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VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
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Abstract

The matter of this thesis is voice conversion. Voice conversion is taking speech of one speaker,
that we call source speaker and transforming it into speech that sounds as the speech of
another speaker, that we call target speaker. This is accomplished using voice conversion
system described in this thesis. As the framework for speech analysis and synthesis, we are
using tool called STRAIGHT that was predominantly used in Voice Conversion Challenge
2016. Our voice conversion system is based on spectral conversion using feed-forward neural
network and parallel training.

Abstrakt

Predmetom tejto práce je konverzia hlasu. Konverzia hlasu predstavuje preberanie reči
jedného rečníka, ktorého nazývame zdrojový rečník a transformovanie tejto reči na reč ktorá
znie ako reč druhého rečníka, ktorého nazývame cieľový rečník. Toto je dosiahnuté pomocou
systému pre konverziu hlasu, ktorý je popísaný v tejto práci. Ako framework pre analýzu a
syntézu reči používame STRAIGHT, ktorý bol dominantne používaný vo Voice Conversion
Challenge 2016. Náš system pre konverziu hlasu je založený na konverzii spectra použitím
doprednej neurónovej siete a paralelného trénovania.
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Rozšírený Abstrakt

Konverzia hlasu predstavuje preberanie hlasu jedného rečníka (zdrojový rečník) a trans-
formovanie tohto hlasu na hlas druhého rečíka (cieľový rečník). Konverzia hlasu je pod-
kategória vačšieho oboru tzv. transformácia reči. V konverzii hlasu sa sústredíme na kval-
itatívnu stránku reči, pričom linguistický obsah ponechávame nezmenený. Pre konverziu
hlasu potrebujeme vyvinúť systém pre konverziu hlasu, ktorým sa zaoberá táto práca.

Úvod do Konverzie Hlasu

Konverzia hlasu je odvetvie, ktoré je v súčastnosti v rozvojovom stave. Súčastný stav
vývoja monžno sledovať napr. vo Voice Conversion Challenge, na ktorom sa zúčastňujú
vývojari systémov pre konverziu hlasu. Súhrn Voice Conversion Challenge 2016 poskytuje
prehľad zúčastnených systémov. Vidíme že typicky je spektrum konvertované vo forme Mel
cepstrálnych koeficientov alebo priamo ako celé spektrum. Na analýzu a syntézu reči sa
veľmi často používa framework STRAIGHT.

Táto práca sa zemeriava na tzv. jedna k jednej konverziu tj. konvertujeme páry, ktoré po-
zostavajú z hlasu práve jedného zdrojového rečníka na hlas práve jedného cieľového rečníka.
Alternatívne k tomuto existujú mnohozdrojové systémy ktoré konvertujú akéhokoľvek zdro-
jového rečníka na jediného cieľového rečníka.

Pre trénovanie používame nahrávky použité vo Voice Conversion Challenge 2016. Poskyt-
nutí sú 4 zdrojoví a 4 cieľoví rečníci. Celková približná dlžka nahrávok jedného rečníka sú 4
minuty. Využívame paralelné trénovacie data, kde trénovaní rečníci prednášajú rovnaké vety.
Alternatívne k tomu existujú neparalelné systémy, ktoré môžu byť trénované na rôznych
vetách od zdrojového a cieľového rečníka.

Mnohozdrojové a neparalelné systémy prekračujú rozsah tejto práce.

Použité Nástroje

Pre analýzu a syntézu reči používame framework STRAIGHT. Výstupom analýzi je spektro-
gram, základný tón a aperiodická mapa, pričom sa zameriavame na konverziu spektrogramu
a základného tónu.

PhnRec je fonémový rozpoznávač, ktorý používame pre rospoznanie foném, aby sme ich
mohli analyzovať a upravovať ich dĺžku. V trénovaní tatktiež použijeme výstup rozpoznávača
na odstránenie ticha.

Konverzia spektrogramu

Hlavným článkom systému pre konverziu hlasu je podsystém pre konverziu spektrogramu.
Pred začatím konverzie musíme vytoriť trénovací systém. Konverzia aj trénovací systém
používajú veľmi podobné techniky pre spracovanie spektrogramu. Tieto techniky musia
mať reverzné operácie pre prevedenie konvertovaného spektrogramu na spektrogram, ktorý
je vhodný na syntézu.

Prvým krokom pri trénovaní je zarovnanie zdrojového a cieľového spektrogramu, tak
aby fonémy vyskytujúce sa v spektrogramoch boli na rovnakých indexoch. Nato sa používa
Dynamic Time Warping (dynamické bortenie času). DTW lokálne predlžuje spektrogram a
vytvára statické časti spektrogramu. Preto DTW je nasledované dodatočným spracovaním,
tak aby zdrojový spektrogram bol zostal nezmenený a cieľový spektrogram sa dosadil na
ten zdrojový.



Zarovnané spektrogramy sú nasledne prevedené do Mel frekvenčnej škály. Mel frekvenčná
škála zvšuje rozlíšenie v nízkych frekveniach a znižuje vo vysokých, tak aby prevedený spek-
trogram reprezentoval ľudské frekvenčné vnímanie. Následne sa aplikujú A-váhy a logarim-
izuje sa výkon spektra.

V spektrograme sa následne normalizujú rámce spektrogramu na strednú hodnotu, aby
sme odstránili energiu rámca ako parameter, ktorý musíme konvertovať. Následne normal-
izujeme spektrogram naprieč časom na strednú hodnotu a smerodatnú odchylku.

Na konverziu takto upraveného spektrogramu používame neurónovu sieť, ktorá je nas-
tavená na vykonávanie regresie. Ako vstup používame zdrojový spektrogram, z ktorého
berieme kontextové okno so šírkou približne 45ms. Ako výstup trénujeme cieľový spektro-
gram, ktorý sme rovnako upravili rovnakými technikami.

Pre trénovanie neurónovej siete poižívame Adam optimalizátor, ktorý je založený na
stochastickom spáde gradientu. Tiež aplikuje adaptívný stupeň učenia a adaptívne momen-
tum.

