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Abstract
This thesis introduces viable password recovery tools and their categories as well as the tech-
nologies and hardware commonly used in this field of informatics. It follows by
an overview of the available benchmarking tools for the given hardware. Thesis later con-
tains a description of the custom benchmarking process targeting the aspects of interest.
Later, the thesis moves to a distributed system FITcrack as it proposes and experimen-
tally implements new features. The thesis finishes by comparison of the additions against
the original state and highlights the areas of improvement.

Abstrakt
Tato práce představuje a kategorizuje nástroje pro obnovu hesel různých formátů. Dále
se zabývá obecně používanými technologiemi a typy hardware využitelnými v tomto odvětví
informatiky. Práce pokračuje přehledem nástrojů pro měření výkonu hardware, popisem
navrhnutého procesu měření a cílů jednotlivých kroků. Později se přesouvá od samostatných
uzlů k distrubovanému systému FITcrack. Práce navhuje rozšíření a úpravy onoho systému,
které jsou experimentálně implementovány a nakonec srovnány s původní implementací.
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Rozšířený abstrakt

Tato diplomová práce se zabývá tématem obnovy hesel za použití grafických karet
(GPU) jakožto hardware akcelerátorů. Nejprve práce představuje problematiku obnovy
hesel, populární typy útoků a nástroje, které takové útoky umožňují, nehledě na to, zdali
jsou komerční nebo volně dostupné. Avšak kvůli dostupnosti a možnosti analýzy, se tato
práce do hloubky zabývá pouze volně dostupnými nástroji John the Ripper a hashcat, které
práce vzájemně porovnává.

Práce se dále zaobírá distribuovanými nástroji, obzvláště nástrojem FITcrack, který
je open-source a je také vyvíjen na Fakultě informačních technologií Vysokého učení tech-
nického v Brně. Nástroj FITcrack staví na systému BOINC, který je vyvíjen na Berkeley
university v Kalifornii. BOINC je otevřený nástroj pro distribuované výpočty primárně
určený pro využití zařízení dobrovolníků, kteří se připojují k různým projektům, na kterých
se chtějí podílet.

Poté se práce vrací od distribuovaných systémů k samostatným výpočetním uzlům.
Práce zde vysvětluje, jak takový uzel může vypadat, jaké může mít technické parametry
a jaké lze využít hardware akcelerátory. Načež obratem opodstatňuje časté využití právě
konfigurací s více grafickými kartami. Práce si dává za úkol pomoct čtenáři s výběrem
správného modelu grafické karty, protože trh s grafickými kartami poskytuje značné
množství různých modelů s různými parametry a typy chladičů. Při výběru modelu byly
brány v potaz karty dostupné v období Q3/2018 až Q1/2019. Za tímto účelem představuje
práce sadu testů zaměřujících se mimo měření výkonu i na stabilitu výpočetního uzlu, jeho
průměrnou spotřebu, dosažené teploty, a i pořizovací a provozní náklady. Důležité hod-
noty pak práce zobrazuje pomocí grafů a tabulek, jejichž obsah zároveň v textu komentuje
a upozorňuje na zajímavé hodnoty.

Ve své další části se práce zaměřuje na metodologie spojené s obnovou hesel. Konkrétně
na analýzu různých typů útoků a jejich zařazení do seznamu v takovém pořadím, ve kterém
by měly být ideálně prováděny. Avšak také jsou brány v poraz různá další doporučení jak
postupovat a zvýšit efektivitu útoků a tím snížit čas potřebný k nalezení hesla.

Následně práce poukazuje na nedostatky a chyby v implementaci některých útoků
v rámci nástroje FITcrack. Konktrétně na problém útoků používajících více po sobě
jdoucích masek, pro které systém vykazuje nedostatky při přechodu z masek s malým
počtem kombinací na masky s velkým množstvím kombinací. Dále práce popisuje podobný
problém týkající se útoků cílících na více solených hešů, pro které, jak práce vysvětluje,
je nutné brát při plánování v potaz počet unikátních solí.

Zvýšení rychlosti distribuované obnovy hesel za použití slovníkového útoku je jedním
z hlavních cílů této práce. Proto tato práce přichází se značnými změnami právě pro tento
útok. Práce identifikuje dvě hlavní změny, které je třeba udělat. První je odstranění
opakovaného fragmentování slovníků, které FITcrack provádí pro každý uzel a útok znovu,
což zvyšuje jeho režii. Druhou změnou je změna metody zasílání fragmentu. FITcrack,
respektive BOINC zasílají soubory přes protokol HTTP(S), zatímco tato práce navrhuje
použití některého ze síťových souborových systému (Samba, BeegFS, Gluster, a další).
Tato změna je možná, díky změně podoby systému, na který FITcrack cílil. Konkrétně
přesun od využití obyčejných osobních počítačů z různých domén k vyhrazeným skupinách
počítačů s vysokým výkonem v rámci jedné spravované domény.

Posledním rozšíření systému FITcrack, které tato práce navrhuje, je úprava a rozšíření
algoritmu zodpovědného za přidělování práce uzlů. Toto rozšíření se skládá ze dvou částí.



Prvním je úprava jádra algoritmu tak, aby plánoval práci pouze pro aktivní uzly. Druhá
úprava spočívá v přidání podpory různých priorit útoků.

Všechny změny a nedostatky byly implementovány, v práci popsány a následně i exper-
imentálně otestovány proti původní implementaci. Z výsledků vyplývá, že všechny defino-
vané nedostatky byly správně identifikovány a implementované změny zlepšily použitelnost
a výkon systému.

Z výsledků měření grafických karet vyplývá, že nejvýkonnější měřenou grafickou kartou
je Nvidia RTX 2080Ti. Tato karta zároveň dosahuje nejlepší spotřeby elektrického proudu
vůči poměru k výkonu. Nevýhodou této karty jsou však nejvyšší počáteční náklady a v
případě menšího rozpočtu má velký potenciál karta Nvidia GTX 1070Ti. AMD RX 580
se ukazuje jako karta, které je sice výhodná při koupi, avšak náklady na její provoz jsou
oproti konkurenci vyšší, a tedy časem začíná prodražovat.

Porovnání systému FITcrack před a po implementování změn ukazuje znatelné zrychlení
slovníkových útoků až o několik desítek procent na rychlých typech hešů. Stejně tak jako
úpravy plánování maskových útoků a útoků proti více solených hešů ukazují zlepšenou
použitelnost.



Strategies for Distributed Password Cracking

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Mr. Ing. Vladimír Veselý, Ph.D. All the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the list
of references.

. . . . . . . . . . . . . . . . . . . . . . .
Vojtěch Večeřa

May 22, 2019

Acknowledgements
Foremost, I would like to express my sincere gratitude to my supervisor Ing. Vladimír
Veselý, Ph.D. as well as to Ing. Jan Pluskal as my research would be nearly impossible
without his patient guidance, motivation, support, and feedback.

I am also inexpressibly grateful to all my colleagues from the FITcrack development
team and to all students who have also participated in the system throughout the years.

Next, I would like to express my gratitude to Ing. Martin Holkovič for his feedback
regarding the text corrections, formatting, and typography of this thesis.

Finally, I would thank all of my family (including people and animals) and my girlfriend
for their patience, understanding, and neverending support.

"Mexican" tortilla wraps

• 6-8 tortilla wraps;
• 1/2 can of chopped and peeled tomatoes;
• 1 can of beans in tomato sauce;
• 1/2 can of sterilized Mexican vegetables;
• 400 g of pork meat;
• 2 medium-sized onions;
• 3 spoons of cooking oil;
• 1 spoon of olive oil; and
• seasoning: salt, black pepper, oregano, basil, chili.

At first, clean and cut the onions. Put cooking oil to a larger pan and fry the onions. Cut
pork into noodles and add it to the pan when onion becomes soft and add a moderate
amount of salt. Wait till the meat is done with occasional mixing. Then, add the tomatoes,
beans, and another vegetable with salt, black pepper, oregano, basil, chili, olive oil and mix
it. Follow by boiling it all together for a few minutes and till the sauce thickens.

Meanwhile, prepare (heat up) the wraps according to instructions on the cover. When
the sauce thickens and wraps are warn, place a big spoon of sauce on every wrap, fold them,
and serve. Optionally, add cheese, salad, or spring onion, based on personal preferences
and taste.
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List of Terms

Markov model A statistical model defining a probability distribution over a sequence
of symbols. Commonly used in the speech recognition system. Password recovery uses
it as enhancement of brute-force attack as it generates the most probable password
candidates first and may also reduce the keyspace [31].

password recovery Process of retrieving plain text passwords from hashes. Usable when
a user loses the password to important data, for security audits, or for gaining access
to data of interest. Legally done by Law Enforcement Agency (LEA) or illegally
by attackers.

rainbow attack A type of attack which uses a pre-computed rainbow table to recover
passwords by reversing the hashing functions [27].

scalability It is a system’s ability to handle the addition of users and resources without
suffering a noticeable loss of performance or increase of in administrative complex-
ity [33].

workunit It is a unit of work generated from password recovery task prepared for a single
host, which is supposed to last for a time specified by the user.
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Chapter 1

Introduction

Every day of our lives, we are surrounded by passwords in various forms. Passwords are
the most common way of authentication. We use passwords to unlock the phones, to confirm
with the credit card transactions, to log-in to the websites on the Internet, and many other.
It has been proven to be insufficient to save passwords in their plain text form. Therefore,
the systems use a set of functions (algorithms) to derive value from each password.

The functions (so-called hashing functions) are one-way mathematical functions used
in cryptography. The hashing functions produce fixed-length values (hashes) for any given
input [35]. The system derives a hash out of the input password and compares it to the user’s
hash derived on the sign-up to the system. This approach is used to prevent anyone from
accessing the original value of the password [37].

The derived hash or data (required by the authentication process for verification
of the password) are the inputs of the password recovery process. The recovery process
itself consists of password candidate generation and the set of functions deriving a hash
or any other verification value. It means that the recovery process repeatedly performs
the same steps over and over again, and the only variable input is the password candidate.
Thus, the process is easily parallelizable, which speeds up the whole process. Employed
algorithm and the performance of the computation node affect the speed of the recovery.
The speed also highly depends on the used tool.

There are several popular attack types which various tools implement different ways.
This thesis considers only the brute-force and dictionary attack types [37, 47]. Other
attacks generally combine, modify, or enhance these basic attacks (e.g., attacks proposed
by Chou et al. [3] and by Narayanan et al. [31]). The keyspace of attacks has tendencies
to grow exponentially especially for brute-force attacks, attacks against multiple salted
hashes, or when performing a series of multiple attacks. Therefore, one compute node
does not have enough power to search through whole keyspace in an acceptable time.
Hence, the motivation to use multiple interconnected nodes and distribute this task over
the infrastructure.

The task distribution systems simplify the node control, adding new tasks, task assign-
ment to nodes, and gathering of the results. Such systems also implement various scheduling
algorithms maximizing the password recovery efficiency, providing task prioritization, dy-
namic speed adjustments, and others. The more advanced system may add separated user
work-spaces and roles.

Chapter 2 overviews the viable tools for password recovery. Chapter 3 introduces types
of accelerators usable for password recovery tasks and discusses the selection of accelerators
for experimental testing. Each of the basic attacks generally has different computation char-
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acteristics, resource utilization and is limited by different parts of the hardware. Chapter 4
proposes tests to identify the effects of different attacks on hardware as well as speeds of dif-
ferent hashing functions (algorithms). The chapter also outlines the comparison of various
measured data on the selected accelerator.

Chapter 5 introduces common recommendations regarding password recovery tasks. The
same chapter then follows with attack types order recommendations. Chapter 6 then iden-
tifies missing features, points several issues regarding task scheduling, and at last presents
changes required for integration of prioritized task scheduling. Chapter 7 describes the im-
plementation details and impacts of the proposed changes throughout the systems code
base. Chapter 8 then compares the adjusted version of the system to the original with
a series of measurements and observations. The final chapter (Chapter 9) summarizes and
comments on the information from previous chapters and proposes future tasks and system
enhancements.
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Chapter 2

Tools for password recovery

Systems, applications, and even data containers such as archives, disk partitions, generally
use different steps and functions to authenticate owners and decrypt the content, so-called
authentication method. Therefore, this leads to a vast list of such methods and their
variants. Authors of password recovery tools can then decide whether they want to target
only some specific set of authentication methods or whether they want to make a tool
targeting as many as possible processes.

The authors have to also choose which attacks type they want to support in their
tool. Some tools are limited to simple brute-force and dictionary attacks. More advanced
tools add the rainbow attack, brute-force attack enhanced by Markov model or dictionary
attack enhanced by rules (so-called rule-based attack), or any other combinations of above-
mentioned types [11, 36, 44].

Apart from the implemented attack types and supported authentication methods
i.e., hashing algorithms, the tools can be categories based on the following criteria:

1. licensing of their use (commercial vs. free);

2. type of the computation unit (e.g., Central Processing Unit (CPU), Graphics Pro-
cessing Unit (GPU), Field-Programmable Gate Array (FPGA), or other less common
types);

3. whether they support multi-node or just single-node computation;

a) without the possibility to add node during computation;
b) with the possibility to add new node during computation;

4. the type of the user interface (Command Line Interface (CLI), Graphical User Inter-
face (GUI) or Web User Interface (WebUI));

5. control mode of the tool, which involves the following approaches:

a) a local control system (interface module and the password recovery module
are part of one application);

b) a remote control system (interface module and the password recovery module
are two standalone applications);

6. keyspace dividing mechanism;

7. support for skipping and limiting portion keyspace to compute;
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8. how the tool obtains the data of interest;

a) itself by extraction from the operation system, communication device, and other;
and

b) by a user who saves specially formatted data to a specific file.

