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Abstract
TCP SYN Flood is one of the most wide-spread DoS attack types used on computer net-
works nowadays. As a possible countermeasure, this thesis proposes a network-based mit-
igation method TCP Reset Cookies. The method utilizes the TCP three-way-handshake
mechanism to establish a security association with a client before forwarding its SYN data.
The algorithm can effectively mitigate even more sophisticated SYN flood attacks at the
cost of 1-second delay for the first established connection. However, the method may not
be suitable for all the scenarios, so decision-making algorithm to switch between different
SYN Flood mitigation methods according to discovered traffic patterns was also developed.
The project was conducted as a part of security research by CESNET. The discussed im-
plementation of TCP Reset Cookies is already integrated into a DDoS protection solution
deployed in CESNET’s backbone network and Czech Internet exchange point at NIX.CZ.

Abstrakt
TCP SYN Flood sa v súčasnosti radí medzi najpopulárnejšie útoky typu DoS. Táto práca
popisuje sieťovú mitigačnú metódu TCP Reset Cookies ako jeden z možných spôsobov
ochrany. Spomínaná metóda je založená na zahadzovaní všetkých prijatých pokusov o nad-
viazanie spojenia, až pokým s daným klientom nie je uzatvorená bezpečnostná asociácia
na základe využitia mechanizmu TCP three-way-handshake. Tento prístup dokáže efektívne
odraziť aj sofistikovanejšie útoky, avšak za cenu sekundového oneskorenia pri prvom nadvä-
zovanom spojení daného klienta. Metóda však nie je vhodná vo všetkých prípadoch. Z tohto
dôvodu táto práca ďalej navrhuje a implementuje spôsob dynamického prepínania rôznych
mitigačných metód na základe aktuálne prebiehajúcej komunikácie. Tento projekt bol vyko-
naný ako súčasť bezpečnostného výskumu spoločnosti CESNET. Spomínaná implementácia
metódy TCP Reset Cookies je už v čase písania tejto práce integrovaná do DDoS riešenia
nasadeného na hlavnej sieti spoločnosti CESNET, ako aj v českom národnom peeringovom
uzle NIX.CZ.
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Rozšířený abstrakt
Transmission Control Protocol (TCP) je jednou zo základných súčastí sady Internetových

protokolov. Všetky webové, súborové, e-mailové služby a množstvo iných na tejto sade
priamo závisia. Kvôli jeho dôležitosti je však TCP terčom množstva kybernetických útokov,
ktoré v posledných rokoch naberajú na počte a sile. Na základe predpovede od spoločnosti
Cisco má byť v roku 2022 uskutočnených 14.5 milióna útokov, pričom na základe aktuálneho
trendu je väčšina útokov vykonávaná ako TCP SYN Flood.

Aktuálne spôsoby mitigácie týchto útokov sú voči pokročilejším variantom často neefek-
tívne, prípadne nie sú vhodné pre aplikáciu na sieťových zariadeniach. Táto práca z to-
hto dôvodu navrhuje a implementuje metódu TCP Reset Cookies, ktorá sa snaží tieto
nedostatky odstrániť. Hlavným účelom práce je teda vytvoriť efektívnu metódu pre mit-
igáciu pokročilejších útokov, ktorú je možné jednoducho aplikovať na sieťové zariadenia ako
hardvérové firewally alebo IDS/IPS systémy.

Metóda TCP Reset Cookies sa zakladá na princípe vytvorenia bezpečnostnej asociácie
s klientom pred tým, ako sú jeho žiadosti o uzatvorenie spojenia (SYN správy) preposielané
ich určenému adresátovi. Proces asociácie sa zakladá na využití mechanizmu TCP three-
way-handshake, počas ktorého je medzi klientom uzatváraný komunikačný kanál. Štan-
dard RFC 793 definuje presné hodnoty, ktoré musia byť obsiahnuté v TCP segmentoch
pre správne uzatvorenie relácie. Štandard takisto definuje, ako sa má strana prijímajúca
segment s neočakávanými hodnotami zachovať. Na základe týchto informácii môžeme defi-
novať predpoklad, že útočník zasielajúci veľké množstvo SYN správ pomocou špecializo-
vaného softvéru (typicky z falošných IP adries) nemá implementovaný algoritmus TCP
podľa štandardu, a tým pádom požadovanú odpoveď na nevalidnú správu neodošle.

Client 

SYN (SEQ = x)

SYN-ACK (ACK = y)

RST (SEQ = y)

      RST SEQ match! 
     Add IP to whitelist

SYN
Foward SYN

RST cookies Server

Figure 1: Funkcionalita algoritmu TCP Reset Cookies

Funkcionalita algoritmu RST Cookies je znázornená na obrázku 1. Ako môžeme vi-
dieť, klient sa pokúša o uzatvorenie spojenia prostredníctvom TCP správy s príznakom
SYN. Tejto správe je automaticky vygenerovaná pseudo-náhodná hodnota sekvenčného
čísla (SEQ]) s hodnotou 𝑥. Správa smerujúca serveru je odchytená predradeným sieťovým
mitigačným zariadením využívajúcim metódu RST Cookies. Metóda analyzuje prijatý seg-
ment a zašle odpoveď s príznakmi SYN + ACK ako definuje štandard, avšak namiesto
očakávanej hodnoty vloží do poľa pre potvrdenie (ACK ) hodnotu 𝑦, pričom očakávaná
hodnota je 𝑥 + 1. Správa s takouto hodnotou je odoslaná klientovi, ktorý podľa štan-
dardu musí odpovedať správou s príznakom RST a sekvenčným číslom rovným hodnote 𝑦.
Pri spracovaní takejto správy algoritmom je zdrojová IP adresa odosielateľa pridaná do



asociačnej tabuľky a všetky ostatné SYN správy od daného klienta sú preposielané bez
intervencie algoritmu.

Pre zaistenie bezpečnosti takejto metódy je nutné zaručiť, aby boli zasielané nevalidné
čísla ACK generované náhodne bez možnosti ich predikcie. Z tohto dôvodu je implemen-
tovaný algoritmus na dynamickú generáciu a validáciu hodnôt. Pre tento účel sú pod-
porované 2 režimy – režim náhodných hodnôt v časových oknách a hash režim. Režim
náhodných hodnôt v časových oknách generuje náhodnú hodnotu pre každé časové okno
a vracia ACK hodnotu na základe času. Hash režim generuje unikátnu ACK hodnotu pre
každé spojenie na základe počítania hash funkcie pre hodnoty, ktoré dané spojenie definujú.

Metóda RST Cookies poskytuje silnú ochranu proti bežným a pokročilým SYN Flood
útokom, avšak jej použitie spôsobuje značné obmedzenia priepustnosti a citeľné navýšenie
času uzatvárania prvého spojenia. Na základe našich testov je oneskorenie tohto spojenia
zvýšené až o 1 sekundu z dôvodu nutnosti jeho resetovania a následného opätovného zaslania
SYN správy. Použitie režimu generácie náhodných hodnôt prostredníctvom časových okien
zníži priepustnosť packetov zhruba o 57%, zatiaľ čo hash varianta až o 87%.

Na základe týchto zistených nedostatkov môžeme usúdiť, že využívanie metódy pre
mitigáciu bežných útokov nemusí byť vzhľadom na jej negatívny vplyv na sieťovú prevádzku
efektívne. Z tohto dôvodu je ďalej navrhnutý a implementovaný systém na dynamické
prepínanie rôznych mitigačných metód na základe aktuálnej sieťovej prevádzky, ale aj iných
faktorov ako úspešnosť mitigácie, využívanie systémových zdrojov a pod.

Systém na prepínanie metód bol vyvinutý špeciálne pre účely použitia v riešení CESNET
DDoS Protector, ktoré okrem metódy RST Cookies obsahuje aj iné mitigačné stratégie ako
SYN Drop a ACK Spoofing. Tieto algoritmy je následne nutné pre použitie v rozhodova-
com module registrovať. Registráciou sa systému na dynamické prepínanie oznámi ich
existencia, ale aj definujú ich parametre. Rozhodovací modul na prepínanie následne vy-
hodnotí kvalitu jednotlivých mitigačných metód pomocou fitness jadra. Jadro určené na
analýzu prevádzky zaznamenáva informácie o počte SYN, ACK a RST správ, ako aj počet
unikátnych IP adries zasielajúcich tieto dáta s využitím štruktúry HyperLogLog. Samotné
rozhodovanie o najvhodnejšej mitigačnej metóde prebieha pomocou rozhodovacieho jadra.
Táto množina funkcií slúži na analýzu zozbieraných štatistík, hľadanie rôznych náznakov
útokov a následné priraďovanie týchto náznakov k dostupným mitigačným metódam.

Aktuálna implementácia algoritmu na dynamické prepínanie závisí na množstve pra-
hových hodnôt, ktoré sú často volené experimentálne. Na základe zozbieraných dát sú
hodnoty postupne upravované a kvalita mitigácie sa tak zlepšuje. Na dosiahnutie optimál-
neho stavu bude nutné ešte veľké množstvo dát, avšak v súčasnom stave je modul schopný
odhaliť prebiehajúci SYN flood útok na základe prahov o počte poslaných SYNov, pomere
IP adries zasielajúcich SYN a ACK segmenty, ale aj čiastočné rozpoznanie kontextu útoku
na základe jeho histórie. Funkčnosť modulu je optimalizovaná pre spomínané 3 mitigačné
metódy dostupné v riešení DDoS Protector, avšak návrh algoritmu počíta s akýmkoľvek
množstvom funkcií, ktoré budú v budúcnosti podporované bez nutnosti jeho zmien.

Ako bolo naznačené v predošlých odsekoch, táto práca, ako aj všetky vyvíjané algoritmy
sú súčasťou bezpečnostného výskumu vedeného spoločnosťou CESNET. Metóda RST Cook-
ies je v rámci projektu už integrovaná a používaná, zatiaľ čo integrácia metódy na dynamické
prepínanie je plánovaná v blízkej budúcnosti. Algoritmy popísané v tomto dokumente budú
ďalej rozširované aj v budúcnosti v rámci projektu DDoS Protector, ktorý nedávno obdržal
grant od Ministerstva vnitra České republiky. Časť práce zahŕňajúca teóriu a popis RST
Cookies metódy bola prezentovaná na študentskej konferencii Excel@FIT 2019, kde bola
ocenená odborným panelom za prínos v oblasti počítačovej bezpečnosti.
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Chapter 1

Introduction

Transmission Control Protocol (TCP) is an integral part of the Internet protocol suite.
It is a component of underlying architecture which provides functionality for services like
HTTP, FTP, SMTP and many more. As the importance of TCP is fundamental for the
operation of the Internet, it is often the target of various cybersecurity threats, Distributed
Denial of Service (DDoS) being a popular choice. Report from Q4 2018 by Kaspersky Lab
states that the most frequent target of a denial of service attacks was TCP, targeted by
66.60% of all the attacks [18]. According to [8], the number of DoS attacks will double
to 14.5 million p.a. by 2022. These and many other facts should highlight the need for TCP
protection and how specialized techniques are required to achieve it.

Currently used methods for SYN Flood mitigation are mostly designed to be used
on the end hosts themselves. These end-host mitigation techniques like TCP SYN Cookies
are often effective, but their nature is indeed not suitable in all situations. For example,
a high number of segments sent by an attacker may not cause an ordinary SYN Flood DoS
due to mitigation method intervention, but its execution may still cause high processor
utilization of the server. This means that data from legitimate clients are processed with
unacceptable delays or are not processed at all, effectively creating a DoS situation anyway.

To spare the resources of the server, many of the mitigation methods are deployed
on specialized intermediary network devices. This way, potential DDoS attacks can be mit-
igated before reaching the server, therefore not wasting its resources on processing traffic
from attackers. However, some of these methods, originally intended for end-host mitiga-
tion, are not optimal when used on intermediary devices. For this reason, the thesis aims
to implement an effective native network-based mitigation method called TCP Reset Cook-
ies. On top of that, a system to dynamically switch between several of these mitigation
strategies according to discovered traffic patterns was also designed and implemented.

The project was conducted as a part of the security research for high-speed computer
networks by CESNET. The implementation of the presented mitigation method, developed
as a part of this thesis, is already integrated into the CESNET’s anti-DDoS solution, which
is actively used on its backbone network and was also recently applied to the Czech national
Internet exchange point at NIX.CZ [6]. The algorithm for dynamic switching is not yet used,
but its integration is planned in the near future.

Beginning of the thesis (Chapter 2) discusses theoretical functionality of the TCP pro-
tocol with the emphasis on aspects related to security. Chapter 3 analyzes, implements
and evaluates the mentioned mitigation strategy TCP Reset Cookies. The algorithm for
dynamic method switching is presented in Chapter 4. Summary of the achieved results and
potential future improvements are discussed in Chapter 5.
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Chapter 2

TCP Security Considerations

Specification RFC 793 defines TCP as a highly reliable host-to-host protocol intended for use
between hosts in packet-switched computer communication networks, and in interconnected
systems of such networks [21]. To create and maintain a reliable way of communication, the
protocol implements several techniques for node synchronization. This chapter describes
how this communication channel is established and how it affects the security of the protocol
itself. The chapter also explains various types of TCP attacks as well as mitigation methods
that are commonly used to reduce their impact or mitigate them completely.

2.1 Session Establishment
The establishment of a reliable communication channel is done via a process called TCP
three-way-handshake. The process is started by an initiating host (client), which con-
structs an SYN segment and sends it to the second node (server) awaiting connection
requests. As illustrated in Figure 2.1, this segment has a Synchronize (SYN) flag set and
carries a value of 𝑥 as its Sequence number (SEQ). Standard does not explicitly define
an Acknowledgment (ACK ) value, so operating systems usually set it to 0.

SYNSEQ = x, ACK = 0

SYN + ACK

SEQ = y, ACK = x+1 

ACKSEQ = x+1, ACK = y+1 

Client Server

Figure 2.1: TCP three-way-handshake process.
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Upon receiving an SYN from the client, the server generates its own pseudo-random
number to be used as its SEQ while setting the ACK value to the Sequence number of the
previously received SYN increased by one to signalize that SYN message from the client
was processed. A segment with these values and SYN + ACK flags set is assembled and
send as a response from the server. When the client receives this packet, and ACK value
is exactly 𝑥+1, it generates own acknowledgment segment and sends it back to the server.

After this process, the communication channel is considered established, and two end-
points are able to exchange data. The process is not used only for synchronization purposes,
but also for negotiation of different transmission options like TCP window size. The three-
way-handshake is fundamental for TCP operation but is also often misused by attackers
in various attacks described in the following section.

2.2 Attacks on TCP
Attacks that abuse weaknesses of the TCP can be differentiated into two main categories:

∙ Flood attacks

∙ Injection attacks

Flood attacks typically target a single host or a network. Their aim is to exhaust the
target’s resources by flooding a large number of bogus packets. These data have to be pro-
cessed by the target server, draining the CPU, memory and network resources in a fashion
that regular clients cannot be served, or are served with an unacceptable delay, effectively
creating a denial of service situation. On the other hand, injection attacks are based
on eavesdropping the ongoing communication and injecting crafted segments into the TCP
session. Injected data may contain malicious code, compromise the user’s privacy [15]
or reset the session [25]. This document focuses on the flood attacks, which are mostly
associated with a DoS.

Since flood attacks are generally easier to perform, they became a favorite choice for
attackers aiming to create a DoS situation. As mentioned back in Chapter 1, TCP was
targeted by 66.60% of all the DDoS attacks in the fourth quarter of 2018, meanwhile,
58.20% of all the attacks were performed as TCP SYN Flood, the most popular variant for
TCP DoS (Figure 2.2).

The following subsections will briefly describe most common TCP attacks from both cate-
gories.

2.2.1 TCP SYN Flood

TCP SYN Flood is currently one of the most widespread and most effective TCP DoS
attacks. Its functionality depends on the three-way-handshake mechanism, during which
a server receiving the SYN message responds with an SYN-ACK segment and waits until the
ACK arrival to mark the connection as established. The rationale behind a successful DoS
assumes that the victim allocates a new state for every received SYN segment and that there
is a limit of such states that can be stored. These are described in RFC 793 as Transmission
Control Block (TCB) data structures. TCB structures are used to store necessary state
information for an individual connection. They may be implemented differently among the
operating systems, but the key concept is that new memory needs to be allocated upon
every new TCP connection [10].

4



58,20%
31,10%

8,40%
2,20% 0,10%

TCP SYN UDP TCP other HTTP ICMP

Figure 2.2: DDoS attacks distribution by type [18].

Operating system kernels normally try to protect host memory from getting exhausted
by implementing a limit of contemporary TCB structures called backlog. When the backlog
limit is reached, either incoming SYN segments are ignored, or uncompleted connections
in the backlog are replaced. As illustrated in Figure 2.3, the primary goal of SYN flooding
is to exhaust the target’s backlog with half-open connections. For this purpose, spoofed IP
addresses that do not generate a reply to SYN-ACKs are often used.

SYN
 

SYN-ACK 
 

*backlog
full

??!

