
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AHASKELL PLATFORMFORCREATINGPROGRESSIVEWEB APPLICATIONS
NÁSTROJ PRO TVORBU PROGRESSIVE WEB APPLICATIONS V HASKELLU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR JAKUB ZÁRYBNICKÝ
AUTOR PRÁCE
SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2018/2019
Bachelor's Thesis Specification

Student: Zárybnický Jakub
Programme: Information Technology
Title: A Haskell Platform for Creating Progressive Web Applications
Category: Web
Assignment:

1. Study the current state of the Haskell ecosystem for creating web applications.
2. Find suitable libraries as a starting point for creating Progressive Web Applications (PWAs), i.e., web

applications that can offer the user functionality such as working offline or push notifications.
3. Implement a framework for PWAs. Focus, in particular, on the implementation of components for offline

storage, push notifications, and also support tools.
4. Create a set of example PWAs that utilise the created framework.
5. Compare the created framework with existing (e.g. JavaScript) frameworks for PWAs.
6. Summarise the obtained results and discuss the future work.

Recommended literature:
State of the Haskell Ecosystem https://github.com/Gabriel439/post-rfc/blob/master/sotu.md
the Reflex-DOM library: https://github.com/reflex-frp/reflex-dom
Bryan O'Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O'Reilly Media, 2008.

Requirements for the first semester:
First two items of the assignment.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Lengál Ondřej, Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: November 1, 2018

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/21548/2018/xzaryb00 Strana 1 z 1

Abstract

This work attempts to ease developing browser applications in the Haskell programming
language by creating a set of components that its library ecosystem so far lacks, especially
focusing on the components required for development of Progressive Web Applications,
i.e. applications that use new technologies like Service Workers.

The thesis compares which components are commonly expected from a web framework
and which are available in Haskell; describes the implementation of three such components
(router, storage, and Service Worker libraries); and implements three applications that
demonstrate use of these components.

Abstrakt

Tato práce se snaží usnadnit vývoj webových aplikací psaných v programovacím jazyce
Haskell vytvořením sady komponent, které zatím chybí v jeho ekosystému knihoven, se
zaměřením na komponenty nutné pro tvorbu Progressive Web Applications, t.j. aplikace,
které používají nové technologie jako např. Service Workers.

Tato práce porovnává, které komponenty se očekávají od webových platforem a které
jsou dostupné pro Haskell; popisuje implementaci tří komponent (knihovny pro routování,
úložiště a Service Workery); a implementuje tři aplikace, které demonstrují použití těchto
komponent.

Keywords
Haskell, GHCJS, Web Platform, Progressive Web Application, open source, library design

Klíčová slova
Haskell, GHCJS, Web Platform, Progressive Web Application, open source, návrh knihoven

Reference
ZÁRYBNICKÝ, Jakub. A Haskell Platform for Creating Progressive
Web Applications. Brno, 2019. Bachelor’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor Ing. Ondřej Lengál, Ph.D.

Rozšířený abstrakt

Webové aplikace se už dnes svou velikostí a komplexitou blíží nativním a je možné je psát v
mnoha jazycích. V této práci se zaměřuji na tvorbu aplikací pro prohlížeče v jazyce Haskell,
který ale disponuje omezenou nabídkou dostupných knihoven v této oblasti. Zaměřuji se
obzvlášť na tzv. Progressive Web Applications, což jsou aplikace, které používají sadu
relativně nových technologií jako např. Service Workers, aby poskytly funkce, které byly
dříve dostupné jen v nativních aplikacích. Takové aplikace jsou schopné např. pracovat
offline, nebo používat tzv. push notifikace, upozornění generovaná serverem.

V této práci nejdříve porovnávám funkce dostupné v nejrozšířenějších webových platfor-
mách, tj. funkce, které očekávají i vývojáři, kteří Haskell používají nebo chtějí používat, s
funkcemi aktuálně dostupnými v jazyce Haskell. Na základě této analýzy pak implemen-
tuji tři komponenty, které jsou podle mého uvážení nejvíce potřeba pro vývoj Progressive
Web Applications a které se navzájem doplňují: knihovny pro routování, úložiště a Service
Workers (jejich generování a interakci s nimi).

Knihovna pro routování umožňuje definici mapování URL na GUI komponenty a přechody
mezi URL a stránkami převážně pomocí programování na úrovni typů (type-level program-
ming). Knihovna také obsahuje prototyp komponenty pro statické generování stránek
(static site generation). Knihovna pro úložiště obsahuje jednoduché úložiště typu klíč-
hodnota (key-value storage), s podporou offline úložiště a možností rozšíření pro přímý
přístup k databázi při statickém generování stránek. Komponenta pro podporu Service
Workers má dvě části, generování Service Worker jako kód psaný jazykem JavaScript a
klientská knihovna pro interakci s ním. Komponenta podporuje použití Service Workers
jako programovatelné HTTP proxy (fetch control) a pro podporu upozornění generovaných
serverem (push notifications).

Použití těchto knihoven pak demonstruji na třech aplikacích: TodoMVC, HNPWA, Real-
World, které jsou vytvořené podle specifikací běžně používaných pro porovnání webových
platforem. TodoMVC je aplikace pro správu seznamu úkolů, HNPWA je klient zpravodajské
služby Hacker News a RealWorld je víceuživatelská platforma pro čtení a psaní článků.

Práce přidává do open-source ekosystému Haskellu tři nové komponenty, které v něm do-
posud chyběly. Tyto komponenty vyplňují základní nedostatky v ekosystému a dohro-
mady funkčností odpovídají minimalistickým frameworkům v jazyce JavaScript, ale pořád
v Haskellu zůstává mnoho nedostatků v porovnání s ekosystémem JavaScriptu. Tyto kom-
ponenty jsou již použitelné pro tvorbu Progressive Web Applications, zároveň ale slouží
jako výchozí bod pro další práci, jejich další vývoj a tvorbu příbuzných komponent.

A Haskell Platform for Creating Progressive
Web Applications

Declaration

Hereby I declare that this bachelor thesis was prepared as an original author’s work under
the supervision of Ing. Ondřej Lengál, Ph.D. All the relevant information sources used
during preparation of this thesis are properly cited and included in the list of references.

. .
Jakub Zárybnický

May 15, 2019

Contents

1 Introduction 5

2 What is a PWA? 6
2.1 Web development trends . 6
2.2 Progressive Web Applications . 7

3 Web frameworks today 9
3.1 Features of Web frameworks . 9

3.1.1 Supporting tools . 11
3.2 Web frameworks in JavaScript . 12

4 Haskell and the Web 13
4.1 Haskell . 13
4.2 Haskell ecosystem for the Web . 14

4.2.1 Supporting tools . 17

5 Creating the framework 19
5.1 Implementation plan . 19
5.2 Routing . 20

5.2.1 Previous work . 20
5.2.2 Servant . 21
5.2.3 Reflex . 23
5.2.4 Implementation . 24
5.2.5 Possible extensions . 27

5.3 Service workers . 28
5.3.1 Requirements . 28
5.3.2 JMacro . 29
5.3.3 Implementation . 29
5.3.4 Possible extensions . 34

5.4 Storage . 35
5.4.1 Possible extensions . 36

5.5 Web App Manifest . 36

6 Application development 38
6.1 Design . 38
6.2 Tools . 39
6.3 Deployment . 41

1

7 Case studies 43
7.1 TodoMVC . 43
7.2 HNPWA . 46
7.3 RealWorld . 48

8 Conclusion 50
8.1 Evaluation . 50
8.2 Future work . 50

Bibliography 52

Appendices 56

A Contents of the attached data storage 57

2

List of Figures

7.1 The TodoMVC application . 46
7.2 The HNPWA application . 47
7.3 The RealWorld application . 49

3

List of Listings

1 An example of a web server in Haskell . 13
2 An example of a counter in Reflex . 15
3 An example of a counter in Miso . 15
4 An example of a counter in Concur . 16
5 Router: the intended API . 20
6 An example of a Servant API . 22
7 An example of a Servant Generic API . 22
8 Router: types of application code using MonadRouter 24
9 Router: transformation of a Servant API into a client router 25
10 Router: the top-level route dispatcher . 26
11 Router: in-application links . 27
12 Service Worker: the intended API . 28
13 An example of JMacro code . 29
14 Service Worker: generating prefetch JavaScript 30
15 Service Worker: cache strategies type and generation 30
16 Service Worker: request matching types . 31
17 Service Worker: request matching code generation 32
18 Service Worker: implemented push behaviors 33
19 Service Worker: client monad transformer 33
20 Service Worker: application code demonstration 34
21 Service Worker: alternative style using a JavaScript DSL 34
22 Storage: the implemented API . 35
23 Storage: monad transformer definition and usage 36
24 Web App Manifest: main data type . 37
25 NixOps deployment . 42
26 TodoMVC: application entities . 44
27 TodoMVC: component for creating a new task 44
28 TodoMVC: base monad transformer . 45

4

Chapter 1

Introduction

Imagine you are building an application for an event your company is organizing. There
will not be reliable internet connection in the area of the event, so it needs to work offline.
You are on a tight budget, so implementing one version for each platform is not feasible,
but it needs to work reliably across all mobile platforms and ideally in the browser as well.
What is the easiest way to accomplish that?

This situation is exactly where a rather new concept of a Progressive Web Application
(PWA) is the best solution. Generally said, a PWA is website capable of running offline,
using mobile notifications, or synchronizing data in the background, things previously spe-
cific to native mobile applications.

Moreover, consider that the application server is written in Haskell, a statically typed,
purely functional programming language. We want to reuse the business logic already
written there to avoid duplicating code, so we search for a way to write a Web application
in Haskell. We find many resources and a quickly growing community but while creating
the application, we soon step into the unknown. A medium-scale application needs a large
number of capabilities, but the ecosystem of frontend Haskell is not yet big enough to
support many of them, and many libraries in the area are either exploratory or one-off
projects. In this work, we will try to fill in many such gaps, with the goal of creating a
framework for creating Progressive Web Applications in Haskell.

We will first go through the details of what a Progressive Web Application is (Chapter 2)
and what features are common in today’s Web frameworks (Chapter 3), followed by a
quick introduction to Haskell and an evaluation of the Haskell ecosystem in the area of
Web development (Chapter 4). After seeing what is missing, we will walk through the
implementation of several libraries in the area (Chapter 5), have a look at how to create
an application using these components (Chapter 6), and conclude with four separate case
studies (Chapter 7).

The source code for this work is available online https://github.com/zarybnicky/thesis,
and also at https://tapaw.dev, where the live versions of the applications created here are
also available.

5

https://github.com/zarybnicky/thesis
https://tapaw.dev

Chapter 2

What is a PWA?

2.1 Web development trends

Today, web pages are more than just static HTML markup. We have moved from the Web
without JavaScript where any interactions needed to be processed by the server, through
using JavaScript just for animations and small ease-of-use features, to building entire ap-
plications in JavaScript that only talk to servers in the background.

When JavaScript received the ability to execute HTTP requests and get or save data in the
background, a technology then called AJAX, it was only used for small pieces of functional-
ity. Only later came the concept of Single Page Applications (SPA), where the application
was only loaded once at the beginning and only communicated in JSON or XML afterwards.
This brought new challenges to JavaScript developers, challenges like rendering templates
in the browser, managing application state or routing (the mapping between application
state and the URL displayed in the address bar of a browser).

Not only was the Web developing, but also mobile devices and their applications, also called
native applications today (as opposed to web applications). These applications had access
to the full capabilities of the devices they were running on and could, at the start, do a lot
more than a web application.

This meant that a company that wanted to reach as many users as possible had to develop
many versions of the same application: for the web, desktop, and also for several varieties
of mobile devices. Later came projects like Cordova and Electron that made it possible to
use JavaScript and other web technologies not only in the browser but also in native mobile
and desktop applications, but the ambition of making the web the universal application
platform stayed there.

Under the umbrella of the Web Platform project, many new JavaScript extensions were
developed, interfaces that gave JavaScript access to many facets of the device on which the
browser runs. Some examples are the Location API that gives access to the GPS location
of a device, or the Screen Capture API that enables a website to capture the screen of the
browser or another application.

Given that the device type most often for browsing the Web is a mobile device and has
been for a few years already [39], the effort to equalize the capabilities of web and mobile

6

applications is still ongoing, and a large step towards this goal is the concept of a Progressive
Web Application.

2.2 Progressive Web Applications

The term Progressive Web Application (PWA) is an umbrella term for several relatively
new, closely related technologies. While many of them are useful on all devices, the main
target audience are mobile Web browsers.

The goal of the PWA project is to enable developers to create Web applications that are
equal in functionality to native ones in many domains like shopping or productivity. The
technologies that comprise the term PWA allow applications to be installable directly from
a web browser to the device, to become capable of working offline, to use some background
services of the device, all features formerly only available to mobile applications. To use
the marketing terms, converting a web application into a PWA improves user experience
and brings higher user engagement and retention.

The term PWA has an exact specification in a checklist created by Google [15], which
describes two levels of PWAs, a Baseline PWA and an Exemplary PWA. The defining
characteristics of a Baseline PWA are, as quoted directly from the checklist:

• Pages are responsive on tablets and mobile devices.

• All application URLs load while offline.

• Site uses cache-first networking.

• Page transitions do not feel like they block on the network.

• Pages use the History API.

• Each page has a URL.

• Metadata provided for “Add to Home screen”.

• Site appropriately informs the user when they are offline.

