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Abstract
Thesis provides an overview and discussion of current findings in the field of biometrics.
In particular, it focuses on facial recognition subject. Special attention is payed to con-
volutional neural networks and capsule networks. Thesis then lists current approaches
and state-of-the-art implementations. Based on these findings it provides insight into en-
gineering a very own solution based of CapsNet architecture. Moreover, thesis discussed
advantages and capabilitied of capsule neural networks for identification of a person by its
face.

Abstrakt
Práce shrnuje dosavadní poznatky v oboru biometrie při řešení problematiky identifikace
osoby podle tváře. Zaměřuje se na konvoluční neuronové sítě a kapslové sítě. Dále se zabývá
současnými, modernímy postupy a jejich implementacemi. V neposlední řadě nabízí vlastní
implementaci obdobného řešení na bázi architektury CapsNet – kapslových neuronových
sítí. Práce dále rozebírá přínosy a možnosti využití této architektury pro identifikaci podle
obličeje.
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Rozšířený abstrakt
Identifikace a rozpoznání jiných příslušníků druhu je přirozeným znakem vývojově vyspěle-
jších organismů. Při tomto procesu jsou používány stejné druhy interakce a komunikace jako
při poznávání okolí. U člověka se jedná především o zrak, jakožto jeden z jeho nejrozvin-
utějších smyslů. Součástí plného pochopení, jak k tomuto procesu dochází, je i jeho definice
a napodobení. V době informačních technologií je snadné a žádoucí pokoušet se tyto procesy
replikovat a simulovat. Nabízí to nespočet výhod, ať už motivované samotným poznáním,
či usnadněním si práce. Technologie rozpoznávání lidských bytostí počítačem nalézá využití
v širokém spektru zařízení. Jedná se například o bezpečnostní mechanismy, které mohou
pomoci ochránit majetek či vymáhat zákon a pořádek, až po použití v zábavních a komu-
nikačních technologií, jako například detekce úsměvu při fotografování nebo automatické
označování přátel na sociálních sítích.

Jeden z vhodných kandidátů pro takovouto identifikaci je lidský obličej. Jedná se
o jednu z nejviditelnějších částí lidského těla, velmi často obnaženou, a tedy dobře viditel-
nou. Obličej s sebou nese mnoho znaků, které lze k takové identifikaci využít. Tyto znaky
nazýváme biometrickými příznaky a jedná se o významné a dobře rozpoznatelné oblasti
obličeje jako jsou oči, nos, uši, ústa, lícní kosti, linie brady a podobně. V biometrii
nás nezajímá pouze přítomnost těchto příznaků, ale taky jejich pozice vůči ostatním, je-
jich tvar, velikost aj. V historii bylo vynalezeno již nespočet přístupů, jak tyto příznaky
využít k popisu člověka a jeho následné opakované identifikaci. V současné době se vývoj
ubírá k automatizovaným a autonomním postupům. Tomu nahrává vývoj v oblasti umělé
inteligence a strojového učení.

Přístup k identifikaci osoby podle obličeje za použití strojového učení má nespočet
podob. Dnes jsou velmi populárním přístupem neuronové sítě, konkrétně konvoluční neu-
ronové sítě (CNN). Tento specifický typ využívá konvoluce, pro detekci oblastí obsahující
natrénované příznaky. Typicky takové sítě pro rozpoznávání jedinců podle obličejů vyžadují
rozsáhle hluboké sítě obsahující mnoho konvolučních vrstev. Taktéž požadují, aby byly
trénovány na velkém množství dat. Navíc je konvoluční síť limitována ve svém chápání
obrazu jako statického dvourozměrného prostoru. Konvoluce, tak jak je navržena pro kon-
voluční neuronové sítě nedovoluje uchování potřebného kontextu a pochopení 2D obrazu
jako reprezentace 3D skutečnosti. V roce 2017 proto Geoffrey Hinton, jedna z význam-
ných postav strojového učení, zkritizoval způsob získávání znalostí v konvolučních sítích
a navrhl nové řešení, které vynechává operace pooling, jež má za cíl redukovat prostor
příznaků nalezený při konvoluci. Naopak přidává do konvolučních sítí další rozměr, který
dokáže uchovat podstatné skutečnosti o každém jednotlivém nalezeném příznaku. Tedy
takové skutečnosti, které by konvoluční síť opomenula a nebrala vůbec v úvahu. Například
pozici vůči jiným příznakům, orientaci v prostoru, úhel vůči ostatním příznakům, atd. Toto
nové řešení se nazývá kapslová neuronová síť (CapsNet). V následujícím textu provedeme
implementaci této navrhnuté architektury.

Samotné implementované řešení obsahuje již zmíněnou kapslovou síť. Ta se seskládá ze
dvou hlavních částí: Enkodéru a Dekodéru. Druhá zmíněná část představuje podpůrnou jed-
notku učení, které na základě aktivace části první a příslušného pravdivostního ohodnocení
rekonstruuje identitu. V našem řešení přistupujeme k dekodéru jako ke tradiční konvoluční
síti. Tato síť má 10 vrstev a povětšinou obsahuje střídající se vrstvy pro konvoluci a pro
zvětšení obrazu.

Oproti tomu Enkodér je pravou kapslovou sítí. Skládá se ze 3 vrstev, není to tedy
žádná hluboká síť. Nicméně výpočetní složitostí se jí blíží. První vrstva je tradiční 2D
konvoluce. Za ní následují 2 vrstvy kapslí. První kapslová vrstva se nazývá primary feature



capsule a jejím úkolem je zachytit a rozpoznat jednotlivé příznaky vhodné pro klasifikaci
osob. Dodává k těmto mapám lokalizovaných příznaků kontext o jejich pozici, úhlu a
velikosti. Následná vrstva, prediction capsule, tyto nalezené příznaky hodnotí a vybírá
ty, které pro danou identitu mají význam. Síť funguje jako klasifikátor, tedy pro každou
identitu vyžaduje jednu tuto kapsli, která jí odpovídá. Aktivace v kapsli druhého typu
znamená pravděpodobnost, že osoba na fotografii je onou identitou, jíž kapsle odpovídá.

Pro hodnocení, které příznaky jsou pro tuto identity důležité, se využívá algoritmu
dynamic routing. Ten způsobí, že každá kapsle iterativně vybírá ty příznaky, které daný
obrázek nejlépe vystihují. Přístup je iterativní, je tedy volitelné, kolikrát se pro každý
vstupní obrázek routing provede.

Řešení bylo implementováno pro Labeled Face in the Wild data set, tedy databázi
obrázků typu in-the-wild. Sledované řešení určovalo identitu u 42, resp 11 identit ve dvou
různých experimentech. Každý z těchto experimentů byl proveden v různých nastaveních
sítě a prezentované řešení se jevilo jako optimální nastavení. U 42 identit síť dosáhla 53,7 %
úspěšné identifikace u 11 identit to bylo 75 %. Vstupní rozlišení obrázku bylo zvoleno jako
32× 32 pixelů.



Descriptor for Identification of a Person by the
Face

Declaration
Hereby I declare that this masters’s thesis was prepared as an original author’s work under
the supervision of Ing. Tomáš Goldmann. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. . . . . . . . . . . . . . . . . . . . . . .
Tomáš Coufal
May 17, 2019



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 In-the-wild pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Recognition and identification . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Output information . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Facial features 7
2.1 Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Facial landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Current approaches to Facial Recognition 10
3.1 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Use of convolution in neural networks . . . . . . . . . . . . . . . . . 12
3.1.3 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Strided convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.5 Zero padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.6 Other convolution layer types . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Capsule neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Inverse graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Understanding capsules . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Architecture using capsules . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Primary capsules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.6 Prediction capsules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Available solutions 25
4.1 Existing CNN implementations . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 FaceNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 SqueezeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Experimental implementations of CapsNet . . . . . . . . . . . . . . . . . . . 27
4.2.1 CapsNet4Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 CapsNet – Traffic sign classifier . . . . . . . . . . . . . . . . . . . . . 27

1



4.2.3 CapsNet-Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Torch and PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 Caffe and Caffe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.1 FDDB: Face Detection Data Set and Benchmark . . . . . . . . . . . 30
4.4.2 LFW: Labeled Faces in the Wild . . . . . . . . . . . . . . . . . . . . 30
4.4.3 The Extended Yale Face Database B . . . . . . . . . . . . . . . . . . 31
4.4.4 SCface - Surveillance Cameras Face Database . . . . . . . . . . . . . 31
4.4.5 VGGFace2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.6 MSCeleb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.7 CelebA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.8 Aligned Face Dataset from Pinterest . . . . . . . . . . . . . . . . . . 33

5 Implementation 34
5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.3 Intermediate masking layer . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Preparation and prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Keras on TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.2 Primary feature capsules layer . . . . . . . . . . . . . . . . . . . . . 43
5.4.3 Prediction capsules layer . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 Intermediate masking layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6.1 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Life cycle of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7.1 Data set preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7.2 Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7.3 Test model and predict labels . . . . . . . . . . . . . . . . . . . . . . 51
5.7.4 Save and load a model . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.8 Running an experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.8.1 CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.8.2 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusion 59
6.1 Experiment discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Improvements and suggestions . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 61

A CD Content 65

2



Chapter 1

Introduction

It is essential to any living species to recognise others in their community. Evolution has
allowed animals to develop many methods how to identify their fellow members. Different
species use various senses to do so. Smell, vision, and hearing are the most common ones.
Humankind relies mostly on their vision. We did not develop strong perception of smell or
other senses, that we can utilise on purpose or over longer distances. Therefore we mostly
use our vision which we can channel, aim and focus easily.

Moreover our species developed a habit to cover ourselves in clothes, which left only
certain parts of our body exposed. Usually that parts are head and hands. And since
receptors for most of our senses are placed on head, we are required to have it exposed to
be able to orient in surroundings. This makes the frontal part of our head, a face, a great
candidate for identifying others [31]. We can recognise many nuances of different elements
on the face. Shape of eyes, nose or mouth, colour of our eyes. . . That’s just a subset of all
the available features we use.

In era of computers and information technologies, mankind tend to use what we know
and offload our skills and capabilities to artificial intelligence. We hope to sharpen and
enhance our senses; obtain more knowledge and widen our possibilities. As an example,
which is more deeply elaborated in this thesis, we are trying to ”teach“ machines to recognise
faces in the same way as we do. And there are various reasons to do so.

1.1 Motivation
Facial recognition in computer science is used in many different ways. Some use cases
require people to be recognised for personal or company security purposes, for surveillance
or just for our convenience.

Automating security countermeasures is a huge driving factor. It allows us to devote
our time to other activities then watching over our belongings and assets. It ensures our
privacy and well-being of the community [45]. Let’s list some basic use cases:

∙ Personal security: unlocking a smartphone or laptop, etc.

∙ Enterprise security and state defence: access control, customs and border con-
trol, etc.

∙ Surveillance: Outlaws identification in public places, law enforcement, riot control,
etc.

3



Furthermore, automated recognition of people’s faces and their identification can facili-
tate many other processes for our convenience [10]. That usually means it can save us time
and provide a better service. These use cases spans from face and smile detection when
focusing and timing a camera shot to automated tagging of individual’s friend on social
media networks.

1.2 Justification
As in any other field in computer science, there is an ongoing race to provide better service in
facial recognition. There are multiple aspects used as a metric to define better solution and
this varies for each use case. Once, it is essential to provide the best performing software,
for automated recognition, in places where limited computational power is available. Other
time, it is rather about precision and time required to recognise a face. Outrunning other
solutions means better service and inventing new technologies along the way unlocks better
understanding on our own thinking process. In this thesis the existing solutions will be
elaborated in detail as well as principles used to achieve such results.

There are also different approaches used to create and design such solutions. Sometimes
a naive approach like edge detections and direct vectorisation [39] is used, other times
the implementation leverages different aspects of Artificial Intelligence, especially Neural
Networks.

1.3 Decomposition
To recognise a human face in a picture or video is a fairly complex problem. Therefore it is
usually divided into smaller sub-tasks, which are easier to comprehend and solve. The aim
of this thesis is to construct a very own solution to this problem, relying strictly on Neural
Networks. Each part of the problem is explained, while only the later one is the crucial
and key deliverable for this thesis. Therefore only the actual facial recognition over already
located faces is implemented. Comparison with existing solutions is offered as a part of the
Available solutions chapter 4, later in this thesis.

Firstly, it is required to understand the input data. This understanding provides means
to fundamentally divide the problem into easily solvable sub-tasks. Let’s define and describe
what are the expectations and demands on the input, so we can assess plausible approaches
and later understand each sub-task as a separate problem. Then we can assume and
thoroughly elaborate the desired outputs and the process of reaching them.

1.3.1 In-the-wild pictures

As wide as the use cases are, the variety of input data is vast. Some cases depends on frontal
pictures of faces, some accents the so-called in-the-wild aspect. This is a term specifically
used for pictures captured without cooperation of the subject. A person on the picture is
usually captured from an angle, lacking eye contact and staged emotion, etc. This thesis
aims to cover a topic of facial recognition over CCTV data. However it can be said that
any in-the-wild pictures are suitable for this implementation. The sufficient resolution and
recognizability is the most important feature and requirement on the input data. The model
has to be able to find a face on the picture. Therefore even if the model would rely solely
on CCTV data, the data feed has to provide enough detail of the person’s face.
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Figure 1.1: Example of pictures in-the-wild. From left: Richard Sutton, Yoshua Bengio,
Geoffrey Hinton. [26].

CCTV as a source of the input data has some crucial advantages for real world scenarios
over any random pictures in-the-wild. Usually CCTV produces feeds [2], therefore the
subject of recognition is captured on many frames of a video recording. That means, the
model can be provided by many images of the same face and if properly configured and
trained, it can leverage this aspect [29].