In the context of this thesis, items 1, 2, and 7 are the main criteria. The selected tools
based on the criteria are hashcat [44] and John the Ripper (JtR) [11]. Sections 2.1.1 and 2.1.2
further describe the tools, attacks they provide, and uncover some of their implementation
details. Also, the systems mentioned in Section 2.2 take advantage of hashcat and could
potentially use JtR as well. Therefore, Sections 2.1 and 2.2 separate the single machine
tools for the distributed systems, which mostly build on top of them.

2.1 Single machine tools
Tools in this category primarily focus on the utilization of all available resources in one
machine. That means that the tools often try to exploit various accelerators and other
high-performance hardware, such as GPUs. The best tools in general use programming lan-
guages embracing parallel processing, Open Computing Language (OpenCL) and Compute
Unified Device Architecture (CUDA) in most of the cases. While CUDA is language specific
for programming Nvidia GPU only, the OpenCL is language widely supported by various
vendors of CPU, GPU, Advanced RISC Machine (ARM), and FPGA chips [24].

Both JtR1 and hashcat2 are open-source licensed with free to use and to redistribute
(in source and binary forms) terms at the moment. Also, both tools support a large
number of hash-modes and provide some mechanism for skipping and limiting the keyspace.
Therefore, they are easy to use and control.

2.1.1 John the Ripper

JtR is a popular free open source password recovery tool. It comes in three major ver-
sions, the official version, the community enhanced version (jumbo), and the Pro version.
The version 1.8.0-jumbo supports 1943 hash formats. It is a well known and often recom-
mended tool among penetration testers and cryptoanalysts [9]. Also, academic researches
use this tool for their experiments; e.g., Lim et al. [30].

The official version of JtR supports only Open Multi-Processing (OpenMP) paralleliza-
tion. However, the jumbo version contains some OpenCL and CUDA implementations
for additional support of GPUs. Although, just for a limited amount of formats [11].

As for indexing and skipping of the portions of the keyspace, JtR uses chunk-based
approach. Meaning user sets desired chunks of the keyspace and the tool then computes
the number of password candidates accordingly. Thus, the individual nodes can be assigned
sequences of the chunks of various magnitudes according to their power. The parameter
assigned for this feature is --nodes=MIN(-MAX)/TOTAL, where MIN-MAX represents start
and end numbers of a chunk of a wanted sequence. The only exception to this approach
is for the Markov mode contained in the jumbo version. This mode offers a configuration
of the start and end indexes.

1https://openwall.info/wiki/john/licensing
2https://github.com/hashcat/hashcat/blob/master/docs/license.txt
3Based on formats reported by ./john.exe -h
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Wordlist mode

Wordlist — also called dictionary — mode is the most straightforward mode present
in the JtR. The only requirement is to supply the wordlist via parameters [12]. The sup-
plied dictionary can be modified/extended via rules. It allows conversion of word to new
candidates. Common modification rules are4:

• substitution of letters by numbers and special symbols – hello → h3!!0 or password
→ p4$$w0rd;

• capitalization of letters words – hello → Hello or password → paSsWorD; and

• prepending and appending of numbers and special symbols – hello → 1hello
or password → password#.

Incremental mode

Due to its keyspace, the incremental mode is the most powerful one. By default, it runs from
the length of 1 to as many as possible characters with the possibility to define the starting
and final lengths of the passwords. This mode takes advantage of the statistics of character
occurrences, as it uses trigrams. Anyone can create such statistics from any text, e.g.,
already recovered passwords, books, or any other texts [12].

Without further configuration, JtR uses all 95 ASCII printable characters. However,
it contains few pre-configured subsets of ASCII (lower-case letters, alpha-numerical charac-
ter, and other) and supports custom character set. Those can be used to specify non-English
alphabets and other non-ASCII symbols [12].

Single crack mode

The single crack mode is a wordlist mode which uses a small dictionary with a significant
number of complex rules. This attack assumes that wordlist contains strings such as user
credentials, full names as well as home directory names. Therefore, it is ideal to perform
the attack on the computer of the person who created the hashes. This is the best attack
type to use at the start of the password recovery process [12].

2.1.2 Hashcat

As its authors claim, it is the world’s fastest password recovery tool and the first and only
tool with the in-kernel rule engine. The tool is available under MIT license since April 2015.
The change of the license makes the tool even more popular as it allows the integration
of hashcat into some distributed systems (Section 2.2). Since the hashcat’s version 3.0, there
is only a single tool supporting different types and vendors of chips via OpenCL kernels.
Therefore, it is mandatory to have OpenCL installed on the system when running hashcat
even for computations on CPU. It is known for its speed which is provided by these kernels.
Since version 4.0, some hash-modes have two implementations of the kernels [44]:

• non-optimized kernels – new kernels supporting input password and salts up
to the length of 256 bytes which results in lower speeds; and

4The list is not exhaustive nor complete.
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• hand-optimized kernels – the only kernels present until version 4.0 with the support
of passwords and salts lengths varying based on the used hash-mode.

Since version 3.0 hashcat contains the auto-tune engine allowing the user to limit the im-
pact on the system responsiveness and computation efficiency on execution [44]. The engine
is configurable either via parameter --workload-profile with values from Table 2.1, pa-
rameters -n, -u and --opencl-vector-width, or by adding/altering records in auto-tune
database file (named hashcat.hcstat).

Profile Performance Runtime Power Consumption Desktop Impact
1 Low 2 ms Low Minimal
2 Default 12 ms Economic Noticeable
3 High 96 ms High Unresponsive
4 Nightmare 480 ms Insane Headless

Table 2.1: Hashcat workload profiles [44].

Hashcat implements five attacks, and three out of them are further modifiable by use
of rules (see Table 2.2). Moreover, hashcat rules are designed based on JtR rules, which
allows creating use-cases applicable for both rules without creating conflicts. All of the at-
tacks are implemented to work on any OpenCL device theoretically. However, it should first
undergo compatibility tests on exotic/untested chips. The dictionary and mask are the only
two attacks used in the rest of the text. Therefore, Sections 2.1.2 and 2.1.2 describe them
in more detail.

Id Name Input type Rules
0 Dictionary File(s) with passwords Yes
1 Combinator Two files with passwords No
3 Mask Mask as a string or in file No
6 Dictionary + mask File with passwords + mask as a string or in file Yes
7 Mask + dictionary Mask as a string or in file + file with passwords Yes

Table 2.2: Overview of attacks implemented in hashcat [44].

Dictionary attack

A dictionary attack is — same as wordlist attack in JtR — one of the most straightforward
attacks. The tool reads a given file line by line. Meaning a user has to obtain or generate
some dictionary and supply it to the tool. Techniques for obtaining a dictionary may vary
from taking a single book, gather some personal information about the person — who
supplied the password — to unethical techniques like phishing and malware. Also, quite
popular are dictionaries of the already leaked passwords like those from Rockyou, PhpBB,
MySpace, and other sources5.

When generating their own dictionaries, generators can take Markov models, Probabilis-
tic Context-Free Grammar (PCFG) models, or use other techniques based on statistic/prob-
abilistic models. Although, hashcat’s candidate generator can use Markov model directly
(Section 2.1.2). Therefore, supplying the candidates in pre-computed form is unnecessary
or even unwise.

5https://wiki.skullsecurity.org/Passwords
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Hashcat can use rules with the dictionary attack in the same fashion as JtR does.
Therefore, the examples from Section 2.1.1 generate the same password candidates for
both tools.

The keyspace for a dictionary attack is just the number of usable password candidates
saved in the supplied file. A portion of keyspace is skippable by the use of the parameter
-skip <N> where the N is the number of candidates to skip. For limitation of the number
of candidates to use (M), the tool contains parameter --limit <M>. Keyspace of the dic-
tionary attack is also the same as the hashcat’s keyspace units.

Mask attack

The second attack type is taking advantage of password masks. It is the fastest attack type
the tool provides as generates all of the password candidates right on the GPU. The mask
specifies potential symbols for each position of the password candidates. The symbols can
be specified either as a single symbol or as a specific set of symbols called charsets. Each
set of symbols has its shortcut represented as a question mark followed by one character.
Allowed characters are a, b, d, h, H, l, u, s and 1, 2, 3, 4. Hashcat comes with a few
basic predefined charsets [44]:

• ?l – lower-case letters (26 symbols): a, b, c, d, ..., z;

• ?u – upper-case letters (26 symbols): A, B, C, D, ..., Z;

• ?d – decimal symbols (10 symbols): 0, 1, ..., 9;

• ?s – special symbols (33 symbols): all printable symbols;

• ?a – all ASCII printable symbols (95 symbols): ?l?u?d?s;

• ?b – all byte values (256 ”symbols“): 0x00, 0x01, ..., 0xff;

• ?h – hexadecimal lower-case symbols (16 symbols): a, b, ..., f, 0, 1, ...,9;
and

• ?H – hexadecimal upper-case symbols (16 symbols): A, B, ..., F, 0, 1, ...,9.

Moreover, hashcat offers four user-defined charsets configurable by either:

(a) defining charsets as a part of hashcat command via values of parameters -1, -2, -3,
-4;

(b) defining them in separated files passed via their names to the parameters -1, -2, -3,
and -4; or

(c) defining up to a four charsets along with the mask in the so-called mask file (.hcmask
extension), which hashcat then uses instead of the string with a mask.

Therefore, the mask corresponding to the string hello is ?l?l?l?l?l and for string
1aPple is ?d?l?u?l?l?l. The same masks also generate string brown and 2pEars. Com-
putation of the mask keyspace is not as simple as for dictionary attacks. It generally
involves magnitudes multiplication of all sets used in the mask. Thus, keyspace of a mask
increases exponentially as the mask grows in length. Keyspace of the stated masks is then
calculatable as follows:
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• ?l?l?l?l?l has got keyspace 26 * 26 * 26 * 26 * 26 ⇒ 11 881 376; and

• ?d?l?u?l?l?l 10 * 26 * 26 * 26 * 26 * 26 ⇒ 118 813 760.

However, hashcat processes the masks to achieve the best possible recovery perfor-
mance, which alters the resulting mask’s keyspace. Hashcat splits masks into two parts
called base and mod loops. The base loop is adjustable by a user, but the mod loop
works as performance amplifier running directly from GPU. Both parts are dynamic and
depend on the mask length and hash-mode. Therefore, it is not recommended to com-
pute keyspace manually, but to run hashcat with --keyspace parameter instead. Because
of this, the skipping and limiting of keyspace is a little bit trickier and more complex task.
Despite that, the process is the same as for dictionary attack (parameters --skip <N> and
--limit <M>) [44].

2.2 Distributed systems
The distributed system means a password recovery system operating on multiple individual
computation nodes. The system shall not be restricted to operate only on nodes connected
to Local Area Network (LAN), and it shall support any combination of Internet/intranet
deployment scenario.

Systems in this category come either as commercial or as free open-source. The represen-
tatives of the commercial tools are Hashstack6, ElcomSoft Distributed Password Recovery7,
Passware Kit Forensic8, and more. As for free to use open-source tools, the representatives
are Hashtopolis (formerly Hashtopussy)9, CrackLord10, and FITcrack11. Also, there are sev-
eral experimental implementations like Lim’s Message Passing Interface (MPI) extension
of JtR [30], and other.

While most of the commercial system — except Hashstack — use their proprietary
cracker. Most of the open-source tools and Hashstack use either JtR, hashcat or both.
Therefore, they are comparable regarding the maximal speeds. What differs from the system
to system are the server side tools, communication protocols, and limitations. The main
differences are generally in approaches to distribution of dictionary attack, computation
schedulers (work generators), and even pre-processing of the data. Both of these aspects
significantly affect the utilization of resources.

One of the essential attributes for evaluation of a distributed system — except for max-
imal achieved password recovery speed — is the scalability and the computation efficiency.
As Hranický et al. show in [20], the scalability and computation efficiency of FITcrack
system seems to be promising.

FITcrack

FITcrack is the distributed password recovery system developed at Brno University of Tech-
nology Faculty of Information Technology. The system originated from the single machine
password recovery tool. FITcrack at first used its single machine tool as a cracker to be later

6https://sagitta.pw/software/
7https://www.elcomsoft.com/eprb.html
8https://www.passware.com/kit-forensic/
9https://github.com/s3inlc/hashtopolis/wiki

10http://jmmcatee.github.io/cracklord/
11https://fitcrack.fit.vutbr.cz/
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replaced by hashcat. Transition to hashcat greatly extended base of the supported hash-
modes as well as uplifted the recovery speeds, hardware compatibility, portability of the sys-
tem, thus, significantly increasing the potential of FITcrack [21, 48].

FITcrack uses Berkeley Open Infrastructure for Network Computing (BOINC) (de-
scribed in Section 2.2) as the underlying platform for distribution of work to nodes. The
system consists of a dedicated server node and multiple computation nodes employing
the client-server communication scheme. However, FITcrack slightly extends BOINC’s ar-
chitectures by adding new application-specific modules as shows Figure 2.1.

