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Abstract
The goal of this work is to design and to implement a generic strategy solver for the 2LS
tool. 2LS is an analyser for static verification of programs written in C language. A verified
program is analysed by an SMT solver using abstract interpretation. Conversion from an
abstract state of the program into a logical formula, that an SMT solver can work with, is
done by a component called strategy solver. In the current implementation, there is one
strategy solver for each abstract domain. Our approach introduces a single generic strategy
solver, which makes creating new domains easier. Also, this approach enables migration of
the existing domains and hence the codebase can be reduced.

Abstrakt
Cieľom tejto práce je návrh a implementácia generického strategy solveru pre nástroj 2LS.
2LS je analyzátor na statickú verifikáciu programov napísaných v jazyku C. Verifikovaný
program je za využita abstraktnej interpretácie analyzovaný SMT solverom. Prevod z ab-
straktného stavu programu do logickej formule, s ktorou vie pracovať SMT solver vykonáva
komponenta nazývaná strategy solver. Aktuálne pre každú doménu existuje jeden takýto
solver. Navrhované riešenie vytvára jeden obecný strategy solver, ktorý zjednodušuje tvorbu
nových domén. Zároveň navrhovaný spôsob umožnuje prevedenie existujúcich domén a teda
zmenšuje program analyzátora.
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Rozšířený abstrakt
Nástroj 2LS, pôvodne vyvíjaný na univerzite v Oxforde a dnes zastrešovaný britskou firmou
DiffBlue, je statický analyzátor programov napísaných v programovacom jazyku C. Zatiaľčo
existuje mnoho programov na statickú analýzu, tento nástroj sľubuje pokryť dva hlavné
nedostatky v tejto oblasti – spoľahlivo pracovať na skutočných programoch a zároveň na
týchto programoch vedieť analyzovať rôzne a komplexné vlastnosti. 2LS dokáže analyzovať
bezpečnostné a ukončujúce podmienky vzťahujúce sa ku rovnosti premenných, toku dát cez
numerické premenné či k práci s dynamickými dátovými štruktúrami.

Základom tohto nástroja je novovytvorený algoritmus nazývaný kIkI. Tento algorit-
mus efektívne kombinuje obmedzené overovanie modelov (bounded model checking), k-
indukciu (k-induction) a abstraktnú interpretáciu (abstract interpretation). Tento algorit-
mus využíva abstraktnú interpretáciu k odvodzovaniu induktívnych invariantov (inductive
invariants), ktorých výpočet je jednoduchší ako výpočet všetkých dosiahnuteľných stavov.
Nakoľko výpočet induktívnych invariantov je náročný aj pre dnešné SMT solvery, je tento
problém redukovaný použitím tzv. šablón. Iteratívnym prístupom sú hľadané parametre
šablón dovtedy, kým nie je nájdený invariant. Tento iteratívny prístup riešenia je v nástroji
2LS implementovaný v komponente nazývanej strategy solver.

Pre každý typ analýzy, ktorú 2LS ponúka, je nutné definovať šablónu spolu s abstraktnou
hodnotou, ktorá zachytáva určitú analyzovanú vlastnosť programu. Tieto dve informácie
sú uložené v tzv. abstraktných doménach. Zároveň pre každú doménu musí byť definovaný
spôsob spájania aktuálnych hodnôt parametrov šablóny s novonájdenými hodnotami z SMT
solveru. Tento algoritmus sa označuje ako join operátor. Nástroj 2LS definuje pre každú
doménu konkrétny strategy solver, ktorý obsahuje iteratívny algoritmus na odvodzovanie
invariantov spolu s join operátorom.

Vzhľadom na to, že spomínaný iteratívny algoritmus je veľmi podobný pre všetky
domény, táto práca navrhuje generický strategy solver, ktorý by bol univerzálne použiteľný
pre rôzne domény. Hlavnou výhodou generického riešenia je uľahčenie pridávania nových
domén v budúcnosti, nakoľko pri tvorbe novej domény nie je potrebné implementovať iter-
atívny algoritmus na usudzovanie invariantov.

Okrem tzv. jednoduchých domén 2LS ponúka aj špeciálne domény, ktoré sú založené
na spojení iných, už existujúcich, domén. Táto pridaná komplexita dokáže využívať vlast-
nosti všetkých kombinovaných domén a vďaka tomu usudzovať silnejšie invarianty, ktoré
by nebolo možné nájsť pomocou jednoduchých domén. Momentálne existujú dva rôzne
prístupy ku kombinácií domén.

Táto práca taktiež navrhuje generické riešenie pre oba typy týchto kombinácií. Zati-
aľčo hlavnou výhodou generického strategy solveru pre jednoduché domény bolo uľahčenie
pridávania nových domén, pri generickom riešení pre kombinačné domény ide o ich absolútne
nahradenie – generické riešenie dynamicky pri štarte programu môže vybrať ľubovoľné domény
a spustiť analýzu s ich kombináciou bez nutnosti definovania tejto kombinácie kdekoľvek v
kóde 2LS.

Aby mohli domény využívať generický strategy solver, musia poskytovať určité rozhranie,
za pomoci ktorého strategy solver s doménami komunikuje. Táto práca navrhuje rozhranie,
v ktorom je pri implementácii domény možné danú doménu použiť ako s generickým strat-
egy solverom pre jednoduché alebo pre kombinačné domény.

Všetky tri navrhnuté generické strategy solvery boli implementované spolu s navrhnutým
rozhraním domén. Existujúce jednoduché a kombinačné domény boli zmigrované a využí-
vajú generické riešenie strategy solverov. Táto migrácia viditeľne zredukovala počet súborov
existujúcich v implementácií domén. Jediné domény, ktoré neboli presunuté sú tie, ktoré



pri odvodzovaní invariantov využívajú binárne vyhľadávanie. Takýto prístup vyžaduje ďalší
generický strategy solver.

Nakoľko boli pri tejto práci zmenené kritické časti analýzy programov, bolo nutné overiť,
či tieto zmeny negatívne neovplyvnili momentálne schopnosti tohto nástroja. Táto ver-
ifikácia bola uskutočnená za pomoci regresných testov, ktoré existujú v nástroji 2LS a
testujú veľké množstvo rôznych vstupných programov. Zároveň bola na detailnejšie overe-
nie použitá sada testov zo súťaže SV-COMP 2018 (International Competition on Software
Verification 2018).

V neposlednom rade boli vykonané experimenty s novými kombináciami domén – na
konkrétnom príklade bolo ukázané, že je veľmi jednoducho možné použiť novú, doteraz
neimplementovanú kombináciu domén a analyzovať program, ktorý predtým nebolo možné
správne overiť.
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Chapter 1

Introduction

As computers play bigger and bigger role in our lives, the complexity of code running on
them grows as well. More complex programs mean wider possibilities of where bugs can
occur. To make sure that a program runs as expected, it is necessary to be verified. This
can be done in two ways – using static or dynamic analysis. While dynamic analysis counts
on an execution of the program (i.e. using tests written by developers), static analysis
checks the code itself and hence it covers all program traces.

2LS tools [15], originally created at the University of Oxford and today being developed
by the company DiffBlue, is a static analyzer for programs written in the C language.
Although there are many tools available for a static analysis, this tool promises to cover two
most common weaknesses in this area – to be able reliably work with real world programs
and on these programs to be able to analyse different and complex properties. 2LS is
capable of verifying safety and termination properties that are related to variables equality,
to data-flow among numerical variables, or to work with dynamic data structures.

The core of this tools is a novel algorithm called k-invariants k-induction (kIkI)[5].
This algorithm efficiently combines bounded model checking, k-induction, and abstract in-
terpretation. In kIkI abstract interpretation is used to infer inductive invariants, which
computation is easier that computation of the set of all reachable states of the analysed
program. Since computation of inductive invariants is challenging even for today available
SMT solvers, this problem is reduced using so called templates. Iteratively parameters of
these templates are refined until an invariant is found. This iterative approach is imple-
mented in 2LS tool in a component called strategy solver.

For each type on analysis which exists in 2LS, it is necessary to define template together
with abstract value, which describes a specific analysed property. These two information
are encapsulated in so called abstract domains. Moreover, for each abstract domain needs
to be defined an algorithm for joining the current values of the template parameters with
a newly found values by an SMT solver. This algorithm is called join operator. 2LS tool
defines for each domain a specific strategy solver, which contains the iterative algorithm
for invariant inference together with the join operator.

Since the iterative algorithm is very similar for all abstract domains, this work proposes
a generic strategy solver, which could be used for any domains. The main advantage of
this generic solution is a simplification of the process of adding a new domain, as when a
new domain is going to be created, only the abstract domain with the abstract value is
needed to be designed and implemented since the iterative algorithm for invariant inference
is going to be provided by the generic strategy solver.
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Moreover to so called simple domains, 2LS implements also specialized domains, which
are based on others, already existing domains. This added complexity is capable of using
properties of all combined domains and therefore infer stronger invariants, which could
not be found by single domains. Currently there are two different approaches to domain
combinations.

