BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

ROBUST SPEAKER VERIFICATION WITH DEEP NEU-
RAL NETWORKS

ROBUSTNi ROZPOZNAVANI MLUVCiIHO POMOCI NEURONOVYCH SiTi

MASTER'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. jAN PROFANT
AUTOR PRACE

SUPERVISOR Ing. PAVEL MATEJKA, Ph.D.
VEDOUCI PRACE

BRNO 2019

Vysoké uceni technické v Brné
Fakulta informaénich technologii

Ustav po&itadové grafiky a multimédii (UPGM) Akademicky rok 2018/2019
Zadani diplomové prace AT
21535
Student: Profant Jan, Bc.
Program: Informacni technologie Obor: Pocgitacova grafika a multimédia
Nazev: Robustni rozpoznavani mluvéiho pomoci neuronovych siti

Robust Speaker Verification with Deep Neural Networks

Kategorie: Zpracovani fe€i a pfirozeného jazyka
Zadani:

1. Prostudujte statistické techniky pro modelovani fe€i, soustfedte se na neuronové sité.
Seznamte se s trénovaci a testovaci sadou pro soutéz NIST SRE 2018.
Seznamte se se systémem na verifikaci mluv¢iho v toolboxu Kaldi.
Porovneijte zakladni systém z Kaldi se zakladnim systémem zalozenym na i-vektor schématu.
Adaptujte systém z Kaldi na podminky soutéze NIST SRE 2018.
Podrobnéji analyzujte alespor dva bloky ze zakladniho systemu. Napfiklad: VAD, pfiznaky, augmentace
dat, topologie DNN, klasifikator (PLDA), zmény v trénovacich datech €i vzorkovaci frekvenci, ...
Literatura:

¢ X-vectors: Robust DNN embedings for speaker recognition:

https://www.danielpovey.com/files/2018_icassp_xvectors.pdf

e Zakladni systém v Kaldi: https://david-ryan-snyder.github.io/2017/10/04/model_sre16_v2.html

PFi obhajobé semestralni ¢asti projektu je pozadovano:

SRR

e Body 1 az 4.
Podrobné zavazné pokyny pro vypracovani prace viz http://www.fit.vutbr.cz/info/szz/
Vedouci prace: Matéjka Pavel, Ing., Ph.D.
Vedouci Ustavu: Cernocky Jan, doc. Dr. Ing.
Datum zadani: 1. listopadu 2018
Datum odevzdani: 22. kvétna 2019
Datum schvaleni: 6. listopadu 2018

Zadani diplomové prace/21835/2018/xprofa00 Strana 1z 1

Abstract

The objective of this work is to study state-of-the-art deep neural networks based speaker
verification systems called x-vectors on various conditions, such as wideband and narrow-
band data and to develop the system, which is robust to unseen language, specific noise
or speech codec. This system takes variable length audio recording and maps it into fixed
length embedding which is afterward used to represent the speaker. We compared our sys-
tems to BUT’s submission to Speakers in the Wild Speaker Recognition Challenge (SITW)
from 2016, which used previously popular statistical models - i-vectors. We observed, that
when comparing single best systems, with recently published x-vectors we were able to ob-
tain more than 4.38 times lower Equal Error Rate on SITW core-core condition compared
to SITW submission from BUT. Moreover, we find that diarization substantially reduces
error rate when there are multiple speakers for SITW core-multi condition but we could
not see the same trend on NIST SRE 2018 VAST data.

Abstrakt

Tématem této prace je analyza nejmodernéjsich systémii pro rozpoznavani re¢nika za pouziti
neurénovych siti (nazyvanych x-vektory) v rozliénych podminkach, jako jsou sirokopasmové
a uzkopasmové data, ktery je robustni vici nevidénému jazyku, specifickému hluku nebo
telefonnimu kodeku. Automaticky systém mapuje zvukovou nahravku variabilni délky do
fixné dlouhého vektoru, ktery je nasledné vyuzit jako reprezentace fecnika. V této praci
jsme porovnali systémy zalozené na neurénovych sitich s vysledkem VUT tymu v "Speak-
ers in the Wild Speaker Recognition" Challenge (SITW), ktery vyuzival doneddvna velmi
popularni statisticky model - i-vektory. Pozorovali jsme, ze s nedavno publikovanymi x-
vektory dosahujeme 4.38 krat nizsi Equal Error Rate pro SITW core-core evalua¢ni sadu
v porovnani s vysledkem z roku 2016 od VUT v SITW soutézi. Kromé toho jsme ukézali,
ze diarizace v nahravkach s vice mluvéimi vyznamné snizuje chybovost systému pro SITW
core-multi evalua¢ni data, ale podobny trend jsme nevidéli pro dataset NIST SRE 2018
VAST.

Keywords

speaker verification, speaker recognition,neural networks, x-vector, i-vector

rY ’
Klicova slova
verifikace mluvéiho, rozpozndvani mluvéiho, neurénové sité, x-vector, i-vector

Reference

PROFANT, Jan. Robust Speaker Verification with Deep Neural Networks. Brno, 2019.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Ing. Pavel Matéjka, Ph.D.

Robust Speaker Verification with Deep Neural
Networks

Declaration

Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Ing. Pavel Matéjka PhD. The supplementary information was provided
by Ing. Ondrej Novotny, voice activity detection labels were provided by Ing. Oldfich Pl-
chot PhD and diarization labels and Agglomerative Hierarchical Clustering implementation
were provided by M.Sc. Mireia Diez Sanchez. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

Jan Profant
May 17, 2019

Acknowledgements

I would like to thank my supervisor Ing. Pavel Matéjka PhD. for his extensive support. I
would like to also thank MSc. Anna Silnova for her help with HT-PLDA implementation
and also to my colleagues from Phonexia s.r.o., Mgr. Josef Slavicek and Ing. Michal Klco.
And a very special thanks to Nina, my partner in life.

Contents

1 Introduction

2 Theoretical Background

2.1 Speaker Recognitiono
2.2 Voice Activity Detection
2.3 Feature Extraction
2.3.1 Mel Frequency Cepstral Coefficients
2.3.2 Bottleneck Features
2.3.3 Other Feature Sets
2.4 d-vector ... oL e e
2.4.1 Gaussian Mixture Model,
2.5 Neural Networks
2.5.1 Time-Delay Neural Networks
2.6 xX-vectoro e e
2.6.1 E-TDNN x-vector
2.7 Backend
2.7.1 Linear Discriminant Analysis
2.7.2 Probabilistic Linear Discriminant Analysis.
2.7.3 Score Normalization
2.8 Diarization
2.8.1 Variational Bayes o 0 L
2.8.2 Segmentation Based Approach
2.8.3 K-Means e e

Experimental Setup

3.1 NISTSRE e
3.2 Data e e e
3.21 Training Data
3.2.2 Evaluation Data
3.3 Evaluation Metrics
3.3.1 Equal Error Rate
3.3.2 Cost Model e
3.3.3 Detection Error Tradeoff
3.3.4 CLLR e e
3.3.5 Diarization Error Rate
3.4 Pipeline Setup L
3.4.1 Voice Activity Detection
3.4.2 Acoustici-vector

w

W W w330 O oot

NN DN = = =
— = O O OO0 Uk

3.4.3 Phonetic bottleneck i-vector
3.4.4 xX-vector e
3.4.5 Diarization e e

4 Experiments - CMN2 condition

4.1 Baseline Systems L
4.2 Backend Experiments

4.2.1 Domain Adaptation
4.3 Processing Speed

5 Experiments - VAST condition

5.1 Baseline Systems
5.2 Domain Specific System oL oL
5.3 Diarization in the Loop o oL

5.3.1 Speaker Diarization Implementation

5.3.2 Diarization Sufficient for Speaker Verification

6 Conclusion

6.1 Experiments Summary Lo
6.2 Future Work
Bibliography

A Content of the CD

28
28
29
29
30

34
34
34
37
38
40

42
42
42

44

48

Chapter 1

Introduction

Speaker verification (SV) is the task of authenticating the claimed identity of a speaker,
based on speech signal and enrolled speaker record. Similarly to fingerprints, voice is a
common type of biometric data, which every individual can produce and which can be
captured. However, speech is a very complex signal carrying not only the desired content
but also other various information, which might significantly influence automatic processing.
This environment or channel has a great effect on the quality of such signal, which causes
the degradation in performance of SV systems, which, in an ideal case, should be robust to
these conditions.

Most speaker recognition systems in the recent years were based on i-vectors [13].
The standard i-vector approach consists of a universal background model (UBM), and
a large projection matrix T', that are learned in an unsupervised way to maximize the
data likelihood. The projection maps high-dimensional statistics from the UBM into a low-
dimensional representation, known as an i-vector. These embeddings might be scored using
Fuclidean distance, cosine distance but more common is to use backend with Probability
Linear Discriminant Analysis (PLDA) [410].

Deep neural networks (DNNs) have evolved hand-in-hand with the digital era, which
has brought about an explosion of data in all forms - images, video, audio, and text. DNNs
are used nowadays in industrial automation, medical research, autonomous driving and in
the most of electronic devices, such as mobile phones and personal computers.

DNNs most often found in speaker recognition are trained as acoustic models for auto-
matic speech recognition and are then used to enhance phonetic modeling in the i-vector.
Using deep neural networks as an end-to-end system for a topic of speaker verification
shows as a very active area of research in the last years [50, 17, 19]. In this approach, time-
delay neural network (TDNN) which works on frame level is used, and during training, it is
trained to classify large dataset of speakers. Long-term speaker characteristics are captured
in the network by a temporal pooling layer that aggregates over the input speech. Eventu-
ally, fixed-dimensional embeddings from the layer in a network after frame level are used
to represent speaker utterance and these are called x-vectors. DNNs most often found in
speaker recognition are trained as acoustic models for automatic speech recognition and are
then used to enhance phonetic modeling in the i-vector. In recent years, i-vectors started to
be replaced by x-vectors, mainly because of their better generalization and better discrim-
inative properties. In this paper, we analyze the performance of both approaches, and we
focus on using deep neural networks for speaker verification. Both i-vectors and x-vectors
are theoretically described in Chapter 2.