WebAdmin backend

Fitcrack-specific Related to hashcat BOINC

CoreCLI

OpenCL kernel

hashcat
BOINC client

Runner

BOINC manager

GUI

Local
administrator

Client(s)

Server

TCP/IP + HTTP(S) + BOINC RPC
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hcstatgenXtoHashcatmaskprocessorHashvalidatorhashcat

MySQL

WebAdmin frontend

System
administrator

TCP/IP
+

HTTP(S)

REST API

Generator

Validator

Assimilator

BOINC server built-in daemons

Figure 2.1: Overview of FITcrack system architecture as an example of extended BOINC
architecture [15, 23].

The work generator uses the desired time interval explicitly specified for each task.
For the work generator to achieve such precise sizes of units of work (workunits), FITcrack
must tailor each workunit for each of the connected nodes based on its last know recovery
speed. It also has to determine the initial speed of nodes. Therefore, it generates a spe-
cial benchmark workunits for each node. Only after nodes report their speeds, the work
generator can create actual password recovery units. When the node finishes the assigned
unit, it submits the results to the server. The server then processes the results to determine
whether the node recovered the password or not, updates the node’s speed and generates
new workunit as needed. This way, it adjusts sizes of any future workunits of the given
task.

The system keeps track of both the real and the hashcat’s keyspaces at the same time
and converts between them as needed. Therefore, it generates units consisting of a requested
number of hashes to compute as opposed to the chunk-based approach used by JtR.
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Berkeley Open Infrastructure for Network Computing

The Berkeley Open Infrastructure for Network Computing (BOINC) authors describe the sys-
tem as follows:

BOINC12 is a platform for public-resource distributed computing. BOINC
is being developed at U.C. Berkeley Spaces Sciences Laboratory by the group
that developed and continues to operate SETI@home. BOINC is developed
as open source [1].

The system consists of the BOINC server and BOINC client applications. The client
application is a CLI application or service (daemon) depending on the host configuration.
The server is a set of daemons and cron jobs using the database for their communication.

The clean installation of BOINC server comes with built-in daemons an sample imple-
mentations of project modules and the host application. The sample’s purpose is to provide
an easy solution for testing of the installation and to provide and example implementation
of all system components. The implemented modules of the system are generator, as-
similator, and the host application (Figure 2.1). The built-in daemons provide the core
features like the creation of the user accounts, authentication of the users, client-server
communication, temporary file cleanup, and many others. BOINC also provides a web
interface which allows user administration, customization of user accounts, workunit and
result monitoring, host overview, and various statistics regarding the application versions.

BOINC uses Remote Procedure Call (RPC) over Hypertext Transfer Protocol (HTTP)
protocol. The RPC requests and responses use XML structures to store data. BOINC
communicates and transfers the information as files. Thus, the workunit’s input files have
to contain all of the computation configurations and data. Same as the client application
has to save all of its outputs to the files as well. Also, BOINC directs the information
from the client application’s standard error output to a file which BOINC then also reports
to the server.

Both host and server are implemented using the C programming language. Therefore,
the provided libraries are best to be used by C written applications. Client-side libraries
contain various functions for workunit status notifications, critical sections, Input/Output
(I/O) wrappers, and many others. The server-side libraries provide interface for manipu-
lation of the workunits, database connection and query execution, and similar.

Also, one of the vital features of BOINC is the number of supported Operating Sys-
tems (OSs), processor architectures, and computation accelerators. The BOINC can detect
OpenCL, CUDA, and ARM devices on the hosts and ship the appropriate versions of ap-
plications.

12http://boinc.berkeley.edu
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Chapter 3

Hardware for password recovery

Password recovery is not an easy task. It can consume many computation resources.
The tools from the previous chapter are highly viable for such a task. To get the most
out of the single machine tools, one needs to use the components with the highest perfor-
mance. Selection of the models and types of such components highly depends on the budget.
However, the owners of such machines often overlook the component’s power consumption
as it is fairly minimal compared to the systems with multiple nodes.

The power consumption is an crucial aspect for the systems with multiple nodes. There
is still some budget for the hardware at the start, but the system maintainer has to also
consider the power consumption of each machine or maybe of each component inside it.
Although there might be two approaches to building computation machines for such sce-
narios:

1. a maintainer can obtain the components with the most performance but with the higher
purchase price and also higher power drain; and

2. a maintainer can obtain the components with the best power efficiency and purchase
price at the cost of performance lost per each node.

Considering there is the same budget for purchasing the components, the first ap-
proach would lead to the building of fewer machines. The second approach would, because
of the lower cost, lead to the possibility of building a few extra machines. There might be
pros and cons to both approaches. However, one has to consider the available space for
locating the machines, power grid limits, air-conditioning of the rooms and temperatures
of the machines and its components, impact on the communication network and some other
aspects. This thesis wants to verify whether both of the approaches are viable and what
might be pros and cons, and how would nodes in such configuration stand against each
other.

The most promising computation nodes designed for password recovery (and High-
Performance Computing (HPC) in general) take advantage of the hardware accelerators
such as GPU, FPGA [13], and others. Among those, the most viable, affordable, and
usable for general-purpose computations in cluster environments is GPU [34]. Also, for
some hash-modes requiring a more significant amount of memory may be faster to perform
password recovery on standard CPU rather than on GPU [26].

This chapter is about reviewing currently available mid-range and high-end GPUs. Such
cards are potent, considering their price, for password recovery. The GPUs provide excel-
lent data parallelism because of their architecture, which aims at graphics tasks applying
the same operation to a set of different pixels [7, 45].
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3.1 Computation node configuration
This section describes the configuration of a computation node, which is a machine further
used for the performance measurements of the later discussed GPU models. Therefore, the
only changing component of the whole machines are the GPUs. Other components remain
the same. The machine contains:

• processor (CPU) – Intel Core i7-6700 @ 3.40 GHz with the stock cooler;

• memory (RAM) – 2x 16GB KINGSTON 2400 MHz DDR4 CL16;

• Solid-State Drive (SSD) – Samsung 850 EVO 250 GB;

• Power Supply Unit (PSU) – 2x EVGA SuperNOVA 1600 G2, 80+ GOLD, 1600 W;

• motherboard – Asus ASRock H110 Pro BTC+;

• GPU connection – 8x PCI-e x1 to x16 Riser USB 3.0;

• chassis – custom-made U4 standard rack chassis (81.28 x 55.88 x 30.48 cm); and

• chassis fans – 3x Delta 190 CFM.

The chosen motherboard has a significant effect on the selection of the components. This
motherboard offers eight Peripheral Component Interconnect Express (PCI-e) x1 ports but
unfortunately supports only up to 32 GB of Double Data Rate 4 (DDR4) Random Access
Memory (RAM) with 2166 - 2400MHz frequency. Design of this motherboard aims at
crypto-currency mining machines which require very few RAM. Therefore, the mentioned
RAM limit is not an issue in the mining field. However, with the use of PCI-e x1 to x16
risers, the board can handle up to eight GPU at the same time. This parameter is the main
deciding factor for choosing this motherboard.

Power supply unit has to be able to power all of the components while not hitting
its maximal output drain. Overloaded PSUs loses its efficiency and may output unstable
power. Most of the power from the PSU goes to the GPUs. High-end GPUs generally use
250 to 350 watts when fully loaded. So to accommodate eight high-end GPUs, Intel CPU,
disk, motherboard, and fans the PSU has to provide 8*350+65+2+50+3*18 = ∼ 3000[𝑊 ]
when everything would be under the full load [2].

When choosing from the generally available PSUs, there is none with such output power.
The commonly used solution to this problem is to use the two identical units providing
enough output power. Power for the first four GPUs provides the first PSUs and the second
PSU powers the other four GPU — only one of them then powers the motherboard with
the CPU and RAM. There are few requirements on CPU:

• it has to provide at least eight PCI-e lanes for GPU as well as some other for RAM;

• it has to fit the socket provided on the motherboard (socket LGA 1151);

• it has to have enough computation power to handle the applications using
the GPUs and operation system and its services;

• its power consumption has to be lower than 91W (motherboard limitation); and

• it does not have to be the most potent CPU out there.
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Processor Intel Core i7-6700 meets all of the requirements and is also available for a decent
price. It may be relevant to an architect when building a new machine and operating on
a limited budget.

The chosen disk is one of the fastest available SSDs connected via Serial ATA (SATA)
port. Unfortunately, the motherboard does not provide any M2.slot which could be equipped
by much faster Non-Volatile Memory Express (NVMe) SSD. Therefore, the chosen disk
is the Samsung 850 EVO.

Since all of the components should be placed in a single chassis, the temperature ac-
cumulation occurs. The high temperature then can lead to components overheating and
potential failure. In order to prevent such issues, the chassis holds three industry grade fans
as stated above. These fans have a maximal rotation speed of 4000 Rotations Per Minute
(RPM) and provide airflow of 190.0 Cubic Feet per Minute (CFM) while maintaining static
pressure of 174.4 pascals1 [38]. Therefore, they provide enough airflow in the chassis to
accommodate all of the components with enough new air taken out of the chassis.

3.2 Graphics cards
Graphics cards are essential parts of password recovery computation nodes. Considered
are only the cards designed for playing video games for their performance/price ratio.
As for their evaluation, the comparison then focuses on the performance, price, power
consumption, and cooling solution (dimensions).

Most of the high-end gaming cards have a similarly designed card in the industrial cat-
egory. Such cards aim at artificial intelligence, visualization, cloud computing, and others.
The benefits of the industrial card are: (a) their cooling solutions; (b) port configurations,
which are better suited for the use in rack chassis using multiple GPU configurations; and
(c) they generally offer lower power consumption compared to the gaming cards.

GPUs come with various cooling solutions. There are cards with just passive cooling
(not in the gaming category), blower fan cooling, open-air cooling (single/dual/triple fan)
and some even with all-in-one solutions, combining water loop cooling with blower fan
cooling into one cooler [14].

Most of the gaming GPUs come with open-air solutions, then some with blower fan
solutions and minority with an all-in-one solution. None of the selected cards has an all-
in-one cooling solution. The main reason is that such cards would require extra space for
the radiators attached to them. These radiators and pipes attaching them to the platform
on the card would take a considerable amount of extra space inside the chassis.

The blower fan solutions have only one intake fan. Blower fan pushes (blows) the air
through the length of the whole card and exhausts through the front panel of the card. This
solution generally aimed to be used in the chassis with the poor airflow since the fan blows
the heat in a single direction. Apart from that, the advantage of this solution is its mostly
constant size as it always fits the size of two slots [8, 18, 43].

However, the open-air solution blows the heat to all possible directions [10, 41]. The most
significant disadvantage of the design is that it may take up to 2.5 slots depending on the man-
ufacturer of the cooler and the power of the card. The chassis used of the referential compu-
tation node has only space of the eight times two slots. This limitation makes it impossible
to use some of the triple fan solutions present on the most potent card models.

1https://www.digikey.com/product-detail/en/delta-electronics/FFB1212EHE-F00/603-1083-
ND/1014414
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3.2.1 Nvidia

Nvidia is the brand of the graphics cards holding the highest market share for the last few
years among the add-in cards [29]. The benchmarks [42] show that fifteen of Nvidia’s cards
are among the top twenty cards. The benchmarks also show that all of the top ten cards
are from Nvidia. Therefore, the six selected models of the Nvidia cards from the gaming
category for benchmarking. Nvidia‘s computation cores are called CUDA cores.

Nvidia GeForce GTX 1050Ti 4G

The first and the cheapest and the least powerful benchmarked card is Gigabyte GeForce
GTX 1050Ti D5 4G. This card has a low initial cost 4 899 CZK (189 EUR), low power
consumption, and for the small dimensions of the single fan version. Nvidia, in its technical
specification2, states the maximal power consumption of only 75 watts. Combination of 748
CUDA cores, 4 GB memory, and other mentioned factors make it a viable candidate for
testing whether such configuration would have better power efficiency than other cards.

Nvidia GeForce GTX 1060 6G

This card is the most popular card among gamers [5]. The chosen model is the ASUS
Dual GeForce GTX 1060 O6G for its availability in stores since parameters of the models
provided by all vendors are relatively similar. The card costs 7 399 CZK (287 EUR) and
takes advantage of the dual fan solution with metal ribs parallel to the longer side of the card
(similar to ribs in blower fan solution). It provides 6 GB of memory, 1 280 CUDA cores,
and maximal power consumption is 120 watts.

Nvidia GeForce GTX 1070Ti

Three cards fit into performance gap between GTX 1060 6G and GTX 1080Ti, the GTX
1070, GTX 1070Ti, and GTX 1080. The performance of GTX 1070Ti is pretty similar
to the performance of GTX 1080 and is generally cheaper. Also, the availability of GTX
1070Ti in stores is significantly better. The model of choice is MSI GeForce GTX 1070Ti
ARMOR 8G. It has dual fan open-air cooling solution, 8 GB of memory, 2 432 CUDA cores,
the maximal power consumption of 180 watts, and costs 11 790 CZK (456 EUR).

Nvidia GeForce GTX 1080Ti

It is the card with the highest computing power in the GeForce GTX series, and even all
the other gaming cards until the release of the new cards in Q3 of 2018 (Nvidia GeForce
RTX). The low availability of the cards results in benchmarking of Palit GeForce GTX 1080
Ti Founders Edition for 20 025 CZK (774 EUR) cards. The card offers 11 GB of memory,
3 584 CUDA cores, and has a maximal power consumption of 250 watts.