This work also proposes a generic solution for both types of domain combinations.
While the main advantage of the generic strategy solver for simple domains was to ease the
process of adding a new domains, for the generic solution for domain combinations it is a
complete replacement – 2LS with this generic strategy solver can upon starting select any
abstract domains and start analysis of their combination without this specific combination
being defined anywhere in this tool.

For domains being able to use generic strategy solver they have to implement a specific
interface, through which strategy solver communicates with domains. This work proposes
such interface, which when implemented by a domain, this domain can be used both with
strategy solver for simple and combination domains.

All three proposed generic strategy solvers has been implemented together with the
proposed domain interface. Existing simple and combination domains were migrated and
currently are using these generic strategy solvers. This migration visibly reduced number
of files in the domains implementation. Only those domains were not migrated, which
use binary search for invariant inference. This approach requires another generic strategy
solver.

Since this work changed vital parts of the code responsible for program analysis, it was
necessary to validate that these changes did not negatively effected current capabilities of
this tool. This verification was done by regression tests which exist in 2LS tools and contain
a large amount of different input programs. Moreover, for a better validation a set of tests
from SV-COMP 2018 (International Competition on Software Verification 2018) has been
used.

Lastly, experiments were conducted with new domain combinations – it was shown on
a specific example that it is very simple to use a new, not yet implemented, domain com-
bination and to analyse program, which could not be correctly analysed before.

The rest of the thesis is structured as follows. Chapter 2 provides an overview of the
used verification approaches and of the kIkI algorithm. Chapter 3 describes how 2LS
encodes the source program and how a source program from language C is translated into
a logical formula. The core part of this work is based around template-based verification
which is introduced in Chapter 4 together with the algorithm for invariant inference which
is the part implemented by strategy solvers. Our proposal of generic strategy solvers is
described in Chapter 5 followed by Chapter 6 focused on combination strategy solvers. In
the Chapter 7 is described the implementation part of this work. Experiments done in this
work together with results are presented in Chapter 8 and finally a conclusion and future
work is summarised in Chapter 9.
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Chapter 2

Verification in the 2LS Tool

2LS [15] is a program verification framework built upon the CPROVER [1] verification
framework that combines three verification approaches in order to efficiently analyze pro-
grams written in C language.

In this chapter these approaches are introduced and described. In order to be able to
describe these methods a program representation called transition system is introduced in
Section 2.1. Using this representation the three verification approaches are introduced –
namely bounded model checking in subsection 2.2.1, k-induction in 2.2.2 and abstract inter-
pretation in part 2.2.3. The last named requires knowledge of concrete semantics which is
also formally introduced in subsection 2.1.

All of these approaches and techniques are combined into a novel k-invariant k-induction
(so-called kIkI) algorithm [5], which is the core verification algorithm of 2LS tool. This
algorithm is described in Section 2.3.

2.1 Program as Logical Formulae
To simplify the following descriptions of verification approaches, the source program is
viewed as a transition system. A program state x is represented by current values of all
program variables including current value of the program counter and the state of all related
memory (such as stack and heap).

Using transition system, all reachable states of a program execution create a concrete
semantics. Let S be the set of all program states and let the transition relation T ⊆ S ×S
define for each state a set of all its possible successors in the program execution [13].

Assuming Sk = T k(S0) as the set of all reachable states starting from S0 after execution
of k steps, Sr can be also defined as the least fixed point of T as

Sr =
⋃
i∈N
T i(I) (2.1)

where I is set of all possible initial states of a program. With this definition Sr defines
the concrete semantics of the analysed program.

The set of all reachable states can be used for analysis of program properties, however,
computing this set is often difficult and not possible for real world program representation
as the set grows exponentially. Instead inductive invariants are used (described in Section
2.2.2).
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Also, often to prove program correctness it is enough to show that the set of all reachable
states does not intersect with the set of error states, denoted by the predicate Err(x).
Alternatively, to prove that the program is not safe, it is enough to find n-step counter-
example, that can be described by formula:

∃x0, . . . , xk.Start(x0) ∧
∧

i∈[0,n−1]

Trans(xi, xi+1) ∧ Err(xn) (2.2)

where predicate Start(x) encodes that x ∈ I and predicate Trans(x, x′) that x′ ∈ T (x).

2.2 Verification Approaches
This section describes some of more well known approaches for program verification as well
as their strengths and weaknesses. All of these approaches are used in some kind of form
in the 2LS verifying algorithm, since they complement and reinforce each other.

2.2.1 Bounded Model Checking

Bounded model checking builds upon and extends the idea of a basic model checking,
where the program to be verified is presented as a finite state machine. All reachable
states are represented by some structure which is checked whether it satisfies all desired
properties. It can be easily used to provide counterexamples by finding sets of states not
satisfying the verified properties. The problem of this approach lies in its complexity, which
grows exponentially with the size of the program being verified. An improved method, called
symbolic model checking, represents sets of states as boolean expressions. Manipulating such
expressions can be efficiently done by using Binary Decision Diagrams (BDD), however it
still can be memory expensive. This problem is possible to solve with bounded model
checking (BMC), which checks only for executions of length less than i which means solving
formula:

∃x0, . . . , xk.Start(x0) ∧
∧

i∈[0,k−1]

Trans(xi, xi+1) ∧
∨

i∈[0,k]

Err(xi) (2.3)

This approach can provide counter-examples for only limited length so it represents under-
approximation of the set of reachable states and therefore can fail to find counter-examples
that require a longer transition sequences.

The value k can be iteratively increased until an upper bound is reached (no upper
bound is needed to be specified, but then the algorithm may never terminate). This way,
program correctness cannot be proven, only counterexamples can be found [3]. It is also
possible to increase the bound value itself – in this case the approach is called Incremental
BMC (IBMC) [10]. The bound value usually starts at value 0, which means solving formula:

∃x0.Start(x0) ∧ Err(x0) (2.4)

Then the bound value is increased (usually linearly) and BMC is executed. This process
can be iteratively repeated until upper bound value is reached.

2.2.2 K-induction

Contrary to BMC, that is in practice usable only for finding counter-examples, k-induction
is able to show program safety as well as to find counterexamples. It is done by utilising
k-inductive invariants which are general versions of a inductive invariant.
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Each inductive invariant describes a fixed-point of a transition relation but it is not
guaranteed to be the least one nor is it guaranteed to include Start(x). It is defines as:

Definition 2.2.1 An invariant Inv is called inductive if it meets the property:

∀x, x′.(Inv(x) ∧ Trans(x, x′)⇒ Inv(x′)) (2.5)

Then a k-inductive invariant is defined as:

Definition 2.2.2 Inductive invariant KInv is an k-inductive invariant if it meets the fol-
lowing property:

∀x0, . . . , xk.
∧

i∈[0,k−1]

KInv(xi) ∧
∧

i∈[0,k−1]

Trans(xi, xi+1) =⇒ KInv(xk) (2.6)

K-inductive invariants have following properties [4] [13]:

Lemma 2.2.1 Every inductive invariant is a 1-inductive invariant and vice versa.

Lemma 2.2.2 Every k-inductive invariant is a (k+1)-inductive invariant.

Lemma 2.2.3 Showing that k-inductive invariant exists implies that an inductive invariant
exists.

Lemma 2.2.4 K-inductive invariant is not necessarily an inductive invariant, usually a
corresponding inductive invariant is much more complex.

A program can be considered to be safe if and only if exists a k-inductive invariant KInv
that satisfies:

∀x0, . . . , xk.
(
Start(x0) ∧

∧
i∈[0,k−1]

Trans(xi, xi+1) =⇒
∧

i∈[0,k−1]

KInv(xi)
)
∧

( ∧
i∈[0,k−1]

KInv(xi) ∧
∧

i∈[0,k−1]

Trans(xi, xi+1) =⇒ KInv(xk)
)
∧

(
KInv(xk) =⇒ ¬Err(xk)

)
(2.7)

Finding a k-inductive invariant is enough to prove that an inductive invariant exists
(according to Lemma 2.2.3(but also due to Lemma 2.2.4 it does not imply that the k-
inductive invariant is an inductive invariant). However finding k-inductive invariants is
hard to implement and very similarly to IBMC, increasing k can be used to simplify the
process. It means solving following formula:

∃x0, . . . , xk.
(
Start(x0)∧

∧
i∈[0,k−1]

Trans(xi, xi+1) ∧
∧

i∈[0,k−1]

¬Err(xi) ∧ Err(xk)
)
∨

( ∧
i∈[0,k−1]

Trans(xi, xi+1) ∧
∧

i∈[0,k−1]

¬Err(xi) ∧ Err(xk)
) (2.8)

and if this formula is not satisfiable the program is safe (and ¬Err(x) is a k-inductive
invariant) [9].
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2.2.3 Abstract Interpretation

In contrast to previous approaches, which are usually used for under-approximations of
the set of reachable states of the source program, abstract interpretation is based on an
over-approximation.