DNN embedding performance appears to be highly scalable with the amount of training
data. Recent speaker recognition evaluations were mainly focused on narrowband telephone
speech, and even automatic systems for wideband conditions were trained using mostly
telephone data. Data for NIST Speaker Recognition Evaluation 2018 (NIST SRE18)
were split into two main parts - Call My Net 2 (CMN2) and Video Annotation for Speech
Technology (VAST). The CMN2 data are composed of PSTN and VOIP data collected
outside North America, spoken in Tunisian Arabic. The VAST data are composed of audio
extracted from YouTube. Similarly to NIST SRE18, our experiments are also split into two
parts, experiments with telephone CMN2 data are described in Chapter 4 and experiments
with wideband VAST data are described in Chapter 5.

Typically, the speaker recognition systems are trained on thousands of speech cuts from
thousands of speakers. Assuming such a large amount of resources for every new domain
of interest might be too expensive or even unrealistic. In Chapter 4 we analyze approaches
for in-domain adaptation of speaker recognition systems, using either unlabeled or labeled
data.

Usage of a large amount of wideband data for training arrived with large VoxCeleb
datasets [35, 10]. We used wideband data to improve performance of speaker recognition
systems on wideband conditions and our effort is summarized in Chapter 5.

The problem of speaker recognition for multi-speaker conversations is even more compli-
cated since it is not clear how many speakers are in the recording and taking whole speech
segment as one single embedding is inaccurate [18]. Speech data collected from many real-
world environments violate single-speaker assumption and therefore benefit from speaker
diarization as a preprocessing step. Speaker diarization is the process of grouping segments
of speech according to the speaker and is sometimes referred to as the who spoke when task.
Recently, both speaker recognition and diarization have advanced significantly due to the

adoption of deep neural networks [1, 18]. Diarization and its influence on performance in
multi-speaker recordings is shown in Section 5.3.2.
In this paper, we introduce numerous modifications to Kaldi [39] recipe [19], which was

publicly released for the research community. We also summarized our effort during NIST
SRE18 where one of our systems was used for final submission in wideband VAST dataset,
as single best system for this condition.

https://www.nist.gov/sites/default/files/documents/2018/08/17/srel18_eval_plan_2018-05-
31_v6.pdf

https://www.nist.gov/sites/default/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf
https://www.nist.gov/sites/default/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf

Chapter 2

Theoretical Background

2.1 Speaker Recognition

Speaker recognition [25] is the identification of a person from characteristics of voices.
No two individuals sound identical because their vocal tract shapes, larynx sizes, and other
parts of their voice production organs are different. In addition to these physical differences,
each speaker has a characteristic manner of speaking, including the use of a particular
accent, rhythm, intonation style, pronunciation pattern, or choice of vocabulary.

There are two major applications of speaker recognition technologies and methodologies.
If the speaker claims to be of a certain identity and the voice is used to verify this claim, this
is called werification or authentication. Verification is often used when accessing internet
banking using telephone, or entering the building, known as a voice as my password. On
the other hand, identification is the task of determining an unknown speaker’s identity.
Identification determines identity from a known set of speakers and is used in virtual home
assistants, such as Alexa .

Application dictates different speech modalities:

e Text-dependent - recognition system knows the text, that is spoken by a person,
knowledge of spoken text can improve system performance.

o Text-independent - recognition system does not know the text spoken by person,
more flexible system but a more difficult problem.

Automatic speaker verification pipeline is shown in Figure 2.1. In the first stage, we
use voice activity detection (VAD) to identify speech frames, non-speech frames (silence,
audio events) are dropped. After that, we extract features from these voiced frames, such as
Mel Frequency Cepstral Coefficients (MFCCs). These features are then used in embedding
extractor, which in our case outputs either i-vector or x-vector. This, of course, expects that
only a single speaker is at enroll or test side. These speaker embeddings are then compared
with the Probabilistic Linear Discriminant Analysis (PLDA) model getting log-likelihood
ratio (LLR) scores.

2.2 Voice Activity Detection

Voice Activity Detection (VAD) is used in telecommunications, for example, in telephony to
detect touch tones and the presence or absence of speech. Detection of speaker activity can

"https://developer.amazon.com/alexa

https://developer.amazon.com/alexa

Speech Preprocessin Feature Embedding Backend
P P g Extraction Extractor (PLDA)

Figure 2.1: Standard processing pipeline of state-of-the-art speaker verification system.

be useful in responding to barge-in, for pointing to the end of an utterance in automated
speech recognition, and for recognizing a word intended to trigger the start of a service,
application, event, or anything else that may be deemed useful.

VAD is typically based on the amount of energy in the signal (a signal having more
than a threshold level of energy is assumed to contain speech, for example) and in some
cases also on the rate of zero crossings, which gives a crude estimate of its spectral content.
If the signal has high-frequency components, then the zero-crossing rate is high and vice
versa.

In the recent years, more advanced approach using neural networks was developed [31].
In this approach, neural network is trained to classify frames as speech or non-speech,
producing per-frame scores.

2.3 Feature Extraction

Speech signal includes many features of which not all are important for speaker discrimi-
nation. An ideal feature would:

e have large between-speaker variability and small within-speaker variability

be robust against noise and distortion

occur frequently and naturally in speech

be easy to measure from a speech signal
e be difficult to impersonate/mimic
e not be affected by the speaker’s health or long-term variations in voice.

The number of features should also be relatively low. Traditional statistical models such
as the Gaussian Mixture Model (GMM) cannot handle high-dimensional data. The number
of required training samples for reliable density estimation grows exponentially with the
number of features, and the computational savings are also apparent with low-dimensional
features [25].

2.3.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) [25] are a feature widely used in automatic
speech and speaker recognition. MFCCs are a representation of the short-term power
spectrum of a sound, based on a linear cosine transform of a log power spectrum on a
nonlinear mel scale of frequency. Figure 2.2 shows procedure, how to calculate MFCCs.

Here, we can see a more detailed description of how to calculate MFCCs according to
Figure 2.2:

1. Frame the signal into short frames.

Audio Frame Preprocessing Mel-Filtration

Hamming Window Mel banks

Figure 2.2: Scheme of calculating MFCCs.

2. For each frame calculate the periodogram estimate of the power spectrum.
3. Apply the mel filterbank to the power spectra, sum the energy in each filter.
4. Take the logarithm of all filterbank energies.

5. Take the DCT of the log filterbank energies.

2.3.2 Bottleneck Features

Bottleneck Neural-Network (BN-NN) [17, 29] refers to such topology of a NN, where one
of the hidden layers has significantly lower dimensionality than the surrounding layers. A
bottleneck feature vector is generally understood as a by-product of forwarding a primary
input feature vector through the BN-NN and reading off the vector of values at the bottle-
neck layer. We have used a cascade of two such NNs for our experiments. The output of the
first network is stacked in time, defining context-dependent input features for the second
NN, hence the term Stacked Bottleneck Features. The dimensionality of the bottleneck
layer was fixed to 80.

Bottleneck features were also widely used in automatic speech recognition [52, 53] and
language identification [32].

2.3.3 Other Feature Sets

There are also other sets of features that might be used for speaker verification, such as
perceptual linear prediction (PLP) coefficients. However, it has been observed that in
general channel compensation methods are much more important than the choice of the
base feature set [25].

Speakers differ not only in their voice timbre and accent/pronounciation, but also in
their lexicon - the kind of words the speakers tend to use in their conversations. These fea-
ture are often reffered to as high-level features, where a speaker’s characteristic vocabulary,
the so-called idiolect, is used to characterize speakers [10].

2.4 i-vector

The i-vector approach has become state of the art in the speaker verification field in
2011 [13]. The approach provides an elegant way of reducing large-dimensional input data
to a small-dimensional feature vector while retaining most of the relevant information. The
technique was originally inspired by the Joint Factor Analysis (JFA) framework [24]. The
basic principle is that on annotated data, we train the i-vector extractor and then for each

speech segment, we extract the i-vector as a low-dimensional fixed-length representation
of the segment. The main idea is that the speaker- and session-dependent supervectors of
concatenated Gaussian Mixture Model (GMM) means, described later, can be modeled as

s =m + Tx, (2.1)

where m is the Universal Background Model (UBM) GMM mean supervector, T is a
matrix of bases spanning the subspace covering the important variability (both speaker-
and session-specific) in the supervector space, and x is a standard-normally distributed
latent variable. For each observation sequence representing a segment, our i-vector ¢ is the
MAP point estimate of the latent variable x [8].

2.4.1 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a generative model that assumes all the data points
are generated from a mixture of a finite number of Gaussian (normal) distributions with
unknown parameters. Gaussian distributions are important in statistics and are often used
in the natural and social sciences to represent real-valued random variables whose distri-
butions are not known. GMM is used in i-vector framework as the Universal Background
Model.
The probability density of the multivariate Gaussian distribution is:
N(z;p, X)) = #e*%(w*u)Tﬁ‘l(w*u) (2.2)
o (2m) (=] 7

where p is the mean and parameter 3 is variance matrix with its matrix determinant |X%|.
Frequently used methods to estimate parameters are maximum a posteriori probability
(MAP) and maximum likelihood (ML). MAP estimator chooses class with highest posteriori
probability from N classes:

arg mazx, P(w|r) = arg mazx, P(z|lw) P(w). (2.3)

Maximum likelihood is a method of estimating the parameters of a statistical model
given data, as follows [20]:

0sss = arg maze H p(z;|®), (2.4)
zi€class
where p is estimated as
1
p= TZ:]} (2.5)

and covariance matrix X as

GMM is then a probabilistic generative model,
p(x(©) =) N(@;pec,Sec) Fe (2.7)

where © = {P,, pu., 3.} is set of parameters and) P, = 1.