Nvidia GeForce RTX 2080Ti

This model is the best Nvidia offers in the gaming sector. The selected version
is GIGABYTE GeForce RTX 2080Ti TURBO 11G as one of a few 2-slot versions avail-
able on the market. The card offers 11 GB of memory, 4 352 CUDA cores, maximal power
consumption is 250 watts, and costs 33 567 CZK (1 298 EUR).

2https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1050/
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3.2.2 AMD

Advanced Micro Devices, Inc. (AMD) is the other brand of the add-in GPU. They are not
offering any solution with performance comparable to the Nvidia GTX 1080Ti and the new
Nvidia RTX 20 series cards. Their market share is much smaller than of the Nvidia.
The reasons are higher power consumption and generally lower performance. However,
because of their lower purchase price and better efficiency for some specific tasks, their
RX 480 and RX 580 cards were the first out of stock during crypto-currency mining fever
during 2017 [16]. The computation cores in AMD cards are called stream processors.

Radeon RX 580 8GB

This is the only model out of the top AMD models available in local stores in Czechia
on December 2018. Also, this model’s probable computation efficiency is the main reason
behind undergoing it to the benchmarks. Another reason is the similarity of its performance
to Nvidia GTX 1060 6G (Section 3.2.1). The selected version of the card is XFX Radeon RX
580 GTS XXX Edition 8GB. It offers 8 GB of memory, 2 304 stream processors, the maximal
power consumption of 185 watts, and costs 5 954 CZK (230 EUR).

3.2.3 GPU summary

Brand Type Cores Memory Cooling
solution

Consump-
tion [W]

Price
[EUR]

Nvidia

GTX 1050Ti 4G 748 4 GB Single fan 75 189
GTX 1060 6G 1 280 6 GB Dual fan 120 287
GTX 1070Ti 2 432 8 GB Dual fan 180 456
GTX 1080Ti 3 584 11 GB Blower 250 774
RTX 2080Ti 4 352 11 GB Blower 250 1 298

AMD RX 580 8GB 2 304 8 GB Dual fan 185 230

Table 3.1: Summary of GPU parameters stated by vendors and manufacturer [4].

The model selection is not an easy task because the majority of GPUs wears various
dual/triple fan cooling solutions combined with heigh thin metal ribs. It is fairly common
that the most potent model coolers require more than two PCI-e slots and therefore do not
fit into the machine’s chassis in required numbers.

It is hard to find GPU with a blower cooler in the gaming segment. The perfect examples
are the Radeon RX Vega cards, which have overall bad availability and those available wear
too wide coolers to fit the chasis. Therefore, this thesis does not include any data regarding
AMD RX Vega cards. The struggle regarding the blower coolers affects other models as
well. As Table 3.1 shows, only the top model are available with blower coolers. The table
also summarizes the parameters and information about the selected models
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Chapter 4

Comparison of computation node
configurations

This chapter at first describes and discusses the configuration of the computation node and
all of the selected GPU. Then, it presents a set containing benchmarks and stability tests
designed for evaluation of a different computation node configuration for password reco-
very tasks. Each benchmark or test focuses on different aspects. By its end, the chapter
shows the results of the measurements and their analysis. However, there are several viable
options on how to benchmark GPU:

• rendering – stressful testing of GPU aiming at graphics rendering, memory bandwidth
and other, using DirectX, Vulkan, Mantle, OpenGL, example tool: 3Dmark1;

• Floating-Point Operations Per Second (FLOPS) – benchmark stressing computation
performance using floating point arithmetic, example tool: GPUBench project2 [25];

• memory latency – latency of on-card memory using different utilization strategies,
example tool: GPUBench project;

• CPU ⇔ GPU data transfer – the speed of data transfer between CPU and GPU
memories, example tool: GPUBench project;

• application specific – some applications, for example, hashcat, John-the-Ripper, con-
tain benchmarks of their own, looking for attributes based on their need; and

• many others.

This thesis contains only benchmarks provided by tool hashcat as it is the tool using
the GPU resources in systems mentioned in Section 2.2. Benchmarks output the deter-
mined speeds of supported hashing algorithms [44], reached temperatures, GPU utilization,
memory usage, and others.

4.1 Designed benchmarks and tests
One of the benchmark and test goals is to compare how different operating systems and
GPU drivers affect the recovery speeds and temperatures. Therefore, measurements of most

1http://akamai-dl.futuremark.com.akamaized.net/3dmark-technical-guide.pdf
2http://graphics.stanford.edu/projects/gpubench/
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of the GPUs come from two different OSs each with their specific stable drivers installed.
The systems and drivers are as follow:

• Windows 10 Professional build 1809 – Radeon Adrenalin 19.1.1 for the AMD cards
and GeForce Game Ready Driver 416.94 WHQL for the Nvidia cards; and

• CentOS 7.5 – AMDGPU Pro 18.40 for AMD cards and Linux X64 (AMD64/EM64T)
Display Driver 410.78 for Nvidia cards.

Hashcat provides a minimal amount of data. Access to additional data is highly platform
specific. It is possible to read hardware temperatures by tools like psensors3 on Linux and
by OpenHardwareMonitor4 on Windows. However, psensors may struggle with a reading
of the GPU temperatures, so the System Management Interface (SMI) included in GPU
drivers is used instead. A tool called Performance Monitor is yet another possibility as it is
already present as a part of the Windows OS.

The benchmarks aim to stress the computation node and get the highest possible speeds
that node, in a given hardware configuration, can provide. Also, it should be easier to iden-
tify the bottlenecks and differences when comparing some of the benchmarks. During
the benchmarks, the script always runs hashcat with the --workload-profile parameter
set to mode four (Table 2.1).

4.1.1 Stability testing

Most of the other benchmarks below — especially those who directly use hashcat’s included
speed benchmarks — have a short execution period. During short benchmarks, the cards
are under the full load for only a few milliseconds. That makes them insufficient for test-
ing of the maximal temperatures, average performance, and average power consumption.
Therefore, this benchmark concludes of mask attacks against two different hash-modes run-
ning for 20 minutes each. The first of the hash-modes is Message Digest 5 Algorithm (MD5)
as it is one of the fastest hash-modes supported. On the other hand, the second hash-mode
is Bcrypt as one of the slowest hash-modes and the one with a high number of computation
iterations.

Hashcat uses two different approaches to where it generates password candidates. For
the fast hash-modes, it generates the candidates on the GPUs into GPU memory and then
computes their hashes using the desired hashing algorithm. Another approach is the genera-
tion of the candidates on CPU, and then loading them to GPU(s) afterward [44]. Therefore,
the benchmark conducts measurements of the utilization, power-drain, and maximal tem-
perature of the GPU for each of these approaches.

4.1.2 Usage of the operation memory

The CPU and GPU communicate and exchange data over the PCI-e bus. The system
reserves the space for all GPU buffers — used during CPU � GPU communication — in
the main memory to ensure that data from/to GPU fits the RAM/swap memory space. As
mentioned in Section 3.1, the node has limited operating memory to 32 GBs. However, all
GPU selected for benchmarks operate with 4 to 11 GB of memory (Video Random Access
Memory (VRAM)). Therefore, the memory may limit the number of usable GPUs and
affect the stability of the OS. However, hashcat cannot use all of the GPU’s memory due

3https://wpitchoune.net/psensor/
4https://openhardwaremonitor.org/
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to driver and card limitations. However, there are Equations (4.1) and (4.2) representing
the minimal and recommended sizes of RAM for efficient computations using hashcat [44].

RAM = 0.25 * VRAM (4.1)
RAM = 0.75 * VRAM (4.2)

This set of benchmarks (measurements) aims to test the usage of RAM when using
a different number of GPU. The set tests the usage of one, two, four, and of eight GPUs at
the same time. The first measurement focuses on whether the system is even able to handle
as many cards without losing its stability. The second part aims at the RAM usage by
the hashcat process for various numbers of used cards.

4.1.3 Benchmarks of all algorithms

The first two benchmarks get speeds of all supported algorithms. The goal is to deter-
mine the speed difference between optimized and non-optimized kernels mentioned in Sec-
tion 2.1.2. The benchmarking uses a script looping over all hash-modes to avoid hashcat
instabilities due to node configuration or some driver. Because otherwise, it results in bench-
mark interruption when simply using the parameter –benchmark-all. The script creates
a new instance of hashcat for each hash-mode resulting in higher overhead caused by re-
peated full initialization of the tool. However, this approach prevents the issue when one
of the hash-mode computations fails and therefore prevents the computation of all following
hash-modes as hashcat exits on any error.

4.1.4 Comparison of speeds of dictionary and mask attack

The last set of benchmarks composes of the dictionary and mask attacks since there are sig-
nificant differences in speed of these attack for most of the hash-modes. The following hash-
modes cover the speed ranges of most of the supported hash-modes. The used hash-modes
are Secure Hashing Algorithm 1 (SHA-1), Secure Hashing Algorithm, 256-Bits (SHA-256),
Bcrypt, Scrypt, Roshal Archive, version 5 (RAR5). The hash values are from hashcat’s
example hashes5. These benchmarks aim to detect whether and how big is the speed differ-
ence of the attacks. Also, the data from this set should also help to identify the bottlenecks
in the node’s architecture and overall speed limits based on the attack types.

4.2 Results of benchmarks and tests
The benchmarks and test proposed in Section 4.1 aim to identify candidates for both
of the mentioned node configuration approaches. This section takes a look at different
attributes during the execution of all benchmarks and tests. The interest attributes are:

• system stability;

• computing power – generally defined as Millions of Instructions Per Second (MIPS)
or as FLOPS, but hashes per second are more accurate metric in the context of this
thesis [7, 25];

• memory usage – the amount of memory used by hashcat and also required by OS
to operate with all of the components;

5https://hashcat.net/wiki/doku.php?id=example_hashes
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• power drain – the amount of power drown over the time of benchmarking in watts
(kilowatts) per hour [W/h] measured using power strip equipped by Sonoff Pow6 with
Sonoff-Tasmota firmware7;

• power efficiency – the amount of password converted into specified hashes-mode
per watt as described by Equation (4.3) [19, 25];

𝐸ℎ =
ℎ𝑎𝑠ℎ𝑒𝑠

𝑤𝑎𝑡𝑡
[𝐻/𝑊 ] (4.3)

• initial costs – the amount of money spent on the purchasing of components;

• operating costs – average power draw per hour [kW/h] converted to currency using
average price 4.07 CZK/kWh [17] (0.157356 EUR/kWh) [28]8 in Czechia; and

• operating temperatures – temperature during the computation on Celsius scale (room
temperature: 21-22 ℃).

The measurements provide data for all GPUs models and both OS, except for the Nvidia
RTX 2080Ti. Therefore, the measurements provide only data from the Windows OS. The
cause of this issue is delayed card’s delivery, which results in complications with testing
machine’s accessibility and new usage restrictions forbidding installation of other OSs.

4.2.1 Stability of the systems

Stability is the first and probably the most important aspect to consider. It is affected by
the used OS, GPU drivers, all of the hardware components, operating temperatures, quality
of PSU and stability of its output power, and other.

The picked releases of the OSs are considered to be stable by default as well as the ver-
sion of the installed drivers. Also, the maximal output power of the selected PSUs is
significantly higher than the calculated component’s maximal input power. That leaves
the hardware components and their cooling as the most significant variable affecting the
stability of described node.

Software instabilities

The configuration, including eight Nvidia GeForce RTX 2080 cards, is the only one expe-
riencing some major stability issues. The issues arise when trying to run the Windows 10
OS with more than three cards. Windows then reports an issue of running out of resources,
probably the operation memory (including the virtual part of it), after adding the fourth
card. However, even manual increasing of the available virtual memory has got no effect
on the system’s behaviour. Therefore, the data for the benchmarks and tests on this system
are missing in the overviews.

The same configuration also experiences issue on the CentOS. Any attacks following
the dictionary attack against the fast hash-modes are getting stuck during the computation.
The issues occur during initialization GPU process of the new attack. All the other node
configurations work properly without any recognizable instabilities.

6https://www.itead.cc/sonoff-pow.html
7https://github.com/arendst/Sonoff-Tasmota/wiki
8Ratio: 25.865 CZK/1 EUR
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Cooling

In the used chassis, the GPUs have to be placed tightly together, and all heat they exhaust
flows across all of the other components before it gets out. Therefore, the chassis fans
have to provide a sufficient airflow to exhaust all the emitted heat.

Table 4.1 shows the achieved temperature for two long password recovery tasks. The
table further shows that none of the cards is overheating. Therefore, both of the cooling
solutions and the chassis fans provide enough cooling power.

Models Minimal [℃] Average [℃] Maximal [℃] Critical [℃]
GTX 1050Ti 36.00 52.73 71.00 97.00
GTX 1060 38.00 52.17 66.00 94.00
GTX 1070Ti 43.00 56.88 74.00 94.00
GTX 1080Ti 51.00 69.72 86.00 91.00
RTX 2080Ti 49.00 61.43 70.00 89.00
RX 580 no data no data no data -

Table 4.1: Minimal, average and maximal temperatures of GPUs during two 20 minutes
long attacks against MD5 and bcrypt hashes compared to critical temperatures obtained
from the manufacturer [4]. The temperatures for AMD RX 580 could not be recorded
because they were not reported by the driver.

4.2.2 Usage of operation memory

The Portable Operating System Interface for Unix (POSIX) tool time can except measuring
the execution time of a process also measure maximal memory usage. It is possible via its
parameter --format=” %M” followed by the command to execute. The tool is available on
Windows as a part of the MSYS29 platform.