As already mentioned the set of reachable states is generally not computable. More-
over, usually only a certain property of the analyzed program is needed to reason about
and therefore it is sufficient enough to approximate program states as elements of a simpler
domain – so called abstract domain – which approximates the concrete domain. An element
of an abstract domain – called an abstract value – typically contains a set of concrete pro-
gram states. Having the concrete domain P of all program states and the abstract domain
Q, the following two functions are defined [7]:

• γ : Q→ P is a concretisation function that defines a mapping from an abstract value
to a concrete value.

• α : P → Q is a abstraction function that defines a mapping from a concrete value to
an abstract value. α(p) is the most precise abstract value from Q which contains p.

Definition 2.2.3 Abstract interpretation I is defined as [8]:

I = (Q,t,v,>,⊥, T #) (2.9)

where

• Q is the abstract domain with defined concretisation and abstraction functions

• t : Q×Q→ Q is the join operator, (Q,t,>) is a complete semilattice

• (v) ⊆ Q×Q→ Q is an ordering on (Q,t,>). x v y def⇐⇒x t y = y

• > ∈ Q is the supremum of Q

• ⊥ ∈ Q is the infimum of Q

• T # : Instr ×Q→ Q defines the interpretation of abstract transformers

As abstract values are over-approximations of the set of reachable concrete values, it is
possible that false positives can be generated. It is usually due to abstract value representing
set of concrete values, from which some are not reachable in the original program. One of
the ways how to minimize this effect is to a use more precise abstract domain.

2.3 kIkI Algorithm
In this algorithm introdued by 2LS, techniques from Section 2.2 strengthen and reinforce
each other. Overview of this algorithm is depicted in Figure 2.1.

The letter k in the algorithm name represents a bound value that is increased in the
program run if it is needed. Very similarly to other mentioned approaches (such as IBMC)
also in this algorithm some maximum value for k must be set up, otherwise the analysis
may not terminate. In case this maximum value is reached and the property being analyzed
was not proven (or refuted) the analyses ends up inconclusive.
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IBMC k-induction Abstract
Interpretation

Test ∃x0�

Init(x0) ∧ Err(x0)

Find KInv � ∀x0, . . . ,xk�

(Init(x0) ∧ P [k] ∧ T [k]⇒ K [k])∧
(P [k] ∧K [k] ∧ T [k]⇒ KInv(xk))

Test ∃x0, . . . ,xk�

P [k] ∧K [k + 1] ∧ T [k] ∧ Err(xk)

Test ∃x0, . . . ,xk � Init(x0)∧
P [k] ∧K [k + 1] ∧ T [k] ∧ Err(xk)

k ++

C/E Safe

UNSAT

SAT

UNSAT

UNSATSAT

SAT

Figure 2.1: The kIkI algorithm [5]

The kIkI algorithm starts with setting up k = 1. Then k-induction (described in sub-
section 2.2.2) uses invariant that has been generated by abstract interpretation in some
abstract domain (described in subsection 2.2.3) for proving true properties. If the in-
varaint is not sufficent to prove safety (a violation was found by a SMT solver) it is tested
by bounded model checking (described in subsection 2.2.1) to see if this violation is real
counter-examples reachable in k-steps. If counter-example is shown to be valid, analyses
ends with providing this counter-example and showing that the input program contains a
problem. If BMC could not prove that this counter-example is valid, value of k is increased
and the loop is repeated.

This algorithm enables 2LS to efficiently analyze programs and to reason about various
properties by finding invariants and proving its correctness or by finding counter-examples
and therefore finding errors in them.
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Chapter 3

Representation of Programs as
Logical Formulae

All approaches mentioned in Section 2.2 see the source program as transition system (de-
scribed in Section 2.1). Even though the transition system is directly usable for analyses,
there are some properties of programs which can be used for improving this system. For
example, most of the states of the program counter directly identify its next value (i.e. most
of the instructions do not branch) and most of the transactions update a single variable.
Therefore, states in a transition can be joined into a symbolic value resulting in reduction
of size. Rather than creating a transition system and consequently reducing it, it is more
efficient to convert the program into the static single assignment (SSA) form. Another
advantage of using the SSA form is that it can be easily converted into a logical formula,
that can be utilised with solver-based approaches. In 2LS, an extended form of the SSA
form is used, which includes over-approximation of the loops so that a solver can be used
to reason about abstractions of the program. [5]

In this chapter, the general SSA encoding is introduced in Section 3.1. Next, extensions
that 2LS introduces into the SSA form are described – namely introduction of guards to
encode information about control-flow (Section 3.2) and over-approximation of loops by
cutting them (Section 3.3). Finally, an example of such conversion is shown in Section 3.4.

3.1 SSA Encoding
SSA representation is a form of program encoding in which each variable is assigned exactly
once. Since, in a program, one variable may be assigned more than once, for each original
program variable a set of SSA variables is introduced. Each assignment into a variable v is
replaced by an assignment into vi, where vi is a fresh, not yet assigned variable [13].

In the SSA form at each join point of the original program an additional assignments
are needed – so-called φ (phi) nodes. φ node has form x = φ(y, z), which means that to x
is assigned value of y if the node was reached through the first entering edge and value of
z is assigned to x if the node was reached through the second entering edge [2].

The logical formula corresponding to the original program is then a conjunction of
SSA formulae for all program statements. The formulah can be used to reason about the
program using an SMT solver. For acyclic code, the SSA form is a formula that exactly
represents the strongest post condition of running the code.[5]
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3.2 Encoding Control-Flow
The SSA form encodes information about data-flow among variables by design. However,
no information about control flow of the program is contained in this representation. Such
missing information may be whether a body of a specific condition was executed or whether
a specific part of code was reached. For keeping track of these information, special variables
called guards are introduced into the SSA representation in 2LS. A guard encodes a boolean
information whether a specific program location was reachable and under what conditions.
An example can be a guard at the begging of the analyzed program which is always set
to True (assuming that the program can be always started) or a guard after a loop, which
encodes that the loop has finished. The latter guard is encoded as a conjunction of a guard
encoding that the loop head is reachable and of a guard encoding that the loop condition
is False and therefore the loop terminated.

3.3 Over-approximation of Loops
The logical formula created from the SSA form is made acyclic in order to be usable with
SMT solver. This is done by cutting loops at their end. For this, each φ node that selects
between initial value of a variable that is edited in the loop and the value that comes from
the loop end is edited. In such φ node the value coming from the loop end is represented
by a new free variable ilb – so-called loop-back value. Also the non-deterministic selection
is done by a loop-select variable gls that is also a free variable. In this way the SSA form
is acyclic.

Since these two introduced variables are free, the SSA form with cut loops is an over-
approximation of the program being represented. To refine the over-approximation, a loop
invariant is used. A loop invariant constrains the value of a variable by a property that
holds for each iteration of the loop. As an example for a variable i that is being looped
from one to five a loop invariant could have the form:

ilb ≥ 1 ∧ ilb ≤ 5 (3.1)

3.4 Conversion into SSA encoding
In this section a process of converting a source program in C language into an SSA form is
demonstrated. This algorithm consists of two steps. Firstly converting C program into a
GOTO representation, which represents the source code in the form of a control-flow graph
where locations contain program statements and are connected by edges which represent
possible program flows. Second step is conversion of the GOTO representation into SSA
form, which consist of 4 main actions:

• Split variables - The basic property of SSA form is that each variable is assigned
exactly once. To comply with this property, each occurrence of a variable on the left
side of assignment is replaced by a new name, usually created as a combination of
the variable name and of the number of occurrence. If a variable is on the right side
of an assignment or used in a different statements, then this variable is replaced with
its last assigned version.

• Introduce guards - This 2LS specific property of SSA form, which was introduced
in Section 3.2, requires to introduce guards into the SSA representation. This is done
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by creating a new guard at the beginning of each non-branching block. This is mainly
important for places that branch or loop.

• Introduce φ nodes - Another new assignments that are needed to be added into the
SSA form are φ nodes. These nodes are introduced for each conditional and looping
statement. More specifically for each variable that is modified inside these statements.
For conditions the selection in the φ node is controlled by the branch condition. For
loops a free boolean loop-back variable is used as described in Sectionoverapprox.

• Over-approximate function calls - Function calls are replaced by the over-approximating
placeholders. More about this step can be found for example in [13].

This conversion is illustrated on a simple program below. Also a control flow graph
(CFG) is shown in Figure 3.4 to demonstrate the SSA form better.

1 int i = 10;
2 while (i > 0)
3 i--;
4 return 0;

Figure 3.1: The example input source program [14]

1 signed int i;
2 i = 10;
3 1:
4 IF !(i >= 1)
5 THEN GOTO 2;
6 i = -1 + i;
7 GOTO 1;
8 2:
9 return_value = 0;

10 dead i;

Figure 3.2: Corresponding GOTO representation to source program from Figure 3.1 [14]

The SSA form in Figure 3.3 corresponds to statements from the GOTO representation
from Figure 3.2. In the following text, each line of the SSA form will be shortly described
and its form will be explained.

Line 1 of the SSA form contains guard0 that encodes that the program is reachable. As
mentioned before, this guard is set to True as it is assumed that every program can start.

Line 2 of SSA corresponds to first two lines of GOTO representation. Variable i was
renamed to i1 since this is the first occurrence of this variable on the left side of an assign-
ment.

