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Abstract
This thesis explores the usage of AlphaZero algorithm for game of Gomoku. AlphaZero is a
reinforcement learning algorithm, which does not require any existing datasets and is able
to improve only by using self-play. It uses a tree search for policy improvement, which is
subsequently used for training. This approach was able to defeat the previous state of the
art methods. Generating training data of high quality requires a lot of computationally
expensive iterations, which makes them algorithm slow to train. Experiments show that
the strength of the play is growing with each subsequent iteration, this might indicate that
it still has room for improvement with more training and that it has not reached its full
potential.

Abstrakt
Táto práca sa zaoberá použitím algoritmu AlphaZero pre hru Gomoku. AlphaZero je
založený na spätnoväzbnom učení a k trénovaniu nemusia byť využité žiadne existujúce
datasety. Trénovanie prebieha iba na hrách algoritmu samého so sebou. AlphaZero používa
algoritmus na prehľadávanie stromu, pre zlepšenie stratégie. Na vylepšnej stratégii sa
následne trénuje neurónová sieť. Tento prístup bol úspešný v hrách proti existujúcim algo-
ritmom. Generovanie trénovacích dát vysokej kvality si vyžaduje veľa výpočetne náročných
iterácií trénovania a generovania dát. Experimenty ukázali, že každou iteráciou sa algorit-
mus zlepšuje, čo naznačuje, že je ešte miesto na zlepšenie, ale množstvo iterácií nedostačo-
valo na to, aby bol poriadne natrénovaný.
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Rozšírený abstrakt
Táto práca sa zaoberá vytvorením algoritmu, ktorý by bol schopný hrať hru Gomoku. Pre
tento účel existujú rôzne prístupy, ja používam algoritmus AlphaZero, ktorý dosiahol veľmi
dobré výsledky v šachu, hre Go a japonskom šachu shogi. Vo všetkých týchto hrách jednoz-
načne prekonal existujúce algoritmy. AlphaZero nepoužíva žiadne ručne vytvorené heuris-
tiky, ale požíva algoritmus na prehľadávanie stromu, ktorý kombinuje s neurónovou sieťou
zefektívňujúcou prehľadávanie. Avšak tento algoritmus je revolučný v tom, že nevyužíva
žiadne existujúce dáta pre natrénovanie neurónovej siete. Namiesto toho využíva spät-
noväzbové učenie, pričom sa spolieha na zlepšenie stratégie stromovým prehľadávaním.
Algoritmus požitý na stromové prehľadávanie sa volá Monte Carlo tree search.

Monte Carlo tree search algoritmus vykonáva simulácie, pri ktorých si vytvára herný
strom. Pri vykonávaní simulácií vyberá ťahy podľa toho, ako skončili predošlé simulácie,
pričom vyberá tie, ktoré pri prehľadávaní viedli k výhre a zároveň sa snaží vybalancovať
výber najperspektívnejších ťahov s prieskumom iných ťahov. Neurónová sieť poskytuje
odporúčania ťahov, na ktoré sa má prehľadávanie sústrediť, a ohodnotenia hracích plôch,
čím drasticky znižuje množstvo simulácií, potrebných na nájdenie optimálnej stratégie.

Trénovanie sa deje v dvoch krokoch: generovanie dát a optimalizácia parametrov na
vygenerovaných dátach. Dáta sa generujú tým, že algoritmus hrá sám proti sebe. Vygen-
erované dáta obsahujú reprezentáciu stavu hracej plochy, stratégiu vylepšenú stromovým
prehľadávaním a výsledok odohranej hry. Neurónová sieť sa učí túto stratégiu a pred-
povedať výsledok hry na základe stavu hracej plochy. Pre natrénovanie siete je potrebné
vykonať veľké množstvo trénovacích krokov, generácií, čo je pomerne výpočetne náročné.

Na implementáciu neurónovej siete som použil knižnicu na hlboké učenie Pytorch, ktorá
je primarne určená pre jazyk Python, ale obsahuje aj c++ rozhranie. Kvôli efektivite im-
plementácie Monte Carlo tree search algoritmu som sa rozhodol použiť jazyk c++, pretože
implementácia v Pythone bola príliš pomalá. Týmto som dosiahol až 30-násobné zrýchle-
nie. Pre evaluáciu neurónovej siete som využil c++ rozhranie Pytorch knižnice. Aby som
nestratil možnosť jednoducho testovať rôzne konfigurácie, vytvoril som z mojej Monte Carlo
tree search implementácie Python rozšírenie.

Algoritmus som trénoval na 30 generáciach dát a celkovo pri trénovaní bolo vygen-
erovanych viac ako 1 gigabyte dát, čo zodpovedá viac ako pol miliónu hracích pozícií.
Keďže pravidlá Gomoku nerozlišujú rotácie hracej plochy, každá pozícia ma osem rotácií.

Z experimentov som zistil, že počet simulácií naozaj zlepšuje stratégiu a s počtom iterácií
rastie sila algoritmu. Pri hre algoritmu samého so sebou, pričom jedna instancia používala
1000 simulácií pre jeden ťah a druhá používala 2000 a 5000 iterácií, v prvom prípade
instancia s väčším počtom simulácií vyhrala 61% hier a v druhom 71% hier.

Moj algoritmus som taktiež porovnával proti iným existujúcim programom, ale zatiaľ
ich nebol schopný poraziť. Taktiež pri hre voči ľudským hračom nedosiahol veľmi dobré
výsledky, avšak pri porovnávaní parametrov z rôznych generácií, novšie generácie boli pro-
gresívne silnejšie. Konštantný rast v sile novších generácii naznačuje, že trénovanie ešte
nedosiahlo svoj limit a pri ďalšom trénovaní by sa algoritmus ešte mohol zlepšiť.



Playing Gomoku with Neural Networks

Declaration
I declare that this Bachelor’s thesis is my original work and that I have written it under
the guidance of Michal Hradiš, Ph.D. All sources and literature that I have used during my
work on the thesis are correctly cited with complete reference to the respective sources.

. . . . . . . . . . . . . . . . . . . . . . .
Michal Slávka
May 15, 2019

Acknowledgements
I would like to thank Michal Hradiš for his guidance and advises.
Access to computing and storage facilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum provided under the programme "Projects
of Large Research, Development, and Innovations Infrastructures" (CESNET LM2015042),
is greatly appreciated.