Models 1 GPU [kB] 2 GPUs [kB] 4 GPUs [kB] 8 GPUs [kB]
GTX 1050Ti 831 104 1 163 032 1 873 584 3 325 104
GTX 1060 824 876 1 171 548 1 876 956 3 328 644
GTX 1070Ti 837 520 1 171 384 1 887 940 3 345 828
GTX 1080Ti 830 620 1 169 508 1 871 908 3 322 188
RX 580 675 292 939 824 1 464 368 2 523 416

Table 4.2: Usage of operation memory by hashcat process on CentOS with different number
of GPUs.

As Table 4.2 shows the amount of used memory by hashcat increases when enabling
changing the number of GPUs. Moreover, the memory difference per each of the GPU is
approximately 340 MB for Nvidia cards and about 260 MB for AMD cards. However, Ta-
ble 4.3 shows that MSYS2 time presumably struggles to read process information properly
.

4.2.3 Speed benchmarks of all algorithms

GPU performance is undoubtedly one of the most important facts when buying a new card.
Table 4.4 shows that Nvidia RTX 2080Ti significantly out-performs the Nvidia GTX 1080Ti

9https://www.msys2.org/
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Models 1 GPU [kB] 2 GPUs [kB] 4 GPUs [kB] 8 GPUs [kB]
GTX 1050Ti 256 512 256 512 256 512 256 512
GTX 1060 256 256 256 512 256 512 256 256
GTX 1070Ti 256 768 256 512 256 512 257 024
GTX 1080Ti 256 512 256 768 256 512 256 512
RTX 2080Ti 264 192 264 192 263 936 264 192
RX 580 255 744 255 744 255 744 256 256

Table 4.3: Usage of operation memory by hashcat process on Windows with different number
of GPUs.

by 124.90% on average. Thus, the Nvidia GTX 1080Ti is no longer the most potent gaming
GPU for based on the password recovery speeds. It is also apparent from the Tables 4.4
and 4.5 that differences in performances of Nvidia GTX 1060 and AMD Radeon RX 580
are quite insignificant.

Kernel-type 1080Ti 1070Ti 1060 1050Ti RX 580
Non-optimized 0.00 % -29.26 % -58.93 % -77.78 % -65.17 %
Optimized 57.48 % 11.60 % -38.69 % -66.81 % -41.73 %

Table 4.4: The average performance gain/loss of GPU models across all hash-modes com-
pared to non-optimized kernels on Nvidia GTX 1080Ti on CentOS.

Kernel-type 2080Ti 1080Ti 1070Ti 1060 1050Ti RX 580
Non-optimized 78.95 % 0.00 % -26.05 % -56.57 % -76.49 % -62.22 %
Optimized 170.84 % 60.71 % 17.83 % -35.10 % -64.78 % -36.79 %

Table 4.5: The average performance gain/loss of GPU models across all hash-modes com-
pared to non-optimized kernels on Nvidia GTX 1080Ti on Windows.

4.2.4 Speed of dictionary and mask attacks

All charts in Appendix B present the speed comparison of the dictionary and mask at-
tacks. Figure 4.1 combines some of them to show how significant are the speed differences
of the dictionary and mask attacks when targeting fast hashes. While it also shows the speed
similarities of those attacks when slow hashes are the target. Furthermore, the other figures
in Appendix B visualize the same data but from the speedup perspective.

What stands out in Figure 4.1 is how the speeds of all GPUs reach the almost same limits
for dictionary attack on fast hashes. While the mask attack speeds differ significantly form
one GPU model to another. Thus, it shows the hardware limitations affect the dictionary
attack speeds.

4.2.5 Average power consumption and peak power drain

The Appendix C contains figures show-casing the power consumption comparisons of all
node configurations. One of the figures also shows the total duration of the benchmarks
as the computed values could be misleading without it. Since initialization times of each
GPU with different drivers vary, the ratio between idle and full-load power states changes
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Figure 4.1: Comparisons of summarized average speeds each model reached for the five
different hash-modes.

as well. Therefore, the total power consumption can be the same but consumed over
a various portion of time by the end of the benchmarks. Finally, the maximal power
consumption comparisons presented by Table 3.1 confirms that the maximal power drains
specified by manufacturers are accurate.

4.2.6 Initial and operation costs

The GPU prices vastly differ as shows Table 3.1. The recovery speeds and the power drain
when the cards are under full use differ significantly as well (Sections 4.2.3 and 4.2.5). This
section adds other values to consider, and gives different perspective to the numbers from
previous sections.

Based on the benchmarks and the measurements, it is possible to evaluate other, slightly
hidden, aspects of different node configurations like maximal (theoretical) power drain over
a longer time period or a ratio between GPU purchase and power consumption costs. How-
ever, they may be greatly important when deciding what GPUs should a system architect
use when building or extending a cluster.

The figures in Appendix D present a computed hash per total cost overview. The figures
consider a longer uninterrupted computation time periods up to 3 years and including initial
(purchase) node costs as well. The figures use mask attack speeds from Section 4.2.4 to
compute the total amount of computed hashes over the period. They also use values
from Section 4.2.5 as well as GPU prices from Table 3.1 and node’s other hardware (from
Section 3.1) price evaluation, approximately 2239 EUR. The Equation (4.4) is the formula
hashes per 1 EUR (𝐻𝑒) computation.

𝐻𝑒 =
(𝑠𝑒𝑐𝑜𝑛𝑑𝑠_𝑖𝑛_𝑦𝑒𝑎𝑟 * ℎ𝑎𝑠ℎ𝑒𝑠_𝑝𝑒𝑟_𝑠𝑒𝑐𝑜𝑛𝑑 * 𝑦𝑒𝑎𝑟𝑠)

(8 * 𝑔𝑝𝑢_𝑐𝑜𝑠𝑡+ 𝑜𝑡ℎ𝑒𝑟_ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒_𝑐𝑜𝑠𝑡)
(4.4)

The considered computation time periods end at 3 years. The reason is that the new
and more potent high-end GPU models are generally released every two to three years.
They bring significantly increased performance for the same, or at least similar, power
consumption e.g., Nvidia GeForce GTX 1080Ti (Section 3.2.1) and Nvidia GeForce RTX
2080Ti (Section 3.2.1). Moreover, the design of the gaming GPUs does not take into account
24/7 computation and high temperature over a long term. The cooling fans may wear off
as well as the electrical part can get damaged over time.
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The figures in Appendix D highlight how crucial the purchase price and differing power
consumption may be for some hash-modes. E.g., Nvidia GeForce GTX 1060 6GB gets more
cost-effective than AMD RX 580 8GB after 1.5 years when computing SHA-1 and cannot
even reach the same card for bcrypt in 3 years. Another interesting information provided by
the figures is Nvidia GeForce GTX 1080Ti and Nvidia GeForce GTX 1070Ti having better
cost efficiency than Nvidia GeForce RTX 2080Ti on bcrypt.

4.2.7 GPU selection

The chart in Figure 4.2 shows the decision areas for which individual node configurations
are relevant. The areas aim to simplify the configuration selection by considering price,
power consumption, and performance. The selection process then works as follows:

1. Set the priority point on power consumption axis in range (0, 1.0).

2. Set the priority point on node configuration price axis in range (0, 1.0).

3. Set the priority point on node performance axis in range (0, 1.0).

4. Draw a line between the priority points to set a new requirements area.

5. Evaluate which GPU area fits the requirement area the best.

0.00

0.25

0.50

0.75

1.00
Power consumption

PricePerformance

8x RTX 2080Ti

8x GTX 1080Ti

8x RX 580 8GB

8x GTX 1070Ti

8x GTX 1060 6GB

8x GTX 1050Ti 4GB

Figure 4.2: GPU selection decision chart visualizing node configuration relevance areas
formed by the following coefficients. The chart’s purpose is to compare different models
rather than provide precise values. Price coefficient - higher the value, more affordable
is the node configuration. Power consumption coefficient - higher the value, least power
consuming is the node configuration. Performance coefficient - higher the value, more
potent is the node configuration.
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Chapter 5

Recommendations and strategies
for password recovery

When it comes to password recovery, several aspects are influencing the complexity
of the task. The most significant impact has the hashing algorithm. The algorithms differ
from simple one iteration hashing functions like MD5 and SHA-1 through functions like
HMAC-SHA256 to PBKDF2-HMAC-SHA256, scrypt, and bcrypt which use multiple iter-
ations of hashing functions to make the password recovery task significantly harder. Thus,
as the recovery speed changes, various attack recommendations and strategies should take
place in order to be as efficient with this task as possible.

Therefore, this chapter introduces some of these recommended steps to consider before
starting the password recovery. Section 5.2 then discusses the strategies for distribution
of prioritized recovery tasks to multiple nodes in a stable environment (cluster).

5.1 Recommendations
From time to time, experts and authors of password recovery tools share some tips about
how to use the full potential of the tools. Incorporation of some tips is more straightforward
than of others. Moreover, some tips are computation resource demanding while another
demand more of user time. Following paragraphs mention and explain some of them:

• The inputs of tools like JtR and hashcat can contain multiple hashes and try to recover
passwords for all of them at once. This feature can, therefore, lower the recovery time
compared to targeting the hashes individually.
When put into the context of the distributed systems, which generally have multiple
users independently adding different tasks with different attacks, it is convenient
to gather all not yet recovered hashes of the same hash-mode and run the attacks
on top of all of them. However, this approach is viable only for simple hashing-
function without salt or any other input variable except the password.
The password recovery for these simple hashing-functions composes of computation
of the hash from the candidate followed by a comparison of the result to the targeted
hash value. It takes advantage of the fact that computation of the hash is more
resource expensive while the comparison of values is trivial.
On the other hand, more complex hashing algorithms incorporate salts, key stretching
functions [39], multiple iterations of key scheduling or hashing functions [40], and
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checksum comparison of the decrypted data and the origin data checksum. Therefore,
the tool has to recompute hash values for every entry separately when processing
multiple input hashes. Thus, the number of computed hashes increases task’s keyspace
significantly. Each unique salt value results in the new hash computation for each
password candidate.

• Since the single crack mode is recommended by JtR author as first to use [12],
it is probably worth to research the person who created the password and there-
fore secured the data of interest (e.g., the person’s native language). The user can
then supply the recovery tools with the gathered information in the form of dedi-
cated dictionaries (e.g., only English words). Since such a dictionary is considered
to be shorter, an attack involving a high amount of rules is executable with smaller
computation times.

• The sorting of the dictionaries by the password length and then alphabetically is ad-
vantageous [12]. For some formats (like 7-zip), the recovery speeds differ based
on the lengths of the passwords. Therefore, the recovery speeds are more likely
to drop when passwords of different lengths are mixed [44].

• Another thing to consider when dealing with the dictionaries is the line-ending (i.e.,
password separator). Dictionaries may come from a different OS, and multiple dic-
tionaries may use different line-endings which might cause troubles later on.

• When dealing with huge dictionaries, it may be needed to divide the dictionaries
into smaller ones due to the possibility of overflowing the maximal keyspace value
depending on what data typed the specific tool uses.

• Also, when using hashcat, it is recommended to use the hand-optimized kernels (Sec-
tion 2.1.2) as often as possible. They generally provide significantly higher speeds.

5.2 Strategies
Before performing any set of attacks, NETMUX LLC recommends determining the expected
duration of such attacks [32]. It is relatively easy to specify an incremental attack for 3 to 12
ASCII lower-case letters long passwords. The keyspace of such attack is significantly big
and depends not only on the performance of computation resources but also on the targeted
hash-mode. While it would be possible to run this attack against a simple MD5 hash,
it definitely would be an issue against bcrypt hashes or other more complex hashes. It means
that the attack creator should also consider recovery speeds when designing the attack.

Due to the high speed differences between the slowest and the fastest hash-modes,
some attack types are viable only for the faster hash-modes but would take way too long
for the slow hash-modes. The incremental, mask, or any other exhaustive attack types
are the perfect examples. They mostly have huge keyspace that can pose a challenge for
slow modes when searching for a password in an acceptable time. Therefore, there are some
recommendations on how to eliminate those exhaustive attacks. It seems to be the best
to run the attacks in this order [32]:

1. custom wordlist – using small dictionary based on information about the hash’s cre-
ator;
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2. custom wordlist with rules – using small dictionary based on information about
the hash’s creator with a few mangling rules;

3. dictionary attack – using a dictionary of popular passwords;

4. dictionary attack with rules – using mid to big sized dictionary with a modest number
of rules;

5. custom wordlist with rules – using the custom wordlist extended by the already re-
covered password with more and more subtle mangling rules;

6. mask attack – using masks extracted from the popular passwords from leaked datasets
or commonly know patterns like ?u?l?l?l?l?s?d?d, ?u?l?l?l?l?d?d?s, and many
other;

7. hybrid attacks – using any dictionary with a prepending or appending masks;

8. combinator attack – using combination of two dictionaries; and

9. brute-force attack – using an incremental masks of ?a up to eight position long pass-
words or longer depending on computation system power.

When it comes to the distributed password recovery, it is challenging to perform any
attacks based on pre-generated or leaked password stored in dictionary files. Such attacks
can easily overload the controller and potentially network in the systems with a single
controller and multiple computation nodes (e.g., FITcrack, Hastopolis). The controller —
in such a system — has to prepare and transmit the dictionaries to the nodes. Therefore,
the controller’s network interface can become the bottleneck when it has to accommodate
several node’s needs. Also, considering the speeds of the fast hash-modes, each node then
can require hundreds of thousands, millions, or even billions of passwords per second.