Konverzia základného tónu

Pvrotné experimenty s konverziou základného tónu predpokladali použitie neurónovej si-
ete s podobnou architektúrou ako neurónová sieť pre konverziu spektrogramu. Ukázalo sa
že priebeh základného tónu od zdrojového a cieľového rečníka má nízku koreláciu, preto
sa od neurónovej siete upustilo. Používa sa konverzia na základe normalizácie (podľa
zdrojového rečníka) konvertovaného základného tónu na následnej denormalizácie (podľa
cieľového rečníka).

Zmena Dĺžky Foném

Dĺžka s akou jednotlivý rečníci vyslovujú fonémy sa mení. Pomocou fonémového rozpoznávač
môžeme analyzovať ich dĺžku. Trvanie fonémy jedného typu má iné normálne rozloženie
u zdrojového a cieľového rečníka. Na základe tohto môžeme pri konverzii zmeniť dĺžku
foném normalizovaním strednou hodnotou a smerodatnou odchylkou zdrojového rečníka a
denormalizovaním strednou hodnotou a smerodatnou odchylkou cieľového rečníka.

Experimenty a Výsledky

Pred použitím konverzie spektrogramu pomocou neurónovej siete sme experimentovali s
konverziou pomocou transformačnej matice, ktorá je vypočítana ako minimálne kvadratické
riešenie rovnice SX = T kde S je zdrojový spektrogram a T je cieľový spektrogram a
X je transformačná matica. Toto riešenie nedokázalo vypočítať X pre trénovacie data s
dostatočnou presnosťou, ešte horšie generalizovať pre evaluačné data.

Finálne riešenie používajúce neurónovú sieť dosahuje lepšie výsledky. Napriek tomu stále
je čo zlepšovať. Vlastnosti konvertovaného spektrogramu sú také, že syntetizovaná reč sa
podobá tej cieľového rečníka. Avšak konvertovaný spektrogram trpí strátou detailu reči. To
sa hlavne prejavuje nevýraznými až úplne vytratenými formantami. V syntetizovanej reči sa
stráta formant prejavuje nízkou kvalitou hlasu, ťažko zrozumenuteľnými slovami a celkovou
otupenosťou.

Dôvody takýchto výsledkov môžu byť rôzne. Jedným z nich môže byť malý obsah tréno-
vacích dát, ktoré majú len okolo 4 minút. Ďalším dôvodom môže byť charakter konverto-
vaných spektrogramov a to taký, že jednotlivé časti ktoré sa na seba konvertujú sú medzi
sebou tak dekorelované, že neurónová sieť nedokáže nájsť ideálne riešenie.



Voice Conversion

Declaration

I declare that this thesis is the original work of the author and was supervised Doc. Dr.
Ing. Jan Černocký. All sources used in creating this thesis are acknowledged by references.

............................
Peter Lukáč

May 15, 2019

Acknowledgments

I would like to thank my supervisor Jan Černocký, who provided me with abundance of
information and resources for speech processing, including phoneme recognizer. I would
also like to thank Dr. Hideki Kawahara, the creator of STRAIGHT, who provided us with
source code for this tool.

c©Peter Lukáč 2019.
This thesis was created as a school work at the Brno University of Technology, Faculty of
Information Technology. The thesis is protected by copyright law and its use without author’s
explicit consent is illegal, except for cases defined by law.



Contents

1 Introduction 3
1.1 Introduction Into the Voice Conversion . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Baseline System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Voice production 5
2.1 Source-filter theory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Excitation signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Filter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 STRAIGHT 7
3.1 Fundamental frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Aperiodicity map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 STRAIGHT spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 TANDEM spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 TANDEM to STRAIGHT spectrogram . . . . . . . . . . . . . . . . . . 9

4 Phoneme Recognition 11
4.1 Phoneme recognizer based on long temporal context . . . . . . . . . . . . . . 11

4.1.1 Phoneme Recognizer Output . . . . . . . . . . . . . . . . . . . . . . . 11

5 Spectrogram Conversion 12
5.1 Training System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.1 Training System Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Spectrogram Conversion System . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2.1 Conversion Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Techniques for Spectrogram Conversion 15
6.1 Alignment of Spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1.1 Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1.2 Local Distance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1.3 Cumulated Distance Matrix and Backtracking Matrix . . . . . . . . . 16
6.1.4 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.1 Duplicated Frames Removal . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2.2 Smoothing Shortest Path . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3 Mel Filter Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3.1 Mel Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



6.3.2 Filter Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4 A-weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.5 Silence Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.6 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.6.1 Energy Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.6.2 Spectrum Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.7 Regression Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.7.1 Neural Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.7.2 Neural Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.7.3 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.7.4 Data Set Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.7.5 Adam optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.7.6 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Fundamental Frequency Conversion 31
7.1 Fundamental Frequency Preprocessing . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Problems With Conversion using NN . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Simplified Fundamental Frequency Conversion . . . . . . . . . . . . . . . . . . 31

8 Phoneme Length Change 32
8.1 Phoneme Duration and Variance . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Changing Phoneme Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.2.1 Changing the Temporal Positions . . . . . . . . . . . . . . . . . . . . . 33

9 Implementation 34
9.1 STRAIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2 PhnRec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.3 Conversion Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.4 Neural Network Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 Experiments and Results 36
10.1 Spectrogram Conversion Results . . . . . . . . . . . . . . . . . . . . . . . . . 36

11 Conclusions and Future Work 37
11.1 Spectrogram Conversion Conclusion . . . . . . . . . . . . . . . . . . . . . . . 37
11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11.2.1 Nonparallel Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11.2.2 Fundamental Frequency Discussion . . . . . . . . . . . . . . . . . . . . 37

12 Appendices 40
12.1 Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

12.1.1 Creation of Intermediate Results of Speech Analysis and DTW . . . . 40
12.1.2 Phoneme Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.1.3 Training and Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



Chapter 1

Introduction

Voice conversion is taking voice of one speaker (the source speaker) and transforming it into
voice that sounds as the voice of another speaker (the target speaker). Voice conversion is
subcategory of larger field called voice transformation. Voice transformation is broad range
of modifications we can apply to the human voice. In voice transformation we focus on
non-linguistic information in voice. In voice conversion, this means we focus on features
that make voice of one speaker sound distinct from the voice of another speaker.