Line 3 contains a φ node for the variable i that is being modified inside of the upcoming
loop. The node assigns to the variable iphi2 either a loop-back variable ilb4 or a previous value
of i which is now named i1. This selection is based on the value of a loop select variable
guardls4 .
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1 guard0 == TRUE
2 i1 == 10
3 iphi2 == (guardls4 ? ilb4 : i1)
4 cond2 == !(iphi2 >= 1)
5 guard2 == guard0

6 i3 == -1 + iphi2

7 guard3 == (!cond2 && guard2)
8 cond4 == TRUE
9 mainreturn_value

5 == 0
10 guard5 == (cond2 && guard2)

Figure 3.3: Corresponding SSA representation to source program from Figure 3.1 [14]

guard0

i#1

iphi2

int i = 1;

guard2

guard3ilb4

i--;

True False

i > 0

return 0;

guard5

Figure 3.4: CFG representing SSA form from 3.3 [14]
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Lines 4 and 8 both represent a loop condition. However, since in C language there
are two types of loops – ones with condition at a loop head (for and while) and ones with
condition at the loop end (do-while), the SSA form needs two conditions. One is always
unused and set to True, which in this case is cond4. The other condition contains the loop
condition directly.

On Line 5 is a guard called guard2 that encodes the reachability of the loop head. In
this example it is reachable when the program itself is reachable and therefore equals to
guard0.

Line 6 directly corresponds to the 6th line of the GOTO representation. It is the loop
body.

guard3 on the line 7 encodes the reachability of the loop body. It encodes that the loop
condition holds and that the loop head is reachable. When these two conditions are true,
then the loop body is reachable as well.

Finally, line 9 represents a reachability of the code after the loop. Therefore it is a
conjunction of guard2 (expressing that the loop head was reachable) and cond2 (expressing
that the loop condition does not hold).
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Chapter 4

Template-based Verification

It is easier to compute inductive invariants than the set of all reachable states (even when
represented by an abstract domain). However, it is not guaranteed that such inductive
invariant includes the starting state nor that it is the least one. Finding inductive invariants
using abstract interpretation means solving the following formula:

∃2Inv.∀x, x′.(Start(x)⇒ Inv(x))∧
(Inv(x) ∧ Trans(x, x′)⇒ Inv(x′))

(4.1)

To check for safety, it is needed to check satisfiability of the formula:

∀x : Inv(x)⇒ ¬Err(x) (4.2)

The core advantage of the kIkI algorithm is in the inference of inductive invariants,
which, as seen in Formula 4.1 needs to be solved by solver capable of handling (the existential
fragment of) second-order logic. As today no reasonably efficient solver for this type of logic
exists, the problem is reduced into an iterative use of quantifier-free first-order logic for
which and SMT solver may be used. This reduction is done by so-called templates, which
are described in Section 4.1. The iterative process of solving these formula is described in
subsection 4.1.1.

Also it is more efficient to convert the source program into static single assignment form
(described in Section 3.1) as in this form the whole source program is described by a logical
formula.

4.1 Invariant Inference via Templates
A template is a fixed, parameterised first-order logic formula that represents an abstract
domain which selects only those properties of the analyzed program which are relevant for
the analysis.

Template has the form T (x, δ), where x represents program variables and δ represents
template parameters. The direct reduction of Formula 4.1 is then:

∃δ.∀x, x′.(I(x)⇒ T (x, δ))∧
(T (x, δ) ∧ T (x, x′)⇒ T (x′, δ))

(4.3)

Formula 4.3 contains quantifier alternation (∃∀), which is challenging for today’s SMT
solvers. Therefore, the formula is negated (to turn ∀ to ∃) and the parameter δ is deduced
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by iteratively solving Formula 4.6 for different choices of d as value of δ (described in section
4.1.1). Here, d corresponds to an abstract value that represents the set of all x that satisfy
the formula T (x, d). Also, an abstract value ⊥ is defined to represent an empty set and >
to represent the whole domain x. Subsequently, the following formulae may be defined:

T (x,⊥) ≡ false (4.4)

T (x,>) ≡ true (4.5)

Formula 4.6 describes an invariant if and only if is unsatisfiable [13].

∃x, x′.¬(I(x)⇒ T (x, δ))∨
¬(T (x, d) ∧ T (x, x′)⇒ T (x′, d))

(4.6)

4.1.1 Algorithm for Invariant Inference

The problem of having ∃∀ in Formula 4.3 is solved by iterative solving formula 4.6. The
basic algorithm for solving this formula using SMT solver is to repeatedly check satisfiability
of the formula for abstract value d. The algorithm starts with setting up the initial value
of d to ⊥ and solving formula 4.7. If this formula is satisfiable, the model of satisfiability is
joined with the current invariant. This join is specific for each domain. When no model of
satisfiability can be found, it means an invariant was found. Convergence of this method is
guaranteed (as the abstract domain is finite), but 2LS tool uses different optimization for
different abstract domains to make it more effective.

T (x, d) ∧ Trans(x, x′) ∧ ¬(T (x′, d)) (4.7)

An optimization in the SMT solver, called incremental solving, speeds up solving of this
formula. The main idea lies in the fact that Trans(x, x′) does not change and therefore
does not need to be re-solved (it is solved the first time and then is assumed to hold for all
subsequent iteration). It is only being checked if it is still satisfiable with a different values
of the invariant [11].

4.2 Guarded Templates
Since verification in 2LS is based on logical formulae generated from SSA form, invariants
do not hold information in which context of program they are valid – in contrast to using for
example a control-flow graph in which case invariants computed with abstract interpretation
can be bound to a certain program state. To overcome this problem in 2LS, so-called guarded
templates are used.

A guarded template has a form

G⇒ T (x, d) (4.8)

where G is a conjunction of SSA guards. The computed invariant is limited to be only used
when its guards hold true – which means that the part of code that the invariant describes
was reached and executed.
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4.3 Loop Invariants
Another limitation that is needed to be introduced is limitation of loop-back variables
(described in Section 3.3). A loop invariant describes a condition that holds for each
iteration of the loop body at its end (just before branching back to the loop head). It is
expressed as a guarded template and it has form

(glh ∧ glslh)⇒ T (xl, d) (4.9)

where xl is a set of loop-back variables for a loop l and glh is a guard encoding that the head
of loop l is reachable. glslh is the loop-select that selects between value of variable coming
to the loop head and the loop-back value coming from the end of the loop (as described in
Section 3.3).

Example of Computing a Loop Invariant

In this example a computation of a loop invariant is shown on an example from Figure 3.3.
The program contains only one loop and the set of all its loop-back variables contains just
one variable, ilb4 . In this example an interval abstract domain [7] is used. For each variable
an interval is computed in which the value of the variable lies. hence the template has the
form:

T ({ilb4 }, (d1, d2)) ≡ ilb4 ≥ d1 ∧ ilb4 ≤ d2 (4.10)

where d1 and d2 are template parameters whose value is inferred during the analysis.
An accelerated solving (described in subsection 4.1.1) is now used and more specifically

Formula 4.7 is being iteratively solved to infer the template parameters d1 and d2. The
algorithm takes as long as the formula is satisfiable. For simplicity of this example the
transition relation Trans(x, x′) is assumed to be always satisfiable (since we assume a
syntactically correct program represented by an acyclic SSA form with over-approximated
effect of loops) and therefore in each iteration of the loop only the current instance of the
invariant is solved.

Formula 4.7 contains two instances of the template – T (x, d) and T (x′, d). The first
instance describes the loop invariant before the loop body is executed (here represented by
Trans(x, x′)) and the second instance represents the same invariant but after the body has
been executed. Therefore the first template is defined as:

(guard2 ∧ guardls4 )⇒ T ({ilb4 }, (d1, d2)) (4.11)

and the second one as:

(guard2 ∧ guard3)⇒ T ({i3}, (d1, d2)) (4.12)

where guard2 encodes reachability of the loop head, guardls4 is the loop-select variable
for the loop-back variable ilb4 . guard3 guards the reachability of the end of the loop body
and therefore also the reachability of the SSA variable i3 which represents the value of i at
the end of the loop body and which corresponds to the loop-back variable ilb4 .

