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Abstract
This master’s thesis focuses on design and implementation of a flow allocator policy which
supports bandwidth reservation for the Recursive InterNetwork Architecture (RINA). Each
flow has some dedicated bandwidth, which is guaranteed to be available during the whole
lifetime of the flow. The allocator, which operates as a distributed system, attempts to find
a suitable path in the network graph. To achieve this goal, it must keep the information
about link utilization up to date. The proposed allocator has been implemented in the open
source project rlite. The first half of the thesis is concerned with congestion control theory,
and also studies a number of algorithms used in TCP. Additionally, it contains an overview
of the structure of RINA and the Raft consensus algorithm.

Abstrakt
Táto diplomová práca sa venuje návrhu a implementácii stratégie alokovania tokov s pod-
porou pre rezerváciu šírky pásma v rekurzívnej sieťovej architektúre (RINA). Každý tok
má vyhradenú šírku pásma, ktorej dostupnosť je garantovaná počas celej doby života toku.
Alokátor, ktorý funguje ako distribuovaný systém, má za úlohu nájsť vhodnú cestu v
sieťovom grafe a udržiavať informácie o využití spojov aktuálne. Navrhnutý alokátor bol
implementovaný do open source projektu rlite. V prvej polovici sa práca zaoberá teóriou
riadenia zahltenia a štúdiom algoritmov použitých v TCP. Práca taktiež obsahuje popis
hlavnej štruktúry architektúry RINA a konsenzus algoritmu Raft.
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Rozšírený abstrakt
Cieľom tejto diplomovej práce je načrtnúť nový smer efektívneho využitia šírky pásma v

sieťach umožnený vďaka rekurzívnej sieťovej architektúre (RINA). Najprv sa pozrieme na
riadene zahltenia z teoretického pohľadu a študujeme prečo a ako zahltenie v sieťach vzniká.
Skúmame možné prístupy k riadeniu zahltenia a taktiež vlastnosti, ktoré by malo funkčné
riešenie splňovať.

Nasleduje prehlad a porovnanie aktuálnych algoritmov pre riadenie zahltenia použí-
vaných v TCP/IP. Ako prvý je uvedený TCP Tahoe, primárne z historických dôvodov,
ktorý slúži ako základný algoritmus pre riadenie zahltenia pri popisovaní toho, ako fun-
gujú novšie algoritmy a v čom sa od Tahoe líšia. Ako študované algoritmy boli vybrané
TCP CUBIC, QUIC a TCP BBR. U každého z týchto algoritmov je popísaný jeho princíp
a hlavná myšlienka. Ďalej je takiež analyzovaná jeho funkčnosť (efektívne využitie šírky
pásma) ako aj chovanie pri zdielaní linky s tokmi využívajúcich iné algoritmy.

Referenčný model RINA je predstavený, popisujúci základné stavebné prvky tejto ar-
chitektúry a to, ako v nej prebieha komunikácia. Zvlášť pozornosť je venovaná práve tomu,
ako dochádza k zahájeniu komunikácie a alokácii tokov.

V krátkosti je predstavený problém konsenzu v distribuovanom systéme, a to, ako tento
problém rieši algoritmus Raft.

Jadrom práce je návrh a implementácia nového spôsobu alokácie tokov ktorá umožňuje
tokom rezervovať si časť šírky pásma. Dostupnosť tejto rezervácie je garantovaná po celú
dobu života toku. Keďže alokátor odmietne toky pre ktoré požadovaná šírka pásma nie je
dostupná, a toky sú obmedzené len na šírku pásma ktorú si rezervovali, zahltenie by nemalo
nastať. Na dosiahnutie tohoto cieľa si alokátor udržuje aktuálne informácie o využití pásma
liniek, a pri požiadavku na alokáciu toku prehľadáva graf siete za účelom nájsť vhodnú
cestu. Popis implementačnej časti je rozdelený na jendotlivé podproblémy, kde u každého
je popísaná motivácia ako aj implementované riešenie.

Posledná kapitola obsahuje zhodnotenie dosiahnutých výsledkov a toho ako sa systém
správa. Implementované riešenie umožňuje predchádzať zahlteniu ako aj efektívnejšie využí-
vať dostupné cesty vďaka tomu že viaceré toky z toho istého zdroja k tomu istému cieľu sú
schopné putovať inými cestami v sieti.
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snek’s cold kicker tea

∙ 2 lemons
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Strúčková polievka
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soľou, octom a vňaťkou.

6



Contents

1 Introduction 3

2 Congestion in Computer Networks 6
2.1 The Causes of Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Controlling Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Implicit Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Explicit Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Additional Factors to Consider . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Current Congestion Control Mechanisms 12
3.1 TCP Tahoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Reaching the Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Adapting to the Path . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 TCP CUBIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 TCP BIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Approximating BIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Properties of CUBIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 TCP BBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 RINA 18
4.1 Application Processes and Entities . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Distributed IPC Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Transport Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 IPCP Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 IPC Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6.1 Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6.2 Flow Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 The Raft Consensus Algorithm 23
5.1 The structure of Raft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Leader election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 Log replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



6 Guaranteeing bandwidth 25
6.1 Policy dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Getting bandwidth information into the LFDB . . . . . . . . . . . . . . . . 26
6.3 Finding the flow path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 Distributed flow allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Example operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Evaluation 34
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.1.1 Flow reshuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1.2 Support for unlimited flows . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3 Flow splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Conclusion 39

Bibliography 41

A Contents of the CD 44

B List of abbreviations 45

2



Chapter 1

Introduction

The rise of computer networking in the 1970’s has brought us a before-unseen ability to
communicate all across the globe, and by now has touched almost every aspect of our
lives. Chief among the achievements surely stands the Internet, a global network with a
misleading name. Originally intended for scientific collaboration, the Internet now serves
both as the crucial backbone of various systems that are needed for our day-to-day life
and as an entertainment medium with a nearly endless stockpile of content. Ranging from
international trade and business, sharing of vast amounts of data between scientists, and
various sensor networks to simply streaming a movie to your phone or talking to friends
half a world away, the usage of Internet has spread so wide within our society as to become
ubiquitous.

The Internet has seen an unexpected growth since its inception and continues to ex-
pand at a seemingly exponential rate as more and more devices are connected every day.
This success was however not without issues, and the Internet community is constantly
identifying new problems and working on finding solutions that would be applicable.

The causes of this are manifold — firstly, the operating environment keeps changing.
The computing power available, transmission speeds, use-cases and demands as well as the
heterogeneity of its components is vastly different to how things looked when the Internet
was still just a research project. It is therefore of no surprise that some mechanisms do
not work well in environments they were never meant to be deployed in and might need
changes, ranging from minor adjustments to complete reworks and replacements.

Secondly, at its time of creation, the ARPANET was a proof of concept. No one has
ever built a switched datagram network before — in a very real sense, it is (was!) a First
System. Very little was known about the principles of networking, so inspiration was taken
for systems design and other related disciplines when possible, while the rest was left to
intuition. After several decades and an immense amount of research and practical usage,
it turns out some assumptions made were right, while other concepts are in fact counter-
intuitive.

The third cause is closely tied to the second — the Internet is a victim of its own success.
Various issues that have been known since the beginning, like the problem with multihomed
addressing, were left to be solved at a later date.[6] As it is not uncommon in software
engineering, that never happened, and de facto temporary solutions have been here with us
for over thirty years. The sheer scale of the Internet, coupled with how it is now considered
a crucial part of the infrastructure that almost everything else seems to depend on in
one way or another, making radical changes extremely difficult. Researchers are limited
to do mostly small incremental adjustments which work around the problem while being
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backward compatible with actors that do not know about this change. Back in 1983, the
network was still small enough that they could afford to do a flag day, namely, switch from
NCP to the TCP/IP protocol suite across all nodes in the network. With the number of
nodes in the network being currently in the billions, one can barely try to imagine the
logistics of a such day-to-day switch, and the consequences of such global downtime.

I am borrowing the categorization of First, Second, and Third System from the wonderful
Linux and Unix Philosophy [8], in which the author dedicates a whole chapter to this
concept. To strike a balance between usefulness and brevity, I am going to cite the main
traits of each system, and how they relate to computer networking.

The First system

∙ Man builds the First System with his back against the wall.

∙ He has no time to do it right.

∙ Man builds the First System alone or, at most, with a small group of people.

∙ The First System is a ”lean, mean, computing machine“.

∙ The First System displays a concept that ignites others’ imaginations.

As stated before, the original ARPANET fits this categorization. It was a result of a
constrained environment with a clear and pragmatic goal, and was the basis for the vast
amount of work in this field.

The Second System

∙ ”Experts“ build the Second System using ideas proven by the First System.

∙ The Second System is designed by a committee.

∙ The Second System is fat and slow.

∙ The world hails the Second System as a great achievement, with much pomp and
circumstance.

We can view the current, TCP/IP Internet, as an instance of this. The complexity of
the current stack of network technologies means that even the theoretical five-layer model
does not hold true anymore and the layer abstraction often gets broken for the sake of
pragmatism.

The Third System

∙ The Third System is built by people who have been burned by the Second System.

∙ The Third System usually involves a name change from the Second System.

∙ The original concept is still intact and is regarded as obvious.

∙ The Third System combines the best characteristics of the First and Second Systems.

∙ Finally, the Third System’s designers are usually given the time to do it right.
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A Third System in this case would be the Recursive InterNetwork Architecture (RINA).
Taking the concepts from the First System and lessons learned Second System, it tries to
synthesize these into an architecture that is both full-featured and elegant. This thesis is
mostly concerned with RINA, and a whole chapter is dedicated to describing it in much
more detail.

No matter the actual technology, a large-scale communications network has to contend
with the issues of congestion and fairness. It is generally regarded as sensible that one user
should not be able to take all the resources for themselves1, and that the network should
be resilient to increases in incoming traffic, if it wants to be usable.

In TCP/IP, this is realized by congestion avoidance algorithms. Although there has
been a great deal of research on this topic, and many different algorithms exist with various
variables that can be tweaked, as we will see in the following chapter, they all work roughly
in the same way: a network flow increases its transmission speed until it guesses, using
some measured metric, that the path has become congested and backs off. These two
phases repeat, resulting in overfilling the network and then slowing down to let it drain.

RINA allows us to try a different approach. Before allocating a flow, we can look
if we can reserve some minimum guaranteed bandwidth on the path to the destination,
and simply reject the request if we are unable to provide this guarantee. In this way, we
can make sure that each active flow will have enough bandwidth to transmit some useful
information, and that no extra flows can be created that would result in network congestion.
The TCP congestion avoidance is a reactive an approach that tries to see how much it can
send before having to slow down to avoid congestion, while this is a proactive approach
that tries to prevent the possibility of congestion occurring in the first place. However, such
approach lacks the flexibility expected of modern networks; therefore, some consideration
will be given to whether these two modes could be used in collaboration.