Contents

1 Introduction 2

2 Playing games 3
2.1 Gomoku rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Existing approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Artificial Neuron and Neural Networks . . . . . . . . . . . . . . . . . . . . . 7
2.5 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 AlphaZero 11
3.1 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Monte Carlo tree search and neural network . . . . . . . . . . . . . . . . . . 13
3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 AlphaZero for Gomoku 17
4.1 Neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Monte Carlo tree search configuration . . . . . . . . . . . . . . . . . . . . . 17
4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Implementation 20
5.1 Training logic and definition of neural network . . . . . . . . . . . . . . . . 20
5.2 Monte Carlo tree search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Gomoku tournament manager interface . . . . . . . . . . . . . . . . . . . . 22
5.5 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Experiments 23
6.1 Performance with regard to simulations . . . . . . . . . . . . . . . . . . . . 23
6.2 Training progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Speed and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Comparison to other programs . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Conclusion 28

Bibliography 29

1



Chapter 1

Introduction

This thesis explores a combination of neural network and reinforcement learning for perfect
information game and how this approach can achieve superior results in previously known
methods. I am using the game of Gomoku to show how these two algorithms combine into
the AlphaZero algorithm introduced by David Silver et al. [27] which is the successor of
algorithms for playing game Go, AlphaGo Lee and AlphaGo Zero [29] algorithms which
were the first computer programs ever to beat top human players in this game. I have the
chosen game Gomoku because of its relative simplicity and which should correspond with
comparatively lower training times.

One of the biggest breakthroughs in computer programs playing against human play-
ers was when DeepBlue [5] defeated the human champion in Chess. This program used
the Alpha-Beta pruning algorithm [14] in a combination with handcrafted features, heuris-
tics, and database of games. This approach relied heavily on brute-force computation and
domain-specific knowledge, which made it hard to adapt existing programs to play different
games. Games with bigger search space, like Go, were considered intractable problems and
computers were able to play at most at an amateur level. Chess has game-tree complexity
[36] about 10120 compared to Go which has game complexity of 10360.

In the following chapters, I will describe existing methods for solving games, their
principles, and differences. A detailed description of the Monte Carlo tree search and the
AlphaZero algorithm is followed by a description of my version of this algorithm and my
implementation. In the end, there are experiments with the performance of the algorithm.
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Chapter 2

Playing games

In my work, I am interested in two-player, zero-sum, perfect information games. In the
following text, the word game is referring to this type of game. A zero-sum[37] game is
a game in which if all losses were subtracted from all gains for each player, it would sum
to zero, in other words, a player is winning by the same margin as the other player is
loosing. A perfect information[35] games are such games, in which every player has all the
information about the state of the game. Examples of this kind of games are Gomoku,
Chess, Go or Shogi.

Creating game-playing computer programs was always an interesting subject in com-
puter science. A special place is held by board games, that humans were trying to master
for centuries. With improvements in artificial intelligence computers were able to play on
a superhuman level in games like Chess, although Chess is not a solved game and remains
an open problem. This creates space for improvements because we may never solve it com-
pletely, a heuristic approach is required. Until very recently existing methods were not able
to tackle games with large branching factor and without a straight forward strategy. I ex-
plore new approaches to solving games on game Gomoku, which is rather simple compared
to the other board games.

2.1 Gomoku rules
Gomoku is a two-player game with simple rules very similar to tic-tac-toe. Both players have
absolute knowledge about the state of the game, perfect information. The game is played
on board with vertical and diagonal lines. Each player then places stones on intersections
of the lines. Players can only play moves that were not previously played. In the official
rules winner is the first player who succeeds in placing exactly five stones in a row, column
or diagonally next to each other. If there is a sequence of more then five stones of the same
color in a row, the game continues normally but it does not count as a winning sequence.
Another variant of the game is called free-style Gomoku where the legal winning sequence
is at least five or more stones in a row. Board usually has dimensions 15×15 but also board
with dimensions 19× 19 can be used.

For my experiments, I used freestyle rules with board size 13× 13 to reduce complexity
even more.
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Figure 2.1: Example of Alpha-Beta pruning. Grey nodes would be explored in Mini-Max
but the value of root node would not change.

2.2 Existing approaches
To create a computer program for playing the games with reasonable strength, numerous
methods exist. The simplest method and probably the most intuitive for zero-sum games
is called Mini-Max. This algorithm tries to find a move, which will lead to maximal reward
in a case next player chooses the best possible move. Therefore making a move leading to
minimal guaranteed reward. To find such a move algorithm is searching a game tree up to
specified depth or until a terminal state is encountered or depth limit is reached. When
the depth limit is reached the exact value of the state is not know and is approximated
using a heuristic. This algorithm without a depth limit will provide optimal move, however,
this approach can be computationally infeasible because of its time complexity which grows
exponentially 𝑂(𝑏𝑑), where 𝑏 is a branching factor of the game and 𝑑 is maximal depth of
search.

To make Mini-Max more efficient some states can be skipped during the search. An
algorithm that is trying to reduce the number of visited nodes that otherwise would be
visited with Mini-Max search is called Alpha-Beta pruning [7]. This algorithm was redis-
covered a couple of times and perfected by Knuth and Moore [14]. The idea behind it is to
stop searching a branch in a game tree if there is at least one move possibly worse than the
previously found move. This is done by maintaining two values, alpha, and beta, which are
initially set to negative infinity and positive infinity respectively. Alpha keeps track of the
minimal score of the maximizing player and beta keeps track of the maximal score of the
minimizing player. The search is stopped if 𝑎𝑙𝑝ℎ𝑎 > 𝑏𝑒𝑡𝑎.Comparison of search tree build
by Alpha-Beta pruning and Mini-Max is in the figure 2.1. In the best-case scenario, this
can reduce the time complexity to 𝑂(𝑏

𝑑
2 ) in the worst-case it is the same as in Mini-Max.

In many games, Alpha-Beta pruning based algorithms achieved very high ranking. For
example open sources Chess engine Stockfish [32] or Shogi engine elmo are one of the
strongest engines [26, 31] and utilize Alpha-Beta pruning along with game databases and
sophisticated handcrafted heuristics. Other options based on Mini-Max algorithm is for
example 𝑀𝐷𝑇 (𝑓) algorithm [22] which runs multiple instances of Alpha-Beta search.

Although Alpha-Beta pruning algorithms were able to surpass human players in Chess,
in games with large search space this approach was not good enough to play at a superhuman
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level. In the game of game Go computer programs were able to play on an amateur level
and defeated professional players in a couple of games on board size 9× 9 [34].

With the advancement in machine learning, using neural networks trained to match
policies from existing data sets or to estimate the value of a state, achieved some very good
results.