A GMM is used in speaker recognition applications as a generic probabilistic model for
multivariate densities capable of representing arbitrary densities, which makes it well suited
for unconstrained text-independent applications [11].

2.5 Neural Networks

The term neural network has its origins in attempts to find mathematical representations
of information processing in biological systems [54]. It has been used very broadly to cover
a wide range of different models and problems.

In the field of the speech recognition, the deep neural networks (DNN)-hidden Markov
model (HMM) has been shown to significantly improve speech recognition performance over
the conventional Gaussian mixture model (GMM)-HMM [22]. In language identification
and speaker verification, BN-NN were widely used, compressing phonetic information and
improving results for both, language identification and speaker verification, as described in
Section 2.3.2. Eventually, using end-to-end systems based on neural networks have risen for
speech recognition [21] and also for language identification [15] and speaker verification [19].

The most successful and probably the simplest model of this type in the context of
pattern recognition is the feed-forward neural network.

The linear models for regression and classification are based on linear combinations of
fixed nonlinear basis functions ¢;(x) and take the form

M
y(x, w) = f(ijgbj(m)) (2.8)
j=1

where x is input vector, w is set of weights and f(-) is a nonlinear activation function in
the case of classification and is the identity in the case of regression.

Neural networks use basis functions that follow the same form as in Equation 2.8 so
that each basis function is itself a nonlinear function of a linear combination of the inputs,
where the coeflicients in the linear combination are adaptive parameters.

This leads to the basic neural network model, which can be described as a series of
functional transformations. First we construct M linear combinations of the input variables
Z1,T9,...,Tp in the form

Z w(l)xz + wjo) (2.9)

where j = 1,..., M and the superscrlpt () indicates that the corresponding parameters

are in the first layer of the network. We refer to the parameters w'l) as weights and the

Jji
parameters w](-:‘)) as biases. The quantities a; are known as activations. Each of them is then

transformed using a differentiable, nonlinear activation function h(-) to give z; = h(a;).

These quantities correspond to the outputs of the basis functions in that, in the context
of neural networks, are called hidden units. The nonlinear functions h(-) were generally
chosen to be sigmoidal functions such as the logistic sigmoid or the hyperbolic tangent, or
more commonly these days, rectified linear units [12]. The choice of activation function is
determined by the nature of the data and the assumed distribution of target variables.

For standard regression problems, the activation function is the identity so that y =
ap. Similarly, for multiple binary classification problems, each output unit activation is
transformed using a logistic sigmoid function so that yr = o(ag), where o(a) = m.
Finally, for multiclass problems, a softmax activation function is used.

We can combine these various stages to give the overall network function that, for
sigmoidal output unit activation functions, takes the form

M
yi(@, w) = 0<Zw((Zw i+ w 0)> + w(2)> (2.10)
j=1

where the set of all weight and bias parameters have been grouped together into a vector w.
Thus the neural network model is simply a nonlinear function from a set of input variables
{z;} to a set of output variables {yx} controlled by a vector w of adjustable parameters -
this process can be interpreted as a forward propagation of information through the network.
This function can be represented in the form of a network diagram as shown in Figure 2.3.

———— hidden units ———

inputs

Figure 2.3: Network diagram for the single hidden layer neural network. The input, hidden,
and output variables are represented by nodes, and the weight parameters are represented
by links between the nodes, in which the bias parameters are denoted by links coming from
additional input and hidden variables xg and zy. Arrows denote the direction of information
flow through the network during forward propagation.

If the activation functions of all the hidden units in a network are taken to be linear,
then for any such network we can always find an equivalent network without hidden units.
This follows from the fact that the composition of successive linear transformations is itself
a linear transformation. However, if the number of hidden units is smaller than either the
number of input or output units, then the transformations that the network can generate
are not the most general possible linear transformations from inputs to outputs because
information is lost in the dimensionality reduction at the hidden units.

Neural networks are said to be universal approximators. For example, a two-layer net-
work with linear outputs can uniformly approximate any continuous function on a compact
input domain to arbitrary accuracy provided the network has a sufficiently large number
of hidden units. This result holds for a wide range of hidden unit activation functions but
excluding polynomials. Although such theorems are reassuring, the critical problem is how
to find suitable parameter values given a set of training data.

So far, we have viewed neural networks as a general class of nonlinear parametric func-
tions from a vector a of input variables to a vector y of output variables. Given a training
set comprising a set of input vectors {x,, }, where n = 1, ..., N together with a corresponding
set of target vectors {t,} we minimize the error function

1 N
E(w) = §Z!|y(-’vn,w) —tall*. (2.11)
n=1

10

We can clearly see, that main task is in finding a weight vector w which minimizes the
chosen function E(w). If we make a small step in weight space from w to w + dw then
the change in the error function is §E ~ éw’ VE(w), where the vector VE(w) points in
the direction of greatest rate of increase of the error function. Because the error E(w) is
a smooth continuous function of w, its smallest value will occur at a point in weight space
such that the gradient of the error function vanishes, so that VE(w) = 0 as otherwise, we
could make a small step in the direction of —VE(w) and thereby further reduce the error.
Points at which the gradient vanishes are called stationary points, and may be further
classified into minima, maxima, and saddle points.

Our goal is to find a vector w such that E(w) takes its smallest value. However, the error
function typically has a highly nonlinear dependence on the weights and bias parameters,
and so there will be many points in weight space at which the gradient vanishes or is
numerically very small. Furthermore, there will typically be multiple inequivalent stationary
points and in particular multiple inequivalent minima. A minimum that corresponds to the
smallest value of the error function for any weight vector is said to be a global minimum.
Any other minima corresponding to higher values of the error function are said to be local
minima. For a successful application of neural networks, it may not be necessary to find
the global minimum (and in general it will not be known whether the global minimum has
been found), but it may be necessary to compare several local minima in order to find a
sufficiently good solution.

Because there is no hope of finding an analytical solution to the equation VE(w) = 0
we resort to iterative numerical procedures. The optimization of continuous nonlinear
functions is a widely studied problem, and there exists an extensive literature on how to
solve it efficiently. Most techniques involve choosing some initial value w® for the weight
vector and then moving through weight space in a succession of steps of the form

w = w4+ V' (2.12)

where 7 labels the iteration step. Different algorithms involve different choices for the weight
vector update Vw”. Many algorithms make use of gradient information and therefore
require that, after each update, the value of VE(w) is evaluated at the new weight vector
va_H.

The simplest approach to using gradient information is to choose the weight update to
comprise a small step in the direction of the negative gradient, so that

T = w" — V™ (2.13)

w

where the parameter > 0 is known as the learning rate. After each such update, the
gradient is re-evaluated for the new weight vector and the process repeated. Recently,
technique know as stochastic gradient descent, makes an update to the weight vector based
on one data point or randomly generated subset of points at a time. This update is repeated
by cycling through the data either in sequence or by selecting points at random with
replacement [5].

Next goal might be to find an efficient technique for evaluating the gradient of an
error function E(w) for a feed-forward neural network. This can be achieved using a local
message passing scheme in which information is sent alternately forwards and backwards
through the network and is known as error backpropagation. Consider first a simple linear
model in which the outputs gy are linear combinations of the input variables x; so that

Uk =) Wi (2.14)
i

11

together with an error function that, for a particular input pattern n, takes the form

1 2
E, = 5 zk:(ynk — tr) (2.15)

where ypr = yr(xn, w). The gradient of this error function with respect to a weight w;; is
given by
oE,
aTji = (ynj - tnj)xni (2'16)
which can be interpreted as a local computation involving the product of an error signal
Ynj —tnj associated with the output end of the link w;; and the variable x,,; associated with
the input end of the link.

In a general feed-forward network, each unit computes a weighted sum of its inputs of
the form
a] = Zwﬁzi (2.17)
i

where as we could see in 2.9. Consider the evaluation of the derivative of F,, with respect to
a weight wj;. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n from the
network variables. First we note that F,, depends on the weight w;; only via the summed
input a; to unit j. We can therefore apply the chain rule for partial derivatives to give

aEn o 8En 8aj

= . 2.18
8wji 8aj Bwﬂ ()
We will use a notation O
§=—=1 2.19
s (2.19)
where the §’s are often referred to as errors. Using 2.17 we can write
8aj
= 2. 2.20
8wﬂ “ ()
Substituting 2.19 and 2.20 into 2.18 we obtain
oF,
—— =90 2.21
8'11)]2 i ()

which means, that the required derivative is obtained simply by multiplying the value of §
for the unit at the output end of the weight by the value of z for the unit at the input end
of the weight (where z = 1 in the case of a bias), so in order to evaluate the derivatives, we
need only to calculate the value of J; for each hidden and output unit in the network and
then apply 2.21.

For the output units, we therefore use

51@ = Yk — tg. (2.22)

To evaluate the §’s for hidden units, we again make use of the chain rule for partial deriva-
tives,

8En aak
—_— 2.2
Z 8ak 8aj’ (3)

a]

12

where the sum runs over all units k& to which unit j sends connections. The arrangement of
units and weights is illustrated in Figure 2.4. Note that the units labelled k£ could include
other hidden units and/or output units. In writing down 2.23, we are making use of the
fact that variations in a; give rise to variations in the error function only through variations
in the variables ag. If we now substitute the definition of § given by 2.19 into 2.23, and
make use of 2.17, we obtain the following backpropagation formula

8; = h'(az) Y wi;dk, (2.24)
K

which tells us that the value of ¢ for a particular hidden unit can be obtained by propagating
the §’s backwards from units higher up in the network, as illustrated in Figure 2.4. Because
we already know the values of the §’s for the output units, it follows that by recursively
applying 2.24 we can evaluate the §’s for all of the hidden units in a feed-forward network,
regardless of its topology.