1.1 Introduction Into the Voice Conversion

The voice conversion is currently developing field in the speech processing. Development of
the voice conversion has potential to be utilized in different areas of the speech processing
such as generating expressive speech, voice assistants and more. State-of-the-art of the
voice conversion is well shown at the Voice Conversion Challenge [1]. The Voice Conversion
Challenge summary and analysis [2] provides overview of the participating systems. The
voice conversion systems usually use Mel cepstral coefficients as spectral envelope that is
converted usually using Gaussian mixture models or deep neural networks.

This thesis focuses on one-to-one voice conversion. This means, the voice conversion
system will be able to be trained for pairs of one source speaker and one target speaker
for which we have to acquire speech. After training, the voice conversion will be evaluated
on evaluation speech. Our voice conversion system will be trained on parallel training
data meaning that both source and target speaker training speech need to uttered the
same sentences. This kind of voice conversion training and evaluation is inspired by Voice
Conversion Challenge from which we have acquired training and evaluation data.

There is an alternative form of training to the parallel training that is called non-parallel
training. In non-parallel training we collect training speech of the source and target speaker
that doesn’t contain the same sentences. Instead we collect any sentences from the speakers
and use e.g. cross-referencing training system. There is also alternative to the one-to-one
voice conversion called any-to-one voice conversion in which we can convert any source
speaker that we haven’t used in training and convert it into the target speaker. Non-parallel
training and any-to-one voice conversion systems are beyond the scope if this thesis.
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1.2 Baseline System

The design of our voice conversion system is following a simple scheme. The scheme con-
sists of three parts: analysis, modification and synthesis. The analysis 3 and synthesis are
provided by STRAIGHT framework. This is described in detail in separate chapter.

Figure 1.1: Voice conversion baseline system
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Chapter 2

Voice production

Before we can extract and modify voice features we have to understand what kind of features
we deal with and how they matter in voice conversion. The most common way to understand
speech production in the context of voice transformation is the use of source-filter model [3].

2.1 Source-filter theory model

As the name suggests, this model is composed of two parts: source and filter. The source
(vocal cords) produces excitation signal that passes through time-varying filter (vocal tract)
that damps, or emphases frequencies in that signal, thus creates output signal (voice).

Depending on kind of phoneme being process, we distinguish two kinds of phonemes:
voiced and unvoiced. Excitation signal for voiced phonemes is composed of fundamental
frequency and multiples of that frequency. For unvoiced phonemes, the excitation signal
reminds white noise and fundamental won’t be relevant for modification of the frames.

2.1.1 Excitation signal

An accurate way to model the excitation signal is suggested by the family of speech repre-
sentations called sinusoidal models. This model suggests that the excitation signal e(t) is
represented by a sum of sinusoids defined as follows:

e(t) =

K(t)∑
k=0

ak(t)e
iφk(t), (2.1)

"where ak(t) and φk(t) is are the instantaneous excitation amplitude and phase of the k-th
sinusoid and K(t) is the number of sinusoids, which may vary in time" [3]. Now we can
specify the most important feature of the excitation signal is pitch that we will refer to as
fundamental frequency: f0(t). The fundamental frequency is added in the sum of sinusoids
as follows:

φk(t) = 2πkf0(t), (2.2)

The excitation signal therefore consists of fundamental frequency f0(t) and multiples of
the fundamental frequency k, while the higher frequencies get gradually dumped.

5



2.1.2 Filter model

The filter that is provided by vocal tract is time-varying filter which creates distinct phonemes
over time. Voice analysis is performed by frame-by-frame approach with frame size raging
from 20ms to 50ms. In each frame we assume that voice characteristics including filter for
excitation signal are stationary.

2.1.3 Output signal

Consider that in a frame we have time invariant filter h(t). The output signal(voice) s(t) is
then convolution of excitation signal e(t) and the impulse response of the vocal tract filter
h(t):

s(t) =

∫ τ

0
h(t− τ)e(τ)dτ (2.3)

The voice production process can be visualized in the spectral domain as follows:

Figure 2.1: Source Filter theory model

6



Chapter 3

STRAIGHT

STRAIGHT is a tool for speech analysis, manipulating voice quality and speech synthe-
sis. STRAIGHT was predominantly used tool in Voice Conversion Challenge 2016 [1]
and systems using this tool achieved outstanding results. The main justification for us-
ing STRAIGHT is its approach for voice speech analysis.

STRAIGHT decomposes speech into three components: fundamental frequency, ape-
riodicity map and interference and fundamental frequency free spectrogram. These three
components are used for speech synthesis:

Figure 3.1: Diagram of STRAIGHT speech analysis and synthesis [4]

STRAIGHT allows us to set settings for speech analysis such as minimal and maximal
fundamental frequency, fast Fourier transform size etc. Our system is using fft size 1024,
and frame offset 3 milliseconds.
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3.1 Fundamental frequency

Fundamental frequency is the first component to be estimated, because aperiodicity esti-
mation and spectrogram depend on it. STRAIGHT estimates fundamental frequency for
all frames including silent and unvoiced frames. Detection of silent and unvoiced frames is
applied later.

F0 extractor [4] uses division of two spectrums: TANDEM spectrum and STRAIGHT
spectrum. However TANDEM and STRAIGHT spectra depend on fundamental frequency.
Therefore F0 creates band table including frequencies throughout expected frequency range
(typically 50Hz - 600Hz). Each frequency from band table is used as input frequency for
TANDEM and STRAIGHT spectrum and spectra are divided. The closer the band fre-
quency is to the actual F0 the more power in divided spectrum we get. Divided spectra
are cumulated and F0 candidates are extracted based on gradient of cumulative frequency.
Final F0 is acquired by auto-tracking F0 candidates.

Figure 3.2: Fundamental frequency of speech: "Captain Nemo stood up."