• Push notifications (which consist of several related requirements).

While there are several more requirements for an Exemplary PWA, we will focus mostly on
the Baseline PWA ones. The technologies used to fulfill these requirements are relatively
recent developments, but they are supported in all major Web browsers. The technologies
are the following:

• Service Workers

• Web App Manifest

• IndexedDB

• Web Platform APIs

7

A service worker is a JavaScript program that an application can request to install. It is
functionally a configurable network proxy [29] that can intercept outgoing requests from
the browser and that has access to a browser cache, which, among other things, enables
applications to become available offline. The service worker may also handle push notifica-
tions and background synchronization, two new features that were traditionally available
only to native applications.

Push notifications are short messages sent by the application server to any client using
browser-specific channels (e.g. Firebase Cloud Messaging for Chrome and Android browsers,
Apple Push Notification for Apple browsers), that are shown to the user as a popup or a
notification regardless of whether the application is open or closed on the device.

The Background Sync API enables the service worker to retry requests made while the
application was offline as soon as the device goes online, even when the application is not
open at that moment, which also enables some degree of offline capabilities, as any data
updates can be queued and eventually executed in batch at some point in the future.

The Web App Manifest is a W3C-standardized JSON file [47] that contains the metadata
that describe an application: its name, icons, splash screen, or locale. If a page contains a
link to a manifest, it indicates to the browser that the page is a part of an application and
that the application can be installed on a device locally. For the user, this means that the
application can request to be installed via a dialog window asking them to “Add to Home
Screen”.

IndexedDB is the only browser storage that is accessible to both the browser and the service
worker. It is a document store that supports transactions, schema versioning, and indices.
Using IndexedDB, the application is able to synchronize its state with the server even when
it is closed, using the Background Sync API of the service worker.

The Web Platform is a set of APIs that expose capabilities of the underlying system.
Examples include geolocation or audio/video capture [4]. Of the many APIs that comprise
the Web Platform, it is the History API and Network Information API that are necessary for
a PWA. The History API is the feature that enables the so-called single page applications,
where the application is loaded only once despite the user being able to navigate between
different URLs. This is achieved via artificial navigation actions and intercepting user
navigation actions like “Go to previous page”. The Network Information API is what enables
the application to find out whether the it can currently access the Internet. Other APIs
mentioned in the Exemplary PWA requirements are the Web Share API and Credentials
API that expose more of the underlying device capabilities, sharing via other applications
and the device credential storage.

8

Chapter 3

Web frameworks today

As frontend applications grow more complex, so do the frameworks in which they are build.
Today’s frontend framework is no less complex than a desktop or a server framework, with
a large number of capabilities. In this section, we will look into what is expected of a
frontend framework, which features they usually support and what we will need to look for
in Haskell libraries.

3.1 Features of Web frameworks

The basis of a web framework is the UI toolkit, which defines the structure, architecture, and
paradigm of the rest of the application. I am intentionally using the now-uncommon term
toolkit, as the UI frameworks we will see vary in their scope, e.g. React is just a library with
a small API, whereas Angular provides a quite opinionated platform. Individual frameworks
are quite disparate, with large differences in the size of their community, maturity, developer
friendliness, and the breadth of features or available libraries.

Frameworks usually have one defining feature they are built around (virtual DOM for
React or event streams for Angular), but there are many other concerns that a framework
needs to take care of. Templating is one of the essential ones. It is a way of composing
the HTML that makes up an application, which also usually includes some “view logic”
and variable interpolation. In some frameworks the whole program is a template (purely
functional React), some have templates in separate files and pre-compile them during the
build process or even in the browser (Angular). Templates may also contain CSS as well
as in the recent CSS-in-JS trend [18].

The second defining feature of frameworks is state management. This rather vague concept
may include receiving input from the user, displaying the state back to the user, communi-
cating with APIs and caching their responses, etc. While state management is simple at a
small scale, there are many problems that appear only in larger applications with several
developers. Some approaches include: a “single source of the truth” and immutable data
(Redux), local state in hierarchical components (Angular), or unidirectional data flow with
several entity stores (Flux).

Another must-have feature of a framework is routing, which means manipulating the dis-
played URL using the History API, and changing it to reflect the application state and

9

vice-versa. It also includes switching the application to the correct state on start-up. While
the router is usually a rather small component, it is as fundamental to the application in
the same way as the previous two items.

A component where frameworks differ a lot is a forms system. There are a few layers of
abstraction at which a framework can decide to implement forms, starting at raw DOM
manipulation, going on to data containers with validation but manual rendering, all the way
up to form builders using domain-specific languages. The topic of forms includes rendering
a form and its data, accepting data from the user and validating it, and sometimes even
submitting it to an API.

There are other features that a framework can provide, like authentication or standard-
ized UI components, but frameworks usually leave these to third-party libraries. There
is one more topic I would like to mention that is usually too broad to cover in the core
of a framework, but important to consider when developing an application. Accessibility
is an area concerned with removing barriers that would prevent any user from using a
website. There are many parts to it, and while the focus is making websites accessible to
screen-readers, it also includes supporting other modes of interaction, like keyboard-only
interaction. Shortening load times on slow connections also makes a website accessible in
parts of the world with slower Internet connections, and supporting internationalization
removes language barriers.

Accessibility is something that requires framework support on several levels. Making a
site accessible requires considerations during both design (e.g. high color contrast) and
implementation (semantic elements and ARIA attributes), and that is usually left to appli-
cation code and accessibility checklists, with the exception of some specialized components
like keyboard focus managers. There are, however, tools like aXe-core, which check how
accessible a finished framework is, and these can be integrated into the build process.

Internationalization is somewhat easier to support in a framework, as it includes so many
cross-cutting concerns. At the most basic level, it means simple string translations, perhaps
with pluralization and word order. Going further, it may also mean supporting right-to-left
scripts, different date/time formats, currency, or time zones.

As for load times, there are many techniques frameworks use to speed up the initial load
of an application. We can talk about the first load, which can be sped up by compressing
assets (CSS, fonts, scripts) and removing redundant ones, or by preparing some HTML
that can be displayed to the user while the rest of the application is loading to increase
the perceived speed. After the first load, the browser has some of the application’s assets
cached, so loading will be faster. One of the requirements of a PWA is using the Service
Worker for instantaneous loading after the first load.

There are two patterns of preparing the HTML that is shown while the rest of the appli-
cation is loading, so called prerendering. One is called app shell, which is a simple static
HTML file that contains the basic structure of the application’s layout. The other is server-
side rendering, and it is a somewhat more advanced technique where the entire contents of
the requested URI is rendered on the server including the data of the first page, and the
browser part of the application takes over only afterwards, without the need to fetch any
more data. There is another variant of server-side rendering called the “JAM stack” pattern
(“JavaScript, APIs, Markup” [42]), where after application state changes, the HTML of the
entire application, of all application URLs is rendered all at once and saved so that the

10

server does not need to render the HTML for every request. These techniques are usually
part of a framework’s supporting tools, about which we will talk next.

3.1.1 Supporting tools

Developers from different ecosystems have wildly varying expectations on their tools. A Python
developer might expect just a text editor and an interpreter, whereas a JVM or .NET de-
veloper might not be satisfied with anything less than a full-featured IDE. We will start
with the essentials, with build tools. Nowadays, even the simplest JavaScript application
usually uses a build step that packages all its source code and styles into a single bundle
for faster loading. A framework’s tool-chain may range from a set of conventions on how
to use the compiler that might get formalized in a Makefile, through a CLI tool that takes
care of building, testing, and perhaps even deploying the application, to the way of the
IDE, where any build variant is just a few clicks away.

Debugging tools are the next area. After building an application, trying it out, and discov-
ering faulty behavior, these tools help to pinpoint and fix the underlying error. There are
generic tools, a stepping debugger is a typical example, and there are also framework-specific
tools, like an explorer of the component hierarchy (React) or a time-traveling debugger that
can navigate through application state backward or forward (Redux). In the web world, all
modern browsers provide basic debugging tools inside the “DevTools”: a stepping debug-
ger and a profiler. Some frameworks build on that and provide an extension to DevTools
that interacts with the application in the current window, some provide debugging tools
integrated into the application itself.

When building or maintaining a large application with several developers, it is necessary
to ensure good practices in all steps of the development process. There are two general
categories in quality assurance tools: testing (dynamic analysis) tools and static analysis
tools. In the commonly used variants, tests are used either as an aid while writing code
(test-driven development), or to prevent regressions in functionality (continuous integration
using unit tests and end-to-end tests). Static analysis tools are, in the general practice,
used to ensure a consistent code style and prevent some categories of errors (“linters”).
Frameworks commonly provide pre-configured sets of tools of both types. If necessary,
e.g. in integration testing, where the burden of setup is bigger, they also provide utility
libraries to ease the initial setup. Some frameworks also use uncommon types of tests like
marble tests used in functional reactive programming systems.

Editor integration is also important in some ecosystems. This includes common features of
Integrated Development Environments like auto-completion or refactoring tools. Recently
the Language Server Protocol (LSP) [26] project played a big role in allowing editors to
support a wide variety of languages by implementing just an LSP client and being able
to communicate with any language-specific language server. There are some parts of edi-
tor support that can be framework-specific, like supporting an embedded domain-specific
language or integrating framework-specific debugging tools.

While we were talking about Web frameworks so far, some of them support not only running
inside the browser but also being packaged as a mobile app for Android or iOS, or as
a /native desktop application. For mobile support, frameworks often provide wrappers
around Apache Cordova, which is a thin wrapper around a regular website exposing some
extra capabilities of the device. Some, however, go even further and support fully native

11

mobile interfaces controlled by JavaScript, like React Native. The situation is similar for
desktop support, just with Electron used as the base instead of Cordova. The main benefits
of packaging a Web application instead of just running it inside a browser are performance
(they are usually faster to load and to use), access to device-specific capabilities (direct
access to the file system), or branding.

The last point to mention is code generation, of which there are two variants: project
skeleton generators, which create all files necessary for a project to compile and run and
which are provided in a large majority of frameworks. Then there are component generators,
which may include generating a template, a URL route and its corresponding controller,
or an entire subchapter of a website. While they are less common, they are indispensable
especially in frameworks that require large amounts of boilerplate code.

3.2 Web frameworks in JavaScript

The features we just went through are features that are widely available in JavaScript
and its frameworks. We will now go through some of them to see how they approach the
implementation of these features.

The most popular JavaScript frameworks of today are React and Angular [2]. Vue.js is
close behind them, a relatively new framework that is quickly gaining popularity.

Angular is an integrated framework that covers many common use cases with many sup-
ported features in the base framework. On the other hand, React and Vue are both rather
small libraries, and most of the features described in the previous section are implemented
only as third-party libraries or tools. While React and Vue are sometimes called frameworks
as well, they mostly serve as the central library of an ecosystem built around them.

As for the topics mentioned in the previous chapter like routing, forms, or build tools: most
of them are built into Angular, while React and Vue do not include them and thus users
need to use third-party libraries instead. This ties into the most common complaint about
the JavaScript ecosystem: there are dozens of small libraries that accomplish similar things,
many are, however, incomplete or unmaintained, and there is no good way to decide between
them. There are several projects that attempt to alleviate this problem by combining a set
of libraries into a more cohesive framework closer in scope to Angular.

12

Chapter 4

Haskell and the Web

4.1 Haskell

Haskell is described as a “statically typed, purely functional programming language with
type inference and lazy evaluation” [21]. It is originally a research language, developed as a
vehicle for new research in the area of programming languages since 1990 [17]. It has served
as such, and in fact it still is the target of active research. Some larger ongoing research
projects are Dependent Haskell [13] and Linear Haskell [6].

Only recently has it been used in commercial work, as exemplified by Facebook’s Haskell
spam filter [25]. While there are many benefits to using a strongly typed functional language
(it eliminates entire classes of programming errors [31], anecdotally shown by the common
saying that “If it compiles, it works”) it is conceptually different from languages commonly
taught at universities. An example of Haskell code is included in Listing 1, which contains
a web server whose API is completely defined by the type HackageAPI, from which the
types of the server and client functions are determined using type-level functions.

type HackageAPI =
"users" :> Get '[JSON] [User] :<|>
"user" :> Capture "login" Login :> Get '[JSON] User

getUsers :: Handler [User]
getUser :: Login -> Handler User

server :: Server HackageApi
server = getUsers :<|> getUser

getUsersClient :<|> getUserClient =
client @HackageApi "http://hackage.haskell.org"

Listing 1: An example of a web server in Haskell

13

As for using Haskell in the browser, it may seem strange at a first glance to want such a
thing when JavaScript is the only language supported by Web browsers. There is, however,
a growing number of languages that compile to JavaScript, which use it as their compile
target instead of Assembly or LLVM, that can be done either by translating the logic of
the program into JavaScript as is (transpiling), or by implementing an alternative run-
time environment in JavaScript, which then interprets the byte- or source-code. Another
technology that enables languages to run in the browser is WebAssembly, an alternative
assembly language and a runtime designed specifically for the Web.

Web developers have been using JavaScript compilers for a long time. CoffeeScript is rather
popular language announced in 2010 [3]. Also the new ECMAScript 6 or 7 features have only
been usable via compilation until browsers implemented them natively. There are other,
more advanced languages built with compilation to JavaScript in mind, e.g. TypeScript,
a superset of ECMAScript 6 [27], or Elm, a framework with its own language based on
Haskell [10]. The need to compile your code before running it is now quite accepted in the
world of Web development.