Attacker Victim

SYN
 SYN
 

SYN-ACK 
 

SYN-ACK 
 

Regular user

SYN
 

Figure 2.3: TCP SYN flood attack.
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2.2.2 Spoofed Session Flood

Spoofed Session Flood (SSF), also known as Fake Session Attack and its modifications
Multiple ACK SSF and Multiple SYN-ACK SSF are more sophisticated attacks able to
bypass most of the standard security mechanisms. Their aim stays the same as in the TCP
SYN Flood case – exhaust the target’s backlog. However, security systems are typically able
to filter out regular SYN flooding attacks due to the easily detectable pattern of sending
many SYN segments and no other segment types at all. To make themselves harder to be
revealed, Spoofed session attacks usually carry one or multiple ACK, SYN-ACK, RST and
FIN segments to disguise themselves as regular TCP traffic. This way, the attacker is able
to bypass defense mechanisms that rely only on monitoring incoming traffic without the
use of advanced heuristics. The low SYN/ACK rate makes the attack harder to detect
while the attacker is still able to create enough half-open connections for successful backlog
exhaustion [23].

2.2.3 Session Attack

The most complex, but hardly detectable method is Session attack, which uses a lot of real
clients generating vast amounts of legitimate traffic. For this purpose, a botnet is commonly
used. At a particular time, all computers in the botnet are ordered to establish numerous
TCP sessions with the victim server. These sessions are then stretched out using keepalive
mechanisms and by delaying ACK responses. When a large number of bots establish several
sessions each, the target server may get too busy with processing the attacker’s requests.
This creates unacceptable delays or may even cause that the legitimate clients are not
served at all. Because the attack generates legitimate traffic from existing clients, security
systems usually have no clue about the ongoing attack. Mitigation of the attack requires
the usage of advanced heuristics combined with hosts reputation tables, which might be
able to identify an ongoing attack originating from a botnet and mitigate it appropriately.

2.2.4 Other Flood Attacks

This category comprises attacks like SYN-ACK Flood, ACK/PSH ACK Flood, ACK frag-
mentation Flood, RST Flood, and FIN Flood. These are not as sophisticated as SYN Flood,
because all of them work on the same trivial principle. Since neither of the listed attacks
uses SYN to establish a session, exhausting a target backlog is not the goal. All methods
in this subsection generate regular TCP segments, which are usually not filtered by security
mechanisms. None of these generated segments are destined for an existing TCP session,
but the target has to process them anyway and eventually send an RST as a response.
If the attack of this type is distributed, exhaustion of the victim’s processor or network
resources may occur, making it irresponsive for regular clients and creating a denial of
service. However, these types of floods are not as effective as previously mentioned attacks
and thus are not used as commonly.

Although most of the pure TCP DoS threats were already mentioned, other application
layer DoS attacks like HTTP flood may be used to achieve exhaustion of the target’s
resources as well. In these cases, TCP is not misused directly but is still used as a transport
protocol to conduct these attacks.
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2.2.5 TCP Sequence Prediction

TCP sequence prediction attack (also known as connection hijacking) is based on the as-
sumption that the attacker is able to predict the SEQ number of another host during the
TCP communication process. This way, the attacker may impersonate a sender and in-
ject counterfeit packets into the session. The threat was firstly discovered in 1985 because
Berkeley-derived kernels generated SEQ values incremented by a constant every second,
and by another constant for each new connection. Thus, if an attacker established a session
with a machine, he could easily estimate the SEQ that would be used for its subsequent
session [3]. Since the attacker knew the next SEQ the server would send, a new connection
could be established by impersonating another client and acknowledging the data send by
the server without actually processing them (Figure 2.4). This technique allowed an at-
tacker to establish a TCP session with a server while impersonating another client. To avoid
a session to be reset, the impersonated host needed to get silenced. This was commonly
done by DoS. After the connection was established, the attacker was still not able to see
the output from the session but could execute commands as more or less any user [3].

Server S Victim VAttacker A

SYN  
ISNa

SYN-ACK 

ISNs, ACK(ISNa) 
*Obtain

server' s ISN DoS the victim 

SYN-ACK  ISNs + C, ACK(ISNx)

IPv, SYN  ISNx

*Victim is
irrensponsive,
doesn't send

RST.

SYN  ISNx + 1, ACK(ISNs + C)
*Finish a 3-way-

handshake
Commands for server whileimpersonating the victim.

Figure 2.4: Original TCP sequence prediction attack.

Although the particular problem was addressed by changing the way of Initial Sequence
Number (ISN) generation in Berkeley-derived kernels and by RFC 1948, the problem was
generalized for the whole TCP stack, whose SEQ numbers were still relatively easy to pre-
dict. Current standard RFC 6528 specifying ISN generation addresses this problem by mak-
ing the former way of sequence prediction impossible. However, an eavesdropper who can
observe the initial messages for a connection can determine its sequence number state may
still be able to launch SEQ number guessing attacks by impersonating that connection [13].

7



2.2.6 TCP Veto

TCP veto attack can be considered as a more advanced variant of TCP sequence prediction
attack. Instead of predicting the sequence number only, an eavesdropping attacker predicts
the correct payload size of the next expected message as well. A crafted segment with these
values is then injected into the TCP session. Later, when the legitimate packet arrives,
it is found to have the same sequence number and length as the packet already received
from the attacker. This means that the legitimate packet is ”vetoed“ by the previously
received segment and so is silently dropped like a regular duplicate. Unlike the sequence
prediction attack, the connection is never desynchronized, and the communication proceeds
normally. The sender of the legitimate packet sees no evidence of the attack [14]. TCP veto
gives the attacker less control over the session but makes the attack particularly resistant
to detection.

2.2.7 TCP Reset Attack

TCP Reset attack is an injection-like denial of service attack, in which the perpetrator
attempts to prematurely terminate a victim’s active TCP session [25]. The idea behind the
attack is to inject an RST segment to the session, which causes one of the receiving ends
to close the connection. For this mechanism to work, injected RST needs to be precisely
crafted with specific IP addresses, exact port numbers, and a SEQ value. These values can
be obtained via eavesdropping.

The principle is also sometimes used in network security systems to forbid a connection
to the particular port or a port range. The protection against this threat requires a transport
layer encryption such as IPSec VPN, so the attacker is not able to extract sequence numbers
from an unencrypted TCP header.

2.2.8 SYN Port Scanning

SYN port scanning is not an attack itself, but it often precedes other types of cyberse-
curity incidents. The process is used during the reconnaissance phase of the attack when
the attacker is trying to map the target network and reveal open ports on the individual
machines. The scanning is done by sending TCP SYN segments on various ports of the
target. If the system has a particular port opened, it continues to establish a connection by
responding with an SYN-ACK segment. When a scanner software receives an SYN-ACK
from the particular port, it marks it as opened, chooses a different one and repeats the pro-
cess. However, the activity of the scanner is easily detectable and therefore many security
solutions and even antivirus software are typically able block it.

2.3 Defense Against TCP Flooding Attacks
This section focuses on the mitigation of TCP flooding attacks, which are the main concern
of this document. Some of the practices for injection attacks mitigation were already
suggested when the concrete attacks have been presented, and they will not be furthermore
discussed here. The injection attacks can generally be more devastating, but the difficulty
of their execution in modern computer networks make them an unfavorable choice. On the
other hand, flooding attacks are popular due to their simplicity, often insufficient counter-
measures and surprisingly effective results.
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Several commercial solutions and academic research projects aim to provide protection
against these types of attacks, one of these research projects being DDoS Protector de-
veloped by CESNET. This solution utilizes a hardware-accelerated traffic filtering using
FPGA technology, own firmware in conjunction with a software-based malicious traffic de-
tection core (Figure 2.5). The product is specialized on mitigation of DNS amplification
attacks, but support for TCP SYN flood attacks mitigation was also recently added. SYN
floods are mitigated with the use of ACK spoofing (Subsection 2.3.6) and SYN Drop (Sub-
section 2.3.7) algorithms, which are a part of the software detection core. These methods
fall short in certain situations, so another mitigation approach – TCP Reset Cookies was
designed and implemented as a part of this thesis. The details about the approach are
discussed in Chapter 3. More information about the project can be found at [5].

CESNET's DDoS protector

Software for malicious traffic detection

Communication and control interface

FPGA

Hardware accelerator
Ethernet Ethernet

Figure 2.5: CESNET’s DDoS Protector architecture.

TCP flood mitigation methods are classified according to the type of the network node
they operate on. End-host mitigation methods, such as SYN cookies are executed straightly
on the nodes that are contacted by clients. Their usage requires modification of the TCP
stack of the hosts, so they are typically shipped directly with an operating system kernel or
implemented as a kernel add-on. On the other hand, network-based mitigation methods are
entirely independent of protected clients, because they run on specialized network appli-
ances such as firewalls or IDS/IPS systems. Their functionality is typically transparent for
the protected device, so no changes to the server’s configuration are needed. As mentioned
in Chapter 1, usage of end-host methods bring many disadvantages, because the server has
to process data from attackers as well, draining its CPU and network resources. Network-
based techniques eliminate this drawback, but they also tend to add extra latency to the
communication. Both end-host and network-based techniques are briefly explained in the
following subsections.
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2.3.1 TCP SYN Cache

SYN cache is an end-host mitigation technique, which utilizes hashing to store a lightweight
fingerprint of the IP address, port number and secret for every incoming TCP connection.
This way, the operating system does not need to allocate the whole TCB, but only a frag-
ment of the original memory required. A device implementing this method is, therefore,
able to queue more requests, becoming harder to exhaust. In the BSD kernel from 2002, this
optimization reduced the size of the per-connection data by 78% while allowing up to 15359
entries [19].

2.3.2 TCP SYN Cookies

In contrast to SYN cache, SYN cookies method does not need to store any state informa-
tion at all, requiring no memory per-connection. Essential data defining the connection,
alongside with a timestamp and a secret are hashed into a 32-bit value representing the
SEQ number of the SYN-ACK segment. As depicted in Figure 2.1, the handshake is fin-
ished with an ACK message carrying the received SYN-ACK value + 1. Upon ACK receipt,
the server can reconstruct original SYN parameters and successfully establish a connection.
The method is exceptionally effective against SYN floods, but its nature denies SYN-ACK
retransmission and restricts usage of the TCP options, such as TCP window size [4].

2.3.3 TCP Random Drop

End-host technique TCP Random drop works on a principle which replaces a random
pending half-open connection when the TCB queue is full, and another SYN is received.
Connection replacement is done by sending an RST segment, discarding corresponding
TCB structure and allocating a new one for the incoming connection. Legitimate clients
dropped with RST are expected to try to reestablish a connection again. The rationale for
this approach is that by making queue large enough, a server under attack can still offer
a high probability of successful connection establishment, but legitimate sessions may still
be occasionally denied [22].

2.3.4 Traffic Filtering

Traffic filtering is one of the simplest ways of network-based mitigation. As described
in [11], the fundamental idea is to deny all incoming traffic from IP addresses that do not
match their source network prefix (packets intentionally crafted with false IP). This process
allows discarding all of the traffic from forged IP addresses outside of the network prefix the
generating host is currently in, but the attacker is still able to fake IP addresses from the
same prefix. The method is defined as “Best current practice” and is recommended to be
implemented by all Internet service providers (ISP). Despite this, specialized methods for
flooding mitigation are required, because the usage of the filtering principle does absolutely
nothing to protect against flooding attacks originating from valid prefixes, and one also
cannot rely on the presumption that all ISPs will actually implement it.

2.3.5 SYN-ACK Spoofing

SYN-ACK spoofing is a network-based mitigation technique based on a principle of estab-
lishing a 3-way-handshake between client and the machine running the algorithm before
it is actually established with the server. This principle protects the backlog of the server,
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because all illegitimate SYN segments are filtered out by the algorithm, and only clients
that would normally establish a session are allowed to communicate with the server. This
method can be implemented in 2 ways – either by having own backlog, which is much
bigger than the one provided by the server or by combining with SYN cookies to require
no memory for state information at all. Either way, the client actually creates a session
between itself and the SYN-ACK spoofing machine and all the data sent within the session
are forwarded to the server, which has its own session with the SYN-ACK spoofer.

As it may be obvious, this process is highly ineffective due to the requirement of map-
ping between different SEQ and ACK values, since the server always generates its own ISN
different from ISN generated by the SYN-ACK spoofer (Figure 2.6). Another drawback is
the requirement on memory because tables containing all the sessions, as well as transla-
tion tables between the SEQs and ACKs need to be maintained. The method also needs
to process all TCP traffic due to mapping and session finalization requirements, disabling
the ability of hardware-forwarding completely.

Client ServerSYN-ACK spoofing algorithm

PSH, ACK (100B data)SEQ = x+1, ACK = y+1
PSH, ACK (100B data)SEQ = x+1, ACK = z+1

ACK
SEQ = z+1, ACK = x+101ACK

SEQ = y+1, ACK = x+101

3-way-handshake
SEQcl = x, SEQalg = y

3-way-handshake
SEQalg = x, SEQsrv = z

Figure 2.6: SYN-ACK spoofing algorithm simplified scheme.

Although providing adequate level security, operation of the method has high memory
requirements and may add a significant delay to the TCP communication. Despite these
reasons, the method is occasionally implemented in various anti-DoS solutions and even
used on real networks.

2.3.6 ACK Spoofing

ACK spoofing is a method deployed on the intermediary network device, whose primary
goal is to prevent the exhaustion of the protected device’s backlog. The method operates
by sending a spoofed ACK segment to finish every half-open session and complete the three-
way handshake. This way, all of the pending connections in the backlog are completed
before it may get overfilled by an attacker [9]. If the client does not generate an ACK
segment within the specified timeout period, the ACK spoofing mechanism terminates the
connection with an RST segment. If the expected ACK is received, the algorithm marks
the connection as valid and does not interfere in the future TCP communication between
the nodes (Figure 2.7).
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Figure 2.7: ACK spoofing functionality.

This approach protects the server’s backlog, prolonging its ability to serve clients, but
does not mitigate SYN flooding attacks by itself. It is important to note that a connection is
established for each received SYN. This means that if an excessive number of SYN messages
is received, the connections may still cause the server’s memory to get exhausted. Also,
each segment causes the ACK spoofer to send one spoofed ACK immediately during the
connection establishment phase and one more RST segment after the timeout ticks out.
Therefore, each SYN segment sent by an attacker generates two additional segments from
the ACK spoofer, eventually amplifying the attack. Another drawback is that the method
requires to software-process all segments with an ACK flag, disabling their ability to be
hardware-forwarded. According to our traffic analysis captured on CESNET’s network,
pure ACKs make approximately 81% of all TCP traffic (Subsection 4.1.2), so the need
of their analysis by the software has a rather significant impact on the performance.

Despite all the mentioned disadvantages, the method is quite popular in IPS systems
and is often used in conjunction with other mitigation methods.

2.3.7 SYN Drop

SYN Drop is a name of the proprietary method developed especially for CESNET’s DDoS
Protector project. Its functionality depends on soft (S) and hard (H) thresholds, which
are used to limit the maximum throughput of SYN data that is allowed from a single
client. The module keeps an internal table of IP addresses for all active TCP clients.
Each IP address has an associated counter that represents the number of SYN segments
sent by the client in the actual time window. If the number of SYNs exceeds an active
threshold, all other SYN data sent by that client in the given time window are discarded
(Figure 2.8). The active threshold is determined based on the number of ACK segments
the particular host sends. If no ACK is sent by the host (Figure 2.8a), the soft threshold
is active. Receipt of at least one ACK activates the hard threshold for current and all
consecutive time windows (Figure 2.8b). On the top of traffic limiting, simple protection
against SYN port scanning is also included. Its functionality is implemented by dropping
the first SYN from clients with no ACKs yet sent.

The method provides decent protection against regular SYN flood attacks from spoofed
addresses which do not generate an ACK reply. However, it can be easily fooled by injecting
an ACK into the flood or by using more sophisticated attacks like Session Attack. The usage
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is not limited for end-host nor network-based deployment, and so the method can be used
in both scenarios without significant benefits and drawbacks.
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(a) No ACK recieved
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ACK >= 1

(b) ACK recieved

Figure 2.8: SYN drop functionality.

2.3.8 TCP Anti-DoS Extensions

Alongside specialized techniques to prevent DoS mentioned in previous subsections, mod-
ifications to the protocol itself were also made. These tweaks were in the form of TCP
extensions, which were supposed to provide anti-DoS functionalities even without the us-
age of other mitigation methods. The first extension – TCP Cookie Transactions, provided
a cryptologically secure mechanism to guard against simple flooding attacks sent with bogus
IP addresses or TCP ports. Usage of the extension avoided resource exhaustion on a server
by not allocating any resources until the three-way handshake completion. Unlike SYN
Cookies, the approach did not conflict with other TCP options but required support for
both of the communicating hosts [24]. This restriction has proven to be crucial, because
hardware vendors and software providers mostly ignored to implement it, and so the method
was never popularized.

The second approach – TCP Fast Open replaced Cookie Transaction mechanism in 2014.
The original intention of the standard was to provide a way to exchange the data between
clients before establishing a 3-way-handshake, thus making the data transfers faster. How-
ever, the usage of the cookies also provided an ability to stop an attacker from trivially
flooding spoofed SYN packets. On the other hand, new types of attacks specifically against
TCP Fast Open may be launched. Their success may temporarily disable the mechanism,
so usage with traditional SYN flood mitigation methods is still recommended [7]. Although
the standard is marked as experimental, Linux and FreeBSD kernels, as well as several web
browsers are already supporting it, though the method is sometimes disabled by default.