This introductory chapter serves as an entry point that presents the context and mo-
tivation behind this work, as well as the structure of the work as a whole. It is followed
by the second chapter, which studies congestion control from a theoretical point of view,
looking at why and how congestion in networks happens and what approaches can be taken
when trying to avoid it. The third chapter analyzes concrete congestion control algorithms
that have been deployed in the Internet. Its purpose is to present an overview of current
approaches to the reader. The fourth chapter serves as a brief introduction to RINA and
familiarizes the reader with the overall architecture and its components, followed by a chap-
ter describing the working of the Raft distributed consensus algorithm and the problem it
solves. The sixth chapter, which is the core of this work, contains discussion about the
implemented extensions to the rlite RINA implementation. The designed solution is pre-
sented by decomposing it into several sub-problems. The motivation behind solving each
sub-problem is described, as is how it fits into the goal of the thesis as a whole. The chapter
ends with showcasing an example operation of the implemented solution, to demonstrate
how it works. The final chapter examines the achieved results, with some comparisons to
existing systems. A significant part is dedicated to discussing possible enhancements and
the pitfalls they contain. The thesis ends with a conclusion which summarizes the achieved
results.

1Assuming the case that no user is privileged over another.
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Chapter 2

Congestion in Computer Networks

Congestion is not a phenomenon limited to just computer networks, but one that can be
observed in a wide variety of environments. Whether it includes traffic jams or overcrowded
spaces at a festival, there are some common reasons why congestion happens — mainly that
resource demands exceed the capacity. In this chapter, we will closely look at conges-
tion in computer networks from a general point of view — specific TCP congestion control
algorithms are discussed in a separate chapter.

2.1 The Causes of Congestion
The flow and rate of traffic in computer networks naturally fluctuate for a multitude of
reasons. Some changes are regular and predictable — there are usually more users uploading
and downloading data during the day than during the night, while others may be caused
by quick, unpredictable events, e.g. a user trying to download a large media file from a
remote storage. In the first scenario, the traffic increase lasts for several hours and therefore
it makes sense to have links with high enough capacity to meet these demands. It is the
second case that congestion control is more interested in — the network sees a sudden,
relatively short-lived spike in traffic that saturates the link. The excess traffic is unable
to be transmitted and the device is left with only two options — buffer the packets to be
transferred at a later date, or drop them.

Most network-capable devices today implement some sort of queue for storing incoming
packets. Thus, the practice is to buffer the packets, and only drop them if the queue is
full.[34] The assumption this operates on is that once the burst increase passes, the buffered
packets can be used to efficiently utilize the link capacity, which would nicely compensate for
short-lived spikes. It might intuitively seem reasonable to have long queues, as it increases
the chance of successfully being able to buffer and accommodate the burst traffic. This is
not true for two reasons:

1. Operations on the queue add significant delay, dependent on the length of the queue.

2. Internet traffic does not strictly follow a Poisson distribution — the number of sudden
increases and decreases in traffic does not have to be the same.

From these two statements, we can see that unless we have an infinitely long queue,
packet loss can still occur. Furthermore, because the long delay is undesirable, queues
should generally be kept short.[34]
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Network links usually operate some threshold below their full capacity to allow some
headroom for such traffic spikes. This is called overprovisioning and brings some benefits —
besides handling small traffic bursts without saturating the link, an overprovisioned network
is easier to control and provides some room to accommodate a growing userbase without
having to immediately upgrade the network or failing to provide an acceptable service.

The goal of congestion control mechanisms is to utilize the network efficiently — that is,
transfer as much traffic as possible while avoiding packet loss and trying to keep the delay
low.[34] As we have previously mentioned, congestion leads to queues being filled, and that
leads to dropped packets and increased delay. Congestion is therefore undesirable and must
be avoided. The book Network Congestion Control[34] defines the role of congestion control
as such:

Congestion control is about using the network as efficiently as possible. These
days, networks are often overprovisioned, and the underlying question has shifted
from ‘how to eliminate congestion’ to ‘how to efficiently use all the available ca-
pacity’. Efficiently using the network means answering both these questions at
the same time; this is what good congestion control mechanisms do.

To illustrate how congestion arises, it provides the following example case:

R1 R2

PC1 

PC2 PC4

PC3

300kbps

100 kbps

100 kbps

100 kbps

1 Mbps

Figure 2.1: A basic network scenario

Consider that there are two flows active in the network, one from PC1 to PC3 and
another from PC2 to PC4, both operating at their full available capacity, and no congestion
control mechanisms are in place. Each flow is limited to 100 kbps by the first link along
the path; however, since the shared link between R1 and R2 is of satisfactory high capacity,
no congestion happens, and each flow can utilize its path fully.

Let’s say we upgrade the link between PC1 and R1 to 1 Mbps, resulting in the scenario
found in figure 2.2. What happens is that traffic arrives at R1 faster than it can leave and
the queue starts filling. The interesting part of this experiment is that after a while, the
PC2-PC4 flow becomes starved, even though the PC1-PC3 can also only receive 100 kbps at
best. Increasing the speed of a link did not improve the overall performance of the network,
quite the contrary. A plot displaying the changes of throughput over time is found in
figure 2.3, generated using scripts from the book.

We can notice three distinct phases in the plot — first, both flows are continually in-
creasing their throughput until they reach the knee, after which they are both transmitting
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Figure 2.2: A basic network scenario with upgraded link capacity

at their maximum capable speed and the links are saturated; however, a queue at R1 pro-
ceeds to build up because it cannot dispatch packets as fast as it is receiving them. As
there is ten times more data arriving from PC1 than from PC2, this ratio is represented in
the contents of the queue as well. As R2 starts to send off packets from the queue, most
of them will belong to PC1 and PC2 will, therefore, get noticeably lower throughput. The
breaking point for this is denoted as the cliff in the plot. It is worth pointing out that the
plot shows the throughput as seen by the receivers — it is quite possible (and likely) that
PC1 will be able to achieve more than 100 kbps on the R1-R2 link, which will result in some
packets being buffered on R2 as well. That bandwidth could be better utilized by allowing
the PC2-PC4 flow through.
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Figure 2.3: Link throughput from figure 2.2
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The aim of congestion control is to have the network operate left of the cliff (for to
the right lie dragons and congestion). Avoiding congestion is one part of the problem, the
other part is to be efficient. The significant point here is the knee — although the overall
throughput is similar from there all the way to the cliff, the further we get from the knee,
the more the queues get filled, resulting in increasing delay. Therefore, most congestion
control algorithms try to estimate the knee and have the senders operate near it.

2.2 Controlling Congestion
The basic idea of congestion of control is as follows: have the sender adjust its sending
rate based on information about the network so that it operates near the knee. How do we
get the information, and how do we act on it are the two main problems every congestion
control algorithm tries to solve.

There exist two main approaches to controlling congestion.[17] The first is proactive,
where each user gets reserved some amount of bandwidth that is guaranteed to be used
solely by them. This is how things were traditionally done in circuit-switched telephone
networks. An entity within the network manages the available bandwidth and executes
admission control. The advantage of this approach is its simplicity and easier modelling,
but it does not use the network as efficiently as possible in case some users do not use all
their reserved bandwidth.

The counterpart to that is a reactive approach, where the sender adjusts its rate based
on feedback from the network. This method allows for far more dynamic regulation and
better utilization of resources, better suited for the lively environment of computer networks,
which explains why congestion control in TCP has been predominantly reactive. The price
of this is complexity, both in designing such a scheme and implementing it correctly. An
additional danger is that the coexistence of several variations of such mechanisms within
the network might prove to be fatal for some of them, as the unexpected behaviour of their
unknown peers will cause them to not perform their function correctly.

An alternative dichotomy is to categorize the mechanisms as open loop and closed loop,
which is the view taken by the field of control theory. Open loop controls use no feedback,
which in the case of computer networks means using a priori knowledge about the available
bandwidth. Closed loop controls use feedback to determine the action to be taken. We can
see that these two categories roughly correspond to the proactive and reactive groups.

These two groups are however not mutually exclusive — one can use a combination of
both. This is important for computer networks, because the rate at which the system
changes means achieving satisfactory efficiency using only a proactive approach would be
extremely difficult.

A network flow starts at the sender, goes through zero or more intermediate nodes and
ends at the receiver. From a control point of view, there exist two groups: controllers, which
can take some action, and measuring points, which are able to measure some information.
Intermediate nodes can belong to both groups, whereas senders are exclusively controllers
and receivers are purely measuring points. A congestion control mechanism could therefore
theoretically involve only intermediate nodes; however, this is not very practical. In a
scenario involving only a sender and a receiver, the receiver would have no way to inform
the sender to adjust its rate. While congestion might not be a problem, in this case, the
receiver should be able to protect itself from being overwhelmed by incoming traffic. This
is called flow control.
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Congestion control and flow control are very closely related — the first protects the
network, whereas the latter protects the receiver — and both achieve their goals by tuning
the flow rate based on received feedback. A sender should take into account both and
choose the lower rate that resulted from the corresponding calculations.

2.2.1 Implicit Feedback

Measuring useful metric and propagating feedback back to the sender brings with itself its
own set of problems and further increases complexity. Therefore, many algorithms try to
work with only implicit feedback.

As we have already seen, when a link becomes congested, queues begin to grow resulting
in higher delays and dropped packets. These are two metrics that the sender can use to
try to estimate whether congestion is occurring and action needs to be taken. The prob-
lematic part is that both delay and packet loss can happen for a variety of reasons and do
not necessarily mean that congestion is happening. Using implicit feedback means making
assumptions about how the network works. As we see more and more diversity in the under-
lying networking technologies, such assumptions become more difficult to make — consider
for example WiFi networks, which have a higher packet loss rate than wired Ethernet based
on their inherent properties, in this case, interference and noise, as well as collisions. More-
over, using packet loss as a sign of congestion means that congestion first needs to take
place for the mechanism to act, which is not optimal.

2.2.2 Explicit Feedback

The alternative to implicit feedback is to send feedback that is explicit. This simplifies
decision making for the sender, as it is no longer required to guess and make assumptions
about the situation.

An example of such approach is called a choke packet. When an intermediate node
detects congestion, it sends a packet to the sender informing it that it should reduce its
sending rate. The benefit of this is that the information is precise, since it is generated by
the entity where congestion is happening, and it is fast, in the sense that the sender does
not need to wait for any timers to expire to consider a packet lost. However, there are some
not so obvious downsides. Creating a notification packet means additional computational
effort for the node, especially when it is overloaded. Additionally, it sends more packets
into the already congested network, although in reverse direction.

2.3 Additional Factors to Consider

2.3.1 Stability

Feedback and action are not synchronous in the network; there is a finite delay between
them. Moreover, the system is noisy, and the observed parameters might get corrupted in
transit.[17] A controller should only act on feedback that reflects the system’s state.[34] It
should react neither too fast, as to let the system stabilize after action was taken, nor too
slow, for then the information that prompted the change is outdated.
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2.3.2 Scalability

The Internet is constantly growing, as more and more devices become connected. A crucial
aspect of any network technology is how well it scales and whether it can keep up with the
network expanding. Consider for example keeping per-flow state information. Since the
inception of the Internet, link speeds have risen several orders of magnitude, and so has
the number of flows a core router would need to keep track of. In the past 10 years, the
number of BGP RIB entries in core routers has more than doubled.[13]

2.3.3 Fairness

Last but not least, any congestion control mechanism should be fair regarding the utilization
of bandwidth by active users. The naive approach would be to divide the bandwidth equally
between participants. However, doing this does not work well because they might be limited
by a bottleneck along the path, leading to unused bandwidth. This can be amended by
the progressive filling algorithm, where each participant progressively gets more bandwidth
until a bottleneck is reached. At this point, only the unaffected users continue being given
more bandwidth, until all bandwidth is allocated.
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Chapter 3

Current Congestion Control
Mechanisms

In this chapter, we will look at some of the existing congestion control mechanisms that are
employed on the Internet. The first is TCP Tahoe, which was chosen for mostly historical
reasons to see what a basic1 congestion control algorithm might look like. As congestion
control and reliable transfer are tightly interconnected in TCP, the section about Tahoe
will describe that as well. The next chosen algorithm is TCP CUBIC, which is currently
the default algorithm of the Linux kernel, as an example of a more modern but stable
algorithm. Afterwards, we move on to more experimental efforts, namely QUIC and TCP
BBR, which are both developed by Google. QUIC is unique in this list in that it is not
just a congestion control algorithm but a whole transport layer protocol with a specific use
case in mind.