In our scenario, this data has to be simplified and preprocessed since our main interest
lays in the field of identity mapping for each face. Therefore instead of a full, legit CCTV
footage, we will mainly work with already located and isolated, face centred images. More
detail elaboration of the actual input data in use can be found in Chapter 5.

1.3.2 Recognition and identification

Imagine an individual captured on a CCTV footage. To identify a person by face, we have
to naturally focus the model on the face. Therefore the first step would be to detect where
and if the picture captures a face. When such region is found, it is essential to detect all
the facial features the models is trained to focus. Not always all features are available (the
face can be partially covered, captured from an angle etc.) – the model has to adapt to such
situation. Based on features detected, the model creates an normalised estimation of facial
features. This normalised template should represent a frontal scan of facial features of the
individual’s face. When the model has access to multiple images of the face, it can produce
multiple templates and combine them into one unique normalised master template, unique
to the person.

1.3.3 Output information

Last but not least, let’s define what is expected to be found in such pictures. A facial identi-
fication model aims to come up with a unique vector (face template) for each person. Unique
in a sense of minimising inter-dimensionality and maximising intra-dimensionality [23].
That means the vector extracted from a picture is similar to all other vectors for the
same person, as much as possible. It is also the most different to vector assigned to other

0https://creativecommons.org/licenses/by/2.0/deed.en
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people. Naturally each picture of the same person can result into slightly different tem-
plate. However this sample specific output vector is expected to be nearly identical to a
summarised template for the person. This summarised template is a result of combining
many output vectors for the same individual. In this thesis we will elaborate more sim-
plistic approach which will result into comparable results, yet more convenient and better
consumable output.
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Chapter 2

Facial features

We’ve already covered a basic introduction into our problem. Although our solution is a
modern one, the issue itself is not new. This field has been already studied for many years.
This is not true just for facial recognition. The area related to this specific problem is
wast – it is called Biometrics. And it spans any type of identification of a human being by
their natural features, small anomalies which each member of mankind poses, and when
combined are so unique, that we can use them to identify a member with great reliability.
Let’s see where it all begun and what are those features, that are particularly important
for us.

2.1 Biometrics
The word Biometrics comes from Greek words bíos (life) and métron (measure). In the
modern sense of this word, it is used to describe a field in science, which focuses on identi-
fication by unique features of human body. First systematic approaches to provide metric
description of a human body part dates back to mid-19th century.

2.1.1 History

Before we begin to drill down into details of face recognition, let’s iterate back and focus
on some important steps in history [31] which led researchers towards current automated
technologies for recognition and identification.

1858: A first systematic approach to human identification by hand

The very first recorded attempt to systematically track and identify human beings happened
in India. Sir W. J. Hershel used a handprint to distinguish employees of Civil Service of
India. Each employee had their hand traced on their contract so mistakes were eliminated,
when they were about to receive salary.

1880: Bertillonage

Alphonse Bertillon developed a model using anthropometric classification of a human being.
He used physical body measurements and photographs to identify criminal offenders. This
method aimed to solve a problem when the felons often tried to impersonate someone else
by reporting a false name to avoid harsher sentences for repeated offenders. Bertillon stated
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that despite a different name, they have the same body. This system failed short in 1903
when people with the same set of measurements were objectively found.

1896: Fingerprint classification system

Sir Edward Henry and Sir Francis Galton aimed to replace unreliable anthropometric clas-
sification. They came up with usage of fingerprints. Henry’s employee, Azizul Haque
designed a classification and storage system, so scanned fingerprints could be properly and
quickly compared. The Henry Classification System was quickly adopted by many criminal
justice organisations around the world.

1936: Conceptual beginnings of iris-based identification

Frank Burch, an ophthalmologist, discovered unique properties of iris patterns and proposed
their use to identification.

1960s: Face recognition

Starting from 1960, systematic approach to face recognition is being invented. At first,
manual extraction of features from a picture was required. Then, a calculated distance
between landmarks and rations were used for automated comparison against records. Later,
the feature extraction was pushed to more automated solution, though it still required
manual intervention of marking the desired spots on the measured subject’s face.

1993: FERET

DARPA created and sponsored a program called FacE REcogntion Technology (FERET).
This encouraged competition to create face recognition algorithms and automated solutions.
As a result first commercial solutions were invented and made available.

1998: COOIS, a forensic DNA database initiative

Launched by FBI, the COOIS database was created. It was desired to digitally store,
retrieve and search for DNA information by law enforcement agencies in the USA.

2002: ISO/IEC committee for biometrics

The International Organization for Standardization established a committee for standard-
ization of biometrics technologies which further accelerated cooperation of researchers in
field of biometrics.

2.1.2 Challenges

Biometrics tries to enhance security by implementing automated recognition and identifi-
cation systems for humans. As any computer system designed for human interaction, it
faces challenges in reliability, scalability, and usability [44]. There is also an aspect
of confidentiality, since it directly operates with features unique to a specific individual.
Any disclosure of such sensitive information results in violation on privacy of the respected
individual.
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Providing greater reliability is crucial for achieving system’s responsiveness. To define
this aspect, we recognise two distinct metrics inter-dimensional variability and its counter-
part called intra-dimensional variability or better consistency. The first one ensures that a
biometric system applied on two different subjects, no matter how similar they are, would
result into two separable profiles. The later, on the other hand, oversees an essential prop-
erty of consistency: multiple processing of an individual results in the same response from
the system.

Scalability aspect is a measure of system’s capability to provide the same quality of
service, when up-scaled to a greater number of subjects, as it behaves for a small group
of people. That involves not just an engineering point of view, like resource limitations,
computational power and system design, moreover a uniqueness of tracked features is in
play.

On the other hand, the property of usability requires the biometrics system to be user
friendly for the subjects. If a process of identification by certain set of features is too
complicated and invasive for a user, it might not be viewed as an aid, and would be avoided
by users [35]. This aspect has to be considered as well when such systems are designed.

2.2 Facial landmarks
In Biometrics, and in image processing in general, we define a term landmark. Biometrics
specifically understands [24] this term as of a biometric feature [36]. It is used to describe
and represent a distinct region in certain image, which resembles some important property
of the studied object. Since we are mostly interested in facial recognition in this thesis, we
will focus just on this part of human body.

Main facial features that are important for face recognition and later in identification
of owner of that face are: Eye, Eyebrow, Nose, Mouth, Chin, Jawline, Ear [7].

A shape of feature, their location and topological relation to other features are the most
important parts of face discovery process. Each feature has an unique shape and size. This
can help to localize it and decide if the subject image is really the object we are looking
for. Moreover their relation, ratio and angle later helps to identify certain individual [2].
Usually presence of a feature is required to happen in a certain part of an image. Later we
will discuss, how are these features detected, and what leads to successful identification.
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Chapter 3

Current approaches to Facial
Recognition

Face detection and recognition is not a new subject to computer science. Through time there
were many attempts to provide satisfactory solutions and approximations. Techniques used
for face detection spans from a regular well-known image recognition via edge detection,
to more advanced, precise, though computationally expensive use of neural networks. This
chapter will provide a basic overview of the mainstream approaches, listing the most current
state-of-the-art methods and means to the problem.

Each section in this chapter represents a family of solutions. Providing a full description,
explanation, and understanding of their respective problem, would span a book of its own,
hence we aim to cover only a high level walk-though. We may also revisit certain aspects
in more detail later in the text, as well.

3.1 Convolutional neural networks
There are many kinds of neural networks, one of which is called Convolutional Network [12,
p. 330], or CNN (Convolutional Neural Network). CNN specialises in processing data
of known, grid-like structure. That includes for example time-series data, which can be
represented as one dimensional grid of samples taken in regular intervals during a period of
time. It also includes image data, represented as 2D grid of pixels. As the name suggests,
CNNs employs a mathematical operation called convolution. In practical application, that
stands for a substitution of a matrix multiplication by this linear mathematical operation
- convolution. And this is done in at least one of the network’s layers.

This section aims to explain what convolution is, what are the motivations behind its
usage in neural networks. Later we’ll describe a pooling operation, which is used in almost
all CNNs as well.

3.1.1 Convolution

Convolution as a mathematical operation generally symbolise an operation on two functions
of real-valued argument. Let’s start with an example, paraphrased from Hinton’s book [12],
of such functions and demonstrate a motivation behind convolution:

Assume we have a vehicle and a laser parking sensor mounted on its front. This sensor is
used to measures a distance to some object, let’s say a docking station for the vehicle. And
we want to park the vehicle at some precise proximity to the object. The sensor provides
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a single output 𝑝(𝑡), which reads as a position of the vehicle at certain time. Both 𝑝 and
𝑡 are real-valued, which means that the sensor can provide a different output value at any
instance in time.

We also have to count in that our sensor is not always fully precise and reliable, so
the measurements provided may be noisy. To obtain a more relevant data – a less noisy
estimate of the position against the object, we can base our measurement on an average
of several data samples. Since the vehicle is moving, we have to assume that more recent
outputs should provide more relevant reading. So, we can weight our average and give the
more recent data points more importance. Let’s define this weight function as 𝑤(𝑎), where
the argument 𝑎 symbolize age of a measurement.

Calculating the weighted average at every moment, we can get a smoother estimation
of the vehicle’s position as a new function:

𝑠(𝑡) =

∫︁
𝑝(𝑎)𝑤(𝑡− 𝑎)𝑑𝑎 (3.1)

The function 𝑠 is formally known as convolution. An asterisk symbol is usually used
to denote this operation:

𝑠(𝑡) = (𝑝 * 𝑤)(𝑡) (3.2)
To complete the definition, we have to note that 𝑤 has to be a valid probability density

function, which in our example has to meet a criteria 𝑎 < 0 : 𝑤(𝑎) = 0. That limits
our function to weight only past samples, since we can’s assume that our sensor can look
into the future, that would be silly. That is a limitation to our use case only. In general,
convolution is defined for all functions where the integral above is defined.

Convolutional neural networks use a bit different terminology, than we used in the
example. The function providing data we want to consume (𝑝 from the example) is simply
called input. The other parameter to the convolution, in our example that was the weight
function, is called a kernel. The result of convolution (𝑠) of input (𝑝) over a kernel (𝑤) is
simply called output or feature map.

Our expectation that the sensor from the example above, would provide a measurement
continuously, in any instant of time, is not realistic. Time is usually discretized in digital
world, therefore it is meaningful to assume the sensor is providing measurements at regular
intervals. So instead of integrating over time continuum, we can define [12] a discrete
convolution as:

𝑠(𝑡) =
∞∑︁

𝑎=−∞
𝑝(𝑎)𝑤(𝑡− 𝑎) = (𝑝 * 𝑤)(𝑡) (3.3)

Our example was quite simple and straightforward, usually in artificial intelligence and
deep-learning the input is common to be multidimensional array (tensor) of data. Also
the kernel happens to be a tensor of parameters which values are often obtained by some
learning algorithm.

Finally, when processing multidimensional data, convolution is used over multiple axis
at the same time. That’s important for our application, because pictures, we are about
to process, have more than one dimension. So in case we have an input image 𝐼 – a two-
dimensional bitmap, our convolution should use a two-dimensional kernel 𝐾 as well [12]:

𝑆(𝑥, 𝑦) = (𝐼 *𝐾)(𝑥, 𝑦) =
∑︁
𝑖

∑︁
𝑗

𝐼(𝑚,𝑛)𝐾(𝑥− 𝑖)(𝑦 − 𝑗) (3.4)
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Figure 3.1: Convolution operation with 2D input data and 2D kernel.

3.1.2 Use of convolution in neural networks

In machine learning, we leverage multiple important properties of the convolution operation:

∙ Sparse interaction

∙ Sharing of parameters

∙ Equivariant representation

∙ Input of variable size

Sparse interaction

As you can notice in Figure 3.1, kernel can be of different size than input. When the input
data is for example an image of millions of pixels, the size of kernel allows convolution to
select only specific subset of inputs for each output. In traditional neural networks, a matrix
multiplication is used instead of convolution. That means every output unit interacts with
every input unit. In convolutional networks, the kernel size limits that just to certain
subset of input units. It is called sparse interaction [12, p. 335] or sparse weights and
it is accomplished by restricting kernel to a smaller size than the input. That results in
smaller memory footprint of the model, since it requires fewer parameters to be stored.
while at the same time it improves statistical efficiency. It has also impact on performance,
since computing the output requires fewer operations compared to matrix multiplication.
A graphical demonstration can be seen on Figure 3.2.

Deep convolutional networks allow indirect interaction between units which would be
out of reach for given kernel size. This property is called receptive field [12, p. 337] of a
unit and can be seen when we look at the network from perspective of the output layer (see
figure 3.3).

However, this view limits us just to direct influence on a unit. Receptive field lists also
indirect influence, hence when multiple convolutional layers are used by the network the field
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Figure 3.2: Sparse interaction viewed from below: The highlighted units demonstrates
propagation of one input unit from current layer 𝑠3 to the next layer. On the top you can see
all the output 𝑛 units, which are affected by this particular input. On the bottom picture,
you can see how the same situation is represented in traditional matrix multiplication.

grows. This can be seen on figure 3.4. The effect can be enhanced when network contains
additional features like strided convolution 3.1.4 or pooling 3.1.3. This means, despite the
direct influence is very sparse, the final impact through indirect influence can make the
units deeper in the network connected to most of the image on input.