2.3.9 Current Trends in TCP DDoS Mitigation

Methods described above are generally all used for SYN flooding attacks mitigation. Defense
against other types of TCP floods described in 2.2.4 requires the usage of heuristic methods
with state information. The main idea behind these methods is that all legitimate TCP
hosts have to establish a TCP session before sending other TCP data. The software would
then block all TCP traffic except the one used to establish a TCP session in a fashion, that
a certain number of ACK segments would be allowed to pass if and only if an SYN segment
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from that particular IP was received within the timeout range. Ideally, this constraint would
be extended by monitoring outbound traffic as well, and ACKs would then be allowed only if
the server had previously responded with an SYN-ACK for the given session. This principle
would beat all types of dummy TCP flooding, which does not rely on establishing a session
before launching the attack. Other mechanisms such as counters and thresholds would then
also be needed in cases that the flood would be conducted with established sessions. The
proposed mechanism provides an undoubtedly high level of protection, but overall network
performance is considerably degraded because each type of the TCP segment needs to be
processed by the software and hardware-forwarding capabilities such as in CESNET’s DDoS
protector cannot be used.

More sophisticated DDoS attacks like spoofed session floods or session attacks are fre-
quently able to bypass most of the techniques mentioned in previous subsections. Their
mitigation has to be done with advanced methods like Deep Packet Inspection (DPI) com-
bined with the usage of Artificial Intelligence (AI) and machine learning. DPI principle is
used to analyze multiple fields of the packet headers, often up to application protocols. Its
combination with AI may be able to discover traffic patterns that would not be revealed
with traditional techniques. According to these patterns and possible experience of the AI,
a potential attack may be triggered and particular data forming it would be dropped.

In real-world situations, both end-host and network-based solutions are frequently em-
ployed, and they generally do not interfere when used in combination [9]. Current trends
in DDoS mitigation also utilize cloud technologies (e.g. Cloudflare1) instead of traditional
IDS/IPS systems, but the mitigation principles stay mostly the same as those described
in this document.

1https://www.cloudflare.com/
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Chapter 3

TCP Reset Cookies

This chapter presents TCP Reset Cookies, a heuristic method for TCP SYN Flood mit-
igation. The method was designed and implemented to complement existing algorithms
in CESNET’s DDoS Protector mentioned in the previous chapter. This project uses pro-
prietary high-speed FPGA networking technology and custom NDP frame headers, but all
concepts mentioned in this section are not explicitly tied to any hardware and can be used
in any TCP/IP network.

The first mention of TCP Reset Cookies can be traced back to 1996 according to the
citation in [22]. Unfortunately, the method was never officially published, and the original
proposal was only in the form of e-mail communication. The approach was never popu-
larized because it was not compatible with Windows 95 clients [2] and the execution of
the method had created unacceptable delays due to low speed in computer networks those
days. Mentioned e-mail communication was probably deleted, and so only a few resources
about this approach exist to this day. For the purpose of our custom implementation,
the method needed to be ”reinvented“ by estimating the behavior of the clients according
to the specification and actually testing various operating systems to confirm the expected
compatibility.

Sections at the beginning explain the theoretical foundations of the strategy, as well
as its design and implementation aspects. Latter sections summarize the achieved results,
compare the method with its adversaries and discuss its usability in real networks.

3.1 Theoretical Background
TCP Reset Cookies functionality is based on the three-way handshake mechanism and
relies on the client’s behavior as defined in the RFC 793. The main idea is to establish
a security association with clients before allowing their connection requests. This is achieved
by intentionally crafting invalid SYN-ACK responses to SYN data received from a client.
When an invalid SYN-ACK is received, the RFC 793, section 3.4 [21] defines the behavior
as follows:

If the connection is in any non-synchronized state (LISTEN, SYN-SENT, SYN-
RECEIVED), and the incoming segment acknowledges something not yet sent (the
segment carries an unacceptable ACK), a reset is sent.

To distinguish that the RST segment is associated with the receipt of invalid SYN-ACK,
RFC 793, section 3.4 [21] also defines requirements on the sent RST:
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If the incoming segment has an ACK field, the reset takes its sequence number
from the ACK field of the segment, otherwise the reset has sequence number zero
and the ACK field is set to the sum of the sequence number and segment length
of the incoming segment.

According to these preconditions, the algorithm is able to distinguish a legitimate client
from an attacker, supposing that the the client will send an RST reply with the expected
SEQ value, whereas an attacker will not. When an RST with the correct SEQ field is
received, a security association is established by whitelisting the client’s IP address. SYN
traffic originating from whitelisted IP addresses is forwarded to its desired destination
without further tampering (Figure 3.1).

Invalid SYN-ACK 

SYN

Connection 1:

Forward SYN segment

Connection 2:

Client RST Cookies algorithm Server

RST

SYN

Add client to
the whitelist

Figure 3.1: RST Cookies functionality.

3.2 Method design
As outlined at the beginning of this chapter, the developed method is supposed to com-
plement existing algorithms in CESNET’s DDoS Protector solution. Section 2.3 stated
that these algorithms, already provided by the solution, are SYN Drop and ACK Spoofing.
As described in their respective subsections, both of the approaches have their pros and
cons. The SYN Drop algorithm provides adequate protection against regular SYN flooding
attacks but falls short against attacks carrying spoofed ACK segments. ACK Spoofing pro-
tects the backlog during the attack with low packet rate but is easily overwhelmed on high
packet rates and eventually even amplifies the attack in those cases. As may be seen, the
currently deployed methods are not suitable in certain scenarios and a solution to cover
other variants of SYN floods is required.

For this purpose, RST Cookies – a network-based mitigation method able to handle
both regular and more sophisticated attacks is designed. Simple SYN floods are dropped
by default because SYN sending IP addresses will never be added to the whitelist since
they would not pass the security association phase of the algorithm. This mechanism
is especially effective against attacks from spoofed IP addresses, which can not generate
a valid RST reply. Spoofed Session Floods meet the same fate, since generating random

16



ACK, RST, and other segments can not fool the security mechanism because the specific
value in the SEQ field of the RST is expected. The only way for an attacker to bypass the
association phase is to monitor the traffic and inject an RST segment with the desired SEQ
to the session. Another way is to use legitimate clients with the implemented TCP stack.
Either way, the attacker can not use spoofed IP addresses, because the only way how to get
to the whitelist is by responding to received invalid SYN-ACK with a valid RST. Proposal
for this method presents an undoubtedly higher level of security than the currently used
techniques.

The following subsections will shortly describe individual design concerns of the devel-
oped algorithm.

3.2.1 RST Cookies as a Module

Since the implementation is supposed to be part of the way more complex security solu-
tion, the initial design has to be adjusted to meet the specific needs. The algorithm will
not be used permanently, but its caller will typically switch between different mitigation
methods. For this reason, the algorithm will not be implemented as a standalone applica-
tion, but as a module, which needs to be easily activated, disabled or removed on demand.
This requirement also implies that the module will not capture the TCP segments itself,
but will process already-parsed data received directly from the caller. The module will also
not forward nor drop segments, but will only suggest how the packet should be handled via
the return value of its functions.

The initial requirements for the module are rather straightforward. At first, the module
needs to be initialized and be ready to process SYN and RST segments, while being able
to generate invalid SYN-ACKs with secure ACK values. Whitelist needs to provide a way
of aging, so older records are considered invalid and are automatically removed from the
list. Ability to clear the module to its initial state after initialization needs to be sup-
ported as well. Finally, the module is required to have proper memory management. This
decomposition leads us to create an initial draft of the module as shown in Figure 3.2.

The CESNET’s DDoS Protector natively runs on the Scientific Linux, which is based
on Red Hat Enterprise Linux core. For this reason, the module will prioritize to provide sup-
port for this particular operating system, although compatibility with other Linux systems
should be achieved as well.

3.2.2 Module Initialization and Finalization

As mentioned in Section 3.1, the RST Cookies algorithm requires a whitelist to keep a record
of the clients that have already passed the security association phase. Accordingly to this
precondition, module requires an initialization phase, during which these data structures
will be allocated and other internal variables set. The initialization phase is corresponding
with the constructor in the object-oriented (OO) design. Due to internal politics of the
DDoS protector, procedural design needs to be applied for this project. However, we will
try to emulate OO design to be able to use its principles like abstraction and encapsulation.
This approach will produce cleaner code while maintaining an easy way to rewrite the
module into OO design when desired.

To sum it up, the module needs to provide a simple interface allowing the user to initial-
ize and finalize the module. Initialization will allocate data structures posing as whitelist
and set all the switches controlling the behavior of the module. The values used to set up the
module were initially passed as function parameters, but they were eventually transformed
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Figure 3.2: RST Cookies module initial design.

into the configuration structure as their number increased by the module adjustments. The
module configuration parameters are furthermore explained in Subsection 3.2.8.

3.2.3 Whitelist

Previous sections have mentioned the need for a whitelist structure, which will be able
to store IP addresses of the hosts that have already passed the security association phase.
For this purpose, two data structures – Hash table and Bloom filter may be considered.

Hash table is a data structure implementing an associative array abstract data type,
providing a mapping of keys to values. The mapping is done by a hash function, which
is computed for the key and as a result, a concrete block of memory representing the value
is returned. For our purpose, the IP address of the packet could be used as a key. This
way, IP addresses contained in the hash table would be considered already-associated, and
IP addresses not contained in the hash table would be considered unassociated. Usage
of hash tables provides excellent performance, the certainty of the result and most impor-
tantly, the ability to store additional data for each key. However, this functionality comes
at the cost of high memory requirements, which become unbearable on tens and hundreds
of millions of entries.

Bloom filter is a space-efficient probabilistic data structure, which provides an ability
to test whether a given element is a member of the set. As a result of its probabilistic
property, false positives may happen. The filter is thus able to identify whether the ele-
ment is possibly in the set, or definitely not in the set [20]. Due to leveraging a property
of uncertainty, the structure can store its results with exceptionally low memory require-
ments (only 114 MiB for 100 million entries with the 0.01 probability of false positives [17]).
However, the principle of mapping a key to a value is not possible, so no additional data
could be stored for each IP address. Additionally, elements added to the structure cannot
be removed. The operation of adding and querying an element is also much slower because
multiple hash functions need to be computed.

Although usage of both data structures would be possible, for the purpose of this project
and the needs of the DDoS Protector, a hash table was chosen. The main reason for it is

18



its ability to store data related to the given element, potentially allowing advanced security
tweaks, entries aging and various optimizations discussed later in this chapter.

Despite the fact that one hash table could be used for both IPv4 and IPv6 hosts, a
disproportion between the usage of these types of addresses on the Internet still exists. For
this reason, we decided to use a specialized whitelist for each address type. This way, the
user can specify the size of the hash table for each of the address types separately. This
feature allows memory requirements optimizations and overall better performance of the
module.

The concrete hash table implementation1 was provided by CESNET, which maintains
a specialized fast hash table optimized for the usage with IP addresses. This hash table
is designed with constraint that number of its columns must be a power of two. More
importantly, another specific property is a limited row capacity, and so inserting an element
to the full row causes the oldest accessed to be replaced. These features extend the regular
table functionality by a proper memory management and entries aging mechanism, which
is especially significant for the RST Cookies cause.

3.2.4 SYN Processing

For the method to function correctly, a caller must ensure that all ingress SYN and RST
segments originating from outside of the protected network are processed. When such SYN
is received, the RST Cookies algorithm must determine whether it is from a new client or
a client that is already associated. For this purpose, a source IP address is chosen as a key
in the whitelist to search for. Each entry contains a nanosecond timestamp specifying
when the association has been created (𝑡𝑎), allowing entries to age. So, upon an SYN
segment arrival (𝑡𝑠), the algorithm has to check whether the IP address of the source
is contained in the whitelist and its entry timestamp does not exceed the maximum specified
age time (𝑡𝑚), thus validating the following condition:

𝑡𝑠 − 𝑡𝑎 < 𝑡𝑚

If the preceding condition is met, the SYN segment is forwarded into its desired destina-
tion. Otherwise, an invalid SYN-ACK is assembled and sent as a response to the processed
SYN as defined Section 3.2.

If regular data structures were used, manual removal of the expired entries would be re-
quired. However, our hash table automatically replaces the oldest entry when insertion
to the full row is made. As outlined in the Subsection 3.2.3, this process ensures proper
aging mechanism, because oldest entries are systematically removed by default. Another
assurance is the automatic memory management since the size of the table never exceeds
its initial size at the time of the initialization no matter how many IP addresses are added
to it.

The system of client validation described previously may stop regular and most of the
sophisticated SYN floods, but may fall short in certain situation such as when an attacker
manages to bypass the association phase. For this reason, an algorithm enhancement
furthermore discussed in Subsection 3.2.7 is proposed.

1https://github.com/CESNET/Nemea-Framework/tree/master/common/fast_hash_table
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3.2.5 RST Processing

When an RST segment is being processed, the module has to decide whether the message
is a part of its mechanism or belongs to the regular TCP traffic. This is achieved by looking
at the SEQ value of the analyzed RST. If its SEQ is equal to the ACK sent in the previously
generated invalid SYN-ACK, the RST is a response to it. In this case, the processed RST
segment is dropped and client IP address added to the whitelist. Otherwise, the segment
is not part of the RST Cookies algorithm, hence gets forwarded to its desired destination.

3.2.6 Invalid ACK Generation and Validation

As mentioned in previous subsections, the algorithm needs to generate an invalid SYN-ACK
segment and then match a corresponding RST to it. Generally, invalid SYN-ACK is crafted
by violating the three-way handshake process through setting a segment’s ACK value dif-
ferently from 𝑆𝐸𝑄+ 1 of the SYN it is responding to. Responding with random numbers
is possible, but would not allow the process of client verification.

The initial design allowing the incoming RST validation used a constant value, that
was placed in each SYN-ACK response and then checked for the match in the RST. This
approach was functional, but its security properties were insufficient. A smart attacker that
is able to monitor the traffic could easily inject an RST segment with the given constant
to trick the security mechanism. To tackle this issue, a system for dynamic ACK generation
and validation is proposed.

The main purpose of the Dynamic ACK Generator is to provide a secure way to generate
invalid ACK values for SYN-ACK messages and to validate SEQ numbers in received RST
segments. The main concerns of the generator are CPU requirements and security of the
generated results. Based on these factors, two generator policies – Random windowed mode
and Hash mode have been designed. Each of the methods focuses on one of these factors
meanwhile weakening the other one. This subsection will furthermore discuss each of these
policies in detail.

Random Windowed Mode

The fundamental idea behind this policy is to generate random numbers periodically and
to assign ACK values from the particular time window to SYN-ACK segments according
to the time of their generation. When an RST segment is being processed, the algorithm
iterates over the structure of these lastly generated values and searches for a match between
the generated ACK s and the SEQ read from the RST segment. The number of iterated
elements depends on the ACK generation period and the validity of the generated values.
When configured sensibly, this method is faster and allows better message throughput than
its counterpart.

The functionality of this principle depends on a fixed-sized array, having the minimum
of 𝑁 = ⌈𝑉/𝑇 ⌉ elements. Value 𝑉 denotes the validity of the generated ACK values while
𝑇 represents the new ACK generation period. This structure is used as a ring buffer (Fig-
ure 3.3), which stores lastly generated values and is iterated when a value validation is
needed. When an invalid SYN-ACK is requested, the algorithm needs to look on a times-
tamp of the lastly generated value and compare this timestamp with the current time. If
their difference exceeds the specified ACK generation period, lastly generated value buffer
index is incremented (from the window with time 𝑡 to the window 𝑡+ 𝑇 ), and a new value
is generated on its position. The algorithm then takes a value from the buffer element
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Figure 3.3: Invalid ACK generator – Windowed mode principle.

currently being pointed on and returns it as a generated ACK value. Validation is done
by iterating these time windows in reverse order, starting in the time 𝑡 and proceeding
up to the time 𝑡−𝑁 · 𝑇 , where 𝑁 is a minimum size of the array calculated previously.

This policy provides a relatively good performance, which is mostly affected by the
speed of the random number generation and the iteration of the ring buffer. Sensible size
of the buffer is up to 10 elements while respecting the minimum recommended ACK validity
of at least several seconds. Lower values of the ACK generation period may provide better
security, but its effect can be neutralized by the long validity of ACK values. The main
drawback of this approach is apparent – the same ACK value is used for all invalidly
acknowledged SYN segments in the given time window. This practice allows the attacker
analyzing the traffic to extract the invalid ACK value and place it as a SEQ of the crafted
RST, which will be injected onto the network to fool the security mechanism and whitelist
the attacker’s IP address. However, this scenario is not very likely to happen, but the
security concern still exists, so the hashing method has been developed to provide a higher
level of security.

Hash Mode

The second approach is somewhat inspired by the SYN Cookies principle. As illustrated
in Figure 3.4, a unique hash is computed for every connection according to its parame-
ters. Segment source IP, a 32-bit secret, TCP source port, destination port, and a 32-bit
timestamp are hashed into a 128-bit string. The first 32-bits are taken, and 12 least signif-
icant are replaced with a modulo of the shifted timestamp with 4-second precision. This
technique provides a reasonable trade-off between security and performance because the
attacker would have to guess 220 possibilities from the hash alongside four different times-
tamps. Four-second precision was chosen because it would take 22

12s ∼ 194 days to perform
a replay attack due to the timestamp repetition. Though not yet implemented, this dura-
tion could be prolonged by a pool of secrets, which would prolong the possibility of a replay
to the previously calculated value multiplied by their number. To verify a received RST,
the algorithm reconstructs the timestamp by deriving its value before modulo application,
shifting it back to 1-second precision, and computing the hash function for every possible
second in the given time window, because perfect precision was lost due to the previous
shift. If the reconstructed timestamp is within the timeout range and first 22-bits of the
computed hash match the first 22-bits of the SEQ in analyzed RST, the client is considered
legitimate.
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This method provides undoubtedly stronger security since an unique ACK is generated
per every connection instead of the one value for all segments in the given time window.
On the other hand, the CPU is utilized significantly more because hash functions need
to be calculated for every processed segment. For this reason, latency may be slightly
increased, and packet throughput could also be fairly reduced. Comparison of both ACK
generation/validation policies is furthermore discussed in the results section.
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Figure 3.4: Invalid ACK generator – Hash mode.