The distributed dictionary attacks on fast hash-mode are not easy to perform, and their
effectiveness is not ideal [22]. Therefore, the total amount of transmitted data should be
reduced. Either by adding compression and decompression steps or by limiting the num-
ber of nodes performing the dictionary attacks. The other nodes can meanwhile work
on the other attack types with lower bandwidth requirements.

Another option is to add more work to each node by using rules. Rule files are generally
few lines long, but can greatly increase the keyspace of an attack. Therefore, dictionaries
can be smaller and more nodes can use a single controller. Furthermore, the rules also
increase the computation node recovery speed for dictionary attack when using hashcat
with its built-in rule engine kernel. The simple version of the distributed dictionary attacks
is feasible for any hash-modes with lower recovery speeds, which bandwidth requirements
are not as high [22].
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Chapter 6

Proposed system changes

The current version of FITcrack has multiple design flaws, which are limiting its full poten-
tial, effectiveness, and scheduling precision. Not only its scheduling struggles with salted
hash-modes, but it also does not handle transitions between masks of different sizes all too
well.

6.1 Salted hashes
Generally, FITcrack does not handle the salted hashes well. It does not reflect the increasing
number of computed hashes when the tasks contain multiple salted hashes. This results in
the incorrect size of generated workunits, which is crucial as workunit crafted to last one
hour may take several hours or maybe even days to compute.

The system has to reflect the number of unique salts or at least salted hashes and
the increasing number of hashes to compute throughout the workunit generation pro-
cess. FITcrack computes several hashes in a workunit by multiplication 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦_𝑠𝑝𝑒𝑒𝑑 *
𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. This value has to be divided by the number of salted hashes,
or even better by the number of unique salts if the workunit size should be accurate.

6.2 Transition between masks
A single task can contain multiple masks of different lengths and keyspace. Therefore,
it is necessary to adjust the workunit keyspace calculation when moving from one mask
to another. FITcrack recognizes the keyspaces of different masks, but the computation
adjustment between masks is missing. It results in a workunit with either much bigger
or much smaller duration. That makes workunit sizes unpredictable and scheduling difficult.
FITcrack has to convert the speed of mask attack from mask indexes per second to hashes
per second and perform the conversion back and forth when needed. It is principally similar
to operations required for salted hashes Section 6.1. Therefore, both issues may use similar
code and require identical actions to fix them.

6.3 Inclusion of unrecovered hashes
The unrecovered hashes (i.e., hashes for which are not yet found the password) start to
pile up when the user uses the FITcrack system with real data. It is a common practice
to perform a new dictionary attack against unrecovered hashes once a user gathers a new
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dictionary. However, the system — at its current state – forces the user to re-insert all
of the hashes even though it had got hashes already.

Both hashcat and FITcrack support hash-files1 for all non-binary hashes and thus a pass-
word recovery of multiple hashes at once. Implementation of this new feature would remove
the step of re-inserting the hashes. Instead of that, the system can perform a rather simple
database query to retrieve all unrecovered hashes of given hash-mode.

Although the tasks support salted hash-modes. The keyspace of such task grows with
every hash unique salt, which makes it harder to go through all password candidates with
each salt. Thus, the system cannot perform this feature automatically, or at least not in all
cases as it can make the task inexhaustible. The user has to be responsible for the decision
of whether to turn on the feature or not.

6.4 Distribution of dictionaries
A distributed dictionary attack is a challenging task, as already explained in Section 5.2.
FITcrack reduces the data volume, which has to be transmitted from the controller to com-
putational nodes over the network. Its workunit generator crafts dictionary fragments from
the dictionaries based on the computed size of new workunit. While that leads to precise
workunit sizes, this approach adds a considerable amount of overhead which grows with
the size of the fragmented dictionary.

The generator goes through the dictionary line by line and dumps the lines into a new
file. This approach results in a significant overhead when dealing with huge dictionaries
(tens to hundreds of gigabytes). With this approach, the generator steps through the dic-
tionary sequentially from the start to the reach position where it ended in the previous run.
Therefore, the generator spends a lot of time time just skipping through the dictionaries
instead of doing any useful work. That results in the computation node running idle instead
of checking hashes.

The repetitive dictionary fragmentation is another generator’s issue as generator as-
signs one fragment to only a single workunit and then deletes it to preserve disk space.
Therefore, the generator has to always generate new fragments even if there are two same
tasks following each other and has precisely the same nodes assigned to compute them.
That results in many disk I/O operations, which slow generator significantly. The problem
is even worse; the generator is not multi-threaded. So, every extensive operation for any
host blocks generator for all other hosts.

The dictionary fragmentation, in general, seems to be a valid approach, but the sys-
tem should pre-compute the fragments after adding a new dictionary. That should remove
the overhead tight with the fragmentation. It also allows execution of other operation like
lexical sorting, password length categorization, filtering of password with invalid symbols,
or any other pre-processing or in-advance password analysis. Furthermore, the system
components running on the controller also handle transmissions of fragments to nodes.
Transmission can fully exhaus controller’s resources like network interface or even data
storage. Incorporating some a high-throughput shared network storage may be advan-
tageous. Especially for the case when FITcrack runs on a stable cluster. Such clusters
mostly have a robust architecture with high bandwidth interconnections. Thus, network

1Files containing multiple unique hashes of the same hash-mode.
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filesystems — like Gluster2, BeeGFS3, Samba4, and similar — combined with Storage Area
Network (SAN)/Network Attached Storage (NAS) storage become a suitable option. They
should provide faster file access times, easier file manipulation, and higher throughput than
the controller’s current approach using file transmission over HTTP/Hypertext Transfer
Protocol Secure (HTTPS).

6.5 Task prioritization
FITcrack treats all user tasks equally. That is a fair-play approach which does not correlate
with reality. In real-world scenarios, each task has some kind of priority. The priorities
become even more critical when multiple users operate the same system as the users may
have different roles. Priorities might be anything, but likely one of the following:

• manually set priority;

• user role;

• attack type;

• attack keyspace;

• task adding time; and

• potentially some others.

The expectations are that a single priority is not enough as there are multiple possible
aspects to consider. Therefore, the following sections propose a four-level priority system
which covers the basic priority set, leading to unambiguous task selection. The level sections
follow in the top to bottom order.

User task priority

Each user determines the input data priority differently. Therefore, this priority level is
not algorithmically assignable as are the other levels. Therefore, there have to be a few
predefined user-assignable priority values from which the user can choose. This priority
level is the most crucial from the user perspective. The user can categorize the input data
(hashes) by their importance and by that adjust the order in which the system computes
the tasks.

Attack type priority

The motivation behind this second priority level is to go through the attacks from the least
exhaustive and specifically targeted attacks to the more general and more exhaustive ones.
The list from Section 5.2 recommends an attacks order based on their types. That list
is convertible to a slightly reduced priority list. The conversion is necessary since FITcrack
does not know the attack’s context. Therefore, it is necessary to incorporate recommended
list items generalization like considering the wordlists and dictionaries equal, or all masks
as equal.

2https://www.gluster.org/
3https://www.beegfs.io/
4https://www.samba.org/
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Attack keyspace priority

The third priority level reflects the task difficulty. Task keyspace serves as the difficulty
indicator since the hash-mode’s complexity is unchangeable. The motivation behind this
priority level is to compute tasks from the easiest to the hardest to compute when the two
previous priority levels are identical for several tasks.

The hash-mode should not affect the task order and the selection of keyspace
over the task’s time to compute. The user should consider the hash-mode complexity
in the first priority level (Section 6.5). Alternatively, organization and companies can in-
corporate this into their user priority user manual.

Task creation time

The last priority level is necessary to decide any priority draws of several different tasks.
That leads to a need for some unique value resolving potential ties. New tasks emerge over
time. Therefore, the first-come, first-served seems to be applicable and on point. Because
each task has already got its adding time, which well fits this priority level purposes.

6.6 Task scheduling
FITcrack’s task generator incorporates the formula proposed by Hranicky et al. in their
paper [20], where they discuss the motivation behind it and the system’s use-case. There
introduced formula considers the yet uncomputed part of a given task and divides it by all
active node speeds sum. This way, it obtains the remaining computation time required
for finishing the task. Then, it multiplies the resulting time by a so-called distribution
coefficient which limits the upper time bound. That approach results in workunit size
shrinking with every computed part as the task computation progress. Unfortunately,
it can lead to a significant overhead as it generates more and shorter workunits in order
to utilize all available nodes with a single task.

Even though that approach might fit the original FITcrack’s targeted use-case, the use-
case includes unstable and dynamic topologies, various node configurations, and a different
physical node location. That use-case aims at using FITcrack with standard office com-
puters as computation nodes. Meanwhile, the real-world deployments show the inexistence
of such use-case as office computers could not withstand the heat and long term utilization.
Furthermore, the office data and power network designs do not consider such a load. Thus,
the users rather use dedicated multi-GPU computation nodes designed for high utilization
over long periods instead, which enormously changes the use-case.

Algorithm 1: Original FITcrack workunit scheduling algorithm.
1 foreach 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑎𝑠𝑘 do
2 load assigned hosts
3 foreach 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑒 ℎ𝑜𝑠𝑡 do
4 if ℎ𝑜𝑠𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑎𝑣𝑒 𝑒𝑛𝑜𝑢𝑔ℎ 𝑤𝑜𝑟𝑘 then
5 generate new workunit

Usage of dedicated computation nodes moves the use-case more towards a grid comput-
ing, stable topology, generally a centralized node location, high node availability, and a se-
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cure environment. Therefore, the task scheduler has to reflect these new needs and also
aim for the highest possible utilization efficiency.

The scheduling process has to undergo significant changes to improve usability in the new
use-case. Algorithm 1 presents how the core of FITcrack’s scheduling process operates.
The process uses a task-centric approach which has got its flaws, and its extension by the pro-
posed functionalities would be cumbersome. Therefore, there is need for a new, more suit-
able scheduling process fulfilling the following requirements (ordered by its importance):

1. It has to use a computation-node-centric approach to simplify the priority scheduling
process. That should also reduce the number of idle workunits for every node attached
to the system.

2. It has to use the task prioritization process proposed in Section 6.5.

3. It has to replace the original formula to keep workunit duration as long as possible.

4. It has to replace the current approach on dictionary fragmentation by using pre-
fragmented dictionaries leading to significant overhead elimination.

5. It has to consider the fact that salted hashlists increase the overall the number of com-
putable hash values in tasks.
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Chapter 7

Implementation of proposed
changes

This chapter describes the implementation of proposed changes. The sections below mention
all the faced problems and complications when extending FITcrack. Following subchapters
present the changes in the feature-based view instead of the system-module view.

7.1 Salted hashes and mask attack improvements
Adding support for salted hashes means changes to user input post-processing, node com-
putation speed, scheduling, and others. A number of used salted hashes crucially changes
task’s difficulty (increases keyspace) so do the changes to masks. So, both the user and
then the system has to be able to acknowledge this information. Therefore, the majority
of server modules requires changes in order to provide everybody with as accurate as pos-
sible information.

Web-backend

FITcrack needs to identify which input hashes are salted in order to work with them cor-
rectly. Therefore, the hash-mode records in the database newly contain a flag whether
the hash-mode is salted or not. Hashcat contains the information which hash-modes are
salted in its source code. Thus, it is possible to extract the information with a script pars-
ing the source codes which can export the data to a serializable data structure. Then,
the hash-mode table extension is just a matter of database revision. Implementing this
revision is unchallenging as this web-backend already contains migration and revision sub-
module called Alembic1 providing required features.

Furthermore, the module’s database models src/database/models.py incorporate
the revision. That prevents any unintentional data accesses, which could cripple the mod-
ule’s functionality. Also, the module’s REST API endpoints have to reflect on this change
as well in their parsers and response models. Therefore, the endpoint /hashcat/hashtypes
newly provides is_salted flag, which indicates the saltiness of hash-mode as it provides
access to the values stored in the new database column.

1https://alembic.sqlalchemy.org/
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Web-frontend

The number of hashes to compute when working with salted hashes increases with every
additional hash on the input. As for the masks, it calculates the mask magnitudes, which
it then sums to determine the task’s complexity. Web-frontend uses this information when
adding a new task or editing an already added task. The module computes and presents
the estimated cracking time of all hashes to the user. Therefore, the addJobView newly
checks, whether the selected hash-mode is salted. Web-frontend checks the hash’s saltiness
by examining the new flag of /hashcat/hashTypes endpoint mentioned in the previous
section. Then, it uses a naive approach where it counts the hash entries which it then
multiplies by the tasks keyspace. That provides worst-case results for a given task i.e., each
hash having unique salt.

Generator

Work generator treats tasks targeting salted hashes a little differently as it adjusts the cal-
culated workunit’s magnitude by using Equation (7.1). The equation incorporates an ad-
justment ratio, which corrects the value. It uses the same approach for both the mask
attack and salted hashes.

𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡_𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =
𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡_𝑡𝑖𝑚𝑒 * 𝑠𝑝𝑒𝑒𝑑

𝑡𝑜𝑡𝑎𝑙_ℎ𝑎𝑠ℎ𝑒𝑠_𝑖𝑛_𝑡𝑎𝑠𝑘
𝑡𝑎𝑠𝑘_𝑘𝑒𝑦𝑠𝑝𝑎𝑐𝑒

(7.1)

Assimilator

Assimilator finishes the whole specialized treatment of salted hashes. It converts the worku-
nit keyspace, defined as number of mask indexes, to a real number of computed hashes after
receiving the host’s result. It calculates the same ratio as the generator and applies it to
reverse the keyspace adjustment used in the generator. Then, it calculates the achieved
recovery speed for a given workunit employing the number of computes hashes and workunit
duration.