3.2 Aperiodicity map

Aperiodicity map is estimation that describes how how random is power ratio between
periodic component(F0) and random component across spectrum. Parts of spectrum with
low aperiodicity represent high presence of periodic excitation signal. Parts with of spectrum
with high aperiodicity represent low presence of periodic excitation signal. Aperiodicity map
is necessary for speech synthesis in order to create excitation signal.
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Figure 3.3: Aperiodicity map of speech: "Captain Nemo stood up."

3.3 STRAIGHT spectrogram

Spectrogram extraction has two steps. First TANDEM spectrogram is extracted and then
final STRAIGHT spectrogram is estimated. TANDEM spectrogram is composed of static
power spectrum that has greatly reduced temporal variation. STRAIGHT spectrogram
builds on TANDEM spectrogram and smoothens periodic component.

3.3.1 TANDEM spectrogram

TANDEM spectrogram(PT (w, τ)) [4] removes temporal variation by using average spectrum
of two complementary windows:

S(ω, τ) =

∫
x(τ)w(τ − t)e−jwτdτ (3.1)

PT (w, τ) =
|S(w, t− T0/4)|2 + |S(w, t+ T0/4)|2

2
, (3.2)

where x(t) and w(t) represent waveform and T0 represents reciprocal of fundamental
period.

3.3.2 TANDEM to STRAIGHT spectrogram

STRAIGHT spectrogram removes fundamental frequency and its multiplications that are
present in TANDEM spectrogram. That makes STRAIGHT spectrogram ideal represen-
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tation of vocal tract filter. STRAIGHT spectrogram PST (ω, t) [4] is obtained by spectral
smoothing of the TANDEM spectrogram PT :

C(ω, t) =

∫ ω

ωL
PT (λ, t)dλ (3.3)

L(ω, t) = ln(C(ω + ω0/2, t)− C(ω − ω0/2, t)), (3.4)

followed by consistent sampling:

PST (ω, t) = exp(q̃1(L(ω + ω0, t) + L(ω − ω0, t)) + q̃0L(ω, t)), (3.5)

where ω0 represents fundamental angular frequency. q̃0 and q̃1 represent compensation
constants calculated from auto-correlation of the Fourier transform [4].

Figure 3.4: STRAIGHT spectrogram of speech: "Captain Nemo stood up."
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Chapter 4

Phoneme Recognition

A phoneme is the smallest unit of sound of language that can be distinguished by a listener.
There are more phonemes than letters in alphabet because some phonemes are created by
combinations of multiple letters. Phonemes can be represented by phonetic labels associated
with example of the sound of that phoneme. Most common phonetic labels are IPA [5],
Worldbet [5], and OGIbet [5].

When spoken, phonemes have different length, depending on the speed of speakers
speech. Frequency of phoneme appearance can also change speaker to speaker. Those
are features we want to observe and change in the voice conversion system.

4.1 Phoneme recognizer based on long temporal context

Phoneme recognition is achieved using phoneme recognizer. Phoneme recognition is complex
task deserving its own thesis. For this purpose, we were provided with phoneme recognizer
based on long temporal context developed at Brno University of Technology, Faculty of
Information Technology [6]. The phoneme recognizer is based on hybrid ANN/HMM ap-
proach, where artificial neural networks (ANN) are used to estimate posterior probabilities
of phonemes from Mel filter bank log energies using the context of 310ms around the current
frame [7].

4.1.1 Phoneme Recognizer Output

The recognizer provides 4 systems for 4 languages (Czech, Hungarian, Russian, English).
The output of the recognizer provides sequence of OGIbet phonetic labels with their tempo-
ral positions and likelihood. Example of recognized phonemes with English system in speech
"Tall, black Crosewood bookcases." looks like:

000000 1200000 pau -12.011214
1200000 2300000 t -14.992387
2300000 4000000 hh -42.520073
4000000 4400000 l -8.518959
4400000 4800000 ah -9.891708
4800000 5600000 m -14.068726
...
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Chapter 5

Spectrogram Conversion

Spectrogram is the main feature that gives s speakers voice its characteristic. Changing
spectrogram is the main focus of most of the voice conversion systems and usually it is the
largest part, consisting of multiple stages. All the stages are described in separate chapter 6

Figure 5.1: Diagram of the training system pipeline

5.1 Training System

Before we can proceed to the actual conversion, we have to collect information that will
provide data for the conversion system. The training system will require training samples
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of the source and target speaker in order to collect information. We are developing parallel
conversion system, meaning, we require that the training system gets accurate conversion
parameter from the training samples consisting of speech of the pair of speakers speaking
the same transcripts.

5.1.1 Training System Pipeline

Training is accomplished using training system is composed of similar components as the
conversion system will be composed. The input of the training is a pair of spectrograms
(source and target). During the training, we save trained parameters, namely regression
neural network weights, normalization parameters (means and standard deviations). Each
part of the pipeline is described in the following chapter 6.

5.2 Spectrogram Conversion System

Spectrogram conversion requires that we have accomplished training and saved parameters
acquired during training. Spectrogram conversion will use similar pipeline, however trained
parameters will be used to perform conversion. Also, the input for the pipeline is only source
spectrogram that from the evaluation data-set. After conversion reversed operations will be
applied to get fully converted spectrogram ready for synthesis.

Figure 5.2: Conversion pipeline
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5.2.1 Conversion Pipeline

Conversion pipeline removes the pair of the spectrograms as the input since we are not
performing training anymore. The regression neural network is set to perform prediction of
the input. The output is converted spectrogram that we have to de-process. De-processing
is composed of the same techniques however we apply them in the reversed order. Also each
technique must provide reversed operation. De-processed spectrogram is ready for synthesis.

14



Chapter 6

Techniques for Spectrogram
Conversion

In order to make STRAIGHT spectrogram suitable for conversion we need to apply number
of modification to it. This modifications focus on enhancing spectrogram into how it per-
ceived by human ear and adjusting it to be processed by voice conversion training subsystem.
The techniques also need have inverse transformations used by voice conversion system.

6.1 Alignment of Spectrograms

Training data from source and target speaker that are passed to the training subsystems
have to be aligned. More specifically we match indexes of the frames of the source and target
spectrograms so that frames correspond to the same segment of the speech. Procedure we
use is called dynamic time warping [8].