ACK Generator as a Submodule

To provide an adequate level of flexibility and abstraction, the ACK generation algorithm
was designed as an independent module. It will be used for the internal calls of the RST
Cookies algorithm, providing the functionality of invalid ACKs generation and validation.

Adaptive way of generation is achieved by an ability to switch between different policies
during the program execution. For this reason, both of the generation algorithms need
to be used to determine the validity of the analyzed value. For the optimization purposes,
each of the generators contains an internal nanosecond-precision timestamp that indicates
the time when the generator was lastly used. This way, evaluating a single condition tells
the algorithm whether the particular generation method has to be used for verification.

As it emerged from the previous paragraphs, the functionality of the ACK generator
requires state information to be kept. Each of the generators contains own internal data
(Figure 3.5), while the main generator structure wraps these two generators and provides
a switch defining which of the generator policies is currently active.

Random windowed generator

+ bufGener[]
+ bufSize
+ bufIdx
+ ackPeriod
+ ackTimeout
+ lastGener

: [uint32, uint64]
: uint32
: uint32
: uint64
: uint64
: uint64

Hash generator

+ secrets[]    
+ secSize    
+ ackTimeout 
+ lastGener

: uint32
: uint32
: uint64
: uint64

Figure 3.5: ACK generators internal structure.

The random windowed generator requires a mentioned ring buffer of lastly generated
values (bufGener[]). For the optimization purposes, each generated value is internally
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stored as a pair of a 32-bit value and a 64-bit timestamp denoting its generation time.
This way, the algorithm does not need to iterate whole ring buffer but stops at the first
value with expired timestamp. Index to the buffer (bufIdx) defines the item corresponding
to the current time window. The generator also requires to know the generation period
(ackPeriod) and validity of the generated values (ackTimeout). The last item (lastGener)
represents a timestamp of the last generator usage. The hash generator contains a buffer
of secrets (secrets[]) that are used to calculate a hash. Other elements have the same
meaning as in the random windowed generator.

The interface of the submodule aims to provide a simplistic way to achieve all the re-
quirements from the ACK generator. First of all, functions to initialize, finalize and clear
the module are needed. Initialization constructs both types of the generators and sets them
to the initial state, clearing sets the module to the state after initialization, and finalization
destroys the generators and deallocates the memory. The requirement to switch between
different generation policies is addressed by another separate routine, which takes a gener-
ator instance and the policy to be switched to. Function to generate an ACK value accepts
the ACK generator instance and returns the generated value according to the active policy
as described in the paragraphs above. Function for validation processes two conditions,
each checking timestamp of lastly generated value from the particular generator and calling
the corresponding generator routine if the timestamp does not exceed the timeout. Since
the hashing variant requires to obtain IP addresses and port numbers, IP and TCP headers
are also passed to these methods.

3.2.7 Enhancing the Security – SYN Limiting

The original proposal of the algorithm considers a client to be trustworthy after the security
association phase is completed. Although this approach may stop most of the attacks,
a situation when an attacker successfully bypasses the mentioned association phase may
occur. Recall that when an RST with the expected value is received, the IP address of the
source is added to the whitelist. From this moment, the particular host is able to freely
send any number of SYN segments which will not be intervened by the TCP Reset Cookies
algorithm. This behavior may be abused by attackers, who may be smart enough to utilize
a regular TCP stack at the start of the attack or somehow inject an RST segment with the
desired SEQ value.

Our proposal tries to address this problem addresses by enhancing the regular algo-
rithm functionality. This is achieved by adding a counter and timestamp to the hash table
data alongside the existing association timestamp. The counter is used for counting SYN
segments from the associated clients, and the timestamp denotes the start of a 1-second
time window. By using these two extra variables, the algorithm can limit the number
of SYN segments sent by already-associated clients. This approach might stop even more
sophisticated attacks that successfully pass through the security association phase. When
combined with a blacklist, the ability to detect these smart attackers and deny their traffic
completely is available.

The enhanced variant of SYN processing with SYN limit feature is depicted in Algo-
rithm 1. The mechanism firstly looks for the data related to the Source IP address (line 1).
If the entry exists, the check for an entry validity is performed (line 5). When the SYN
counter is enabled and a 1-second time window is already started, the SYN limit is checked
if it has not been reached. When that is the case, the algorithm proceeds accordingly
(line 11 - 18). If the time window is not in progress, the counter is set to 0 and a new
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Algorithm 1: RST cookies – SYN processing.
1 𝑒𝑛𝑡𝑟𝑦 ← Source IP data from association table;
2 if 𝑒𝑛𝑡𝑟𝑦 == NIL then
3 send invalid SYN-ACK;
4 Drop packet and exit;
5 else if 𝑡𝑠 − 𝑡𝑎 < 𝑡𝑚 then
6 Delete src IP from association table;
7 Send invalid SYN-ACK;
8 Drop packet and exit;
9 end

10 if SYN limiting enabled then
11 if 𝑡𝑠 − 𝑡𝑒𝑛𝑡𝑟𝑦.𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑎𝑟𝑡 < 1s then
12 if 𝑒𝑛𝑡𝑟𝑦.𝑠𝑦𝑛_𝑐𝑛𝑡 ≥ SYN limit then
13 if Blacklist enabled then
14 Add IP to blacklist;
15 end
16 Delete src IP from association table;
17 Drop packet and exit;
18 end
19 else
20 𝑡𝑒𝑛𝑡𝑟𝑦.𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑠;
21 𝑒𝑛𝑡𝑟𝑦.𝑠𝑦𝑛_𝑐𝑛𝑡← 0;
22 end
23 𝑒𝑛𝑡𝑟𝑦.𝑠𝑦𝑛_𝑐𝑛𝑡← 𝑒𝑛𝑡𝑟𝑦.𝑠𝑦𝑛_𝑐𝑛𝑡+ 1

24 end
25 Allow packet and exit;

time window is started (lines 19 - 22). Segment that has not been dropped yet has its SYN
counter incremented, and gets forwarded (lines 23 - 25).

3.2.8 Putting It All Together

With most of the major design concerns already discussed, a final version of the RST
Cookies internal structure may be revealed (Figure 3.6). This data will be hidden from
the external access and are supposed to be merely visible by functions of the module itself
and no other entity. The module utilizes two whitelist tables for IPv4 and IPv6, comprises
a dynamic ACK generation submodule and stores user-entered arguments of maximum
whitelist entries age time, SYN limiting status, and the actual SYN limit. These settings
are specified by the user in the initialization function via a configuration structure, which
mostly copies the content of the internal module’s structure with a difference, that the user
specifies the size of whitelist tables and includes configuration structure for the Dynamic
ACK generator.

Because the module makes use of the specialized hash table discussed in Section 3.2.3,
only four entries per row may be stored. On account of this behavior, a situation when
a legitimate client is removed from the table before its age time expires may occur. This
event happens when the chosen size of the hash table is not respecting the properties
of a protected network. To tackle this issue, the module offers a statistics logging mechanism
that may help to detect this situation and adjust the hash table size appropriately. These
statistics are stored in the internal structure and can be obtained via the corresponding
function.
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Reset Cookies module

+ wlist_ip4
+ wlist_ip6
+ maxAge
+ synLimitEn
+ synLimit
+ ackgen
+ stats

: hashTable
: hashTable
: uint64
: boolean
: uint32
: ackGenerator
: rstCookiesStats

Reset Cookies statistics

+ hostsWlisted
+ validHostsRem

: uint64
: uint64

Figure 3.6: RST Cookies module internal structure.

Alongside the features discussed in previous subsections, the module also needs to pro-
vide an interface to manipulate ACK generator by using RST Cookies functions. Since the
generator is used internally in the module, its behavior cannot be changed by direct calls,
and so the RST Cookies interface has to provide wrapper functions to control generator
behavior like setting the current generation policy.

3.2.9 Module Wrapper for Testing Purposes

For the purpose of verifying functionality and performance of the module, it needed to be
used as a part of a more robust program. Since the module interface and features were
adapted for the needs of DDoS Protector, it heavily depends on its caller. For this reason,
it cannot be used as a standalone program by itself, but a specialized application providing
environment the module requires needs to be used.

One of the possible solutions is to integrate the module straightly into the DDoS Pro-
tector and test it like that. However, this approach would not allow detailed debugging and
would make executing the performance tests harder. Also, the functionality of the method
was questionable from the beginning, so we needed to ensure compatibility with various
operating systems (Subsection 3.4.1) before developing the module further. This approach
led to design and development of a small program that represented a wrapper utilizing the
RST Cookies module while providing DDoS Protector-like interface and features to make
the module functional. A sequential evolution of this small application created a standalone
program, that may be used on the intermediary device to provide RST Cookies functionality
by itself.

The main concern of the wrapper is to provide or simulate an interface the module
depends on while being able to utilize the functionality of the module itself. This means
that the wrapper needs to read all the incoming data from the given interface and pass
all SYN and RST segments to the wrapped module. Other data the RST Cookies does
not process should be forwarded to their destination. The wrapper then needs to respect
decisions made by the module, so SYN and RST segments are forwarded or dropped as the
RST Cookies algorithm suggests. One the of most important responsibilities of the wrapper
is to simulate the DDoS Protector’s system for queuing and sending packets. Using this
system, modules willing to send a segment need to “ask” for the memory to load the segment
into. After this process, the data are automatically sent. Modules using this approach also
do not need to include data link (L2) headers, which are automatically prepended by the
system when the packet is sent. This approach allows greater flexibility of the modules
because they do not need to rely on low-level layers for their functionality.
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3.3 Method Implementation
As mentioned back in 3.2.2, the DDoS Protector policy forbids the usage of OO design,
because of the required implementation in C, a procedural language. The chosen language
disables various OO functionalities but allows us to write remarkably fast programs, which
is indeed the primary concern of the software that processes and filters real-time data.

The development of the module and the wrapper was performed using evolutionary
prototyping development methodologies. Following these principles, the initial program
confirming theoretical assumptions of the method’s functionality was rebuilt into several
prototypes as new features were added. Extending and verifying the last prototype formed
the final product described in this document.

The following subsections will provide a high-level overview of the module implementa-
tion, describe interesting facts and minor deviations from the initial design related to the
method implementation.

3.3.1 Memory Management

All the required memory for the correct module functionality is allocated using a malloc()
call during the phase of the module initialization and deallocated with a free() call when
the module is finalized. The module would normally also allocate a buffer that would
serve as a place to assemble invalid SYN-ACKs to. However, as a module for the DDoS
Protector, a different approach needs to be taken. The Protector’s API provides a function
packet_queue_get_data(), which returns an allocated buffer of a requested size to its
caller and automatically sends the data after the buffer is filled. The algorithm is thus not
supposed to allocate its own buffers, but rather to request a memory buffer from the main
application when an invalid SYN-ACK needs to be sent.

This mechanism is employed due to optimization purposes, because the core of DDoS
Protector would need to copy the module’s buffer contents into the interface buffers, drain-
ing resources unnecessarily. While the system packet queuing is being used, the module
straightly obtains desired memory it can write into, requiring no extra buffer copies.

3.3.2 Invalid SYN-ACKs Assembling

Invalid SYN-ACK segments are sent for every analyzed SYN whose IP address is not con-
tained in the whitelist. The routine for SYN analyzing is thus required to find out the
IP address family of the analyzed packets to choose an appropriate whitelist to search source
IP address in. Since IP headers of both families are different, two internal procedures –
rst_cookies_respond_ip4() and rst_cookies_respond_ip6() were implemented. Both
of them ask for the memory as described in the previous subsection and fill the buffer with
the appropriate information forming a TCP SYN-ACK segment. Both of these functions
accept the same parameters, so the SYN analyzer chooses the appropriate one the same
way as in the case of whitelists.

Forming the SYN-ACK

SYN-ACK segment is assembled with the use of system in-built networking header struc-
tures. Each structure represents a concrete protocol header used at a specific layer of the
OSI model. These structures are then stacked onto themselves to form a valid TCP seg-
ment. Normally, each of the layers from L2 up to L4 would need to be included, but in our
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case, only IP (L3) and TCP (L4) headers are required. Since the module uses a specialized
function to obtain a buffer to fill the data into, Ethernet (L2) and proprietary NDP headers
are automatically prepended by the internal mechanisms of the DDoS Protector before the
packet is sent. This way, the Protector’s modules are isolated from handling low-level data
and thus provide better flexibility and cleaner code.

After the SYN-ACK segment is formed, its fields need to be filled with the IP and
TCP data to form a legitimate network message. For this purpose, source IP address, des-
tination IP address and TCP port numbers are taken directly from the received SYN while
swapping their source destination fields. To provide a desired functionality, ACK val-
ues are generated with the rstcks_ackgen_getack() call, which returns a value from
the ACK generator based on the currently active policy. SEQ values of the SYN-ACKs
play no role in the RST Cookies mechanism, but they are also generated pseudorandomly
to make produced segments look like legitimate traffic. Other fields for IPv4 and IPv6
header are filled according to RFC 791 and RFC 2460 standards. TCP header fields com-
ply to RFC 793.

Checksum calculation

An integral part of the SYN-ACK assembling process is an IP and TCP headers checksum
computation. The segments without valid checksums may be dropped by intermediary de-
vices or ignored at their destination. The computation process is typically handled by oper-
ating systems when programming with networking API using sockets, but since the module
is assembling whole segments from scratch, a checksum computation needs to be executed
manually. The required way of checksum computation is defined in each RFC separately,
but each of them follows the algorithm initially described in RFC 791 [1]:

The checksum field is the 16 bit one’s complement of the one’s complement sum
of all 16 bit words in the header. For purposes of computing the checksum, the
value of the checksum field is zero.

As this definition is not so straightforward, several Internet sources needed to be con-
sulted to understand and implement the required algorithm at last. Actually, all the check-
sum function has to do is to compute a sum of 2-byte blocks, add the left-over byte in odd
data sizes and fold a possible 32-bit sum to a 16-bit checksum by taking the 16 least signif-
icant bits and adding them to bits on the position 16 to 31. Finally, a bitwise negation of
the computed value is performed and the result is returned. This process is the same for
both IPv4 and TCP headers. The header for IPv6 does not contain a checksum field, so the
calculation process is not performed.

A specialized calculation needs to be performed for TCP header, which requires to exe-
cute a checksum algorithm for both TCP header and pseudo-header composed of source and
destination IP addresses, length of the TCP segment and a protocol identifier. Structure
of this pseudo-header is described in RFC 793, section 3.1 [21] for IPv4 and in RFC 2560,
section 8.1 [16].

Algorithms for checksum calculation found on the Internet are typically implemented
in a generic way, allowing computation of the algorithm for any data they receive without
other functionalities. This approach is, indeed the variant with the biggest flexibility, but
does not provide a performance our module requires. Usage of the generic approach would
require allocating the dynamic memory, copying the header contents to it, appending and
filling a pseudo-header and then passing it to the computation method. Even if the buffer
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would be already preallocated, the process of copying the header for every processed packet
is rather ineffective. Instead, our functions for checksum computation – chksum_calc_ip()
and chksum_calc_tcp() specialize on calculating the checksum for the respective type
of the header, being able to create and calculate checksum values of pseudo-headers on the
stack, avoiding unnecessary memory allocation and data copying. These functions provide
better performance at the cost of less flexibility since each of them is explicitly tied to the
particular header and cannot be used for any other one.

The problem with this specific approach was actually experienced during the compilation
with the last version of GCC – gcc 8.2.1 using the -O3 optimization flag. An error in the
compiler caused a part of the created pseudo-header structure assignments to be ignored
(the first 5 lines in Figure 3.7a). Because of this, all the necessary data in pseudo-header
were not included, and so the checksum was computed improperly. Compilation with lesser
optimizations using flag -O2 did not trigger the error, and the checksum was computed
validly. However, DDoS protector required the usage of the -O3 flag, so a hack to disable
particular optimization which caused the problem was needed. The issue was resolved by re-
placing a direct structure initialization with two memcpy() calls (first half of Figure 3.7b),
which apparently do not trigger the optimization, and so the checksum calculation returns
a correct result.

/* Prepare the pseudo-header structure. */
tcp_pheader6_t pseudohdr = {

.len = htonl(tcpdata_len),

.next_hdr = htonl(IPPROTO_TCP),
};

memcpy(pseudohdr.ip6_src, &(((struct ip6_hdr *)
ipdata)->ip6_src), IP6_ALEN);

memcpy(pseudohdr.ip6_dst, &(((struct ip6_hdr *)
ipdata)->ip6_dst), IP6_ALEN);

/* Process the pseudo-header. */
uint16_t *pdata_ptr = (uint16_t *)(&pseudohdr6);
for (unsigned int i = 0;

i < sizeof(tcp_pheader6_t); i += 2) {
sum += *pdata_ptr++;

}

(a) Original code

/* Prepare the pseudo-header structure. */
unsigned int proto_tcp = htonl(IPPROTO_TCP);
unsigned int payload_len = htonl(tcpdata_len);
tcp_pheader6_t pseudohdr6;

memcpy(&pseudohdr6.next_hdr, &proto_tcp,
sizeof(unsigned int));

memcpy(&pseudohdr6.len, &payload_len,
sizeof(unsigned int));

memcpy(pseudohdr6.ip6_src, &(((struct ip6_hdr *)
ipdata)->ip6_src), IP6_ALEN);

memcpy(pseudohdr6.ip6_dst, &(((struct ip6_hdr *)
ipdata)->ip6_dst), IP6_ALEN);

/* Process the pseudo-header. */
uint16_t *pdata_ptr = (uint16_t *)(&pseudohdr6);
for (unsigned int i = 0;

i < sizeof(tcp_pheader6_t); i += 2) {
sum += *pdata_ptr++;

}

(b) Modified code

Figure 3.7: Pseudo-header checksum computation GCC optimization bug fix.

