap
data.

Approximate persistent storage: In this section, file systems, database management
systems (DBMSs) or flat address spaces are considered. A data centre-scale image or video
search database, for example, requires vast amounts of fast persistent storage. In occasional
pixel errors are acceptable, approximate storage can reduce costs by increasing the capacity
and lifetime of each storage module while improving performance and energy efficiency.

Hardware interface and allocation: The interface to approximate memory consists
of read and write operations augmented with a precision flag. In the main-memory case,
these operations are load and store instructions. In the persistent storage case, these are
blockwise read and write requests. The memory interface specifies a granularity at which
approximation is controlled. The compiler and allocator ensure that precise data is always
stored in precise blocks.

7



Approximate multi-level cells: Phase-Change RAM and other solid-state memories
work by storing an analog value and quantizing it to expose digital storage. In multi-level
cell configurations, each cell stores multiple bits. For precise storage in MLC memory, there
is a trade-off between access cost and density: many levels per cells requires more time and
energy to access. Furthermore, protections against analog sources of error like drift can
consume significant error correction overhead. But, where perfect storage fidelity is not
required, performance and density can be improved beyond what is possible under strict
precision constraints.

(a) Precise MLC (8) (b) Approximate MLC (8)

This picture shows the range of analog values in a precise and approximate four-level
cell. The shaded areas are target regions for writes to each level. The curves show the
probability of reading a given analog value after writing one of the levels.

Figure 2.2: Single step in an iterative program-and-verify write (8)

In the figure above, the value starts at 𝑣1 and takes a step. The curve presents the
probability distribution from which the ending value, 𝑣2, is drawn. Since 𝑣2 lies outside the
target range, another step must be taken.
An approximate MLC configuration relaxes the strict precision constraints on iterative
MLC writes to improve their performance and energy efficiency.

8



Chapter 3

Selection of Implementation Areas
and Means

3.1 Implementation Areas
My thesis will be divided into two parts. In the first one, I will try to evaluate the behaviour
of an approximate logic multiplier, while in the second I will test the error rate of a DRAM
memory depending on the refresh time of the electric current.

3.1.1 Approximate logical multiplier

A logical multiplier is a circuit that, from a series of inputs that represents a binary number,
and another that represents another binary number, the multiplication of both numbers in
the form of 0 and 1 is obtained. The length of the output will be the sum of the length
of the two inputs. This, in case that the length of these numbers is very high, can lead to
a high cost in the processing of the output. One solution can be the approximate logical
multipliers.
The approximate logical multipliers are the same as the exact ones, except that they have
fewer outputs. That means that we will have fewer costs but some multiplications won’t
be correct. This kind of multipliers are useful in systems that don’t require a perfect
computation, that is, they are tolerant of errors. Because of that, a certain amount of
accuracy is sacrificed to reduce the area of the circuit and power consumption and increase
the performance.(3)
To do the tests, an accurate multiplier and an approximate multiplier will be implemented.
Both will have 4 inputs, where we want to multiply (B1, B0) with (A1, A0), obtaining 4
outputs: (Out3, Out2, Out1, Out0). This is the truth table for the exact logical multiplier:

9



B1 B0 A1 A0 Out3 Out2 Out1 Out0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Table 3.1: Truth table of the accurate logical multiplier

We can see that, for Out3, all possible outputs are 0 except for the last one. What is
done with the approximate multiplier is to delete this output. The last one will be trans-
formed into (1,1,1), so, for these 16 possible outputs, only 1 will be incorrect:

B1 B0 A1 A0 Out2 Out1 Out0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 1
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 0
1 1 0 1 0 1 1
1 1 1 0 1 1 0
1 1 1 1 1 1 1

Table 3.2: Truth table of the approximate logical multiplier

Then, from these tables, the logic circuits can be created:

10



(a) Accurate multiplier circuit (3) (b) Approximate multiplier circuit (3)

As can be seen in the pictures above, the accurate multiplier has 8 logic gates (6 AND
gates and 2 XOR gates), while the approximate one only has 5 (4 AND and 1 OR), being
this last one the simplest.

3.1.2 DRAM memory

A DRAM (Dynamic Random Access Memory) memory is a kind of RAM memory based
on capacitors, which lose their charge progressively, so they need a refresh dynamic circuit
that, every certain period, check this charge and replenish it. Its principal advantage is the
possibility of build memories of a high density of positions and that work at a high speed.
Like the rest of the types of RAM memories, it is volatile. It means that if the electrical
power is interrupted, the stored information will be lost. The DRAM is widely used in
digital electronics where low-cost and high-capacity memory is required. At the moment,
it is one of the most used memories.(14; 15)
Each memory cell is the basic unit of each memory, able to store a bit in its logic circuits.
Each cell has a transistor and a capacitor. Cells are organized in two-dimensional matrices,
which are accessed through rows and columns.

Figure 3.1: DRAM scheme (16)

If there is a charge inside the capacitor, it means that the logic value of the cell is 1.
Otherwise, it is 0. The transistor connects or disconnects the capacitor. Over time, the
capacitor will be discharging progressively. In the case that the voltage is below a threshold
value, it will be assumed that the logic value of the cell is 0. That’s why every so often it
is necessary to recharge the capacitor. Therefore, the error rate of a DRAM memory will
be checked depending on the time between the refresh periods.

11



3.2 Implementation Means
The implementation of this thesis will be in UPPAAL. It is a toolbox for validation and
verification (via automatic model-checking) of real-time system (12).
The objective of this tool is to model a system using timed automata, simulate it and then
verify properties on it. Timed automata are finite state machines with time (clocks). A sys-
tem consists of a network of processes that are composed of locations. Transitions between
these locations define how the system behaves. The simulation step consists of running the
system interactively to check that it works as intended. Then, we can ask the verifier to
check reachability properties.

This tool, at this moment, is in version 4.0, but there is also a version 4.1 that is in
development, which includes an SMC extension. This last version is what will be used.

3.2.1 UPPAAL 4.0

UPPAAL is based on timed automata, that is a finite state machine with clocks. The clocks
are the way to handle time. It is continuous and the clocks measure time progress. It is
allowed to test the value of a clock or to reset it. Time will progress globally at the same
pace for the whole system.