Figure 2.4: Illustration of the calculation of 6; for hidden unit j by backpropagation of
the &’s from those units k to which unit j sends connections. The blue arrow denotes the
direction of information flow during forward propagation, and the red arrows indicate the
backward propagation of error information.

2.5.1 Time-Delay Neural Networks

Time-Delay Neural Network (TDNN) is a type of architecture of a neural network that has
been used quite successfully in a number of practical applications, especially in speech [37,

]. A TDNN is similar to a multi-layer neural network in that all connections feed forward.
The difference is that with the TDNN, the inputs to any node can consist of the outputs of
nodes not only during the current time step ¢, but during some number d of previous/future
time steps (t +d,...,t +2,t + 1,t,t —1,¢t — 2,...,t — d. Visualization of the TDNN layer is
shown in Figure 2.5.

The activation function for node i at time ¢ in such a network is given by

i—1

d
>y wi) (2.25)
1 k=0

J

where y! is the output of node i at time ¢, wjjk is the connection strength to node 7 from
the output of node j at time ¢t — k, and h is the activation function [11].

Time-Delay layers are equal to one dimensional convolution layers used in many popular
frameworks, such as PyTorch [36] or TensorFlow [1].

13

t-3 t-2 t-1 t t+1
t-2 t-1 t t+1 t+2
t+2 t+3

Figure 2.5: Time-Delay layer in neural network. Blue rectangles are sorted in time and
concatenated in time. This refers to one dimensional convolution used in many frameworks.

2.6 x-vector

Using deep neural networks (DNN) to capture speaker characteristics is currently a very
active research area. The used system is a feed-forward DNN that computes speaker em-
beddings from variable-length acoustic segments [17, 19, 50]. The network consists of layers
that operate on speech frames, a statistics pooling layer that aggregates over the frame-level
representations, additional layers that operate at the segment-level, and finally, a soft-max
output layer, all layers with their respective contexts are shown in Table 2.1 and diagram
of x-vector architecture is shown in Figure 2.6. The nonlinearities are rectified linear units
(ReLUs).

Suppose there are K speakers in N training segments. Then P(spkrk]xgz),) is the prob-
ability of speaker k given T input frames :I:gn),xén), ,ang). The quantity d,; is 1 if the
speaker label for segment n is k, otherwise it is 0. The network is then trained to classify
training speakers using a multi-class cross entropy objective function

N K
E=- Z Z dnkln(P(spkrk\:L‘gil%)) (2.26)
n=1k=1
Ultimately, the goal of training the network is to produce embeddings that generalize
well to speakers that have not been seen in the training data. Therefore, any layer after
the statistics pooling layer is a sensible place to extract the embedding from.

2.6.1 E-TDNN x-vector

The extended version of the TDNN described in Section 2.6, which is the default architec-
ture in public Kaldi recipes is described here. Table 2.2 summarizes the extended network
(E-TDNN) architecture. The two main differences are a slightly wider temporal context of
the TDNN (due to the addition of layer 7), and interleaving dense layers in between the
convolutional layers (equivalent to the 1x1 convolutions used in computer vision architec-
tures). The network outputs posterior probabilities for the training speakers, and it was
trained by minimizing a categorical cross-entropy. The x-vector is extracted from layer 12
prior to the ReLLU non-linearity.

14

Table 2.1: The embedding DNN architecture. z-vectors are extracted at layer segment6, be-
fore the nonlinearity. The statistics pooling layer receives the output of the final frame-level
layer as input, aggregates over the input segment, and computes its mean and standard de-
viation. This segment-level statistics are concatenated together and passed to two additional
hidden layers and finally, the soft-mazx output layer [,9].

Layer ‘ Layer context Total context
framel [t-2,6+2] 5
frame?2 {t-2,t,t+2} 9
frame3 {t-3,t,t+3} 15
frame4 {t} 15
framed {t} 15
stats pooling [0, T] T
segment6 {0} T
segment? {0} T
softmax {0} T
P(speaker;)

OO0O0O00O-O000
OO0

Statistics
Pooling

QO...O__

~— segment-level

Q O O iz — frame-level
O O-Oh

Figure 2.6: Diagram of the DNN. Segment-level embeddings can be extracted from any layer
of the network after the statistics pooling layer.

2.7 Backend

As shown in Section 3.4, the full automatic speaker recognition pipeline can be divided into
two main parts, the first one is the embedding extraction and the second one is backend.

15

Table 2.2: Extended TDNN z-vector architecture.

Layer Layer Type Layer context Size
1 TDNN-ReLU [t-2,t42] 512
2 Dense-ReLU t 512
3 TDNN-ReLU {t-2, t, t+2} 512
4 Dense-ReLU t 512
5 TDNN-ReLU {t-3, t, t+3} 512
6 Dense-ReLLU t 512
7 TDNN-ReLU {t-4, t, t+4} 512
8 Dense-ReLU t 912
9 Dense-ReLU t 512

10 Dense-ReLU t 1500
11 Pooling (mean + stddev) Full-seq 2x1500
12 | Dense(Embedding)-ReL.U 512
13 Dense-ReLU 512
14 Dense-SoftMax 512

Backend models use speaker embeddings to provide representative results. In this Section,
we described frequently used backend techniques.

2.7.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is most commonly used as a dimensionality reduc-
tion technique in the pre-processing step for pattern-classification and machine learning
applications. The goal is to project a dataset onto a lower-dimensional space with good
class-separability in order to avoid overfitting and also reduce computational costs. In
Figure 2.7 we can see, to which direction we want to transfer our data.

Before After
LDA LDA
" m E " m B
[= m " []
] = -
| | = [~}
- |
Em

Figure 2.7: LDA: Mazximize distance between p. of classes and minimize average variance
of classes.

16

Let us recall that LDA is based on computing the between-class and within-class co-
variance matrices ¥ p and Xy respectively, whose Maximum-Likelihood (ML) is given as

C
Yp= %ZNc(uc —) (e —)" (2.27)
c=1
1 C N.
Xw = NZ Z ((,bn,c - H)(Q’)n,c - N)Ta (2'28)
c=1n=1

where ¢n ¢, the n-th data point in class ¢, C' is number of classes, /N, is number of data-
points in class ¢, u. is the mean of the data belonging to class c:

1 e
He =]\707;1¢n,07 (2'29)

where ¢y, ¢, the n-th data point in class ¢, and p is the global mean of the data, computed
as

1 N
he Db (2.30)

LDA emphasizes discrimination of data belonging to different classes, and it does so by
solving the generalized eigenvalue problem:

Y BVm = A X BUm, (2.31)
with V' = [vq, ... , vyy] for M largest eigen-values A, and applying V as
érpa=V7To. (2.32)

Class separability for each basis is often expressed by the Fisher ratio and is equal to
the basis corresponding eigen-value [20].

2.7.2 Probabilistic Linear Discriminant Analysis

To facilitate comparison of i-vectors and x-vectors in a verification trial, the distribution of i-
vectors and x-vectors is modeled using a Probabilistic Linear Discriminant Analysis (PLDA)
model [10, 23]. First, consider only a special form of PLDA, a two-covariance model, in
which speaker and inter-session variability are modeled using across-class and within-class
full covariance matrices ¥,. and X,.. The two-covariance model is a generative linear-
Gaussian model, where latent vectors y representing speakers (or more generally classes)
are assumed to be distributed according to prior distribution

p(y) = N(y; s Xac)- (2.33)

For a given speaker represented by a vector y, the distribution of i-/x-vectors is assumed
to be

p(d)‘y) = N(d)a y, ch)' (2.34)

Figure 2.8 depicts this situation.
The ML estimates of the model parameters, u, X4, and X, can be obtained using an
EM algorithm as in [23].

17

EWC

Ly

i

L
A““‘ .

2:WC

vector space

Figure 2.8: Demonstration of PLDA: the bold points represent the speaker identities in the
vector space. Provided that we know the speaker identity, the conditional distribution of the
vectors is given by the within-class covariances, depicted by the ellipses around the speaker
identities [19)].

Heavy-Tailed PLDA

Heavy-Tailed (HT-PLDA) model was presented in [23], where the Gaussian priors where
replaced by Student’s ¢ distribution. The generative HT-PLDA model is shown in graphical
model notation in Figure 2.9 and is defined as follows. For every speaker, i, let all of the
available observations of that speaker (N; of them) be denoted as R; = {rij}jy:"l, where the
Trij € RP are speaker embeddings (i-vectors, x-vectors) of dimension D. For every speaker,
a hidden speaker identity variable, z; € R? is drawn from the standard d—dimensional nor-
mal distribution. We require d < D. The heavy-tailed behaviour is obtained by drawing
for every observation a hidden precision scaling factor, A;; > 0, from a gamma distribution
G (o, B) parametrized by o = 8 = § > 0. The parameter v is known as the degrees of free-
dom. Finally, given the hidden variables, the observations are drawn from the multivariate
normal:

P(rij|zi, Nij) = N (15| Fzi, (A W) ™1), (2.35)

where F' is the D-by-d factor loading matrix and where W is a D-by-D positive definite
precision matrix. The model parameters are v, F, W.

This model does not allow closed-form scoring or training. Either the hidden scaling
factors or the hidden speaker identity variables can be integrated out in closed form, but
not both. This means that we have to find approximations for both scoring and training.
We make use of a new approximation, the Gaussian likelihood approximation, as recently
published in [7, 41].

As observed in [28], unity length normalization of the i-vectors or x-vectors indicates
that Gaussian PLDA is as effective as HT-PLDA without unity length normalization.