Parameter sharing

A feature of convolution referring to a reuse of parameters in more than one computation. In
matrix multiplication, each weight element is calculated and used only once when computing
the output. The weight is multiplied by one element of the input and then never used again.
In contrast, convolution keeps it is kernel the same an uses its elements for every output
calculation. This brings an advantage of learning just one set of weights for the whole input,
rather than computing and remembering a set of weights for each output unit. Parameter
sharing has no impact on forward propagation but it does further improve memory efficiency
of a stored model.

Equivariant representation

A function is equivariant to another when 𝑓(𝑔(𝑥)) = 𝑔(𝑓(𝑥)). Convolution is naturally
equivariant for example to translation [12, p. 339]. Imagine we have an input image and
we shift the image some pixels to any direction of choice. When convolution is performed,
the same kernel is applied to any set of pixels, therefore the set of features, our network
layer aims to collect, can be found in the shifted image as well as in the original. It would
just appear shifted in the output feature map. Here we can benefit from parameter sharing
in use cases like edge detection. We’re interested in the same feature, no matter where it
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Figure 3.3: Sparse interaction viewed from above: Highlighted portion of the image shows
all units affecting the current layer (𝑠 units). The amount of units is smaller on the top
picture. That represents sparse interaction. On the bottom is the same situation, when the
current layer is formed by matrix multiplication in a traditional network.

appears on the image. In other use cases, like for example face detection, we might not
be interested in the full parameter sharing. Imagine we have a kernel which is trained to
detect a mouth. In order to work properly, we should restrict this kernel to look for the
feature only in bottom portion of the picture, because detecting a mouth on forehead would
not result in proper outputs. We’ll cover more about multi-kernel convolution layers later.

Variable size of the input

Convolution can process data samples of different sizes. When the use case requires the
network to be robust enough to properly process for example images, where each of the
sample has different dimensions, this is a problem in matrix multiplication. The network
can’t apply the fixed size weight matrix on an input of different size. On the other hand,
convolution is easy to perform, the situation is really similar to input of a fixed size, just
the kernel is applied different amount of times.

3.1.3 Pooling

In neural networks, convolution layer does not mean solely a convolution operation is ap-
plied [28]. Typically such layer consists of multiple stages:

1. Convolution stage: Multiple parallel convolutions are computed, which produces a
set of linear activations.

2. Detector stage: Each of the linear activations from previous stage is run through a
nonlinear activation function.

3. Pooling stage: Further modification of the layer.
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Figure 3.4: Receptive field of unit 𝑠3.

The last, pooling stage, provides better understanding of the convolution output. In-
stead of returning a set of features, it reduces redundancy of neighbouring outputs and
provides a summary statistics. This helps the network to be invariant to small transition of
the input. This means that if we translate the input of small amount of pixels, the output
stays the same. This makes such network more robust. In a situations like a face detection,
we don’t need to know exact pixel coordinates of a feature, of an eye for example. We just
need to define a region, where we are looking for such feature.

There are many pooling operations, let’s list some of the most popular ones like max
pooling [49] (reports the maximum output in rectangular neighbourhood), average of rect-
angular neighbourhood, 𝐿2 norm of the rectangular neighbourhood, and weighted average
of distance from the central pixel.

Invariance to transition is produced by pooling over spatial regions, however pooling
layer can learn an invariance to a transformation of other kinds as well. That happens if
we pool over outputs of other separately parametrized convolutions. As an example you
can see an invariance to slant in cursive on figure 3.5. This principle is accented mainly in
max-out networks [13].

Since pooling can summarise a response of layer over whole neighbourhood of input
units, it is not necessary to have the same amount of pooling units as the detectors. We
can leverage pooling to provide down-sampling as can be seen in Figure 3.6. That further
improves performance of the network since it lowers the amount of inputs for the next layer.

Pooling with down-sampling is an essential step when dealing with input of variable
size. Let’s say we want to use the convolution to detect a face on images with different
resolutions. We have learned our detectors to register mouth in the bottom half of the image
and another two sets of detectors to locate eyes, each in one of the top quadrants. We can
use convolution layer with down-sampling pooling to provide the required classification. We
expect to be provided by 3 activations on the output, and each of the detector has assigned
its portion of the input. It does not matter, if the portion contains one amount of pixels or
much more.

In deep learning this is often the case. We don’t refer to convolution as a simple single
operation as described in the beginning of this chapter. Such convolution layer with a
single kernel would be capable of extracting only a single feature, although in many spatial
locations. Usually many convolutions are applied and performed in parallel. That can
provide many different kernels for different features, which are interesting for the use case.
As a result, the network can locate many kinds of features at many locations.
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Figure 3.5: Pooling response with learned invariance to slant: Here we have 3 filters, where
all of them had a task to learn a handwritten number 3. Each of them resulted in learning
of different slant of the number. When a number 3 is given as the input, one of the filters
will match it and cause a high activation in corresponding detector unit. Due to use of
pooling, the max pooling unit has a large activation as well, no matter which filter matched
the number.

Figure 3.6: Pooling with down-sampling.

3.1.4 Strided convolution

Also when we have stumbled upon the down-sampling in pooling, this step can be sometimes
omitted and simplified even more. Although the result is similar to the pooling with down-
sampling, the logic in based on different assumptions. In pooling operation, we leverage all
the information retrieved by the convolutions and simplify the output.

A strided convolution is rather avoiding some of the convolutions at all. That further
lowers the computational costs, hence at a risk of not extracting all the features in such
detail. In this case we sample pixels in every direction with a step of 𝑠. The step 𝑠 is called
a stride. It is also possible to define a separate stride for each step direction.

As it can be clearly seen on the images 3.7 and 3.8 the two step down-sampling is com-
putationally more expensive than the strided optimisation, while it can provide similar
results.

3.1.5 Zero padding

Another feature which is essential to CNNs implementation is padding with zeros. This
maintains the network’s ability to preserve the width of its input if needed. The input
tensor is padded with zeros on the ends, so a convolution operation does not shrink the
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Figure 3.7: Convolution and pooling with down-sampling.

Figure 3.8: Strided convolution.

size of input vector by a fraction of kernel. Without padding we are forced to either keep
kernels small, or let the networks shrink in spatial extent. Both are extreme limitations
of network’s power. Padding allows to control independently both: the size of kernel and
resolution of the output.

3.1.6 Other convolution layer types

Sometimes our desire is to rather use locally connected layers. This resembles a discrete
convolution with small kernel, but without parameter sharing. Therefore this layer type
is sometimes called unshared convolution [27]. Unshared type of convolutional layer is
useful when we aim to detect features, which are local and there’s no assumption that the
same feature should occur across all the input.

Another type available is a tiled convolution [15] layer. A layer type meant to offer a
compromise between locally connected layers and convolutional layers. Instead of learning
a set of weights for every spatial location, this layer type provides tiling. That means a
single set of weights is learned and it is later applied in rotation, providing different set
of weighs for neighbouring locations. This makes the outcome similar to locally connected
layer, while keeping the benefit of lower cost of convolutional layer, since requirements to
store parameters would grow by factor of kernel set size, instead of size of a whole feature
map. A comparison overview of different convolution layer types can be seen on figure 3.9.

3.2 Capsule neural networks
Convolutional neural networks are a state-of-the-art of current deep learning. They are
hugely popular and they can provide great results and solve problems, which were unimag-
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Figure 3.9: Comparison of convolutional layers.
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inable before. Despite all their power they embody fundamental drawbacks and limita-
tions [20]. This and availability of grater computational power lead to creation of Capsule
neural networks (CapsNET) [19].

3.2.1 Rationale

CNNs operate with features and their recognition. Deeper convolution layer detect simple
features, for example edges or colour gradients. Layers higher in the network are designed
to detect specific combinations of such features and creates more complex ones. And finally,
on the very top of the network, a dense layer takes the very high level features and provides
a prediction of classification. And since many times the convolution is made invariant to
different transformations, this can lead to impossible results. Mere presence of an object
provides indication of feature presence. Relation between detected features is not consid-
ered at all. When simple features are composed to a more complex ones, translational or
rotational relationship does not play any role.

We have already tackled the way CNN is using to deal with this problem. Pooling and
more convolutional layers of smaller kernels are applied to reduce spatial size of information
lost during each convolution. This aims to increase the field of view for convolutional layers
higher in the network, therefore allowing them to locate features in larger portion of the
input image. Pooling made CNNs surprisingly effective and one of the top performing
architectures, though still enhancing loss of information.

Prof. Geoffrey Hinton, one of fathers of deep learning and praised founder of many
principles and author of algorithms, is also the author of capsule neural networks. Hinton
wrote 1:

The pooling operation used in convolutional neural networks is a big mistake
and the fact that it works so well is a disaster.

To demonstrate this drawback imagine a CNN face detector. Deeper layers of network
detects parts of facial features. The higher layers combine these parts into complex features
like an eye, nose or mouth. Our multi-kernel convolution would allow us to define regions,
where we expect such features, though we can’t define the relation between them. The
network can simply recognise an image as a valid face, despite for example the eye is rotated
to the opposite direction than a mouth. An extreme demonstration of such problem can be
seen on figure 3.10.

3.2.2 Inverse graphics

Hinton, inspired by computer graphics, tried to explain and reconstruct human brain’s
visual cognitive functions. The brain itself in fact does the opposite process to rendering
we know from computer graphics. Hinton calls it inverse graphics. A visual information is
decomposed into a hierarchical representation of objects, which are matched against known,
learned patterns. This relationship matrix is stored in our brains. One key factor is that
object representation is not dependent on view angle.

So how do we model this hierarchical relationship inside a neural network? Here we
can learn from solutions already discovered in another field – in computer graphics. 3D
modelling uses something called a pose. This represents relation between 3D objects and
provides a rotation and translation transformation matrix. In neural networks we represent

1https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/clyj4jv/
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Figure 3.10: Both of these images can be evaluated to be a face. Spatial location, relation
and pose between simpler features are not considered by this type of network. Both images
appear similar to CNN. Original artwork provided by Freepik [9].

that as a 4D pose matrix [19]. This results in combination of information about object
relations with internal representation of object data. Hence it becomes easy for a model to
recognise that it just sees a different view of something it already saw before.

Figure 3.11: CNN struggles to recognise this is the same object. Human brain, on the
other hand, immediately understands that objects on the picture are identical, despite
being viewed from multiple different angles. Original artwork provided by Freepik [9].

Let’s discuss a situation on the Figure 3.11. A human looking at this picture can easily
recognise that it is a rubber duck viewed from different angles. Our internal representation
of a rubber duck is independent on the viewing angle. It may be the first time that these
particular pictures are shown to you, although you simply know their meaning. Since there’s
no internal representation of 3D space in CNNs, it really struggles. On the other hand, for
CapsNET, this problem is easy, since the 3D relations are explicitly modelled. Experiments
shown that usage of capsule neural networks can further reduce the error rate [20].

And this is not the only benefit of usage of capsules. It also significantly lowers the
amount of data required to train such network to achieve comparable performance to a
CNN. And this make sense, since capsule theory is much closer to the way how brain does
work. If a brain tries to learn to distinguish a horse from a cow, it only needs to be presented
with few images, at most couple of dozens. CNN would require to be presented by many
thousands of image samples, to achieve comparable performance. In this particular aspect
we can compare CNNs to a brute-force approach to deep learning [32].

3.2.3 Understanding capsules

Let’s step back and introduce capsules in the CapsNet networks. What does a term capsule
actually mean? What is the mathematical representation and what key principles are
used? How we can represent it as a neural network architecture? How does a network
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using capsules look like from the engineering aspect? And how should such network look
like in our particular use case?

There are many ways to implement capsules and in this example we will follow Hin-
ton [19] and use a simple, 3 layer shallow capsule network with dynamic routing. As shown
later, such shallow network and straightforward implementation works well when used to-
gether with dynamic routing and can achieve results comparable to much deeper CNN
networks.

Desired representation of a capsule layer output in CapsNet network represents a prob-
abilistic likelihood of the entity mapped by one particular capsule being present in the
current input. To facilitate this we use a non-linear activation called squash and is shown
as Equation 3.5. It ensures that the length of a vector is converted into a probability score
of feature presence in current input kernel for each capsule. The aim is to resize vector
based on their size. Shorter vectors get shrunk to minimal lengths while long vector are
shrunk to size slightly below 1. This non-linearity can be later leveraged in discriminative
learning process.

𝑣𝑗 =
‖𝑠𝑗‖2

1 + ‖𝑠𝑗‖2
𝑠𝑗
‖𝑠𝑗‖

(3.5)

In this equation a squash activation is computed for a capsule 𝑗 where 𝑣𝑗 would represent
squashed output and 𝑠𝑗 is the total input.

In any later layer, except the first layer of capsules, the capsule can understand the 𝑠𝑗
input as a weighted sum mapping over all prediction vectors ˆ𝑢𝑗 |𝑖 decided by the capsule
layer below. This prediction vectors are a product of 𝑢𝑖 output of previous capsule layer
and its 𝑊𝑖𝑗 weights matrix:

𝑠𝑗 =
∑︁
𝑖

𝑐𝑖𝑗 �̂�𝑗|𝑖, �̂�𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖 (3.6)

Here we are introducing 𝑐𝑖𝑗 coupling coefficients which are determined by the dynamic
routing process in multiple iterations. The 𝑐𝑖𝑗 coefficients are computed for each capsule
𝑖 in relation to every capsule 𝑗 in the layer above. For each capsule 𝑖 the sum of these
coefficients is equal to 1 and represents a special soft-max for routing. This activation uses
initial logits 𝑏𝑖𝑗 that are log prior probabilities [20] of the likelihood a capsule 𝑖 is coupled to
capsule 𝑗. In general, routing provides each capsule 𝑗 a mean to determine which capsules
𝑖 are interesting enough and aligned in the same fashion for it to base its prediction upon.
This coupling is determined independently on current input.