Algorithm DeepChess [6] uses two dis-joined pre-trained auto-encoders to create a vector
representation of the position in Chess, followed by another fully connected layers. It was
trained with supervised learning to compare two positions and predict which one is more
likely to win. This algorithm achieved a strong grandmaster level.

In game Go first major breakthrough was done by David Silver at al. with algorithm
AlphaGo [27], the first algorithm able to beat a professional human player in a standard
game with 19 × 19 board. This algorithm used a combination of Monte Carlo tree search
[15] and two separate convolutional neural networks for policy and evaluation of game
state, the policy network was trained on a database of games played by human masters
and value network was then trained by reinforcement learning by playing games against
itself with already trained policy network. AlphaGo was able to defeat world champion
Lee Sedol in five-game match losing just one game, which was compared to famous Garry
Kasparov versus IBM’s Deep Blue match held in 1997. This algorithm was later succeeded
by even stronger AlphaGo Zero [29]. AlphaGo Zero was trained by tabula rasa reinforcement
learning algorithm, using only self-play data, without any pre-training on human games.
The two networks used in AlphaGo were replaced by a single network with two heads,
providing policy and a state value.

After achieving these successes in Go more general version AlphaZero [28] was created
by the same authors. This is a more general version of AlphaGo Zero, trained entirely
by reinforcement learning, without using any existing dataset. AlphaZero was created to
master Chess and Shogi (also known as Japanese chess) but also achieved better results
in Go. AlphaZero was able to convincingly beat some of the strongest existing engines,
including previously mentioned Stockfish in Chess and elmo in shogi.

2.3 Reinforcement Learning
Reinforcement learning (RL) is a field in machine learning dealing with how a software
agent should learn to take actions in an environment with regard to a long term reward. It
differs from many other machine learning areas in not having information about how actions
should be taken, prior to learning. By interacting with the environment agent discovers
new states and potentially gains rewards. This interaction happens discreetly in a loop,
where the environment supplies the agent with representation of its state, to which the
agent reacts by making an action. The environment then as a reaction to the agent’s action
changes its state to a new one and presents the new state to the agent with a reward if
any is associated with the action state transition. This creates an action feedback loop see
figure 2.2. The agent then tries to improve its policy for choosing an action in any given
state by utilizing feedback from the environment and discover optimal policy. In many
problems, there is no immediate reward making finding the solution much harder because
the eventual reward is a result of a series of actions.

There are four main components in RL[30]:

5



Figure 2.2: Reinforcement learning. Interaction of an agent with an environment.

∙ Policy 𝜋(𝑠) is a mapping from state to actions to be taken. The agent chooses action
according to its policy. The goal of reinforcement learning is to find an optimal policy
𝜋*, which leads to higher or equal long term rewards than any other policy 𝜋.

∙ Reward 𝑟(𝑠, 𝑎) is an immediate response of the environment to the agent’s actions.
It defines a goal which should be maximized by the agent in the long term.

∙ Value function 𝑣(𝑠) or 𝑞(𝑠, 𝑎) is a function estimating how much immediate reward
from the environment can be accumulated in future based on state or state-action
pair.

∙ Model of the environment allows to make assumptions about how the environment
will react to actions. Models are used for planning by considering possible future
situations. Models of the environment are not always available and are not conditional
for RL algorithms. Models can be created be created by algorithms or can be provided
for them.

Exploitation-exploration trade-off. This way of learning comes with another chal-
lenge. The agent has to balance the exploration-exploitation tradeoff. It has to exploit
what he already learned to obtain a reward but also keep exploring to find potentially
more profitable actions, from which it could improve its future strategy. If the algorithm is
concentrating too much on either of those it will slow down the learning process of finding
the best policy or fail completely. In case of environments reaction to actions has some
randomness to it, agent can’t be discouraged by not gaining a reward from taking action
one time and can’t be drawn to early hit too much. Each action has to be tried a number
of times to get a good idea of how good it actually is.

Markov Decision Process. The environment is usually defined as a Markov Decision
Process (MDP, an example in figure 2.3). MDP is an extension of the Markov chain to
which it adds actions made by agent and rewards for actions. Where by choosing action
in our case reward is gained as a win or loss. If MDP’s action space is finite it is called a
finite MDP.

Finite MDP is a 4-tuple (𝑆,𝐴, 𝑝(𝑠′|𝑠, 𝑎), 𝑟(𝑠, 𝑎, 𝑠′)), where 𝑆 is a finite set of states 𝐴 is
a fine set of actions, 𝑝(𝑠′|𝑠, 𝑎) is a probability of transitioning to state 𝑠′ from the state 𝑠
given action 𝑎 and 𝑟(𝑠, 𝑎, 𝑠′) is reward associated with the transition from 𝑠 to 𝑠′ by action
𝑎.

Optimal policy. The optimal policy 𝜋* is a policy with the expected return is better
or equal to all other policies. In some cases we can easily find such policy by discovering
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Figure 2.3: Example of Markov Decision Process

optimal value function 𝑣*(𝑠) or 𝑞*(𝑠, 𝑎) for all states 𝑠 and all actions 𝑎, which satisfies
bellman optimality equation:

𝑣*(𝑠) = max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣*(𝑠′)] (1)

or

𝑞*(𝑠, 𝑎) =
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾max 𝑎′𝑞*(𝑠′, 𝑎′)]. (2)

In AlphaZero neural network is trying to learn Value function and Policy, which it learns
directly from policies created by a tree search algorithm. The tree search improves policies
from neural network and during training process neural network learns policies which are
closer to optimal policy 𝜋*.

2.4 Artificial Neuron and Neural Networks
Principle of an artificial neuron and neural networks were invented by Anthony [2] and was
loosely inspired by the structure of neurons in the brain, with no intention to accurately
model real brain cell. An artificial neuron is a mathematical function with arbitrary number
of inputs and one output. Neurons can be connected to each other taking the output as
input in the subsequent layer. A biological neuron consists of dendrites, cell, called soma,
and axons. Dendrites and axons are analogous to inputs and output, respectively, of an
artificial neuron. Dendrites receive signals, which creates a potential that travels through
the cell and leads to excitation on axon proportional to the strength of received signals.
Dendrites and axons are connected to other cells by synapses which allow to pass signal
between them. Synapses may increase or decrease the strength of the signal so it selectively
passes through cells.

Neuron. In the artificial neuron, the role of synapses is taken by weights. The number
of weights depends on the number of inputs. Each input is multiplied by the corresponding
weight. The results of multiplication are summed, bias is added and passed to activation
function (see figure 2.4a). Let 𝑔(�⃗�, �⃗�) be a function of a neuron, where �⃗� is vector inputs
of the function and �⃗� are weights. Usually, there is also a bias is typically denoted as 𝑤0,
so for 𝐾 inputs we have 𝐾 + 1 weights

7



a. b.