The iterations of the accelerated solving work now like this:

• From subsection 4.1.1 is known that the initial value of the template parameter d is
⊥. Also from Formula 4.4 is defined that T (x,⊥) ≡ false. Taking these two facts
and including it into loop invariant 4.11 the following formula is obtained:
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(guard2 ∧ guardls4 )⇒ false ∧ ¬((guard2 ∧ guard3)⇒ false) (4.13)

Since the right side of the implication is always false for the whole formula to be
satisfiable left side also needs to be false. But as guard2 is true, the only option is
for guardls4 to be false. This implies that iphi2 is assigned the value of i1 which is 10.
Subsequently to i3 the value 9 is assigned. Variable i3 is the variable holding the value
of i at the end of the loop body. Therefore, this value is used to refine the current
invariant and since both d1 and d2 are not defined both are set to this value. Hence,
after the first iteration the current invariant is following formula:

ilb4 ≥ 9 ∧ ilb4 ≤ 9 (4.14)

• In the second iteration the current invariant is applied to Formula 4.7 and it has form:

(guard2 ∧ guardls4 )⇒ (ilb4 ≥ 9 ∧ ilb4 ≤ 9)∧
¬((guard2 ∧ guard3)⇒ (i3 ≥ 9 ∧ i3 ≤ 9)

(4.15)

In order to understand this formula it may be split into two separate formulae which
both need to be true. In the first conjunct left side of implication is true so does the
left side need to be true. Only possible way how to make this formula satisfiable is
to select 9 as the value of the variable ilb4 . The second part is negated and hence the
inside formula needs to be false – and since the left side of the implication is true, the
only way how to make the whole implication false is to find a value of i3 for which it
does not hold. In this case it is number 8 to comply with Trans(x, x′).
Since a model of satisfiability was found the invariant can be updated. Since ilb4 = 9,
then i3 needs to equal 8, which is different from 9. Therefore the invariant is modified
to:

ilb4 ≥ 8 ∧ ilb4 ≤ 9 (4.16)

• Other iterations do not differ much from second iteration, only the value of ilb4 is
always decreased in the same manner.

• The iteration ends once a model of satisfiability cannot be found. This happens when
guard3 becomes false and therefore the second conjunct is always false and therefore
the whole formula is unsatisfiable. Since guard3 is conjunction of guard2, which is
always true, and cond2 , for it to become false the condition needs to be false. This
happens when ilb4 reaches value 0. After this iteration the final computed invariant
has form:

ilb4 ≥ 0 ∧ ilb4 ≤ 9 (4.17)
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Chapter 5

Strategy Solver

2LS uses abstract domains (in the form of templates) to analyze various properties of
programs. Each abstract domain specifies a template form for computing invariants, a
domain of abstract values (i.e. of values of the template parameter) and an algorithm for
joining a model of satisfiability returned from the solver and the current instance of the
template.

«interface» 
Domain

equality domain

heap domain

tpolyhedra domain

. . .

s-solver heap

s-solver tpolyhedra

. . .

SMT solver Analysis
engine 

s-solver equality

Domains

s-solver heap-
tpolyhedra

s-solver heap-
tpolyhedra-

sympath

heap-
tpolyhedra

domain

heap-
tpolyhedra-

sympath domain

Combinations
Strategy solvers

Figure 5.1: Structure of 2LS from the solvers point of view

19



An instance of the template (i.e. template T (x, d) with some concrete value d of the
parameter) needs to be translated into formula that SMT solver understands. Also the
opposite process is needed for converting the model of satisfiablity from SMT solver into a
logical formula. For both of these tasks, a so-called strategy solver is used. In the current
implementation, there is one strategy solver for each domain. The structure of domains
and corresponding strategy solvers is displayed in Figure 5.1.

Creating a new domain therefore means creating the domain itself and then creating
a strategy solver for this domain. It has been noted, that all strategy solvers have a very
similar logic. That led to the idea of creating a single strategy solver, that could suit
all domains. The specific behaviour of domains, that is in the current implementation
encapsulated in strategy solvers, can be moved into domain itself. This behaviour then can
be accessible using unified domain interface.

It is also worth mentioning that there are combination domains with corresponding
strategy solvers. Such domains combine more simple domains to unveil the power of 2LS
approach. To these domains is devoted Chapter 6. This chapter only focuses on simple
domains.

5.1 Domain Interface
In order to make a generic solver possible, each domain must implement some basic interface.
To create this interface, domains were analyzed and it was found out that there are two
types of domains – a set based and a row based domains. In the set based domain, all
rules to be checked are stored in a set and are checked with a SMT solver one by one.
The row based domains use a vector to store all the rules and all rules are checked at once
with the SMT solver. To work around this difference, during the iterative solving, in the
each iteration, the first item in the set-based domains is taken and inserted into a one-item
vector. Than it is possible to look at this as a row-based domain.

In the following part the type exprt means expression, that an SMT solver understands
and valuet represents the current invariant. Each interface must implement following
methods:

• exprt to_pre_constraints(valuet) - Get a formula expressing the current state
of the domain invariant. This represents T (x, d) from Equation 4.7.

• void make_not_post_constraints(valuet, *exprt) - Get the formula expressing
negation of the current invariant instance after execution of the transition relation.
This represents ¬(T (x′, d)) from Equation 4.7.

• vector<exprt> get_required_values(row) - Get a vector of variables, those values
are needed from the SMT solver. This method is needed since domains do not interact
with SMT solver directly but only through strategy solver. However domain needs to
know about the model of satisfiablity. And since this model is often very large and
domain needs to know what value has been assigned to a one specific variable this
method is used. Domain specifies list of variables for which wants to know values in
the current model of satisfiability.

• void set_values(vector<exprt>) - Set values of requested variables. A vector of
values that the SMT solver assigned to variables required by get_required_values
is given as a parameter. This is counterpart to the previous method.
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• bool edit_row(row, valuet, bool) - For each satisfiable row (in set-based do-
mains it is the first item in set) this method is called. It gives opportunity to the
domain to edit its internal state. Return true if want to refine the invariant more in
the next iteration or false, if the invariant cannot be refined any more.

There are also methods, which are not mandatory for the domain to implement. When
not overridden, default implementation is used instead. Domains can use these methods to
adjust their internal state in different phases of the invariant inference algorithm.

• exprt initiliaze_solver() - This method is called only when a new solver is cre-
ated. Domains may want to initialize the solver. When domain does not require any
initialization steps the default behaviour is to do nothing.

• void pre_iterate_init(valuet) - This method is called on every cycle of the iter-
ative solving exactly once at the beginning of each iteration. It is mostly designed for
domains to prepare internal state for the next iteration.

• bool has_something_to_solve() - Ask the domain whether there is anything to
solve and therefore it makes sense to continue. Called at the beginning of each iter-
ation. The sole purpose of this method is to inform strategy solver that the domain
does not have anything that would need solving.

• bool not_satisfiable(valuet, bool) - If no model of satisfiablity for the current
invariant has been found, this method is called. Domain should return true if wants
to refine the invariant more in the next iteration (assuming that it edits the invariant
before next iteration) or false, if the invariant cannot be refined any more.

• exprt make_permanent(valuet) - Enables domain to write clauses into SMT solver
at the end of each iteration. The returned formula from this method is made perma-
nent within the SMT solver (i.e. will be considered to hold for all following iteration).

• void post_edit() - After calling make_permanent method, last edits in each itera-
tion can be made by calling this method.

5.2 Generic Solver
Using the proposed interface from section 5.1 it is possible to create a generic strategy solver.
The first step in a generic solver is to let the domain know, that there is going to be a new
iteration of the solving process, since some domains may want to make some initialization.
This can be simply done by calling preIterateInit method. Then the domains is inquired
about the state – whether the invariant can be refined more or not. This is mostly useful
for a set based domains, where empty set of ”to-be-refined” rules means the solving can
be halted and there is no need to start another iteration of the solving process. This
functionality is in the somethingToSolve method, which default behaviour is to return
true. If the condition was satisfied the main solving part can be executed.

On line 3 in Algorithm 1 a new context is created in the SMT solver. Since there is
only one instance of SMT solver in 2LS shared for all analyses. Also it is incremental
solver which keeps previous states and those are considered to always holds. However since
this iterative process is based on trying and refining, it may happen that in the solver a
non-solvable formula would end up and all following computations would not be solvable.
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«interface» 
Domain

equality domain

heap domain

tpolyhedra domain

. . .generic s-solver
simple domains 

SMT solver 

Analysis
engine 

DomainsStrategy solvers

Figure 5.2: Structure of 2LS from the solvers point of view with generic solver

Algorithm 1: Algorithm of the generic solver
1 domain.preIterateInit();
2 if domain.hasSomethingToSolve() then
3 smtSolver.newContext();
4 smtSolver ← domain.toPreConstraints();
5 smtSolver ← domain.makeNotPostConstraint();
6 if smtSolver is satisfiable then
7 for row in domain.rows do
8 if smtSolver.get(row) is True then
9 values ← domain.getRequiredValues(row);

10 solverValues ← smtSolver.get(values);
11 domain.setValues(solverValues);
12 domain.editRow(row);
13 end
14 end
15 else
16 domain.notSatisfiable();
17 end
18 smtSolver.popContext();
19 smtSolver ← domain.makePermanent();
20 domain.postEdit();
21 end
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Therefore 2LS enables to create a new layer and all new changes are stored in this layer.
In this way it is easy to remove all added changes.

First step in the main solving part of the algorithm is to insert into the SMT solver
current invariant. This invariant can be obtained from the domain with the method
toPreConstraints. As explained in the Section 2.2 also negated version of the next step
of the program is needs to be written into the SMT solver. This form can be provided by
the makeNotPostConstraint method. In this step the SMT solver can be executed and
checked if the form has model of satisfiablity. If there is such model, it means the current
domain state is not yet invariant and further refining is needed. That is done by iterating
through all rows in row based domains or all lines in lines based domains and checking with
the SMT solver if are satisfiable. If so, then the domain invariant is altered adequately. If
no such model was found by the SMT solver, then domain is informed about this state by
calling notSatisfibale methods. Usually this means end of the invariant refining, however
domain may want to continue. This usually happens with set-based domains if there are
more items to be refined.