18

O

Figure 2.9: Heavy-tailed PLDA model and its parameters.

2.7.3 Score Normalization

For speaker verification systems, score normalization is one of the standard steps in produc-
ing well-normalized speaker verification scores [9, 30]. Without the normalization, different
distributions of a target and non-target scores can be obtained for two different enrolled
speaker models.

This makes it impossible to set a single detection threshold for the scores obtained from
the different speaker models. Similarly, for the same speaker model, the score distributions
can vary depending on the test utterance condition (recording channel, acoustic conditions
or a language of the utterance) which calls for a condition-dependent threshold. Setting
the threshold is also very important for production usage.

Typically, the normalization step shifts and scales the distributions for the individual
models and conditions to allow for a single detection threshold. The shifts and scales are
usually estimated using a set of utterances so-called normalization cohort.

Z-norm

Zero score normalization [11] employs impostor score distribution for enrollment file. It
uses a cohort € = {¢;}¥, speakers which we assume to be different from the speakers in
utterances e and ¢. The cohort scores are

Se = {s(e, &)}y (2.36)

and are formed by scoring enrollment utterance e with all files from cohort €. The normal-
ized score is then:
8(67 t) — ,U,(Se)

o (Se) ’

where p(Se) is mean and o(S,) is standard deviation of Se.

(2.37)

5(67 t)z—norm -

T-norm

Test score normalization [1] is similar to Z-norm with the difference that it normalizes the
impostor score distribution for the test utterance. T-norm can be expressed by:

Sp = {s(t, &)} (2.38)

s(e,t) — p(St)

75 (2.39)

5(67 t)tfnorm =

19

where 1(S;) is mean and o(S;) is standard deviation of S;.

S-norm

The symmetric normalization (S-norm) computes an average of normalized scores from
Z-norm and T-norm [23]. S-norm is symmetrical, therefore s(e,t) = s(t,e), while the
previously mentioned score normalization techniques depend on the order of e and t.

8(6, t)z—norm + 8(6, t)t—norm
2

s(eyt)s—norm = (2.40)

Adaptive score normalization refers to the type of score normalization when there is
only a subset Sy, chosen from scores S. All scores S are ordered, and the N highest values
are chosen and propagated into S, where N is hyperparameter.

2.8 Diarization

In the real world scenarios, it is usually not guaranteed, that there is an exclusively single
speaker in the whole audio recording. Therefore, the speaker diarization, the process of
partitioning an audio stream with multiple people into homogeneous segments associated
with each individual, is an important part of speaker recognition systems. By solving the
problem of who spoke when, speaker diarization has applications in many important sce-
narios, such as understanding medical conversations, video captioning and more. Example
of diarization output is shown in Figure 2.10.

Al o i b

Figure 2.10: FExample output of diarization on single channel audio. Different colors in the
bottom indicate different speakers.

The speaker diarization used in this work is method based on the Bayesian Hidden
Markov Model described in [14], in which states represent speaker specific distributions and
transitions between states represent speaker turns. The transitions probabilities are set to
favor staying in the same speakers to avoid too frequent speaker turns. As in the i-vector
or JFA models, speaker distributions are modeled by GMMs with parameters constrained
by eigenvoice priors to facilitate discrimination between speakers.

2.8.1 Variational Bayes

Most speaker diarization methods address the task in two steps
1. Segment input into speaker segments.

2. Run clustering algorithm on top of these segments, such as K-Means or Agglomerative
Hierarchical Clustering (AHC) [51].

20

Approach to speaker diarization, where the sequence of speech features representing a
conversation is assumed to be generated from a Bayesian Hidden Markov Model (HMM) is
used. HMM states represent speakers, and the transitions between the states correspond
to the speaker turns. The speaker (or HMM state) specific distributions are modeled
by Gaussian Mixture Models (GMMs). In order to robustly learn the speaker specific
distributions, a strong informative prior is imposed on the GMM parameters, which makes
use of eigenvoices just like i-vectors or Joint Factor Analysis (JFA) [24].

2.8.2 Segmentation Based Approach

Segmentation is typically the first stage of cluster-based speaker diarization algorithms and
is intended to divide the speech into short segments that are assumed to have a single or
dominant speaker.

The common practice is to divide the signal into utterance segments based on VAD
marks. Any long speech blocks are further subdivided to 1-2 seconds. Features or speaker’s
utterance representation are then extracted from these blocks, usually in the form of i-
vectors or x-vectors. The segments are subsequently clustered according to these extracted
features. Agglomerative Hierarchical Clustering (AHC) is one popular method because the
clustering can be dictated by distance-based stopping criteria instead of assuming some
number of speakers. This distance-based criterion can be used many metrics, for example,
Euclidean distance, cosine distance or even PLDA scoring.

This segmentation based approach is usually used before variational Bayes described in
Section 2.8.1.

2.8.3 K-Means

K-Means is well known and one of the easiest clustering methods [2]. All objects are
classified as belonging to one of k groups where k is a hyperparameter. Cluster membership
is determined by calculating the centroid for each group and assigning each object to the
closest centroid. This approach minimizes the overall within-cluster dispersion by iterative
reallocation of cluster members.

The pseudo code of K-Means clustering is described here:

1. Choose k as the number of clusters.
2. Initialize the codebook vectors of the k clusters, for example randomly.

3. For every sample vector compute the distance between the new vector and every
cluster’s codebook vector and choose the closest one.

4. If the assignment of the vectors and their corresponding clusters is the same as in the
previous step, the algorithm has converged.

5. If not, recompute new centers of the clusters using newly assigned labels and go back
to 3.

However, the k-means algorithm is susceptible to noise in data, and it negatively affects
the result of the clustering.

21

Chapter 3

Experimental Setup

3.1 NIST SRE

The speaker recognition evaluation (SRE) is the series of speaker recognition evaluations
conducted by the US National Institute of Standards and Technology (NIST) since 1996.
SRE are prestige and datasets released during evaluation work as an excellent benchmark
when comparing individual approaches on testing conditions.

The objectives of the evaluation series are

e to explore promising new ideas in speaker recognition
e to support the development of advanced technology incorporating these ideas
e to measure and calibrate the performance of the current state of technology

The evaluations are intended to be of interest to all researchers working on the general
problem of text-independent speaker recognition.

SRE18 ! was focusing on speaker detection over conversational telephone speech (CTS)
collected outside North America. In addition to CTS recorded over a variety of handsets
(PSTN), voice over IP (VOIP) data, which were also collected outside North America, as
well as audio from video (AfV) were included as development and test material in SRE18.

The task for SRE18 is speaker detection: given a segment of speech and the target
speaker enrollment data, automatically determine whether the target speaker is speaking
in the segment. A segment of speech (test segment) along with the enrollment speech
segment(s) from a designated target speaker constitute a trial. The system is required to
process each trial independently and to output a log-likelihood ratio (LLR), using natural
(base e) logarithm, for that trial. The LLR for a given trial including a test segment u is
defined as follows: P(ulH,)

U|to
LLR(u) lOQP(u]Hl)’ (3.1)
where P(-) denotes the probability distribution function (pdf), and Hy and H; represent
the null (i.e., u is spoken by the enrollment speaker) and alternative (i.e., u is not spoken
by the enrollment speaker) hypotheses, respectively.

The LLR provides a self-contained ratio of the probability of the voices being from the
same speaker versus the alternate hypothesis of them being from different speakers. That
is, the LLR is meaningful on its own (i.e., a LLR of 2 means the same-speaker hypothesis

https://www.nist.gov/itl/iad/mig/nist-2018-speaker-recognition-evaluation

22

https://www.nist.gov/itl/iad/mig/nist-2018-speaker-recognition-evaluation

is 100 times more likely than the alternate hypothesis). To obtain well-calibrated LLRs
from a system, the system training data, including calibration training data, must closely
represent the conditions of the trial being evaluated. In practice, this prerequisite is often
unfulfilled due to acoustic or other differences between system-development data and the
audio observed during use; a problem known as condition mismatch [9].

3.2 Data

All data we used either for training or testing purposes were data allowed by NIST for
SRE18. In this section, we describe data used for training as well as for evaluation.
3.2.1 Training Data

Training data defines the amount and category of resources which are allowed to build
speaker recognition system with. System training is limited to specific common data sets
(with assigned LDC ? identification) which are as follows

o 1996-2008 NIST SRE Data (LDC2009E10)

e 2010 NIST SRE and Follow-up Data (LDC2012E09)

e 2012 NIST SRE Test Set (LDC2016E45)

e 2016 NIST SRE Development Set (LDC2018E47)

e 2016 NIST SRE Test Set (LDC2018E30)

e Comprehensive Switchboard with transcripts (LDC2018E48)
e Comprehensive Fisher English with transcripts (LDC2018E49)
e MIXERG6 (LDC2013S03)

e 2018 NIST SRE Development (dev) Set (LDC2018E46)

e Speakers In The Wild (SITW) [34]

e VoxCelebl [35] and VoxCeleb2 [10]

3.2.2 Evaluation Data

Since we are building robust speaker recognition system, we decided not to include some
of the training corpora into the training set and use them for testing purposes instead,
specifically 2016 NIST SRE Test Set and all testing subsets from SITW, VoxCelebl, and
VoxCeleb2. In Table 3.1 we can see datasets distribution and the corresponding number
of target and non-target scores. It is important to note that sre16EvalYUE and all SRE18
CMN2 datasets also contains multi-session scores - 3 enroll recordings compared to single
test recording. Also, sitwEvalM-C and SRE18 VAST enroll recordings may contain more
than one speaker and thus needs to run speaker segmentation. Since sre18DevVAST is very
small and the results may be very noisy, we will not evaluate this condition.