Figure 2.4: a Artificial neuron with input vector �⃗�, weights �⃗�, with activation function 𝜙
and output 𝑦. b Neurons connected to neural network.

𝑔(�⃗�, �⃗�) = 𝑓(𝑤0 +

𝐾∑︁
𝑖=1

𝑥𝑖𝑤𝑖) (3)

where f is an activation function. Example of a common activation function is logistic sig-
moid denoted as 𝜙. To be able to use the training algorithm described in 2.4 the activation
function is reacquired to be differentiable.

Neural Network. When we use the output of one neuron as input for another we call
it a neural network. Modern neural networks can have millions of parameters and can
solve very hard problems. Commonly neurons are organized in layers, where every layer
is labeled 0, 1, ..., 𝑙 and consists of a number of neurons. In fully connected linear layers
output of every neuron in layer 𝑙 is input to every neuron in layer 𝑙+1. The first layer of the
neural network is referred to as Input layer, there is usually one neuron per input feature.
Subsequent layers are called Hidden layers, and the last layer is called Output layer. An
example of a neural network with fully connected linear layers is shown in figure 2.4b. To
be able to connect neurons we must impose another constraint on activation function and
that is that it has to be non-linear. If used linear activation function or none at all the
network would be able to learn only as much as one layer because multiplying input vector
by a matrix is equal to linear transformation in space and a series of such transformations
can be expressed by one linear transformation.

Learning. Adjusting weights in an artificial neuron to perform a certain task is referred
to as learning. It is an optimization process where we minimize the difference between the
expected outcome and output of the neuron. This difference is called cost. The cost can
be computed in many ways, for example, we can use Mean Square Error (MSE)

𝐶(𝑡, 𝑦) =
1

2
(𝑦 − 𝑡)2, (4)

where 𝐶 is MSE cost function 𝑡 is expected outcome for training example �⃗� and 𝑦 is the
output of the neuron.
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Figure 2.5: Computation of convolution with no padding, kernel size 3𝑥3 and stride 1. The
highlighted output corresponds to highlighted input after applying kernel.

There are multiple optimization methods for finding how the weights should be adjusted.
These methods are based on finding gradients of weights with respect to cost function and
then adjusting the weights to decrease cost. These adjustments for each weight is done
according to its gradient, also known as gradient descent. For single neuron from equation
3 using cost function from 4 computation of gradient for weight 𝑤𝑗 using delta rule is simple

𝜕𝐶

𝜕𝑤𝑗
=

𝜕𝐶

𝜕𝑦

𝜕𝑦

𝜕𝑧

𝜕𝑧

𝜕𝑤𝑗
= −(𝑡− 𝑦)𝑓 ′(𝑧)𝑥𝑗 , (5)

To find gradients when dealing with multiple layers Rumelhart in 1986 proposed back-
ward propagation of error (backpropagation) algorithm [24] which is a generalization of
delta rule. We compute gradients from the last layer to first, hence the name backpropa-
gation. When dealing with an output layer 𝐿 the computation is the same as in equation
5 but with added indexes for each output neuron. Gradient for weights in previous layer
𝐿− 1 is

𝜕𝐶

𝜕𝑤𝐿−1
𝑗𝑘

=
𝜕𝐶

𝜕𝑎𝐿
𝜕𝑎𝐿

𝜕𝑧𝐿
𝜕𝑧𝐿

𝜕𝑎𝐿−1

𝜕𝑎𝐿−1

𝜕𝑧𝐿−1

𝜕𝑧𝐿−1

𝜕𝑤𝐿−1
𝑗𝑘

, (6)

where 𝑎𝐿 is equal to 𝑦 but was used to generalize for all layers, 𝑘 is an index of neuron in
a layer, 𝑎𝐿−1 is and output of layer 𝐿− 1 and 𝑧𝐿−1 is

∑︀𝐽
𝑗=1 𝑥𝑗𝑘𝑤𝑗𝑘.

Weights are then updated according to the gradient:

∇𝑤𝑙
𝑗𝑘 = 𝜂

𝜕𝐶

𝜕𝑤𝑙
𝑗𝑘

, (7)

where 𝜂 is the size of a step of update in the direction of gradient called learning rate.

2.5 Convolutional neural networks
Convolutional neural networks (CNN) are a type of neural network which is very well suited
for image processing. Using backpropagation to train convolutional neural networks was
pioneered by LeCun [19, 18]. CNN takes a little bit different approach than a standard
fully connected linear network. To create a functioning image classifier there are two main
properties of images that cause problems for fully connected linear networks. Two pixels
next to each other are more related then pixels on a different side of the image. The fully
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connected linear network would have to learn this fact, in CNN this information is implicit
and the receptive unit of CNN covers some area in the image. This means that CNNs are
better in feature recognition in images and can have fewer parameters while performing the
same as a fully connected linear network would. The second property of images that makes
CNN perform better on images then fully connected linear layers is that shift in position
does not change what image depicts. While CNN is position invariant, the linear network
would have to learn each variation in position. CNN solves this by using multiple pixels in
a surrounding area at once and performing the same operation for every group of pixels.

Convolutional neural networks were successfully used in many different areas like image
recognition, image analyses, natural language processing or for playing games. Properties
of the game board are very similar to the ones in the image. Game patterns can be invariant
of their position and pieces that are closer together are influencing each other more than
pieces further apart.

This work by using convolutional kernels, which are essentially filters are sensitive to
some patterns and convoluting them over whole input. This creates an abstract represen-
tation of the input, which is then passed to the next layer. Input is a tensor representing
image or board and has dimensions width, height, and a number of channels. Kernels are
also matrices of fixed size, an example of how the output is computed is in figure 2.5. The
goal is to adjust parameters of kernels to pick up patterns that are relevant for our task.
CNNs are organized in the layer where the role of a neuron is taken by the kernel, but kernel
apart from the neuron is not fixed for one input feature but is convoluted over whole input.
These parameters are adjusted in the same manner as in standard neural network, this can
be done because convolution is differentiable operation. The result of convolutions is then
processed by the next layer. Dimensions of output are controlled by stride and padding.
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Chapter 3

AlphaZero

AlphaZero algorithm [29] uses a neural network to provide for a tree search algorithm
recommendations for plausible moves called policy and estimations of how good positions
are called value. The search algorithm, using the neural network is then able to provide
much stronger policies than neural network by itself. The tree search algorithm used for
this purpose is called Monte Carlo tree search [15] (MCST).