Finally the new context in the SMT solver is removed and SMT solver is therefore in the
state it was before the solving. However domain may want to make some expression invari-
ant for all further checks and therefore may write into the SMT solver an expression with
method makePermanent. The last step, contrary to preIterateInit, is method postEdit
which enables domains to clean-up right before the strategy solver finishes.

The algorithm of the generic solver is shown in Algorithm 1.
This proposed solver can replace all strategy solvers of migrated domains. Here mi-

grating domain means moving some functionality from the domain’s strategy solver into
methods implementing the proposed interface. Structure of 2LS from the solvers point of
view with the generic solver is displayed in Figure 5.2.
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Chapter 6

Combination Strategy Solvers

The 2LS tool supports also solving inference of invariants in more than one abstract domain.
This feature provides a possibility to analyse complex properties of programs, such as those
that require reasoning in multiple abstract domains at the same time. As a concrete exam-
ple, an abstract data structure such as a linked list can be assumed, where modifications
of the list are done based on the numeric value of each individual item.

Introduction of such a new analysis can be view as a new abstract domain (and in
practise it is a new domain) for any new combination of existing domains. Since 2LS uses
logical formulae as program representation, introduction of such new complex analyses is
rather simple as it mostly requires just composition of logical formulae produced by other,
already implemented, domains.

This chapter proposes generic solvers for some kinds of domain combinations. Section
6.1 introduces to two possible approaches for combining domains, namely product domains
and domains with symbolic paths. Since new domains are introduced into 2LS, there is
also need for a strategy solver for every new combination domain. Similarly to Section 5.2,
where a generic solution for a strategy solver for simple domains was introduced, in Section
6.2 a generic solution for each type of new domain is described. Such a generic solution can
work with any number of domains and also any types of domains – these can be dynamically
picked at the start of the analysis. This makes it very easy to use for different combinations
and to analyse new properties without a need to implement any new domains.

6.1 Combinations of Domains
In case when more than one abstract domain is used in a single analysis, it is referred to
it as a combination of domains and a special strategy solvers are needed. In theory, the
simplest solution is to take two domains, iteratively solve the first one and then the second
one. In such approach a shared SMT solver is used so the second domain is effected by the
first domain. At the end a disjunction of both results is considered.

However, this basic approach does not bring any significant improvement that can be
achieved with smarter combining of domains. In 2LS there are two specific kinds of domain
combinations – Product Domains and domains with symbolic paths. These two types are
described in the following subsections.
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6.1.1 Product Domains

A product domain is a way of combining any amount of different domains to make the
analysis much more interesting. This can be done simply by using a Cartesian product of
different domain templates – domains are used side-by-side while reinforcing each other (in
each iteration of a domain solving, invariants computed so far in other domains are used
as constraints, allowing to infer stronger invariants). The current implementation of 2LS
contains, for example, combination of heap and interval domains, which enables 2LS to
analyse pointer and numerical data in a single analysis and what is more important, which
enables analysis of the numeric data on the heap.

Product domains are universally combinable and the result of such combination for
templates T 1, T 2 . . . T n is their conjunction T 1 ∧ T 2 ∧ · · · ∧ T n.

In each iteration of solving such domain combination, the strategy solver needs to run
one iteration of a corresponding solver for each participating domain in the context of
all invariants found by all other solvers. This approach can be nicely demonstrated on
combination of heap and interval abstract domains. First, one iteration of the heap strategy
solver is run in the context of the invariant from the interval domain. Then, one iteration of
the interval strategy solver is run in the context of the invariant from the heap domain. Not
only that this makes it possible to analyse more complex properties of analyzed programs,
but also it can find invariants faster and more efficiently.

6.1.2 Domains Combination over Symbolic Paths

While product domains enabled the analysis to combine more than two domains into one
stronger analysis, this type of domains combination enables combining a single domain with
the domain of symbolic paths. The domain can be a product domain so technically multiple
domains are combinable as well.

The core idea of this approach lies in solving for each symbolic path in the program an
invariant in the chosen domain. As an example from 2LS can be used a heap domain with
symbolic loop paths, where the abstract value maps particular symbolic loop paths to sets
of parameters of the heap domain.

The combination template can be view as a power template, where the domain of
symbolic paths acts as a base domain and the other domain acts as an exponent domain
[12]. The template then assigns to each symbolic path a template of the other domain.

Solving such domain means iteratively going through all not yet explored symbolic paths
and finding invariant for each one.

6.2 Generic Combination Solver
In the previous text were introduced two types of domains combination with short explana-
tion of the corresponding solvers. In the current implementation, two combination domains
exist – one for each mentioned type. Introducing a new combination domain means creating
a new domain and a corresponding strategy solver. Both of these steps are rather simple
and very similar to other combination domains.

To ease the process of creating a new combination a generic solution is proposed. Having
just one generic domain and one generic strategy solver for each type of domain combination
would enable 2LS to use combination of any domains, which can be selected at a run time.
This way 2LS can support many new domains without any additional work.
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Equally to introduction of a generic strategy solver for simple domains in Section 5.2,
in this section introduction of two more generic strategy solvers is presented – one for each
type of domain combination. Structure of 2LS with generic combination solvers is shown
in Figure 6.1.

6.2.1 Generic Combination Solver for Product Domains

The basic idea behind generic combination strategy solver for product domains is running
one iteration of a specific strategy solver for one abstract domain in the edited context of
invaraints of other domains. The proposed algorithm is shown in Algorithm 2.

The whole iterative solving loops as long as at least one domain refined its invariant.
This is controlled with the variable updated. Each iteration of the solving process consists
of a loop through all domains. In the product domains combination there can be any
number of domains and they can be of any type.

In this loop, firstly a new context for the solver is created (new context is just creating
of a new layer, which is normally considered to be part of the solver, but any changes done
in this layer can be easily removed by popping the context). To the new context, current
invariants from all abstract domains are written. It is advised not to write the invariant of
the current domain, as this invariant is written into the solver in the strategy solver of the
given domain (see Algorithm 1).

Then, it is possible to run one iteration of the strategy solver for the current abstract
domain, which, thanks to the current edited context, is run in the context of invariants
from other solvers’ templates. After this step, the solvers context can be popped.
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Algorithm 2: Iterative algorithm of the generic combination solver for product
domains
1 updated = True;
2 while updated do
3 updated = False;
4 for domain in domains do
5 smtSolver.newContext();
6 for d in domains- domain do
7 smtSolver ← d.toPreConstraints();
8 end
9 lastUpdated = solvers [domain ].iterate();

10 smtSolver.popContext();
11 updated = updated or lastUpdated;
12 end
13 end

This approach needs 3 sets:

• Set of all domains - The solver needs to know all domains that take part in the
analysis. These domains can be held by a generic domain, which is able to provide
list of all domains to a strategy solver.

• Set of all templates - For each domain a template for this domain is needed to be
know. Similarly to the previous set, this information also can be held by a generic
domain in the similar fashion.

• Set of all strategy solvers - The last set that is needed for this combination is
set of all strategy solvers. This information may be kept by a generic strategy solver
itself.

It is also very important that it is known which template is for which domain and with
which solver is this domain being solved. This may be done in many ways, but in this work
a very simple approach was selected and that being order of items in vector. First domain
in the set of domains has template on the first position in the set of templates and is solved
by the first strategy solver.

6.2.2 Generic Combination Strategy Solver over Symbolic Paths

A generic strategy solver for combination of domains over symbolic paths combines only
two domains. The base domain provides symbolic paths and the exponent domain solves
invariants for these paths.

To support domain combination with symbolic paths in a generic way, all domains must
be able to provide some functionality. All of this functionality is directly connected with
symbolic loop paths. Following methods need to be added:

• symbolic_patht get_symbolic_path() - Get the current symbolic path used in the
last iteration.

• void restrict_to_sympath(symbolic_paths) - Restrict the domain to only com-
pute invariants in the symbolic path given as a parameter.
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• void undo_restriction() - Remove the symbolic path restriction. This is the op-
posite of restrict_to_sympath.

• void eliminate_sympath(vector<symbolic_patht>) - Restrict the domain to avoid
computing invariants in the given symbolic paths. This is used to prevent exploration
of paths for which an invariants has been already computed.

Even though that there is no need for sets of domains, templates and solvers, the
algorithm is a bit more complex compared to product templates. The main idea of the
algorithm is shown in Algorithm 3.

Algorithm 3: Iterative algorithm of the generic combination solver with symbolic
paths
1 baseDomain.iterate();
2 symbolicPath = baseDomain.getSymbolicPath();
3 while symbolicPath do
4 exponentDomain.restrictToPath(symbolicPath);
5 while exponentDomain.iterate() do
6 end
7 exponentDomain.undoRestriction();
8 baseDomain.eliminateSymbolicPath(symbolicPath);
9 baseDomain.iterate();

10 symbolicPath = baseDomain.getSymbolicPath();
11 end
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Chapter 7

Implementation

This chapter describes the implementation part of this work. Firstly in Section 7.1 is
described the current architecture of 2LS tool with explanation of the most important
steps of program analysis in the tool with focus on those parts, which later on were altered
and enhanced.