3.1 TCP Tahoe
TCP Tahoe is TCP as defined in RFC 1122 [1] and first appeared in version 4.3 of the
BSD operating system [20]. TCP itself was first specified in RFC 793 [25]. However, this
document does not include any congestion control mechanisms.

TCP achieves reliable communication using retransmission of lost packets. For this
purpose, it uses a concept known as the sliding window, which can be seen in figure 3.1.
All the data between the left window edge and the right window edge can be sent into the
network. Everything left of the left window edge has been acknowledged as successfully
delivered, everything right to the right window edge is waiting to be sent.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

left
window
edge

right
window
edge

Figure 3.1: A sliding window
1It might often be easier to describe a newer algorithm by showing what it does differently from Tahoe.

This is in no way meant to demean Tahoe, quite the contrary, given its historical significance.
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Moving the left and right window edge is a matter of congestion and flow control.
The left edge moves to the right whenever data directly to the right has been successfully
acknowledged; moving or not moving the right edge is done by the aforementioned controls
and is the mechanism by which the receiver can influence the rate at which the sender
transmits data over the network. In practice, this is done by the acknowledgment also
carrying information about the advertised window size.

Retransmission of lost data happens after a dynamically computed value called the re-
transmission timeout. It is calculated from the round trip time using exponentially weighted
moving average. First, a smoothed round trip time is calculated, which is used to compute
the RTO as such:

𝑆𝑅𝑇𝑇 = (1 − 𝛼) * 𝑆𝑅𝑇𝑇 + 𝛼 *𝑅𝑇𝑇

𝑅𝑇𝑂 = min(𝑈𝐵𝑂𝑈𝑁𝐷,max(𝐿𝐵𝑂𝑈𝑁𝐷, 𝛽 * 𝑆𝑅𝑇𝑇 ))

where 𝑈𝐵𝑂𝑈𝑁𝐷 is the upper bound for the timeout, 𝐿𝐵𝑂𝑈𝑁𝐷 is the lower bound, 𝛼 is
the smoothing factor and 𝛽 is a delay variance factor.

How these values are computed is important for us because TCP Tahoe uses packet
loss to estimate congestion. The original paper by Van Jacobson [15] describes five algo-
rithms for congestion control, but we will focus on two of them — slow start and congestion
avoidance.

In the paper, Van Jacobson bases his work on a principle called conservation of packets,
which he describes as follows:

By ‘conservation of packets’ I mean that for a connection ‘in equilibrium’, i.e.,
running stably with a full window of data in transit, the packet flow is what
a physicist would call ‘conservative’: A new packet isn’t put into the network
until an old packet leaves. The physics of flow predicts that systems with this
property should be robust in the face of congestion. Observation of the Internet
suggests that it was not particularly robust. Why the discrepancy? There are
only three ways for packet conservation to fail:

1. The connection doesn’t get to equilibrium,
or

2. a sender injects a new packet before an old packet has exited,
or

3. the equilibrium can’t be reached because of resource limits along the path.

3.1.1 Reaching the Equilibrium

Slow start is the initial phase of congestion control. The name is misleading because its
purpose is to expand the window to a reasonably large size in a short period of time.
The conservation of packets principle states that a packet has to leave the network before
another can be put in — one way to look at this is to see the system as self-clocking. The
sender uses acknowledgments as a clock for transmitting more packets. A benefit of this is
that it adjusts well to bandwidth and delay variations; however, it is difficult to get going.
Packets can only be sent as fast as acknowledgments are received, and acknowledgments
are limited by the rate of incoming packets.

The slow start algorithm was developed to start this clock by gradually increasing the
amount of data that is being transmitted. It consists of making several adjustments to the
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sender. A new window called the congestion window (𝑐𝑤𝑛𝑑) is introduced. The size of this
window is set to one packet whenever the connection is starting or restarting. With each
received acknowledgment, this window increases its size by one packet. The sender takes
the minimum of this and the advertised window when deciding how much data it is allowed
to send.

3.1.2 Adapting to the Path

The second violation happens because of wrong retransmission timers, which have already
been discussed, so let’s now focus on the the third violation. As we’ve discussed in chapter 2,
choosing how to get information about congestion and how to react to it are two main
questions of every congestion control algorithm. In this case, a decision was done to use
packet loss as a signal that the network is congested, which is a form of implicit feedback.
The actions the sender should take are as follows:

1. On a packet timeout, halve the size of 𝑐𝑤𝑛𝑑.

2. On each acknowledgment, increase the size of 𝑐𝑤𝑛𝑑 by 1/𝑐𝑤𝑛𝑑.

3. The minimum of 𝑐𝑤𝑛𝑑 and the advertised receiver window should be used when
sending.

Slow start and congestion avoidance are commonly used together to form a complete
congestion control mechanism. The decision of which algorithm to use is done by intro-
ducing a new threshold variable, 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ. This is initially set to an arbitrary value and is
reduced to half whenever a timeout occurs. The size of 𝑐𝑤𝑛𝑑 is compared to 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ— if
smaller, slow start is used, else the window increases according to congestion avoidance.

3.2 TCP CUBIC
TCP is known to under-utilize the available bandwidth, especially in the case of networks
with a large bandwidth-delay product (also called long fat pipes) [24, 33]. This is caused
by the fact that the growth of the congestion window is tied to the round trip time, which
means that for long fat pipes, the window could be large but does not grow fast enough.
This has led to the development of many new congestion control algorithms designed to
improve the situation — one such variant is TCP CUBIC [10].

3.2.1 TCP BIC

CUBIC builds on the ideas of TCP BIC, which uses a different window growth function
than what was described for TCP Tahoe [35]. BIC uses two congestion window growth
policies — binary search increase and additive increase.

Binary search increase views congestion control as a searching problem with a simple
yes/no feedback. Two variables are used, 𝑊𝑚𝑎𝑥 and 𝑊𝑚𝑖𝑛 —𝑊𝑚𝑎𝑥 is initially set to the
window size just before a packet loss occurred while 𝑊𝑚𝑖𝑛 is the size after recovery. The
midpoint of these two sizes is computed, which becomes the new congestion window. If the
loss occurs, this becomes the new 𝑊𝑚𝑎𝑥, else it becomes the new 𝑊𝑚𝑖𝑛 and the process
repeats, until the difference becomes less than a minimum increment threshold 𝑆𝑚𝑖𝑛.

To prevent the window from growing too fast in a single step, it uses additive increase.
If the midpoint is further than the maximum increment threshold 𝑆𝑚𝑎𝑥, the window size
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is incremented by 𝑆𝑚𝑎𝑥 instead. If the window size grows past 𝑊𝑚𝑎𝑥, the algorithm must
probe for a new maximum at which packet loss occurs. If the current window size is less
than 𝑊𝑚𝑎𝑥 + 𝑆𝑚𝑎𝑥, increments are done in multiples of 𝑆𝑚𝑖𝑛, starting at 1 * 𝑆𝑚𝑖𝑛 and
doubling it with each step. After reaching 𝑊𝑚𝑎𝑥 +𝑆𝑚𝑎𝑥, it switches to the aforementioned
additive increase, which is incrementing the window size by 𝑆𝑚𝑎𝑥.

3.2.2 Approximating BIC

As BIC’s window growth function is quite complex, CUBIC uses a function that approx-
imates the shape of the BIC growth function. It is also defined in real time and is thus
independent of round trip time — this guarantees RTT fairness. The window sizes of dif-
ferent flows with varied RTT will increase at the same rate. The function determining the
size of the congestion window is defined as such:

𝑊𝑐𝑢𝑏𝑖𝑐 = 𝐶(𝑡−𝐾)3 + 𝑊𝑚𝑎𝑥

where 𝑊𝑚𝑎𝑥 has the same meaning as in BIC, 𝐶 is a scaling factor, 𝑡 is the time that
has elapsed since last window reduction and 𝐾 = 3

√︀
𝑊𝑚𝑎𝑥𝛽/𝐶 where 𝛽 is a constant

multiplication decrease factor (window reduces to 𝛽𝑊𝑚𝑎𝑥). Growth is also bounded by no
more than 𝑆𝑚𝑎𝑥 per second to enhance fairness and stability.

In networks with short RTT, CUBIC will grow slower than the RTT dependent TCP.
To alleviate this, CUBIC introduces a TCP mode in which the window size after a loss
event is computed like this:

𝑊𝑡𝑐𝑝 = 𝑊𝑚𝑎𝑥 × 𝛽 + 3 × 1 − 𝛽

1 + 𝛽
× 𝑡

𝑅𝑇𝑇

In case 𝑊𝑡𝑐𝑝 is greater than 𝑊𝑐𝑢𝑏𝑖𝑐, it is used as the congestion window size.

3.2.3 Properties of CUBIC

CUBIC achieves intra-protocol fairness by the use of the multiplicative factor 𝛽; a flow
with a larger 𝑊𝑚𝑎𝑥 will shrink its window more, and since 𝐾 is proportional to 𝑊𝑚𝑎𝑥, it
will grow its window more slowly. Two CUBIC flows will therefore eventually converge to
windows of the same size.

Thanks to its independence of RTT for window growth, it is also RTT fair. The growth
function is dominated by 𝑡— in the case of congestion, any competing flows will have
approximately the same 𝑡.

The cubic course of the growth function results in longer congestion epochs; however, in
contrast with the linear increase in TCP, where long epochs would mean slower growth, it
approaches the equilibrium quickly and then stays there for an extended period. A larger
portion of the epoch is spent closer to the knee, resulting in better bandwidth utilization.

3.3 QUIC
QUIC is a modern transport layer protocol designed to address some shortcomings of
SPDY[30], another Google effort, which later became the basis for HTTP/2 [27, 14]. One
of SPDY’s features is multiplexing several application streams into a single TCP stream.
This results in head-of-line blocking when one of the streams experiences packet loss, as the
other streams have to wait until the lost packet is retransmitted. Additionally, shrinking the
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congestion window affects all streams, resulting in worse performance overall. Therefore,
the motivation is to create a TCP-friendly transport protocol over UDP which would be
able to deal with these issues. It further includes features such as forward error correction
not commonly found in TCP. The project homepage describes it as ”TCP+TLS+HTTP/2
implemented on top of UDP“.[29] As the scope of the QUIC project is quite wide, we will
only focus on parts related to congestion control.

Support for pluggable congestion control is built into the protocol; the current de-
fault algorithm is a reimplementation of TCP CUBIC.[11] QUIC additionally supports
richer signaling than pure TCP — each packet carries a different sequence number, allowing
to distinguish between original and retransmitted packets (and their acknowledgments).
Furthermore, the delay between reception of a packet and sending the corresponding ac-
knowledgment is carried explicitly in the packet which aids in round trip time calculations.
Another feature is the support for distinct stream-level and connection-level flow control to
manage the sending rate of the multiplexed streams.