7.2 Inclusion of unrecovered hashes
As already mentioned in Section 6.3, the feature simplifies adding not yet unrecovered
hashes to a new task only enhances the user experience. It automatizes the process of adding
previously inserted hashes to a new task base on their hash-mode. It may speed up the re-
covery process for multiple hashes. Although, the feature is available only for the un-salted
and non-binary hashes because: (a) the task complexity grows significantly with every hash;
and (b) hashcat does not offer support for multiple binary hashes.

Web-frontend

The web-frontend newly provides a switch button for turning the adding of unrecovered
hashes on and off. The button uses information about the selected hash-mode to disable
itself when the selected hash-mode is either binary or salted. It moves to the off state
before it turns to the disabled state. The implementation of the switch button extends
the AddJobView page. The switch state (on/off) becomes a part of the request message
sent by submitting a new task to the system.
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Web-backend

The web-backend’s endpoint responsible for task creation newly accepts the value through
the frontend switch. The value then affects whether it includes the previously inserted
hashes or not. It then enlists all unrecovered hashes of the given hash-mode from the data-
base via SQL query and links them the new task when the flag tells it to do so.

7.3 Distribution of dictionaries
The distributed dictionary implementation moves away from BOINC’s native file transmis-
sion over HTTP or HTTPS protocol. It keeps dictionaries on a dedicated storage device
which is reachable by both the server and the computing nodes by using one of the possible
Network File Systems (NFSs). Each device, which wants to access a dictionary, can mount
the dictionary to a path of its needs and access the files the same way of how it would
access the local files. Because manipulation with big dictionaries would result in significant
network load, the server pre-fragments the dictionary before placing it into storage device
by using the developed high-performance tool.

Tool fragmenting dictionaries

The dictionary fragmentation tool normalizes an input dictionary by unifying the password
separators and removing empty lines. Then, it analyzes all password and sorts them into
separate dictionaries (fragments) by their length. Each output fragment contains up to
250 000 passwords. Smaller output files with fewer passwords provide a better overall frag-
mentation granularity. Which then enables more precise scheduling and shorter fragment
download times.

The tool is implemented in C++ language, because the tool has to achieve a high
performance. The application relies and builds on top of functions, classes, templates, and
structures provided by the C++ language and its Standard Template Library (STL). Other
than that, it uses a set of custom classes and structures extending the functionality and
simplifying the code readability.

The tool requires the path to input dictionary file (-i), fragment’s size (-s), and output
directory (-d). There is also optional parameter -l limiting the maximal password length.
Otherwise, it accepts any password shorter than 4096 characters.

The basic C++ getline() function does not allow the detection of multiple possible
delimiters. Therefore, the tool implements a function similar to getline(), which detects
the most common line separators like Line Feed (LF), Carriage Return (CR), CRLF. Al-
though, it does not keep context and it may not handle multi-byte characters containing
delimiter like bytes correctly.

The implemented reading algorithm is faster than implementation using getline()
as shows Table 7.1. The used algorithm reads binary data from file to a 4 kB buffer.
It then processes the buffer in order to extract all of the passwords. The file pointer moves
both ways throughout the runtime. It moves forward on file read, and it moves back
to the position of last found delimiter when the delimiter misses at the end of the buffer.

Extracted passwords then tranferes to the part of the algorithm responsible for catego-
rizing it to the proper fragments for given password length. The tool uses std::vector as
storage of active fragment. The vector contains only one fragment per each password size,
which allows using the password length as an index. This method eliminates any memory
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Implementation Passwords Bytes Wall time [s] Throughput [MBps]
implemented 1.00E+08 614 368 919 5.80 101.04
standard 7.50 78.16
implemented 1.00E+09 8 678 038 624 74.02 111.93
standard 84.00 98.53

Table 7.1: Benchmarks of the different implementations using a custom and standardized
getline() functions for reading passwords from a file, categorizing them by length, and
storing them to new files. Benchmark configuration: OS: Ubuntu 18.04; CPU: AMD FX-
8320 8-Core, 3.50 GHz; RAM: 16 GB 1866 MHz; source SSD: Kingston V300 120GB;
destination SSD: Samsung 860 EVO 500 GB; both connected via SATA 6 Gb/s bus.

lookups and therefore results in constant memory access times. Because it keeps a pass-
word counter for each fragment, it can close the full fragment, flush its data to the driver,
and replace it with a new empty fragment, which repeats over and over. Finally, the tool
outputs formatted JavaScript Object Notation (JSON) string to stdout containing the path
to fragment, password counter, password length, and fragment sequence number for given
password size and input dictionary.

Generator

There are several required changes to the generator in order to add support for pre-
fragmented dictionaries. The first change is removing the current implementation of dictio-
nary fragmentation, which is tightly coupled with changes to the original file with the gen-
erated fragment. The file newly contains metadata of fragments assigned to host. In order
to do that, it has to enlist unused dictionary fragments linked to the task. Only then, it
selects specific few enlisted fragments and adds them to the workunit. Generator adds the
fragments until their keyspaces sum reaches the calculated workunit size. Alternatively, it
uses at least one fragment, when the workunit size is smaller than keyspaces of fragments.
Finally, the generator creates a JSON structure (Listing 7.1) from the metadata and stores
it into the file which it then sends to the host.

[
{

"path" :"<fragment_path_from_dictionary_root_directory>",
"keyspace" :"<keyspace>"

},
{... },
...

]

Listing 7.1: JSON array of fragment metadata.

Runner

Runner requires modifications as well because inputs from the server have changed. It newly
uses a minimal Rapidjson2 library for parsing JSON structures. That allows Runner to use

2http://rapidjson.org/
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a JSON based per host configuration file structure from Listing 7.2. This change to the file
ConfigHost.cpp is necessary since the original one-line configuration format allows only
the configuration of additional hashcat parameters. Runner currently requires the path to
the directory with dictionaries i.e., the path of NFS mount-point.

{
"hc_extra_params" :"<hashcat_parameters>",
"network_fs_root" :"<path_to_mounted_dictionary_directory>"

}

Listing 7.2: Host configuration file structure.

Moreover, Runner employs the JSON library for fragment metadata parsing (i.e., pars-
ing of structure from Listing 7.1 sent by the server). After the parsing, it stores the metadata
to its internal representation and checks whether it can access the fragment(s).

Runner also uses a new approach to passing dictionaries (fragments) to hashcat. It
newly spawns an additional process thread which reads the fragments as binary files to
a buffer. The thread then writes the buffer to the hashcat’s stdin. This approach in-
creases the achieved performance even when using small fragments as it prevents hashcat
re-initialization for every fragment, which would reduce the performance significantly. How-
ever, hashcat can accept multiple dictionaries by itself. Although this approach increases
hashcat’s and network overhead because it performs a dictionary analysis instead of directly
running the attack. Therefore, it requires additional network traffic as each interaction with
a file results in data re-transmission, because the NFSs does not store local copies.

The need for multi-threading results in moving the code-base to the newer C++11
standard, which provides multi-platform threading implementation in form of std::thread
class. Other alternatives would either: (a) require self-implementation of threading; or (b)
require usage of a big library like Boost3. However, neither those alternatives would be
better because solution: (a) could be buggy and would require extensive testing; and (b)
could complicate both the compilation process and future development with newer versions.

Runner performs no password processing. It solely feeds hashcat with data from the file.
Same as the dictionary fragmentation tool (Section 7.3, it uses 4 kB buffer and fast language
C-like POSIX I/O functions. Those functions require minimal function calls and provide
the maximal read and write speeds.

7.4 Task prioritization
Task prioritization is a new way of how to select a task for a given host in the context
of FITcrack. It favors attacks with the highest potential of founding the password as it ap-
plies criteria and recommendations from Section 6.5. The modifications only affect the gen-
erator and database scheme.

Database

The task prioritization requires some database changes in addition to the need for new data.
The starting database contains only some task metadata matching the needs of criteria from
Sections 6.5 to 6.5. The task creation time and attack keyspace are straightforward and
already in the database. However, the user priority is there only partially as there is an

3https://www.boost.org/
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INTEGER column for storing some value. The system misses any description of the available
user priority levels. Therefore, the original column transforms into a FOREIGN KEY pointing
to the records in the new fc_user_priority table. The new table contains id, priority,
and name values.

The original database completely misses any information about attack type priority
(Section 6.5). Although, each task — in FITcrack’s context called job — record con-
tains information about job mode and submode. So, the job’s mode and submode move
to a new static table fc_job_type containing id, mode, submode, description, and pri-
ority columns. Therefore, the job records now contain a FOREIGN KEY to the fc_job_type
table instead of the original job_mode and job_submode values.

Web-backend

Web-backend also needs to reflect the changes in its database models with additional virtual
link of mode and submode from fc_job_type to the original job_mode and job_submode
database object properties. Moreover, the REST API has to newly provide the list of avail-
able user priorities through a new endpoint /attack/priorities and it has to accept user
priority when creating a new job.

Web-frontend

There are only two small things to add from the web-frontend perspective. The first thing
is a new list to the AddJobView offering selection of user-defined priority. The list vi-
sualizes data from the new /attack/priorities endpoint. The second thing is passing
of the priority information with the job data when submitting a new job to the API.

Generator

The implemented algorithm extends the generator’s SimpleGenerator.cpp and
SqlLoader.cpp. The algorithm implements the criteria from Section 6.5 as a complex
SQL query. The query runs over several tables and uses various WHERE clauses specifying
values of few columns. At last, it orders the selected records by several columns. It is not
a simple nor easily readable query, but it is faster than fetching all records from database
to memory and performing the filtering and ordering in the generator’s code. The workunit
generation takes place after the attack selection. It creates a new workunit for selected host
using the recovery task data and settings.

7.5 Scheduling
The reworked scheduling algorithm uses online nodes as its main commodity instead
of the existing recovery tasks which reduces the number of waiting workunits in the system
to a minimum as well as it prevents workunit generation for offline nodes. It also reduces
the algorithm complexity. The original algorithm’s outer loop loops through all active
tasks (𝑛) and inner loops through all task assigned nodes (𝑚). Therefore, its complexity
is 𝑂(𝑛 *𝑚). The new version uses only a single loop on online nodes (𝑝), where 𝑝 <= 𝑚.
The algorithm then fetches only the most prioritized task assigned to the node. That results
in 𝑂(𝑝) complexity, as there is no looping through tasks.

The original generator uses the algorithm from Hranicky et al. publication at ICDF2C
2016 [20] for computation of new workunit duration. The algorithm has got its flaws for grid
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Algorithm 2: Implemented altered task scheduling algorithm.
1 load online nodes
2 foreach 𝑜𝑛𝑙𝑖𝑛𝑒_𝑛𝑜𝑑𝑒 do
3 load highest prioritized assigned task(node)
4 if 𝑛𝑜_𝑡𝑎𝑠𝑘_𝑙𝑜𝑎𝑑𝑒𝑑 then
5 continue
6 else
7 generate new workunit(task, node)

computing, as described in Section 6.6. Thus, a replacement of the algorithm is necessary.
So, instead of that algorithm, the new workunit duration is straightly set to the desired
workunit duration value without any changes to it. It provides a more consistent workunit
sizes no matter the position in the or number other nodes assigned to the same task. That
results in as big as possible workunits for every single connected computation node.

46



Chapter 8

Comparison against original state

This chapter presents the measurements and comparison results for implemented system
modifications compared to the original system state. Tables in this chapter present pre-
cise data which stand as benchmarks. On the other hand, the charts mostly highlight
the deviations between the implementations.

8.1 Mask attack improvements
Figure 8.1 shows how the implemented corrections affect the workunit size. That figure vi-
sualizes the duration of the first generated workunit axis Y and mask lengths on the axis X.
The goal line shows the desired workunit duration, which is constant throughout the task.
What stands out from the figure is how significant is the original implementation’s issue
as it generates workunit approximately 50-times bigger than the set goal. It also shows
the adjusted implementation’s correctness. There are two proofs: (a) it does not signif-
icantly overreach the goal line at any point; and (b) it correctly moves from the length
of four to length of five and six, while the old approach generates same sizes for lengths
four and five.
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Figure 8.1: Workunit duration generated by the original and adjusted system using attack
containing three to seven symbols (?a) long masks.
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8.2 Handling of salted hashes
Similarly, as in the previous subsection, Figure 8.2 displays the workunit duration on axis Y,
while the axis X — in this case — displays a number of used salted hashes. The figure and
the Table 8.1 shows the practically exponential duration increase with the growing number
of salted hashes for the old implementation. Although the new implementation performs
significantly better, the duration still grows over the goal line. What is even worse is that
the duration slightly grows with every added hash.
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Figure 8.2: Duration of initial workunits using original and adjusted system with various
numbers of salted hashes.

Salted hashes Original algorithm Adjusted algorithm
Duration Keyspace Duration Keyspace

1 50s 244 926 2 m 07 s 869 706
10 7m 06s 231 444 3 m 45 s 85 865
20 15m 25s 247 440 4 m 14 s 35 133
30 27m 30s 291 000 4 m 57 s 28 508

Table 8.1: Initial workunit duration/size difference using single/multiple salted hashes com-
paring the original and adjusted implementations.