3.3.3 Using Networking Header Structures

As mentioned in Section 3.3.2, invalid SYN-ACK segments are formed using operating
system in-built networking header structures. These structures are also used for packet
parsing – e.g., obtaining an IP address of the sender. In Linux operating systems, two
variants of networking headers exist. The original netinet headers were historically included
from the first versions of BSD and *nix operating systems. Linux subsequently added own
linux networking headers to its kernel, and consequently, both header types are currently
available to be used in Linux programs. They mostly consist of the same content, providing
identical structures and constants.
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Although both header types can be used, POSIX standard recommends the usage
of netinet networking headers for application programs, while reserving the linux head-
ers for internal usage within the kernel. However, a problem related to these different types
of headers emerges because they historically implemented own structures with different
names and structure members. This phenomenon was not a problem in the past because
each header file declared only its corresponding structure, and so the application developer
specified which type of structure was desired by including a particular header file. However,
this was changed and netinet headers now include both its original and Linux structures
in modern Linux kernels. Merging the different headers declarations into one worked fine
for most structures, but combining both TCP and both UDP headers created a dubious
situation.

As stated, structures in both header files define the same networking headers, but under
a different name, so they did not come into the conflict when a linux to netinet headers
merging was made. However, TCP and UDP headers were historically defined under the
same name (struct tcphdr, and struct udphdr respectively) but names of their members
were different. This fact indeed created a conflict and a problematic situation lasting
up to this day. When a programmer includes the netinet/tcp.h header file and uses one
of the available TCP structures, a mechanism able to determine which of the headers was
used is needed during the compilation. And this particular behavior is the cause of many
problems related to TCP/UDP Linux network programming.

A typical problem arises when the program tries to utilize former netinet TCP/UDP
headers. Most Linux systems prioritize native linux headers by default, and so the er-
ror ’struct tcphdr has no member named ...’ is issued during the compilation phase.
However, the tricky part is that some systems still prioritize former netinet structures,
hence the compilation proceeds without errors on a few systems. The best cross-system
compatible solution we discovered so far is to include netinet header files and use Linux
structures (ending with “hdr”). Alternatively, netinet structures can be chosen, but macros
-D_BSD_SOURCE, -D__BSD_SOURCE, and -D__FAVOR_BSD have to be used during compilation
to tell the system to prioritize original netinet structures.

Initial versions of the program used original netinet structures with the mentioned
macros included. This version of the module is also submitted as a practical part of the
thesis on the attached CD/DVD medium. However, a newer policy of the DDoS Protector
suggests the usage of linux headers, so the module was ported to these types of header
structures and integrated to the solution in that particular state.

3.3.4 Invalid ACK Generation

According to the initial design, the ACK generator was implemented as a standalone mod-
ule, providing a standardized way to be initialized, finalized, and cleared. Alongside these
functions, two calls – rstcks_ackgen_getack() and rstcks_ackgen_validate(), provid-
ing the main functionality of the module, are available.

ACK generation is controlled by the switch, which determines the particular genera-
tion type based on the internal state of the module. ACK validation is done by checking
last generation timestamps of both generators and calling their validation routine if the
timestamp is within the ACK timeout range. The analyzed ACK is thus considered valid,
if at least one generator acknowledges that the given value was generated by it within the
ACK timeout range. This subsection will furthermore describe implementation specifics
of each of the generator types.
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Security Considerations

In order to minimize the chances of generated ACK values to be estimated, the ACK gen-
erator module utilizes the libsodium2 cryptographic library. Its API provides a generation
of cryptographically secure random numbers, which are used as ACK values while the ran-
dom windowed generation policy is active. Random numbers are also used as secrets for
hash generation policy, which combines session parameters, a timestamp, and a 32-bit secret
to generate a hash used as an ACK value. To make this way of the generation even more
secure, hashes are computed with the cryptographic one-way hash function BLAKE2b, also
provided by libsodium. With all these security measures, a possible attacker is not able
to estimate the generated ACK sequence, as well as decipher the values used to create
a hash, making both policies resistant against various cryptoanalytic attacks.

Random Windowed Generator

Generation of random ACK s with windowed policy is rather straightforward. Algorithm
checks whether the current timestamp subtracted by lastly generated value’s timestamp is
less than the ACK generation period. If this condition is true, new value is not generated
and lastly generated value is returned. Otherwise, the randombytes_random() call to
libsodium is used to obtain a block of 32-bit random data. This value forms a pair with the
current time timestamp and is inserted into the internal data structure, as well as returned
as a newly generated value.

1 bool rstcks_randgen_check(uint32_t ackval, uint64_t timestamp, const rstcks_randgen_t *randgen) {
2 unsigned idx = randgen->q_end; /* Index for iteration purposes. */
3
4 /* Iterate through the buffer to find match and check timestamps for validity. */
5 while ((idx + 1) % randgen->q_size != randgen->q_start) {
6 if (timestamp - randgen->data[idx].tstamp < randgen->ack_timeout) {
7 /* Entry in the queue has its timestamp still valid. */
8 if (ackval == randgen->data[idx].ackval) {
9 return true;

10 }
11
12 /* If match was not found on the current index - proceed to the next. */
13 idx = (idx != 0) ? idx - 1 : randgen->q_size - 1;
14 } else {
15 /* Entry is not valid -> all other the until end are not as well. */
16 break;
17 }
18 }
19
20 return false;
21 }

Figure 3.8: Random windowed generator value validation.

The process of value validation is depicted in Figure 3.8. For various optimization
purposes, the internal data structure is implemented as a fake queue, which is initialized
as already full and contains one extra element that is used as a sentinel value. As can
be seen, the iteration process starts on the last added element defined by the generator
structure member q_end. The data structure is traversed backward up to the second
elements before the latest generated one (line 5). The first element before the latest is

2https://libsodium.gitbook.io/
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the sentinel value, which is not used in this function, and so is skipped. Line 6 evaluates
the condition of the element timestamp validity. If the timestamp on the current index
is invalid, all other elements will have their timestamp only older, so there is no reason
to iterate further. For this reason, the algorithm signalizes that the ACK match was not
found by returning false. If the timestamp is valid, the algorithm compares its value with
the analyzed one and returns true if they match (line 8 - 10). Since the data structure is
iterated as a ring buffer, simple decrementation to the iterator variable cannot be made,
but we have to move to the end of the queue if the current index is 0.

The described mechanism and other adjustments provide a relatively fast way to work
with the internal data structures, providing adequate security and decent performance.

Hash Generator

Instead of returning the same value for multiple requests in a certain time window, the
ACK hashing method returns a unique value for every processed connection. This is achieved
by filling the buffer with IP addresses, port numbers, current timestamp and a 32-bit se-
cret. The prepared buffer is passed into the crypto_generichash() function, which returns
a 128-bits long cryptographic hash computed from the given data. This process is demon-
strated on the code snippet included in Figure 3.9. The cryptographic hash function takes
a pointer to the buffer data, specified by its size datalen, and saves 128-bit hash string
into the result buffer named hash. The 12 least significant bits are then taken and replaced
with a shifted timestamp with a 4-second precision modulo 212 to make sure that the time
data will fit into 12 bits.

crypto_generichash(hash, 16, data, datalen, NULL, 0);

uint32_t ack_result = (hash & 0xFFFFF000 | ((timestamp >> 2) % (1 << 12));

Figure 3.9: Hash generator value generation.

As in the case with the random windowed generation, the validation of the results is ac-
tually more complicated than generating them. During the hash mode value validation, the
algorithm needs to reconstruct the original timestamp used to compute the hash with. The
process of value validation is demonstrated in Figure 3.10. The function firstly computes
a modulo of the shifted timestamp and extracts the ACK value to be analyzed. A difference
between the calculated and extracted moduled timestamps is computed. Each point in its
result represents a 4-second block. Since original timestamp has 32-bits and a modulo ver-
sion in ACK only 12, an overflow may occur. For this reason, line 10 performs a check and
a potential fix if such situation occurs. Line 11 uses the computed delta to determine the
start of the 4-second time window that was used in the computation of the extracted hash
value. The algorithm then needs to try all different timestamps from the particular time
window to determine whether an ACK match occurs. The hash function computation for
all timestamps in a given window would be ineffective, so the condition on line 15 is firstly
evaluated for every timestamp before the cryptographic hashing occurs. If the currently
processed timestamp exceeds the ACK validity timeout, the computation is interrupted and
false is returned. If the timestamp is valid, the hashing occurs, and the result is compared
to the analyzed ACK to determine a match.

Optimizations with a timestamp explained previously improved the overall module per-
formance significantly, but the need for cryptographic hash calculation still negatively im-
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1 bool rstcks_hashgen_check(uint32_t timestamp, const void *ip_hdr,
2 const void *tcp_hdr, const rstcks_hashgen_t *hashgen) {
3 /* Calculate current timestamp as it would be in a part of the ACK. */
4 uint32_t tstamp_mod = (timestamp >> 2) % (1 << 12);
5 /* Obtain analyzed ACK from the header and calculate difference between timestamps. */
6 uint32_t their_ack = ntohl(((struct tcphdr *) tcp_hdr)->th_seq);
7 int time_delta = tstamp_mod - (their_ack & 0xFFF);
8
9 /* Correct the possible overflow and calculate beginning of the hashed timestamp. */

10 if (time_delta < 0) { time_delta += 1 << 12; }
11 uint32_t tstamp_hashed = ((timestamp >> 2) - time_delta) << 2;
12
13 for (unsigned i = 0; i < (1 << 2); i++) {
14 /* Check if the calculated timestamp is within acceptable time window. */
15 if ((timestamp - (tstamp_hashed + i)) * 1000000000ULL <= hashgen->ack_timeout) {
16 uint32_t our_ack = rstcks_hashgen_generate(tstamp_hashed + i, ip_hdr, tcp_hdr, hashgen);
17
18 if (our_ack == their_ack) { return true; }
19 } else {
20 break;
21 }
22 }
23
24 return false;
25 }

Figure 3.10: Hash generator value generation.

pacts the speed of the method, as well as its data processing abilities. The policy provides
undoubtedly stronger protection, but its other drawbacks prove improper in certain situ-
ations. For this reason, a caller using the module has to determine, whether the security
of the application is the primary concern or a trade-off between security and performance
is acceptable.

Note: Code snippets included in this section were partially modified for better readability and
fewer space requirements. The code in the source files respects best coding style practices,
like using macros for timestamp shifting, masking, etc., instead of magic numbers shown
here.

3.3.5 RST Cookies as a Standalone Program

The wrapper providing a standalone RST Cookies functionality was initially developed for
regular Ethernet networks by employing the libpcap3 library. In order to test in the CES-
NET’s 100 Gbps environment, the program was also ported into the proprietary NDP frame
headers. The simulation of the DDoS Protector’s environment was achieved by adapting
several header and source files with macros, return values, and fast hash table from the
DDoS Protector git repository.

The execution of the wrapper program starts by binding to the specified interface,
initializing the module and entering an infinite packet reading loop. Each received packet
is processed in a packet handler function, which sets the action flag to forward at its start.
If the IP address of the parsed packet is not contained on the blacklist and its content
is classified to be either SYN or RST TCP segment, it is passed to a respective RST
Cookies function. Its return value replaces the previously set flag so that the RST Cookies

3https://www.tcpdump.org/
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algorithm ultimately defines the fate of its processed segments. At the end of the packet
handler function, a subroutine to process the packet according to its action flag is called.
Its execution causes the packet to be either forwarded or dropped. If the discarded packet
has an SYN flag, the wrapper knows that the wrapped module has created an invalid
SYN-ACK and filled the buffer with a packet_queue_get_data() call. The filled buffer
is sent, and thus processing of a single packet ends and the wrapper is ready to process
another one. The infinite loop is terminated with the utilization of signal handling. When
the wrapper receives Ctrl^C sequence, the packet reading process is interrupted, resources
properly deallocated and wrapper exits with the exit code 0.

To provide or simulate the functionality of an intermediary device, the L2 header needs
to be changed so that MAC addresses correspond to the predefined ones – the MAC of the
intermediary device running RST Cookies as a source, and the MAC of the server or other
network device with a path to the server as a destination. Simulation of Protector’s packet
queuing is done by allocating a buffer of static size and preparing Ethernet header by filling
it with desired MAC addresses. Each call to the packet_queue_get_data() function then
returns a pointer to the buffer right after the end of the pre-filled Ethernet header, just
as the DDoS Protector does.

Alongside providing the interface and features the wrapped module needs, the wrap-
per also supports various informational and debugging outputs. As a consequence of the
encapsulation, structures forming the module are hidden within its source files, hence the
caller cannot access them. This is okay in most cases, but for the purpose of debugging,
one needs to see the internal contents of the module, ideally without modification of its
source files. This behavior was achieved by a hack, which redefined the module’s internal
structure under a different name, but with the same fields. This way, the internal structure
of the module in the form of a void pointer is cast to a redefined structure pointer, and
so the access to private module data is available. In addition to printing the internal state
of the module, the wrapper is also able to provide a processed SYN/RST status reporting
system (Figure 3.11). When the SYN or RST segment is processed, the message in the
form of “Source IP -> Destination IP : Action.” is printed to the standard output.

147.229.182.8 -> 147.229.12.222 : SYN dropped.
147.229.182.8 -> 147.229.12.222 : RST dropped.
147.229.182.8 -> 147.229.12.222 : SYN forwarded.
2001:67c:220:0c:cf:fd29:aa9b:d96 -> 2a00:1e50:4017:80d::17ab : SYN dropped.
147.229.182.8 -> 147.229.12.222 : SYN forwarded.
147.229.182.8 -> 147.229.12.222 : SYN forwarded.

Figure 3.11: RST Cookies wrapper – SYN/RST status reporting.

Debugging outputs are controlled during the compilation phase. User aiming to re-
ceive debugging information needs to compile with -DDEBUG flag. Verbosity is controlled
via macros CONFIG_PRINT (shows module internal data) and STATS_PRINT (periodically
prints module statistics). These and other settings controlling the wrapper functionality
are contained within the rst_cookies_test.h file.

Although a considerable part of the wrapper code is the same for both PCAP and NDP
variants, they are implemented in separate source files. This is done mainly due to the
readability of the code, which contains a large amount of #ifdef ... #endif compilation
conditions already due to debugging outputs. Porting the wrapper from PCAP to NDP
was not problematic at all since both APIs provide quite a similar way of network interface
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handling and packet processing. The most significant difference between the two approaches
is a style of how the received are data obtained. PCAP API provides a comfortable way
by calling pcap_loop(), which blocks the application until the packet is received and calls
a specified packet handler function when such an event occurs. On the other hand, the
approach using the NDP API is not as straightforward. A packet is obtained via the
ndp_rx_burst_get() call, which does not block but returns NULL when there are no data
to be read. This behavior creates a problem because when the function is executed in a loop,
it keeps repeating itself as fast as possible, consuming all the available processing power.
The issue is solved with the nanosleep() call, used to put a thread into sleep before polling
the hardware packet queue again. This approach saves CPU resources while having little
to no impact on the packet processing speed.

The application created by wrapping the module represents a standalone software that
provides the RST Cookies functionality for intermediate devices running the Linux oper-
ating system. The current state of the application accepts only one parameter – network
device to listen and send traffic on. All other features are controlled with macros defined
in the wrapper header file. These values could be easily parametrized, and so a flexible
and scalable software solution could be created. However, the purpose of the wrapper
is to provide a way to verify and debug the module, flexibility not being one of the primary
concerns. The wrapper is currently able to simulate only intermediary device mode, but
with little tweaks to both the wrapper and the host OS, the usage as a host-based network
mitigation method could be supported as well. The functionality of this software solution
as a whole, alongside several tests and experiments, is described in Section 3.4.

3.4 Results and Closing Remarks
The RST Cookies module undoubtedly provides a high level of security able to stop most
of the SYN flooding attacks found on the computer networks nowadays. However, uti-
lization of the session reset, hashing, and software packet processing may increase a delay
in TCP communication or significantly decrease traffic throughput. This section will cover
the validation of the module functionality as well as describe various tests used to reveal its
impact on the overall network performance. For this purpose, the wrapper able to provide
a standalone RST Cookies functionality, as described in Subsection 3.3.5, was used.

3.4.1 Compatibility

As one of the first steps of the RST Cookies method analysis was to ensure its compatibility
with modern operating systems. A compatible OS is a system with a properly implemented
TCP stack respecting the standard. More precisely, it always responds with an RST segment
when an invalid SYN-ACK is received. Our tests with a prototype have proved, that
all tested systems, namely Windows XP, Windows 7, Windows 8(.1), Windows 10, Linux
kernels 3, Linux kernels 4 (including Android), FreeBSD 11, Apple iOS 12, and macOS 10.14
are all compatible with the RST Cookies technique.