3.1 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a heuristic tree search algorithm used to find optimal
action for problems where a generative Markovian Decision Process exists. MCTS aim is
to find a policy for an agent that will lead to the highest reward. Response to this action
is provided by an environment that will present a new state to the agent and potentially
provide a reward for the agent. MCTS is capable of providing near optimal actions if a
generative Markov Decision Process exists for the environment.

MCTS was proposed by Abramson [1]. This algorithm became a standard method for
solving two-player games. I will explain a variant of MCTS called UCB1 for Trees (UCT)
introduced by Kocizs and Szepesvary [15]. General rollout based MCTS game tree is created
by running simulations from the current state of the game, then choosing actions by the
highest observed long term reward and traversing the existing game-tree until the leaf state
is reached. The leaf state is then evaluated and reward is acquired. The reward is then
accumulated for each state-action pair encountered during simulations. This allows to bias
choosing better action if the state is reencountered again and potentially to converge faster
to the best solution. In figure 1 is a general scheme of rollout-based MCST for a two-player
game, where the reward is either 1 for a win, −1 for loss and 0 for a draw.

Each successive action is made by a different player than the previous one. This means
that if during simulation we select terminal state 𝑠𝑇 , reached from state 𝑠𝑇−1 by action
𝑎𝑇−1, played by player 𝑃1, and reward in 𝑠𝑇 for player 𝑃2 is 𝑟𝑇 , the value 𝑞 associated with
state 𝑠𝑇−1 will be updated to 𝑞(𝑠𝑇−1, 𝑎𝑇−1) = 𝑞(𝑠𝑇−1, 𝑎𝑇−1) + (−𝑟𝑇 ). This is applied for
all previous states 𝑞(𝑠𝑇−2, 𝑎𝑇−2) = 𝑞(𝑠𝑇−2, 𝑎𝑇−2) + (−(−𝑟𝑇 )).

A leaf node is a node that has not been visited before. After reaching the leaf node,
searching is discontinued and sample reward is generated by randomly choosing moves done
by the function Evaluate on the line 13, until a terminal state is reached. If the terminal
node is reached the reward is the result of the game. Updating of state-action pair is done
on the line 21.
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Algorithm 1: Monte Carlo Tree Search algorithm [15]
INPUT: state, terminal condition
OUTPUT: policy 𝜋

/* Start */
1 Function MonteCarloTreeSearch(s, simulations):
2 for 𝑖← 0 to simulations do
3 Search(s)
4 end
5 return getPolicy(s)
6
7 Function Search(s):
8 if Terminal(s) then
9 𝑣 = Reward (s)

10 return −𝑣
11 end
12 if Leaf(s) then
13 return −Evaluate(s)
14 end
15
16 a := selectAction(s, Q, N)
17 newstate := newState(s, a)
18
19 𝑣 := Search(newstate)
20

/* Updating node */

21 Q(s,a) = Q(s,a)*N(s,a)+𝑣
N(s,a)+1

22 N(s,a) = N + 1
23
24 return −𝑣

UCB1 and UCT By selectively selecting actions, which look more promising we are
able to narrow down search space and converge to optimum faster. To do this and leverage
also possibility to miss optimal solution Kocsis and Szepsvári proposed an application of a
bandit algorithm UCB1 [3]. They called this algorithm UCB1 for trees (UCT) but generally
referred to as MCTS.

Bandit problems are problems where there are multiple actions. Each action will provide
a random reward from a probability distribution. Bandit algorithms are trying to discover
the highest grossing distribution with minimizing regret from taking sub-optimal actions,
also known as exploration-exploitation trade-off. In the MCTS algorithm we want to explore
actions most likely leading to winning without wasting resources on other actions (line
16). UCB1 succeeds in dealing with the exploration-exploitation problem. From all valid
actions in state 𝑠 it chooses an action that maximizes upper confidence bound using mean
of obtained rewards for each action 𝑄(𝑠, 𝑎) and bias which is increasing with a number of
visits 𝑈(𝑠, 𝑎):
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𝐴𝑡 = argmax
𝑎
{𝑄(𝑠, 𝑎) + 𝑈(𝑠, 𝑎)} . (8)

Bias is computed as:

𝑈(𝑠, 𝑎) = 𝐶𝑝

√︃
2𝑙𝑛(

∑︀
𝑏𝑁(𝑠, 𝑏))

𝑁(𝑠, 𝑎)
, (9)

where 𝑁(𝑠, 𝑎) is a number of visits of edge (𝑠, 𝑎).
As number of visits 𝑁(𝑠, 𝑎) grows probability of choosing action 𝑎 will decrease. This

property encourages exploration with the exploitation of early random rewards. How much
will this bias decrease the significance of gained rewards is controlled with a constant 𝐶𝑝.

3.2 Neural network
AlphaGo Zero and AlphaZero algorithms residual convolutional networks [9] were used as
a common core for policy head and value head. This network consisted of 20 to 40 residual
blocks with batch normalization [10] and rectifier non-linearities (ReLU) [8]. The output
of this network was then used in separate heads each consisting of fully connected linear
layers.

Board representations. Each game requires a different board representation. Simplest
rules and board representation has a game of Go. For the game of Go board is represented
as planes for each player each of size of the board. Placement of game pieces is indicated
by 1 on the corresponding position, zeros are elsewhere. Each input contains eight step
history and one plane indicating player, which is to move.

3.3 Monte Carlo tree search and neural network
The advantages of the Monte Carlo tree search algorithm are that it is domain independent
and is quite accurate on predicting near optimal actions given that enough simulations are
performed. This algorithm also scored some successes in imperfect information games such
as backgammon or poker. To increase performance and accuracy of MCTS it is combined
with neural network 𝑓 with parameters 𝜃 is used to provide both value vector of policies
containing probabilities of choosing available action in given state 𝑠 and scalar value 𝑣
which is an estimated probability of winning a game in state 𝑠. These probabilities and
value then guide the search algorithm to concentrate on more promising moves. The effect
that it has on policy improvement can be seen in figure 3.2.

To combine general MCTS with the neural network a few adjustments need to be done.
For each visited node corresponding to state 𝑠 following triple is stored:

{𝑁(𝑠, 𝑎),𝑊 (𝑠, 𝑎), 𝑃 (𝑠, 𝑎)}, (10)
where 𝑁(𝑠, 𝑎) is a number of visits of edge (𝑠, 𝑎), 𝑊 (𝑠, 𝑎) is a accumulated state value
and 𝑃 (𝑠, 𝑎) is state-action value. The average reward than can be computed as 𝑄(𝑠, 𝑎) =
𝑊 (𝑠, 𝑎)/𝑁(𝑠, 𝑎). In game Gomoku there is no immediate reward so in the scheme of general
MCTS it is always zero and can be left out.