𝑐𝑖𝑗 =
𝑒𝑥𝑝(𝑏𝑖𝑗)∑︀
𝑘 𝑒𝑥𝑝(𝑏𝑖𝑘)

(3.7)

Later on we will define two distinct layer types: prediction capsules and primary cap-
sules. These are required to communicate and rate the activations based on accuracy of
the prediction. The algorithm used is called dynamic routing by agreement and is
described in greater detail by Hinton in publication Dynamic routing between capsules [19].
It utilizes the already described coupling coefficients and log prior. The algorithm goes as
this:
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Algorithm 1 Dynamic routing by agreement.
1: procedure ROUTING(�̂�𝑗|𝑖, 𝑟, 𝑙)
2: for all capsule 𝑖 in layer 𝑗 and capsule 𝑗 in layer (𝑙 + 1) do 𝑏𝑖𝑗 ← 0

3: for 𝑟 iterations do
4: for all capsule 𝑖 in layer 𝑙 do 𝑐𝑖 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖)

5: for all capsule 𝑗 in layer (𝑙 + 1) do 𝑠𝑗 ←
∑︀

𝑖 𝑐𝑖𝑗 �̂�𝑗|𝑖

6: for all capsule 𝑗 in layer (𝑙 + 1) do 𝑣𝑗 ← 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑗)

7: for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙 + 1) do 𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖𝑣𝑗

8: return 𝑣𝑗

The aim is simple, yet harder to achieve. All and every capsule in primary capsule and
prediction capsule layers are made to agree on the location of the features in space and
their orientation. At first all the routing logits 𝑏𝑖𝑗 are initialized to zero. That means each
input capsule’s output is sent to capsules in the next layer with equal probability 𝑐𝑖𝑗 . In
time, the logits are learned and since they are independent on the current image2, they can
be trained at the same time as all the other weights. Their only dependency is the type
and location of the capsules involved. Its training process involves iteratively adjusting and
refining the logits based on measurement of agreement between the prediction �̂�𝑗|𝑖 made by
capsule 𝑖 in the underlying layer and current output 𝑣𝑗 of each capsule 𝑗 in the layer above.

𝑎𝑖𝑗 = 𝑣𝑗 · �̂�𝑗|𝑖 (3.8)

The measuring of agreement is simplified to a scalar product as per equation 3.8. This
rate is used to as an addend to the log prior 𝑏𝑖𝑗 and used to compute new value of the
coupling coefficient 𝑐𝑖𝑗 .

3.2.4 Architecture using capsules

Before we move on and utilize this principles, we need to step back and understand the
capsule networks as whole. Generally speaking a Capsule network (CapsNET) consists of
two parts where each has a distinct use: Encoder and Decoder:

A decoder network is a fully connected (dense) or convolutional network, which purpose
is simply to reconstruct an image based on prediction. This is used to provide proper
feature adaptive learning experience in order to maximize classification potential of the
encoder, in other words its a regularization method for capsule networks to reach valid
conclusions. Based on recognized features and selected activation in the encoder, decoder
attempts to recreate the input object. In simple use cases like MNIST classification a 3
layer dense network can be used. This was demonstrated by Hinton and can be seen on
figure 3.12. In more feature rich environment with bigger resolution required on input a
fully connected layer doesn’t provide enough interpolation and resizing capabilities so a
convolutional network with resize (enlarge) has to be used. Such network can be of up to
10 layers total. In later chapter we will provide examples of such decoder networks.

Encoder is simply the gro of capsule network. This is the truly capsulized network.
There are many configurations available, though with growing complexity – meaning adding
capsule layers, the computational complexity grows exponentially. This is due to routing
and amount of connections required between each capsule. In this thesis, we will be using

2Each image is expected to include one and just one face, not more.
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Figure 3.12: Decoder architecture as per Hinton [19].

the Hinton’s hinted layering with a slight twist to facilitate more detailed and granular
feature recognition across much wider space.

As said the 3 layer encoder consist of two convolutional layers (one traditional, one
capsule-based) and one capsule-based fully connected layer. The first layer encoder_conv1
is a traditional 2D convolution. Each pixel intensity of the input image gets converted in
this layer to the activation in a detector of local features. Detected local features are used
as input for next layer, primary capsules.

Figure 3.13: Encoder architecture as per Hinton [19].

Naturally each of these parts of the network can be assigned their own loss function. A
different balance – loss weight enforced over each of these functions can greatly improve the
overall loss of the network. For decoder a loss function would be straightforward to guess.
Since we’re dealing with images, 2D data comparison, for example a simple mean squared
error is a suitable metric.

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=0

(𝑌𝑖 − 𝑌𝑖)
2 (3.9)

On the other hand, the encoder part required more sophisticated mean to compute its
inconsistency between the predicted value and its ground truth. Therefore a margin loss is
used for each label in which we’re classifying the images. For each of them and individual
loss is calculated and the total loss is said to be a simple sum of these partial losses:

𝐿𝑘 = 𝑇𝑘𝑚𝑎𝑥(0,𝑚+ − ‖𝑣𝑘‖)2 + 𝜆(1− 𝑇𝑘)𝑚𝑎𝑥(0, ‖𝑣𝑘‖ −𝑚−)2 (3.10)
where, 𝑇𝑘 = 1 is a hot one encoded truth of the capsule belonging to that particular

label. Then 𝑚+ = 0.9 and 𝑚− = 0.1 are the loss boundaries and we use the down-
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weighting factor of 𝜆 = 0.5 to stop shrinking in lengths of activation vectors when initial
learning happens [19].

3.2.5 Primary capsules

This composite layer encapsulates a convolution with vectorization and squashing. There-
fore this layer is also called convolutional capsule layer. It provides knowledge about greater
context of each local feature, and makes more abstract detection about overall shape and
orientation of such feature [20]. Key factor in this layer is a non-linear activation called
squashing. We’ve already covered the squashing function by equation 3.5. Hinton, describes
this layer [19] as:

In convolutional capsule layers each unit in a capsule is a convolutional unit.
Therefore, each capsule will output a grid of vectors rather than a single output
vector.

The quoted statement stipulates boundaries by which this layer is different to a standard
convolution. Since we’re not interested in a scalar feature identity, and require more complex
result, a whole vector of attributes that holds much broader context of the feature location.
This brings couple of limitations of the convolution itself though. For example a strided
convolution or pooling would mean disaster for the spatial collocation of a feature. Therefore
we eliminate our use of these advanced convolutional optimizations and we are obliged to
use a convolution in its most simple and pure form.

3.2.6 Prediction capsules

Next layer is understood to be a fully connected capsule layer, which purpose is to rate the
features located by the previous primary capsule layer and bundle the smallest amount of
unique activation per label. As it may sound confusing, we need to elaborate further and
step by step. We already know, that the output of previous layer in each of its capsules is
a local grid of vectors which are unique to each its member as well as for each capsule. Key
word is ”grid“. It signifies the output is three dimensional. However traditionally a feature
is understood as a 2D location. Our primary capsules holds also another interesting factor
to this. We can now understand and recognize a feature in relation to others. And that’s
precisely what is done in this layer. The amount of prediction capsules corresponds to the
amount of target labels. Therefore each capsule is mapped to one particular label, in our
case an identity, and is expected to locate the features which are unique to this particular
identity as well as all the common features which define a face. However this is not an easy
task, and a simple weighted multiplication over a kernel would not provide enough insight
into the complicated data. Therefore an algorithm called dynamic routing [20] is used. This
routing algorithm has been already discussed and can be seen as Algorithm 1.

The main purpose is to recognise that particular features which holds the same or similar
context as the others in each particular label. The context can be of many different types,
from simple distance of multiple features in 3D space, over a consistent angle hold between
two features, to for instance a simple contextualized location relative to other features.
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Chapter 4

Available solutions

Before implementing an own solution, let’s uncover some available and current implemen-
tations to this very problem. Naturally, big progress and research is performed in this
topic, therefore this chapter is not meant to provide full market scan, or list every solution
available. It rather aims to discover some fine examples of neural network implementations
which perform well.

Later on you’ll stumble upon a list of available face recognition databases and data sets,
which can be used for training and evaluating our implementation. Each of the data set
description is accompanied by a short list of their respective metrics.

4.1 Existing CNN implementations
There are many available solution and existing implementations [46]. They naturally differs,
their models compete and cover different use cases [28]. We have already established, that
the face recognition is a dynamic field with competitive nature. Open challenges and
competitions are enabling greater progress in the field. However that makes it impossible
to provide an always up-to-date review of available solutions and implementations.

Here’s a short list of example challenges and competitions held in the face recognition
field. It provides an insight into how wide the field is and how many different architectures
can be used:

∙ MSCeleb challenges 1

∙ Deep learning benchmark 2

∙ NIST: Fusion of Face Recognition Algorithms 2018 3

∙ Surveillance Face Recognition Challenge [4]

Therefore let’s rather focus on one single solution and pick some details of its design to
better understand, how such implementation is made and what does it mean.

1https://www.msceleb.org/celeb1m/1m and https://www.msceleb.org/challenge2/2017
2https://github.com/u39kun/deep-learning-benchmark
3https://www.nist.gov/programs-projects/fusion-face-recognition-algorithms-2018
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4.1.1 FaceNet

This state-of-the-art solution backed by Google [41] is one of the leading solutions in the
field. Its implementation is open source 4 including pre-trained models. FaceNET is focused
on the same kind of input data as this thesis, therefore it is really great example of an
existing solution to discover. It is inspired by proposed implementations of Visual Geometry
Group, University of Oxford [37].

FaceNET is a CNN based solution. It operates in multiple steps. At first it locates a
face on given image by using multi-task cascaded convolutional network [48]. Then it builds
a face identification network using multiple architectures. It provides models for Inception
ResNet and SqueezeNet architectures.

4.1.2 ResNet

Older architecture of CNN provides reliable solution for image classification [42]. This archi-
tecture is mainly accented in Google AI workshop. It is a certainly complex architecture 4.1
producing models of many parameters and great size, therefore it might not be very useful
in use cases with limited resources.

Figure 4.1: ResNet model structure. Source: Google AI blog 5

4.1.3 SqueezeNet

SqueezeNet [22] is a totally different architecture of deep neural networks than the previous
mention. It introduced itself as an network with AlexNet accuracy, despite having half of
the amount of parameters. It is designed to create small networks with fewer parameters
than any other common network type.

Initially this network was released in 2016 as a Caffe implementation. Later it found
its way into other frameworks and was hugely adopted in use cases with limited resources.

4https://github.com/davidsandberg/facenet
5https://ai.googleblog.com/2016/08/improving-inception-and-image.html
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Therefore it makes applications, which would require a model to be run on low-powered
processing platforms like FPGAs and smartphones, available.

It is capable of optimizations like Deep Compression [18], which allows trained models
to be compressed. In case of SqueezeNet it can reduce model size 10×.

4.2 Experimental implementations of CapsNet
Convolutional neural networks are already heavily established in the field, and since Cap-
sNet is a new and emerging architecture, it haven’t proved itself in this particular field [32].
Couple of different implementations exists, though only few are aiming for the facial recog-
nition. However this architecture is the key delivery for this thesis, so it would be beneficial
at least list the solutions and attempts to provide a reader more comprehensive view.

4.2.1 CapsNet4Faces

The only CapsNet attempt aiming to solve the same problem, available at the time of
publishing this thesis. However the implementation [40] seems incomplete and is based on
the later mentioned Traffic sign classifier 4.2.2. The basic description states 100 % accuracy
although I was not able to replicate that and moreover all listed example Jupyter notebooks
are faulty and do not contain expected outputs. In many places outdated results from
Thibault Neveu’s traffic sign classifier is shown. Despite the fact this solution is most likely
not complete, it has to be listed, since it’s the only publicly available solution using the same
architecture found. This solution is featured in an unpublished paper [6] with questionable
conclusion since the described architecture doesn’t match their very own implementation
and rather follows a MNIST classifier demonstrated by Hinton [19].

4.2.2 CapsNet – Traffic sign classifier

The most complete implementation of capsule network on a more complex problem than a
MNIST data set. In this particular implementation [33], the author Thibault Neveu focuses
to create a classifier of German traffic signs. A network of 42 prediction capsules is able
to assign correct label to a traffic sign with 98 % validation accuracy (97 % for testing).
It follows similar architecture pattern as described above, at least for the encoder part.
The decoder is made differently, since a fully connected 3 layer decoding is not considered
helpful for a image data in colour. Instead a convolutional decoder with resizing – up-scaling
to nearest neighbour is used to provide reconstruction network. As per the documentation,
this proved much more useful along with reduction in routing. The network is implemented
in pure TensorFlow framework. In our own solution later, we will use this network as a
guidance and great inspiration for our work. The implementation is not very clean, though
provide great insight into how one can manipulate and classify RGB data with emphasis
on small feature size. We will borrow some visualization methods later in our example
notebooks as well.

4.2.3 CapsNet-Keras

A thoughtful implementation [17] of a capsule network in Keras using TensorFlow as back-
end. Despite it sole focus on MNIST data set, it provides the most understandable and
cleanest implementation of such network. As we will talk about later the chosen framework
is a great advantage here. It follows very closely the implementation accented by Hinton [19].
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It features a 3 layer encoder with one composite primary capsules layer and one layer
of prediction capsules, each per a digit. The architecture shown on figures 3.13 and 3.12
applies. As you may already recognize, that means this network has 10 prediction capsules,
which greatly affects its size and keep it fairly small.

4.3 Frameworks
Each of the previously mentioned solutions has something in common. They have used a
AI framework or library of some sort. Writing neural networks from scratch is obviously
a complex task, therefore there are many initiatives, which seeks to simplify and facilitate
access to such complex structures. Let’s list some of the most common ones and list some
of their basic advantages and disadvantages.