Since SRE18 data are split into two main domains, we decided to split our test datasets
to match testing condition as much as possible:

*https://www.ldc.upenn.edu/

23

https://www.ldc.upenn.edu/

Table 3.1: Qverview of test conditions - number of files, number of speakers and number of
trials.

Condition ‘ Files Speakers Target Trials Non-Target Trials
sitwEvalC-C 1202 180 3658 718130
sitwEvalM-C 2275 180 10045 2000638
voxcl 4715 40 32276 32276
srel6EvalYUE 5449 100 19298 946098
srel8DevCMN2 | 1741 35 7830 100265
srel8DevVAST 37 10 27 243
srel8EvalCMN2 | 13451 188 60675 2002332
srel8EvalVAST 416 101 315 31500

1. Call My Net 2 (CMN2)

(a) 2016 NIST SRE Test Set (LDC2018E30) Cantonese evaluation condition (sre16EvalYUE)

(b) 2018 NIST SRE Development (dev) Set (LDC2018E46) CMN2 evaluation con-
dition (sre18DevCMN2)

(c) 2018 NIST SRE Evaluation (eval) Set CMN2 evaluation condition (sre18EvalCMN2)

2. Video Annotation for Speech Technology (VAST)

(a) SITW core-core evaluation condition [34] (sitwEvalC-C)
(b) SITW multi-core evaluation condition [34] (sitwEvalM-C')
(c) VoxCelebl evaluation condition [35] (voxcl)

)

(d) 2018 NIST SRE Development (dev) Set (LDC2018E46) VAST evaluation condi-
tion (sre18DevVAST)

(e) 2018 NIST SRE Evaluation (eval) Set VAST evaluation condition (sre!8FEvalVAST)

3.3 Evaluation Metrics

Speaker recognition performance may be represented in many metrics that describe the
system’s behavior. Here, we present some well-known metrics that will be used later. We
also described Diarization Error Rate (DER) which is used in the evaluation of diarization
systems.

3.3.1 Equal Error Rate

The equal error rate can be evaluated based on False Acceptance rate (FAR) and False
Rejection Rate (FRR). FAR specifies the fraction of access attempts by an unenrolled
individual that are nevertheless deemed a match. FRR specifies the fraction of access
attempts by a legitimately enrolled individual that is nevertheless rejected. Therefore for
better accuracy, FAR and FRR must be low. The point at which FAR and FRR intersect is
called Equal Error Rate (ERR). EER of any system gives system performance independent
of the threshold. Therefore, lower the ERR, better the system performance [3].

24

3.3.2 Cost Model

A basic cost model is used to measure the speaker detection performance and is defined as
a weighted sum of FAR and FRR probabilities for some decision threshold 6 as follows

CDet(G) - C'Miss X PTarget X PMzss(H) X +CFalseAlarm X (1 _PTarget) X PFalseAlarm(a)a (32)

where the parameters of the cost function are Chy;ss (cost of a missed detection - usually
equal to one), CraiseAiarm (cost of a spurious detection - usually equal to one) and Prqyget
(a priori probability of the specified target speaker) [12].

To improve the interpretability of the cost function Cp,; it is normalized by Cpe fauit
which is defined as the best cost that could be obtained without processing the input data
(i.e., by either always accepting or always rejecting the segment speaker as matching the
target speaker, whichever gives the lower cost), as follows

CDet(H)

CNorm(e) = m: (33)

where Cpepquir is defined as

. Chriss X PTarget
CDefault =min
CFalseAlarm X (1 - PTarget)-

3.3.3 Detection Error Tradeoff

Current standard in speech verification applications to use when evaluating performance of
the system for all FAR or FRR points is the Detection Error Tradeoff (DET) Curve. In the
DET curve, error rates are plotted on both axes, giving uniform treatment to both types
of error, and use a scale for both axes which spreads out the plot and better distinguishes
different well performing systems and usually produces plots that are close to linear. For
more information, see [27].

3.3.4 CLLR

In the case of speaker recognition, information theoretic measure may be computed that
considers how well all scores represent the likelihood ratio and that penalizes for errors in
score calibration. This performance measure is defined as

1 Slog(l+ 1) N S log(1 + s)

Cor = 2 x log(2) < Nrr Nyt

), (3.5)

where the first summation is over all target trials Npp, the second is over all non-target
trials Ny7, and s represents a trial’s likelihood ratio [0].

3.3.5 Diarization Error Rate

To measure the performance of a diarization system, we use the diarization error rate (DER)
as our metric, which is defined by the evaluations campaigns organized by NIST. It com-
pares the differences between the ground-truth reference segmentation and the generated
diarization output. The final result is the sum of three types of errors and can be written
like this:

DER = EMiss + EFA + ESpkr (36)

25

where Ejy;ss is the percentage of missed speech error (speaker not attributed when speech
exists), Era is the percentage of false alarm error (speaker attributed in non-speech seg-
ment), Egpi, is the percentage of speaker missclassification error (wrong speaker labelling
according to reference segmentation). Lower DER indicates better diarization performance.
Additionally, a non-scoring collar of 250 msec [55] is generally adopted in both sides of the
ground-truth segment boundaries to eliminate the effects of inevitably inaccurate labeling.

3.4 Pipeline Setup

In this section, we describe the setup of the experiments for all individual components in
the pipeline described in Section 2.1.

3.4.1 Voice Activity Detection

We used VAD that was used in previous SRE or Language Recognition Evaluations (LRE).
VAD we used consists of two parts

e a neural network which produces per-frame scores and
e a postprocessing stage which builds the segments based on the scores.

The neural network was trained on the Fisher English. The input features for the NN
consist of 15 log-Mel filterbank outputs and 3 Kaldi-pitch features [18]. The output of the
network is then classified as speech or non-speech [31].

VAD labels were provided by Ing. Oldtich Plchot PhD.

3.4.2 Acoustic i-vector

Traditional i-vector system is similar to i-vector system in [29]. This system uses voice
activity detection described in Section 3.4.1. The features are 20-dimensional MFCCs with
a frame-length of 25ms that are mean normalized over a sliding window of up to 3 seconds.
Delta and acceleration are appended to create 60 dimension feature vectors. The UBM
is a 2048 component full-covariance GMM. This system uses a 400-dimensional i-vector
extractor, LDA to 150 dimensions and gaussian PLDA for scoring.

3.4.3 Phonetic bottleneck i-vector

This i-vector system incorporates phonetic bottleneck features (BNF) described in Sec-
tion 2.3.2 from an ASR DNN acoustic model and is similar to [29]. The BNFs are concate-
nated with the same 20 dimensional MFCCs described in Section 3.4.2 plus deltas to create
100 dimensional features. This system uses voice activity detection described in 2.2, 600
dimensional i-vector extractor, LDA to 250 dimensions and gaussian PLDA for scoring.

3.4.4 x-vector

We used original features configuration of x-vector recipe [19] obtained from * - 23-dimensional
filterbanks with a frame-length of 25ms, mean-normalized over a sliding window of up to 3
seconds. We slightly modified our voice activity detector from Section 3.4.1 and extended
all speech frames by 15 frames to the left and also to the right, effectively extending the

3https://david-ryan-snyder.github.i0/2017/10/04/model_srel6_v2.html

26

https://david-ryan-snyder.github.io/2017/10/04/model_sre16_v2.html

amount of speech that is passed into neural network, as shown in [33]. Also, we analyzed
and applied some of the possible mentioned improvements for x-vector based architecture
based on [33], such as larger number of augmentation (128 000 in original recipe vs. 256
000 in our recipe) and we also used larger number of epochs (3 in original recipe compared
to 6 in our recipe) and this system will be used as our baseline x-vector system. We used
the same data for x-vector training as in original recipe from [19]. If not specified other-
wise, we used 512-dimensional x-vector projected into 128-dimensional space using LDA.
For scoring, we used gaussian PLDA backend.

3.4.5 Diarization

We used 19 MFCC+Energy coefficients (without any normalization) as features for diariza-
tion. We only ran the diarization on segments that contain speech according to our VAD.
We used 1024-component, diagonal covariance GMM-UBM, and 400-dimensional i-vectors.
The UBM and the total variability matrix were trained on the VoxCelebl and VoxCeleb2
datasets. A hierarchical agglomerative clustering (AHC) algorithm based on PLDA scores
between i-vectors estimated on 200 ms segments was performed to initialize the assignment
of frames to speakers for the VB algorithm [14].
Diarization labels were provided by M.Sc. Mireia Diez Sanchez.

27

Table 4.1: Baseline results on telephone conditions for i-vectors and z-vectors.

System srel6EvalYUE srel8DevCMN2 srel8EvalCMN2
EER[%)] EER[%)] EER[%)]

i-vector 13.05 17.43 19.17

BN i-vector 11.51 16.62 17.75

x-vector 5.91 10.41 11.36

E-TDNN 5.35 9.27 9.72

Chapter 4

Experiments - CMN2 condition

In this chapter we analyze the performance of our systems on telephone conditions, mainly
Cantonese subset of NIST SRE 2016 evaluation set and recent NIST SRE 2018 Call My
Network2 (CMN2) data.

4.1 Baseline Systems

First, we ran our baseline systems for i-vectors and x-vectors as described in Section 3.4.
Results for telephone conditions are shown in Table 4.1. We can see, that BN i-vector
systems outperform acoustic i-vector system in all our datasets. All i-vector system are
however greatly outperformed by our x-vector baseline - EER for similar systems were
reduced almost to half for all of our test datasets compared to the acoustic i-vector system.