The testing was performed using a peer-to-peer network established between Fedora 28
and a virtual machine with a tested operating system (Figure 3.12). The Fedora host was
running the RST Cookies application while having a port 80 opened. In the cases when the
PCAP wrapper is used, the program is bound to the particular network interface in promis-
cuous mode, so all the received packets are forwarded to it before they are processed by the
kernel. Passing the packet into the kernel would mean, that it could interfere with the
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TCP communication, which is undesirable for our tests. To disable this behavior, a rule
to drop all inbound TCP segments for the specified port during the PREROUTING stage
needs to be applied. This rule is normally added to iptables or firewalld based on the
host OS. When the NDP API is used, received packets are not forwarded to the kernel,
so no additional settings are necessary.

Since the wrapper was implemented to simulate network-based mitigation, forwarding
of allowed TCP SYNs and TCP RSTs to the other system processes was not achieved. For
this reason, a web server on port 80 was not actually launched. The main goal was to make
the tested operating system try to establish a TCP session, send an invalid SYN-ACK with
the RST Cookies and examine how the client will react.

192.168.56.1/24 192.168.56.10/24
TCP SYN  Fedora 28Tested OS

Figure 3.12: RST Cookies compatibility testing topology.

After entering the IP address of the Fedora machine to the second node’s web-browser,
it started by establishing a TCP session with a three-way-handshake process. As can
be seen in Figure 3.13, the RST Cookies mechanism responded with an invalid SYN-ACK
carrying ACK value of 0. Its receipt caused the tested OS to respond with an RST segment
(data with the red background) which carried the same SEQ equal to 0. At this moment,
the algorithm has processed the RST message and added the client’s IP address to the
whitelist. After this process, the mechanism did not respond with invalid SYN-ACKs
to other TCP SYNs sent by the particular client IP address again. Since the web server
is not launched, the client receives no response but keeps trying to establish a session without
the intervention of the RST Cookies algorithm. This specific test was performed with all
mentioned operating systems, which all behaved similarly. Based on these findings, we can
conclude that all tested operating systems have their TCP stack implemented correctly and
thus are compatible with the RST Cookies technique.

Figure 3.13: RST Cookies compatibility testing packet capture.

3.4.2 Reset Cookies in Practice

When the RST Cookies technique is deployed on a real network, different approaches to look
on and evaluate the method can be taken. The algorithm behaves differently for clients
and a protected network, but intermediary devices running the method need to be taken
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into account as well. This subsection will analyze the behavior of the method from various
perspectives, discussing the important aspects related to each of them in detail.

Protected Network’s Perspective

When deployed on an intermediary device, the algorithm behaves transparently for all
protected systems. Method blocks all received SYN segments until a security association
is established. After this process, the TCP communication is not intervened anymore.
As a result of this behavior, the protected server does not know about the client’s intention
to establish a session and thus does not need to allocate any state information. This way,
all the devices in the protected network are not vulnerable to most of the SYN flooding
attacks, while not requiring their configuration to be changed.

Client’s Perspective

From the perspective of a client, the first attempt to establish a session always fails.
As demonstrated in Subsection 3.4.1, this is not a problem in modern operating systems
which send an RST segment and try to reestablish the session. However, the duration
of the reestablishment process is dependent on the host OS. Our tests have measured this
time to be roughly 250 ms on Apple systems, whereas Linux and Windows kernels tried
to reestablish the session after approximately 1 second. According to these findings, we can
conclude that the first connection through RST Cookies is delayed by up to 1 second, but
all consecutive connections experience no significant delay (Figure 3.14, last two columns).
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1 016,21

0 200 400 600 800 1000

HW forwarding

SW forwarding

RST Cookies (validated)

RST Cookies (non-
validated)

TCP data transmission duration per host [ms]

Figure 3.14: Transaction time performance comparison – Scientific Linux 7.4.

Another interesting result obtained from the analysis is a difference between the hard-
ware and software processing speed. As may be seen, the HW forwarding value of 14.19ms
is lower than SW forwarding, but the difference is not so drastic. This result convinces us
that the hardware processing is still a preferred way, but the end user will most probably
not notice the change since the difference is lower than 1ms. However, one needs to keep
in mind that hardware is able to process several times more data, providing much favorable
packet throughput when necessary.

Though measured delay of the first connection caused by the algorithm seems horrific,
it is important to realize that the method should only be active during the ongoing attack.
For example, the DDoS Protector can detect abnormal traffic and turn on the mitigation
mechanisms when necessary. Therefore, no delays are caused during regular operation, and
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when the method is active, a 1-second delay is definitely an acceptable trade-off for service
availability during the attack.

Intermediary Device’s Perspective

When considering an intermediary device running RST cookies, the most significant factors
are memory requirements and packet throughput limitations. The usage of hash tables
as whitelists plays a notable role in both of them. Every entry in the whitelist requires 8B
of data for a timestamp and an additional 12B if SYN limiting is enabled. Considering
220 whitelist rows, 4 clients per row, we obtain 4.2M client entries taking up to 80MB
of memory. This result could be considered as a reasonable outcome. In the context
of packet throughput, the most important metrics is the number of processed hash functions.
Our implementation contains at least one hashing per TCP segment. When the hashed
ACK mechanism is used, two hashes per SYN and up to five hashes per RST are needed.

R:S ratio Method throughput (Mfps)
SW forwarded RCks (window) RCks (hash)

0 17.97 7.30 2.02

0.1 17.33 7.36 2.12

0.2 17.07 7.37 2.24

0.3 16.64 7.40 2.42

0.4 16.52 7.61 2.61

0.5 16.56 7.61 2.77

0.6 16.49 7.62 2.91

0.7 16.54 7.76 3.03

0.8 16.35 7.85 3.22

0.9 16.40 7.87 3.34

1.0 16.48 7.90 3.47

Table 3.1: Million of frames per second per thread throughput comparison. Based
on RST : SYN segments traffic ratio. 1Mfps ∼ 680 Mbps.

Table 3.1 illustrates the RST Cookies algorithm frame processing ability during a sim-
ulated attack. In this case, SEQ values in RST segments were randomized. When the
timestamp of the received SEQ does not fit into the specified time window, no hashing
occurs, and the segment is straightly forwarded. That is why the actual module through-
put was increasing as the ratio between RST and SYN segments was growing. In the real
network, legitimate clients would send RSTs fitting into the time window, so at least one
extra hashing would need to occur, and the actual throughput would decrease.

3.4.3 Limitations and Drawbacks

In addition to considerations discussed in the previous subsection, other aspects resulting
from the method itself or our specific implementation should be examined. The following
paragraphs present other factors that not are as significant as those mentioned previously,
but need to be consulted for the sake of completeness.
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Simulating real traffic

As mentioned previously, an attacker who utilizes real TCP stack or is somehow able
to inject an expected RST segment into the session is granted the right to establish TCP
connections. Of course, that this right is allowed only until the whitelist entry timeout
ticks out (commonly dozens of seconds up to several minutes), but this gives the attacker
enough time to perform an SYN flood anyway. Also, when the attacker was able to bypass
the mechanism once, he probably will not have any problems in bypassing it again.

Our implementation provides partial protection against this phenomenon because each
unique IP address is given a counter of how many SYN segments can it sent each second.
This approach does not deny the attacker to flood SYN segments, but can considerably limit
the amount of data he is able to send. Because RST Cookies requires clients to pass the
security phase by responding, spoofed IP addresses cannot be used to perform the attack.
For this reason, the attacker would require a large number of real computers (botnet)
to successfully perform an SYN flood when the SYN counters are set sensibly. SYN flooding
clients typically try to send as many SYNs as possible in most cases. If the RST Cookies
with the SYN counter is used in conjunction with a blacklist, IP addresses of the SYN
flooding computers can be temporarily cut off, thus mitigating the attack entirely.

Acknowledgment number match

Since the algorithm generates random SYN-ACK ACK values, a situation when the suppos-
edly invalid SYN-ACK segment is accidentally valid may happen. This incident happens
when the generated 𝐴𝐶𝐾 value is exactly equal to the 𝑆𝐸𝑄+1 of the acknowledged SYN.
In this case, the sender of the SYN will not generate RST but will try to finish session estab-
lishment by sending an ACK segment. This message will not be blocked by RST Cookies,
and so it will be forwarded to the server that will generate RST according to RFC 793,
section 3.4. [21]:

If the connection does not exist (CLOSED) then a reset is sent in response to
any incoming segment except another reset.

When the client receives an RST, it will try to reestablish the session with a new SYN
having different SEQ number. Because the host is still not contained on the whitelist, the
RST Cookies algorithm will generate another SYN-ACK with supposedly invalid ACK, and
the process will continue as usual (Figure 3.15). This situation will cause one more con-
nection reset, but the host will be eventually added to the whitelist, and its next attempts
to establish a session will be successful. The probability of this phenomenon is 1/232 while
having no significant impact on the regular TCP operation.

The explained problem can be addressed by adding one more condition when generating
the ACKs, but this would require extra processing to both SYN analyzer and RST analyzer
routines. Because the probability of the event is low and there are no significant conse-
quences when it happens, we decided not to implement this additional check to achieve
as high segment processing rate as possible.

Whitelist Entry Deletion Before Expiration

As outlined back in Subsection 3.2.8, the proprietary implementation of the hash table
used by the module allows only 4 entries per row. Because of this, the hash table entries
are not getting chained, but the oldest one is replaced when the particular row is full, and
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Figure 3.15: RST Cookies – accidental ACK match situation.

a new entry is being added. This behavior provides many useful features like entries aging
and proper memory management but may cause an undesired behavior when the algorithm
has to process more unique IP addresses than its available whitelist capacity. In these
scenarios, legitimate clients that already passed security association may be removed from
the whitelist sooner than defined timeout, requiring them to perform the association again.
The process of resetting the session takes some time, therefore slowing the entire communi-
cation. In extreme cases, records may get replaced so often that effect of whitelist is almost
nullified and clients have their SYN connections reset so often, that unacceptable delays or
overall inability to establish a session may occur.

This behavior is, indeed not typical, though possible in situations when the chosen size
of the hash table does not respect the properties of a protected network. Our implemen-
tation offers a statistics logging that provides information about the number of hosts that
were whitelisted and the number of them that were removed before their supposed expira-
tion time. These data may help to detect the discussed situation and help to adjust the
hash table size appropriately, preventing the phenomenon from happening in the future.

3.5 Summary and Conclusions
This chapter has presented a network-based mitigation method TCP RST Cookies. The
motivation behind its design and implementation was to provide an alternative way to mit-
igate TCP SYN Flood attacks in CESNET’s DDoS protector. The method has proven
to be especially effective against regular SYN floods from the spoofed IP addresses. Its
capabilities were expanded with our custom security extensions like Dynamic ACK Gen-
erator, SYN Counter and blacklisting mechanisms. This enhanced version of the module
is able to repel even most of the more sophisticated SYN floods used by the attackers
nowadays.
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Despite all the advantages the technique provides, it is not suitable in all cases. It
is mainly due to the effect of directly impacting the clients with extra 1-second delay
upon a new connection establishment. Other considerations include significant throughput
decrease and relatively high memory requirements. According to these properties, the
algorithm should be used alongside other mitigation methods with different attributes.
The methods with a lesser impact on the network should be deployed against regular SYN
floods, while RST Cookies should be used to defend against more sophisticated attacks that
cannot be mitigated using other strategies.

The current approach towards the mitigation in DDoS Protector is based on rules. These
specify which mitigation method should be used for the particular protected prefix. Defined
mitigation techniques are used when the ongoing attack is present, but the implemented
system does not allow the methods to switch, even if they are used ineffectively or their
mechanisms are not able to mitigate the attack. This inflexible approach wastes resources
of the intermediary device and requires a manual intervention of the administrator to change
the mitigation strategy when required. For this reason, an SYN Flood Dynamic Mitigation
Method Management system discussed in Chapter 4 is proposed.
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Chapter 4

Dynamic Mitigation Method
Management

SYN Flood Dynamic Mitigation Method Management mechanism proposed in this chapter
is aimed to provide a flexible way to switch between different SYN Flood mitigation meth-
ods. The module was designed and implemented especially for the needs of CESNET’s
DDoS Protector, which currently supports three mitigation methods – SYN Drop, ACK
Spoofing, and RST Cookies. However, the design of the module was aimed to be as general
as possible, providing support for any number of mitigation methods and any environment
it may be deployed in.

The main motivation behind the development of the technique was the need for DDoS
Protector’s adaptability to the different types of SYN Flood attacks. Currently used ap-
proach is based on rules, which specify mitigation settings for the particular protected
prefix. One of these settings is a specific mitigation method, which is activated during the
ongoing attack. Using this system, the same method is used every time the attack is trig-
gered. Also, when the mitigation method needs to be switched, a rule has to be manually
changed. This inflexible approach cannot effectively utilize system resources while its mit-
igation capabilities may be weakened as well. For this reason, a dynamic approach able
to detect properties of the traffic and choose an appropriate mitigation algorithm is needed.

The beginning of the chapter provides an overview of the design and implementation
concerns related to the developed dynamic management mechanism. Subsequent sections
evaluate the approach, consider its usability on real networks, and suggest possible future
enhancements.

4.1 Theoretical Concepts
This section describes important theoretical concepts that needed to be taken into account
during the design and implementation phases. Since the design is closely tied to the theory
in this case, the section may contain concepts the reader may find more suitable to be in-
cluded in the design section and vice versa. The following subsections will take a look
on the evaluation process of the used mitigation methods and TCP traffic and will explain
a HyperLogLog probabilistic data structure, which was a suitable choice to be used by the
mechanism.
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4.1.1 Mitigation Method Evaluation

As outlined in Chapter 2, many different types of SYN flooding attacks exist, and their
mitigation methods have different pros and cons. The purpose of the Dynamic Method
Management mechanism is to differentiate these unique characteristics and choose the ap-
propriate mitigation method to deflect an ongoing attack. For this reason, a generalization
of different algorithm properties and the creation of the evaluation system for them was
required.

This task proved to be rather problematic because common patterns in fundamentally
different algorithms needed to be distinguished. For this purpose, we used inductive tech-
niques to describe three currently available mitigation methods in detail and then tried
to generalize their properties. According to the information from Section 2.3, a summary
Table 4.1 was created.

SYN Drop RST Cookies ACK Spoofing

Advantages

∙ Processes only 1 segment
type

∙ Low memory require-
ments per host

∙ Effectively cuts high-rate
SYN senders

∙ Repels more sophisti-
cated SYN floods

∙ Comprises SYN Drop
functionality

∙ Minimum extra latency

Drawbacks
∙ Ineffective against large

number of spoofed IPs
with low footprint

∙ Higher memory require-
ments

∙ Significant throughput
decrease

∙ First session establish-
ment time

∙ Does not mitigate the at-
tack itself

∙ Amplifies high-rate at-
tacks

∙ Cannot identify high-rate
SYN senders

Processes ∙ ingress SYNs
∙ ingress SYNs
∙ ingress RSTs

∙ ingress SYNs
∙ ingress ACKs
∙ egress SYN-ACKs

Table 4.1: Available methods analysis in DDoS Protector.

By examining these data, the induction process could be started. Every mitigation
method is defined by a set of ingress and egress TCP segment types it processes. The
performance of the method is also defined by its memory and CPU requirements, where
the number of hash functions plays the most significant role. These functions should be fur-
thermore divided into regular hashes (hash table access) and cryptographic hashes (RST
Cookies), which both have different CPU requirements. All of the mitigation methods need
to retain state information, usage of hash tables being a traditional choice. For this reason,
the algorithm should keep a track about how these hash tables are filled and act if there
is a chance they may get overfilled. Other specific aspects of methods such as whether it
creates an SYN retransmit, causes a session reset or generates traffic need to be reckoned
with as well.
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The information described in this subsection were the essential building blocks of the
mitigation method evaluation process described in 4.2.2.

4.1.2 Traffic Evaluation

As mentioned in the previous subsection, different mitigation algorithms process different
types of TCP segments. Data that are not processed by the software can be hardware-
forwarded. This process is much faster, allowing better packet throughput and lower
TCP communication delays. For this reason, methods that process fewer packets provide
generally better performance.

When the optimal mitigation method is being chosen, its performance plays a crucial
part. Therefore, choosing an ideal method for the given situation requires information about
how the processed types of traffic actually impact the overall network performance. How-
ever, no such data are publicly available, so own traffic analysis result had to be conducted
at first.

In particular, the aim of this research was to determine the proportions of TCP segment
types used on regular networks. Since this thesis is a part of the CESNET’s security
research project, we managed to obtain captured data from the communication link between
CESNET and ACONET1, two national research and academic networks. The analyzed file
had 367GB, containing over 500M packets. Its contents represented common network traffic
captured on 14th November 2018. After filtering out the TCP communication only, a sample
of 450M segments was obtained. These data were analyzed further with the tcpdump Linux
utility. This tool was used to strip and count the segments with various combinations
of TCP flags.

Table 4.2 shows the results of the performed analysis, displaying most common TCP flags
and their combinations that may be interesting for the module performance evaluation. Ac-
cording to the results, SYN segments, analyzed by all modules take only 0.89% of all the
traffic, making potential performance degradations caused by SYN analyzer modules rather
insignificant. On the other hand, ACK segments and their combination are the most preva-
lent type of TCP network traffic. Other non-standard combinations or individual flags
with an irrelevant number of entries (FIN, URG, PSH) are listed under others, which make
up 3.91% of total analyzed traffic.