A system in UPPAAL is composed of concurrent processes, which are modelled as an
automaton. This automaton has a set of locations. Transitions are used to change location.
To control when to take a transition, it is possible to have a guard and a synchronization. A
guard is a condition on the variables and the clocks saying when the transition is enabled.
When a transition is taken, two actions are possible: assignment of variables or reset the
clocks.

Figure 3.2: Example of a UPPAAL model (12)

Locations

There are different kinds of locations of UPPAAL (10):

∙ Normal locations (with or without invariants).

∙ Urgent locations: This kind of locations freeze time. It means that time is not
allowed to pass. They are marked by a U inside the circle.

12



∙ Committed locations: These locations also freeze time, but also, the next transi-
tion must involve an edge from one of the committed locations. They are useful for
creating atomic sequences and for encoding synchronization between more than two
components. They are marked by a C inside the circle.

There is also one (and only one) initial state. It is marked by a double circle.

Figure 3.3: Example of a normal, urgent and committed states

Verifying properties

To check if a property of our model is correct, UPPAAL has a verifier tool. The queries
available in the verifier are (12):

∙ E<> p: There exists a path where p eventually holds.

∙ A[ ] p: For all path p always holds.

∙ E[ ] p: There exists a path where p always holds.

∙ A<> p: For all paths p will eventually holds.

∙ p −− > q: Whenever p holds, q will eventually hold.

p and q are state formulas.
There is also a special query: A[ ] not deadlock, that checks for deadlocks (more transi-
tions are not possible).

Figure 3.4: Verifier tool in UPPAAL

In this example we can see that the first and the second properties that we want to
check are validated, but not the last one.

13



3.2.2 UPPAAL 4.1 (SMC)

The modelling formalism of UPPAAL SMC is based on a stochastic interpretation and
extension of the timed automata formalism used in the classical model checking version
of UPPAAL.(2) For individual timed automata components, the stochastic interpretation
replaces the non-deterministic choices between multiple enabled transitions by probabilistic
choices. Similarly, the non-deterministic choices of time delays are defined by probability
distributions, which at the component level are given either uniform distributions in cases
with time-bounded delays or exponential distributions in cases of unbounded delays.

Figure 3.5: Example of a stochastic timed automata (2)

A model in UPPAAL SMC consists of a network of interacting stochastic timed au-
tomata. It is assumed that these components are input-enabled, deterministic and non-zero.
These components communicate via broadcast channels and shared variables to generate
networks of stochastic timed automata. The communication is restricted to broadcast syn-
chronizations to keep a clean semantics of only non-blocked components which are racing
against each other with their corresponding local distribution.

Additional verifying properties

Simulation In addition to the standard model checking queries, UPPAL SMC provides
a number of new queries related to the stochastic interpretation of timed automata. In
particular, it allows the user to visualize the values of expressions along simulated runs
(evaluating to integers or clocks), providing insight to the user on the behaviour of the
system so more interesting properties can be asked to the model-checker.
The concrete syntax applied in UPPAAL SMC is as follows:

simulate [<= bound]{𝐸1,...,𝐸𝑘}

where N is a natural number indicating the number of simulations to be performed,
bound is the time bound on the simulations, and 𝐸1,...,𝐸𝑘 are the k expressions that are
to be monitorized and visualized.

Probability estimation The probability estimation algorithm of UPPAAL SMC com-
putes the number of runs needed to produces an aproximation interval [𝑝 − 𝜀, 𝑝 + 𝜀] for
𝑝 = 𝑃𝑟(Ψ) with a confidence 1 − 𝛼. A frequentist interpretation of this result tells us that

14



if we repeat the interval estimation N times, then the estimated confidence interval (𝑝± 𝜀)
contains the true probability at least (1 − 𝛼) N in the long run (𝑁 → ∞)
The syntax applied to check probability estimations is:

Pr [bound](𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

Also, UPPAAL gives you some plots, like the probability density distribution plot or
the cumulative probability distribution plot.

Figure 3.6: Queries about probability estimation and simulation

Figure 3.7: Probability density distribution plot

Hypothesis testing This approach reduces the qualitative question to test the null-
hypothesis 𝐻0 : 𝑝 ≥ 𝑝0 against the alternative hypothesis 𝐻1 : 𝑝 < 𝑝0. In UPPAAL SMC,
we use the following query:

Pr [bound](𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)>= 𝑝0

Probability comparison The algorithm use the Wald test to compare probabilities,
with the following query:

Pr[𝑏𝑜𝑢𝑛𝑑1](𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛1) = Pr[𝑏𝑜𝑢𝑛𝑑2](𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛2)

15



Expected values UPPAAL SMC also supports the evaluation of expected values of min
or max of an expression that evaluates a clock or an integer value. The syntax is:

E[bound;N ](min:Expression) or E[bound;N ](max:Expression)

3.2.3 Other versions

UPPAAL TIGA

UPPAAL TIGA is an extension of UPPAAL and it implements the first efficient on-the-fly
algorithm for solving games based on timed game automata with respect to reachability
and safety properties. Though timed games for long have been known to be decidable there
has until now been a lack of efficient and truly on-the-fly algorithms for their analysis (11).
The algorithm is a symbolic extension of the on-the-fly algorithm suggested by Liu &
Smolka for linear-time model-checking of finite-state systems. Being on-the-fly, the symbolic
algorithm may terminate long before having explored the entire state-space. Also, the
individual steps of the algorithm are carried out efficiently by the use of so-called zones
as the underlying data structure. The tool implements various optimizations of the basic
symbolic algorithm, as well as methods for obtaining time-optimal winning strategies (for
reachability games).

UPPAAL Stratego

UPPAAL Stratego is a novel tool which facilitates the generation, optimization, comparison
as well as consequence and performance exploration of strategies for stochastic priced timed
games in a user-friendly manner. The tool allows for efficient and flexible “strategy-space”
exploration before adaptation in a final implementation by maintaining strategies as first-
class objects in the model-checking query language.(1)

16



Chapter 4

Proposed solutions

4.1 Approximate logical multiplier
Two models have been created for this implementation. The first one shows a more graphical
way of how these logical systems work using transitions between different states. The second
one uses transitions and functions.

4.1.1 Gate Network approach

With this implementation, the circuits shown in pictures 3.1a and 3.1b will be built. To
do that, a model of each logic gate has been simulated. 4 random inputs will be generated
randomly. Then, the outputs for the accuracy and approximate multiplier will be calculated
by a series of comparisons and transitions using these gates. Finally, if these outputs are
identical, the result of the approximate multiplier is correct. Otherwise, it is not. These will
be checked the number of times the user wants, and, in the end, the number of successes
will be count.