We also analyzed x-vector E-TDNN architecture (labeled as E-TDNN), which refers
to the extended x-vector architecture described in Section 2.6.1. Based on results we can
see significant improvement when using E-TDNN architecture over original x-vectors on
all datasets. DET curve comparing both i-vector systems, baseline x-vector system and
E-TDNN architecture on srel18EvalCMN2 is shown in Figure 4.1. From DET curve we
can see that both i-vector systems are very competitive especially for lower values of false
acceptance ratio (around 1%), x-vector systems outperform i-vectors for all points of DET
curve, and best results are achieved using E-TDNN architecture.

Based on this results and based on very recent publications, such as [17, 19, 33], we
will focus on experimenting with x-vector based architectures since it outperforms i-vectors
in accuracy and also in computational costs of forward-pass, which is a crucial factor for
production usage and also allows simple usage of graphical computing units in many popular
machine learning frameworks.

28

I—I — j-vector

BN i-vector
99.0 — X-vector
—— E-TDNN

95.0
90.0

80.0

60.0

40.0

20.0

FRR [%]

10.0
5.0 4

2.0 1
1.0 4
0.5
0.1
0.01
0.001 H

L

T T T L T T T T T T T T T
0.001 0.01 0.1 0.51.02.0 5.0 10.0 20.0 40.0 60.0 80.0 90.0 95.0 99.0

FAR [%]

Figure 4.1: Detection error tradeoff curve for baseline i-vector and z-vector based systems
on srel18Eval CMN2 condition.

4.2 Backend Experiments

As shown in Section 3.4, we can split our automatic system into two main components -
embedding (i-vector or x-vector) extraction and backend. Here, we analyze different back-
ends (PLDA models) and its impact on the performance and robustness of our systems. In
our earlier experiments, we used PLDA backend described in Section 3.4.4, 512-dimensional
x-vector projected into 128-dimensional space using LDA and scored using gaussian PLDA
backend. We analyzed heavy-tailed PLDA described in Section 2.7.2, results are shown in
Table 4.2. We can conclude, that Heavy Tailed PLDA backend yields very similar results
to Gaussian PLDA with LDA dimensionality reduction on the sre16FvalYUE dataset, but
shows outstanding results in terms of both equal error rate and DCFR2 on sre8EvalCMN2,
where EER was reduced by 0.75% absolute. In our experiments in general, we could see
better results with HT-PLDA backend and HT-PLDA is also very robust across domains,
when values of CLLR across different evaluation conditions were lower compared to Gaus-
sian PLDA. In our experiments, we use degrees of freedom equals to 2 and output dimen-
sionality equals to 128, which are very close to values from [11].

4.2.1 Domain Adaptation

So far, we were not anyhow adapting our speaker recognition systems to evaluation con-
ditions. In both NIST SRE16 and NIST SREI18 the part of development datasets also

29

Table 4.2: Results using different PLDA backends - Gaussian PLDA (G-PLDA) backend
with LDA dimensionality reduction and Heavy-Tailed PLDA (HT-PLDA) using E-TDNN
system.

System Backend srel6EvalYUE sre18DevCMN2 srel8EvalCMN2
EER[%] DCFRt EER[%] DCFE® EER[%] DCFRin

E-TDNN | G-PLDA + LDA 9.35 0.484 9.27 0.589 9.72 0.650
E-TDNN | HT-PLDA 5.17 0.478 8.77 0.578 8.97 0.628

consisted of unlabeled data, in case of NIST SRE18 these unlabeled data had assigned
phone numbers; therefore this data might also be used for supervised adaptation in the
same manner. We have taken advantage of this fact and used this data to adapt our system
to target data. We ran experiments with three techniques for domain adaptation:

1. Mean normalization of speaker embedding from domain data. This technique should
center speaker embeddings, so they have zero mean, which is expected by PLDA
model.

2. Unsupervised and supervised adaptation of Heavy Tailed PLDA. Adaptation of PLDA
enables the model to better match distribution in in-domain data.

3. Score normalization, we used adaptive s-norm as shown in Section 2.7.3 using the top
200 scores for computing statistics.

Naturally, all three mentioned techniques could be used at the same time, since they
operate on different units. Our results are summarized in Table 4.3. Based on results, we
can conclude that our adaptation techniques always improved results for srel16EvalYUE
condition and for this condition, best results were achieved when using mean normaliza-
tion, s-norm and unsupervised PLDA adaptation - EER 3.53% and DCFJt 0.329, making
32% relative improvement for EER and 31% relative improvement for DCFZiover the sys-
tem without adaptation. For srel8FvalCMN2 condition, we noticed, that unsupervised
adaptation of HT-PLDA had a negative impact on results in all cases, on the other hand,
best results were obtained using mean normalization, s-norm and supervised adaptation of

HT-PLDA - EER 7.06% and DCFR{2 0.539, making 21% relative improvement for EER
and 14% improvement for DCFgfﬁover the system without adaptation. DET curves for
systems without adaptation and best systems with adaptation are shown in Figure 4.2 for

sre16Fval YUE and in Figure 4.3 for sre18FEvalCMN2, respectively.

4.3 Processing Speed

Processing speed is a critical factor in production systems, which directly allows end users
to process more data while keeping the same computational costs. Also, smaller memory
consumption and a smaller number of floating operations allows direct use in the Internet
of Things (IoT) devices or mobile phones. This factor also influences training time, which
in the state-of-the-art deep learning models usually extends days, weeks and sometimes
even months. In this section, we include this factor besides the performance of our system
and analyze multiple approaches to speeding up the computation. We will use faster than

30

Table 4.3: Results using domain adaptation to evaluation conditions. The first column
of table contains three letters corresponding to the system setup, first is usage of mean
normalization (Y - used, N - not used), second part is s-norm (Y - used, N - not used)
and last third is HT-PLDA adaptation (N - not used, U - unsupervised adaptation, S -
supervised adaptation). Therefore, the first system (N/N/N - without any adaptation) is
exactly the same as our HT-PLDA baseline. Since for NIST SRE16 there were no labels,
we have not used the supervised adaptation of HT-PLDA.

Adaptation srel6EvalYUE sre18DevCMN2 srel8EvalCMN2
EER[%] DCFS%% EER[%] DCFB’%% EER|[%] DCFS?%H
N/N/N 5.17 0.478 8.77 0.578 8.97 0.628
Y/N/N 4.50 0.455 8.11 0.568 7.85 0.574
N/Y/N 4.28 0.345 7.45 0.469 7.50 0.517
Y/Y/N 4.00 0.336 7.16 0.480 7.28 0.524
N/N/U 4.29 0.433 9.34 0.682 10.05 0.691
N/N/S 7.89 0.578 8.96 0.636
Y/N/U 3.71 0.367 8.12 0.676 8.86 0.642
Y/N/S 6.93 0.569 7.58 0.548
Y/Y/U 3.53 0.329 7.54 0.550 7.61 0.550
Y/Y/S 6.60 0.507 7.06 0.539

real-time (FTRT) metric described as follows:

tzmespeech

FTRT = (4.1)

timeprocessmg
where timegpeecn, refers to amount of speech declared using our VAD and timeprocessing
refers to amount of processing time. Especially deep models may benefit from usage of
graphical processing units (GPUs), therefore we will report this metric using CPU and also
GPU.

In all our experiments we used the same VAD and same input features. We will report
only processing time and RAM consumption of forward pass using a single CPU core. For
CPU we used python implementation in NumPy ! with MKL backend ? using AMD EPYC
7301 16-Core Processor. For GPU we used Theano ? in python with GeForce GTX 1080
GPU. Our measurements were repeated for 5 times, and we used the mean of these values
for reporting. We used 2798912 input frames from 425 different audio recordings.

There are multiple strategies on how to improve processing speed, such as:

1. Shrinking network size - the smaller architecture of NN, when we used 256 neurons
in time-delay layers and dense layers and 750 neurons before pooling while keeping
the same dimensionality of x-vector (denoted as E-TDNN small).

2. Skipping frames - we can skip each odd frame of the input so we will effectively use
only half of the frames (denoted as fsl). Since we are using TDNN, we can also do
this at any time-delay layer (denoted as fs2; where i refers to the index of the layer
where we are performing frame skipping.

"ttp: //www.numpy.org/
2https://software.intel.com/en-us/mkl
3http://deeplearning.net/software/theano/

31

http://www.numpy.org/
https://software.intel.com/en-us/mkl
http://deeplearning.net/software/theano/

99.0

—— E-TDNN
95.0 7 E-TDNN Adapted

90.0

80.0 |
60.0 _L‘\
40.0

20.0

10.0
5.0 1

FRR [%]

2.0 4
1.0 4
0.5

0.01

0.001

T T T T T T T T T T T T
0.01 0.1 05 1.0 2.0 5.0 10.0 20.0 40.0 60.0 80.0 90.0

FAR [%]

Figure 4.2: Detection error tradeoff curve for E-TDNN system without adaptation and
adapted system (Y/Y/U) on sre16EvalYUE condition.

Based on results in Table 4.4, we can see, that both, shrinking network size and also
skipping frames boosted computational speed significantly for both CPU and GPU, while
achieving very good results compared to default full system. Especially E-TDNN fs2g
system achieved almost same results as system, which is more than 2 times slower on CPU
and 2.4 times slower on GPU. GPU processing time is 317 times faster than single CPU.

However, it is important to note, that embedding extraction is not the only part of
the system pipeline described in Section 3.4. Based on our experiments, extraction of the
MFCC features is very fast and takes only around 1% of the total time of the pipeline.
VAD we used is based on neural networks and therefore can be easily accelerated on GPU
and usually took around 3% of the total time of the pipeline. Based on this fact, we can
expect, that the whole pipeline of E-TDNN fs2y system could achieve around 4500 FTRT
on GPU.