6.1.1 Dynamic Time Warping

Since STRAIGHT spectrum is only power spectrum that was processed to remove harmonic
component, for dynamic time warping it has to be represented in a form that reflects human
perception of frequencies and magnitudes and also improves speech processing.

Two essential steps that are used often in the voice conversion system are applying Mel
filter banks 6.3 and A-weighting 6.4 or taking logarithm of Mel filter banks. This two steps
must be applied to the STRAIGHT spectrum before we can achieve good results with DTW.

6.1.2 Local Distance Matrix

At first we calculate local distance matrix. Local distance matrix contains distance of each
source frame compared to each target frame. Distance between frames is calculated as
Euclidean distance.
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Figure 6.1: Local distances between all frames of source and target spectrograms

6.1.3 Cumulated Distance Matrix and Backtracking Matrix

While Local distance matrix provides euclidean distance between frames without context, we
need to track distance based on position we come from. For this purpose we calculate cumu-
lated distance matrix (CDM) using local distance matrix and local path restrictions. CMD
is calculated column by column from the place we start (indexes (1, 1)) and simultaneously
we create backtracking matrix we use later. Local path restrictions set three constraints: a)
path for reaching new place b) coefficients paths c) path tagging.

New calculated distance g(m + 1, n) depends on value of the current location g(m,n)
and values of the surrounding locations: g(m+1, n), g(m,n+1). New distance is the lowest
value g. Also, we save tag of the associated path in the backtracking matrix.
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Figure 6.2: Different types of path restrictions [8]. We are using Type I.a

Figure 6.3: Cumulated distances between all frames of source and target spectrograms
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6.1.4 Backtracking

In backtracking we create two arrays of paired indexes based on backtracking matrix. Cells of
backtracking matrix contain tag that says where we get to the given cell from. Backtracking
starts from the end of the path (maximum indexes) and using tagged directions leads to
beginning. The reversed arrays then represent the shortest path.

Figure 6.4: Backtracking Matrix indicates direction we approach cells from. Black cells
are approached diagonally. Orange cells are approached from the bottom. White cells are
approached from the left.
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Figure 6.5: Shortest Distance Path

6.2 Postprocessing

DTW provides shortest path between two spectrograms, however, it also creates redundancy
i.e. duplicated frames that create still sequences of frames in the spectrogram. Duplicated
frames extend spectrogram locally that creates representation not suitable for context de-
pendent training subsystems. For better representation of aligned spectrograms, we require
that the source spectrogram is the same sequence of frames as the original spectrogram and
the target spectrogram is aligned to fit the source spectrogram.
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Figure 6.6: Spectrograms aligned using DTW. Static areas disrupt context e.g. the source
spectrogram in the frames 25-50 or the target spectrogram in the frames 50-100 are locally
extended

6.2.1 Duplicated Frames Removal

The first step of postprocessing is removal of duplicated frames in both source and target
arrays. The shortest path with removed duplicated frames now contains cuts in spectrogram
opposed to the spectrogram where duplicated frames were removed and therefore this rep-
resentation is still not suitable for context-depended trained subsystem. The shortest path
with removed duplicated frames contains only pairs of frames with the smallest distance.
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Figure 6.7: Spectrograms aligned using DTW with removed duplicities. Lots of content is
removed because duplicity on one side also removes good frames on the other side

6.2.2 Smoothing Shortest Path

Ultimately we want to have unchanged source spectrogram and target spectrogram aligned
to it. We use shortest path with removed duplicated frames, from which we take set of
index pairs, spaced by small distance, 40-60ms. Parts of target spectrogram are resized
with interpolation so that distance between neighbor target indexes match distance between
responding source indexes.
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Figure 6.8: Source spectrogram remains unchanged from the analysis. Parts of the target
spectrogram were resized according to the extracted index pairs of the shortest path.

6.3 Mel Filter Banks

Mel filter banks transform power spectrum to Mel power spectrum that has different fre-
quential representation. Mel frequential representation allows further processing algorithms
to process spectrum as if frequencies were perceived by human rather than fully linear rep-
resentation.

6.3.1 Mel Scale

Human perception has higher frequential definition on lower frequencies than on higher
frequencies. For instance two of musical notes (one octave apart) in low registers i.e. C1

and C2 are 32.70 Hz apart however same notes in higher registers i.e. C5 and C6 are 523.25
Hz apart. Frequencies of the power spectrum will be converted to the Mel scale [9]:

FMel = 2959 log10(1 +
FHz
700

) (6.1)

or:

FMel = 1125 ln(1 +
FHz
700

) (6.2)

For Mel to frequency we use following formula:
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FHz = 700(exp(FMel/1125)− 1) (6.3)

6.3.2 Filter Banks

In order to rescale frequencies to Mel, we can take range of evenly spaced Mel scale values
and convert them to frequencies. Linear spaced Mel values will be nonlineary spaced on
frequency scale, having smaller spaces at lower frequencies and bigger spaces at higher
frequencies accounting for the human ear frequency definition.

New Mel converted spectrum can be calculated by taking the sum of the power of the
parts preserved by rescaled frequencies, therefore low Mel registers taking smaller parts
of spectrum and high Mel registers taking bigger parts of spectrum. Resulting in higher
frequencies of spectrum being shrinked and lower frequencies of spectrum being enlarged.
The most popular way to select preserved parts of spectrum is to use triangular shape filter.

Each triangular filter spans over 3 rescaled frequencies (up slope on 1-2 and down slope
on 2-3) so that the filters overlap. Each filter provides 1 value for Mel spectrum by summing
parts of the spectrum it spans. The triangular shape is linear function that multiples the
value it is spanning over, parts of the spectrum under the ends of bank being taken by
smaller margin than value under the top of the bank. The maximum value of the filter can
also by adjusted. The maximum value of the filter can be normalized by its width, wider
banks being lower. This accounts for the size of the area of the spectrum so that wider
banks don’t get too high values.

Normalized Mel filter banks are used during spectrum to Mel conversion. Denormalized
Mel filter banks are used during backward conversion to full spectrum. During backward
conversion we take value of each Mel banks and spread its value to the spectrum according
to the shape of the bank.