TCP flags Segment count Ratio [%]
all 450 649 793 100.00

ACK 365 496 097 81.10

PSH + ACK 56 582 935 12.56

FIN + ACK 4 388 605 0.97

SYN 4 024 870 0.89

SYN + ACK 1 833 904 0.41

RST 601 030 0.13

ECE + CWR 97 878 0.02

others 17 624 474 3.91

Table 4.2: CESNET ←→ ACONET link traffic analysis.
1https://www.aco.net/
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Traffic analysis results presented in this section provided an overview of the ratios of dif-
ferent TCP segments types used in modern computer networks. Although these results
come from only one dataset and may partially vary depending on the network properties,
it can be assumed that segment ratios captured in other networks would not be drastically
different. Analysis of this data indicates that software-processing SYN segments and alter-
natively RSTs, does not have a high impact on the overall TCP communication. However,
ACK segments and their combination represent the majority of all TCP communication,
so algorithms analyzing them may cause a significant traffic performance decrease.

4.1.3 Probabilistic Data Structures Utilization

Probabilistic data structures, more precisely LogLog and its enhanced variant HyperLogLog
were chosen as suitable alternatives for counting the number of unique IP addresses pro-
cessed by the Dynamic Method Management algorithm. These considerations are described
later in the chapter. The following subsection focuses on the description of the HyperLogLog
algorithm, its functionality, and the consequences of its utilization in method manager soft-
ware.

HyperLogLog is an algorithm able to approximate the number of distinct elements
(cardinality) in the multiset, providing a solution for a count-distinct problem [12]. A stan-
dard way to calculate exact cardinality requires an unacceptable amount of memory for
large data sets. For this reason, probabilistic cardinality estimators, such as HyperLogLog
can estimate this value demanding significantly lower memory. For example, cardinalities
of 109 elements or lesser can be calculated using 1.5 kB memory with only 2% error [12].

The fundamental idea behind the algorithm is based on the observation that the cardi-
nality of the multiset of uniformly distributed values can be estimated by calculating the
maximum number of leading zeros of each number in a set. Simulation of the uniform
distribution is achieved by hashing each element and logging its result to one of the mul-
tiset subsets (buckets). Estimate of distinct elements is then calculated as 2𝑁 , where 𝑁 is
a harmonic mean of the maximum values of observed leading zeros of each subset [12].

For our purpose, a multiset can be considered a number of source addresses, and the
goal is to determine the number of unique hosts. These statistics may then be used to trig-
ger various mitigation techniques as described in 4.2.4 or simply used for statistics logging.
However, a caller utilizing the algorithm needs to realize that obtained results are not pre-
cise, but rather within the range of the standard error based on the algorithm properties.
The standard error is defined by the number of subsets used to store counting informa-
tion. Thus, more available memory for the algorithm allows the creation of more buckets,
resulting in lower error.

The use case of Dynamic Mitigation Management algorithm does not require extremely
low error rates. However, errors above 10% may produce undesired results by activating
triggers too early or too late, effectively weakening the mitigation abilities. For this reason,
the caller should always consider properties of the protected network (number of possible
unique IP addresses, etc.) and choose the size of the HyperLogLog structure appropriately.
The idea is to obtain the best memory to standard error ratio as possible, but also to keep
the error rate low, ideally not exceeding 5% – 10%.
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4.2 Mechanism Design
Similarly to the RST Cookies, Dynamic Method Management algorithm is also supposed
to be a part of the CESNET’s DDoS Protector in the future. For this reason, the same
constraints as described in Section 3.2 need to be respected. The mechanism has to be de-
signed without an object-oriented approach, providing flexibility and expected behavior
of the module.

The primary concern of the algorithm is to provide a way of dynamic mitigation method
switching based on the current mitigation effectiveness, statistics and system resources.
Considering these requirements, the design process may be started. The following subsec-
tion discusses the design aspects related to integration of the module to the main DDoS
Protector application. Subsequently, the 3 main logical parts of the module – fitness, traffic
analysis and decision-making cores are described in detail.

4.2.1 Dynamic Method Manager as a Module

Like all algorithms that aim to extend DDoS Protector’s core, the Dynamic Method Man-
agement technique needs to be designed modularly, providing an ability to be initialized,
finalized and cleared. After the initialization process is completed, the caller has to inform
the module of the available mitigation algorithms. After all desired mitigation methods
are registered, the module may receive TCP segments in order to generate statistics of the
current TCP traffic. The mitigation method is then switched according to these statistics
and discovered traffic patterns.

The required functionality may be achieved by the following two approaches:

∙ Tightly integrated module (Figure 4.1)

∙ Loosely integrated module (Figure 4.2)

Logger Logic
TCP data

SYN
Drop

RST
Cookies

ACK
Spoofing

allow/deny

SYN Flood Adaptive Mitigation Module

Mitigation
strategy

Figure 4.1: SYN Flood Adaptive Mitigation module (tight integration).

As shown in Figure 4.1, the tightly integrated version of the module would comprise all
existing mitigation modules and be solely responsible for their management. This princi-
ple would allow simple usage since the Protector would only pass the TCP data into the
function and straightly receive an answer if the packet should be forwarded or dropped.
The mentioned approach is easier to use and provides better performance. On the other
hand, its low flexibility, the difficulty of implementation and integration make it a quite
unfavorable choice.

Loosely integrated version (Figure 4.2) is designed as an autonomous module, which
processes TCP traffic, logs it and waits until a request to determine the best available option
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strategy

DDoS Protector - SYN Module

Figure 4.2: SYN Flood Dynamic Management

is issued. This request causes the algorithm to fetch logged information and search for traffic
patterns. Found patterns are processed by various predefined rules and thresholds, and an
optimal mitigation method is suggested. Still, it is important to realize that the module
does not actually make a mitigation method switch, but rather only suggests which method
should be used. This suggestion may be accepted or ignored by the caller. The Dynamic
Method Management module is thus designed independently of all the mitigation methods.
In contrast to tight integration, the mechanism does not manage the mitigation methods
itself, but their management is purely dependent on the caller. This approach provides
undoubtedly better flexibility, easier integration, and overall cleaner design. However, more
responsibilities are left to the DDoS Protector, making the module harder to use. The
nature of the approach also provides slightly lower performance, because data are processed
by more routines and more function calls are required.

After considering all the pros and cons of both mechanisms, the loose integration variant
was chosen as a more suitable approach with respect to future works and improvements
of the module and DDoS Protector solution. This means that a loosely integrated module
will be easier to maintain, extend and debug. Also, its presence will not require the existing
code of the Protector to be changed that rapidly as in the case of tight integration.

4.2.2 The Fitness Core

As mentioned at the beginning of this section, the module is composed of three main logical
parts. This subsection describes the fitness core, a set of procedures aimed to evaluate
and store the information about available mitigation methods. Its name comes from the
purpose of calculating a rating of the method, thus determining how “fit” the method is.
These data are then used in decision-making core (Subsection 4.2.4) during the process
of optimal mitigation method estimation. This subsection will describe how the mitigation
methods are handled and evaluated.

Mitigation Methods Management

According to the loose integration design, the Dynamic Method Manager is not dependent
on any mitigation modules. In regard to this system, the methods that can be used during
the algorithm decision-making phase need to be specified. Module management is done
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via registration, update and unregistration routines. The registration function informs the
algorithm of the method’s availability. The registration is done by specifying technique ID
and its properties (Figure 4.3). Data of the mitigation method property structure corre-
spond to the information obtained via induction in Subsection 4.1.1. These data are crucial
for the method evaluation process described further in this subsection.

Mitigation method properties

+ memTotal
+ memPerHost
+ regularHashCnt
+ cryptoHashCnt
+ ingressTfcFlags
+ egressTfcFlags
+ newEntryTfcFlags
+ newEntryPolicy
+ newEntryChance
+ remEntryTfcFlags
+ remEntryChance
+ dropsSyns
+ genTraffic
+ causesRetransmit
+ causesReset

: unsigned int
: unsigned int
: float
: float
: unsigned int
: unsigned int
: unsigned int
: whitelistPolicy
: float
: unsigned int
: float
: bool
: bool
: bool
: bool

Figure 4.3: Mitigation method property structure contents.

Meaning of some fields was already explained in the regarding theoretical section. The
number of hash functions regularHashCnt and cryptoHashCnt is proposed to be stored
as a floating number. This is because some data processing functions may require several
hashes, while others may not require hashing at all. For this reason, the user defining
the properties of the mechanism is supposed to estimate the average number of hashes
per processed segment. Fields containing TfcFlags specify types of TCP segments that
cause certain events. Ingress and egress define TCP segment types that the algorithm
analyzes on input or output from the protected network. Entries newEntryTfcFlags and
remEntryTfcFlags specify which TCP segment types cause new entry to be added or re-
moved from the internal data structures. These are complemented with newEntryChance
and remEntryChance specifying the chance of the insertion or removal event. Some mitiga-
tion methods may fill their internal structures per every received segment, some per every
unique IP address and some may not use whitelisting principles at all. For this purpose, the
newEntryPolicy field specifying this behavior exists. Other fields determine if the method
generates traffic, drops SYNs, etc.

Registration of the method is done by filling the previously described data structure and
calling a corresponding function. When the properties of the method change, an update
routine may be used. If the mitigation method is no longer desired to be used, the module
should provide a way to unregister it, so it is no longer available during the decision-making
algorithm execution.

Mitigation Method Evaluation

The mitigation method evaluation process is triggered every time a mitigation module
is registered or updated. The purpose of the evaluation is to obtain an approximate quality
of the method’s performance. These data are then used to choose the most suitable mit-
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igation method based on the analyzed traffic. The overall rating of the function consists
of three components:

∙ Entries growth indicator

∙ Throughput limitation indicator

∙ Latency limitation indicator

Each of the indicators is impacted by its corresponding method properties. In some
cases, a single attribute may impact more ratings, e.g., the number of calculated hashes
impacts the throughput the most, but it may cause small additional latencies as well.

The entries growth indicator represents how the mitigation method’s internal structures
(typically whitelists) are likely to get filled. This value defines the ability of the method
to process a certain amount of data before its whitelists capacity is reached. This rating is
mostly influenced by newEntry* and remEntry* fields.

The throughput limitation indicator defines how the utilization of the method im-
pacts the packet throughput of the overall system. Its value is determined by the num-
ber of hashes computed per segment, processed TCP data types (ingressTfcFlags and
egressTfcFlags) and traffic generation predicate.

The latency limitation indicator reflects how the utilization of the method impacts end-
hosts, whose only concern is how fast the communication through the active mitigation
method will be. Computing an excessive amount of hash functions may impact this rat-
ing, but causesReset, causesRetransmit and generatesTraffic predicates have a more
significant impact on this indicator.

The indicators are then combined to form a final rating of the method. The process
of combining is done by a weighted sum, each of the indicators having a different weight.
We decided that the latency indicator, representing a direct impact on the clients, will
have the biggest weight of 2.5. Another important indicator is throughput with the weight
equal to 1.5. Entries growth indicator is assigned the weight of 1.0. These values were set
experimentally and are probable to be changed in the future.

According to the current design, the lowest calculated rating represents the mitigation
method with the best performance, allowing the highest traffic throughput and lowest
delays. As mentioned previously, this value is used to determine the performance of the
method, rather than the actual mitigation strength.

The previous paragraphs have mentioned the calculation process, but haven’t discussed
what is actually calculated and where do the values come from. All of the variables used
in indicators and ratings computations were given values used as weights. Thus, the indi-
cator computation consists of multiplying values from the method property structure with
their corresponding weights and then creating a sum of these values to form an indicator.
Most of the weights are currently experimental, but the data defining TCP segments types
ratios were taken directly from the traffic analysis research included in Subsection 4.1.2.

4.2.3 The Traffic Analysis Core

The traffic analysis core (logger) is a set of routines and data structures used for traffic
logging, sampling and statistics gathering. This information is utilized for attack pattern
searching and optimal mitigation method estimation. The module accepts a TCP segment,
furthermore parsing it and extracting data like IP addresses and TCP flags. TCP flags

48



are used to count the occurrence of different data types on the network using SYN, ACK
and RST counters. Other interesting entries include the numbers of unique IP addresses
sending these types of segments. As outlined in Subsection 4.1.3, usage of the standard
data structures would be ineffective. Therefore, three HyperLogLog instances to track the
number of unique IP addresses of TCP SYN, ACK and RST segments, are also employed.

However, some information that may be helpful for the decision-making process cannot
be obtained directly by the module itself. These comprise the number of allowed and
denied SYNs and whether the attack is currently ongoing. Information about the active
mitigation approach needs to be supplied as well, because the module only suggests the
particular method, but receives no acknowledgment from the caller whether it was actually
applied. According to these facts, the caller should specify this information manually. This
process provides a necessary context that could be used by the optimal mitigation method
estimator. By putting these things together, a statistics structure shown in Figure 4.4
is obtained.

SYN Flood Dynamic Method
Management module - statistics

+ synCnt
+ ackCnt
+ rstCnt
+ synHosts
+ ackHosts
+ rstHosts
+ synAllowed
+ synDenied
+ ongoingAttack
+ stratSuggested

: unsigned int
: unsigned int
: unsigned int
: unsigned int
: unsigned int
: unsigned int
: unsigned int
: unsigned int
: bool
: syn_strategy

Figure 4.4: Dynamic Module Management – Statistics structure.

An important concept of the statistics logging and module functionality is time window-
ing. A time window is a period between the start time and the end time. For the purpose
of this module, windows are used to divide time into periodic blocks and save collected
statistics in them. Statistics are thus not collected per whole module lifespan, but rather
per each window. This approach allows to view changes in time, providing various traffic
patterns analysis options, creation of traffic logs, charts, etc.

Because the module does not provide a mechanism to track the time by itself, the re-
sponsibility of keeping time windows synchronized is left to the caller. The calling program
is therefore supposed to periodically invoke a particular function of the module, which cre-
ates a new time window and rotates the logs. Periodical time windowing is thus crucial
to preserve the correct module functionality. Small deviations from the period are accept-
able, but longer may cause inefficient method suggestions or even overall inability to provide
an appropriate mitigation strategy. The situation, of time windows desynchronization, may
occur, and so a function to invalidate all logs in the history is also provided.

4.2.4 The Decision-making Core

As indicated in the previous subsections, the decision-making core is responsible for match-
ing discovered traffic patterns to suitable mitigation methods. This process is done by look-
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ing at the statistics provided by the traffic analyzer core and choosing a mitigation technique
according to its properties and ratings obtained from the fitness core. The decision-making
process is launched by a direct call from the user. It is important to note that the decision-
making process works primarily with the current time window, so the request for mitigation
method should be issued just before the time window ends. Statistics in the previous time
windows (history) is taken into the account as well, but when the current time window
contains no data, the algorithm may struggle to provide a reasonable outcome.

The process of estimating the most suitable mitigation method is composed of 2 inde-
pendent phases. The first phase – Action determination is used to find out how the module
should react based on the traffic statistics and current mitigation state. Actions returned
by this phase (NONE, MITIGATE, LOWER_MITIGATION) determine the action for the second
phase – Strategy determination. This phase returns a particular mitigation strategy based
on the received action while respecting the current state of the module and traffic.

Both phases are controlled by a set of thresholds, which trigger a respective event
when exceeded. Each threshold represents a certain traffic pattern. The current threshold
values (patterns) and the weights of individual statistic entries are often set experimentally,
but are expected to be changed as more data about the attacks will be collected in the
future. The threshold triggers may be too sensitive in some cases, which may lead that the
method switch is suggested unacceptably often. To tackle this issue, the module defines
four switch policies that control how significant the pattern needs to be before the threshold
corresponding to is triggered. One of the switch policies is even able to disable the method
switching mechanism completely, that the call to determine strategy will always return the
same mitigation method.

As outlined in the traffic analysis core subsection (4.2.3), some statistics cannot be ob-
tained by the module but have to be specified manually by the user. Processing of some
thresholds often requires these statistics to be present, so the user is advised to provide
them right before the request for the mitigation method is issued. On the other hand,
other thresholds are based on history, so they can never be triggered if statistics from
previous time windows are not present. The mechanisms of the algorithm try to predict
these situations and try to utilize types of thresholds that are available based on the data
currently available. For this reason, the algorithm may provide reasonable suggestions even
if the user did not specify statistics manually. However, relying on this system and inten-
tionally omitting the manually inputted statistics may significantly decrease the mitigation
capabilities of the module.

Event type History needed Stats needed
SYN/ACK unique host ratio > SYN/ACK ratio
threshold false false

Ongoing attack (manual) false true
SYN allowed > SYN threshold false true
SYN allowed > SYN threshold (lowered) 𝐴𝑁𝐷
weighted history SYN sum > SYN threshold (his-
tory modifier)

true true

Table 4.3: Thresholds triggering mitigation example.

For the illustration purposes, few of the currently active thresholds used to determine
next action are included in Table 4.3. As can be seen, the user is able to specify that the
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ongoing attack is in process manually, and thus the algorithm will provide a mitigation
method without further pattern searching.

The strategy determination phase aims to provide the most efficient mitigation method
with the lowest impact on performance. For this reason, the registered mitigation methods
are ordered by the rating determined by the fitness core. At the beginning of the attack,
the algorithm tries to return the method with the lowest impact on performance. If this
method proves to be unable to mitigate the attack in future time windows, the algorithm
searches for traffic patterns and tries to suggest the method with possible better mitigation
capabilities, but also higher requirements on the performance. This way, the algorithm tries
to gradually increase the mitigation capabilities for the higher impact on the performance.
However, method switching is not always gradual. The algorithm tries to predict the future
effectiveness of the method by looking at its properties and evaluating them with current
patterns found in the traffic. If the utilization of the technique would not be sufficient
to mitigate the ongoing attack, the position of the strategy is skipped and the process of
determining future effectiveness is applied to another method in the list.