The currently accepted way of running Haskell in the browser is via GHCJS, a Haskell-
to-JavaScript compiler, although there are two active projects in the process of creating a
Haskell-to-WebAssembly compiler: WebGHC [14] and Asterius [45].

4.2 Haskell ecosystem for the Web

We will now go through Haskell libraries for Web development, using the same structure
as we did in the chapter describing general Web framework features.

The volume of work in the area of frontend Haskell is not large, as the Haskell-to-JavaScript
compiler GHCJS is only available since 2013, and also due to the fact that Haskell in
general is only recently becoming a mainstream language and used in commercial projects.
Academic work in this area is sparse, but there are several mature projects under active
development, usually commercially sponsored. Reflex and Obelisk are two projects from
Obsidian Systems [33], a UI framework and a deployment tool respectively. Tweag [44] is
working on a Haskell-to-WebAssembly compiler, Asterius, and QFPL [23] has created many
learning materials for frontend Haskell.

There is a significant focus on the semantics of libraries in the Haskell community, e.g. writ-
ing down mathematical laws for the foundational types of a library and using them to prove
correctness of the code, so UI libraries have mostly used Functional Reactive Programming
(FRP) or similar approaches like the Elm architecture [24] as their basis, as traditional
imperative event-based programming does not fit those criteria well.

There are five production-ready UI toolkits for the Web that I have found. Of these five,
React-flux and Transient are unmaintained, and Reflex, Miso, and Concur are under active
development and ready for production use. Each one uses a conceptually different approach
to the problem of browser user interfaces, and they differ in their maturity and the size of
their community as well.

Reflex [35] (and Reflex-DOM [36], its DOM bindings) looks like the most actively main-
tained and developed one. Reflex is also sponsored by Obsidian Systems [33] and is the
most popular frontend framework in the Haskell community, so its future seems promising.

14

main :: IO ()
main = mainWidget $ do

eClick :: Event t () <- button "Click me"
dCount :: Dynamic t Int <- count eClick
display dCount

Listing 2: An example of a counter in Reflex

Reflex follows the traditional FRP approach with events and behaviors, adding dynamics,
and building a rich combinator library on top of them. There is an example of Reflex code
in Listing 2, where eClick is an event of unit values and dCount is a value containing a
dynamically changing integer.

Miso [20] is described as a re-implementation of the Elm architecture in Haskell. That means
that it uses a strictly uni-directional data-flow in which the entire state of the application
is stored as a single value, the model, which is passed to a view function that renders the
application and produces a stream of action values, which are in turn interpreted by a
reducer function to update the application state, where each action causes re-rendering of
the entire application. The ecosystem of Miso is not as well developed as Reflex’s, and the
overall architecture is quite limiting, which I consider to be a large disadvantage. You can
see an example of Miso code in Listing 3, in which all local variables from the where clause
are bound in the expression App {..}. In particular, you can see the Action, the model (a
simple integer), the update function, and the view, which together form the basis of the
application.

data Action = AddOne
deriving Eq

main :: IO ()
main = JSaddle.run 8080 $ startApp App {..}

where
initialAction = AddOne
model = 0
subs = []
events = defaultEvents
mountPoint = Nothing

update AddOne m = noEff (m + 1)

view x = div_ []
[text (ms x)
, button_ [onClick AddOne] [text "Click Me"]
]

Listing 3: An example of a counter in Miso

15

main :: IO ()
main = do

initConcur
void $ runWidgetInBody $ void $ flip execStateT (0 :: Int) $

forever $ increment1 <|> displayCount
where

increment1 = lift (el_ E.div [] $ button "Click Me") >> modify (+10)
displayCount = do

count <- get
lift $ el_ E.div [] $ text $ show count ++ " clicks"

Listing 4: An example of a counter in Concur

Concur [19] tries to explore a different paradigm by combining the best of the previous two
approaches. The developers have so far been focusing on exploring how this paradigm fits
into browser, desktop or terminal applications, so it has a quite small range of features. It
is a technology I intend to explore in the future when it is more mature, which, however,
does not seem suitable for a large application so far, at least compared to its competitors.
An example is included in Listing 4, where you can see the operator <|> used for combining
widgets inside main and » for sequencing in increment1.

In all of these frameworks, templating is a feature that has been side-stepped by creating a
domain-specific language for HTML mixed with control flow. There have been attempts at
creating a more HTML-like language embedded into Haskell or external templates, though
there is no such project that is both feature-complete and actively maintained. It is, how-
ever, possible to reuse existing JavaScript components using the foreign function interface
(FFI) between Haskell and JavaScript, and that it exactly what one of the unmaintained
frameworks did to use React as its backend (react-flux).

State management is where the frameworks differ the most. Miso follows the Elm architec-
ture strictly with a central data store that can be only changed by messages from the view,
whereas Reflex and Concur are more flexible, allowing both centralized and component-local
state. A common complaint regarding Reflex is that there is no recommended application
architecture. It errs on the other side of the flexibility vs. best practices spectrum.

Regarding routing, Miso has routing built into its base library. There are several attempts
at a routing library in Reflex, though the situation is the same as with templating libraries.
Concur with its small ecosystem does not have routing at all, it would be necessary to
implement from scratch for a production-ready application.

In forms and UI components in general, the selection is not good. There are several
component collections for Reflex that use popular CSS frameworks (Bootstrap, Semantic
UI), though each has many missing pieces and they lack components that need to be re-
implemented anew in each application, forms in particular. Miso and Concur do not have
any publicly available UI component libraries, or at least none that I was able to find.

Accessibility as a whole has not been a focus of Web development in Haskell. It is possible
to reuse JavaScript accessibility testing tools, though I have not seen any sort of automated
testing done on any publicly available Haskell application. The only area with continued

16

developer focus is loading speed, as the size of build artifacts was a problem for a long time.
The build artifact size has been improved to the level of a common JavaScript application,
however, so that is not a critical concern. Prerendering is also supported by Miso and
Reflex, which helps to speed up load times as well.

4.2.1 Supporting tools

Moving on to the topic of build tools: there are three main options in Haskell: Cabal v2
[7], Stack [9], and Nix. Cabal is the original build tool for Haskell, which gained a bad
reputation for some of its design decisions (the so-called “Cabal hell”), although most of
them were fixed in “Cabal v2” which puts it on par with its main competitor, Stack. Stack
tried to bring Haskell closer to other mainstream programming languages by introducing
several new features like automatic download of the correct version of the GHC compiler
or having a curated set of Haskell packages guaranteed to work together, called Stackage.
It succeeded in that, becoming the tool of choice for a large part of the Haskell community
in the process. Nix, in contrast, is a general-purpose build tool and not a Haskell-specific
one, which is used in Haskell development mainly for its cross-compilation capabilities and
reproducibility guarantees.

Glasgow Haskell Compiler (GHC) is the main Haskell compiler used for the creation of
native binaries. Compilation to JavaScript, as required for frontend development, is sup-
ported by a separate compiler, GHCJS, which uses GHC as a library. Setting up a GHCJS
development environment with Cabal is not a trivial process and Stack does not support
GHCJS at all in recent versions, so the commonly recommended build tool for frontend
development is Nix. When set up correctly, it offers almost a one-click setup, downloading
the compiler and all dependencies from a binary cache or compiling them if unavailable.
Especially Reflex, in the reflex-platform project [37], uses the cross-compilation capabilities
of Nix to compile applications for Android, iOS, desktop, or the web simultaneously.

The main problem of GHCJS has been the speed and the size of the produced JavaScript.
The latter has been gradually improving and is now mostly on par with modern JavaScript
frameworks, the former is harder to improve though, and the speed of GHCJS applications
is still within a factor of 3 of native JavaScript ones [30]. This should, however, be improved
soon by compiling to WebAssembly instead of JavaScript. There are two projects trying
to create a Haskell-to-WebAssembly compiler in parallel: Asterius [45] and WebGHC [14].
These are still under active development, but I expect them to be production-ready by the
end of 2019.

Moving on to the topic of debugging tools, this is where Haskell on the frontend is lacking
the most. While it is possible to use the browser’s built-in DevTools and their debugger
and profiler, the compiled output of GHCJS does not correspond to the original Haskell
code too much, which makes using the debugger quite hard. There are no other debugging
tools, though in my experience I did not ever feel the need to use anything else than writing
debugging output to the browser console.

In contrast, there are many quality assurance tools available for Haskell in general, of
which almost all are available for use in frontend development. Starting with static quality
assurance, Hlint is the standard code quality analyzer for Haskell, well-supported and ma-
ture. There are several code formatters, Hindent is the most widely used one; it enforces
a single style of code as is common in other contemporary languages (e.g. gofmt for Go).

17

As for test frameworks, there are many options. HSpec or HUnit are examples of unit-
or integration-testing frameworks, property-based testing is also common in Haskell, with
QuickCheck [8] being the most well-known example. For end-to-end testing in the browser,
there are libraries that integrate with Selenium.

Haskell has a quite bad reputation for the lack of editor integration. The situation is
better with the recent Language Server Protocol project, where haskell-ide-engine, Haskell’s
language server, enables users to write Haskell in contemporary editors like Atom easily.
The language server supports type-checking, linting, formatting, and also common IDE
features like “Go to definition” or “Type at point”.

Compiling applications as mobile or desktop apps is well-supported in Reflex, though not
in Miso or Concur. Using the scaffolding of reflex-platform makes supporting different
platforms almost automatic, as Nix takes care of switching between compilers: GHCJS
for the Web, regular GHC for the desktop, and cross-compiling GHC for iOS or Android.
Bundling the compiled applications for distribution for each platform is a bit more involved,
though there are efforts to automate even that.

Code generators are quite limited in Haskell. Stack has a templating system for new project
initialization, though there are no templates for frontend development so far. Cabal comes
with a single standard template for a blank project but lacks customization options for
creating framework-specific templates. And Nix does not do code generation at all. The
common practice so far is to use a copy of a repository as the base for a new project, which
contains all necessary files for a working minimal project. I have not found any attempts
at component generation in Haskell.

In summary, while there are several UI toolkits available for browser applications in Haskell,
individual components that are required for easy application development are either not
available at all or not too well developed.

18

Chapter 5

Creating the framework

5.1 Implementation plan

In the previous chapter, I presented my research into Haskell and its library ecosystem for
browser applications. Now it is time to select which components need to be created to
fulfill the goal of this thesis, i.e. creating a framework for development of Progressive Web
Applications. Here are the requirements for a Basic PWA reiterated:

• Pages are responsive on tablets and mobile devices.

• All application URLs load while offline.

• Site uses cache-first networking.

• Page transitions do not feel like they block on the network.

• Pages use the History API.

• Each page has a URL.

• Metadata provided for “Add to Home screen”.

• Site appropriately informs the user when they are offline.

• Push notifications (which consist of several related requirements).

We will go through them one by one to see which components already exist and which are
left to be implemented.

Responsiveness, the ability of an application to fit any screen size, is usually accomplished
only via CSS and is therefore out of scope, we are focusing on the JavaScript part only. The
next two requirements (offline, cache-first networking) need to be implemented in a service
worker, which is not covered by any existing library. Non-blocking page transitions and the
use of History API are similar requirements that can today be implemented manually, but
a routing component is desirable to remove the large amounts of boilerplate code necessary
and to fulfill the next requirement of each page having a URL. The metadata for “Add
to Home screen” need to be specified in the Web App Manifest, which is currently not

19

supported by any existing library, but can be created manually as well. Indication of
online/offline status is supported by the basic DOM interaction library. Push notifications
require three components: in the browser, in the service worker, and on the server. Only
the server-side component is currently available in Haskell.

There are some features that are beneficial for a PWA but not included in the explicit list of
requirements, one of them is being able to provide at least basic functionality even offline.
Doing that requires either API caching (using a service worker) or offline storage, neither
are supported by any existing library, however.

I have selected the components that would, in my opinion, provide a solid basis for further
expansion while fulfilling our requirements. Implementing a framework that covers all fea-
tures missing in frontend Haskell is a topic for a multi-year project for a team of developers,
so the scope of my work is limited by the available resources, both in time and in human
resources. The selected components are:

• a full-featured browser routing library,

• a service worker generator and push notification support for the client and the server,

• Web App Manifest generator, and

• a basic key-value storage library with backends for both the browser and server (to
support prerendering).

These components will be usable both on their own and in combination, as a framework.
While I developed these components incrementally, extracting common patterns from ap-
plications written without them, I will not describe the individual iterations but instead
walk through the design choices made in the process and some interesting parts of the im-
plementations, as I believe that will make for a more concise and informative presentation.

5.2 Routing

A router is one of the basic components of a modern web application. There are several
features a router is concerned with: parsing the initial URL on application start-up, chang-
ing it according to user navigation actions, storing the navigation state for the rest of the
application. In types, this might be expressed as shown in Listing 5.

5.2.1 Previous work

There are several widely used options for a server-side router, which has the same respon-
sibilities as a client-side one, and a very similar interface, for the most part. These options

parseRoute :: URL -> Route app
dispatchRoute :: Route app -> m ()
renderRoute :: Route app -> URL

Listing 5: Router: the intended API

20

differ in several ways, the most fundamental one being the representation of a route, which
in turn defines the basis of the client API.

We will go through the routers of Yesod, Happstack, and Snap, all of them popular Haskell
frameworks for server-rendered web applications, and then move on to Servant, a general-
purpose routing solution for web services.