4.3.1 Torch and PyTorch

Torch is a deep-learning and computational framework written in Lua. While very powerful,
its design prevented from being adopted by users and researchers. The main problem was in
usage of rather an exotic programming language, which created barrier for users. It is been
decided to create a Python clone of the framework, which brought PyTorch 6 to existence.
It was created by Facebook and released in 2007 under an open source license. One of its
key features are dynamic computation graphs, which can serve well when processing inputs
or outputs of variable length.

+ Many pluggable modules

+ Easy to integrate different extensions

+ Simple to define own layers

+ Straightforward access to running code on GPU

+ Offers dynamic computation graphs

+ Broad community and wide audience

+ Easier to inspect and monitor training of models

+ Intuitive API

− Requires custom training code

4.3.2 TensorFlow

This library created by Google was designed as a replacement for their previous project
called Theano. TensorFlow 7 is a heavyweight framework written as a Python API in
C/C++. It simplifies researcher’s task in many ways better than other framework. For
example it generates a computational graph and performs automatic differentiation. That
means the user is not required to write a training code (back-propagation) every time, he’s
experimenting with a new network topology. Since this framework is backed by Google,

6https://pytorch.org/
7https://www.tensorflow.org/

28

https://pytorch.org/
https://www.tensorflow.org/


it thrives in many different applications and can scale across devices. Many possibilities
for applying saved models in different environment enables use of AI in mobile devices and
even in web browsers. However it is broad possibilities and options make this framework
hard to understand and for newcomers it can be confusing and too complex. Therefore an
abstraction layer above TensorFlow had been created, but more about that in the Keras
subsection below.

+ Native Python and Numpy integration

+ Automatic training code

+ Broad community and wide audience

− Heavyweight frameworks

− A bit slower than PyTorch

4.3.3 Caffe and Caffe2
Caffe is another competition framework, which is widely popular among researchers. It
started as a C/C++ port of Matlab’s implementation of fast convolutional networks. It
is mainly oriented on feed forward networks and image processing and is not intended for
other deep learning application like text processing or 1D series data. Later on it became
performance wise obsolete and community of Caffe developers decided to start from scratch
and created a long-awaited successor Caffe2 8. Backed by Facebook, as their second deep
learning tool kit after PyTorch, it provides more lightweight and scalable solution than
before. It is main area of focus is enterprise grade production environments.

+ Great for image processing and feed-forward networks

+ Automatic training code

+ Lightweight

+ BSD license

4.3.4 Keras

A modern abstraction layer above TensorFlow. Authors and users of TensorFlow suffered
from heavy and complex code structures and when PyTorch appeared with their light
and straightforward Python API, they have started adopting the same principles for the
TensorFlow as well. Therefore a project named Keras 9 was created. It provides intuitive
API inspired by Torch and while starting from TensorFlow it outgrown this base and spread
across many deep learning libraries as its back-ends - Theano, Deeplearning4j, and CNTK.
In addition to its high level abstraction over the back-ends, Keras also provides means to
drill down and optimize and manipulate the underlying code.

+ Intuitive API

+ Multiple back ends to choose from
8https://caffe2.ai/
9https://keras.io/
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+ Lightweight

+ Fast growing community

+ Recognized as a standard Python API for neural networks

4.4 Data Sets
In order to better understand the nature of CCTV imagery, pictures in-the-wild and the
source data we are about to work with, let’s describe some commonly used databases of
face images and face recognition data. It is crucial to understand the variety and differences
between subjects captured on sample images, like their age, sex, and ethnicity. Also we need
to pay attention to circumstances of the photo setup. That means for example consistency
of resolution across samples, variety of poses and angles, etc.

4.4.1 FDDB: Face Detection Data Set and Benchmark

This data set provides annotations for Faces in the Wild [1] database. FDDB [25] lists
coordinates for bounding boxes for over 5 thousands faces located on pictures from Faces
in the Wild database. Usually multiple faces are located on a single picture. This data
set can provide ground for face detection algorithms and therefore it can be benefited from
in the first step of our implementation. For recognition of individuals, whom such face
belongs to, another data set has to be used. A great accompanying data set can be the
LFW, mentioned in next subsection.

Number of subjects 5 171
Total images 28 045
Samples per subject Varies, many have just one, others up to 40
Resolution All kinds, even blurred faces
License Creative Commons

Table 4.1: FDDB data set metrics

4.4.2 LFW: Labeled Faces in the Wild

LFW [21] provides labels for images from Faces in the Wild data set mentioned before.
Therefore when used in conjunction with FDDB, this data set can provide a robust base
for face recognition. The database spans many identities, though it lacks volume – many
subjects have only one image in the data set. That does not provide enough coverage to
train a network to recognize that individual.

Number of subjects 5 749
Total images 13 233
Samples per subject Varies, many have just one, others up to 40
Resolution 250 × 250
License Creative Commons

Table 4.2: LWF data set metrics
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4.4.3 The Extended Yale Face Database B

Extended version of original Yale Face Database. The extension was provided by UCSD [11].
This database comprises of over 16 000 images of 28 unique subjects. They are fitted to
same size and resolution, covering various angles of the face. There are 9 poses provided for
each person, each of them covering 64 different illumination condition. When compared to
a large scale data set this database lacks volume, however it maintains consistency across
its samples.

Number of subjects 28
Total images 16 128
Samples per subject 576
Poses 9
Resolution 168× 192 pixels
License Free to use for research purposes

Table 4.3: Extended Yale Face Database B metrics

4.4.4 SCface - Surveillance Cameras Face Database

A face database originated from University of Zagreb. Quality data set of surveillance-like
face images. It aims to simulate a CCTV captured images by maintaining an uncontrolled
indoor environment. Each of 130 subjects is captured by up to 8 video surveillance cameras.
Some of them even capable of IR capturing. Each camera produces images of different
resolution and sharpness. Cameras are also set in different angles against the subject.
SCFace [16] mimics real-world circumstances and use cases of CCTV, therefore this data set
can be used to train robust solutions for face recognition targeting CCTV and surveillance
cameras.

A disadvantage is the size of this data set, where we can find 4 160 image samples only.
When compared to large-scaled data set like the VGGFace and VGGFace2 mentioned in
next subsection, this data set lacks volume. Also the variety of subjects is not robust enough
in comparison to other data set. As said, SCFace captures 130 subjects. Most of them are
of the same sex, all of the same ethnicity.

Number of subjects 130
Total images 4 160
Samples per subject Fixed amount of 32 images per person
Resolution Varies, 3 different sizes
License Custom, research purpose only

Table 4.4: SCFace data set metrics

This database is available for research purposes and upon written request to the authors.

4.4.5 VGGFace2

Visual Geometry Group produced a second iteration of their face recognition data set [3].
This is one of the widest data sets which are publicly available. It provides a wide-scale
data for face recognition for over 9000 different identities. Distribution of individuals varies
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though, with minimal 87 images up to 843 per identity. Average number of images per
subject is 362. The data set contains over 3,3 million of images in total. Subjects varies
in ethnicity, age and profession, while the images varies in angles or poses. Collection of
such vast amount of images is a product of web scraping, so the images might not always
be consistent with definition of pictures in-the-wild.

The data set is made available under Creative Commons license 10, therefore it is avail-
able for broad use to any project.

Number of subjects 9 294
Total images 3 311 286
Samples per subject Varies, 87–843 per subject
Resolution Varies, many different sizes
License Creative Commons

Table 4.5: VGGFace2 data set metrics

This project also provides sample models trained on their data set. However, the pro-
vided example pre-trained neural network models are not the sole representation of its
usage. Many popular face recognition models are trained on this data set. For example
FaceNET, mentioned before 4.1.1, can be seen as one of the popular projects which benefits
from this data set.

4.4.6 MSCeleb

This data set is provided by Microsoft company and various challenges and competitions
were held against it. Similarly to the previous one, MSCeleb [47] is a large scale data set,
though oriented specifically on celebrities. Each challenge announced by their researcher
team is backed by a specific subset of the data set. These selections are usually oriented
on certain aspects of face recognition, therefore can be proven valid for use case covered in
this thesis.

Subjects vary in all desired aspects and images provide enough variety in poses and
background noise.

Number of subjects 99 892
Total images 8 456 240
Samples per subject Varies, average 85 per entity
Resolution Varies, up to 300 × 300
License Research purposes only

Table 4.6: MSCeleb data set metrics

4.4.7 CelebA

CelebA [30] is another large scale database of faces. The focus is on celebrities faces, the
same as in the MSCeleb data set. Pictures cover wide variety of poses and background
noises. Each image is provided with 5 landmarks locations and 40 binary attributes.

Subjects vary in ethnicity, age, sex as well as in appearance. Data set includes faces
with facial hair, poses and with different emotions.

10https://creativecommons.org/licenses/by-sa/4.0/
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Number of subjects 10 177
Total images 202 599
Samples per subject Varies
Resolution Varies
License Research purposes only

Table 4.7: CelebA data set metrics

4.4.8 Aligned Face Dataset from Pinterest

Aligned Face Dataset from Pinterest (PINS) is a custom data set available on Kaggle [43].
It provides normalized, aligned and feature centred image data collected from Pinterest and
processed via dlib. The image distribution is not strictly uniform, although it provides at
least 100 images per identity. The only drawback is that images listed are not always in-
the-wild. Many times it include stages photos, many of them post processed and modified.
Therefore despite interesting metrics, the data set proved unusable because of it great great
inconsistency within each identity domain.

Number of subjects 100
Total images 10 770
Samples per subject Varies
Resolution Varies
License Research purposes only

Table 4.8: PINS data set metrics

33



Chapter 5

Implementation

Implementation chapter is meant to cover thw whole development process beginning from
a design to the actual experimentation and programming part of this thesis. Reader of this
document is lead through series examples and is taken on journey to a reliable solution
of the matter. On following pages you will find and reveal complexity of this problem.
This chapter aims to show and uncover every detail the author stumbled upon when he
tried to implement the solutions proposed by Hinton [19], which we elaborated in detail in
Chapter 3.

5.1 Design
As we’ve already discussed in the Chapter 3, the base structure of a capsule network is not
as complicated as a CNN would be, however it requires some additional, custom entities
and treatment as well. Starting from the simple to the more difficult, we are about to
discover the overall architecture first and granularly enhance and dig deep into detail later.

Overall, the architecture is straightforward, but for good results it requires to be build
from two separate distinct units, which when combined can be successfully trained. As per
Hinton [19], we’ll use the same naming conventions:

1. Encoder is the actual network of containing capsules. It serves for feature recognition
and classification.

2. Decoder on the other hand is a helping force in training. It tries to reconstruct the
input image based on prediction provided by the encoder.

Also, it’s worth mentioning a CapsNet is not a single-input, single-output type of net-
work. For training purposes, it consumes both the image and the label and outputs a
predicted label along with a reconstructed image. This behavior changes when the network
is used for predictions. At that point the neural network is expected to behave and process
a single input image and provide one output for it – the predicted label. However more out-
puts might be required in inference, since instead of a prediction we can be more interested
in a similarity vector, which might be a better fit for unknown identity description. One
way or another, any of these scenarios requires a different model layout. And since it’s not
possible to achieve a multiple layouts with a single model, we’re destined to use multiple
models, each with different layer structure. So now, we need to make sure that once we
train one model the other one is capable to benefit from it as well. And now it’s the right
time to use the layer sharing between models as described above.
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5.1.1 Encoder

Encoder serves as the true capsule network. It is expected to consume an image containing
a face and to produce a prediction of an identity the input belongs to. This is achieved by
a series of layers as described in the Chapter 3. The structure prescribed by the following
image is then implemented using layers described in this chapter.

Figure 5.1: Encoder visualization.

1. Input image is consumed as an multidimensional array of floats, where 3 values rep-
resents each pixel. Pixels are aranged in a two dimensional grid.

2. Then standard 2D convolution is applied

3. Convoluted output is routed towards the primary, feature capsules

4. Prediction capsules measures activation on the previous layer and provides a weight
based decision of likelihood that the capsule label matches the input.

Additionally we add a Dropout layer in between step 1 and 2 to prevent over-fitting on
over-represented labels.

5.1.2 Decoder

Based on the findings in Chapter 3, a decoder is a sequential model meant to provide an
image reconstruction feedback. The gro is to implement a training helper, which covers
the key spatial feature areas of a particular identity, so we can later compare and match
the input image to measure accuracy of our prediction. In case of a MNIST data-set
this factor is of a great help, though in case of coherent input data with small difference
on large spatial feature scale, as a human face image is, the importance of a decoder
seems diminished. Moreover a simple 3 layers deep decoder comprising of fully connected
layers offered by research on MNIST can’t be successfully used on RGB data with granular
features. Therefore we leverage a solution introduced by Thibault Neveu in his traffic signs
classifier 4.2.2. We will build a convoluted reconstruction model, which essential building
blocks are a dense layer, resizing layers and convolutional layers. In the end this forms a
neural network of 10 layers, which provides more granular control than a 3 layer model of
fully connected layers.

The decoder consumes a prediction provided by encoder as well as the true image and
aims to recreate a image of a face based on the feature grid activations in the prediction.
The result can be understood as a master template for that particular identity. We will
look into that in our model evaluation later.

Now, let’s describe the flow we want the layers to convey in our decoder unit:
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Figure 5.2: A convolutional decoder for a CapsNet used in our implementation.