Global variables

∙ count (integer): Number of times that the system has calculated the outputs.

∙ success (integer): Number of times that the outputs of the approximate multiplier
are the same as the three less significant output of the accurate multiplier.

∙ input(array of integer): Store the inputs that the system will use to calculate the
outputs.

∙ C0,C1,C2,D0,E0,E1 (integers): Auxiliary variables used in the process of the calcu-
lation of the outputs.

∙ Out3ac,Out2ac,Out1ac,Out0ac (integers): Outputs of the accurate multiplier.

∙ Out2ap,Out1ap,Out0ap (integers): Outputs of the approximate multiplier.

∙ Different broadcast channels used to send and receive signals between each gate.

17



Templates

Main This template has one parameter: loops. It says the number of times that the
system will calculate the possible outputs. Random inputs are selected using a normal
distribution N(0,1). First, 4 different random numbers are generated using this distribution
and stored in a local array of integers RandomV. These numbers have the same probability
of being positive or negative: Pr(X<=0) = Pr(X>0) = 0.5. So, if the number generated is
negative, the number assigned for the corresponding position of input will be 0, and if it
is positive, it will be 1. This is calculated by the function setValues(). Then, a signal will
be sent to another template so it can start calculating the outputs for the accuracy and
approximate multiplier. Finally, when these outputs are given back, they are compared
by the function check(), except the most significant bit of the accurate model because it
doesn’t have any pair to compare with. If all are the same, one unit will be added to the
variable success. Then, if the system has done its last iteration (seeing if count is equal
to loops), it will finish. Else, the process will start again.
A clock t is added to the model, so an iteration will be done depending on the delay that
it shows in the first state.

Figure 4.1: Main template

AND This template simulate the behaviour of an AND gate. It has 5 arguments:

∙ chanInput (broadcast channel): Channel that receives the signal so it can start work-
ing.

∙ input1 and input2 (integers): Inputs from which the output want to be got.

∙ output (integer): Output obtained from the transitions.

∙ chanOutput (broadcast channel): Send the signal so another template can start work-
ing.

In an AND gate, the only possibility that the output is 1 is that both inputs are also 1. So,
when the signal of chanInput is received, two comparisons are established. The first one is
that, if the value of the first input is 0, the output will be 0 and the signal for chanOutput
will be activated. In case that it is 1, it is moved to an intermediate state where the second
input intervenes. If it is also 1, then the output will be 1. Otherwise, it will be 0. Then,
there is a transition to an auxiliary state aux and another one to the initial state, sending
the signal chanOutput to the next template.

18



Figure 4.2: AND template

XOR Like the AND template, this shows how the XOR gate works. This kind of gate
returns 1 if both inputs are different, and 0 if are the same. It has the same 5 arguments
of the last template, but its functionality is different. Once chanInput receive the signed,
the first comparison is done. if the first input is 0, we go to an intermediate state, and if
is 1, we go to another intermediate state. For both states, if the second input is equal to
the first one, then the output will be 0, otherwise, it will be 1. Then, a transition to an
auxiliary state is done and another one to the initial state. The signal of chanOutput will
be sent in this last transition.

Figure 4.3: XOR template

OR This template has only 4 arguments because it is only used at the end of the simula-
tion, so it doesn’t have chanOutput. This kind of gates returns 1 if some of its inputs are
1, 0 in another case. Like the other templates, we start receiving the signal in chanInput.
If the first output is 1, the value 1 is given to the output. If not, the second input is
compared. If it is 1, the output will be 1, and if it is 0, the output will be 0. Then, as the
other templates, a transition is done to an auxiliary state and going back to the first state.

19



Figure 4.4: OR template

Finally, in the system declarations section, the different gates that encompass each
circuit are declared. As it has been explained before, the accurate multiplier has 6 AND
and 2 XOR gates, and the approximate multiplier has 4 AND and 1 OR gates.

Figure 4.5: Declarations of the accurate multiplier

Figure 4.6: Declarations of the approximate multiplier

4.1.2 Truth Table approach

This implementation is more focused on programming using functions, and no so much is
transitions as the first implementation was. It is based in the search for the corresponding
output in the truth tables (3.1 and 3.2) depending on the inputs selected. With it, you can
check all possible values of the outputs and also analyze with which frequency the approx-
imate multiplier fails.
In total, there are 4 templates. 2 of them are used to update the values of the outputs for
the accurate and approximate multipliers respectively, the third establishes the inputs in a

20



sorted way so all the possible outputs can be seen clearly, and the fourth generate random
numbers for the inputs.

Global variables

∙ update (broadcast channel): Allows the system to generate the outputs once the
inputs have been established.

∙ bits and bits_aprox (boolean arrays): They have length 8 and 7 respectively. Po-
sitions 0, 1, 2 and 3 of each array represents the inputs, and positions 4, 5, 6 and 7
(This last one only for the array bits) represents the obtained outputs.

∙ bitsCovered (Integer): Represents the number of possibilities that have been used
when only the different possibilities are wanted to be seen.

∙ equalBits (Integer): Establish if the outputs of the approximate multiplier are the
same as the obtained by the accurate multiplier.

∙ errorRate and finalErrorRate (doubles): The first one stores the error rate at
every moment of the simulation, and the second one only at the end.

∙ The truth tables of both multipliers are defined as a two-dimensional array, with
dimension 2N_INPUTS × (N_INPUTS + N_OUTPUTS), where N_INPUTS and N_OUTPUTS rep-
resents the number of inputs and outputs respectively.

Figure 4.7: Truth table declaration of the accurate logical multiplier

Templates

Template set_inputs This template has 5 parameters: a0,a1,b0,b1,integers, that rep-
resent the positions that the inputs will be stored in the array, and dly, integer, that rep-
resents the period of time used by a set of inputs and outputs.
The local variables are a clock x,input, integer, used to update the inputs, and a boolean

21



array inCoverSet used to check if the simulation should end.
The functions created for this template are:

∙ update_bits(): Update the values of bits depending if the actual value of input is
divisible or not by a number (1 for the less significant input, 2 for the second, 4 for
the third and 8 for the most significant one).