Again multiple simulations are performed after which action is played. Each simulation
has three phases: Selection, Expansion, Evaluation, and Update.
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Figure 3.1: Monte Carlo tree search in combination with a neural network. Source Master-
ing the Game of Go without Human Knowledge[27]

Selection. When selecting actions variant of PUCT algorithm [23] is used instead of
UCB1 algorithm. The PUCT algorithm as UCB1 balances exploitation and exploration
but converges faster to correct solution. Actions are selected according to equation 8, but
bias 𝑈(𝑠, 𝑎) is

𝑈(𝑠, 𝑎) = 𝑐𝑝𝑢𝑐𝑡𝑃 (𝑠, 𝑎)

√︀∑︀
𝑏𝑁(𝑠, 𝑏)

1 +𝑁(𝑠, 𝑎)
, (11)

where 𝑐𝑝𝑢𝑐𝑡 is a constant controlling level of exploration. You can see an illustration of this
step in figure 3.1a.

Expansion and evaluation. Neural network provides value and policy vector (𝑣, 𝑝) =
𝑓𝜃(𝑠) and is evaluated and new node is added to search tree when leaf node is reached (line
13). Value 𝑣 plays the same role as random play in general MCTS. However this is superior
to playing randomly because the neural network is trained to estimate the probability of
winning the game, this number of simulations getting a good estimate can be reduced.
Policy vector serves as a recommendation for MCTS for concentrating on actions that
are more likely to lead to win. This recommendation are stored for each edge 𝑃 (𝑠, 𝑎) =
(1 − 𝜖)𝑝𝑎 + 𝜖𝜂𝑎, where 𝜂 = 𝑑𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) is Dirichlet noise added to prior probabilities to
achieve additional exploration and 𝜖 = 0.25. Parameter 𝛼 in AZ was used proportional to
number of possible moves 0.3, 0.15, 0.03 for Chess, Shogi and Go respectively. Figure 3.1b.

Update. In figure 1 line 24. Statistics in sequence of nodes are updated. value 𝑣 provided
by neural network in previous step is added to 𝑊 (𝑠, 𝑎) = 𝑊 (𝑠, 𝑎) + 𝑣, sign of value is
alternating for each subsequent node.. Visit count is incremented by one for each node in
sequence 𝑁(𝑠, 𝑎) = 𝑁(𝑠, 𝑎) + 1. Figure 3.1c.

Move selection. After finishing simulations, move is chosen according to policy 𝜋(𝑎|𝑠0) =
𝑁(𝑠0, 𝑎)

1/𝜏/
∑︀

𝑏𝑁(𝑠0, 𝑏)
1/𝜏 , which is proportional to visit counts of actions 𝑎 from root state

𝑠0. Actions are chosen randomly with associated probabilities 𝜋(𝑎|𝑠0). Temperature 𝜏 is set
to 1 for number of first moves. This does not change the distribution and ensures greater
variability of starting positions. For the rest of the game temperature is set to infinitesimal
number 𝜏 → 0 to deterministically select the best action. Figure 3.1d.
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3.4 Training
Training of neural network is done from scratch entirely by RL, starting with randomly
initialized parameters. This gives the algorithm an opportunity to come up with its own
strategies. We can divide training process into three steps: Self-play, Optimization, Evalu-
ation. These three steps are repeated until the network is fully trained. In AlphaZero the
evaluation step was left out to speed up the training process.

Self-play. In this phase training data is being generated by letting the algorithm play
against itself with the best parameters. MCTS takes policy 𝑝 and value 𝑣 predictions of
neural network and by performing simulation it provides improved policy 𝜋. This improved
policies along with actual results of the games from self-play are then stored as triple
(𝑠, (⃗𝜋), 𝑟), where 𝑠 is a representation of the board and 𝑟 is the result of the game.

Optimization. Optimization of parameters of the neural network is done on data gener-
ated during self-play, using multiple previous generations data generated by different models
to avoid overfitting to one model. For policy optimization cross entropy loss was used and
for value was used mean square error. Both losses were weighted equally.

Evaluation. Updated parameters 𝜃+1 are then evaluated against parameters 𝜃 by using
them in MCTS and playing against each other. If a new generation is better then previous it
is used for the next round of self-play. If parameters 𝜃+1 were not better then the previous
version, more data is generated using parameters 𝜃 and used to train a new generation.
During evaluation temperature 𝜏 is infinitesimal from the beginning of the game to mitigate
randomness in evaluation.

Training resources Data generation was done using 5, 000 Tensor Processing Units [13]
(TPU), starting with randomly generated parameters. New generations were trained for 64
seconds and in total 700, 000 steps with mini-batch size 4, 096 were performed during the
training process. This configuration outperformed Stockfish after just 4 hours.
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Figure 3.2: Board position, the raw output of the neural network, improved policies from
Monte Carlo tree search after 100, 500, 1000, 5000 simulations respectively.

16



Chapter 4

AlphaZero for Gomoku

The AlphaZero algorithm is easy to adjust to different games. Here I will describe the
choices I made in my implementation and selection of hyperparameters.

4.1 Neural network architecture
I could not match the resources used for training and generating data authors have in-
disposition 3.4, so I used much smaller and simpler architecture. My network consisted
exclusively of convolutional layers in the core network as in both heads. I used layers with
kernel size 3, 16 output channels and padding size 1 so the width and height of output stay
the same. Each layer was followed by batch normalization and ReLu. In the core network,
I was using 4 layers and for each head 2 additional separate layers. The output of policy
head was a probability distribution, to get that I used soft-max. Value head had another
convolutional layer with 1 output channel and kernel size 1 to reduce dimensions and then
average pooling layer followed by to 𝑡𝑎𝑛ℎ non-linearity to scale output to a range [−1, 1].
You can see an illustration of architecture in figure 4.1.

Board representation. Gomoku board was represented by two planes, one for each
player. Planes were in dimensions of the game board having ones indicating the presence of
players stone on a given position and zero otherwise. The first plane always represents the
player on move, so there is no need to indicate which player is moving. In original article
history was also included but in my work, I deemed this as unnecessary.