Figure 6.9: Normalized Mel Filter Banks with 42 banks. Also shown with Mel scale on the
top
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Figure 6.10: Denormalized Mel Filter Banks with 42 banks. Also shown with Mel scale on
the top

The Mel filter banks are stored as matrix that is easily applied to the spectrogram for
frequency to Mel conversion and also reversed Mel to frequency conversion.

(a) Normalized matrix for frequency to Mel con-
version

(b) Denormalized matrix for Mel to frequency
conversion

The Mel filter bank matrix is applied as:

STM = STFMT , (6.4)

STF = STMM, (6.5)

where SF is spectrogram in normal frequency, SM is spectrogram is Mel scale and M is
the Mel filter bank matrix.
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Figure 6.12: The first spectrogram has Mel filter banks applied. The second one has been
reversed from Mel spectrogram

6.4 A-weighting

Power spectrum that is provided by the STRAIGHT framework and/or Mel spectrum
doesn’t represent the loudness perceived by human ear. Power spectrum is perceived in
logarithmic fashion. Also sensitivity varies along different frequencies. Standard [10] pro-
vides standards for measurement of sound pressure, including A-, B-, C- and D- weightings.
A frequency weighting can be achieved using parameterized filter[11] HA thats defined as:

HA(f) =
ω2
4f

4

(f + ω1)2(f + ω2)(f + ω3)(f + ω4)2
(6.6)

Coefficients for A-weighting ωn are: ω1 = 20.598997, ω2 = 107.65265, ω3 = 737.86223,
ω3 = 12194.217. Full A-weighting is finished using frequency logarithmization done by using
common formula:

A(f) = 20 log10(HA(f)) + 2 (6.7)
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Figure 6.13: Showcase of A-Weighting weights across the frequencies

Inverse transformation of A-weighting is applied as:

AR(f) = 10
f−2
20 , (6.8)

HAR(f) =
AR(f)

HA(f)
, (6.9)

where AR(f) is reversed logarithmization and HAR(f) is reversed A-weightings.

6.5 Silence Removal

In speech processing, the silence feature thats undesired to be processed. In the voice conver-
sion silence is feature that won’t be converted. Training usually contain 15-25% of silence.
Training using silence will lead the conversion system to be performing input regression on
the regular phonemes and input propagation on the silent frames, therefore compromising its
parameters for the sake of unnecessary conversion. We remove the silence using recognized
phonemes (see section 4.1) where silence is recognized as pau. Silence removal is performed
on aligned spectrograms. When we remove silence in the source spectrogram we have to
remove same part in the target spectrogram as well not to mismatch the alignment.

6.6 Normalization

Before we feed spectrum (that we have filtered using male banks and applied A-weighting
and logarithmic transformation) into our conversion subsystem, we optimize input i.e. the
prepared spectrum. Input optimization is the last step before input is fed into the conversion
subsystem. Optimization will enable the conversion subsystem to fully focus on relevant
information and information will be provided in expected zero-mean, unit-variance format.
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6.6.1 Energy Normalization

In the spectrogram, same phonemes appear with different energy, meaning the have different
mean value. The conversion subsystem would have to be trained to convert same phonemes
with difference energy, therefore increasing variability of the input that could have the same
transformation. We normalize energy by subtracting mean value µ of each frame x(t).

6.6.2 Spectrum Normalization

When we feed spectrogram into the conversion subsystem each input is receiving series
of one part of the spectrum across the time. All series have different mean values and
standard deviation. If we normalize spectrum across the time the conversion subsystem will
be receiving more balanced input. At first we normalize mean values of the spectrum x(t):

xi(t) = xi(t)− µi (6.10)

Then we normalize standard deviation of the spectrum x(t):

xi(t) =
xi(t)

σi
(6.11)

After conversion, the spectrogram has to be denormalized by inverse formula:

xi(t) = xi(t)σi + µi (6.12)

6.7 Regression Neural Network

As a spectrum conversion subsystem we use feed forward neural network that is set up for
regression. Topology for the neural network is inspired by DNN-based auto-encoder for
speech enhancement, dereverberation and denoising [12]. The input of the neural network
is a series of source speaker frames. Output is one target speaker frame.

6.7.1 Neural Network Topology

As the input for the Neural Network (NN) we provide contextual window of the pre-processed
source spectrum. The specific frame that is being converted may depend on surrounding
frames and contextual window provides couple upcoming and forthcoming frames for the
input. Usually, the contextual window spans 15 frames, 7 frames to the left and 7 frames to
the right with one central frame that has the same index as the target frame. Therefore we
have 15 frames in the input.

The output is target spectrum we have aligned to the source spectrum in previous chap-
ter. Target spectrum is also pre-processed.

The NN has 3 densely-connected layers: input layer, hidden layer and output layer.
Activation functions for the input and hidden layer are hyperbolic tangent activation function
(tanh). Tanh is zero centered and output values are in range from -1 to 1. This is makes
it suitable for the regression task. The output layer uses linear activation function that
provides converted frame.
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Figure 6.14: Scheme of the regression neural network

6.7.2 Neural Network Training

The NN training is performed in epochs. During one epoch all training data are passed
through the NN exactly once. The whole data usually takes to much memory, therefore it is
divided into batches. During one epoch batches are passed throughout the NN in iterations.
After each epoch, a training algorithm based on stochastic gradient descent updates the NN
weights.

Loss function

In order for stochastic gradient descent based training algorithms to converge, the loss
function is required to evaluate output accuracy during training. The loss function is non-
negative value and its value decreases as the accuracy of the output increases. The loss is
represents difference between training value y and the predicted value ỹ.

For the purpose of regression task we use mean square error (MSE) loss function. MSE is
ideal for the task of regression because it represents the distance of the training value y and
the predicted value ỹ by subtracting and squaring them and taking mean of all distances.
Squaring the distance makes distance parabolic and the NN will converge faster.