∙ update_bits_aprox(): Copy the values of the inputs of bits (First 4 registers) into
bits_aprox so comparisons can be done.

∙ update_input(): Call the two functions mentioned before, establish the value true
to inCoverSet[input] and add 1 to input.

∙ check(): Check if the outputs of both multipliers are the same, and set a value to
equalBits depending on it.

∙ error(): Calculates the error rate committed at a specific time of the simulation.

∙ inCovered(): Check if all possible states have been analyzed. This is done seeing if
all the registers of inCoverSet have the value true.

Template set_inputs_random It is similar to the previous one, but with some dif-
ferences, because this template is used to generate n random inputs. It has the same
arguments of set_input, but with one more: loops, integer, that specifies the number of
times that inputs will be generated.
As local variables, there are a clock x, an integer count that will be a counter and a boolean
stop that will tell if the simulation has to finish.
There are the same functions of the first template, but changing some definitions. There
will be commented only the ones which are different, omitting the others:

∙ update_bits(): It generates random inputs. It uses a normal distribution to do it,
as in the first implementation. 4 random numbers are generated with a distribution
N(0,1), that have the same probability of being positive or negative. In case that the
number is negative, the input will be 0, otherwise will be 1.

∙ inCovered(): Check if the counter count is equal to the number of inputs that wanted
to be generated, established by loops. If it is, then stop will be set with true.

∙ update_input(): Calls update_bits() and update_bits_aprox(), increase the value of
count 1 unit and calls inCovered()

22



Figure 4.8: set_inputs and set_inputs_random template

Both templates have the same states and transitions, but, as it has been commented before,
the functions they have are different.

Template outputs_acc This template has as parameters a0,a1,b1,b0, that represents
the positions of the array bits where the inputs will be stored, y0,y1,y2,y3, that establish
the positions of the same vector where the outputs will be, a two-dimensional boolean vec-
tor ttbl that references the truth table of the accurate multiplier, and an integer dly that
set the delay between the different calculation of the outputs. As a unique local variable,
there is a clock x.

output_acc only has one function, bin2dec(), that gets the binary values of the entries
and returns a decimal number.

Figure 4.9: outputs_acc template

Template outputs_aprox This last template is similar to the last one. It has the
same parameters, but in this case there is not y3, because only 3 outputs are obtained,
a0,a1,b0,b1,y0,y1 now set the positions of inputs and outputs in the vector bits_aprox
and ttbl references the truth table of the approximate multiplier. It also has one local
variable, the clock x, and the function bin2dec().

23



Figure 4.10: outputs_aprox template

How it works

First, the simulation starts on the template set_inputs or set_inputs_random, depending
on if it is wanted to obtain all possible outputs or 𝑛 random outputs. The initial state is
get. A transition to the state apply is done. On it, the signal of the channel update is
activated, which will allow the templates outputs_acc and outputs_aprox to do the first
transition. Also, the function update_inputs() is called to update the inputs.
With the inputs updated, the templates outputs_acc and outputs_aprox will start work-
ing. In them, the outputs will be calculated, referencing the inputs to the respective truth
table.
Once the outputs are obtained, there will be a transition to the state wait. In that tran-
sition, the system will check if the outputs of both multipliers are the same and it will
calculate the error rate in that moment of the simulation.In wait, there will be checked if
all possible combinations of inputs have been obtained (in the case of set_inputs) or if
the number of desired outputs have been obtained (in the case of set_inputs_random).
There are two possibilities:

∙ If the condition is not met, there will be a transition to the initial state when the
delay time has been reached.

∙ If the condition is reached, a transition to the state done. finalErrorRate will be
set with the current error rate and the simulation finish.

These are some possible results obtained with this implementation:

Figure 4.11: Simulation with get_inputs

24



Figure 4.12: Simulation with get_inputs_aprox

In these implementations, more study cases could be added, such as generate inputs
until the x% of outputs have been obtained, till an energy consumption level have been
reached, etc.

4.2 DRAM memory
With this implementation, the functioning of a dynamic random access memory is wanted
to be simulated, but on a small scale. Its objective is to show the different error rates that
the cells have depending on the time of refresh that will be predetermined.

There are 4 templates. The first one only works as a switch, to start the simulation.
The second is the one that simulates the behaviour of a cell memory, where the voltages
and the different outputs are calculated. The third one represents the refresh circuit, used
to give electrical power to the cells. The last one is used to do the tests, writing on the
cells.

Global variables

∙ VCC_MAX (double): Maximum voltage that a cell can have.

∙ V_TRESH (double): Threshold from which, if the voltage is higher than this value, the
local value of the cell will be 1. Otherwise, it will be 0.

∙ N_ROWS and N_COLS (integers): Number of rows and columns that the memory will
have.

∙ tRow and tCol (type definitions): Range of rows and columns, defined between 0 and
N_ROWS-1/N_COLS-1.

∙ uint8 (type definition): Set a range between 0 and 28 − 1, so, [0,255].

∙ tRefresh (integer): Time that have to pass so the voltage of the memory fresh is
refreshed.

∙ row2Refresh (tRow): Number of the row that have to be refreshed.

25



∙ blockCnt (integer in range [0,N_COLS]): Number of columns blocked. If it is 0, the
bank is unlocked.

∙ cVolt (array of double[tRow][tCol]): Voltages of each memory cell.

∙ cBit (array of double[tRow][tCol]): Logical real value of each memory cell.

∙ eBit (array of double[tRow][tCol]): Logical expected value of each memory cell.

∙ fail (array of double[tRow][tCol]): Number of fails that have been committed in
each memory cell.

∙ loop (array of double[tRow][tCol]): Number of times that have been checked if there
is a fail.

∙ errorRate (array of double[tRow][tCol]): Error rate of each memory cell.

∙ rowBuf (array of boolean[tCol]): Row buffer, one per bank.

∙ bit2rw (array of boolean[tCol]): Bit that will be read of written in each column.

∙ pwrUp (broadcast channel): Activates the system.

∙ rActivate (array of bradcast channels [tRow]): Activates a row.

∙ cOp (broadcast channel): Signal to write, read or refresh over bank’s buffer columns.

Global functions

∙ loadRBuf(tCol r) : Activates bank’s row r if the voltage of the column is higher than
the threshold.

∙ write8(uint8 data): Writes data into the corresponding cells.