5.1.3 Intermediate masking layer

Since we want our decoder to provide as accurate reconstruction we need to tell it, when the
predicted output matches our expectation on what capsule. So before we pass our encoder
output to the decoder defined above, we need to build a mechanism which would combine
true labels and predicted activations in our capsules. This can be easily done by introducing
an intermediate layer, which can nullify every other capsule vector than the correct one.
And since we already have our labels defined as a hot one encoding, we can just simply
multiply our capsule network encoder findings as a tensor for each input by the label vector.
That will ensure propagation of correct capsule activations, because they happen to be on
the only (hot) index, while other capsules are deactivated because their vector is multiplied
by a zero, therefore they won’t provide any input value for this image. Therefore we end
up with set of vectors per each label in size of capsule_dim × labels_count. Despite we
consume two outputs in this layer, the output shape can be computed solely from the first
input – the prediction capsule layer shape. The dimension of true labels is shared because
we keep the number of identities and amount of capsules consistent (1 to 1 mapping). This
layer is shown on Figure 5.3.

5.2 Preparation and prerequisites
Keras with TensorFlow back-end was selected as the key framework to use for this im-
plementation. That inherently means, we are bound to use Python as a programming
language. However, selection of Python is natural and reasonable anyway, since it is the
most used language in the field of machine learning and artificial intelligence experimen-
tation. Moreover due to technical limitation and proven better performance, Anacoda
Python distribution is selected as the proper back-end. According to various researches [34]
and projects, TensorFlow performance fluctuates a lot since the pre-compiled packages are
not allowed to use all the capabilities of each and every specific hardware combination.
Therefore projects like Thoth1 were created to provide dependency mesh mapping. In our

1http://thoth-station.ninja
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Figure 5.3: Graphical representation of the masking layer. Colo coded in blue is the
reconstruction target, while in gray are the suppressed inputs.

example we can be satisfied by the enhanced performance of Anaconda/Conda TensorFlow
distribution (from either Anaconda or Intel channels). Moreover, running TensorFlow lo-
cally on CPU is used for quick prototyping. For more demanding executions, Google Colab2

is selected as Jupyter notebook execution provider. All source codes to this implementation
were released under Apache 2.0 license on Git Hub3.

5.3 Keras on TensorFlow
Keras is a high level API for machine learning. It provides unified means to define and
access models and layers as well as most common mathematical principles and functions
in a highly polished package. This package relies on a back-end provider to implement
the solutions behind the scenes. TensorFlow is one of these back-end. Principles of this
cooperation and more elaborate description of other back-ends and solutions can be found
in Chapter 4.

Let’s provide a basic overview of the available API and bindings that will be used later
on in our implementation:

model = models.Sequential(
name="sequential_model",
layers=[

layers.Dense(...),
layers.Conv2D(...),
...

]
)

Listing 5.1: Keras model defined as a sequence.

2https://colab.research.google.com
3https://github.com/tumido/capsnet-face
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input_layer = layers.Input(shape=(...))
output = layers.Dense(...)(input_layer)
output = layers.Conv2D(...)(output)
...
final_layer = layers.Conv2D(...)(output)

model = models.Model(
name="raw_model",
inputs=[x]
outputs=[final_layer]

)

Listing 5.2: Keras model functional definition.

As you can see using Keras is straightforward. It allows an easy model definition
using various approaches. This provides a great benefit, which we will use later on – it
allows model stacking, permutation of layers, combination of layouts while easily sharing
parameters and behaviour. This gives the researcher a really powerful mean to manipulate
a model and shape it to achieve desired behaviour, even multiple distinct behaviours for
each phase of the model’s life cycle. It allows easy way to inject or extract auxiliary inputs
and outputs into the model configuration. This is a really important feature especially
in our case, as you will learn later on next pages, since we desire a much different model
behaviour when the network is trained to the one when we ask for a prediction.

In next few paragraphs the chosen network configuration for our CapsNet is shown as
well as proven and experimental configurations of the layers involved are observed. As you
might know, layers are the basic building blocks of neural networks. And stacking these
layers one on top of another creates more complex behaviours. Certain patterns of layers
usually results into an architecture. Models can use a straight, classic scheme of layering
one layer onto one another layer, or it can diverge at certain point and result into multiple
behaviours. The first one uses keras.models.Sequential type of neural network. This
means a single set of inputs is passed to the model, the model processes the data through
each and every layer in the same order, and at the end, the last layer in the sequence,
produces the desired output. The later mentioned behaviour, required more complex yet
precise handling. This allows the researcher much greater control over what inputs are
passed to which layer, and which outputs are collected. Keras allows this type of modelling
via keras.models.Model class.

Later on, we will find out that even combination of these methods are possible. This
allows to inject and join models, reuse a model in multiple parts of the network and most
importantly it allows sharing of trained parameters. In our case, we will later on describe
Encoder and Decoder logic as separate models or network prototypes which are combined
into a greater models for two distinct purposes, training the network and testing. The
trained network has one configuration, while the model used for prediction consists of
partially different layers. But since this reuse of network parts is possible, we can leverage
the trained parameters from the training phase, and use them in a different network which
provides predictions.
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5.3.1 Layers

Following paragraphs are introducing all the layers used in our solution and get familiar
with their respective API first before we start putting them together into an actual network
model configuration. Just before we do that, let’s describe the common API for all layers:

layers.Layer(
name="layer_name", # Allows to name layer for proper storing
input_shape=, # Required input shape
output_shape=, # Required output shape
trainable=, # Can make the layer static
weights=, # Preset weights
...

)

Listing 5.3: Common layer API.

Most of the arguments above can be defined on the fly, omitted or abstracted. Except
for one, which is really important to use, in case we desire to store the model for later use.
And that’s the name parameter. This string allows user to specify unique name within the
architecture for this particular layer. And since we can share layers between models, this
feature can be leveraged to load the proper weights data into a different model, despite
being exported from another one. This topic will be covered more in the Section 5.7.4.

keras.layers.Input

Fundamental layer which allows to pass input data to a model. This layer has the biggest
say in the shape of consumed data.

layers.Input(
shape=input_shape # A shape in a tuple format without

# the first batch_size dimension
)

Listing 5.4: Input layer.

keras.layers.Dense

A Dense stands for a well known, fully connected neural networks layer. It’s product can
be represented as Equation 5.1, where the act is an activation function. This activation is
performed over a element-wise multiplication of the input and a weight matrix kernel with
additional bias added. Both kernel and bias are learned through training.

𝑜𝑖𝑗 = 𝑎𝑐𝑡(𝑖𝑖𝑗 × 𝑘 + 𝑏𝑖𝑗) (5.1)

This layer provides more extensive API, but in our implementation we will be satisfied
with the basics. The example calls for each layer in later text is used directly from our
CapsNet implementation.
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layers.Dense(
units=400, # Sets dimensionality of the output
activation=’relu’, # Desired activation function
input_dim=prediction_caps_dim * bins, # Input dimensionality
...

)

Listing 5.5: Dense layer.

keras.layers.Conv2D

Provides a two dimensional convolution. Convolution as operation as well as its meanings
were already described in Section 3.1.1. This layer type utilizes these principles in 2D space.
Keras provides also other layer types for 1D and 3D convolution. However, the matter of
our use case lays in image processing. And since images are a spatial two dimensional
space, it dictates the use of keras.layers.Conv2D. In Keras, there are also other layers
like keras.layers.Convolution2D, though this is just an alias which points to the same
implementation as keras.layers.Conv2D.

layers.Conv2D(
filters=init_conv_filters, # Amount of filters
kernel_size=init_conv_kernel, # Specifies dimensions of kernel
strides=1, # A number of strides to use
padding=’valid’, # Sets padding on outer borders
activation=’relu’, # Desired activation function

)

Listing 5.6: 2D convolution layer

keras.layers.Dropout

An over-fit prevention layer, which randomly sets each particular input to 0 with probability
of rate. This is performed on each update during the training phase.

layers.Dropout(
rate=.3 # Fraction of input to drop
...

)

Listing 5.7: Dropout layer

keras.layers.Reshape

A simple layer which allows to modify the shape of the input data. The result shape consists
of batch_size as first dimension and target_shape as the rest. A special value of −1 can
be used, which is treated as a variable, calculated, dimension.
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layers.Reshape(
target_shape=[-1, capsule_dim], # Desired shape on output
...

)

Listing 5.8: Reshape layer.

keras.layers.Lambda

This is the first more complex layer. Tt might not seem so, however this layer allows to add
custom behaviour. Its name is derived from lambda function, anonymous functions which
are invoked in situ. The keras.layers.Lambda layer allows user to invoke any operation
and transformation defined as a function. We use this type of layer in multiple scenarios,
but for clarity we will list here just a single one – a calculation of length of each vector in
the tensor.

def length(inputs):
return k.sqrt(k.sum(k.square(inputs), axis=2))

layers.Lambda(
length
...

)

Listing 5.9: Lambda layer.

keras.layers.Layer

This abstract class serves as a base for all standard as well as all any custom layers in Keras.
It’s behaviour and shape is fully customizable. Inheritance from this class allows user to
invent and define a brand new layer, while maintaining the same API and compilation
strategy as for any standard layer. While this might sound confusing the authors of Keras
framework made it really easy to comprehend and straightforward to implement. Only few
methods are required to be extended and their used is clear:

1. __init__: Init takes all custom parameters required for the behaviour and saves them
in the layer object. At the end parent method invocation is required.

2. get_config: Provides a dictionary of the layer configuration settings. This hash
map has to include all parent class configurations as well as any custom required to
successfully import this layer aby time later.

3. compute_output_shape: Provides Keras with definition what tensor to expect on
output of this layer, when presented with a given input.

4. build: As the name suggests, this method is called when model is being created.
At this part of execution is the right time to initialize any weights and trainable
attributes.
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5. call: And finally, the custom behaviour method. The only limitation required by
Keras is to return the agreed output shape.

5.4 Architecture
Now, when we understand what types of layer we have available, we can dive in and start
building from these basic blocks a full CapsNet network based on our design in Section 5.1.

5.4.1 Encoder

As you can see on Figure 5.1, the network itself is not complicated much. Let’s take look
at the implementation itself:

x = layers.Input(name=’input_image’, shape=input_shape)

conv = layers.Conv2D(name=’encoder_conv2d’, ...)(x)

dropout = layers.Dropout(.3, name=’encoder_dropout’)(conv)

feature_caps = FeatureCapsule(name=’encoder_feature_caps’, ...)(dropout)

prediction_caps = PredictionCapsule(
name=’encoder_pred_caps’, ...

)(feature_caps)

output = layers.Lambda(length, name=’capsnet’)(prediction_caps)

Listing 5.10: Features capsule with squash activation.

The implementation is quite versatile and allows a lot possibilities to configure and tune
it’s behaviour. Only few parameters are set to be static. These would be mostly paddings
for convolutional layers and activation functions. All other parameters are adjustable, while
some are more dependent on circumstances in which the model is deployed, some aren’t.
We can convey the later group first and then provide explanation of the tunable parameters.

∙ input_shape is an essential attribute based on the input data. It allows the network
to be prepared for input images of certain height and width. Multiple layers are
directly or indirectly dependent on proper settings of this size.

∙ bins Allows researcher to set the amount of identities which we want to classify.
This should also be dependent on the input data, since setting this value to different
amount might result in false positive identifications.

Now to the more interesting arguments, which doesn’t affect the model boundaries,
but rather focus on performance and accuracy. It’s worth mentioning that any of these
arguments has impact on the architecture and model size, since they will change the number
of trainable parameters.

∙ init_conv_filters sets how many different features should be detected in the very
first convolution layer.
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∙ init_conv_kernel modifies the 2D dimensions of the kernel used in the first convo-
lution layer.

∙ feature_caps_kernel is used to adjust the dimensions of convolutional kernel in the
Primary feature capsules.

∙ feature_caps_dim defines dimensionality of a capsule in the Primary feature capsules
layer.

∙ feature_caps_channels is another attribute of the Primary feature capsules, which
signifies amount of channels from which each capsule should build its grid of feature

∙ prediction_caps_dim sets the dimensionality of each capsule in Prediction capsules
layer. This effect the amount of features which are accented - sets the maximum
connection limit for each prediction capsule towards the feature capsules.

∙ kernel_initializer specifies the weight initialization in Prediction capsules.

∙ routing_iters allows a user to select the amount of iterations the dynamic routing
should take.

Now once the scheme in general has been communicated, it’s obvious that key knowledge
is hidden in the implementation of the capsule layers. That would also provide explanation
to the parameters mentioned above and their importance.

5.4.2 Primary feature capsules layer

Name of this layer and expectations set by previous chapters promise that great deal of in-
vention is present in this layer. However that’s not entirely true. More interesting behaviour
can be found in the next prediction capsules layer. The primary capsules are designed for
a simple feature extraction as it might be known from traditional convolutional networks.
This feature extraction has a twist to it, though. As prescribed in the Chapter 3, a non
linear squash activation is used here. We’ve already conveyed the Equation 3.5 describing
the real nature of the squash function. Now we have the opportunity to cover this in a
code.

def squash(inputs, axis=-1):
inputs += k.epsilon() # Avoid ZeroDivisionError
s_norm = k.sum(k.square(inputs), axis, keepdims=True)
scale = s_norm / (1 + s_norm) / k.sqrt(s_norm)
return scale * inputs

Listing 5.11: Squash activation.

The feature capsules layer is in it’s true nature a composite layer of three layers stacked
and with the squash activation on output.

1. At first a convolutional layer is present. This ensures extraction of multiple interest-
ing patterns from each image. Patterns like hue, edges, orientation, dark spots etc.
are recognized and represented by their belonging kernels. The amount of kernels
corresponds to number of desired patters and dimensionality of each capsule.
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2. As a next step the convoluted vector is reshaped to be bundled by capsule dimension-
ality. This essentially splits the input tensor into separate capsules.