MSE =
1

n

n∑
i=1

(yi − ỹi)2 (6.13)
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6.7.3 Training Data

As training data we acquired training data [13] used in Voice Conversion Challenge 2018.
This data-set provides data for both parallel and nonparallel training. We will use parallel
data-set that provides 4 source speakers (2 male and 2 female) and 4 target speakers (2 male
and 2 female), thus providing 16 conversion pairs. There are 81 sentences provided by each
speaker and overall speech length is about 4 minutes.

6.7.4 Data Set Preparation

Pre-processed data from previous chapter are divided into training data and validation data
with split 0.2 (80%training data, 20%validation). Training data are data used to calculate
loss and update weights. Validation data serve to compute validation loss after each epoch.
Validation loss indicates ability of the NN to predict unseen testing data. Divergence of the
validation loss allows us to detect overfitting of the NN and adjust optimizer.

6.7.5 Adam optimizer

Adam [14] is optimizer using stochastic gradient descent optimization. The name is de-
rived from adaptive moment estimation. It builds on two popular optimizes: AdaGrad and
RMSProp.

AdaGrad optimizer stands for adaptive gradient. It introduces adaptive learning rate
based on the parameters. Each parameter is updated with different learning rate. The
infrequent parameters are updated with bigger learning rate. The frequent parameters
are updated with smaller learning rate. This approach works great for tasks with sparse
gradients.

RMSprop optimizer introduces use of the momentum during gradient descent. Momen-
tum restricts oscillation in non-convergent direction in the steps during the gradient descent.
This allows us to user greater learning rate.

The recommended settings for Adam optimizer are: α(learningrate) : 0.001, β1 : 0.9, β2 :
0.999 (Exponential decay rates for the moment estimates) and ε = 1e−8.

6.7.6 Training Results

Training session is considered successfully when validation loss is converging along with
training loss. If training loss diverges training is stopped. The epoch with the minimal
training loss is taken with its NN wights for the conversion as it has the best ability to
generalize unseen input.
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Figure 6.15: Validation and training loss during training
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Chapter 7

Fundamental Frequency Conversion

First attempts to perform fundamental frequency f0(t) conversion involved conversion using
the similar neural network conversion system as we use for the spectrogram conversion.

7.1 Fundamental Frequency Preprocessing

Before performing the conversion we perform preprocessing on the source fundamental fre-
quency f0(t)s and the target fundamental frequency f0(t)t that is similar to the spectrogram
preprocessing. The f0(t)t is aligned to the f0(t)s based on the shortest path and postpro-
cessing of the shortest path that we have computed during spectrogram alignment.

STRAIGHT analysis provides a vector of hard decision (either 0 or 1) weather the
analysed frame is voiced or unvoiced/silent. Similar to the silence removal in the spectrogram
conversion, we remove unvoiced or silent frames from f0(t)s and f0(t)t, since we are not
interested in training or converting those data.

7.2 Problems With Conversion using NN

The results were compromised by the training. The validation loss couldn’t reach satisfying
levels. The conversion tests provided output that couldn’t be recognized as f0(t), due to
having too much noise and appearing to have random variance. The reason for this behavior
might inconsistencies of the components variation. In another words the variance of the
source f0(t) has no correlation with the variance of the target f0(t).

7.3 Simplified Fundamental Frequency Conversion

If the f0(t) can’t be fully converted we can at least we can observe mean and standard
deviation in both source and target f0(t). Then we can denormalize the f0(t) that we are
converting using the source f0(t) mean µs and standard deviation σs and then denormalize
using target mean µt and standard deviation σt:

f0(t)c =
f0(t)c − µs

σs
σt + µt (7.1)
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Chapter 8

Phoneme Length Change

Phonemes pronounced by the speakers have different duration and variance of the duration.
The slower the speaker pronounces the speech the longer the phonemes have to last and vice
versa. Slower speakers also makes longer pauses. Different speaker pronounce at different
speed and we want to reflect that in the voice conversion.

8.1 Phoneme Duration and Variance

Using the phoneme recognizer (see section 4.1) we can get phonemes from all training data
and analyze them. Some of the most common phoneme are pau and m. If we measure mean
duration and standard deviation of the duration of both source and target speaker we see
the difference:

(a) The mean duration of pause is 0.1816s and
standard deviation is 0.0884

(b) The mean duration of pause is 0.0771s and
standard deviation is 0.0237s

The mean duration (0.1816s) and standard deviation (0.0884s) of the source speaker
pause is greater than that of the target speaker (0.1656s, 0.0777s). The mean duration
(0.0883s) and standard deviation (0.0311s) of the source speaker m is also greater than that
of the target speaker (0.0771s, 0.0237s).
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8.2 Changing Phoneme Length

In changing phoneme length, we utilize the features of the STRAIGHT framework. After
analysis, STRAIGHT provides array of the temporal positions matching the size of the other
parameters (spectrogram and aperiodicity). The temporal positions mark the time of the
event. Changing the temporal position will change the time of the event in the synthesis
e.g. multiplying the temporal position by two will make synthesized speech twice as long.

8.2.1 Changing the Temporal Positions

Knowing the means and standard deviations of phoneme durations we have gained by ana-
lyzing phonemes of all the source and target training data, we can change the duration of the
phonemes during conversion. The temporal positions will be changed locally by normalizing
the duration of the phoneme being converted tc by the source speaker mean µs and standard
deviation σs and denormalizing it by the target speaker mean µt and standard deviation σt:

tc =
tc − µs
σs

σt + µt (8.1)

Figure 8.2: Converted temporal points show that converted speech is shorter (6.569s) than
the original source speaker speech (7.704s)
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Chapter 9

Implementation

Out conversion system consists of multiple systems, mainly feature extraction and synthesis
system (STRAIGHT) and training and conversion system. Due to this inconvenience there
are multiple programing languages used. Different systems also have to be individually
executed by user.

9.1 STRAIGHT

STRAIGHT framework was developed in Matlab code. We have successfully used STRAIGHT
source codes without modifications using GNU-Octave. It was required to use signal package
to execute all functions used by STRAIGHT. STRAIGHT is very time consuming framework
for repeatedly analyzing training data, therefore we save intermediate results on the disk in
Matlab format, version 6. The voice conversion system was developed on Linux operating
system however used programing languages are used and the voice conversion system should
be able to run on different platforms.