Templates

Template powerUp This template doesn’t have local variables or parameters. It just
activates the signal pwrUp so the memory cells can start working.

Figure 4.13: powerUp template

Template mCell N_ROWS × N_COLS memory cells are created with this template. It has
as parameters tRow r and tCol c, representing the row and the column where the memory
cell is. Like local variables, it has two clocks. t0 counts the time till a writing or reading
operation is done and t1 counts the time till a memory cell is discharged.This template has

4 functions:

∙ pwrUp_init(): Set the voltage of the cell in 0.

26



∙ targetV(bool r): It is used to charge the voltage of the cell. Returns the maximum
voltage if an operation is been doing at that moment, otherwise returns 0.

∙ updateLogicValue(): Set the expected logical value of the cell.

∙ calcError(): Calculates the error rate of the cell.

Figure 4.14: mCell template

Template mRefresh It doesn’t have local variables or parameters. This template, when
the time of refresh set by tRefresh has come, tells the memory cell that has to recharge
its voltage.

Figure 4.15: mRefresh template

Template test It is used to write values in different cells. Its aspect can change depending
on the tests that wanted to be done. This is an example of writing in the second, third,
and fourth cell of the first row.

27



Figure 4.16: test template

How it works

First, the cells that want to be written are chosen. To write on some cells, it is needed
to wait that all the columns are unblocked. Then the row where it is wanted to write is
activated and the signal of cOp is sent. The function write8 is used, having as parameters
the data that is wanted to be written separated by +, being 1 if the first cell is wanted to
be written, 2 if it is the second, 4 if it is the third, ..., 2𝑛−1 for the 𝑛𝑡ℎ cell. Then, the pwrUp
signal is sent in the powerUp template to the 𝑁_𝑅𝑂𝑊𝑆×𝑁_𝐶𝑂𝐿𝑆 mCell templates. In
this template, each cell is initialized with voltage 0 (cVolt[r][c] = 0), so it will wait in
the state inactive till the row activation signal rActivate[r] is received. Then, the column
is blocked and a transition is done to the state active. There, the cell has to wait again till
the signal cOp to access to the state operation. Then, 3 options are possible, depending
on the type of operation that will be done, specified in the array bCop[c]:

∙ bCop[c] = RD: Means that a reading will be done, so the content of rowBuf[c] will
be copied to bit2rw[c].

∙ bCop[c] = WR: The operation will be a writing. The content of bit2rw[c] will be
copied to rowBuf[c].

∙ bCop[c] = RF: There will be a refresh. No further operations are needed.

In these 3 cases, there will be a transition to the state precharge. There, the cell is
recharged with the maximum voltage set by VCC_MAX. Then, there will be a transition to
done, where the real and expected logical value (cBit[c] and eBit[c]) will be set with
the value of rowBuf[c]. Finally, the cell goes back to the state inactive, unblocking the
column. In the next iteration, the voltage is higher than 0, so it will be discharging slowly,
and also updating the expected logical value and calculating the error rate at that moment,
till the moment that other operation will be done.
Lastly, the mRefresh template is used to refresh the model when is needed. The time
of refresh is set by the variable trefresh. When that time comes, it is checked that all
columns are unblocked. Then, the row that has to be refresh is activated and the operation
RF is set in the array bCop[row2Refresh]. Finally, the cOp signal is sent to the mCell
template to do the corresponding operation.
This is an example of the voltage, real logical value and expected logical value of a cell:

28



Figure 4.17: DRAM simulation example

In this plot, we can see that a writing is done when time is 50, and it has finished in
103 approximately. The time of refresh is set in 40. Both logical values, the real and the
expected, are 1 when there is voltage in the cell. The voltage decrease with time, but when
time is around 80, the voltage increase again. That is because 80 coincide with the time
that the cell has to refresh.

29



Chapter 5

Evaluation

For the different tests that will be done on the models described before, the verifier tool
of UPPAAL SMC will be used. With it, we can obtain various plots, confidence intervals,
results of simulations using diagrams, etc.

5.1 Tests on multiplier based on gate networks

Verification of the model

First of all, it will be checked that the system behaves correctly. To do that, the parameter
of the template Main will be set on 1, so only one iteration will be done. The following plot
has been obtained with the command:

simulate[<=2] {randomV[0], input[0], randomV[1]+2,input[1]+2,randomV[2]+4,
input[2]+4, randomV[3]+6, input[3]+6, success+8}.

On it, there will be represented, starting from below, the four random values obtained using
a normal distribution. With them, if the value is positive, the input will be 1, and if it is
negative, the input will stay in 0. At the top, the success variable is shown. These are two
possible results:

(a) (b)

In figure 5.1a, we can see that, for the inputs 0, 1 and 3, the random values obtained
are negative, and for the input 2 it has been positive, so the corresponding input is 0010.
With this combination of inputs, the approximate and the accurate multipliers have the

30



same outputs, so the variable success has increased one unit.
In the simulation that is represented in the second plot 5.1b, all random values have been
positive, so the inputs of the system were 1111. That is the only possible input which the
outputs of the multipliers are different. That means that there has been a failure, so the
variable success doesn’t increase.

Number of successes

In this test, I will see how many successes are obtained depending on the number of itera-
tions that the system does. It is known that, theoretically, there is only 1 chance of 16 that
the system fails (0.0625%). For the simulations, the next command has been used:

simulate[<=N ] {success}

where N represents the number of iterations done. These are the results:

N Successes Fails Error Rate
10 10 10 0%
50 46 4 0.08%
100 94 6 0.06%
200 183 17 0.085%
300 278 22 0.073%
400 376 24 0.06%
500 471 29 0.058%
750 710 40 0.053%
1000 922 88 0.088%
2000 1871 129 0.0645%

These results seem similar to the theoretical value, but it is needed to check it. To
do it, I will do a hypothesis test. I will check the hypothesis 𝐻0 : 𝜇 = 0.0625 against
𝐻1 : 𝜇 ̸= 0.0625. First, I calculate 𝑡𝑜𝑏𝑠 = 𝑋−𝜇0

𝑠

√
𝑛, where 𝑋 is the mean and 𝑠 is the

standard deviation of the data. This statistic follows a distribution 𝑡𝑛−1.
For the data obtained, 𝑋 = 0.06215 and 𝑠 = 0.2496. Then, 𝑡𝑜𝑏𝑠 = 0.06215−0.0625