Evaluation of QUIC shows that it generally performs better than TCP CUBIC under
loss, by avoiding head of line blocking and recovering the congestion window faster, and in
environments with a high delay due to its 0-RTT connection establishment.[16] However,
it performs significantly worse in variable delay scenarios, as it incorrectly interprets a
large number of reordered packets as packet loss. Although both protocols use the CUBIC
algorithm, QUIC increases its window more aggressively and more often; this results in
QUIC being unfair to TCP flows by commonly consuming half of all available bandwidth.
However, it is fair when sharing bandwidth among several QUIC flows, which is to be
expected from a CUBIC algorithm.

3.4 TCP BBR
The final algorithm we will look at is TCP BBR, also developed by Google. The motivation
was to improve transmission performance over long fat pipes, for which the traditional loss-
based algorithms do not scale well.[3] Instead of interpreting lost packets as congestion,
BBR tries to estimate the connection bottleneck and match the sending rate accordingly.

This is achieved by repeatedly measuring the round trip propagation time 𝑅𝑇𝑝𝑟𝑜𝑝 and
bottleneck bandwidth 𝐵𝑡𝑙𝐵𝑤. However, only one can be reliably measured at the same
time. If the inflight traffic is not greater than BDP (bandwidth-delay product, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ×
𝐷𝑒𝑙𝑎𝑦), more data could still be sent before exhausting the bottleneck bandwidth — but
by saturating the bottleneck, queues start to fill which reflects on the round trip time
measurements. It is necessary to repeat these measurements, as the values might not be
constant durnig the lifetime of a connection — changes in the path can affect both the round
trip time (as the pipe becomes shorter or longer) as well as the bottleneck bandwidth (by a
wireless link changing its rate). Note that these two parameters can change independently
of one another, which is why knowing both is necessary to match the sending rate.

Round trip time can be calculated at time 𝑡 as:

𝑅𝑇𝑇𝑡 = 𝑅𝑇𝑝𝑟𝑜𝑝𝑡 + 𝜂𝑡

where 𝜂 stands for additional delays introduced by queues, receiver ACK strategies and
other variable factors. By writing round trip time in this way, we can see that 𝑅𝑇𝑝𝑟𝑜𝑝 is
a physical property of the path that changes only when the path itself changes. As path
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changes do not occur very often, 𝑅𝑇𝑝𝑟𝑜𝑝 at time 𝑇 can be estimated as:

𝑅̂︂𝑇𝑝𝑟𝑜𝑝 = 𝑅𝑇𝑝𝑟𝑜𝑝 + min(𝜂𝑡) = min(𝑅𝑇𝑇𝑡) ∀𝑡 ∈ [𝑇 −𝑊𝑅, 𝑇 ]

which is a running minimum over the time window 𝑊𝑅. To calculate the bottleneck band-
width, the delivery rate 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑅𝑎𝑡𝑒 = Δ𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

Δ𝑡 is used:

𝐵̂︂𝑡𝑙𝐵𝑤 = 𝑚𝑎𝑥(𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑅𝑎𝑡𝑒𝑡) ∀𝑡 ∈ [𝑇 −𝑊𝐵, 𝑇 ]

where 𝑊𝐵 is a time window typically six to ten RTTs.
As learning both values during the same time window is impossible, BBR keeps track

of what state it is currently operating in, what can be learned, and how to switch states in
case information becomes stale. Most of the time is spent with one BDP in transit, which
results in low delay (as delays are caused by queues building up) and gives the ability
to learn 𝑅𝑇𝑝𝑟𝑜𝑝. Periodically, it increases its sending rate for one 𝑅𝑇𝑝𝑟𝑜𝑝 interval to
probe for new 𝐵𝑡𝑙𝐵𝑤; this fills the queues, which are left to drain by spending another
𝑅𝑇𝑝𝑟𝑜𝑝 interval sending at a slightly lower rate. For situations when the application does
not have enough data to send and the connection is app limited, samples are discarded
as they would lead to underestimating the bottleneck bandwidth. Samples are marked as
application limited when there was some moment during the time window when there was
no data to send.[5, 4]

Experiments done with BBR show that behaviour on links in the Mbps range is fairly
consistent with behaviour on links in the Gbps range and that it successfully achieves
the goals of reduced queuing delay and reduced loss rate with shallow buffers.[28] Despite
that it is shown to be RTT unfair, converging to a fair share only within groups with
similar RTTs – the groups themselves are unfair among each other. Another result of the
experiment is the confirmation of formal analysis done in [12] that when multiple flows
compete, BBR overestimates the bottleneck by about 1.5 BDP. If the buffers cannot hold
this additional traffic, the connection will suffer higher retransmission rate than CUBIC, as
it does not interpret packet loss as congestion, by a factor of 10. Fairness between a BBR
and CUBIC flow is dependent mainly on buffer sizes, but up to 3 BDP, they reach a fair
share. However, with multiple CUBIC flows, CUBIC is suppressed and BBR consistently
claims more bandwidth.
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Chapter 4

RINA

RINA is an architecture whose principles were first outlined in the book Patterns in Network
Architecture: A return to Fundamentals by John Day [6, 32]. It is an attempt to learn from
the lessons and failures of the network technologies since the original ARPANET to try to
take a more scientific, less artisan approach to designing network architectures. The most
significant insights are that: (I) network communication is interprocess communication
(IPC) and nothing but IPC; (II) there is only one layer which repeats as many times as
needed. The consequence of these statements is an architecture that is, in many ways,
vastly different from the OSI or TCP/IP model.

4.1 Application Processes and Entities
To properly understand RINA and its IPC approach to networking, we will start by look-
ing at the application. The Application Process (AP) is defined as ”The instantiation of
a program executing in a processing system intended to accomplish some purpose. An
Application Process contains one or more tasks or Application-Entities, as well as functions
for managing the resources (processor, storage, and IPC) allocated to this AP“ [26]. In
turn, the Application Entity (AE) is ”a task within an application process directly involved
with exchanging application information with other APs“ [26]. In other words, each AP,
besides parts to accomplish its primary goal, may contain several AEs which are the parts
concerned with communication.

There is only one application protocol called the Common Distributed Application
Protocol (CDAP). This protocol allows APs to execute 6 basic operations on objects —
read/write, create/delete and start/stop. Anything that an application might need to access
is an object outside of the protocol, resulting in a straightforward and unifying approach
without having to create specialized protocols. Another consequence of this design is that
all application protocols are stateless, as all state is in the application itself. Since each AP
can have multiple AEs, they can all expose access to different objects with distinct access
control.

4.2 Distributed IPC Facility
Two processes in an operating system which desire to do IPC require the availability of
certain functions from the operating system, such as the ability to locate the other process,
determine permissions and pass information. Similarly, two APs which want to commu-
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nicate over the network require the services of a Distributed IPC Facility, referred to as
a DIF. A DIF is similar to a layer in that it is an organizing structure, but the functions
which constitute a DIF make it a fundamentally different entity. A DIF is a collection of
IPC processes (IPCP) which each execute routing, transport and management functions.
Each (N)-level DIF utilizes the services of the underlying (N-1)-level DIF, with the lowest
DIF being the physical link itself.

This yields an architecture that scales indefinitely, with any constraints imposed not
being a property of the architecture itself but physical limitations. All DIFs have the same
functions, but with different scope and range. In practice, this means that for example
routing is done several times at one node, and there are several routing tables, each with
different information.

A DIF is a specific case of a Distributed-Application Facility (DAF) where the ap-
plication is providing IPC. Each IPCP is therefore an AP as well. Generally, a DAF is

”a collection of two or more cooperating APs in one or more processing systems, which
exchange information using IPC and maintain shared state. In some Distributed Appli-
cations, all members will be the same, i.e., a homogeneous DAF, or may be different, a
heterogeneous DAF“ [26].

Membership in DIFs is dynamic — hosts may join and leave DIFs as needed, or even
create a new DIF if no suitable one exists, provided they share some (N-1)-DIF with the
neighbours they want to communicate with. As the IPC a DIF provides in itself an appli-
cation, each DIF also holds some state, which includes various attributes related to how
the DIF operates. An example of such might be the authentication policy. In the case
that host A and B who are enrolled in the same DIF require stronger authentication than
the DIF provides, they can establish a new (N+1)-DIF with the desired policy over the
common (N)-level DIF.

4.3 Addressing
Due to the recursive nature of the architecture, addressing is noticeably different from the
TCP/IP model. First of all, there is no global address space — each address is a synonym for
an IPCP local to the DIF it appears in. All layers route on their addresses, and while there
exists a (N) to (N-1) address mapping, this routing is done by the (N-1) layer. Addresses
are structured to facilitate their use within the layer, i.e., they might contain topological
information.

While this may appear deceptively simple, a number of useful properties come out
from this structure. Chief among them is support for multihoming and its extreme case,
mobility, which require a lot of work to function properly in TCP/IP. As the routing
vertically between DIFs is done in the lower DIF, consequently multihoming is simply
an IPCP having multiple (N-1) bindings. Mobility can be viewed as nothing more than
multihoming with the (N-1) bindings appearing and disappearing more frequently. (N)
addresses may change by joining a different DIF (as they are of local significance) in which
case it is simply a matter of creating a new binding; or because its topological significance
changes, where the process is more complex. The IPCP receives a new synonym and starts
using it for all ongoing communication, prompting the other side to switch to using the new
address as well. As all communication is transferred to this new address, the old one dies
out.

The second significant difference is RINA’s support for Application Process Names
(APN), as a globally unambiguous name for the AP, unlike TCP/IP where applications are
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identified by a combination of the host’s IP address and the (TCP/UDP) port number. To
make matters worse, the port number is overloaded with three different semantics — the
application name, the port-id for the application to communicate with the flow (the socket)
and as a connection endpoint. RINA decouples these intro three separate entities, with the
port-id having only local significance for the AP and the Connection-Endpoint-id (CEP-
id) being local to the AE it originated in. The combination of the source and destination
CEP-ids creates (together with the QoS-id) a connection-id, which appears in the PDUs
sent over the wire.

4.4 Transport Protocols
Mechanisms are invariant parts of the protocol that are ever-present, whereas policies are
variant parts that can be negotiated during the communication establishment phase de-
pending on the higher-level requirements. Properly separating protocol components into
these two categories reveals that there is no need to for multiple different transport proto-
cols; the existence of only one is perfectly sufficient.

To provide an example, consider the requirements for media streaming traffic. Opti-
mally, the PDUs would be delivered in-order, but there is no need for reliable traffic — in
fact, reliable delivery is undesirable. In the current Internet, the application has a choice
between TCP and UDP, with neither being fully sufficient — UDP does not do in-order de-
livery while TCP imposes reliable transfer. The process of acknowledging PDUs is rigidly
built into TCP. With a better-designed protocol, how acknowledgment works would be a
mechanism but when to acknowledge would be a policy. In the case being considered, the
policy could be to always acknowledge PDUs, even if they did not arrive. This approach also
shines some light on the actual semantics of ACKs — they do not mean I have received the
PDU, as it is commonly understood, but You can send more PDUs; a slight yet significant
difference. [6]

There is another substantial dichotomy related to the operation of transport proto-
cols which needs to be contemplated to understand the reasoning leading to the design of
protocols in RINA. We can separate mechanism into two groups based on how tied they
are to the PDUs being transferred — tightly-coupled and loosely-coupled. Tightly-coupled
mechanisms must be associated with every PDU and handle fundamental aspects of data
transfer, such as integrity checks and sequence numbering. The loosely-bound mechanism,
on the other hand, relates to features associated with the data transfer in general, namely
flow control and reliability. It is possible to include another group, consisting of even more
loosely-coupled elements required for data transfer, such as routing and resource allocation.