Yesod uses a special DSL (Domain Specific Language) for its router, which is implemented
via quasi-quoting, a specific flavor of meta-programming where an arbitrary string is parsed
into a Haskell expression. In this way Yesod generates several type-class instances, imple-
mentations of the above-mentioned functions, and a sum type containing all possible routes
in an application. The route itself is then just a plain data constructor of this sum type.

Happstack and Snap both offer a choice between using non-typed routes based on strings,
or type-safe routes similar to Yesod’s approach above. For type-safe routing, they both use
the same library, web-routes. To use this library, the user defines a sum type containing all
possible routes in an application and then uses library combinators to define a parser/en-
coder manually. The parser/encoder is represented as a so-called boomerang, a composable
object containing both directions of the transformation.

Servant is newer than the above options, and it is the most popular solution for creating web
APIs in Haskell at the moment. In Servant, an API is described using a single large type
in its entirety, created by composition using type-level operators (:<|>, :>). This type is
then processed using type-classes to create specific types suitable for implementing a server
or for creating type-safe links. This type can also be interpreted using other libraries to
generate API documentation or clients in a variety of libraries.

Of these options, Servant’s approach seems to be the most flexible one as is also demon-
strated by the large number of libraries that build on the Servant core, although the com-
plexity of using type operators and type interpreters may be intimidating to developers
looking beneath the user-facing API, at least compared to the simplicity of the other two
approaches which use plain functions and simple sum types at their core.

5.2.2 Servant

Servant is a general type-level DSL (Domain-Specific Language) in the domain of web
routing. An API defined using Servant is merely a type, a tree of type-level terms composed
using type operators. This API type is then interpreted using type-level functions into
value-level functions, e.g. routers.

In Listing 6, we can see that a single Servant endpoint GetUsers is a composition of type-
level strings and so-called combinators like QueryParam and Get, which are usually defined
as data types without any constructors as shown in the first part of the listing. These
endpoints are then composed together using type-level operators “then”, :>, and “and”,
:<|>, as shown in the first part of the listing.

A server implementing such an API is defined in a very similar way, the handlers for indi-
vidual endpoints are composed together using the value-level operator :<|> (a constructor
of the type :<|>), as can be seen in the definition of server. A client for the API is not
created by composition but by decomposition of the :<|> constructor as shown in the last
part of the listing.

21

data (:>) (a :: Type) (b :: k)
data (:<|>) (a :: Type) (b :: Type)

= (:<|>) a b
data QueryParam (name :: Symbol) (a :: Type)

type GetUsers = "users" :> QueryParam "sortby" SortBy :> Get '[JSON] [User]
type CreateUser = "users" :> ReqBody '[JSON] User :> Post '[JSON] UserId
type UserAPI = GetUsers :<|> CreateUser

server :: Server UserAPI
server = (\sortBy -> return [users]) :<|> (\user -> saveUser user)

getUsers :: SortBy -> ClientM [User]
getUsers = f

where
(f :<|> _) = client (Proxy @UserAPI)

Listing 6: An example of a Servant API

An alternative approach to defining an API is using records. This approach uses Haskell’s
support for datatype-generic programming to convert between a record into a tree that uses
:<|> on both the type- and value-level. It is easier to work with larger APIs in this way and
it makes for easier-to-read type errors. It is also possible to refer to individual endpoints
using record accessors, instead of (de)composition of the entire server or client. The code
in Listing 7 is functionally equivalent to the previous listing.

The interpretation of an API type into values is done via type classes, a language feature
that is often compared to interfaces in object-oriented languages, but in this case its use

data UserAPI = UserAPI
{ _getUsers :: "users" :> QueryParam "sort" SortBy :> Get '[JSON] [User]
, _createUser :: "users" :> ReqBody '[JSON] User :> Post '[JSON] UserId
} deriving (Generic)

server :: Server (ToServant UserAPI)
server = toServant $ UserAPI

{ _getUsers = \sortBy -> return [users]
, _createUser = \user -> saveUser user
}

getUsers :: SortBy -> ClientM [User]
getUsers = _getUsers apiClient

where
apiClient = genericClient @UserAPI

Listing 7: An example of a Servant Generic API

22

is a bit more involved. The API tree is traversed recursively from the top along the :<|>
and :> operators, one combinator at a time starting from the outermost :<|>. In the case
of a server, the API type of each endpoint is also translated into the type of the handler
function using an associated type family. Despite its name, a type family defines a type-level
function: “given a type of an endpoint, find the type of a handler” in this case.

We will see this process in more detail in a later chapter, when defining an entirely new
interpretation of an API type in the creation of a client router, and when extending an
existing interpretation to support prerendering of applications on the server.

5.2.3 Reflex

Before we dive into the implementation of the router, we also need to go through the basics
of Reflex, as its philosophy and building blocks constrain the shape of any function we
design.

As mentioned in the introductory chapters, Reflex is a general Functional Reactive Pro-
gramming (FRP) library. FRP in general is a way of programming where the program
consists of a network of time-varying values and functions combining such values.

The basic building blocks of FRP are events, objects which have a value only on a specific
moment, and behaviors, which have a value at any point. Reflex adds a third primitive,
a dynamic, which is a pair of a behavior and an event which fires whenever the behavior
changes.

Reflex is a general FRP library, to interact with the external world it needs bindings to
read external values and translate Reflex events into external actions. There are several
such bindings: reflex-dom for the browser, reflex-backend-wai for the WAI web server
interface, diagrams-reflex for SVG animations, and several others. The one we will use
in the rest of this work is reflex-dom, which contains the necessary building blocks for web
applications: functions to create and animate HTML elements, listen on browser events, or
perform HTTP requests.

Reflex and Reflex-DOM provide the basic building blocks for creating applications, but they
do not fall to a natural structure for bigger applications the way object-oriented frameworks
do as in MVC and its variations. In fact, one of the most common complaints of developers
exploring Reflex is the lack of a developed application architecture.

It is possible to recreate patterns like the Elm architecture in Reflex, as well as more
fine-grained architectures that use smaller stateful components communicating each other
using top-level application logic. Several patterns have emerged so far, but none has been
generally accepted so far, and the most accepted one (Gonimo architecture [22]) requires a
large amount of trivial “plumbing” code.

There are, however, several smaller structural patterns that have slowly emerged as “rules
of thumb”. “Dynamics as component inputs, events as outputs” is one such, which has been
somewhat formalized as a combination of monad transformers (ReaderT and EventWriterT)
in Reflex itself.

Reflex is composed of several fine-grained typeclasses. These are abstract, and they are
translated into a series of monad transformers and their interpreters on the top level.

23

userView ::
(MonadReader AppState m, MonadRouter AppRoute m, MonadWidget t m)

=> Dynamic t User
-> m (Event t UserEdit)

runAppM :: MonadWidget t m => RouterT AppRoute (ReaderT State m) a -> m a

Listing 8: Router: types of application code using MonadRouter

There are several common methods of formalizing application architecture in Haskell. Each
method tries to abstract implementation details from application logic by identifying all
side-effects that a program requires and decomposing them into individual effects. The
methods are:

• monad transformers and MTL-like typeclasses,

• ReaderT with a top-level application state, and

• effect interpreters like free or freer monads.

Each one has its advantages and disadvantages, and while they can be mostly arbitrarily
intermixed, each application or library usually chooses one. The most popular in the
Haskell community and used by the majority of libraries is monad transformers and MTL-
like classes, which is also the method that Reflex uses.

A signature of a component in a program structured in this way would look something
like Listing 8, where first two constraints of userView would be executed using the func-
tion runApp, with the remaining MonadWidget being executed by the top-level rendering
function.

5.2.4 Implementation

I have decided to use Servant’s approach in my work, as it seems to be the most flexible
and extendable one. My contributions in this area is a client-side router using Reflex’s FRP
types composed of a dispatch component and in-application links.

I have also created a proof-of-concept of a static site generator using these components, as
well as a combinator that allows easier manipulation with record-based Servant types that
I will contribute to the main Servant repository.

We will start with the client-side router, defining the routes type and the handlers. This is
where we will see how to create a new interpretation of a Servant API type.

A regular Servant type has endpoints that end with the terminator Verb, which represents
a HTTP verb like GET or POST and the return type of the handler. Given that a Reflex
application does not have a value that it can return, we will define a new terminator App.
An API type containing an App will then be interpreted by a type class HasApp, as we can
see in Listing 9.

24

data App :: Type

class HasApp api where
type MkApp api (m :: Type -> Type) :: Type
route :: Proxy api -> MkApp api m -> Loc -> Either Err (m ())

instance (HasApp a, HasApp b) => HasApp (a :<|> b) where
type MkApp (a :<|> b) m = MkApp a m :<|> MkApp b m
route _ (a :<|> b) = route (Proxy @a) a <> route (Proxy @b) b

instance (FromHttpApiData a, HasApp s) => HasApp (Capture sym a :> s) where
type MkApp (Capture s a :> sub) m = a -> MkApp s m
route _ f loc = case locPath loc of

[] -> Left Err404
x:xs -> case parseUrlPiece x of

Right p -> route (Proxy @sub) (f p) (loc { locPath = xs })
Left _ ->

let s = T.pack $ symbolVal (Proxy @sym)
in Left Err400

instance HasApp App where
type MkApp App m = m ()
route _ f loc = case locPath loc of

[] -> Right f
[""] -> Right f
_ -> Left Err404

Listing 9: Router: transformation of a Servant API into a client router

There, we can see what it looks like to interpret a Servant type. The type family MkApp will
produce the type of a route handler when evaluated. The result of the MkApp of a single
endpoint is a function, whereas applying MkApp to the API type will result in a tree of route
handlers, which can then be converted to/from a record of handlers.

The function route is the actual function used for choosing a handler based on the current
location: a recursive function that will either produce an error or the handler to run when
given a tree of handlers and the current location.

The first instance, a :<|> b, is the branch instance. The route function uses the monoid
instance of the type Either, effectively running the left branch and running the right branch
only if it fails.

The next instance, Capture sym a, is an example of a decision instance, where the route
function processes a single segment of the URL, parses it, passes the parsed value to the
handler function, and recurses. The MkApp instance declares this explicitly: the handler for
a Capture needs to accept a value of type a.

The App instance is the end of the recursion chain, where neither MkApp nor route recurse
anymore. The MkApp type declares the handler of an App to be an action, and the route

25

runRouter ::
forall t m api. _

=> Proxy api
-> MkApp api (EventWriterT t Loc m)
-> (Event t Loc -> m (Dynamic t Loc))
-> (Err -> EventWriterT t Loc m ())
-> m ()

runRouter api handlers url showError = mdo
dUrl <- url eUrl
let widget = case route api handlers <$> dUrl of

Left err -> showError err
Right f -> f

((), eUrl) <- runEventWriterT (dyn widget)
pure ()

Listing 10: Router: the top-level route dispatcher

function only checks that we have parsed the entire URL, and returning the final handler.
This, in summary, is what it looks like to interpret a Servant type.

While we have a route function that will return either an error or a widget, we need to
connect it to the browser in some way. To do that, we need a component for manipulating
the URL, either using the Location API or hash fragment changes, and when we have it,
we can write the router itself.

In Listing 10, we have a simplified version of the library router. In there, we have a
function that takes a tree of handlers, a URL manipulation component, and an action to
show possible routing errors, and produces a piece of dynamically changing content. The
function uses recursive do to make it possible to refer to variable before they are defined
(the mdo keyword). Reading from the top, we obtain a dynamic containing the current
location, use it to run our route function defined above, rendering any errors, and finally
run this dynamically changing piece of content to get the event that changes the current
URL.

The second part of the router are links from one part of the application to another. To do
that, we need another interpretation of the API type, as we need to process a dynamically
changing input into a link, and not produce an action given a static list of parameters.

The types here are slightly more complex as I wanted to achieve an easy-to-use user interface
that can be seen in the first part of Listing 11, which just needs an event with a tuple of
all required parameters of the route. To achieve that, we first need to collect all route
parameters, collecting them to a type-level list using the GatherLinkArgs type family,
convert it to a tuple using the TupleProduct type family, and only then can we use it. The
toAppLink function is again recursive, and it builds up a URL from the endpoint type and
from the provided arguments, starting from an empty URL.

The other part of this work, the static site generator and the Servant record combinator,
are included only in the attached source files, as they are only trivial extensions of the ideas
presented above.

26

viewUserItemsLink :: Event t (UserId, ItemType) -> m ()
viewUserItemsLink = appLink viewUserItemsRoute

appLink ::
forall t e rs m. _

=> (rs AsApi -> e)
-> Event t (TupleProduct (GatherLinkArgs e))
-> m ()

appLink _ args =
tellEvent $
safeAppLink (genericApi (Proxy @rs)) (Proxy @e) (Loc [] []) <$> args

class HasAppLink api where
type GatherLinkArgs api :: [*]
toAppLink :: Proxy api -> Loc -> TupleProduct (GatherLinkArgs api) -> Loc

instance (KnownSymbol sym, HasAppLink sub) => HasAppLink (sym :> sub) where
type GatherLinkArgs (sym :> sub) = GatherLinkArgs sub
toAppLink _ l = toAppLink (Proxy @sub) $ l

{ locPath = locPath l ++ [toUrlPiece . symbolVal $ Proxy @sym]
}

instance HasAppLink App where
type GatherLinkArgs App = '[]
toAppLink _ l _ = l

Listing 11: Router: in-application links

5.2.5 Possible extensions

There are several possible directions in which to expand this router. One idea available
in server-side API routes is encoding authentication constraints in the endpoint type it-
self using a combinator like AuthProtect User. I would like to be able to encode not
only authentication checks but authorization checks in the endpoint type as well, perhaps
AuthProtectRole User ’RoleAdmin.