Using the mentioned approaches, the decision-making core is able to recognize different
traffic patterns according to thresholds. Triggering a threshold value determines an action
which should be taken. If no threshold is reached or an insufficient amount of data is
collected, a NO_ACTION is issued. This special value tells the algorithm to suggest the exact
same mitigation method that is currently active. Other actions determine if the algorithm
needs to suggest a method to mitigate, lower the currently used mitigation method or
inform that no mitigation method is necessary.

4.2.5 Module Wrapper

As in the case of RST Cookies (Subsection 3.2.9), a wrapper software needed to be designed
to test and debug the Dynamic Method Management module as a standalone program. The
design of the wrapper is mostly the same as in the mentioned subsection. The wrapper needs
to listen to all network traffic, filter TCP segments and pass them to the module. However,
before entering an infinite packet-reading loop, the wrapper has to register the available
SYN Flood mitigation methods. Since DDoS Protector currently supports 3 methods –
SYN Drop, RST Cookies and ACK Spoofing, properties from all of them were gathered and
these 3 methods are used in the wrapper for testing purposes.

After the methods are registered, the wrapper also needs to provide a way to periodically
call the module’s function to mark the beginning of new time windows. From time to time,
the wrapper will also ask for the mitigation method suggestion. Since the wrapper will not
comprise mitigation modules itself, the result of this suggestion will be written to standard
output and the wrapper will simulate that the switch truly happened and the suggested
mitigation method is now being used. Since the mitigation module is not actually used,
statistics of the number of allowed and discarded SYN segments need to be set manually
or randomized.

The usage of this wrapper should be able to provide enough information to test the
module and eventually even tweak threshold values when needed.

4.3 Implementation
Similarly to RST Cookies (3.3), the used implementation language was C. OO functional-
ities could not be applied, but the module simulated encapsulation principles, hiding the
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internal structure into the source file and letting the caller work with void pointers instead.
Based on the good quality of the initial design, only minimum number of adjustments were
need to be made, thus developing the module in almost waterfall model principles. This
section describes implementation considerations related to each of the cores and the wrap-
per.

4.3.1 The Fitness Core

The module management and evaluation is provided by the fitness core, which is represented
by the synf_dmgmt_register(), synf_dmgmt_update() and synf_dmgmt_unregister()
calls. Functionality of these functions was mostly described in back in the core design phase
(Section 4.2.2).

Since the mitigation methods are ordered by their rating, from lowest to highest, an
insertion or a move needs to be made to reorder the methods when necessary. This could
be addressed by the array of pointers, which would provide a fast and flexible way or re-
arranging any number of mitigation methods. However, the quantity of registered methods
is typically not high and reordering them is not a standard operation, so we decided to do
reordering directly with the memory storing method properties, so no extra pointer array
needs to be maintained. The reordering is thus done via memmove() call because of the
moved methods represented by overlapping memory blocks in most cases.

4.3.2 The Traffic Analysis Core

Traffic statistics creation and storing is handled by the traffic analysis core, which provides
five external functions:

∙ synf_dmgmt_data_process()

∙ synf_dmgmt_start_new_window()

∙ synf_dmgmt_set_syn_stats()

∙ synf_dmgmt_get_stats()

∙ synf_dmgmt_clear_history()

The first function is used to process (log) the data. The function takes a pointer to
IP and TCP headers and updates the statistic counters described in Figure 4.4. Each
processed segment updates its respective counter type (synCnt, ackCnt or rstCnt) and is
then passed to the HyperLogLog (HLL) module corresponding to its segment type. The
unique IP counters are not updated straightly but at the end of the time window during
which the values from HLL structures are fetched. The concrete HLL implementation was
obtained from the Github repository of the user avz2.

A new time window is started by synf_dmgmt_start_new_window() call. This function
causes the HyperLogLog data to be evaluated and stored into the current time window
statistics structure. HLL structures are then cleared, preparing it to count new time window
and logs are shifted.

Function synf_dmgmt_set_syn_stats() sets the SYN mitigation statistics (synAllowed),
synDenied and ongoingAttack). Since these stats cannot be obtained by the module, the

2https://github.com/avz/hll
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caller needs to set them manually, ideally just before the time window ends. These data
provides a valuable information for the decision-making process.

Stats from the current time window or a window in the history can be obtained with
synf_dmgmt_get_stats() call. This function accepts a parameter specifying which time
window should be returned from the current time window back to the history. For example,
0 represents a current window, 1 a window before the current window, etc. The function
returns a pointer to the desired statistics structure.

The synf_dmgmt_clear_history() call is typically used when the time windows get
desynchronized for some reason, and usage of the history would cause the method to provide
incorrect suggestions.

4.3.3 The Decision-making Core

Functions related to the decision-making core include following:

∙ synf_dmgmt_determine_strategy()

∙ synf_dmgmt_set_current_strategy()

∙ synf_dmgmt_set_switch_policy()

∙ synf_dmgmt_get_switch_policy()

According to the design of the module discussed earlier, the algorithm does not know
whether the suggestions it gives are actually taken into account or not. For this rea-
son, the caller has to inform the module about currently active mitigation strategy using
synf_dmgmt_set_current_strategy(). This allows the decision-making algorithm to de-
termine the effectiveness of the currently used mitigation approach and decide accordingly.

Switch policy discussed in the design section defines the value of different thresholds
that are used to trigger various events in the internal mechanism logic. Values of the
switch policies – SWITCH_ALWAYS, SWITCH_SMARTLY, SWITCH_SPARINGLY, and SWITCH_NONE
are defined. “always switching” mode provides the lowest thresholds that are easier to
trigger, while “none switching defines triggers that are impossible to trigger. The logic
behind this approach is that when no threshold is reached, no action is triggered and thus
the module does return currently used mitigation method set by set_current_strategy()
call. This system provides better performance because frequent method switching takes
memory resources on allocation/deallocation calls at the host lesser flexibility provided by
the module.

All functions presented so far were supportive routines aiming to provide the necessary
environment for the main routine providing the functionality the whole module needed to –
synf_dmgmt_determine_strategy(). At the beginning, the functions checks if module
switch policy is not set to none. If that is true, the function straightly returns the currently
used mitigation method. Otherwise it firstly determines an action to be taken and then
chooses an appropriate mitigation method according to it.

The action is chosen by processing a number of IF conditions representing various
thresholds. Triggering a threshold is thus execution of the condition body if its evaluation is
true. The mitigation strategy is chosen from the internal structure of the ordered registered
strategies in a way that the mechanism starts at the method with the lowest rating (index
0) and evaluates the method properties according to the available traffic statistics. If the
properties of the strategy on the current index indicate that it may be able to mitigate
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the ongoing attack, the ID of the strategy is returned. Otherwise, the internal structure
index is incremented and the process is repeated. This way, the algorithm ensures that the
method with the best performance is always active.

4.3.4 Wrapper

The implementation of the wrapper was very similar as in case of the RST Cookies. The
wrapper needed to provide an environment simulating the DDoS Protector. In this case,
no special functions were needed, only the mitigation method identifiers were included in
the separate header file. The main wrapper function initialized and bound the interface,
either using PCAP or NDP API, entered an infinite packet loop and waited for packets.
Instead of the RST Cookies, the received data were parsed using Linux networking headers
included from netinet header files. This change was made due to internal politics of the
DDoS Protector, which forced the usage of Linux headers. Keeping the time windows
synchronized is done by alarm() call.

Similarly to RST Cookies wrapper, the Dynamic Method Management wrapper also
offers a way of debugging with the multiple levels of verbosity. These can be changed in
the corresponding header file, which contains other settings like SYN attack threshold or
time window duration. These values may be changed for the purpose of experimentations.

4.4 Testing
This section describes the testing process that was taken to verify the functionality of the
module and determine its mitigation capabilities. The following subsections describe the
phase of the environment and test preparation, as well as the process of various tests that
the Dynamic Mitigation Management module had taken.

Environment and Tests Preparation

The testing of the module was done with the prototype described in previous sections. NDP
variant of the wrapper was used to test the behavior under CESNET’s NDP environment.
This way, a specialized software (Spirent TestCenter3) to generate forged packets at the
rate 100 Gbps could be used. This environment allowed the simulation on real network
packet rates with the advanced options of packet analysis.

For the sake of simplicity, the wrapper was set to generate new time window every
10 seconds and the SYN Flood attack threshold was set to 100 000. Thus, when the 100 000
TCP SYN segments were processed in a 10-second time window, a Dynamic Method Man-
agement module would detect an ongoing attack and provide appropriate mitigation. Note
that an active attack can be set also manually by the caller. For the purpose of dynamic
method switching, three mitigation algorithms available in the DDoS Protector were reg-
istered for the module to use. Properties of these used algorithm that were used during
the testing are shown in Figure 4.5. All mitigation methods were simulated to have 220

whitelist rows, supporting up to 4.2M clients. Float values (hash counts, new/remove entry
chance) in all three cases were calculated using weighted sums according to the ratios of
the data as mentioned in Table 3.1. However, these value are experimental and are likely
to be changed when the module will be integrated to the real DDoS Protector solution.

3https://www.spirent.com/products/testcenter
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SYN Drop properties

+ memTotal
+ memPerHost
+ regularHashCnt
+ cryptoHashCnt
+ ingressTfcFlags
+ egressTfcFlags
+ newEntryTfcFlags
+ newEntryPolicy
+ newEntryChance
+ remEntryTfcFlags
+ remEntryChance
+ dropsSyns
+ genTraffic
+ causesRetransmit
+ causesReset

:  20 971 520
:  5
:  1.0
:  0.0
:  SYN
:  NONE
:  SYN
:  PER_CLIENT
:  0.1
:  NONE
:  0.0
:  true
:  false
:  true
:  false

RST Cookies properties

+ memTotal
+ memPerHost
+ regularHashCnt
+ cryptoHashCnt
+ ingressTfcFlags
+ egressTfcFlags
+ newEntryTfcFlags
+ newEntryPolicy
+ newEntryChance
+ remEntryTfcFlags
+ remEntryChance
+ dropsSyns
+ genTraffic
+ causesRetransmit
+ causesReset

:  83 886 080
:  20
:  1.18
:  0.0357
:  SYN, RST
:  NONE
:  RST
:  PER_CLIENT
:  0.9
:  NONE
:  0.0
:  true
:  true
:  true
:  true

ACK Spoofing properties

+ memTotal
+ memPerHost
+ regularHashCnt
+ cryptoHashCnt
+ ingressTfcFlags
+ egressTfcFlags
+ newEntryTfcFlags
+ newEntryPolicy
+ newEntryChance
+ remEntryTfcFlags
+ remEntryChance
+ dropsSyns
+ genTraffic
+ causesRetransmit
+ causesReset

:  4 194 304
:  4
:  1.0
:  0.0
:  SYN, ACK
:  SYNACK
:  RST
:  PER_CONN
:  1.0
:  ACK
:  0.025
:  false
:  true
:  false
:  false

Figure 4.5: Dynamic Method Management testing – methods properties.

4.4.1 Method evaluation results

After the properties of the methods have been set, the method evaluation process could
be started. Since we want to analyze how the methods are actually evaluated, we wanted
to keep an eye on the internal structure storing mitigation methods. More importantly,
we wanted to know the rating of these methods and their position in the list. For this
purpose, the wrapper was compiled and run DEBUG and INTERNAL_PRINT macros active.
After running the program, the result as shown in Figure 4.6.

Registered methods order:
- 0. --> 1 Rating: 127.013626
- 1. --> 3 Rating: 149.100006
- 2. --> 2 Rating: 491.927094

Figure 4.6: RST Cookies wrapper – SYN/RST status reporting.

The method with the number 1 represents an SYN Drop module, which was evaluated
as the best because it processes only SYN segments and does not have that drastic impact
on the traffic. The first index was taken by the RST Cookies method. The third, but the
shocking result was ACK spoofing, which was rated very high due to our previous traffic
analysis discovering that 81% of the TCP traffic consists of ACK segments. This indicator
played a huge part in the overall method rating.

4.4.2 Method suggestion results

When all the mitigation methods were ready, the process of generating the TCP traffic and
monitoring output of the module could be started. Firstly, we generated traffic of 5 000
SYN segments per second (half of the threshold). Since the specified SYN threshold has
not been reached, a request for the mitigation method suggestion returned NO_STRATEGY,
signalizing that no mitigation is needed. When the ongoing attack was manually specified,
the method returned SYN_DROP method as the best match, because it is stored at the first
index of the internal mitigation methods list.

Without providing additional statistics about the mitigation efficiency, the method keeps
returning SYN_DROP value because it detects no required change. When the manual ongoing
attack switch is removed, the function starts to suggest to not mitigate, but not suddenly.
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This happens because there is a mechanism that keeps track of the past mitigations and so
if the mitigation was active past N time windows, it will be activated again in this version.
However, this condition cannot be used on its own, because mitigations in the past would
always trigger mitigations in the current time window, and so it may get “looped” and
would return a mitigation method infinitely, even if no other patterns would be present.
Because of this, the past mitigation threshold is also combined with various others (like
SYN counter, unique IP count, etc.).

Considering an active attack cause by triggering SYN threshold without further infor-
mation, the module would always suggest SYN_DROP to be used. However, if the caller
specifies efficiency of the mitigation by specifying a high number of allowed SYN segments
above the threshold while keeping the dropped SYN segments value low, the algorithm
will consider the currently used mitigation method to be ineffective and will try to suggest
another in the list. In our case, the next method is RST Cookies, which would satisfy
the requirements to be chosen and so the next call to determine strategy would return it.
Following this pattern, if the caller specifies that the RST Cookies is ineffective, a mecha-
nism would try to employ other mitigation methods than currently active. SYN Drop was
marked as ineffective in the past, so the algorithm would temporarily skip it and proceed
on the third position of the internal structure, where ACK Spoofing resides. However, this
method would not pass satisfy the checks and so would not be chosen. More precisely, when
the SYN threshold is exceeded and the tested method does not drop segments, it is never
chosen because it can not reduce the number of segments on the already congested link.

According to this phenomenon, the ACK Spoofing method would always never be cho-
sen, because most of the SYN attacks tend to exceed the threshold. This behavior is caused
by bad rating estimation of the mitigation method, which was placed too high in the method
hierarchy (according to the ACK segments weight). For this reason, the chosen experimen-
tal weights are probably set a bit inappropriately. On the other hand, as mentioned in
Subsection 2.3.6, the ACK spoofing is not that effective anyway, so the algorithm may just
actually work perfectly.

4.5 Mechanism Conclusion and Closing Remarks
This chapter has presented a mechanism able to dynamically switch between different SYN
Flooding mitigation methods. Switching is based on various aspects like traffic, system
resources, and mitigation efficiency. The method can be currently classified more as a the-
oretical concept rather than a usable module. However, many aspects presented in this
chapter will definitely be utilized when dynamic manager version for the DDoS Protector
will be created. Although many modifiers and thresholds are marked as experimental, the
module was already able to provide reasonable mitigation method suggestions as described
in 4.4.2. Nevertheless, the presented technique needs to be developed and tuned out a little
more to provide relevant information when used on the real network.
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Chapter 5

Conclusion

This thesis has provided an overview of the most common attacks on the Transmission
Control Protocol. All were analyzed quite in detail, but the special focus was put on one
particular type – the TCP SYN Flood. This attack is currently the most popular performed
DoS/DDoS attack type, posing as a significant threat to modern computer networks. Many
methods used for its mitigation are either ineffective against more sophisticated variants
or cannot be effectively deployed on intermediary devices. For this reason, the thesis aimed
to design and implement a mitigation method able to deflect advanced SYN floods, while
being efficient when used as a part of the intermediary network mitigation device.

One of the methods with these parameters is TCP Reset Cookies, a specialized network-
based SYN Flood mitigation technique. This method provides an efficient way to block all
SYN flooding attacks from spoofed IP addresses. Regular attacks from legitimate hosts are
blocked as well, but other methods are often more suitable when dealing with this variant
of the attack. The main advantage of the RST Cookies is the ability to mitigate more
sophisticated SYN floods that are typically able to bypass other defense mechanisms. This
is achieved by establishing a security association with the client before forwarding its SYN
data. This mechanism stops all attacks that rely on dummy segment flooding, however
it may be fooled by employing or simulating a legitimate TCP stack. This vulnerability
is addressed by enhancing the method with SYN counters and blacklisting mechanism.
However, utilization of this method causes an approximate 1-second delay for the first
connection and significantly limits segment throughput due to its higher CPU requirements.

Unfortunately, this method is not suitable for all attack vectors due to the performance
degradation it causes. Because of this, the Dynamic Method Management algorithm was
developed to provide a way to choose the optimal mitigation method according to the
current traffic and other factors like mitigation efficiency. The method consists of three
separate parts – the Fitness, Traffic analysis, and Decision-making cores. The mechanism
evaluates available mitigation functions, analyzes traffic and statistics, and chooses the most
suitable method. This approach aims to provide an automatic method switching technique,
which should be able to respond to the dynamic environment of modern SYN Flood attacks.

Mentioned algorithms were developed as a part of the CESNET’s DDoS Protector se-
curity research project. The RST Cookies method is already integrated and used, whereas
the method management module is planned to be integrated in the near future. These al-
gorithms will be further developed as a part of the DDoS Protector, which recently received
a grant from the Ministry of the Interior of the Czech Republic. Part of the thesis com-
prising theory and the RST Cookies algorithm was presented at the student’s conference
Excel@FIT 2019, where it was awarded for a contribution in the computer security field.
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