These groups each operate at a different timescale and frequency, the most tightly-
coupled working the fastest and the least tightly-coupled the slowest. At the same time,
the computation required grows in complexity, being fairly straightforward for the former
and rather complicated for the latter. They are decoupled from each other by a shared
state vector which holds the state information. Tightly bound mechanisms write to this
state vector, whereas loosely-bound mechanisms read from it.

Looking at this structure, it becomes clear that there are two protocols involved with
data transfer, each with its Protocol (state) Machine (PM) and bound by the state vector.
In RINA these protocols are called the Data Transfer Protocol (DTP) and Data Transfer
Control Protocol (DTCP), and together they form the Error and Flow Control Protocol
(EFCP).
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The design of DTCP is based on Watson’s Delta-t protocol [7]. As his insights into the
nature of transfer protocols have shown, all properly designed data transfer protocols are
soft-state. Maintaining explicit state synchronization using SYNs and FINs is unnecessary;
time-based synchronization is sufficient for reliable data transfer. All that is required for
reliable communication is the existence of three timers with upper bounds: (I) Maximum
Packet Lifetime (MPL), which denotes the maximum amount of time that a packet can
exist in a network; (II) a retransmission timer which denotes how long the sender stores
an unacknowledged message with the ability to retransmit it; (III) an acknowledgment
timer which denotes how long the receiver can wait before sending an acknowledgment of a
received PDU. Delta-t assumes that all connections exist all the time, but synchronization
state is maintained only for the duration of data transfer activity. After periods of inactivity,
the state may be discarded.

4.5 IPCP Components
The purpose of the IPCP is to allow the system to do IPC with other DIF members. To
achieve this goal, it performs a number of functions which could be categorized into three
groups analogous to ones described in the previous section. The functions and their cate-
gories are as follows:

Data Transfer

∙ Delimiting

∙ Data Transfer

∙ SDU Protection

∙ Relaying and Multiplexing Task

Data Transfer Control

∙ Error Control

∙ Flow Control

Management

∙ Enrollment

∙ Flow Allocator

∙ Resource Allocator

∙ Common Distributed Application Protocol

Detailing each component’s purpose and operation is vastly out of the scope of this
thesis; this listing mainly serves as a reference to give the reader an idea of what parts the
IPCP actually consists of.
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4.6 IPC Communication
This section gives a step-by-step overview of how communication in RINA works, going
through all the necessary procedures that need to be executed before data transfer can
happen. The goal of this is to put all of the pieces together and make the reader familiar with
the process, as this knowledge will be useful when discussing the proposed flow allocation
extensions.

4.6.1 Enrollment

For two IPCPs to establish a communication channel, they need to be members of the same
DIF. If there is no DIF, these two IPCPs have in common, one must join a DIF the other
one is already a member of.

The process of joining a DIF is commonly referred to as enrollment. Given that IPCP
i wants to communicate with IPCP k in DIF A, it first needs to share some DIF B with an
IPCP j, with j also being a member of A and B being an underlying DIF of A, as seen in
figure 4.1. Using the common DIF B, i requests that an IPC channel be established with j
using j’s Application Process Name.

DIF AIPCP k

DIF B

IPCP j

IPCP i

Figure 4.1: Overlaying DIFs for enrollment

After this connection has been established, j authenticates i, with the strength of the
authentication depending on the DIF A requirements, and determines whether i can access
j. If i is allowed to access A, it gets assigned an address (meaningful only within the DIF
A) and initialization parameters associated with A are shared with i.

4.6.2 Flow Allocation

The next step in establishing a communication channel is allocating a flow between the two
AP instances. i requests service using k’s APN. The local IPCP returns a port-id to the
AE, with only local significance. A set of EFCP policies is chosen based on the request, and
an EFCP instance is created, identified by a CEP-id. The local IPCP continues by creating
a request to find the destination application. When the destination IPCP receives the
request, it decides whether to accept or deny the request, depending on the access control
policy. If the request passes the necessary criteria to be accepted, an EFCP instance is
created, with a CEP-id, and this result is sent to the requesting IPCP. Both CEP-ids are
concatenated to be used as a flow identifier. After the local IPCP receives the positive
response, a binding is created between the port-id and the CEP-id.
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Chapter 5

The Raft Consensus Algorithm

As the name itself suggests, the basic building block of RINA — the Distributed IPC Facil-
ity — is a distributed system. Each IPCP in the DIF contains a Resource Information Base
(RIB) to store various information necessary for operation. It is important that the state
of this RIB is consistent and coherent across the system, so that each IPCP operates with
same information.

This problem is known as consensus within a distributed system. Consensus algorithms
ensure that nodes reach agreement on shared state even in case of failures [22]. The most
well known algorithm is Paxos [19], used in implementations such as Chubby [2]. Rlite uses
a newer algorithm called Raft to implement distributed consensus.

Raft [23, 22] was designed with understandability as one of its primary goals. One of
the chief criticisms raised against Paxos was its complexity and difficulty in adapting to
real-world systems. Raft attempts to be both easily understandable and easily usable in
practice. It ensures that the state of replicated state machines is consistent across the
distributed system.

5.1 The structure of Raft
Raft achieves understandability by decomposing consensus into three separate subprob-
lems — leader election, log replication and safety. First, a leader is elected from among the
participating nodes. The leader is responsible for accepting log entries from clients and
replicating them on other nodes, as well as committing said entries to the replicated state
machines. The strong function of a leader simplifies the decision making and data flow in
the system. In the case of leader’s failure, a new leader is elected and the process continues.

Each node in the system is in one of three possible states — leader, follower or a can-
didate. During normal operation, exactly one leader exists; the rest are passive followers
who only respond to requests from leaders and candidates. The leader handles all client
requests and manages log replication. Candidate is a temporary state used during the
election process.

Raft uses a concept of terms. A term is a period of time of arbitrary length. Terms
are numbered sequentially with integers, and act as a logical clock. Each term begins with
an election, and the winning candidate takes the position of the leader for the rest of the
term. It is possible for an election to end without a leader — e.g. due to a split vote — in
which case the term ends without a leader and a new term with a new election starts.
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Each node keeps track of the current term number. This number is included in the
messages exchanged between nodes. If a follower receives a message with a higher term,
it updates its own value. A candidate or a leader discovering a newer term immediately
revert to a follower state.

5.1.1 Leader election

Leader election is the first phase of a system. Its purpose is to agree on a leader that will
serve a distinguished function for the rest of a term.

A hearbeat mechanism is used to trigger an election. Each node initially starts in the
follower state, and remains so as long as it keeps receiving a heartbeat from a leader. If
it does not receive a heartbeat notification for longer than the election timeout, it assumes
there is no active leader and begins an election.

The follower initiating an election first increments its term number. It then votes for
itself and asks for votes from the other nodes in the system. It remains in this state until
a) it wins the election b) another node announces itself as a leader or c) there is no winner
for a certain period of time.

To win an election, a candidate must receive a majority of the votes in the term. Each
node may only vote for one candidate, and votes are given on a first-come-first-serve basis.
Requiring a majority vote ensures that at most one node may win an election in any given
term. After winning a vote, the follower assumes the position of a leader and begins sending
heartbeat messages to the rest of the nodes.

The candidate may receive a message from a node claiming to be a leader. If the leader’s
term number is at least as high as the current term, it recognizes the leader as valid and
ends the election by becoming a follower. If the term number is lower, the message is
ignored.

It is possible for no candidate to win the election, due to the votes being split in such a
way that no obtains a majority. In this case, the election times out and a new one (with a
new term number) begins. This timeout is chosen randomly from a fixed interval, to ensure
that split votes are rare and do not repeat indefinitely.

5.1.2 Log replication

Once elected, the leader starts receiving request from the clients and servicing them. The
requests contain commands to be executed by the replicated state machines. When the
leader receives a command, it appends it to its log and distributes it to all followers. The
entry is applied only after it has been successfully replicated across the system, and the
result of the execution is returned to the client. The leader retries distributing the long
entry until all nodes have successfully stored it.

Each log entry contains the command to be executed and the term number when it was
received, to help detect inconsistencies between logs.

The leader is in charge of deciding when to apply — commit — an entry from the log to
the replicated state machines. Raft guarantees that each committed entry will eventually be
executed by all available state machines. An entry is committed once it has been replicated
on a majority of nodes. Committing an entry also commits all previous entries in the log.

The leader keeps track of the index of the newest entry that has been committed, and
includes this as part of the heartbeat messages to the followers. Once a follower learns that
an entry has been committed, it applies it to its local state machine. In the case of multiple
unapplied entries, they are applied in the order they are stored in the log.
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Chapter 6

Guaranteeing bandwidth

Rlite is an LGPL licensed implementation of the Recursive InterNetwork Architecture cre-
ated by Vincenzo Maffione, to which I have contributed in the past [21]. It aims to be a
lightweight but performant implementation that can be used in production, with a focus
on a clean and simple design.

Conceptually, rlite is split into user and kernel space parts, with several kernel modules
implementing various shim DIFs, such as IPCP over Ethernet or over UDP/TCP. The
main rlite kernel module creates two I/O devices, /dev/rlite for management and control
and /dev/rlite-io for passing data to the kernel. Most of the functionality is done in
userspace, in the Userspace IPCP daemon (UIPCP). This daemon implements high-level
functionality such as flow allocation and routing. The state of the daemon is synchronized
with the kernel module, to provide robustness against crashes and failures in the userspace.

In the default implementation, flow allocation always succeeds. The goal, firstly, was
to implement support for reserved bandwidth. The idea is reminiscent of the way tele-
phone circuit networks used to work — each customer gets allocated a certain share of the
bandwidth that is guaranteed to be available to them for the whole duration of the con-
nection. Whether they fully utilize this bandwidth or not is up to the customer, which
necessarily leads to lower overall efficiency than with TCP congestion control, as another
customer cannot ”borrow“ the bandwidth of one that does not completely saturate their
reservation — this would violate the availability guarantee.

The ability to support bandwidth reservations requires support from several compo-
nents. The Lower Flow Database, which contains the (N-1) flows available to the DIF
needs to include information about available bandwidth. The Routing component must
build a graph of the network from the database, and contain a method to find a possible
path for the requested flow using a sufficient graph flow algorithm. In addition, new routes
need to be injected in the network, which route on more fields than the destination. The
flow must be routed along the reserved path (and not the path computed by the general —
in this case link-state — algorithm) for the reservation to work properly. The Flow Allocator
needs to check whether a suitable path exists before continuing with the allocation, and
deny the request in the case it cannot be serviced.

As RINA allows composing of DIFs in various ways, it is worth pointing out that this
implementation is meant for single DIF scenarios — that is, one N-DIF on top of Ethernet
shim (N-1) DIFs. A policy defines the behaviour of a single IPCP, which can only inter-
act with IPCPs in the same DIF. 1 Propagating the bandwidth information to IPCPs in

1Communication with (N-1) IPCPs is of course possible through the application API.
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higher/lower DIFs would require the support of a DIF Management System, which drives
the RIBs of all the DIFs in the system, similar to a SDN controller. Such DMS is quite
complex and should be independent of a particular RINA implementation, and no such
systems exist as of the time of writing.