It would be possible to expand the proof-of-concept of a static site generator that uses
the routing component created here into a fully fledged library, and it would also be a
continuation of the theme “Reflex everywhere” that seems to pervade the Reflex ecosystem,
not only Reflex in interactive browser applications and on the server, but also static sites
generated using Reflex.

A harder problem but possible more beneficial: instead of using a special App combinator
to render Reflex applications, it might be possible accomplish the same using a special
content type. This would allow one endpoint to return e.g. JSON data or a HTML file on
the same endpoint, depending on the request headers. I tried this approach at the start
but did not succeed, so I moved on to other approaches, but I expect that a more skilled
Servant developer would find a way.

27

5.3 Service workers

To reiterate the description of a service worker from the introductory chapters: it is a
JavaScript script that can, among other things, intercept requests initiated by the applica-
tion that installed it and respond to them from cache, redirect them to another domain,
or modify their response. The worker can also listen for incoming push notifications and
display them to the user, or save requests that the application made while offline and retry
them whenever the device goes online, regardless of whether the application is running or
not (Background Sync API).

5.3.1 Requirements

The Service Worker features that we aim to support are: precaching, fetch control, and
push notifications, keeping Background Sync for a possible extension of this library.

Precaching means storing the files essential for the application into cache as soon as the Ser-
vice Worker starts. This way, the application prepares to run offline. These files usually in-
clude index.html, the application entry point; bundle.js (or similar), the JavaScript bun-
dle containing the entire application, and bundle.css, a file with all application stylesheets.
Application icons and fonts are usually included as well, as are analytics libraries for usage
tracking.

Fetch control in this context means intercepting all outgoing requests from the application,
and deciding what to do with them based on the URL or method. This feature has many
use-cases, e.g. using the precached application files when offline, checking for a new version
of the application and notifying the user; storing external fetched resources into cache to
save data, or storing outgoing analytics requests into a queue when offline and only sending
them when the user later connects to the Internet.

Push notifications are the feature for which service workers are most well known. They
allow the server of a web application to send notifications to any of its clients, where the
application can choose to arbitrarily process the notification.

The basis of the implementation is a single dependently typed record that contains the
entire configuration of the worker. This record is then used in three different contexts: to
generate the worker JavaScript and serve it over HTTP, in the client for any interactions
with the worker (e.g. to subscribe to push notifications), and on the server for sending the
notifications, as illustrated by Listing 12.

While I had originally intended to write the service worker directly in Haskell and compile
it using GHCJS, there is an obstacle that prevents that: service workers do not run in

generateWorker :: ServiceWorker push -> ByteString
runServiceWorkerClientT ::

ServiceWorker push -> ServiceWorkerClientT push m a -> m a
runPushServerT :: ServiceWorker push -> PushT push m a -> m a

Listing 12: Service Worker: the intended API

28

handleFetch :: JExpr -> JStat
handleFetch fn = [jmacro|self.addEventListener('fetch', `(fn)`);|]

sw :: JStat
sw = handleFetch [jmacroE|
function(evt) {

console.log("The service worker is serving the asset.");
evt.respondWith(fromNetwork(evt.request, 400).then(null, function () {

return fromCache(`(cacheName)`, evt.request);
}));

}|]

Listing 13: An example of JMacro code

the same way that a regular browser application does. A browser can terminate a service
worker at any time to save computing resources, and restarts it when it is needed to process
incoming events, as a service worker is expected to contain mostly just event handlers.

This is, however, at odds with the GHCJS execution model which relies on setTimeout or
requestAnimationFrame to support multiple threads, asynchronous execution, and other
features needed to run the entirety of Haskell in the browser. That means that we cannot
use GHCJS to create Service Workers and need to generate plain JavaScript code instead.

5.3.2 JMacro

Of the options available for generation of JavaScript in Haskell, only the library JMacro is
suitable for this task, as it is the only library intended for this purpose, none of the other
libraries are very user-friendly.

JMacro allows the user to write plain JavaScript code embedded in Haskell via quasi-
quotation, which is a method of meta-programming that makes it possible to transform ar-
bitrary strings into Haskell expressions. The library supports the entirety of ECMAScript 3,
so most existing JavaScript code can be copy-pasted without the need for changes, as long
as it does not use the features of newer ECMAScript versions. JMacro is untyped, it recog-
nizes two forms of JavaScript code, expressions and statements. It also supports injection
of Haskell variables using anti-quotation. An example of JMacro code can be seen in Listing
13.

5.3.3 Implementation

Of the three features of service workers that we want to support (prefetch, fetch control,
push notifications), prefetch is the simplest. It only requires adding a bit of code to the
install event listener in which we add the required files into cache, as can be seen in
Listing 14.

Supporting fetch control is a bit more involved. In the onFetch event handler, we need to
find out if the outgoing request matches any of the configured filters, so we go through the

29

generatePrefetch :: Text -> [Text] -> JExpr
generatePrefetch cacheName urls = [jmacroE|

caches.open(`(cacheName)`).then(function (cache) {
return cache.addAll(`(urls)`);

});
|]

Listing 14: Service Worker: generating prefetch JavaScript

filters in order and execute the selected cache strategy it if matches. There are, however,
many possible behaviors with regards to caching and network access. We cannot cover
all possible cases, but we can cover the most common ones, namely the ones available in
Workbox [16], a suite of utilities for service workers from Google.

These cache strategies are encoded as a plain sum type in Listing 15. Of these, CacheOnly
and NetworkOnly fetch a resource only from a cache or the network respectively, whereas in
CacheFirst and NetworkFirst, a cache or the network is only the first location attempted,
with the other location being the fallback. StaleWhileRevalidate serves the currently
cached version of a resource and simultaneously attempts to fetch a newer one, which will
then be stored into cache for later requests.

As for generating the JavaScript code from these strategies, the code for one of these five
strategies is included in the second part of the listing. We need to respondWith a response
to the fetch event, first looking it up in the specified cache and calling fetch to get it from
the network if it is not there.

The other part of supporting fetch control is matching incoming fetch requests to the
strategies. I chose a straightforward encoding of a matcher that can match on the request
method, path, and query string. The relevant types can be seen in Listing 16. The method

data CacheStrategy
= CacheOnly Text
| NetworkOnly
| CacheFirst Text
| NetworkFirst Text
| StaleWhileRevalidate Text

renderCacheStrategy :: JExpr -> JExpr -> CacheStrategy -> JStat
renderCacheStrategy evt req (CacheFirst cacheName) = [jmacro|

return `evt`.respondWith(caches.open(`cacheName`).then(function (cache) {
return cache.match(`req`).then(function (res) {

return res || fetch(`req`);
});

}));
|]

Listing 15: Service Worker: cache strategies type and generation

30

data RequestMatcher = RequestMatcher
{ rmMethod :: MethodMatcher
, rmQuery :: QueryMatcher
, rmPath :: PathMatcher
}

data MethodMatcher
= MethodAny
| MethodList [Method]

newtype QueryMatcher
= QueryMatcher [(Text, ValueMatcher)]

data PathMatcher
= PathComponentMatcher PathComponentMatcher
| PathRegexMatcher Text

data PathComponentMatcher
= PathMatchAny
| PathMatchEnd
| PathComponent ValueMatcher PathComponentMatcher

Listing 16: Service Worker: request matching types

matcher accepts either any method or one of a list of accepted ones. There are two types
of path matchers: one for matching the entire path against a regular expression and one
for matching individual path segments. The query string matcher is a list of key-value
matchers. While this is not the most expressive or fluent encoding of a request matcher,
it suffices for common use-cases of fetch control, similar to the limited palette of cache
strategies.

Generating the JavaScript code corresponding to such a structure is then only a mat-
ter of following the types, deconstructing large types into smaller ones and piecing to-
gether the overall functionality. Part of this code is included in Listing 17, where in
renderFetchMatchers we can see the topmost function generating a single branch of a
request handler.

Moving on to push notifications, an onPush event handler in the service worker is called
with an incoming notification object, and there are several things that can be done with
it. Again, we only encode the most common use-cases in types, as can be seen in Listing
18. This time, we need to use a GADT (Generic Algebraic Data Type), an extension of
Haskell data types that allows us to specialize the type of a data constructor, which is here
used to encode the type of the push notification payload. This type parameter is used in
client and server code, in the functions that send and receive notifications.

PushIgnore has the type Void as its parameter, which means that it is impossible to
send a notification with such a type, as Void is an empty type that can have no valid
values (excluding undefined), and so PushIgnore does not generate any handler code

31

renderFetchMatchers
:: JExpr -> JExpr -> [(RequestMatcher, CacheStrategy)] -> JStat

renderFetchMatchers evt req = (mconcat .) . fmap $
\(matcher, strategy) -> [jmacro|

if (`(renderMethodMatcher req (rmMethod matcher))` &&
`(renderQueryMatcher req (rmQuery matcher))` &&
`(renderPathMatcher req (rmPath matcher))`) {

`(renderCacheStrategy evt req strategy)`
}

|]

renderMethodMatcher :: JExpr -> MethodMatcher -> JExpr
renderMethodMatcher req = \case

MethodAny -> jsv "true"
MethodList ms -> [jmacroE|`req`.method.some(\y -> y == `method`)|]

Listing 17: Service Worker: request matching code generation

in the service worker. PushViewOnly displays a notification without any further handling.
PushViewAndOpen displays a notification as well, and it also adds another event handler that
listens for the user clicking on the notification and opens the application if closed or switches
to the application window if it is open. PushViewAndProcess and PushProcessOnly will
send the payload of the message to the application for further processing via postMessage.

A part of the JavaScript generation code is also included in Listing 18, demonstrating the
simplest PushViewOnly variant.

The browser part of a service worker library does not need much. The application needs
to only register a service worker, pointing the browser at the URL of the worker source
file, and only needs to do more if it wants to use push notifications. In that case, it is
necessary to ask the user for permission and send the notification subscription details to
the server. To achieve this, we can combine an EventWriter and a MonadReader into a
separate monad transformer ServiceWorkerClientT, as in Listing 19. There are several
pieces of state that we need to keep track of, the service worker registration object, the
push notification subscription, and the notification permission state, which we combine
into ServiceWorkerState. There are only two functions that can change this state though,
subscribe and unsubscribe, which is where the EventWriter comes into play. The class
MonadServiceWorker contains several methods that expose these values and capabilities,
which we can then interpret in terms of our monad transformer, as can be seen in the
second part of the listing.

To use these capabilities and subscribe to push notifications, we need to call the interpreter
of ServiceWorkerT, runServiceWorkerT, which calls the corresponding browser methods
and manages its internal state, and then call subscribe somewhere in the application code.
We then need to send the details of the subscription to the server so that it can generate
push notifications, which we can do by listening to updates to the notification subscription,
as can be seen in Listing 20.

32

data PushBehavior a where
PushIgnore :: PushConfig Void
PushViewOnly :: PushConfig ()
PushViewAndOpen :: PushConfig ()
PushViewAndProcess :: FromJSON a => PushConfig a
PushProcessOnly :: FromJSON a => PushConfig a

data PushNotification a = PushNotification
{ title :: Text
, body :: Maybe Text
, payload :: a
}

renderPushBehavior :: PushBehavior a -> JStat
renderPushBehavior PushViewOnly = [jmacro|

self.addEventListener('push', function (evt) {
var x = evt.data.json();
evt.waitUntil(self.registration.showNotification(x.title, x));

});
|]

Listing 18: Service Worker: implemented push behaviors

newtype ServiceWorkerT t n m a = ServiceWorkerT
{ unServiceWorkerT :: ReaderT (ServiceWorkerState t)

(EventWriterT t (Maybe PushSubscriptionOptions) m) a
}

class MonadServiceWorker t a m | m -> a t where
getSWRegistration :: m (Dynamic t (Maybe ServiceWorkerRegistration))
getPushSubscription :: m (Dynamic t (Maybe PushSubscription))
getPushPermissionState :: m (Dynamic t PermissionState)
pushSubscribe :: Event t PushSubscriptionOptions -> m ()
pushUunsubscribe :: Event t () -> m ()
showNotification :: Event t (Text, Maybe NotificationOptions) -> m ()
onPushNotification :: m (Event t a)

Listing 19: Service Worker: client monad transformer

33

app :: MonadWidget t m => m ()
app = runServiceWorkerT "/sw.js" serviceWorkerOptions $ do

eSubscribe <- button "Subscribe"
pushSubscribe eSubscribe

eNotify <- onPushNotification
dAllNotifications <- foldDyn (:) [] eNotify
el "ul" $ simpleList dAllNotifications $ \notification ->

el "li" (display notification)

Listing 20: Service Worker: application code demonstration

5.3.4 Possible extensions

The obvious follow-up work is supporting more features of service workers: fine-grained
cache control with resource expiration based on its age or available storage space; or Back-
ground Sync, an API for retrying requests made when the device was offline whenever it
goes online again, whether the application is open or closed.

Supporting more exotic use-cases is also possible next work, use-cases like communication
between multiple instances of an application using the service worker as a relay, or using
fetch control as a load balancer to dynamically switch between servers from which the
application downloads data.