0.2496

√
10 =

−0.00443 follows a distribution 𝑡9. Finally, I calculate the p-value, that is 2 * 𝑃𝑟(𝑡9 >
−0.00443) = 0.9655931. With a level of confidence of 5%, because of 0.9655931 > 0.05, we
can not reject 𝐻0 and we can assume that 𝜇 = 0.0625

Behaviour of the number of successes

With this test, I will check what is the statistical behaviour of the number of successes. To
do that, I calculate the expected values of the maximum of the variable success and then
check the plots. I’ve used the next command in the verifier tool of UPPAAL:

E[<=bound;N](max:success)

where bound and N are numbers big enough to have the significant results, and bound need
to be at least as big as the parameter loops of the template Main. For the experiment, I’ve
chosen 1000 for both numbers. These are some results:

31



(c) Probability Distribution Plot (d) Cumulative Probability Distribution Plot

As numerical results, this simulation has been obtained as mean 𝜇 = 937.6 and a
confidence interval of 95% [937.129, 938.071].

Observing the plots 5.1c and 5.1d, we can see clearly that the variable success follows
a normal distribution with mean 𝜇, because of the shape of them, that seems to be the
Gauss Bell in the first plot and an S in the second.
Transforming now these values to error rate (doing the operation 1−( 𝑥

1000)), we obtain that
the average error rate is 0.0624, and the confidence interval in 95% is [0.061929, 0.062871].
With this interval, we can see that the theoretical value is in it, and the mean is also really
proximate to that number.

Comparison of the resources used by both multipliers

In this test, I will compare the time needed by the system to calculate N outputs of the
accurate and the approximate multiplier separately. This time is given by UPPAAL at the
end of the calculation. For that, I have modified the model, using only the definitions of
the accurate or the approximate multiplier for each case. I’ve used the same command of
the first test but varying the bound. These are the results:

N Accurate multiplier Approximate multiplier
100 0.032 0.016
1000 0.235 0.125
2000 0.36 0.281
3000 0.594 0.359
4000 0.75 0.563
5000 0.969 0.64
6000 1.093 0.75
7000 1.328 0.86
8000 1.485 1.015
9000 1.703 1.125
10000 1.969 1.344
11000 2.047 1.375
12000 2.266 1.5
15000 2.891 1.828

Table 5.1: Time used by the multipliers in seconds depending on the number of iterations

32



Figure 5.1: Plot of times of both multipliers

With this table and this plot, we can see that the time used by the accurate multiplier
is higher than the used by the approximate multiplier in every point. To get more details,
I will do a regression analysis of both multipliers. I will use R, a software for statistical
computing, to do it. These are the commands used in that program:

N<-c(100,seq(1000,12000,1000),15000)
y1<-c(0.032,0.235,0.36,0.594,0.75,0.969,1.093,1.328,

1.485,1.703,1.969,2.047,2.266,2.891)
y2<-c(0.016,0.125,0.281,0.359,0.563,0.64,0.75,0.86,

1.015,1.125,1.344,1.375,1.5,1.828)
reg1<-lm(y1~N)
reg2<-lm(y2~N)
summary(reg1)
summary(reg2)

reg1 represents the regression analysis for the accurate multiplier and reg2 for the approx-
imate multiplier. The outputs obtained are:

Figure 5.2: Regression analysis results for the accurate multiplier

33



Figure 5.3: Regression analysis results for the approximate multiplier

In the first table, we can see that the results are significant, because 𝑅2 is 0.9983
is close to 1 and the p-value of the model is low. The regression line obtained is 𝑦1 =
0.003946 + 0.0001898𝑁 , but observing the p-value of the intercept we can see that is so
high (using a confidence level 𝛼 = 0.05). That is referred to the hypothesis of significant of
that value. Interpreting it, we can consider that the intercept is 0, so the final regression
line would be 𝑦1 = 0.0001898𝑁 .

In the second table, the 𝑅2 is also close to 1, with a value of 0.9962, and the p-value
of the model is close to 0, so the model is also significant. The regression line is defined
by 𝑦2 = 0.01968 + 0.0001236𝑁 , but, the p-value of the intercept is also a big value, higher
than 𝛼, so it will be considered as 0. With this information, the final regression line is
𝑦2 = 0.0001236𝑁 .

Comparing both regression lines, the independent value of the second one increases
slower than the independent value of the first as long as 𝑁 is growing. That means that
the approximate multiplier is more efficient than the accurate multiplier in
terms of time.

5.2 Tests on multiplier based on truth tables
Tests on this model will be similar to the ones done in the previous model, so we can check
that the results are correct.

Verification of the model

The first test will check if the system works correctly. For that, I will use both templates
that generate inputs. The two next plots are generated in the verifier tool on UPPAAL
with the next command:

simulate[<=bound]{bits[0],bits[1]+2,bits[2]+4,bits[3]+6,equalBits+8,
errorRate+10}

bound is set in 16 for the first simulation and in 50 for the second.

34



(a) Simulation using set_inputs (b) Simulation using set_inputs_random

Starting from below, the variables shown are the 4 inputs, equalBits, that says if there
has been a failure in the iteration, and the error rate.
In figure 5.4a we can see that all possible inputs have been generated. The first one is
the only one that fails, so the error rate is 1 at that moment. Then, it decreases in every
iteration, reaching 0.0625 at the end of the simulation, the theoretical error rate value.
In figure 5.4b the inputs have a random distribution, so the error rate change depending
on them.
With this information, it can be concluded that the system is correct.

Error rate average

The template that generates random inputs will be used. With it, I will generate N random
inputs, and check the error rate in each simulation. Finally, I will test, with the values
obtained, if we can consider that the real mean of the system is 0.0625. It will be used the
same command of the first test, changing the bound depending on N. These are the error
rates calculated:

N Error Rate
10 0.1%
50 0.02%
100 0.0606%
200 0.08%
300 0.074%
400 0.0625%
500 0.076%
750 0.053%
1000 0.077%
2000 0.069%

Now, the same hypothesis test done in the first implementation will be performed with
this data. The statistical parameters are 𝑋 = 0.06721 and 𝑠 = 0.02097027.With them, the
statistical 𝑡𝑜𝑏𝑠 is calculated: 𝑡𝑜𝑏𝑠 = 0.06721−0.0625

0.0297027

√
10 = 0.710259. This statistical follows a

distribution 𝑡9. Now, I calculate the p-value of the test, that is 2 * 𝑃𝑟(𝑡9 > 0.710259) =
0.4955, which means that the null hypothesis 𝐻0 : 𝜇 = 0.0625 can not be rejected, so the
same result of the first test has been obtained.