6.1 Policy dependencies
Rlite includes support for component policies, meaning that multiple implementations (be-
haviours) can coexist, and can be switched between during runtime.

Basic support for switchable policies has been a part of rlite for some time now, and
was one of my first contributions to the project. During the research and design phase of
this thesis, it became clear that there will need to be multiple new policies included, for
different components, and that those policies need to be used together, else the system
becomes inconsistent. As they have hard dependencies on each other, activating one must
activate the other.

The policy framework was therefore extended to support dependencies [18]. The call
to register a policy was extended to include an optional list of dependencies as a parameter.
Declaring one way dependencies is therefore trivial. In some cases, a tighter binding might
be required — multiple policies might cyclically depend on each other. To make such cases
user friendly, a new call to register a policy group was added. It takes a list of policies as an
input and creates the cyclical dependencies (all-on-all) for every policy before registering
them. The policy group therefore becomes one tightly-coupled unit, where activating one
policy from the group will activate all of them. An additional benefit of this is that it makes
configuration and management easier, as the administrator needs to only specify the policy
they are interested in, and the required supporting policies will be switched automatically.

The actual policy switching mechanism was extended to handle dependencies in a safe
and predictable manner, to ensure system stability. Firstly, a a policy list is built, starting
with the requested policy, by traversing the dependency tree using BFS. Each new depen-
dency found is first checked to be available (registered in the system) and appended to the
list, while dependencies already in the list are not included again. If a declared dependency
is not found (is not registered as available in the system), the whole policy switch operation
fails, before any policy switching occurred. This means that the switch operation works
in a transaction-like manner, where it either succeeds in full, or fails without making any
changes, to avoid bringing the system into an inconsistent state. When all the dependencies
have been found, the operation continues with the actual switching.

Policies are switched in reverse order —that is, the requested policy is activated last —to
ensure the required dependencies are already in place when switching. The list is traversed,
and each policy is activated. If a policy is already active, no action is done —it is simply
skipped over.

This extension of the policy framework allows us to create more complex policies, which
utilized more than one component, while keeping the configuration and management simple
and guaranteeing some degree of safety for the operation.

6.2 Getting bandwidth information into the LFDB
The Lower Flow Database — as the name suggests — contains information about the lower
(N-1) flows available to the DIF. Each IPCP in the DIF has a copy of the LFDB as part of
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the RIB. This is very useful for graph computations in the DIF — the default (link-state)
routing policy relies on the LFDB to build the network graph as an input for the Dijkstra
shortest path algorithm. However, the information about available bandwidth was not part
of the LFDB.

Linux system call ioctl() ”manipulates the underlying device parameters of special
files“ [31]. As almost everything is a (special) file in Linux, it can be used to query various
information about the network interface using the SIOCETHTOOL command. In this way, we
are able to get the speed of a particular interface.

Each DIF on the node gets its own UIPCP process. Apart from normal DIFs, rlite
includes several shim DIFs. The important one here is the shim-eth DIF, as it is usually the
lowest DIF in a system, corresponding to the Ethernet link between machines. Therefore,
during UIPCP creation, we check whether we are a shim-eth DIF — if true, we query the
interface speed and store it as part of the UIPCP information. 2

The next step is getting the bandwidth information into the LFDB of the (N+1) DIF.
This is part of the Routing component. When a new node enrolls into the DIF, the Routing
component gets notified about the new node. If it is a neighbour (that is, they share a (N-
1) DIF), it creates an entry for the supporting lower flow in the LFDB and propagates it
across the DIF. Here, we need to iterate over the supporting flows to see if they belong to
a shim-eth DIF. If yes, we look up the corresponding UIPCP and set the flow bandwidth
according to the information stored there. As the information about a new lower flow is
propagated through the DIF, eventually all nodes will have this information in their LFDB.

6.3 Finding the flow path
Once we have the bandwidth information in the LFDB, we need to be able to find a
satisfactory path in the network graph. The LFDB builds the graph as part of the shortest
path computation for routing already, so it is easy and convenient to reuse it, focusing on
the flow problem instead.

Finding the maximum flow between two nodes is a well known problem, and methods
like the Ford-Fulkerson algorithm exist [9].

Algorithm 1 Ford-Fulkerson maximum flow algorithm
Input: a flow network 𝐺 = (𝑉,𝐸, 𝑠, 𝑡, 𝑐𝑎𝑝)
Output: a maximum flow 𝑓

Initialize 𝑓(𝑣, 𝑤) = 0 for all (𝑣, 𝑤) ∈ 𝐸
Calculate residual network 𝐺𝑓

while an augumenting path in 𝐺𝑓 exists do
Let 𝑃 be an augumenting path in 𝐺𝑓 with capacity ∆𝑃

Obtain increased flow 𝑓𝑃 using flow-augumenting path 𝑃
𝐹 := 𝑓𝑃
Update residual network 𝐺𝑓

2This might seem as a contradiction with the information above regarding inter-DIF IPCP communica-
tion. The necessary distinction here is that there is no communication taking place, and it is not accessing
the contents of the RIB. The (N-1) DIF is simply accessing the list of UIPCPs in the system and taking some
(static) metadata from it, similar to the UIPCP name or the DIF it belongs to. Propagating changes of
available bandwidth would require some kind of notifications — that is, communication, as well ass accessing
the contents of the RIB.
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One of the problems with the Ford-Fulkerson algorithm is that picking the augmenting
path is not well defined. Modifications such as Edmonds-Karp exist to solve this issue.
Edmonds-Karp in particular uses BFS in every iteration to find the augmenting path, which
means that each iteration always finds the shortest path possible. This is convenient for
our use case, as we would like to prefer shorter paths when possible (just like the link-state
routing does).

Algorithm 2 Edmonds-Karp maximum flow algorithm
Input: a flow network 𝐺 = (𝑉,𝐸, 𝑠, 𝑡, 𝑐𝑎𝑝)
Output: a maximum flow 𝑓

repeat
Let 𝑞 be a queue
Push 𝑠 to 𝑞
Let 𝑝𝑟𝑒𝑑 be an array holding the preceding edge on the current path
while 𝑞 is not empty do ◁ BFS to find augmenting path

Retrieve 𝑤 from 𝑞
for all (𝑢, 𝑣) ∈ 𝐸 : 𝑢 = 𝑤 do

if 𝑝𝑟𝑒𝑑[𝑣] = 𝑛𝑢𝑙𝑙 ∧ (𝑣, 𝑢) ̸= 𝑝𝑟𝑒𝑑[𝑢] ∧ 𝑐𝑎𝑝(𝑢, 𝑣) > 0 then
𝑝𝑟𝑒𝑑[𝑣] := (𝑢, 𝑣)
Push 𝑣 to 𝑞

if 𝑝𝑟𝑒𝑑[𝑡] ̸= 𝑛𝑢𝑙𝑙 then ◁ Found and augmenting path
∆𝑓 := ∞
(𝑢, 𝑣) := 𝑝𝑟𝑒𝑑[𝑡]
while (𝑢, 𝑣) ̸= 𝑛𝑢𝑙𝑙 do ◁ See how much flow we can send

∆𝑓 := 𝑚𝑖𝑛(∆𝑓 , 𝑐𝑎𝑝(𝑢, 𝑣))
(𝑢, 𝑣) := 𝑝𝑟𝑒𝑑[𝑢]

(𝑢, 𝑣) := 𝑝𝑟𝑒𝑑[𝑡]
while (𝑢, 𝑣) ̸= 𝑛𝑢𝑙𝑙 do ◁ Update the path

𝑐𝑎𝑝(𝑢, 𝑣) = 𝑐𝑎𝑝(𝑢, 𝑣) − ∆𝑓

(𝑢, 𝑣) := 𝑝𝑟𝑒𝑑[𝑢]

𝑓 := 𝑓 + ∆𝑓

until 𝑝𝑟𝑒𝑑[𝑡] = 𝑛𝑢𝑙𝑙

However, the Edmonds-Karp algorithm finds the maximum flow between the two nodes,
spread over different paths. We are interested in a single (shortest) path that has enough
capacity for our desired flow. Therefore we need to modify the algorithm in several ways.
First, we change the BFS condition to check whether the capacity is large enough; not that
there is any available. This results in getting only augmenting paths that can service the
whole flow. As we only need the first augmenting path, as that will be the shortest, we can
remove the whole second part of the algorithm. The final change consist in the output of
the algorithm — we need to return the found path instead of the maximum flow. We can
use the 𝑝𝑟𝑒𝑑 array to build a list of nodes after we have successfully found the path.

Our resulting algorithm bears more resemblance to BFS than the the original Ford-
Fulkerson, in great part due to only requiring a single path. In fact, starting ”from scratch“
using a simple BFS and adding the flow condition might have been a satisfactory approach.
The running time is linear, specifically 𝑂(2 * 𝐸) as we iterate over all the edges possibly
twice, in the case of a linear graph.
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Algorithm 3 Algorithm for finding the shortest path of at least certain capacity
Input: a flow network 𝐺 = (𝑉,𝐸, 𝑠, 𝑡, 𝑐𝑎𝑝) and a required flow 𝑅
Output: a viable path 𝑃

Let 𝑓𝑜𝑢𝑛𝑑 := 𝐹𝑎𝑙𝑠𝑒
Let 𝑞 be a queue
Push 𝑠 to 𝑞
Let 𝑝𝑟𝑒𝑑 be an array holding the preceding edge on the current path
while not 𝑓𝑜𝑢𝑛𝑑 ∧ 𝑞 is not empty do ◁ Find the shortest viable path

Retrieve 𝑤 from 𝑞
for all (𝑢, 𝑣) ∈ 𝐸 : 𝑢 = 𝑤 do

if 𝑝𝑟𝑒𝑑[𝑣] = 𝑛𝑢𝑙𝑙 ∧ (𝑣, 𝑢) ̸= 𝑝𝑟𝑒𝑑[𝑢] ∧ 𝑐𝑎𝑝(𝑢, 𝑣) ≥ 𝑅 then
𝑝𝑟𝑒𝑑[𝑣] := (𝑢, 𝑣)
Push 𝑣 to 𝑞

if 𝑝𝑟𝑒𝑑[𝑡] ̸= 𝑛𝑢𝑙𝑙 then ◁ Build the path
Let 𝑃 := {𝑡}
for all (𝑢, 𝑣) ∈ 𝑝𝑟𝑒𝑑 starting from 𝑝𝑟𝑒𝑑[𝑡] do

Prepend 𝑢 into 𝑃
Continue to 𝑝𝑟𝑒𝑑[𝑢]

A new Routing policy was created, which exposes this method to other components,
as it is part of the LFDB (which is contained in the Routing policy). We will require this
functionality to be available from the Flow Allocator.

6.4 Distributed flow allocation
The core of the work is the Flow Allocator policy, which manages the creation and de-
struction of flows. When a flow allocation request is received, and it includes a bandwidth
requirement, it needs to postpone the response until a reservation either succeeds or fails.
As the reservation process requires the cooperation of multiple nodes in the DIF, it is
by nature a distributed process. Rlite contains an implementation of the Raft consensus
algorithm, which was described in chapter 5, to implement centralized but fault tolerant
policies.