However, there is another approach that would obsolete most of the work on this compo-
nent: after creating this component, I have discovered a project trying to create a typed
DSL (Domain-Specific Language) for generating JavaScript, jshark cure:jshark. While I
originally disregarded the approach of making a typed DSL instead of a library with a fixed
selection of options, as the DSL would need to be able to represent arbitrary JavaScript
logic, using this library (or a similar one) would allow building a hierarchy of functions
hiding more and more of the underlying logic. However, as of the time of writing, this
library is still unfinished, so writing a service worker builder using a typed DSL stays a
project for the future.

sw :: WorkerM ()
sw = self `on` fetch $ \event -> do

dest <- event ^. request . destination
switch dest $ do

case_ "font" $
respondWith event cacheOnly

cases_ ["style", "script", "document", "image"] $
respondWith event networkFirst

default_ $
respondWith event networkOnly

Listing 21: Service Worker: alternative style using a JavaScript DSL

34

A hypothetical example of such approach can be seen in Listing 21, which demonstrates
more complex usage of fetch control, dispatching requests based on their destination (the
originator of a request, e.g. "style" corresponds to a <style> tag or a CSS include).

This approach may also be combined with code generation from WebIDL, an interface
definition language for the Web [48] used e.g. in the Chromium browser, to produce an
API that exactly corresponds to the underlying JavaScript one, only with strong types.
Generating an API from WebIDL has a precedent in the library ghcjs-dom, a library that
provides a strongly-typed interface to most browser APIs, which generates most of its code
in this way.

5.4 Storage

A storage library can be implemented in many ways, from the simplest variations that store
single values or key-value maps, all the way to a full-fledged database and query engine.

On this scale, we are aiming to create only the most basic storage library that is able to
work with a map of key-value pairs of a single type, merely a building block for further
expansion. This storage can then implement multiple backends: a simple in-memory map,
a LocalStorage-backed store, or a set of bindings to a database.

The API of this storage is simple, as shown by Listing 22, but it can serve several purposes:
as a cache, as an offline storage, or as a way to directly access a database when rendering
a Reflex application on the server.

Implementing an instance for such a type is not complicated. To bind to a database backend
on the server, we can run arbitrary code in the underlying monad, so if we have a function
to execute database queries available e.g. using a ReaderT monad, we can sequentially
construct the query, run it and wait for the result, and then return a Dynamic with the
query’s result.

On the frontend, we can use a combination of a ReaderT, to make the underlying map
available for reading anywhere, and an EventWriterT, to collect the put events. The
implementation is short enough to include here in its entirety: in the Listing 23, we can see
both the definition of the monad transformer KVStoreT and its instance of MonadKVStore,
and also how it can be interpreted using an in-memory map and how it can be used in
application code.

class MonadKVStore e t m | m -> t where
get :: Dynamic t (StoreKey e) -> m (Dynamic t (Maybe e))
getAll :: m (Dynamic t (Map (StoreKey e) e))
put :: Event t (StoreKey e, Maybe e) -> m ()
putAll :: Event t (Map (StoreKey e) e) -> m ()

Listing 22: Storage: the implemented API

35

newtype KVStoreT t k m a = KVStoreT
{ unKVStoreT :: ReaderT (Dynamic t (Map (StoreKey k) k))

(EventWriterT t [KVStoreRequest k] m) a
} deriving (...)

data KVStoreRequest e
= KVUpdateOne (StoreKey e, Maybe e)
| KVUpdateAll (Map (StoreKey e) e)

runKVStoreTPure :: _ => Map (StoreKey k) k -> KVStoreT t k m a -> m a
runKVStoreTPure i f = mdo

dMap <- foldDyn (foldr ((.) . runReq) id) i eReq
(a, eReq) <- runEventWriterT (runReaderT (unKVStoreT f) dMap)
pure a
where

runReq (KVUpdateOne (k, mv)) = Map.alter (const mv) k
runReq (KVUpdateAll m) = const m

app :: MonadWidget t m => m ()
app = runKVStoreTPure Map.empty $ do

eIns <- button "Insert"
eDel <- button "Delete"
putKV ((UserId 5, Just User) <$ eIns)
putKV ((UserId 5, Nothing) <$ eDel)
display =<< getKVAll @User

Listing 23: Storage: monad transformer definition and usage

5.4.1 Possible extensions

There are several ways to extend this storage library. The first one is simply adding more
backends, e.g. to support IndexedDB in the browser or other database engines on the
backend.

The storage can also be specialized to work as a cache, which would mean extending the
API e.g. with expiration, automatic or manual, so that it can support other use-cases like
a function getCachedOrFetch.

Another option would be to expand the API to support more complicated SQL-like queries,
so that it can better serve as a client-side database.

5.5 Web App Manifest

A Web App Manifest is a special file containing JSON data linked from the HTML of an
application. Its structure is defined in the official manifest specification [47]. There is not
much code to write in this component, it suffices to transcribe the data types from the
specification and write the functions to serialize the data types to and from JSON, together

36

data WebManifest = WebManifest
{ dir :: Maybe TextDirectionType
, lang :: Maybe Text
, name :: Maybe Text
, short_name :: Maybe Text
, description :: Maybe Text
, icons :: [ImageResource]
, screenshots :: [ImageResource]
, categories :: [Text]
, oarc_rating_id :: Maybe Text
, start_url :: Maybe AppURI
, display :: Maybe DisplayModeType
, orientation :: Maybe OrientationLockType
, theme_color :: Maybe AppURI
, background_color :: Maybe Text
, scope :: Maybe AppURI
, serviceworker :: Maybe ServiceWorkerRegistrationObject
, related_applications :: [ExternalApplicationResource]
, prefer_related_applications :: Maybe Bool
} deriving (Generic, FromJSON, ToJSON)

Listing 24: Web App Manifest: main data type

with a few helper functions to simplify the manifest definition. The main type WebManifest
is included in Listing 24.

As with the “Possible extensions” section in the chapter on service workers, however, it is
possible to mostly obsolete this component by generating all its data types from WebIDL,
the Web interface definition language, which should remove the need to write any code
manually while guaranteeing correctness. However, I have only discovered the possibility
of this approach only in the final stages of writing this thesis, which means that it is left as
a potential follow-up project.

37

Chapter 6

Application development

In this chapter we will go through some principles and techniques that I used while creating
the case studies described in the next chapter, of which most can be applied to developing
Reflex applications in general.

6.1 Design

While there are not yet many patterns specific to FRP or frontend applications, one common
way to structure a Haskell application in general is the so-called three layer cake [38], which
is as applicable to Reflex applications as to any other Haskell application. This architectural
pattern describes three layers of code, where each one uses a different approach and different
sort of types.

The innermost layer contains only plain data types and pure functions, it is the core of an
application. This layer should be designed in such as way as to be easily testable using
property-based tests or unit tests, so it should not interact with the outer world at all.

The intermediate layer consists of domain-specific effects, often written using a domain-
specific language. In the specific case of a Reflex application it means extending the base
monad using monad transformers, both library-provided and application-specific ones. Each
function should list out only the effects it uses and not specialize the underlying monad
transformer stack, so that it is possible to test such functions using other interpretations of
the effects, ones that do not need the full environment of an application.

Finally the outermost, top-level layer contains the interpreters for the effects, connecting
the application to the rest of the world. Testing this layer is usually done via end-to-end
tests, running the full application.

There are as many approaches to designing a Haskell application as there are for any other
language. One axis along which it is possible to describe possible approaches is bottom-
up/top-down, where bottom-up development starts at the innermost layer, designing the
entities used in an application and basic operations on them, and top-down, which starts
from the simplest possible working solution (the outermost layer), slowly formalizing the
effects and domain of an application.

38

While I used the top-down approach when initially creating the applications described in
Chapter 7, we will walk through them the other way around, as top-down development
is often iterative in nature and describing the individual iterations I went through would
make for an unnecessarily long text.

6.2 Tools

Haskell developer tooling is often said to be one of its weakest points, and that is also true in
Haskell on the frontend. While the situation is improving, the tooling is still not on par with
more mainstream languages. Despite that, my personal developer experience with Haskell
has been rather more pleasant than my experience with writing React.js applications in
JavaScript.

What follows is a description of the specific tooling used in the creation of this thesis, both
the libraries and applications described here. While all of this information is still valid
as of the time of writing, there are some tools created after I started creating this thesis:
Obelisk [34], a command-line tool that wraps nix-build, nix-shell, and ghcid for easier
onboarding experience, or Lorri [46] which wraps nix-shell and direnv. I did not take
the time to incorporate these tools into my workflow, but both are mostly a formalization
of best practices, and so would not likely change much.

The central tool of this workflow is Nix [11], described as a purely functional package man-
ager with a focus on reproducibility and isolation. Packages built using Nix are compiled
in a sandbox and immutable afterwards. Dependencies are tracked per-package, multiple
versions of a shared library can be safely used in parallel. There are other tools built on top
of Nix: NixOS, a declarative operating system, and NixOps, a cloud deployment tool [12],
but the main reason we will use Nix is the ease of setting up a cross-compiling toolchain,
for compiling to JavaScript or Android/iOS.

Nix contains several command-line tools, of which two are interesting to us. The tool
nix-build evaluates the recipe for a package (called a derivation) and executes it, in our
case producing a Haskell binary or a JavaScript bundle. The second tool, nix-shell, eval-
uates a recipe for a package, builds all dependencies and build tools, and starts a terminal
session with specially crafted environment variables that has all tools and dependencies
available.

Nix has a large repository of package definitions called nixpkgs [32], which among other
contains the definitions of several versions the GHC compiler including GHCJS and of
most Haskell packages. It is possible, among other things, to build a single packages
using multiple versions of the compiler by simply varying a nix-build command, or to
add arbitrary build logic like “use this set of flags for GHCJS and add an extra native
dependency when cross-compiling to Android”.

Reflex-platform is a set of extensions to nixpkgs, which includes a set of overrides that work
together well for building a single package for the Web and mobile (Android and iOS), as
well as a set of Nix functions for working with multi-package projects (project.nix). These
functions also make it easy to start a nix-shell with additional build tools. One notable
example is Hoogle, an API search engine for Haskell that indexes all dependencies used in
a project.

39

To be more specific, a project will contain one file default.nix that calls the project.nix
function of reflex-platform with all Haskell packages in the project and any possible package
overrides, like using a code from a remote Git repository or using an older version of a
package. This file default.nix is then used by all Nix commands invoked in the directory
that contains it.

A command like nix-build -A ghcjs.my-project will then produce a directory result/
with the result of the Nix build recipe, a set of JavaScript files and a file index.html in
the case of GHCJS. Calling nix-build, however, runs many steps by default: compiling
object code and profiled object code, generating API documentation, and linking any exe-
cutables into binary files or JavaScript bundles, together with any other user-specified post-
processing steps like compressing the generated JavaScript code using closure-compiler.
Running all of these steps is quite slow though, so we use different tools for compilation
during development.

Inside a nix-shell, we have tools like ghci or cabal repl, interactive Haskell interpreters
that can quickly load source code. We can use these tools to simply reload any changed
files while skipping unchanged ones, which is a lot faster than compiling the entire package
from scratch.

We can go a step further and set up a background process that watches the source code
for a project for any changes and reloads them whenever any file changes, and optionally
calls a function if the files load without any compile errors. This means we can have
e.g. a development web server that is always running the latest code. This functionality is
implemented in a tool called ghcid ([28], “GHCi daemon”), and it is now so common in
the Haskell community that some developers report that Vim and ghcid are the only two
tools they need.

Such a setup makes developing a lot faster, especially given that it is possible to run browser
applications in the same way using the library jsaddle-warp. It works around the slow
compile times of GHCJS by using the GHC interpreter and using a specific execution model
in which as much code as possible is executed natively in GHCi, and only the necessary parts
are executed in a browser which is connected to the server running in GHCi by WebSockets.

A tool that makes working with Nix shells easier is direnv [1], which is a general tool that
changes the environment variables in a terminal according to the directory into which a
user navigates. In a Nix project specifically, is the file .envrc with the contents use nix
exists at the root of the project, a nix-shell is loaded whenever a developer navigates into
the project directory or any of its subdirectories.

The editor I use, Emacs, uses all of the components described above to provide a full-
fledged Haskell development environment. Using direnv-mode and dante-mode, two Emacs
extensions, the editor loads the nix-shell immediately after opening a file in a project, and
starts a ghci process in the background to check the file for any errors or warnings, which
are then reported on the relevant lines. Other editors like Visual Studio Code or Atom
are also supported using the Language Server Protocol and its Haskell server Haskell IDE
Engine.

The interested reader can try editing Haskell in a preconfigured instance of the Emacs editor
using the Nix expressions in the directory src-snippets/editor-emacs/ on the attached
data storage. Also included is a skeleton for a fresh project in src-snippets/skeleton/,

40

which contains all necessary files for a browser application. The instructions for using the
editor and running the skeleton are also included in those directories.

6.3 Deployment

The options for deploying a Haskell program are generally the same as deploying programs
in any other compiled language that does not use intermediate object code like Java. The
two most popular options in the Haskell community, not including Nix, are: deploying a
statically linked executable file, and using Docker containers.

As we use Nix as our build tool, there are a few other options. If we have Nix available
at the target machine, we can simply run nix-build and copy the package and all its
dependencies to that machine using nix-copy-closure.