35



Behaviour of the error rate

In this test I will obtain the statistical behaviour of the error rate, calculating the expected
value of the maximum of the variable finalErrorRate. It will be done with the next
command:

E[<=1000;1000](max:finalErrorRate)

Some of the plots obtained are:

(c) Probability Distribution Plot (d) Cumulative Probability Distribution Plot

As numerical values, the mean of the 1000 simulations is a error rate of 0.0623, with a
confidence interval (𝛼 = 0.05) of [0.061827, 0.062773], which include the theoretical error
rate.
Observing the plots, we can conclude that the error rate follows a normal distribution with
mean 0.0623.

Comparison of the resources used by both multipliers

In this last test, I will check the time that the verifier tool last to complete N iterations
of each multiplier separately. I will disable outputs_acc or outputs_aprox, depending on
the multiplier which will be tested. The command used on the verification of the model
will be used, varying the bound. These are the times obtained, in seconds:

N Accurate multiplier Approximate multiplier
100 0.016 0.015
1000 0.046 0.031
2000 0.094 0.078
3000 0.125 0.093
4000 0.156 0.125
5000 0.172 0.156
6000 0.188 0.171
7000 0.219 0.203
8000 0.266 0.219
9000 0.297 0.266
10000 0.359 0.281
11000 0.391 0.296
12000 0.422 0.313
15000 0.453 0.375

36



Figure 5.4: Plot of times of both multipliers

It seems that there are no such big differences between both times. To check it, I will
do a regression test using R. The code used in that software for the analysis is the same as
the used in the regression analysis done before, but changing the values of y1 and y2 for
the obtained in this experiment. These are the outputs:

Figure 5.5: Regression analysis results for the accurate multiplier

Figure 5.6: Regression analysis results for the approximate multiplier

37



The first analysis has a high 𝑅2 and a small p-value, which means that the results are
significant. The regression line is 𝑦1 = 0.002096 + 0.00003126𝑁 . In this case, it is not
convenient to delete the intercept on the model, because it’s p-value, although it is greater
than 0.05, is very close to this value.

In the second analysis, we also obtain that the model is significant. The regression line
is defined by 𝑦2 = 0.00224 + 0.00002482𝑁 . This is the definitive regression line because the
p-values of the parameters say that they are significant in the model.

Comparing both lines, the time of the approximate multiplier grows slower than the
time of the accurate multiplier, but there is not such a big difference in it.

5.3 Comparison of the two implementations
In both implementation have been tested similar characteristics, obtaining similar results in
all of them except on the last one, the test that checks the time that the approximate and
the accurate multiplier last on doing N iterations separately. In the test done on the gate
network model, there was a notable difference between both multipliers, but that behaviour
doesn’t appear in the truth table model. In my opinion, this difference is caused because
of the number of states that are in the first model. The accurate multiplier has more gates
than the approximate one, so more transition needs to be done and more time is used.
The second model has the same number of iterations in both multipliers, but there is 1
calculation less on the approximate one because it just needs to find 3 outputs and not 4 as
the accurate multiplier does. This could cause the insignificant difference between them.

In conclusion, observing all the results, it has been proved that the truth table im-
plementation is more efficient than the gate network one.

5.4 Tests on DRAM model
For all the tests, the dimension of the DRAM will be 1 row and 8 columns, but it can be
increased as much as the user wants.

Verification of the system

As it has been done before, I will check that the model works correctly. I will write in some
registers with different times of refresh and see what are the output. For the test, I will use
the template shown in 4.16. These are two plots with different time of refresh:

38



Figure 5.7: Simulation with tRefresh = 50

Figure 5.8: Simulation with tRefresh = 100

Each plot is divided into 8 parts as if they were the 8 columns of the DRAM. Each part
has 4 variables on it: cVolt representing the voltage, V_TRESH representing the threshold,
eBit representing the expected logical value and cBit representing the real logical value.
In both figures, there is a writing on the cells 1,2 and 3 because the data introduced was
2,4 and 8. The rest of the cells stays doing nothing.
In figure 5.7, the time of refresh is enough so the voltage never gets the threshold, so the
real value is equal to the expected value all the time.
In figure 5.8, the voltage exceeds the threshold before the second refresh, so the real value
is not equal to the expected value anymore. When a refresh is done, the real value is 0, so
it doesn’t recharge again.
Therefore, we can conclude that the model works correctly.

Error rate depending on the time of refresh

With this test, it is wanted to be known what is the error rate of the system varying the
time of refresh of the system. Only 1 cell will be used because a writing in several cells at

39



the same time returns the same error rate on all of them. The test template used is similar
to figure 4.16. There is one change on it: The argument of the function write8 now is 1
instead of (2+4+8). This template simulates a writing on cell 0 on the time unit 50. The
command used in UPPAAL verifier is:

simulate[<=bound]{cVolt[0][0],eBit[0][0],
cBit[0][0],V_TRESH,errorRate[0][0]+4}

bound should be as big as necessary to see the correct error rate.
These are the results:

Time of refresh Number of refreshes
before a failure Error rate

20 - 0%
40 - 0%
58 1 1.59%
60 1 3.2%
80 1 18.8%
100 1 26.57%
111 0 1.41%
120 0 13.63%
140 0 33.82%
160 0 46.05%
180 0 54.72%
200 0 60.83%

(a) Simulation with tRefresh = 80 (b) Error rate depending on the time of refresh

In plot 5.9a the writing is correct till the time 140 approximately, where the voltage
starts to be lower than the threshold and the expected value is set on 0. There is a refresh
on time 80, that can be seen because the voltage value is again the maximum possible.
In plot 5.9b we can see that the error rate always increases with the time of refresh, except
on one point, on 111. This is because on that point there is a refresh just after the threshold
has been reached, so the system updates its real value when very little time has passed since
the expected value was updated.
In this case, if the system allows committing some failures, then the time of refresh that
should be selected is 111 because it is the time which gets a lower error rate and without
doing any refreshes. If there would be an error rate even lower but doing one refresh , then

40



the system manager must decide what is the best for him, get less error rate but doing a
refresh, which has a cost, or gets a little more error rate and doesn’t do any refreshes.
This results will change depending on the experiment done. This is given because the
writing has been done on the time unit 50, but if this operation is done at another moment,
the optimal time of refresh will change. This is caused because the time of refresh is done
all times at the same moment, doesn’t matter when an operation happens.