Each IPCP in the DIF can act as a client, to send bandwidth reservation requests.
Exactly one distinguished leader exists in the DIF and serves the client requests. In addition,
some of the IPCPs act as distributed replicas to provide fault tolerance, and the leader
synchronizes its state machine with them. The replicated state machines store the active
reservations, and are therefore able to take over in the case of leader failure.

Flow allocation works in four steps:

1. The application requests a flow from the local IPCP.

2. The local IPCP contacts the remote IPCP.

3. The remote IPCP asks the remote application whether to accept the flow.

4. The local IPCP receives the response and returns it to the application.
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Figure 6.1: Some of the paths found (orange) by the algorithm. In the top left, a flow from
0 to 2 of capacity 4 was requested. In the top right, a flow from 0 to 3 of capacity 7. In
the bottom, a flow from 3 to 7 of capacity 7. All of these examples (but not only) are also
included as unit tests.

After step 4., a flow has been successfully allocated and communication can begin.
As the applications have already agreed to exchange messages, any bandwidth reservation
should have already taken place and be ready for use.

Therefore, the flow allocation process with support for bandwidth reservations is as
follows:

1. The application requests a flow from the local IPCP.

2. The local IPCP contacts the Raft leader with a request for the bandwidth reservation.

3. The Raft leader forwards the request to the remote IPCP, which accepts or rejects
the request.

4. The remote IPCP responds to the Raft leader. If the request was accepted, the leader
tries to find find a suitable path. If such a path was found, it appends the reservation
command to the replicated log and distributes route updates for the reserved path.

5. The Raft leader forwards the response to the local IPCP.
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6. The local IPCP informs the application about the result.

All flow allocation requests therefore go through the Raft leader, which acts as a for-
warding proxy between the local and remote IPCP during flow allocation. By receiving
each flow request, the Raft leader is able to keep track of all the flows (and reservations)
that occur.

The IPCP, in the role of a Raft client, sends the request for flow allocation that would
normally be destined for the remote node to the Raft leader. It contains the complete flow
request information, as it will be forwarded to the remote node later. The Raft leader
requires only some of this information, namely the local IPCP name, remote IPCP name
and the local port to create a Flow-id uniquely identifying the flow. In addition, it needs
the requested bandwidth as input to the graph algorithm.

Once the leader receives the request, it looks for a viable path. If none are found, it
sends a negative response to the client, which gets passed back to the application. If a
path is found, it creates entries to append to the replicated state machine log. Due to
implementation limitations, the size of the entry structure needs to have a fixed size. As
we want to pass a (potentially endless) list of nodes making up the path to be reserved,
we need to work around this by creating a separate entry for each lower flow (hop). The
replicated state machine on the other end uses these to build the path again. A final entry
signifies the end of the path, and once received, the bandwidth change along the reserved
path is propagated into the LFDB.

Only after this final entry has been committed is the request forwarded to the remote
IPCP, and flow allocation continues. The remote IPCP returns a (positive or a negative)
response to the Raft leader, which now (in addition to the information passed in the request)
includes the remote port and remote CEP-id. It is in this moment the Raft leader is able
to distribute the necessary flow routes, as the local and remote CEP-ids are part of the
routing entries. While it is possible for one flow to alternate multiple connections, for now
the mapping between a flow and a connection is 1 to 1. Routing on port-ids is not possible,
as those are not part of the EFCP PDU.

Finally, the Raft leader forwards the response to the local IPCP, which returns the
response to the requesting application, and communication can begin.

Flow deallocation, likewise, goes through the Raft leader. The request is sent to the Raft
leader, which removes the reservation, and forwards it to the remote IPCP. Afterwards, it
deletes the per-flow routing rules.

As not all flows might specify the requested bandwidth, two policy parameters control
the behaviour of such flows. The reject-unlimited-flows parameter, which takes true
or false values, controls whether flows that do not set the bandwidth field in the request
should be rejected. The second parameter, default-unlimited-bandwidth specifies the
bandwidth that should be set for such flows if they are not rejected.

6.5 Example operation
What follows is a series of outputs from rlite-ctl dif-rib-show, which show the infor-
mation currently stored in the RIB, edited for brevity. It shows the LFDB and the Flow
Allocator, showing the known lower flows and their bandwidth, as well as the currently
managed flows and active reservations, if any.
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Lower Flow Database:
Local: n1.b.IPCP, Remote: n1.c.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.b.IPCP, Remote: n1.a.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.a.IPCP, Remote: n1.b.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.c.IPCP, Remote: n1.b.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.c.IPCP, Remote: n1.d.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.d.IPCP, Remote: n1.c.IPCP, Total: 100 Mbps, Free: 100 Mbps

Supported flows (Src/Dst <Appl,IPCP,port>):

Flow reservation table:

Figure 6.2: The RIB after bringing the network up, in an idle state. No flows are active,
and all bandwidth is available. No reservations exist.

Lower Flow Database:
Local: n1.b.IPCP, Remote: n1.c.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.b.IPCP, Remote: n1.a.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.a.IPCP, Remote: n1.b.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.c.IPCP, Remote: n1.b.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.c.IPCP, Remote: n1.d.IPCP, Total: 100 Mbps, Free: 100 Mbps
Local: n1.d.IPCP, Remote: n1.c.IPCP, Total: 100 Mbps, Free: 100 Mbps

Supported flows (Src/Dst <Appl,IPCP,port>):
[R], Src=<rinaperf-data|client,n1.a.IPCP,2>

Dst=<rinaperf-data|server,n1.d.IPCP,2>
Connections: [<SrcCep=1, DstCep=1, QosId=0> ]

[R], Src=<rinaperf-data|client,n1.a.IPCP,1>
Dst=<rinaperf-data|server,n1.d.IPCP,1>
Connections: [<SrcCep=0, DstCep=0, QosId=0> ]

Flow reservation table:

Figure 6.3: The RIB while running a throughput test using rinaperf. Two flows are active,
but as no bandwidth was requested, no reservations exist, and all bandwidth is available.

32



Lower Flow Database:
Local: n1.b.IPCP, Remote: n1.c.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.b.IPCP, Remote: n1.a.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.a.IPCP, Remote: n1.b.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.c.IPCP, Remote: n1.b.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.c.IPCP, Remote: n1.d.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.d.IPCP, Remote: n1.c.IPCP, Total: 100 Mbps, Free: 20 Mbps

Supported flows (Src/Dst <Appl,IPCP,port>):
[R], Src=<rinaperf-data|client,n1.a.IPCP,2>

Dst=<rinaperf-data|server,n1.d.IPCP,2>
Connections: [<SrcCep=1, DstCep=1, QosId=0> ]

[R], Src=<rinaperf-data|client,n1.a.IPCP,1>
Dst=<rinaperf-data|server,n1.d.IPCP,1>
Connections: [<SrcCep=0, DstCep=0, QosId=0> ]

Flow reservation table:
n1.a.IPCPn1.d.IPCP2: n1.a.IPCP->n1.d.IPCP

(n1.a.IPCP,n1.b.IPCP,n1.c.IPCP,n1.d.IPCP,) : 40 Mbps
n1.a.IPCPn1.d.IPCP1: n1.a.IPCP->n1.d.IPCP

(n1.a.IPCP,n1.b.IPCP,n1.c.IPCP,n1.d.IPCP,) : 40 Mbps

Figure 6.4: The RIB while running another rinaperf test, this time requesting 40Mbps per
flow. Again, two flows are active, but the flow reservation table lists two entries, and the
available bandwidth has decreased accordingly. After the flow is deallocated, the output is
identical to the one shown in figure 6.2 (bandwidth is freed and reservations removed).
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Chapter 7

Evaluation

The implemented algorithm is able to utilize the available bandwidth efficiently according
to the demands of applications. Each flow that get successfully created is guaranteed to
have the necessary bandwidth available. This means that congestion control algorithms
should never come into play, as each flow is rate limited to the requested bandwidth, and
the total traffic in the system should never exceed the available link capacities.
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Figure 7.1: Timelapse of network link utilization by allocating flows at random.

Figure 7.1 shows the traffic in flow in a test network. Each link in the network has a
capacity of 10 Mbps, and 150 flows were attempted to be allocated from a random source
to a random destination, each requesting 1 Mbps. Snapshots were taken at intervals of
50 allocations, the first being before any allocations were done. As it can bee seen from
the figure, the links get progressively more and more utilized, especially in the centre and
close to the nodes that make up busy ”exchange points“ with many links. This agrees with
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the intuitive observation that as more flows are created, the backbone of the network will
become more strained. We can see that the traffic is distributed quite evenly along the less
used edge links.
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Figure 7.2: Another timelapse of network link utilization by allocating flows at random.

Figure 7.2 shows a similar experiment with a diffrent topology. The snapshot interval
was set to 100 flow allocations, which results in even higher overall utilization in the bottom
right graph. Again, the overall utilization pattern is similar to the one from figure 7.1,
showing that the algorithm works in a fairly predictable manner, even with flow allocations
picked completely at random, and working on different network graphs.

The fact that each flow is routed differently is a great benefit that allows for better
bandwidth utilization in networks with multiple alternate paths from one end of the network
to another. When routing only by destination address, all the traffic to the same destination
will go through the same link. In the example network in figure 7.3, only one of the backbone
links would get used in a normal scenario. This is why backbone links usually have higher
bandwidth requirements, as they are a bottleneck that aggregates the traffic from many
different parts of the network. By using per-flow routing, we are able to distribute the the
traffic more evenly, which also translates to lower interface speeds being required on these
links — multiple slower links are able to handle the traffic just as well. 1

Although the algorithm is logically centralized, it is distributed and fault tolerant by
utilizing the Raft consensus algorithm. Figure 7.4 once again shows the output from the
rlite-ctl dif-rib-show command, edited for brevity. We can see from the output that
the information about the active reservation has been successfully replicated from IPCP

1Not considering the scenario where someone makes a reservation which is larger than the bandwidth of
the slower interface. However, single flows requesting an interface’s worth of bandwidth of more are closer
to denial of service attacks than legitimate user behaviour.
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Figure 7.3: Lower bandwidth requirements for interconnecting links. As each flow can be
routed differently, a single link no longer needs to have enough bandwidth to transmit all
the traffic.

n1.b.IPCP, who is the Raft leader for the current term, to IPCP n1.c.IPCP. In the case
of leader failure, the replicas have all the necessary information to be able to take over and
serve client requests.

7.1 Future work
It has been agreed to focus on a basic, simple scenario which means there are several issues
which could use improvement and could form the basis of a future work. These have all been
thoroughly considered and discussed; some of them have been even partially implemented
but were later removed from the codebase due to being deemed lacking.

7.1.1 Flow reshuffling

In its current state, the algorithm does not react to changes in the network graph. This
means, among other things, that if the node through which a reservation flows fails, the
flow effectively dies, due to having static routes. On first look, the solution is quite simple.
The Raft leader needs to be notified whenever a link goes down to try find an alternate
path (and update the replicated state as well as static routes to contain the new path) or
to inform the end IPCPs that the bandwidth can no longer be guaranteed and the flow
should therefore be terminated.

One of the problems with this is that on each link state change, the leader would need to
go through every active flow and iterate over the whole path to find paths that are no longer
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IPCP name: n1.b.IPCP

Lower Flow Database:
Local: n1.d.IPCP, Remote: n1.c.IPCP, Total: 10Mbps, Free: 10Mbps
Local: n1.b.IPCP, Remote: n1.e.IPCP, Total: 10Mbps, Free: 10Mbps
Local: n1.b.IPCP, Remote: n1.c.IPCP, Total: 10Mbps, Free: 0Mbps
...