If Nix is not available at the target machine, we can build a static executable or produce
a container. We can also build truly static executables that do not depend on the target
machine’s glibc standard library by using the musl overlay of nixpkgs, simply by replacing
pkgs with pkgsMusl in the project’s Nix files. To build a Docker image, we can use the
nixpkgs function pkgs.dockerTools.buildImage.

Also, using Nix to build packages gives us the option to use NixOps as an orchestration tool,
which is a way of managing NixOS systems across a variety of different cloud providers,
from Amazon Web Services to Google Compute Engine. An example of an expression that
deploys a simple web server can be seen in Listing 25.

When deploying a web server, there is also the need to deploy static files as well, assets
like application style sheets or icons. An important question here is whether the assets
will be served by the same server as the application. If no, we need to produce two or
more packages in the build process, which will be deployed separately. If yes, we can again
produce assets as a separate package, but we can also bundle them into the same package
using an additional Nix build recipe.

For a GHCJS application, such a post-processing step is nearly mandatory, as the JavaScript
files produced by the compiler are rather large (over 5.9 MB for a simple Reflex application),
but processing them with a minification tool like closure-compiler and further shrinking
them with a GZIP compressor reduces the size to a reasonable size (1.9 MB minified and
350 kB compressed for the same application).

41

{ webserver = { config, pkgs, ... }: {
networking.firewall.allowedTCPPorts = [80];
services.nginx.enable = true;
services.nginx.virtualHosts.default.locations."/" = {

proxyPass = "http://localhost:3000";
};
systemd.services.app-server = {

wantedBy = ["multi-user.target"];
serviceConfig.ExecStart =

"${(import ./release.nix { inherit pkgs; }).server}/bin/server";
};
deployment.targetEnv = "virtualbox";

};
}

Listing 25: NixOps deployment

42

Chapter 7

Case studies

In this chapter we will go through three Reflex application in the order of increasing com-
plexity, applications that use the components created in previous chapters. I have selected
applications with publicly available specifications that are intended to help developers com-
pare frontend web frameworks. The interested reader can compare the implementations
created here and the implementations available for comparison side-by-side, but in this
chapter, we will only go through the basics of each case study, the overall structure and
interesting parts of each application.

The applications chosen are:

• TodoMVC, a to-do list application (storage and routing components),

• HNPWA, a reading application for the news platform Hacker News (routing and
service worker components), and

• RealWorld, a simplified version of the publishing platform Medium (storage, routing,
and service worker components).

7.1 TodoMVC

There is an abundance of web frameworks, and there are several projects that aim to give
developers a side-by-side comparison of them. Out of these, the original and most well-
known one is TodoMVC [41], which is aimed at “MV* frontend frameworks”. There are
currently 64 implementations of their specification, although some frameworks are repre-
sented multiple times.

We will start with TodoMVC as it is the simplest of the three. TodoMVC is, as the name
suggests, a web application for managing a to-do list. It is not a complex project but it is
intended to exercise the fundamental features of a framework: DOM manipulation, forms
and validation, state management (in LocalStorage), and routing.

Going from the bottom up, the definition of a task is simple: a task consists of a title, a
binary value indicating whether it is complete, and according to the specification, a task
saved in persistent storage also needs a unique identifier. One possible representation is

43

data Task = Task
{ title :: Text
, completed :: Bool
} deriving (Eq, Ord)

type DB = Map Int Task

Listing 26: TodoMVC: application entities

having a task be a two-member record and the application state a mapping from an integer
to a task, as shown in Listing 26.

If the tasks were to be also transferred to and from a server and saved in a database,
the record would look quite different: the identifier might be a UUID (Universally Unique
Identifier), the entity would likely contain information about when and who created or
modified it, but considering this is a client-only application that does not need this kind of
complexity, we can use the simplest possible solution.

Further describing the application domain, we can now define the operations on these
entities. They follow the acronym CRUD (Create, Read, Update, and Delete): create a
task, read the task list, update the task title or completion status, and delete a task. There
are also several more specific operation required by the application specification: read a
subset of tasks (all, active, or completed), toggle all tasks’ completed status, and delete all
completed tasks.

These operations can all be implemented using plain functions over a task or a map of tasks,
which will then be tied into the storage component implemented in the previous chapter.
The implementation of the operations is not particularly interesting, the interested reader
can look them up in the attached files.

The HTML structure of the application is given by the specification, and contains three
natural sections: an input for creating new tasks at the top, a task list for editing or deleting
existing tasks, and a navigation bar at the bottom.

newTaskBox :: MonadWidget t m => m (Event t Text)
newTaskBox = elClass "header" "header" $ do

el "h1" (text "todos")
rec

textbox <- inputElement $ def
& elementConfig . initialAttributes .~

("class" =: "new-todo" <> "autofocus" =: "autofocus" <>
"placeholder" =: "What needs to be done?")

& setValue .~ ("" <$ keypress Enter textbox)
return . ffilter T.null $

T.strip <$> current (value textbox) <@ keypress Enter textbox

Listing 27: TodoMVC: component for creating a new task

44

As this the first application we are going through, we can look at a single component in
more detail: the component newTaskBox is included in Listing 27, where we can see what a
simple GUI component in Reflex might look like. This component contains a header and a
simple text input box that emits an event when we press Enter in it, so it is not a complex
component, although the abundance of custom operators (&, $, <$, <$>, <@, =:, .~, <>)
may make reading the code a bit difficult.

The functions el and elClass generate static HTML elements, the inputElement function
generates an <input>, and the last line prepares the return value of the function, an event
containing the current value of the text box whenever the Enter key is pressed in it. The
rec mark the beginning of a recursive-do block where it is possible to use variables before
they are bound, which is translated into a fixpoint computation by the compiler (in the
form of fix (\out -> do ...; return out’). This is necessary as the text box needs to
be emptied when we press Enter in it, as can be seen on the last but one line of the listing.

Moving on to the large-scale structure of the application: it uses two global pieces of
state, the task list, persisted to LocalStorage on each change, and the router. Both can be
represented using a monad transformer each, in our case the KVStoreT and RoutedT created
in the previous chapters. While the order of the monad transformers may matter in some
special cases like ExceptT or ContT, the exception and continuation transformers, neither
of the transformers we want to use affect program flow, they simply add new capabilities to
the base monad. Also, neither transformer uses the capabilities of the other, which means
we can nest them in an arbitrary order. The newtype of the resulting monad can be seen
in Listing 28, as is the type synonym that contains most constraints needed in application
code.

newtype AppT t m a = AppT
{ unAppT :: RoutedT t AppRoute (KVStoreT t Task m) a
} deriving (Functor

, Applicative
, Monad
, MonadRouted t AppRoute
, MonadStorage t Task
)

type AppM t m =
(MonadRouted t AppRoute
, MonadKVStore t Task
, DomBuilder t m
, PostBuild t m
)

runAppT :: _ => AppT t m a -> m a
runAppT = runKVStoreTStorage . runRoutedTHash . unAppT

Listing 28: TodoMVC: base monad transformer

45

Figure 7.1: The TodoMVC application

The top-level interpreter of the monad is also included. As we can see, we unwrap the AppT
from the outside, starting from the newtype wrapper, running the router, and running
the storage last. The router is not interpreted with the default interpreter that uses the
Location API as, according to the specification, we need to route using the hash fragment
only (the part after # in e.g. the !/active in http://localhost/#!/active). The storage
needs to be persisted from and to LocalStorage, so we do not use the simple in-memory
interpreter, but runLocalStorageT instead.

This concludes the TodoMVC application, which can be seen in Figure 7.1, implemented
according to its specification. If compiled using GHCJS, we get a bundle of JavaScript files
and an index.html which is the entry point. As described in Chapter 6.3, we can add
a post-compile step that compresses these files and adds any necessary assets like CSS or
icons. It is possible to go a step further and include a service worker using the service worker
component implemented in this work, but that is what we do in the next application.

7.2 HNPWA

HNPWA [40] is a client for Hacker News, a technological news site. Unlike TodoMVC,
HNPWA does not provide a rigid specification and consists only of a rough guideline of
what to implement. The task is to create a Progressive Web Application that displays
information from a given API. This application has 42 implementations, a smaller number
than the number of implementations of TodoMVC but it still provides a good comparison
for a frontend framework for PWAs.

To describe the functionality of the application more, we will be fetching data from the
official Hacker News API and displaying it. We need to display article lists, article details
with comments, and user details.

The specification of the application is not as well defined, it only consists of a text document
describing the desired functionality. In particular, it does not include the HTML structure

46

and CSS styles of the application unlike TodoMVC, so I have used the HTML and CSS
from one existing implementation of HNPWA, PreactHN [5].

Moving on to the actual implementation of the application, we will again start with the
entities and operations on them. The official API from which we will be fetching data has a
textual description of the entities, which describes only two entities, a user, and an “item”
that can represent either a top-level post or a comment. The items form a tree that we will
need to traverse and recursively fetch.

Some implementations of the HNPWA assignment have included their own server prepro-
cessed the data from the official API, as it is not too suitable for direct consumption: we
need to fetch an item before we know what are its children. While that would be unusable
in a production application, it is not such a big problem in a demonstration application.

We will put only a single layer between the application and the API, and that is the service
worker cache. We can cache all responses to the API requests and return the previously
fetched response on repeated requests. The service worker will also be used for prefetching
and caching the core application files, so that it fulfills the assignment requirements and is
available offline.

As for the other components, we will use multiple stores again (for item lists, items, and
users), and also the web app manifest generator and the router, this time the Location
API-based interpreter.

There is not much else to write about the application’s component structure as it is very
similar to the structure in TodoMVC, there are again larger components that work with
the top-level application state and small components with dynamics as their inputs and
events as outputs.

The resulting application is a valid PWA that works offline, showing cached data. What
it looks like can be seen in Figure 7.2. Its only major deficiency is that it uses the official
hierarchical API and therefore it loads content gradually and not as fast as it could if it
had a dedicated server that preprocessed the data into a more suitable format.

Figure 7.2: The HNPWA application

47

If we had a server, we could also implement another feature, prerendering. By using the
server instance of the storage component, we would be able to generate fully filled-out
HTML in such a way that even browsers without JavaScript support would be able to
interact with the application without obstacle.

7.3 RealWorld

RealWorld [43] is the most complex of the comparison projects. It is a clone of Medium,
an online publishing platform, so it requires everything a “real world” application would.
This comparison project also contains a server component, it is not a comparison of only
frontend web frameworks. The numbers of implementations are: 18 frontends, 34 back-
ends, and 3 full-stack implementations. The three full-stack implementations include both
frontend and backend components, and are usually written in frameworks that have special
communication channels between them and thus cannot use other backend implementations.

The task is split into a backend component that is defined by an API specification, and a
frontend component defined by a number of tasks that it needs to support and a HTML
structure. There is a number of features that the application must have: JWT (JSON Web
Token) authentication with registration and user management, the ability to post articles
and comments, and to follow users and favorite articles.

One implementation note: while the specification includes an API specification in the form
of an OpenAPI file, I did not find a server that fulfills it exactly so I chose the Scotty server
written in Haskell and adapted the frontend to its inaccuracies.

A large benefit of having a machine-readable API specification is that we can use it to
generate the client for it. Using the tool swagger-generator, we can get the definitions of
all entities and API endpoints, In this application we do not need to change any entities,
so this suffices for out purposes.

Moving on to the capabilities the application requires, we need to persist the user access
token if the user is currently logged in. While the storage component is a key-value storage
not really meant for single values, we can use a map with text keys and text values instead.
If we wanted to, we could use two more stores for articles and comments, but considering
the scale of the application, using only the service worker cache is an easier approach.

The routing and service worker components are the same as in the HNPWA application,
routing using Location API and caching requests to the API.

The created application, illustrated in Figure 7.3, fulfills all requirements of the specification
and of the PWA checklist. As with HNPWA, it would be possible to improve the application
by using a custom server for prerendering and for unifying the Servant types of the API
and the application into a single large type.

48

Figure 7.3: The RealWorld application

49

Chapter 8

Conclusion

In this work, I have led the reader from a general introduction to modern Web technologies,
through an overview of the capabilities of contemporary Web frameworks, to an analysis
of the capabilities of Haskell on the frontend and specifically the state of available features
in its library ecosystem. In the second half of this work, I have designed and implemented
three components, a router, a service worker generator with supporting libraries, and a
key-value browser storage library.

8.1 Evaluation

While these components do not comprise a framework equivalent to the most popular
JavaScript frameworks, they together give developers a set of functionality that is mostly
equivalent to minimalist frameworks in JavaScript, and they make a significant contribution
to the ecosystem of Haskell on the frontend. They enable creating Progressive Web Appli-
cations in Haskell, which was the set goal of this work, and they also set the groundwork
for further work in this area. I also believe that the analysis done in the first part of this
work is a significant contribution itself, identifying the deficiencies in the Haskell ecosystem,
possibly guiding future projects.

8.2 Future work

The work that needs to immediately follow the submission of this thesis is publishing the
components created here and seeking feedback from the Haskell community. This includes
fulfilling all the formal requirements necessary for publishing the individual packages to
Hackage, the package repository for Haskell, and writing up their documentation in two
tiers: API documentation and user manuals. For the manuals and showcases, I will likely
reuse some of the case studies presented in the previous chapter.

I expect to spend some time adapting my work according to any feedback from the com-
munity: expanding documentation, creating adapters to other libraries, implementing more
requested functionality, and other necessary work.