41



Chapter 6

Conclusion

The aim of this thesis was to prove that approximate computing systems are useful if some
errors can be accepted in the results obtained. For that, two types of models have been
designed, implemented and tested: Two models of accurate and approximate logical multi-
plier and a model of a dynamic random access memory (DRAM). These implementations
have been done using UPPAAL SMC. It has been a really useful tool, that allows building
the models in an intuitive way.

Various versions of the models were created during the process, and some problems have
also occurred, like one with the simulation tool of UPPAAL that always generate the same
random numbers, so any tests could be done with it. Also, some problems with the set of
time. This was my first time using this program and I had a hard time getting used to it.

In my opinion, the final results obtained on the different tests performed confirm that
the approximate computing systems have a lot of utilities in different fields, such as in
image and sound processing, machine learning or artificial intelligence, where some bits can
be lost without having serious problems.

Some other tests could be done on these systems but are not implemented in this thesis
could be amplify the number of inputs and outputs of the multipliers and see if the error
rate is still as low as it is with 4 inputs, or check the behaviour of the error rates with more
writings on different moments on the DRAM model.

42



Bibliography

[1] David, A.; Gjøl, P.; Larsen, K. G.; et al.: UPPAAL STRATEGO. 2015. [Online;
visited 09.05.2019].
Retrieved from:
https://link.springer.com/chapter/10.1007%2F978-3-662-46681-0_16

[2] David, A.; Larsen, K. G.; Legay, A.; et al.: UPPAAL SMC tutorial. 2015. [Online;
visited 09.05.2019].
Retrieved from: https://doi.org/10.1007/s10009-014-0361-y

[3] Emerging Computing Technology Laboratory at SJTU: Approximate Computing.
[Online; visited 09.05.2019].
Retrieved from: http://umji.sjtu.edu.cn/~wkqian/research.html

[4] Kugler, L.: Is ’good enough’ computing good enough? 2015. [Online; visited
09.05.2019].
Retrieved from: https://cacm.acm.org/magazines/2015/5/186012-is-good-
enough-computing-good-enough/fulltext

[5] Legay, A.; Delahaye, B.; Bensalem, S.: Statistical Model Checking: An Overview.
2010. [Online; visited 09.05.2019].
Retrieved from: https://arxiv.org/pdf/1005.1327.pdf

[6] Plasma Lab: Statistical Model Checking. [Online; visited 09.05.2019].
Retrieved from:
https://project.inria.fr/plasma-lab/statistical-model-checking

[7] PowerData: Big Data: ¿En qué consiste? Su importancia, desafíos y gobernabilidad.
[Online; visited 09.05.2019].
Retrieved from: https://www.powerdata.es/big-data

[8] Sampson, A.: Hardware and Software for Approximate Computing. 2015. [Online;
visited 09.05.2019].
Retrieved from:
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/
33693/Sampson_washington_0250E_14938.pdf?sequence=1

[9] UPPAAL: [Online; visited 09.05.2019].
Retrieved from: www.uppaal.org

[10] UPPAAL: Locations. [Online; visited 09.05.2019].
Retrieved from:

43

https://link.springer.com/chapter/10.1007%2F978-3-662-46681-0_16
https://doi.org/10.1007/s10009-014-0361-y
http://umji.sjtu.edu.cn/~wkqian/research.html
https://cacm.acm.org/magazines/2015/5/186012-is-good-enough-computing-good-enough/fulltext
https://cacm.acm.org/magazines/2015/5/186012-is-good-enough-computing-good-enough/fulltext
https://arxiv.org/pdf/1005.1327.pdf
https://project.inria.fr/plasma-lab/statistical-model-checking
https://www.powerdata.es/big-data
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/33693/Sampson_washington_0250E_14938.pdf?sequence=1
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/33693/Sampson_washington_0250E_14938.pdf?sequence=1
www.uppaal.org


http://www.it.uu.se/research/group/darts/uppaal/help.php?file=
System_Descriptions/Locations.shtml

[11] UPPAAL: UPPAAL TIGA. [Online; visited 09.05.2019].
Retrieved from: http://people.cs.aau.dk/~adavid/tiga/index.html

[12] UPPAAL: UPPAAL 4.0: Small Tutorial. 2009. [Online; visited 09.05.2019].
Retrieved from:
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf

[13] Wikipedia: Approximate computing. [Online; visited 09.05.2019].
Retrieved from: https://en.wikipedia.org/wiki/Approximate_computing

[14] Wikipedia: DRAM. [Online; visited 09.05.2019].
Retrieved from: https://es.wikipedia.org/wiki/DRAM

[15] Wikipedia: Dynamic Random Access Memory. [Online; visited 09.05.2019].
Retrieved from: https://en.wikipedia.org/wiki/Dynamic_random-access_memory

[16] Yoon, A.: Understanding Memory. 2018. [Online; visited 09.05.2019].
Retrieved from:
https://semiengineering.com/whats-really-happening-inside-memory/

44

http://www.it.uu.se/research/group/darts/uppaal/help.php?file=System_Descriptions/Locations.shtml
http://www.it.uu.se/research/group/darts/uppaal/help.php?file=System_Descriptions/Locations.shtml
http://people.cs.aau.dk/~adavid/tiga/index.html
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
https://en.wikipedia.org/wiki/Approximate_computing
https://es.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://semiengineering.com/whats-really-happening-inside-memory/

	Introduction
	Background
	Statistical Model Checking
	Approximate Computing

	Selection of Implementation Areas and Means
	Implementation Areas
	Approximate logical multiplier
	DRAM memory

	Implementation Means
	UPPAAL 4.0
	UPPAAL 4.1 (SMC)
	Other versions


	Proposed solutions
	Approximate logical multiplier
	Gate Network approach
	Truth Table approach

	DRAM memory

	Evaluation
	Tests on multiplier based on gate networks
	Tests on multiplier based on truth tables
	Comparison of the two implementations
	Tests on DRAM model

	Conclusion