3. And as the last step the squash activation is used to provide non-linear normalization
of each vector.

# Locate features
layers.Conv2D(

capsule_dim*channels_count, kernel_size,
name=’feature_capsules_conv2d’
...

)(inputs)

# Split into capsules (concatenate kernels for each)
outputs = layers.Reshape(

[-1, capsule_dim], name=’feature_capsules_reshape’
)(outputs)

# Normalize
outputs = layers.Lambda(

squash, name=’feature_capsules_squash’
)(outputs)

# Result tensor
outputs

Listing 5.12: Features capsule implementation.

As you might see, there’s nothing really complex happening in this layer. However
when this layer is connected to prediction capsules, interesting things will start happening
to properly determine the true bond between capsules.

5.4.3 Prediction capsules layer

In Hinton’s [19] architecture suggestion, this is the final capsule layer. Intention is to classify
feature capsule activations and provide routes to data from interesting feature capsules for
each particular label. As this might suggest, each prediction capsule is tightly mapped
and bonded to a specific label. Therefore as much labels the network aims to classify, that
much prediction capsules it has to contain. This is for sure a great scaling set back and
this and few other drawbacks will be discussed as a part of our conclusion. For now, let’s
focus on how this capsule type is implemented and how we deal with the dynamic routing
as described in Chapter 3.

There are few shared properties in this layer. These are:

∙ capsule_count is a mandatory argument responsible for setting the amount of cap-
sules available in this layer. This number corresponds to the labels we want the
network to classify to.
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∙ capsule_dim is a second mandatory parameter defining dimensionality of each cap-
sule. Recommended settings is 32 or greater. Increasing any of these two parameters
has a great impact on size of the network.

∙ kernel_initializer provides a string pointer or a object from keras.initializers.
This parameter allows user to define initial values of capsule’s weight matrices.

∙ routing_iters allows to change and experiment with the amount of iterations of
dynamic routing. Default value is 3, although the best value may differ.

Count of capsules capsule_count
Dimensionality of each capsule capsule_dim
Amount of routing iterations routing_iters
Count of input layer capsules (feature capsules) input_capsule_count
Dimensionality of input layer capsules input_capsule_dim
Weight matrix W

Table 5.1: Prediction capsule layer attributes

These are the building blocks and a complete context boundaries in which a prediction
capsule is defined.

1. Let’s assume we have the input shape for this layer as (None, input_capsule_count,
input_capsule_dim).

2. To allow space for manipulation in the prediction capsule space, we need to inject
a new dimension into the input tensor and tile the capsule_count over it. That
way we can achieve a separate set of the initial input for a capsule in the cur-
rent layer. Now we have shape (None, capsule_count, input_capsule_count,
input_capsule_dim).

3. Implementing the operation described in Equation 3.6 we multiply the weight matrix
W

# Prepare inputs
# inputs == [None, input_capsule_count, input_capsule_dim]
u = k.expand_dims(inputs, 1)
# u == [None, 1, input_capsule_count, input_capsule_dim]
u = k.tile(u, (1, capsule_count, 1, 1))
# u == [None, capsule_count, input_capsule_count, input_capsule_dim]

# Perform: inputs x W by scanning on input[0]
u = tf.einsum(’iabc,abdc->iabd’, u, W)
# u == [None, capsule_count, input_capsule_count, capsule_dim]

Listing 5.13: Prediction capsule call without routing.
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After the initial weight propagation is done, proper activation has to be ensured. There-
fore using the dynamic routing is essential. This procedure was already described as Algo-
rithm 1, however implementation-wise in Keras it would look more like this:

# Init log prior probabilities to zeros:
b = tf.zeros(

shape=(k.shape(inputs)[0], capsule_count, input_capsule_count, 1)
)
# b == [None, capsule_count, input_capsule_count, 1]

for i in range(routing_iters):
with tf.variable_scope(f’routing_{i}’):

c = tf.keras.activations.softmax(b, axis=1)
# Perform: sum(c x u)
# c == [None, capsule_count, input_capsule_count, 1]
# u == [None, capsule_count, input_capsule_count, capsule_dim]
s = tf.reduce_sum(tf.multiply(c, u), axis=2, keepdims=True)
# s == [None, capsule_count, 1, capsule_dim]
# Perform: squash
v = squash(s)
# v == [None, capsule_count, 1, capsule_dim]
# Perform: sum(output x input)
v_tiled = tf.tile(v, (1, 1, input_capsule_count, 1))
b += tf.reduce_sum(

tf.matmul(u, v_tiled, transpose_b=True),
axis=3, keepdims=True

)

# Squeeze the extra dim (used for manipulation, not needed on output)
# v == [None, capsule_count, 1, capsule_dim]
v = tf.squeeze(v, axis=2)
# v == [None, capsule_count, capsule_dim]

Listing 5.14: Prediction capsule routing

The routing eliminates the input_capsule_count and input_capsule_dim from the
tensor and instead provides new dimension of capsule_dim which applies the attribute of
current prediction capsule layer. As you can see the resulting shape of a prediction capsule
classification activations per each image over each capsule dimension is the proper output
shape of the layer. This would eventually tell us, which capsule found that particular image
most interesting and the likelihood that it belongs to a class mapped to a capsule.

5.5 Decoder
As was already described, the decoder is a layered, sequential model. We will strictly follow
our design defined in Section 5.1:

1. keras.layers.Dense which normalizes and unifies the input mapping enabling later
convolutions to run efficiently and select proper input activations.
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2. keras.layers.Reshape layer converts the fully connected output from one dimen-
sional array to a base image matrix with 5× 5 pixels over 16 channels.

3. Now an alternating pattern of keras.layers.Conv2D and keras.layers.Lambda
with resize function provides a resizing, up-scaling of the image, while interpolating
its properties back to 32× 32 pixels in a convoluted fashion.

4. Before we finalize the decoder, another keras.layers.Conv2D convolutional layer is
used to reduce populated channels and provide only one best channel for each colour.

5. As the last layer we chose to chain an activation layer keras.layers.Activation
transforming our matrices to a ReLU activated image data.

5.6 Intermediate masking layer
This layer is also straightforward to implement. Despite the simple calculation, it would
be difficult to use keras.layers.Lambda since we are combining 2 inputs and calculating
the output shape out of them, therefore we take the base keras.layers.Layer and extend
it’s call and compute_output_shape methods. Since this layer doesn’t require trainable
weights, there’s no need to overwrite the default __init__ on build.

class Mask(layers.Layer):
def call(self, inputs, **kwargs):

capsule_output, labels = inputs
# A vector is multiplied by a scalar hot one encoding.
return k.batch_flatten(capsule_output * k.expand_dims(labels))

def compute_output_shape(self, input_shape):
# PredictionCapsule layer shape
# input_shape[0].shape == (None, capsule_count, capsule_dim)
return (None, input_shape[0][1] * input_shape[0][2])

Listing 5.15: Masking layer.

5.6.1 Recapitulation

Now we understand the building blocks of our network and means to implement it were
offered as well. Let’s recapitulate the whole architecture to better understand the complete
flow, how the data will be processed and classified. We begin with an image of a human
face. This image is set to be 32× 32 pixels and the ground truth labels are expected to be
a hot one encoding of the vectorized identity bins.

Then we can expect the encoder to adhere to the architecture shown on Fig 5.1. When
the model is validated or we are running an inference, we just calculate a norm by length over
the outputs are we have a prediction. On the other hand, when the model is being trained,
we need to add a decoder. However, in between we can’t forget about the intermediate
layer encoding the true labels for reconstruction. So we plug there the masking layer, after
which we can successfully chain the decoder. Let’s have a look how a summary of such
model would look like:
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Name Type Output shape Parameters Connected to

input_image Input (𝑁𝑜𝑛𝑒, 32, 32, 3) 0
encoder_conv2d Conv2D (𝑁𝑜𝑛𝑒, 24, 24, 512) 124 928 input_image
encoder_dropout Dropout (𝑁𝑜𝑛𝑒, 24, 24, 512) 0 encoder_conv2d
encoder_feature_caps_conv2d Conv2D (𝑁𝑜𝑛𝑒, 10, 10, 256) 3 277 056 encoder_dropout
encoder_feature_caps_reshape Reshape (𝑁𝑜𝑛𝑒, 1600, 16) 0 encoder_feature_caps_conv2d
encoder_feature_caps_squash Lambda (squash) (𝑁𝑜𝑛𝑒, 1600, 16) 0 encoder_feature_caps_reshape
encoder_pred_caps PredictionCapsule (𝑁𝑜𝑛𝑒, 42, 32) 34 406 400 encoder_feature_caps_squash
capsnet Lambda (length) (𝑁𝑜𝑛𝑒, 42) 0 encoder_pred_caps
input_label Input (𝑁𝑜𝑛𝑒, 42) 0
mask Mask (𝑁𝑜𝑛𝑒, 1344) 0 encoder_pred_caps

input_label
decoder_dense Dense (𝑁𝑜𝑛𝑒, 400) 538 000 mask
decoder_reshape_1 Reshape (𝑁𝑜𝑛𝑒, 5, 5, 16) 0 decoder_dense
decoder_resize_1 Lambda (resize) (𝑁𝑜𝑛𝑒, 8, 8, 16) 0 decoder_reshape_1
decoder_conv2d_1 Conv2D (𝑁𝑜𝑛𝑒, 8, 8, 4) 580 decoder_resize_1
decoder_resize_2 Lambda (resize) (𝑁𝑜𝑛𝑒, 16, 16, 4) 0 decoder_conv2d_1
decoder_conv2d_2 Conv2D (𝑁𝑜𝑛𝑒, 16, 16, 8) 296 decoder_resize_2
decoder_resize_3 Lambda (resize) (𝑁𝑜𝑛𝑒, 32, 32, 8) 0 decoder_conv2d_2
decoder_conv2d_3 Conv2D (𝑁𝑜𝑛𝑒, 32, 32, 16) 1 168 decoder_resize_3
decoder_conv2d_4 Conv2D (𝑁𝑜𝑛𝑒, 32, 32, 3) 435 decoder_conv2d_3
decoder_activation Activation (𝑁𝑜𝑛𝑒, 32, 32, 3) 0 decoder_conv2d_4

Total 38 348 863

Table 5.2: Implemented CapsNet architecture: Each model in different conditions can differ
in number of parameters and and each layer shapes. For example initial convolution can
be set to different amount of filters which is determined by experiment. Other example
can be the amount of capsules in prediction layer (and its output shape) since that is
tightly bonded to the amount of identity bins. Listed layer types are understood to belong
to keras.layers namespace. In case of Lambda layers, the function in use is listed in
parenthesis.

5.7 Life cycle of a model
Traditionally in machine learning a model needs to be trained, then it is tested and vali-
dated. Since there’s no reason to change this workflow this section will follow the established
scheme and walk you through the required steps in the particular order in which they need
to be examined:

1. Data set selection, collection and pre-processing

2. Establishing model

3. Training a model

4. Validation of trained accuracy

5. Publishing results

5.7.1 Data set preparation

In previous chapters suitable data sets were already mentioned and elaborated. Since size
of our solution is greatly dependent on the amount of identities, we need to select a data set
with fair ratio between the size of labels vector and amount of samples per each identity.
For this particular demonstration we chose the Labeled Faces in the Wild 4.4.2 due to fair
distribution when limited to 25 samples per label or greater, and its simplicity to collect

48



via scikit-learn4 library. We also tried and demonstrated in our Jupyter notebooks the
PINS 4.4.8 data set, but the diversity in data proved itself to be of no use. However the
collection code remains in the thesis sources and in the notebooks, so it is available to be
experimented with.

For next parts of this text, we will continue to use the LFW data set as the sole example
for input data. In order to collect this data set we don’t need to be inventing the wheel
again and we can leverage the capabilities granted via sklearn library.

people = fetch_lfw_people(
color=True,
min_faces_per_person=25,

)

Listing 5.16: Collect Labeled Faces in the Wild data set.

By default the images are 300× 300 pixels big, though since we aim to process images
as small as 32× 32 pixels we need to resize the images. We can either try to reason with a
resize= parameter, though this size fraction can prove itself unreliable so we will use help
of the Pillow5 library:

def downsample(image):
image = Image.fromarray(image.astype(’uint8’), ’RGB’)
image = image.resize(resize_to, Image.ANTIALIAS)

return np.array(image)

x = np.array([downsample(i) for i in people.images]) / 255

Listing 5.17: Pre-processing of the data set.

Now we have solved the image sizes, we can prepare the data set into two distinct
bundles, one for training and one for validation. This means the data we are training the
model against are not the same we use later for validation, therefore the result of validation
is pure and not affected by over-fitting. Here we can use the help of scikit-learn library
once again, since it provides a train_test_split function which allow us to separate
these two sets randomly, with a respective desired ratio. And last but not least, we need
to convert our labels to a hot one encoding. This time we can use a Keras native function
to_categorical.

The data set is now prepared, let’s take a look at the distribution of images magnitude
per label that we can expect as well as other metrics we may consider before training. As we
can see on following Fig 5.4, the distribution is not ideal, and our model will have a tendency
to over-fit on certain overrepresented labels and under-fit on others. This is unfortunate and
we can try to eliminate such behaviour by a dropout layer and with additional augmentation.

5.7.2 Train

Training of a Keras model can be handled in multiple different ways. Since our model
requires multiple input and provides multiple outputs when trained, the fit_generator

4https://scikit-learn.org
5https://pillow.readthedocs.io
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Figure 5.4: LFW subset distribution.