50

With the libraries implemented in this work, there is, however, still a number of capabilities
that Haskell lacks, compared to developing browser applications in JavaScript:

• a palette of pre-built GUI components,

• internationalization,

• a unified command-line interface to build tools,

• code generation, and

• debugging tools for the frontend, e.g. variable watching, inspecting application state

There is also a number of other ideas with various usefulness that would make building
web applications in Haskell easier. Some are natural extensions of the implemented com-
ponents, others are independent projects that implement other functionality that would
make building web applications in Haskell easier. What follows is an incomplete list of such
project topics:

• CSS-in-Haskell (similar to CSS-in-JS),

• crash reports (traceback, application state) for the browser,

• end-to-end tests that can run assertions on both the client and server,

• dynamic user-provided content, i.e. HTML-like markup that can use preregistered
named components, a user-friendly editor,

• typed components that use assets, like or <link>,

• forms: a set of components, validation, automatic derivation from a datatype,

• a query language for browser storage, using IndexedDB,

• automatic synchronization for browser storage,

• authentication in the router: “user is logged-in”, “user has role X”, “user can perform
action Y”,

• HTTP/2 Push support on the server: sending all necessary assets together with the
first request,

• WebIDL and a JavaScript-generating DSL for service workers,

• effect system for Reflex, as a more flexible extension mechanism, and

• serializable effects that can be interpreted both in the browser or on the server if the
client is missing required data.

To summarize this work, I have studied the current state of Haskell on the frontend, ex-
panded the library ecosystem with three new additions, implemented a number of example
applications, and suggested follow-up projects to remedy the remaining deficiencies com-
pared to the features available in JavaScript.

51

Bibliography

[1] direnv/direnv: Unclutter your .profile. Accessed on 06.05.2019.
Retrieved from: https://github.com/direnv/direnv

[2] The State of JavaScript 2018: Front-end Frameworks - Overview. Accessed on
06.05.2019.
Retrieved from: https://2018.stateofjs.com/front-end-frameworks/overview/

[3] Ashkenas, J.: CoffeeScript hits 1.0 – Happy Holidays, HN. Accessed on 09.03.2019.
Retrieved from: https://news.ycombinator.com/item?id=2037801

[4] Bar, A.: What Web Can Do Today. Accessed on 09.03.2019.
Retrieved from: https://whatwebcando.today/

[5] Baxter, K.: PreactHN. Accessed on 06.05.2019.
Retrieved from: https://github.com/kristoferbaxter/preact-hn

[6] Bernardy, J.-P.; Boespflug, M.; Newton, R. R.; et al.: Linear Haskell: practical
linearity in a higher-order polymorphic language. arXiv preprint arXiv:1710.09756.
2017.

[7] Cabal Team: The Haskell Cabal. Accessed on 09.03.2019.
Retrieved from: https://www.haskell.org/cabal/

[8] Claessen, K.; Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. Acm sigplan notices. vol. 46, no. 4. 2011: pp. 53–64.

[9] Commercial Haskell: The Haskell Tool Stack. Accessed on 09.03.2019.
Retrieved from: https://docs.haskellstack.org/

[10] Czaplicki, E.: Elm: Concurrent FRP for Functional GUIs. 2012.

[11] Dolstra, E.: The purely functional software deployment model. Utrecht University.
2006.

[12] Dolstra, E.; Löh, A.: NixOS: A purely functional Linux distribution. In ACM Sigplan
Notices, vol. 43. ACM. 2008. pp. 367–378.

[13] Eisenberg, R. A.: Dependent types in haskell: Theory and practice. arXiv preprint
arXiv:1610.07978. 2016.

[14] Fancher, W.: WebGHC. Accessed on 09.03.2019.
Retrieved from: https://webghc.github.io/blog

52

https://github.com/direnv/direnv
https://2018.stateofjs.com/front-end-frameworks/overview/
https://news.ycombinator.com/item?id=2037801
https://whatwebcando.today/
https://github.com/kristoferbaxter/preact-hn
https://www.haskell.org/cabal/
https://docs.haskellstack.org/
https://webghc.github.io/blog

[15] Google: Progressive Web App Checklist. Accessed on 09.03.2019.
Retrieved from:
https://developers.google.com/web/progressive-web-apps/checklist

[16] Google: Workbox: JavaScript libraries for Progressive Web Apps. Accessed on
06.05.2019.
Retrieved from: https://github.com/GoogleChrome/workbox

[17] Hudak, P.; Hughes, J.; Peyton Jones, S.; et al.: A History of Haskell: Being Lazy
with Class. HOPL III. New York, NY, USA. 2007. ISBN 978-1-59593-766-7. pp.
12–1–12–55. doi:10.1145/1238844.1238856.

[18] Isonen, O.: What actually is CSS-in-JS?
Retrieved from:
https://medium.com/dailyjs/what-is-actually-css-in-js-f2f529a2757

[19] Jain, A.: ajnsit/concur: An unusual Web UI Framework for Haskell. Accessed on
09.03.2019.
Retrieved from: https://github.com/ajnsit/concur/

[20] Johnson, D.: dmjio/miso: A tasty Haskell front-end framework. Accessed on
09.03.2019.
Retrieved from: https://github.com/dmjio/miso/

[21] Jones, S. P.: Haskell 98 language and libraries: the revised report. Cambridge
University Press. 2003.

[22] Klotzner, R.: Gonimo Architecture. Accessed on 06.05.2019.
Retrieved from: https:
//github.com/gonimo/gonimo/blob/master/front/doc/Gonimo-Architecture.md

[23] Lab, Q. F.: Queensland FP Lab - Home. Accessed on 09.03.2019.
Retrieved from: https://qfpl.io/

[24] Loder, W.: Web Applications with Elm: Functional Programming for the Web.
Apress. 2018. ISBN 9781484226100.
Retrieved from: https://books.google.cz/books?id=KnhqDwAAQBAJ

[25] Marlow, S.: Fighting spam with Haskell. 2015.

[26] Microsoft: Language Server Protocol Specification. Accessed on 09.03.2019.
Retrieved from:
https://microsoft.github.io/language-server-protocol/specification

[27] Microsoft: TypeScript - JavaScript that scales. Accessed on 09.03.2019.
Retrieved from: https://www.typescriptlang.org/

[28] Mitchell, N.: ndmitchell/ghcid: Very low feature GHCi based IDE. Accessed on
06.05.2019.
Retrieved from: https://github.com/ndmitchell/ghcid

[29] Mozilla: Using Service Workers - Web APIs. Accessed on 09.03.2019.
Retrieved from: https://developer.mozilla.org/en-US/docs/Web/API/
Service_Worker_API/Using_Service_Workers

53

https://developers.google.com/web/progressive-web-apps/checklist
https://github.com/GoogleChrome/workbox
https://medium.com/dailyjs/what-is-actually-css-in-js-f2f529a2757
https://github.com/ajnsit/concur/
https://github.com/dmjio/miso/
https://github.com/gonimo/gonimo/blob/master/front/doc/Gonimo-Architecture.md
https://github.com/gonimo/gonimo/blob/master/front/doc/Gonimo-Architecture.md
https://qfpl.io/
https://books.google.cz/books?id=KnhqDwAAQBAJ
https://microsoft.github.io/language-server-protocol/specification
https://www.typescriptlang.org/
https://github.com/ndmitchell/ghcid
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers

[30] Nanda, S.: Benchmarks: GHCJS (Reflex, Miso) and Purescript (Pux, Thermite,
Halogen). Accessed on 09.03.2019.
Retrieved from: https://medium.com/@saurabhnanda/benchmarks-fp-languages-
libraries-for-front-end-development-a11af0542f7e

[31] Nanz, S.; Furia, C. A.: A Comparative Study of Programming Languages in Rosetta
Code. 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. May 2015. doi:10.1109/icse.2015.90.

[32] Nix community: NixOS/nixpkgs: Nix Packages collection. Accessed on 06.05.2019.
Retrieved from: https://github.com/NixOS/nixpkgs/

[33] Obsidian Systems: Obsidian Systems | Cutting edge software solutions. Accessed on
09.03.2019.
Retrieved from: https://obsidian.systems/

[34] Obsidian Systems: obsidiansystems/obelisk. Accessed on 06.05.2019.
Retrieved from: https://github.com/obsidiansystems/obelisk/

[35] Obsidian Systems: reflex-frp/reflex. Accessed on 09.03.2019.
Retrieved from: https://github.com/reflex-frp/reflex/

[36] Obsidian Systems: reflex-frp/reflex-dom. Accessed on 09.03.2019.
Retrieved from: https://github.com/reflex-frp/reflex-dom/

[37] Obsidian Systems: reflex-frp/reflex-platform. Accessed on 09.03.2019.
Retrieved from: https://github.com/reflex-frp/reflex-platform/

[38] Parsons, M.: Three Layer Haskell Cake. Accessed on 06.05.2019.
Retrieved from:
https://www.parsonsmatt.org/2018/03/22/three_layer_haskell_cake.html

[39] StatCounter: Desktop vs Mobile vs Tablet Market Share Worldwide. Accessed on
06.05.2019.
Retrieved from:
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

[40] TasteJS: HNPWA. Accessed on 09.03.2019.
Retrieved from: https://hnpwa.com/

[41] TasteJS: TodoMVC. Accessed on 09.03.2019.
Retrieved from: http://todomvc.com/

[42] The JAMstack team: JAMstack - JavaScript, APIs, and Markup. Accessed on
09.03.2019.
Retrieved from: https://jamstack.org/

[43] Thinkster: gothinkster/realworld: "The mother of all demo apps". Accessed on
09.03.2019.
Retrieved from: https://github.com/gothinkster/realworld

[44] Tweag: Tweag I/O - software innovation lab. Accessed on 14.03.2019.
Retrieved from: https://tweag.io/

54

https://medium.com/@saurabhnanda/benchmarks-fp-languages-libraries-for-front-end-development-a11af0542f7e
https://medium.com/@saurabhnanda/benchmarks-fp-languages-libraries-for-front-end-development-a11af0542f7e
https://github.com/NixOS/nixpkgs/
https://obsidian.systems/
https://github.com/obsidiansystems/obelisk/
https://github.com/reflex-frp/reflex/
https://github.com/reflex-frp/reflex-dom/
https://github.com/reflex-frp/reflex-platform/
https://www.parsonsmatt.org/2018/03/22/three_layer_haskell_cake.html
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://hnpwa.com/
http://todomvc.com/
https://jamstack.org/
https://github.com/gothinkster/realworld
https://tweag.io/

[45] Tweag: tweag/asterius: A Haskell to WebAssembly compiler. Accessed on 09.03.2019.
Retrieved from: https://github.com/tweag/asterius

[46] Tweag.io: Introducing Lorri, your project’s nix-env. Accessed on 06.05.2019.
Retrieved from:
https://www.tweag.io/posts/2019-03-28-introducing-lorri.html

[47] W3C: Web App Manifest - Living Document. Accessed on 06.05.2019.
Retrieved from: https://www.w3.org/TR/appmanifest/

[48] W3C: WebIDL Level 1 - W3C Recommendation. Accessed on 06.05.2019.
Retrieved from: https://www.w3.org/TR/WebIDL-1/

55

https://github.com/tweag/asterius
https://www.tweag.io/posts/2019-03-28-introducing-lorri.html
https://www.w3.org/TR/appmanifest/
https://www.w3.org/TR/WebIDL-1/

Appendices

56

Appendix A

Contents of the attached data
storage

• doc-final-thesis/, the source files for this thesis and its rendered PDF version,

• doc-midterm-report/, the source files and rendered PDF version of the midterm
report of this work,

• doc-midterm-presentation/, the source files and rendered PDF version of the midterm
presentation of this work,

• README.md, the usage instructions for the following source files,

• src/tapaw-route/, the routing library created in this work,

• src/tapaw-serviceworker/, the service worker library created in this work,

• src/tapaw-storage/, the storage library created in this work,

• src/tapaw-webmanifest/, the Web App Manifest library created in this work,

• src-demo/tapaw-7guis/, a simple set of GUI components originally intended as an-
other demonstration application,

• src-demo/tapaw-todomvc/, the TodoMVC demonstration application,

• src-demo/tapaw-hnpwa/, the HNPWA demonstration application,

• src-demo/tapaw-realworld/, the RealWorld demonstration application,

• src-snippets/, a set of code snippets written during the process of writing this
thesis, especially:

– deployment-nixops/, an example of application deployment using NixOps,
– skeleton/, a minimal project skeleton for a browser application,
– storage-tagged/, an alternate version of the storage library, and
– editor-emacs/, a pre-configured instance of the Emacs editor usable for explor-

ing the packages in this work

57

	Introduction
	What is a PWA?
	Web development trends
	Progressive Web Applications

	Web frameworks today
	Features of Web frameworks
	Supporting tools

	Web frameworks in JavaScript

	Haskell and the Web
	Haskell
	Haskell ecosystem for the Web
	Supporting tools

	Creating the framework
	Implementation plan
	Routing
	Previous work
	Servant
	Reflex
	Implementation
	Possible extensions

	Service workers
	Requirements
	JMacro
	Implementation
	Possible extensions

	Storage
	Possible extensions

	Web App Manifest

	Application development
	Design
	Tools
	Deployment

	Case studies
	TodoMVC
	HNPWA
	RealWorld

	Conclusion
	Evaluation
	Future work

	Bibliography
	Appendices
	Contents of the attached data storage