Following in sections 7.2 and 7.3 the result of implementation and integration of generic
(introduced in Section 5.2) and generic combination (introduced in Section 6.2) solvers are
described. These sections contain the most important implementation details, steps that
were needed to be done as well as description of the main changes to the existing code.

In the given sections is also explained how creation of new abstract domains differ with
these new changes.

7.1 2LS Architecture
2LS has rather complicated structure in which many components and steps take part during
program analysis. To make it clearer how the tool works and where the changes introduced
by this work fell under, in this section the architecture of this tools is shown and explained.
The main steps performed by 2LS are depicted in Figure 7.1 [15].

The architecture of 2LS can be divided into three main parts – front end, middle end
and back end. Many of these steps use components from CPROVER infrastructure [6] upon
which 2LS is build.

Following is description of the main parts and steps of the program analysis.

7.1.1 Front End

The command-line front end firstly configures 2LS according to user-supplied parameters.
In this first step user may specify all available settings such as frontend options (like type of
endians, architectures or bit-widths), middle end options that affect type of analyses that
are going to be performed (for example checking of overflows, divisions by zeros or memory
leaks) and back end options containing mostly selection of abstract domains to be used.

All possible options are available through –help switch. The only required parameter
is the C program to be analyzed.

After configuring the tool, the input program is parsed (by using off-the-shelf C pre-
processor, such as gcc -E) and translated into GOTO program. The parser for converting
into GOTO representation comes from CPROVER framework.
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Figure 7.1: The architecture of 2LS

A GOTO program is an intermediate representation of the source program in a form of
a control flow graph. On this representation further tasks are performed such as functions
inlining or constants propagation. Also all non-linear control flows, such as loops and jumps,
are translated into a equivalent guarded goto statements. In the end assertions that guard
against invalid pointer operations or memory leaks are inserted.

7.1.2 Middle End

The middle end of 2LS is the main part where the most of analyses happen. Firstly a
various static analyses are performed in preparation for conversion to a SSA form. These
include object analysis and assignment analysis to collect all objects needed by a function
and to determine program locations where objects are assigned.

After all static analyses are performed, the GOTO representation of the source program
is converted into the static single assignment (SSA) form as described in the Section 3.1.

As in the SSA form loops have been cut at the back edges to the loop head and function
calls havocked, this representation is over-approximation of the GOTO program. Subse-
quently 2LS refines this over-approximation by computing invariants. These are computed
by abstract domains, which are selected by a command line options. In the current version
of 2LS following domains are implemented:

• Equalities domain: A domain for analysis of equality (or disequality) of two vari-
ables. For each x,y of program variables test x == y.
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• Heap domain: A domain for analysis of the shape of the domain through access
paths.

• Lexicographic ranking domain: A domain for analysis of the program termina-
tion.

• Polyhedra domains: Domains used for analysis of numeric variables – integers and
floats, both signed and unsigned. There are 3 implemented types of polyhedra do-
mains:

– Interval domain: A domains where for each variable x is found constant C for
which x < C holds true.

– Octagonal domain: A domains where for each variables x,y is found constant
C for which x+ y < C holds true.

– Zones domain: A domains where for each variables x,y is found constant C
for which x− y < C holds true.

• Combination domains: A special case domains that combine two or more of the
above domains to provide a stronger analysis and to check properties not only all of
the domains but also properties that cannot be analysed by a single domain. Two
types of such combinations exists:

– Product domains: A domain where any number of domains can be used. All
domains are analysed in the context of all others. This type of combination
domain is introduced in 6.1.1.

– Power domains: A domain that combines two domains – base and exponent.
This type of combination domain is introduced in 6.1.2.

The last step in the program analysis is the checking if all assertions (user-supplied or
generated ones) hold true for the computed invariants. This step is performed by solving
the formula that represents the source program (which is created from the SSA form)
together with the computed invariants in the SMT solver. Negations of program assertions
are checked for satisfiability. If all negations are unsatisfiable, the source program is valid.
If there is a satisfiable negation of a assertion it may mean two things – either the source
program contains an error or the invariants were too weak and due to over-approximation
the result may be wrong and therefore the result is unknown.

7.1.3 Back End

There is need for a back end SMT solvers in 2LS for both invariants inferecne and property
checking. Since 2LS needs incremental solvers and the support for incremental SMT solvers
is still lagging behind incremental SAT solvers, 2LS uses external instance of SAT solver.
It is possible to use Glucose 4.01 or MiniSAT 2.2.02.

All the functionality that makes it possible to use incremental SAT solvers instead of
SMT solvers is provided by CPROVER framework.

1http://www.labri.fr/perso/lsimon/glucose/#glucose-4.0
2http://minisat.se/Main.html
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7.2 Generic solver integration
In Section 5.2 a generic strategy solver for simple domains was proposed. In this section
the implementation process and result of the introduction of this solver is described.

To support a generic solver, following two steps needed to be done:

• Implementing a needed domain interface - First step in introducing a generic
solver was enhancing domain interface as described in Section 5.1. This means declar-
ing these new methods in src/domains/domain.h. In this interface some meth-
ods were required to be implemented by derived classes (so-called pure virtual
methods). All pure virtual methods needed to be implemented in all derived classes,
which means editing each and every domain and declaring and defining these methods.
All other methods were given a default implementation in src/domains/domain.cpp.

• Implementing the solver itself - Next step was to implement Algorithm 1. In 2LS
this means introducing a new file src/domains/strategy_solver.cpp (along with
src/domains/strategy_solver.h into the tool.

After domain interface and the generic strategy solver itself have been implemented it
was possible to migrate simple domains into using the generic strategy solver. Such process
is individual for each domain but in general a switch from a specific to generic solver consists
of following 4 steps:

• Understanding the strategy solver - First step in each migration was understand-
ing the strategy solver for the domain being migrated and check how it can be fitted
into the generic solver.

• Implementing needed methods from domain interface - Generic solver was
designed to fit any domains needs and therefore enables the domains at different places
of the solving process to execute any needed code. This is done by implementing a
non-required methods of the domain interface. Such events may be initializing some
values before solving starts, selecting values from solver or writing formulae into SMT
solver. Therefore if domain needs such actions, they needed to be implemented in
this step. Of course that all pure virtual methods had to be implemented as well.

• Switching into a generic solver - Once domain implements everything it needs a
generic strategy solver can be used. This means just simply using a generic strategy
solver instead of the specif one. In 2LS this is done in src/domains/ssa_analyzer.cpp
where strategy solvers are created.

• Removing the specific strategy solver - Since the specific strategy solver for the
domain is not used anymore and its functionality is replaced by the generic solver this
unused solver can be dropped. It is simply done by removing files that implement
this solver.

In this work six strategy solvers were replaced by the generic solver. From strategy solver
that deal with simple domains only three were not migrated. All three solvers implement
a different solving approach for interval domains. The proposed and implemented generic
solution cannot replace this three solvers by design. Most likely another generic strategy
solver for these solvers would be needed, but this was not in the scope of this work.

By migrating these domains twelve files were removed from the base of 2LS (six strat-
egy solvers together with corresponding header file). However the code base did not get
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much smaller (1814 lines removed and 1658 lines added) since most of the functionality
from removed strategy solvers is still being implemented by domains (like join algorithm).
However purpose of this change was mainly to make it easier to implement new domains,
since now only the domain is needed to be implemented without implementing the strategy
solver logic as well.

7.3 Generic combination solver integration
Similarly to the previous section, in this section is a description of implementation of a
generic strategy solvers for combination domains that were introduced in sections 6.2.1 and
6.2.2. Although work on this two generic solvers was separate the process and changes are
rather similar. Following steps were done in process of introducing these solvers:

• Alter domain interface - As described in Section 6.2.1 there were some further
modification needed to be introduced into the domain interface. This interface in the
end is used by both generic solvers for combination domains.

• Implement generic domains - While the generic solver for simple domains was
working with the existing domains through the domain interface and therefore no new
domains were needed, strategy solvers for combination domains need a special domain.
Therefore for each type of combination a new generic domain has been created. These
domains are generic templates that take domain types as parameters. In the 2LS tool
this meant adding two new files, specifically src/domains/combination_domain.cpp
as a generic domain for product domains and
src/domains/combination_domain_sympath.cpp for combination over symbolic paths.

• Implement generic solvers - Equally as in the process of adding a generic solver
for simple domains also in this process the next step is implementation of the strategy
solver. For the strategy solve for product templates it was implementation of Algo-
rithm 2 and for combination over symbolic paths an existing algorithm was refactored
to accept domains as arguments. Each new solver was created in a separate file, and
that src/domains/combination_solver.cpp
and src/domains/combination_solver_sympath.cpp respectively.

• Migrate to a generic solver - Having both generic domain and generic strategy
solver it was possible to move existing implementations of combinations into a generic
versions. In current state of 2LS there is one implementation for each type of combi-
nation – always combining heap and interval domain. Process of switching into using
a generic solution means mostly just correctly initializing generic domain and generic
solver at the beginning of the analysis.