4.2 Monte Carlo tree search configuration
Dirichlet noise. To have constant 𝛼 adequate to all board sizes I created following
equation to deduce proper value:

𝛼 =
𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑎𝑐𝑒 * 𝑎𝑣𝑔𝐿𝑒𝑛− (𝑎𝑣𝑔𝐿𝑒𝑛2 + 𝑎𝑣𝑔𝐿𝑒𝑛)

2 * 𝑎𝑣𝑔𝐿𝑒𝑛
, (12)

where 𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑝𝑎𝑐𝑒 is number of possible actions and 𝑎𝑣𝑔𝐿𝑒𝑛 is approximate average game
length. For board size 13 × 13 alpha was 𝛼 ≈ 0.064. If the noise leads to a selection of
actions that are unfavorable it is overridden by the search algorithm. In the case a node is
reencountered, these recommendations are taken into account in the action-selection step.
Visit count is initialised 𝑁(𝑠, 𝑎) = 0. The ratio of adding noise, 𝜖 I kept the same.
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Figure 4.1: Architecture of my neural network with input on the left, four common convo-
lutional layers dividing into two heads.

.

Constant 𝐶𝑃𝑈𝐶𝑇 For both simulation and evaluation I set this constant to 4, which is
little bit lower than in the article [27].

Temperature 𝜏 I tried to used temperature 𝜏 = 1 for the entire length of the game,
however when I tried setting 𝜏 → 0 from 10th move for the remainder of the game. This
might have helped speed up the training process a little bit.

4.3 Training
To speed up training I remove data from first generations I used growing sliding window
[38], starting at 4 every two generations increased by 1 until it reaches its maximal size of
20. For optimization, I used algorithm Adam, with learning rate 0.001. The loss function
for policy head was Kullback-Leiber divergence

𝐾𝐿𝐷𝑖𝑣(𝑝, 𝜋) = −
𝐾∑︁
𝑖=0

𝑝𝑖 log(
𝜋𝑖
𝑝𝑖
), (13)

where 𝐾 is length of the input vectors. Value head was trained on results of the games
using mean square error (MSE) loss

𝑀𝑆𝐸(𝑣, 𝑟) = −(𝑣 − 𝑟)2. (14)
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I trained on batches of size 256. Each training iteration I did 3 epochs on data set which
proved to be enough, because older data were used multiple times. When I was trying to
increase number of epochs there was significant decrease in performance.

In game Gomoku positions are invariant to rotation and reflection. To augmented data
I used dihedral rotations of positions, also I merged duplicated data by averaging policy
vectors and results of the game.

Originally I wanted to do this additional step to make sure that the parameters are
performing better than previous. But this step was too time-consuming and I decided to
skip it.
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Chapter 5

Implementation

For the implementation I combined a couple of technologies. I will divide my implementa-
tion into three separate parts, neural network, Monte Carlo Tree search and training logic,
because I treated them individually and although they are tied together using different
technologies. The algorithm itself takes a huge amount of resources during training. For
this reason, I had to put a lot of effort into efficient implementation.

5.1 Training logic and definition of neural network
This part consists of self-play, evaluation, training, and definition of the neural network.
Language Python [33] seemed to be the obvious choice for it. It has a lot of frameworks
for machine learning and mathematical libraries. Machine learning framework I used for
the implementation of my neural network is Pytorch [21], which provides a great number
of features required for machine learning and I was already familiar with it. For other
mathematical operations and for work with data I used Numpy library.

Training resources. For data generation I used resources on MetaCentrum in parallel,
each process running on 8 CPUs for about half an hour. Created data set of about 20, 000
state samples were transferred to the central node with GPU where new parameters were
optimized using multiple latest datasets as described in section 4.3. New parameters were
then transferred back to MetaCentrum and new data set was generated with them 5.1.

5.2 Monte Carlo tree search.
This was the largest portion of my work and most time-consuming. My first attempt
was to implement MCTS in Python language. Python was my first choice because of the
availability of machine learning frameworks and language features enabling fast prototyp-
ing. This has proved too slow to be useful because Python is interpreted language, which
has a detrimental effect on performance. Also, I run into limitations that Python has in
multithreading, which was essential to the effective parallelization of MCTS.

C++ Python Extension. To make implementation more efficient I decided to rewrite
MCTS into c++[11] programing language. Although this proved to be more difficult than
I originally thought it would be, this effort paid off and the running it on CPU I achieved
4-times speed up. I suspect that the speed up would be even more significant when utilizing
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Figure 5.1: Training configuration.

GPU because of evaluation of the neural network took a significant portion of the time. To
be able to keep parts of my previous work in python I created bindings to Python using
Pybind11 [12], which provides a very elegant way of using the c++ code in Python with
features such as casting Python object to c++ objects back and forth but very impor-
tantly support for mathematical python library Numpy [20]. This also meant I was free of
pythons Global Interpreter Lock restrictions and enabled me to implement parallelization
with virtual loss 5.2.

My original idea was to use callbacks to Python for neural network evaluation. Although
it is possible, it was too difficult to implement properly for the multithreaded application.

Eventually I used Pytorch c++ interface, which enables define and use neural network
in c++. There is also an option to define and train network in Python and using just in
time compiler compile it and then load to c++. In my implementation I compiled the
neural network and then loaded it with c++ extension.

Using extension gave me the advantage of dynamical properties of Python and having
almost all computation heavy code written in much faster c++.

Parallelization. To parallelize the Monte Carlo tree search there are a couple of ap-
proaches. Easiest to implement is tree parallelization, used in Fuego program playing Go,
where we have multiple clones of the search tree and we run a simulation on them separately
and then merge statistics. This, however, have a disadvantage to is and that is the quality
of simulation is lower than running the same number of simulation on the same tree and
is not very well scalable to a larger number of threads [25]. Another approach that was
used by authors of the AlphaZero algorithm, and which I used is running simulation in the
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same tree. To prevent threads exploring the same parts of the tree, virtual loss has to be
used. When a thread selects an action it decreases its total value, as it would if it leads to
a loss. This makes the action less favorable for another thread visiting the same node. The
additional overhead coming with searching the same tree in using locks is balanced out by
better scalability to multiple threads and more single thread like results.

Build system. To build the extension I used a combination of Python setuptools and
cmake. Using setuptools enables to install binaries in to correct place as any other python
extension, while using cmake is very pleasant because of its feature of finding dependencies
and using correct compilation flags, required to link to them. Dependencies required for
build are: Pytorch, Python, Pybind11 and Gnu Scientific Library which is used for Dirichlet
noise generation.

Computing with GPU. Extension is ready to be used with GPU acceleration, however
I had problems linking to cudnn library on MetaCentrum.