8.3 Distribution of dictionaries
Tables 8.2 and 8.3 provide a comparison between the two FITcrack versions:

1. version with improved in-generator fragmentation using stored last read byte position
to for skipping already fragmented parts of the dictionary file; and

2. version with pre-fragmented dictionaries distributed using NFS.

The comparison uses one dedicated PC equipped with AMD Ryzen 5 2600X CPU,
Patriot Burst 560/540 MB/s SSD as a server. The server not only runs all of the FITcrack
modules but also contains the dictionary storage. It uses Samba daemon providing access
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to the dictionaries. The main reason behind selecting Samba out of all other options is
its easy deployment and its multi-platform usability. Other than that, it uses eight more
hosts all equipped by a single Nvidia GTX 1050Ti 4G GPU. Each host runs CentOS 7 with
Nvidia GPU drivers. They gain access to dictionaries via the Common Internet File System
(CIFS) application-layer protocol using mount.cifs as a client. All devices communicate
over a 1 Gb/s network.

Both tables present information about used dictionaries sizes and keypaces as well as
the task duration from pressing the task’s start button till its finishing. The first Table 8.2
provides data regarding a task using SHA-1 hash-mode. The second table (Table 8.3)
provides data for the task using a bit slower Whirlpool hash-mode. Data in column Duration
show that the new approach is much faster for all dictionary sizes and both hash-modes.
Even though, only a single host computes all of the hashes as shows the number of generated
workunits.

Dictionary Original Adjusted
Size Keyspace Duration Workunits Duration Workunits
1.1 GB 114 076 081 2 m 40 s 2 1 m 17 s 1
2.1 GB 228 152 161 3 m 28 s 4 1 m 45 s 1
4.2 GB 456 304 321 4 m 2 s 8 2 m 11 s 1
8.3 GB 912 608 641 4 m 58 s 16 3 m 38 s 1

Table 8.2: Task duration measurements comparing file transfer method using SHA-1 hash-
mode.

Dictionary Original Adjusted
Size Keyspace Duration Workunits Duration Workunits
1.1 GB 114 076 081 3 m 11 s 2 1 m 26 s 1
2.1 GB 228 152 161 3 m 14 s 4 1 m 46 s 1
4.2 GB 456 304 321 4 m 00 s 8 2 m 32 s 1
8.3 GB 912 608 641 5 m 02 s 16 4 m 05 s 1

Table 8.3: Task duration measurements comparing file transfer method using Whirlpool
hash-mode.

8.4 Task prioritization
The task prioritization and automatized task reordering are hard to compare to the original
approach. Such comparison would require examination of runtime data from a system
using only real word data. It would require gathering of a long-term statistics for each
used mask, dictionary, and attack type. Only a correlation of the long-term statistics
against the proposed and implemented criteria would provide the needed results. However,
the usage of artificially generated hashes could result in skewed results and conclusions
because the person preparing and performing such tests would most probably be biased in
the password candidate selection on either side of the comparison. Therefore, this thesis
proposes only the modification and offers an experimental implementation. However, it
does not evaluate the proposed approaches against any data.
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8.5 Scheduling
The last comparison focuses on the impact of the modifications to the scheduling algorithm.
It uses a mask attack created in a way to last about 25 to 30 minutes with desired 120 s
long workunits. Figure 8.3 presents: a number of generated workunits, their duration,
and total time purely spent by the recovery process. Meaning, stripped of all transmission,
workunit generation delays, and other system overheads. The only left overhead is hashcat’s
initialization, which is unignorable.

The Figure 8.3 further shows how the modified algorithm generates fewer workunits
respecting the desired duration compared to previous implementation. It also shows how
the algorithm overestimates the first two workunit sizes, which result in their prolonged
duration. After that, it adjusts the sizes accordingly to the nodes maximal capabilities.
The reason why it overestimates the first two workunits is due to the short and inaccurate
benchmarks. On top of that, it highlights how the recovery efficiency increases as the re-
covery time of the modified version are significantly shorter, precisely 3 m 47 s shorter. In
reality, the saved time is even longer as there are generation, transmission, Runner, and
hashcat overheads tight with each workunit.
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Figure 8.3: Original and adjusted scheduling algorithm workunit duration throughout task
duration comparison without considering communication overheads.

Unlike the rest of overheads, the generation overhead in the original implementation
grows with every active task and active host. Although, this thesis does not explicitly
contain the generator’s internal overhead measurements. The algorithm complexity de-
scribed in Section 6.6 supports the concerns. Therefore, the modified approach out-performs
the original approach in this area, as well.
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Chapter 9

Conclusion

While this thesis mentions some tools usable with either/both single machine and multiple
node systems. The thesis discussed the selection of the hashcat as the only tool used for
benchmarking. The main reasons for selecting the hashcat are its large supported hash-
mode pool and its ability to use accelerators via OpenCL kernel. The thesis then follows
by a description of FITcrack system, its architecture with a brief look at the underlying
BOINC framework. The thesis follows by selecting viable GPU accelerators and benchmarks
of their behaviour under different attack types, hash-modes, and several used cards. Later
at the end of its first half, the thesis summarizes and discusses some of the benchmark
results.

Thesis’ second half follows by presenting the recommendations and attack strategies
so crucial for efficient password recovery. In the next chapter, it then transforms the theory
into specific features and system modifications. The implementation of all new features
and modifications follows with its separated chapter. The chapter discusses the challenges
and the impact on the system modules. Finally, the last chapter compares the original
and modified system versions with a focus on the proposed changes.

Contribution

The process of obtaining selected GPUs is rather complicated, as the variety of widely
available and powerful model versions is somewhat limited. The task has not become any
easier even after the release of Nvidia’s new card series. Since the new cards have been
considered overpriced [44] for the power gain, they provide. Also, some cards — mostly
the top models from AMD — are hard to obtain since the gamers have no interest in them
or manufacturer releases an only limited amount of the cards around their release, as in
February 2019 with Radeon VII [6]. It results in only a minimal amount available in stores,
which then define a per customer quota.

Nevertheless, the data from obtained cards show that the Nvidia GeForce RTX 2080Ti
substantially outperforms the Nvidia GeForce GTX 1080 Ti while also consumes less power.
Also, the measurements show a performance similarity of the AMD Radeon RX 580 8G and
the Nvidia GeForce GTX 1060 6G while both consume a similar amount of electric power
throughout the benchmarks. Moreover, the same data neglect the possibility of building
a higher amount of less powerful computation nodes, as introduced in Chapter 3. The data
show that impossible with keeping a least the same performance and power costs without
increasing the initial costs. The extensiveness of the measurements makes up for an in-

51



dependent paper, which was already accepted and published at the student’s conference
Excel@FIT 2019 [46].

The recommendations and strategies are not easy to find as most of the experts in this
field work in companies or LEA protecting their know-how. However, there are companies
like NETMUX releasing at least some password recovery manuals [32]. Nevertheless, Chap-
ter 5 presents all gathered information regarding the topic and presents them in the form
of lists.

The proposed task prioritization methodology builds on the information provided by
NETMUX’s manual [32] and its summarization from Chapter 5. Chapter 6 presents
the FITcrack’s shortcomings identified throughout the personal usage of the system. More-
over, the proposed changes also reflect the author’s experiences with the FITcrack from its
development throughout the participation on the I ntegrated platform for analysis of digital
data from security incidents research project1 conducted on the faculty.

Finally, the last comparison and benchmarks show-case the relevance of the modifi-
cations as well as their impact on various recovery tasks. The change to the distribution
of dictionaries reduces the time required for the finishing of the task by 18 to 55 % according
to Tables 8.2 and 8.3.

Future work

The future topics of interest may be:

• Comparison of the node with the described configuration against configurations using
server motherboards.

• Analysis of how the PCI-e bandwidth impacts the password recovery in both the single
and multi-GPU system and how that changes based on the attack type.

• Analysis of how specific password modification rules and size of their sets impact
dictionary attack recovery speeds.

• Further analysis of proposed task prioritization and search for other methodologies.

• Replacement of BOINC subsystem by some other, which would reduce the communi-
cation overheads in deployment on a cluster.

1http://www.fit.vutbr.cz/units/UIFS/grants/index.php.en?id=1063
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Appendix A

Content of CD

• dictionary_processor/ – directory with sources of the fragmentation tool.

• gpu_benchmarks/ – directory with scripts and all GPU related results.

– post_processing/ – directory with scripts converting results to CSVs.
– power_reading/ – directory with MQTT broker, client, and Sonoff POW firmware.
– results/ – directory with the GPU measurement results.
– hashcat-5.0.0.7z – archive with precompiled hashcat used for benchmarking.
– how_to_measure.dm – measurement guide written in Markdown.

• masters_thesis-print.pdf – rendered text of thesis with disabled links.

• masters_thesis-wis.pdf – rendered text of thesis with active links.

• server_sources/ – directory with FITcrack module’s source codes.

– boinc_server/ – directory with FITcrack server source files.
– runner/ – directory with FITcrack client application.
– web_backend/ – directory with FITcrack backend source files.
– web_frontend/ – directory with FITcrack frontend source files.

• text/ – directory with the LATEX source files and figure of the thesis.
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Appendix B

Comparison of dictionary
and mask attack speeds
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Figure B.1: Speed gain of mask attack compared to dictionary attack targeting SHA1.
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Figure B.2: Average speeds of mask and dictionary attacks on eight GPUs targeting SHA1.
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Figure B.3: Average speeds of mask and dictionary attacks on single GPU targeting SHA1.
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Figure B.4: Detail of dictionary attack average speeds on single GPU targeting SHA1.
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Figure B.5: Detail of mask attack average speeds on single GPU targeting SHA1.
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B.2 SHA-256
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Figure B.6: Speed gain of mask attack compared to dictionary attack targeting SHA256.
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Figure B.7: Average speeds of mask and dictionary attacks on eight GPUs targeting
SHA256.
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Figure B.8: Average speeds of mask and dictionary attacks on single GPU targeting
SHA256.
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Figure B.9: Detail of dictionary attack average speeds on single GPU targeting SHA256.
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Figure B.10: Detail of mask attack average speeds on single GPU targeting SHA256.
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B.3 Bcrypt
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Figure B.11: Speed gain of mask attack compared to dictionary attack targeting bcrypt.
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Figure B.12: Average speeds of mask and dictionary attacks on eight GPUs targeting bcrypt.
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Figure B.13: Average speeds of mask and dictionary attacks on single GPU targeting bcrypt.
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Figure B.14: Detail of dictionary attack average speeds on single GPU targeting bcrypt.
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Figure B.15: Detail of mask attack average speeds on single GPU targeting bcrypt.
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B.4 Scrypt
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Figure B.16: Speed gain of mask attack compared to dictionary attack targeting scrypt.

1E+5

1E+6

1E+7

1E+8

Mask Dictionary Mask Dictionary

CentOS Windows

Sp
ee

d 
[H

/s
]

OS + Attack type

8x RTX 2080TI

8x GTX 1080Ti

8x GTX 1070Ti

8x GTX 1060 6GB

8x GTX 1050Ti 4GB

8x RX 580 8GB

Figure B.17: Average speeds of mask and dictionary attacks on eight GPUs targeting scrypt.
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Figure B.18: Average speeds of mask and dictionary attacks on single GPU targeting scrypt.
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Figure B.19: Detail of dictionary attack average speeds on single GPU targeting scrypt.
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Figure B.20: Detail of mask attack average speeds on single GPU targeting scrypt.
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B.5 RAR5
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Figure B.21: Speed gain of mask attack compared to dictionary attack targeting RAR5.
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Figure B.22: Average speeds of mask and dictionary attacks on eight GPUs targeting RAR5.
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Figure B.23: Average speeds of mask and dictionary attacks on single GPU targeting RAR5.
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Figure B.24: Detail of dictionary attack average speeds on single GPU targeting RAR5.
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Figure B.25: Detail of mask attack average speeds on single GPU targeting RAR5.
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Appendix C

Comparison of power
consumptions
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Figure C.1: Average power drain per one hour of measurements with effect of the length
of measurement’s duration.
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Figure C.2: Minimal power drain during measurements.
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Figure C.3: Maximal power drain during measurements.
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Appendix D

Long-term cost effectiveness of
node configurations
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Figure D.1: Long-term cost effectiveness chart showing computed hashes per one euro of the
total costs (purchase costs + power consumption costs) when targeting hash-mode SHA1.

0.00E+00

5.00E+13

1.00E+14

1.50E+14

2.00E+14

2.50E+14

3.00E+14

0.0 0.5 1.0 1.5 2.0 2.5 3.0

H
as

he
s/

to
ta

l c
os

t 
[H

/E
U

R
]

Years

8x RTX 2080Ti

8x GTX 1080Ti

8x GTX 1070Ti

8x GTX 1060 6GB

8x GTX 1050Ti 4GB

8x RX 580 8GB

Figure D.2: Long-term cost effectiveness chart showing computed hashes per one euro of the
total costs (purchase costs + power consumption costs) when targeting hash-mode SHA256.
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Figure D.3: Long-term cost effectiveness chart showing computed hashes per one euro of the
total costs (purchase costs + power consumption costs) when targeting hash-mode bcrypt.
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Figure D.4: Long-term cost effectiveness chart showing computed hashes per one euro of the
total costs (purchase costs + power consumption costs) when targeting hash-mode scrypt.
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Figure D.5: Long-term cost effectiveness chart showing computed hashes per one euro of the
total costs (purchase costs + power consumption costs) when targeting hash-mode RAR5.
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