• Remove unused domain and solver - Finally when both combination domains
were moved into a generic solution, unused domains and strategy solvers could have
been removed. This meant removing two domains and two solvers, specifically
src/domains/strategy_solver_heap_tpolyhedra.cpp,
src/domains/strategy_solver_heap_tpolyhedra_sympath.cpp,
src/domains/heap_tpolyhedra_domain.cpp and
src/domains/heap_tpolyhedra_sympath_domain.cpp.
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While introduction of a generic strategy solver for simple domains meant reduction in
code base (mostly in number of files), with introduction of these solvers no such reduction
happened. This was due to fact that two new solvers were introduced as well as two new
domains and equal number of domains and solvers for a specific domain combination was
removed. However, these generic solvers and domains are usable for any combination of
domains and therefore no new domains and solvers are needed to be introduced in order
to tests with different domain combination. This change therefore makes it very easy to
experiment with different combination of domains and exploring their potential.
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Chapter 8

Results and Experiments

This work introduced generic solutions for three different types of strategy solvers. Al-
thought this work removed a lot of redundancy from the existing code, the main purpose
of these changes was to ease the process of creating a new abstract domain.

To prove that these changes were effective and that it is easier to create a new domain,
various experiments were conducted. Even though introducing a new simple domain should
be rather simple with this new approach, no experiments were done in this area. The reason
is that a new domain needs a complex abstract value definition and a join algorithm. Both
of these parts are non-trivial and go largely beyond this work. However, introducing a new
domain combination should also become an easy task with changes introduced in this work.
Experiments with new domain combinations were performed and results are described in
Section 8.1.

Since in this work a large amount of existing code was modified and a new code was
introduced, it is necessary to validate that these new changes did not affect the existing
implementation in a bad way. This was checked with regression tests that exist in 2LS.
Results of this checks are presented in Section 8.2. As a more complex set of tests, a
benchmark from the International Competition on Software Verification 2018 (SV-COMP
2018) can be used. On this benchmark also a new combinations were tried. These results
are described in Section 8.3.

8.1 Experiments with new domain combination
Since this work made it very simple to combine any domains, an experiment was performed
to demonstrate that it is possible to create a new domain combination that allows to
verify programs which could not be correctly verified before. As an example, a program in
Algorithm 4 can be used.

This program randomly (__VERIFY_nondet_int assumes any random integer) adds in
a loop into one of two counters – a or b until one of them reaches a predefined maximum
value. If both counters are equal, one of them id decremented by one. After the end of loop,
program checks that the sum of the counters does not eqaul twice the maximum value (i.e.
that not both a and b are equal to the maximum value). Such program could be verified
using various abstract domain. For example, when this program is analysed with interval
abstract domain, it calculate the following invariant (in a simple version without guards
and without single assignment variables):
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a >= 0 && a <= 10 && b >= 0 && b <= 10 (8.1)

This invariant is correct, however it is not sufficient to prove the assertion as according
to it, both values can reach up to 10.

The same program can be also analysed in an equality domain in which equalities and
disequalities between pairs of variables are found. This domain can find the following
invariant:

a 6= b (8.2)

This invariant is also correct but absolutely cannot verify the assert as it only knows
that these two variables are never equal at the end of the loop body.

In this stage, a generic strategy solver for product domain combination can be used to
combine these two domains. Making it possible to run this domain combination was as easy
as adding a new condition into the 2LS command line arguments parser that when both
–equalities and –intervals switches are used, an instance of this new generic strategy
solver is created and it is initialized with equalities and interval domains.

After introducing this small change introduced and analysing the same program in this
new domain, the found invariant has the form:

a >= 0 && a <= 10 && b >= 0 && b <= 10 && a! = b (8.3)

With this invariant, 2LS could not find any possibility when a+ b would be equal to 20
or more and thus correctly verified that this program is always correct.

Algorithm 4: A running example
1 #define MAX 10;
2 void main()
3 a = 0;
4 b = 1;
5 while a < MAX && b < MAX do
6 if __VERIFY_nondet_int() then
7 a ++;
8 else
9 b ++ ;

10 end
11 if a == b then
12 if __VERIFY_nondet_int() then
13 a −−;
14 else
15 b −−;
16 end
17 end
18 end
19 assert(a + b < 2 * MAX);
20 return 0;
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8.2 2LS Regression Tests
In 2LS there is a rather large set of regression tests, that are used to validate that the
program behaves the same after new changes were introduced.

This set consists of 9 categories. Each category tests a different type of analysis such
as analyses of heap or of termination. In each category there are multiple tests, each
consisting out of two files – one containing the source program to be analysed and the
second one describing with what arguments 2LS should be run with and what the expected
result is.

In total, there are 383 tests but only 268 are really tested, since others are either not
yet implemented or they contain a known bug. Since this work reworked a lot of code, it
was very important that the results are the same before and after this work. The results
confirming this can be seen in Table 8.1.

Category Tasks Correct results
Before our work After our work

Non-termination 43 31 31
Termination 129 90 90
kIkI 36 30 30
Preconditions 8 6 6
Interprocedural 47 30 30
Invariants 86 61 61
Heap 19 7 7
Heap date 11 9 9
Memsafety 4 4 4

Table 8.1: A comparison of results of the regression tests

8.3 Running on SV-COMP 2018 tests
The other set of tests that was used for testing, comes from the International Competition
on Software Verification. The specific tests come from the 7th year of this competition.

2LS
Before our work After our work

Number of tasks 390 390
Correct results 252 252
Correct true 172 172
Correct false 80 80

Incorrect results 7 7
Incorrect true 0 0
Incorrect false 7 7
Inconclusive 131 131

Score 312 312
CPU time per

finished tasks (s) 4.9 5.1

Table 8.2: A comparison of results of the SV-COMP 2018 tests
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A subset of all SV-COMP tests was selected with focus on covering different tested
properties, such as heap, termination, or loops. Comparison of results before and after
introduced changes can be seen in Table 8.2.

As seen in this table, results before and after are the same, which means that with these
new changes, no capabilities of this tool were broken. The only change is the time needed
for the test run, where a 4% increase is seen. This is most likely to the generic concept
which results in more function calls.
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Chapter 9

Conclusion

In this work, three generic strategy solvers have been proposed. The first one is generic
solution for iterative invariant inference for simple domains. The other two are generic
strategy solvers for two types of domains combination – product domains and domains
with symbolic paths. For making these changes possible, a new abstract domain interface
needed to be designed as well.

The proposed domain interface has been implemented and all domains adjusted to
comply with it. Then simple domains were migrated into using a generic strategy solver.
This migration was executed on all domains except the ones that make use of a binary search
while refining its invariants. Also both implemented domain combinations were moved into
using the corresponding combination strategy solver.

Although the migration removed a lot of duplicate code and shrunk the code base by 12
files and a few hundred lines of code, the main advantage of this work is the fact that adding
new domains or experimenting with new domain combinations becomes much easier.

To prove that it is very simple to experiment with new domain combinations, experi-
ments were conducted. A simple program was found which can be verified only by a domain
combination which was not yet implemented in 2LS tool. The only change that was needed
to be made was editing how 2LS parses command line arguments and teaching it to accept
new argument for using this new domain combination. After that, 2LS could correctly
verify the given program. In the future, a more generic parsing of command line arguments
could be introduced which would remove even this step.
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Appendix A

Content of the CD

The attached CD contains source codes of 2LS with all changes mentioned in this work.
Also on the CD is this text. The main directory structure of the CD is the following:

/

2ls/

regression/

src/

domains/

doc

The main directory contains two subdirectories – 2ls and doc. Subdirectory doc con-
tains this text both ad LATEXsource code and the PDF version.

The 2ls subdirectory contains all source codes. The structure of this directory is com-
plex. The main part which this work has affected is in src/domains subdirectory. This
directory contains abstract domains and strategy solvers including all the new ones.

42


	Introduction
	Verification in the 2LS Tool
	Program as Logical Formulae
	Verification Approaches
	Bounded Model Checking
	K-induction
	Abstract Interpretation

	kIkI Algorithm

	Representation of Programs as Logical Formulae
	SSA Encoding
	Encoding Control-Flow
	Over-approximation of Loops
	Conversion into SSA encoding

	Template-based Verification
	Invariant Inference via Templates
	Algorithm for Invariant Inference

	Guarded Templates
	Loop Invariants

	Strategy Solver
	Domain Interface
	Generic Solver

	Combination Strategy Solvers
	Combinations of Domains
	Product Domains
	Domains Combination over Symbolic Paths

	Generic Combination Solver
	Generic Combination Solver for Product Domains
	Generic Combination Strategy Solver over Symbolic Paths


	Implementation
	2LS Architecture
	Front End
	Middle End
	Back End

	Generic solver integration
	Generic combination solver integration

	Results and Experiments
	Experiments with new domain combination
	2LS Regression Tests
	Running on SV-COMP 2018 tests

	Conclusion
	Bibliography
	Content of the CD