Number of subjects 42
Total amount images 2 588
Amount of images for training 2 070
Amount of images for testing 518
Minimum samples per subject 25
Maximum samples per subject 521
Resolution 32× 32 px
Channels 3 color channels, RGB

Table 5.3: Metrics of the used subset of LFW data set

approach was used. It provides greater control over data passed to the model than a simple
fit, while it remains a pretty simple to implement than a full custom training. Naturally,
the first and foremost in Keras, we need to compile a model, then we can use the already
mentioned fit_generator method with a data generator to process the training.

model.compile(
optimizer=optimizers.Adam(lr=lr),
loss=[margin_loss, ’mse’],
loss_weights=[1., decoder_loss_weight],
metrics={’capsnet’: ’accuracy’}

)

history = model.fit_generator(
generator=dataset_gen(x_train, y_train, batch_size=batch_size),
steps_per_epoch=len(x_train) / batch_size,
validation_data=[[x_test, y_test], [y_test, x_test]],
epochs=epochs

)

Listing 5.18: Training a Keras mode using fit_generator.

As you may have noticed, you can see that we’ve used keras.optimizers.Adam op-
timizer and allow to configure the learning rate (lr), weight of the decoder loss func-
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tion (decorator_loss_weight) as well as a batch size (batch_size) and final amount of
epochs. The training uses the margin loss function according to Eq. 3.10 and a data gen-
erator dataset_gen. This generator provides additional data augmentation via standard
Keras image processors and yields two sets of data, one for each input with their respective
validation truths:

def dataset_gen(x, y, batch_size):
datagen = ImageDataGenerator(

width_shift_range=0.1,
height_shift_range=0.1,
rotation_range=20

)
generator = datagen.flow(x, y, batch_size=batch_size)
while 1:

x_batch, y_batch = generator.next()
yield ([x_batch, y_batch], [y_batch, x_batch])

Listing 5.19: Data generator example.

5.7.3 Test model and predict labels

Testing and providing predictions is a simple process, since everything comes already pre-
pared with Keras models. For testing purposes a model is required to be compiled, otherwise
it can’t provide loss calculations and therefore it can be tested. On the other hand, when we
desire simple predictions the model doesn’t need to be compiled, only presence of weights
is required.

def test(model, x_test, y_test, batch_size=10):
model.compile(

optimizer=’adam’,
loss=margin_loss,
metrics={’capsnet’: ’accuracy’}

)
return model.evaluate(x_test, y_test, batch_size=batch_size)

def predict(model, x, batch_size=10):
return model.predict(x, batch_size=batch_size)

Listing 5.20: Test run and prediction of a Keras model example.

5.7.4 Save and load a model

This is a last part of a model life cycle. Previous text showed how each phase contributes
to creation of a model which finally allows a researched to observe and measure their
experiments. To have a model last, we need a meaning to store it’s trained properties as
well as layout. Since our models allow great customization and invasive changes in the core
architecture, we are obliged to persist not only the weight of every trainable parameter,
but also a configuration of each layer, amounts of neurons in each, probability rates preset
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before even any training begun. Keras library provides a mean how to achieve that. Each
model can be transformed into a H5, JSON or YAML format, while only the H5 format
allows us to save weights along with it. However, since the CapsNet model is not a single
model and we define two different models, one for training and one for inference, we have to
keep our weights separate. Hence we save them as a H5 file separately and then proceed to
store the model architectural configuration settings as a separate YAML file for each model.
And just to keep everything together and bundled, we pack these 3 files into a gun-zipped
tarball.

A similar process, yet reversed procedure can be used later to load the data back into
a model instance. The implementation provided with this thesis allows passing a special
parameter to CapsNet constructor which would skip the network initialization phase and
allow to create a model from a class method. This load method uses native function
model_from_yaml to load up the network configurations and later load_weights methods
to upload trained values. Since we store the weights from the more complex model only, the
simplified testing model, is required to load the weights by layer name. The most interesting
part of this process is however the import of all custom definitions. Since Keras can handle
import of standard layers automatically, there’s a problem with any user defined layers and
functions. Since the creators of this framework we aware of a possibility of this scenario,
they’ve added a special mapping parameter custom_objects.

custom_objects = {
# Custom layers unknown to Keras
’PredictionCapsule’: PredictionCapsule,
’FeatureCapsule’: FeatureCapsule,
’Mask’: Mask,
# TensorFlow and Keras back-end functions used in lambda layers
’tf’: tf,
’k’: k

}

with open(’architecture.yml’, ’r’) as f:
model.model_from_yaml(f.read(), custom_objects=custom_objects)

model.load_weights(’weights.h5’, by_name=True)

Listing 5.21: Loading a model in Keras.

5.8 Running an experiment
Based on previous sections we have prepared our network to be successfully trained and
evaluated. This can be either initiated locally, or via a hosted Jupyter hub. In this case,
we used Google Colab as a Jupyter hosted runtime. Notebooks with execution details are
provided as part of the capsnet package sources. Our library provides all necessary APIs
to maximize user friendliness.

CapsNet class offer these options and arguments to adjust itself to needs of their user:

∙ input_shape: Input data shape in format width, height, color channels.

∙ bins: Number of predicted faces
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∙ routing_iters: Number of iterations each routing should take. Defaults to 3.

∙ kernel_initializer: Initializer for routing weights. Defaults to normally distributed
weights.

∙ init_conv_filters: Number of filters for the first layer. Defaults to 256.

∙ init_conv_kernel: Size of kernel for the first layer. Defaults to 9.

∙ feature_caps_kernel: Size of kernel for Feature Capsules. Defaults to 5.

∙ feature_caps_dim: Dimension of a capsule in Feature Capsule layer. Defaults to 16.

∙ feature_caps_channels: Channels in each of capsules in Feature Capsule layer.
Defaults to 16.

∙ prediction_caps_dim: Dimension of each capsule in Prediction Capsule layer. De-
faults to 32.

∙ skip_init: Set to True if network shouldn’t be built and it’s intended to be loaded
from a file later. Defaults to False.

When instantiated, the object serves and encapsulates the whole process and model life
cycle. It provides whole API for training, testing, predictions and model storage:

∙ train: Train the network. Allows to specify batch size, learning rate, learning decay,
loss function weights etc.

∙ test: Test network on validation data.

∙ predict: Run model predictions on images.

∙ save_weights: Save model’s weights only.

∙ load_weights: Load model’s weights from a h5 file.

∙ load: A class method, which allows a model to be loaded. An instance of model
along with label names is returned.

∙ save: Save whole model: Architecture of both models, weights and training labels
(names for capsules).

∙ summary: Outputs network configuration.

5.8.1 CLI

If desired the Python package, in which the sources can be built into, provides a CLI
interface to facilitate any further interaction. Therefore by installing this implementation,
you are given a capsnet CLI command, which can handle training (and saving the resulting
model) and predictions (from a stored model).
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$ capsnet predict \
-m saved_models/2019-05-14_11-caps_75-acc.tar.gz \
Serena_Williams_0002.jpg

Loading CapsNet...
Loading model from saved_models/2019-05-14_11-caps_75-acc.tar.gz...

Loading "train" architecture... Done
Loading "test" architecture... Done
Loading weights... Done
Extracting labels... Done

Loading image...
Predicting...
Guessed likelihood per label:
Label Probability
Ariel Sharon 2.83%
Colin Powell 8.25%
Donald Rumsfeld 3.25%
George W Bush 0.79%
Gerhard Schroeder 0.25%
Hugo Chavez 0.08%
Jacques Chirac 0.08%
Jean Chretien 0.11%
John Ashcroft 0.65%
Junichiro Koizumi 0.16%
Serena Williams 91.07% <-- Best match
Tony Blair 0.23%

Listing 5.22: CLI interface for predictions.

5.8.2 Model evaluation

The model has been trained in different conditions and settings and multiple times. The
mean values of accuracy and loss is listed in the following Table 5.4 .In this case we exper-
imented with routing iterations and comparing 1 routing to 3 consecutive ones. As proved
by Hinton [19] the amount of iterations has impact on network accuracy and can make the
training converge faster. Each model was trained 3 times and the accuracy and loss values
are calculated as ann average.

Accuracy
Identities Data set (images) Routing iterations Train Validation Test Loss

42 LFW (2 588) 1 46,2% 42,5% 42,5% 0,500 2
42 LFW (2 588) 3 56,4% 53,7% 42,5% 0,391 5
12 LFW (1 560) 1 52,6% 63,2% 61,5% 0,295 2
12 LFW (1 560) 3 69,3% 75,0% 73,7% 0,201 3

Table 5.4: Model evaluations when trained with focus on different amount of identities and
routing iterations impact.
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Figure 5.5: History of training of a 11 identities model showing the testing and training
accuracy development.

The showed image evaluations are just samples of the whole testing scenario. To better
understand the whole picture we should consider a confusion matrix, which shows, how was
each image belonging to a label actually classified. Due to readability we are listing only
the confusion matrix for the model of 12 individuals in this paper. The confusion matrix
for the 42 identities is available as part of the notebooks provided along with this thesis.

The confusion matrix states some interesting findings. First of all George W. Bush and
Colin Powell are over-fitting labels. John Ashcroft is not recognized on any of his photos,
Hugo Chaves successfully blends in the crowd as well as Gerhard Schroeder. The reasons
varies, each may have different explanation:

1. George W. Bush: It is the label with the biggest number of images in the data set.
Therefore it is likely that this identity would over-fit.

2. Colin Powell: This identity features significant amount wrinkles. Therefore it may
be easy to match on this character, since it would provide high activation by default
when wrinkles are present.

3. John Ashcroft: This individual’s face doesn’t hold many characteristic markers at this
resolution. Unfortunately his face at 32 × 32 pixels seems generic and blends with
others, for instance with Colin Powell.

55



Figure 5.6: Top: Tony Blair predicted, while correct is George W. Bush. As you may notice
the correct capsule holds the 4th largest activation, however the result is strongly in favor of
the faulty label. The faulure may seem to occur despite the fact that George W. Bush has
the most images in data set and may be due to the bright spots and overall pale appearance
which may remind Tony Blair. Bottom: This time George W. Bush is predicted correctly.
Activations taken from 42 identities model. A bin labelled in green belongs to the identity
capsule, a red bin shows the predicted activation.
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Figure 5.7: Both images show the network can handle people of various ethnicities fine.
Top: Serena Williams. Middle: Gloria Macapagal Arroyo. Bottom: Junichiro Koizumi.
What seems to matter more is the actual settings and lightning of the input image, in
which many features may stood out better or fade away and blend with the rest of the
image. Activations taken from 42 identities model.
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Figure 5.8: Confusion matrix for the smaller model which identifies 11 individuals.
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Chapter 6

Conclusion

Thesis aimed to cover, explain and experiment with new approaches to facial recognition.
The research in Chapter 3 listed and covered mathematical and engineering principles of
construction of convolutional neural networks. It stumbled upon some drawbacks of such
design and proposed available solutions. It discusses convolutional neural networks as
well as the newest capsule network approach. This throughout review of principles behind
successful identification is later transformed into a state-of-the-art market scan, providing a
quick insight into publicly available solutions as well as available frameworks. Fundamental
benefits and advantages of each framework and solution is listed in the Chapter 4.

The very same chapter also provides an overview of available training data sets are
listed, with focus on in-the-wild image data. This review includes a short description of
each, accompanied by basic metric. Large scale face databases are listed as well.

This knowledge is later leveraged to create own implementation of a capsule network.
The Chapter 5 covers the actual design and implementation of this solution. A part from
this implementation we also demonstrated how such model can be trained and shown the
results.

6.1 Experiment discussion
Overall our implementation proved itself to be successful in recognition of 75 % individuals
when trained with 11 identities. When trained to learn 42 individuals, the achieved per-
formance drops to This accuracy decreases dramatically with either more identities added
or less training data per identity. These effects correlate but the actual cause may be n
one factor only. That would require testing against a data set greater in magnitude, while
balanced in amount of images per identity.

In the case of a model trained to recognize 11 different identities, we had available 50
or more images per each individual. These images covered different settings, angles and
poses. This might have proved to be a great benefit to our model. On the other hand, the
fewer amount of individuals to recognise there is much less parameters to be learned in the
network and therefore the error margin is smaller. And since our data are small images
of 32× 32 pixels, the capsule network struggles to successfully match a greater amount of
identities.
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6.2 Improvements and suggestions
A capsule network provides great power at smaller scales, however, when it is facing big
problems, it demands great computational powers and resources. Hence quick prototyping
and full scale training result in big differences in network configurations and therefore
the observed behaviours. To achieve better results with this type of network, over more
identities, it would be necessary to provide sufficient amount of input data, great GPU
resources. Enhancing detail on the input data form 32 × 32 pixels to more, comes with a
great cost as well, since nearly every layer’s parameter count is dependent on amount of
input pixels. That means the resource demand is raising again. This problem may seem
easy to bypass – forced retraining of the capsule network on a new label. This is topic is
even newer than capsule networks itself and so far was not solved sufficiently.

Capsule networks are a still young approach to machine learning. First announcement
of this approach is dated to 2017, which didn’t yet provided enough time for this tech-
nology to mature. It features new and never before tried algorithms and requires more
advanced mathematics and thinking than a standard and nowadays classical convolutional
neural network. This thesis covered one of the first attempts to publicize and advertise the
possibilities and capabilities of a capsule neural network in the field of facial recognition.
The success rate of the experiments does not reach the best of the best in the field, however
the results can hopefully serve as a base for future research.
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Appendix A

CD Content

∙ src: Source codes for CapsNet package.

∙ src/notebooks: Example Jupyter notebooks for training and testing a model.

∙ src/saved_models: Saved models ready to be imported and used.

∙ src/README.md: Installation and usage manual.

∙ thesis: Source codes to build this thesis PDF.

∙ thesis.pdf: This very same thesis as a PDF file.
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