9.2 PhnRec

Phoneme recognizer was provided both as a C++ source code and Windows executable.
Source code compilation was unsuccessful, therefore Windows executable was used in Linux
environment using Wine API translator.

9.3 Conversion Techniques

DTW function was provided by Jan Černocký 1, written for in Matlab code, successfully
executed in GNU-Octave. DTW is also time consuming, therefore we save intermediate
results on the disk. The finishing steps of DTW (spectrogram smoothing) are implemented
in Python3.6. The rest of the spectrogram processing pipeline is also implemented in
Python3.6. Very often used are Python libraries for scientific computing: Numpy, SciPy
and Matplotlib.

1http://www.fit.vutbr.cz/study/courses/ZRE/public/labs/05_dtw_hmm/
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9.4 Neural Network Implementation

The Neural Network was implemented in Python3.6 using popular library Keras. Keras is
high-level wrapper for lower-level computation libraries. The low-level computational library
of choice for the task of machine learning is TensorFlow. TensorFlow provides options to
use GPU as a computation unit, however due to the unavailability of hardware that’s up to
date means we only utilized CPU.
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Chapter 10

Experiments and Results

The testing data were also obtained from VCC 2016 database [13]. Testing data contain
about 1.5 minutes of the source speaker speech.

Lots of effort was put into finding optimal setup for the training system. Also, different
techniques that the neural network were attempted, mainly linear regression using trans-
formation matrix X that is obtained as least-squares solution to a linear matrix equation
SX = T that is converting source spectrogram S to target spectral T. This approach turned
out not to adapt well to the training data, even such a small data-set as we use.

Thanks to the simplicity of fundamental frequency conversion and phoneme length
change, those techniques achieve anticipated results as it was demonstrated in their chapters
(7, 8).

10.1 Spectrogram Conversion Results

The main struggle with the neural network was to get good results with training and espe-
cially validation loss. We were unable to decrease validation loss below certain point. This
results in inaccurate conversion. While overall frequential characteristic of the converted
spectrogram reminds that of the target spectrogram, it looses lots of detail. The most
important detail that is lost are formants. Formants are result of the acoustic resonance
during voice production. Such spectrogram when synthesized sounds on average as the tar-
get speaker should, the speech sounds dull and sometimes hardly understandable. Converted
samples in .wav format are available on attached DVD in folder /samples/converted. Those
samples were converted from evaluation samples in /samples/eval. There are samples of
the source and target speaker to get the sense of their voices in folders /samples/source
and /samples/target.
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Chapter 11

Conclusions and Future Work

11.1 Spectrogram Conversion Conclusion

Spectrogram conversion doesn’t achieve satisfactory results. There are multiple solutions
for current voice conversion system to consider to improve spectrogram conversion:

• Acquiring larger training data-set.

• Redefining loss function to represent formants better in the loss

• Adding new parameter to the neural network input to decorrelate parts of source
spectrogram that look same, might to be aligned with parts of the target spectrogram
that look different

• Use of different representation of the spectrum such as Mel cepstral coefficients

11.2 Future Work

Based on experience gained during this thesis, the main areas of voice conversion that
require attention are matching of the training data and using suitable spectrogram conversion
techniques.

11.2.1 Nonparallel Training

Nonparallel training allows the training system to use training speech that doesn’t contain
same sentences from the speakers. Nonparallel training would unlock possibility to use any
training speech of the speakers, therefore being able to use more training data and optimizing
the data cross-referencing. In parallel training, we are restricted by the parallel data that
has to be aligned. Aligned data might contain little defects that spoil DTW.

11.2.2 Fundamental Frequency Discussion

We were unable to collect meaningful information for the fundamental frequency conversion
by analyzing fundamental frequency only. Therefore we have to look at other features
affecting it such as entire spectral envelope. Another features to look at are linguistic and
sentence context. Speakers usually modulate fundamental frequency in such way as there
are frequency spikes throughout middle of the sentences and frequency decreases at the end
of the sentence.
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Chapter 12

Appendices

The attached DVD contains following content:

• PDF version of this thesis

• Latex sources for this thesis

• source-codes for the voice conversion system

• voice samples of: source speaker, target speaker, test/evaluation speaker, converted
voice

• README.md that contains detailed description of the DVD content and manual for
the voice conversion system

12.1 Manual

This section provides manual for using the voice conversion system that is stored in src
folder.

12.1.1 Creation of Intermediate Results of Speech Analysis and DTW

STRAIGHT is quite time consuming framework. Folders train_source, train_target and
eval store training and evaluation speech in .wav format, sampled at 22050Hz with 16-bit
signed integer PCM encoding. The results of speech analysis of those files are stored in folders
mat_source, mat_target and mat_eval. Analysis is done by executing save_features.m
Matlab script. If executed in GNU-Octave, then signal package is required. Note that anal-
ysis takes 1-2 hours and intermediate results take about 2.5GB on the hard-drive. Shortest
path calculation is executed using save_dtw.m and takes about 1 hour.

12.1.2 Phoneme Recognition

Phoneme recognition on Linux uses Wine program to run PhnRec executable and scripts in
scripts are written for Linux bash. In case of not being able to run these steps, phonemes
recognition is already pre-computed in folders rec_*. Phoneme recognition is done in two
steps:
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1. Converting .wav files to .raw files used by PhnRec using make_raw.sh. The .raw files
are stored in raw_* folders.

2. Recognition itself done by save_phonemes.sh. The .rec are stored in rec_* folders.

12.1.3 Training and Conversion

Training is implemented using python scripts. Required packages are:

• NumPy

• matplotlib

• Keras

• SciPy

• TensorFlow

• Pillow

Training of the neural network and fundamental frequency is done by executing two
scripts: train_nn.py and train_f0.py.

Results of training are stored in models and normalization folders.
After that conversion can be executed by convert.py. Intermediate results of conversion

are stored in mat_converted folder. Intermediate results are synthesized by executed Matlab
script convert_mat.m. After that results of the voice conversion are available in converted
folder as .wav files sampled at 22050Hz with 16-bit signed integer PCM encoding.
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