5.3 Portability
I have used and tested everything on the Linux operating system. However every library I
used is also available for Windows and cmake used for building c++ extension is a cross-
platform tool, although it may require some tweaking. Only the platform dependent code
is bash invocation script.

5.4 Gomoku tournament manager interface
To compare my solution to existing Gomoku playing Artificial Intelligence (AI) I created
an interface to Piskvork [17] tournament manager. This application provides a graphical
user interface for human interaction and also the management of tournaments for AIs. This
program runs only for windows and requires AI to be a windows binary that communicates
with standard input/output. To be able to communicate with this manager I created
small client as windows binary which could be executed by Piskvork and was resending
commands from Piskvork manager to Python server. The server then started tree search
and send selected move back. The manager was then executed under Linux using Wine[4]
which translates Windows API calls into POSIX calls.

5.5 Heuristic
For evaluation and testing purposes I created simple heuristic, which is part of the Monte
Carlo tree search module and is used if parameters of the neural network are not supplied.
This heuristic subsidizes neural network and provides for search algorithm both policy and
value. It keeps the position value of each field of the board for each player separately and
when a move is made it updates position values in directions where the potential winning
sequence can occur accordingly to a number of already placed stones in a row. Policy is
computed as a sum of position values of both players and value is the ratio of the sum of
all values for one player to the sum of all values for the opponent.
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Chapter 6

Experiments

6.1 Performance with regard to simulations
To evaluate how an increase in the number of Monte Carlo simulations effects game strength
I used heuristic 5.5 as a substitution for neural network, which is much faster to evaluate.
As expected, using more simulations improved had a positive effect on the strength of the
player. As a reference in this comparison, I used 1000 simulations, which plays at a reason-
able strength. This was compared to players using 500, 1200, 2000 and 5000 simulations
for evaluation of each move. The heuristic I used was biased and was disadvantageous to
the first player. In table 6.1 we can see that playing strength was growing proportionally
to the number of simulations. Each player was creating its own search tree with identical
configurations.

I found out that using Dirichlet noise had a negative effect on the Monte Carlo tree
search and it reduced performance by a significant margin. Tree search using no noise at all
against tree search adding noise as described in section 3.3 won every game when making
first move and 80% of the games when playing second. This could be due to inappropriate
constant 𝛼 for the combination of heuristic and MCTS. However, using noise for training
is important.

6.2 Training progress
To see how training progress I have chosen several generations of parameters created during
training. Each pair of parameters were evaluated against each other. Simulations were
executed in separate trees and configuration of tree search was the same for every player
and for every game. The temperature was set to 𝜏 → 0 for the whole length of the games so
moves would be selected deterministically, choosing the best move from the policy provided
by MCTS. The result 6.1 show improvements in each subsequent generation, most of the
newer generations were playing convincingly stronger than previous. All models achieved
stronger results when making the first move.
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Simulations Moving first Moving second Total Percentage

1000 16 24 40 -

500 13 29 42 42%21 37 58

1200 12 43 55 55%7 38 45

2000 18 43 61 61%7 32 39

5000 26 45 71 71%5 24 29

Table 6.1: Results of games played with Monte Carlo Tree Search and heuristics. The
number of wins is on top and the number of losses is bellow.

Figure 6.1: Left. Comparison of how well performed the latest parameters against the
previous generation. Right. Compared selected parameters against each other.
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6.3 Speed and scaling
Training the neural network using data from self-play is very computationally expensive.
For every move thousand evaluations of the neural network are performed. Effective im-
plementations are crucial to be able to train the network.

Because of a large number of loops and recursive nature of MCTS simulations python
implementation was very slow and the problem grew even more on significance when the
existing tree grew larger. To compare the efficiency of MCTS implementation I didn’t
use neural networks nor heuristic. Both implementations were running on a single thread
without GPU acceleration.

The first comparison is how tree complexity affects the duration of tree search. The
search starts from a clear state and measures how long does 1000 simulations take. The
c++ implementation is more than 30 times faster on the first 1000 simulations and its time
complexity does not grow insignificantly and after reaching a certain point it stops growing
completely. Python implementation, on the other hand, is very inefficient and after 5000
iterations it is nearly 10 times the original time. Changes in duration in relations to number
of simulation can be seen in figure 6.2 and figure 6.3.

In figure 6.4 is comparison of duration of 1000 simulations with a different number of
threads. Time efficiency grows quickly but after surpassing a number of available cores it
plateaus.

6.4 Comparison to other programs
Comparison to existing programs playing Gomoku was done through tournament manager
Piskvork. From previous data, a conclusion can be made that the training process works.
However, it is hard to estimate how well because it might not reach its full potential.
Unfortunately, due to the time it takes to fully train the networks, it was not able to defeat
existing solutions. To be comparable to an existing solution, it would have to be trained
for a far longer time. The neural network was not able to learn effective strategies and tree
search did not perform enough simulations to make up for it. I compared to my neural
network to program brain-Crush, which is ranked 45th in Gomocup ranking [16], because
it is not using tree search at all or it is very limited and I could try, if given enough time
my algorithm would be able to defeat it.

Games were played on board size 13× 13 and both algorithms were given thinking time
20 seconds. In this time my algorithm was able to perform approximately 3000 simulations.
Since the neural network was not able to provide good strategies for game openings, the
search was not able to improve it enough to play reasonable sequences of moves. This
resulted in blocking attempts of another player and eventually loss. Some game results can
be seen in figure 6.5.
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Figure 6.2: Duration of 1000 simulations in relation to number of simulations performed in
the same search tree, c++ python extension.

Figure 6.3: Duration of 1000 simulations in relation to number of simulations performed in
the same search tree, python implementation.

Figure 6.4: Effect of number of threads on duration of 1000 simulations on machine with 8
cores.
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Figure 6.5: Terminal game positions from match between my algorithm (red) and brain-
Crusher (blue). The winning move is colored green.
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Chapter 7

Conclusion

The goal of this work was to create artificial intelligence that would be able to learn how
to play game Gomoku. This goal was fulfilled only partially. From experiments, we can see
that the strength of artificial intelligence was steadily growing and probably has not reached
its full potential. On the contrary strength of the algorithm has not grown to expectations
and achieved very poor results in games against other players.

I managed to create very efficient implementation, which provided a huge increase in
speed compared to my previous attempts. This enabled me to generate data more efficiently.
However, the training process requires much more computation then I used. During my
training, I created 31 generations of parameters and overall generated more than 1 gigabyte
of data.

I am planning to train it for longer to see what are the limits of my algorithm. I believe
that if more time was spent on training, the algorithm will improve sufficiently to defeat
some weaker AIs.
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