Flow reservation table:
n1.a.IPCPn1.c.IPCP4: n1.a.IPCP->n1.c.IPCP

(n1.a.IPCP,n1.b.IPCP,n1.c.IPCP,) : 5Mbps
n1.a.IPCPn1.c.IPCP3: n1.a.IPCP->n1.c.IPCP

(n1.a.IPCP,n1.b.IPCP,n1.c.IPCP,) : 5Mbps

IPCP name: n1.c.IPCP

Lower Flow Database:
Local: n1.d.IPCP, Remote: n1.c.IPCP, Total: 10Mbps, Free: 10Mbps
Local: n1.c.IPCP, Remote: n1.d.IPCP, Total: 10Mbps, Free: 10Mbps
Local: n1.c.IPCP, Remote: n1.b.IPCP, Total: 10Mbps, Free: 0Mbps
...

Flow reservation table:
n1.a.IPCPn1.c.IPCP4: n1.a.IPCP->n1.c.IPCP

(n1.a.IPCP,n1.b.IPCP,n1.c.IPCP,) : 5Mbps
n1.a.IPCPn1.c.IPCP3: n1.a.IPCP->n1.c.IPCP

(n1.a.IPCP,n1.b.IPCP,n1.c.IPCP,) : 5Mbps

Figure 7.4: Replicated state between nodes in the Raft cluster.

valid and need to be recomputed. This is significantly more computationally intensive than
the initial reservation or removing such reservation, and in the case of DIFs with many
flows and long paths, especially with a link flapping, could significantly impact the leader’s
performance.

In addition, this problem is actually more general than it seems. It might be helpful
to recompute the paths of some flows that are valid, and route them differently, to free
up paths for the flows that have lost their reserved path. The opposite scenario, a new
IPCP enrolling in a DIF might also be a good opportunity to shuffle the flows around, as
new, more effective (shorter) paths might have appeared. In fact, even a new flow being
requested, or a flow being deallocated, could benefit from such flow reshuffling. All of these
approaches would potentially allow better overall bandwidth utilization.

The downsides of moving flows around are, besides the aforementioned increasing com-
putational complexity, disruptions to the traffic flow and the overall stability of the system.
The problem becomes, from a simple decision problem (does an available path exist), an
optimization problem which tries to distribute the flows in the most optimal way. It is a
series of trade-offs, which suggests it might be good to implement these behaviours as tog-
gleable policy (parameters), and leave deciding which of them and with what parameters
will be useful to the network administrators. However, restricting the dynamic behaviour
to only link failures, and only trying to find a new path (no flow shuffling being done) would
be a reasonable first step that would improve the system’s reliability.
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7.1.2 Support for unlimited flows

Currently, all unlimited flows (those that do not request a particular bandwidth) are either
rejected or forced a bandwidth value depending on the policy parameters. This prevents
any unwanted disruptions from entering into the system. However, this means that every
flow gets a reservation taking up bandwidth, possibly preventing other, limited flows, from
being accepted.

A more sophisticated solution would be to dynamically rate limit the free flows to be
able to only use the unreserved bandwidth. This would require the Raft leader to distribute
the current limit to each unlimited flow whenever a flow gets (de)allocated.

One approach might be to calculate the average free bandwidth for each link, such as:

𝐵𝑤𝐴𝑣𝑔 =
𝐵𝑤𝑇𝑜𝑡𝑎𝑙 −𝐵𝑤𝑅𝑒𝑠

𝑁𝐹𝑙𝑜𝑤𝑠

where 𝐵𝑤𝑇𝑜𝑡𝑎𝑙 is the maximum bandwidth of the link, 𝐵𝑤𝑅𝑒𝑠 is the bandwidth that
is currently reserved for this link, and 𝑁𝐹𝑙𝑜𝑤𝑠 is the number of unlimited flows flowing
through the link. An unlimited link would then get assigned the minimum (bottleneck)
𝐵𝑤𝐴𝑣𝑔 of all the links it goes through. This solution is not optimal, and potentially leaves
some bandwidth unused; it is however fairly simple to calculate.

Another approach would be to set not divide the bandwidth among the flows and use
the minimum 𝐵𝑤𝐹𝑟𝑒𝑒 = 𝐵𝑤𝑇𝑜𝑡𝑎𝑙 − 𝐵𝑤𝑅𝑒𝑠 along the path as the limit. Congestion
control mechanisms would come into play to divide the bandwidth according to the flow’s
demands. However, as the overall rate limit will be higher than the capacity of the interface,
this might negatively impact the flows with reservations.

No matter the calculation model, it is necessary to update the structure of the flow’s
EFCP instance in the kernel with the value received from the Raft leader. No such interface
currently exists.

7.1.3 Flow splitting

Flow splitting, using multipath routing, is reminiscent of the concept of augumenting paths
from the Ford-Fulkerson maximum flow algorithm. Instead of using a single path that has
the necessary capacity, the flow is split among several different paths so that its bandwidth
requirements can be met.

Aside from having to tell each route how to divide the flow, there are some additional
issues this approach presents. As each path might have different characteristics (number
of hops, latency), issues such as packet reordering and head-of-line blocking could occur.
It makes the flow management more complex in general, and in combination with some of
the more dynamic approaches described above would mean even more information to keep
track of.
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Chapter 8

Conclusion

In the first part of this thesis, we have looked at congestion in networks from a theoretical
point of view. We have studied the causes of congestion and how different parameters affect
its behaviour, such as queue length. We looked at two possible approaches of avoiding
congestion — proactive and reactive ones.

A proactive approach, like the one implemented in this thesis, attempts to prevent
congestion by reserving some of the available bandwidth for each flow. As the entity
in control of flow allocation will never allow the reserved bandwidth to exceed the total
available bandwidth, and no flow is able to use more than they have been assigned, it
prevents the cause of congestion, and therefore congestion itself, from occurring. While this
approach is generally simpler to implement and model, the bandwidth utilization efficiency
suffers due to very static nature of the solution. Any reserved bandwidth not utilized by
the flow it belongs to cannot be used by another flow.

A reactive approach, represented by the various congestion control algorithms included
as part of TCP, attempts to prevent congestion by dynamically adjusting the sending rate
of all the active flows based on some feedback from the network. We have learned that there
exists an optimal operating point called the knee, and that all congestion control algorithms
try to match the overall sending rate to be as close to the knee as possible. While this allows
the bandwidth to be better distributed in theory, as any residual bandwidth will be claimed
by some flow that needs it, such an approach is reliant on the quality of the feedback it
gets from the network, and any assumptions it might make about it and the current state.

Following general congestion control theory, we have studied some examples of current,
real-world algorithms implemented and used in TCP. TCP Tahoe was picked as the reference
example of a simple congestion control algorithm due to its historical significance. This
protocol was studied in detail to see how it maps to the theory learned and what general
mechanisms it contains that might be tweaked by newer algorithms.

As examples of more modern, state of the art algorithms were picked TCP CUBIC,
QUIC and TCP BBR. TCP CUBIC has been the default congestion control algorithm for
the Linux kernel for some time, and is therefore the baseline to which other algorithms
are compared, performance-wise. QUIC and TCP BBR are both efforts from Google to
create a better algorithm that fits the needs of the modern web. Each was analyzed to see
how it operates and what core ideas and new approaches it brings to solve the problem
of congestion in computer networks. It has been found that these newer algorithms are
better suited for the environment of current Internet, and achieve better results especially
in the case of long fat pipes (paths with a long bandwidth delay product) where an older
algorithm, such as Tahoe, does not grow the congestion window fast enough. However,
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both QUIC and BBR, although being newer and meant to be replacements for CUBIC,
have specific scenarios where they perform worse. In addition, all of these algorithms suffer
from fairness issues, either intra-algorithm for e.g. various flow RTT classes, or between
the algorithms themselves.

A proactive bandwidth reservation scheme for flow allocation has been proposed and
designed for RINA, and implemented in rlite. This scheme, implemented as a flow allocator
policy, uses the average bandwidth1 value of a flow request to try find a suitable path in
the DIF graph. If no viable path is found, the request is denied, else this bandwidth is
reserved for the lifetime of the flow. This policy works as logically centralized, but is in fact
distributed to provide fault tolerance within the DIF. Using the Raft distributed consensus
algorithm, the reservation information is replicated onto several nodes, each being able to
take over to serve client requests in case of node failure.

Experiments have been done to show how this reservation scheme works with a higher
number of flows, and how it allows for quite evenly distributed utilization of bandwidth.
Scenarios have been described, where the ability to route each flow differently allows the
backbone/core links to have lower bandwidth requirements.

Finally, a section is devoted to discussing future improvements to this flow allocation
scheme. As most of them contain some tradeoffs to be made, it is advised that if these
should be implemented, they should be a configurable part of the policy. The first extension
is can be described as flow reshuffling — there are several events where trying to reroute
a flow might allow for better overal utilization. The second deals with flows which do not
include the average bandwidth as part of the flow allocation request; in the current state,
these are either rejected for forcibly rate limited. Two possible approaches are presented
how to allow these flows to use the available unreserved bandwidth in a more dynamic
way. Lastly, the idea of splitting the flow among several paths, akin to multipath TCP, to
increase bandwidth utilization is briefly considered.

1The Error and Flow Control Protocol uses this value to rate limit the flow.
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Appendix A

Contents of the CD

The included CD contains these directories and files:

∙ The electronic version of this thesis, called xkoute04.pdf

∙ A directory called tex containing the LATEX source files

∙ A directory called src containing the source code for rlite
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Appendix B

List of abbreviations

∙ ACK — ACKnowledgement

∙ AE — Application Entity

∙ AP — Application Process

∙ APN — Application Process Name

∙ ARPANET — Advanced Research Projects Agency Network

∙ BDP — Bandwidth-Delay Product

∙ BFS — Breadth First Search

∙ BGP — Border Gateway Protocol

∙ CDAP — Common Distributed Application Protocol

∙ CEP — Connection EndPoint

∙ DAF — Distributed Application Facility

∙ DIF — Distributed IPC Facility

∙ DMS — DIF Management System

∙ DTCP — Data Transfer Control Protocol

∙ DTP — Data Transfer Protocol

∙ EFCP — Error and Flow Control Protocol

∙ GNU — GNU is Not Unix

∙ HTTP — HyperText Transfer Protocol

∙ I/O — Input/Output

∙ IP — Internet Protocol

∙ IPC — InterProcess Communication
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∙ IPCP — IPC Process

∙ LFDB — Lower Flow DataBase

∙ LGPL — GNU Lesser General Public License

∙ MPL — Maximum Packet Lifetime

∙ NCP — Network Control Program

∙ OSI — Open Systems Interconnection

∙ PM — Protocol (state) Machine

∙ RFC — Request For Comments

∙ RIB — Resource Information Base (RINA), alternatively Routing Information Base
(BGP)

∙ RINA — Recursive InterNetwork Architecture

∙ RTT — Round-Trip Time

∙ SDN — Software Defined Networking

∙ TCP — Transmission Control Protocol

∙ TLS — Transport Layer Security

∙ UDP — User Datagram Protocol

∙ UIPCP — Userspace IPCP (daemon)
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