32

99.0

95.0
90.0

80.0

60.0

40.0

20.0

10.0
5.0 4

FRR [%]

2.0 4
1.0 4
0.5

0.1 o

0.01

0.001

—— E-TDNN

E-TDNN Adapted

T T T
0.001 0.01 0.1

T T T T T
0.5 1.0 2.0

5.0 10.0 20.0

FAR [%]

T T T
40.0 60.0

80.0 90.0 95.0

T
99.0

Figure 4.3: Detection error tradeoff curve for E-TDNN system without adaptation and
adapted system (Y/Y/S) on sre18FEvalCMNZ2 condition.

Table 4.4:
System srel6EvalYUE srel8DevCMN2 srel8EvalCMN2 | RAM FTRT
EER[%)] EER[%)] EER|[%] GB | CPU GPU
E-TDNN 5.35 9.27 9.72 0.4 7.44 1985.04
E-TDNN small 5.59 10.03 10.35 0.3 | 11.45 2120.39
E-TDNN fs1 5.83 10.43 10.55 0.4 | 14.71 4664.85
E-TDNN fs2¢ 5.35 10.03 10.05 0.4 | 14.96 4744

33

Table 5.1: Baseline results on VAST-similar datasets for systems trained on 8 kHz mainly
telephone data.

System sitwEvalC-C voxcl
EER[%] DCFgd | EER[%] DCFgiL
i-vector 13.37 0.791 16.40 0.928
BN i-vector | 10.69 0.657 13.27 0.856
x-vector 7.16 0.559 9.00 0.676
E-TDNN 5.90 0.519 7.74 0.599

Chapter 5

Experiments - VAST condition

In this chapter, we analyze the performance of our systems on wideband conditions. First,
we examine one to one trials on wideband evaluation sets. In the next part, we focus on
multi-speaker recordings and diarization.

5.1 Baseline Systems

Baseline results for i-vector and x-vector system for VAST (wideband) conditions are shown
in Table 5.1. Similarly to CMN2 baseline in Table 4.1, wideband datasets shows the same
trend in terms of EER, bottleneck i-vectors slightly outperforms acoustic i-vectors, and
x-vectors greatly outperform i-vector based architectures. E-TDNN again performs the
best.

5.2 Domain Specific System

Here, we tried to adapt our system to target data during system training and therefore
use only wideband data for system training. Since development corpus for SRE18 VAST
condition is very small and not statistically reliable, it was not used for evaluation nor

adaptation. For training we used VoxCelebl [35] and VoxCeleb2 [10] training sets, we
trained extractor (x-vector NN) and also PLDA model on the same set.
We used the following modifications compared to original recipe [19] for all our experi-

ments based on [33]:

e 9 epochs instead of 3 in the original recipe

34

e total 512 000 augmentations instead of 128 000 in the original recipe

e concatenate all utterances from a single session with one second of silence between
every utterance.

Results for domain-specific systems are shown in Table 5.2. When we compare these
results to results in Table 5.1, we can see that using domain-specific data is crucial for
system’s performance and even with our best E-TDNN system trained on telephone data
with EER 5.90% on sitwEvalC-C' we are not competitive with baseline x-vector system
trained on wideband data with EER 4.89%.

In our experiments, we slightly changed the topology of TDNN to accept a larger con-
text; these modifications are shown in Table 5.3 and are marked with suffix LC (large
context). We can conclude, that extending the context of TDNN improved results in terms
of EER and also for another operating point. Also, we can see a very significant gain in
using 16k sample rate over 8k sample rate - for competitive systems x-vector LC with 8k
sample rate and 16k sample rate respectively; we can see almost 30% relative improvement
in terms of EER.

We also trained our ETDNN without concatenating VoxCeleb audios, and these results
are marked with suffix cuts and number before refers to number of augmentation that was
used - it is important to note, that we used only 512 000 augmentations for NN in one
case, which is less than half of the clean audios, therefore the system has not seen most
of the data compared to previous cases, however results are competitive to baseline x-
vector architecture but training requirements for computational resources are much lower.
According to our experiments, original non-concatenated audios were not helpful for system
training and therefore, we have not analyzed this scenario more.

In our experiments we also modified the process of arks creation (container with input
features which are directly used for training). In default setup, training arks are created
from 2-3 seconds long utterances randomly sampled from full utterance. We used following
modifications to original Kaldi recipe:

sid/nnet3/xvector/get_egs.sh --cmd "$train_cmd_run_xv" \
--nj 16 \
--stage 0 \
--frames-per-iter 100000000 \
-—frames-per-iter-diagnostic 100000 \
--min-frames-per-chunk 200 \
--max-frames-per-chunk 300 \
—--num-diagnostic-archives 3 \
--num-repeats 15 \
"$data" $egs_dir

These results are shown in Table 5.2 as system E-TDNN arks and actually yields best
results for both testing conditions.

Also, we experimented with modifications of E-TDNN topology. Extending context in
original x-vectors showed as crucial, and we extended context of original E-TDNN adding
single TDNN-ReLU and Dense-ReLU layer with context {t — 5,¢,t + 5} after layer 8 from
Table 2.2. This result is labeled as E-TDNN arks LC (large context). In our experiments we
also stacked more time-delay layers on top of each other, creating vast network described
in Table 5.4, extending context to 47 frames. This architecture is labeled as E-TDNN
arks VLC (very large context). Based on results, we can conclude that extending context

35

Table 5.2: Results for domain specific systems on VAST-similar datasets without using
diarization.

System Sample Rate sitwEvalC-C voxcl
EER[%] DCFgd | EER[%] DCFgiR

x-vector 8k 4.89 0.448 6.61 0.634
x-vector LC 8k 3.85 0.392 5.22 0.56
x-vector LC 16k 2.74 0.268 2.99 0.33
E-TDNN 16k 2.60 0.242 2.77 0.286
E-TDNN 500k cuts 16k 4.35 0.389 3.23 0.375
E-TDNN 5m cuts 16k 3.31 0.312 2.60 0.303
E-TDNN arks 16k 2.46 0.231 2.35 0.272
E-TDNN arks LC 16k 2.38 0.209 2.40 0.254
E-TDNN arks VLC 16k 2.49 0.237 2.26 0.251
E-TDNN arks LC HT-PLDA | 16k | 2.02 0.199 2.27 0.251

Table 5.3: Configuration of TDNN for x-vector extraction using larger context. Bold values
are our modifications of the original [/9] architecture. X-vectors are extracted at layer
segmentb before the nonlinearity.

Layer ‘ Layer context Total context
framel [t-2,t+2] 5
frame2 {t-4, t-2,t,t+2,t+4} 13
frame3 {t-6,t-3,t,t+3,t+6} 19
frame4 {t} 19
frameb {t} 19
stats pooling [0, T] T
segment6 {0} T
segment? {0} T
softmax {0} T

is beneficial also for E-TDNN architecture, yielding 2.38% EER and 0.209 DCFI4 for
E-TDNN arks LC system for sitwEvalC-C. E-TDNN arks VLC does not outperform other
systems and considering the number of parameters in the network, which is 2.5 times bigger
than in E-TDNN and therefore takes much longer time to train, we will not experiment
with this architecture further.

As shown in previous experiments, HT-PLDA is shown as an excellent choice for the
backend, and also for wideband systems we included it into our experiments. E-TDNN
arks LC HT-PLDA refers to our so far best system with HT-PLDA backend and yields best
results for sitwEvalC-C, 2.02% EER and 0.199 DCFRiL.

DET curve for corresponding systems on sitwEvalC-C' condition is in Figure 5.1. We
can see a significant gain in using HT-PLDA backend over G-PLDA.

36

Table 5.4: Extended TDNN z-vector architecture with very large context of 47 frames.

Layer Layer Type Layer context Size
1 TDNN-ReLU [t-5,6+5] 512
2 Dense-ReLLU t 512
3 TDNN-ReLU [t-4, t+4] 512
4 Dense-ReLLU t 912
5 TDNN-ReLU [t-3, t+3] 512
6 Dense-ReLLU t 512
7 TDNN-ReLU [t-2, t+2] 512
8 Dense-ReLLU t 512
9 TDNN-ReLU {t-2, t, t+2} 512
10 Dense-ReLLU t 512
11 TDNN-ReLU {t-3, t, t+3} 512
12 Dense-ReLU t 512
13 TDNN-ReLU {t-4, t, t+4} 512
14 Dense-ReLU t 512
15 Dense-ReLLU t 512
16 Dense-ReLU t 1500
17 Pooling (mean + stddev) Full-seq 2x1500
18 | Dense(Embedding)-ReL.U 512
19 Dense-ReLLU 512
20 Dense-SoftMax 512

5.3 Diarization in the Loop

In this section we analyze the performance of our system on testing conditions which nec-
essarily does not contain single speaker at enroll or test side; therefore it should be sensible
to run automatic diarization systems before performing speaker verification.

Suppose R(,) is the PLDA log-likelihood ratio score, u is the x-vector for the enrolled
speaker and vy, va, ..., vn are the x-vector for each of the N speakers in the test recording.
To perform speaker recognition, log-likelihood is computed as follows:

R(enroll,test) = max{R(u,v1), ..., R(u,vn)} (5.1)

We analyze the performance of our best systems with and without diarization; results
are shown in Table 5.5, for all our experiments we used the diarization system described in
Section 3.4.5.

DET curve for sre18FvalVAST condition is shown in Figure 5.2. DET curves show us
that there is a minimal difference between the x-vector LC system and E-TDNN, evaluation
dataset is still very small and results may be noisy. We can conclude, that diarization
helps for all our systems on sitwFEvalM-C condition by 20% in terms of EER and also
by 20% for DCFRIL. On sre18EvalVAST condition, however, there is almost no gain
in performance when using diarization. Also, there is no gain in performance when using
enrollment annotations provided by NIST compared to taking whole audio on the enrollment
side.

37

40.0

20.0

10.0

5.0 9

2.0 4

1.0 4
0.5

FRR [%]

0.1 1

0.01

0.001

—— E-TDNN

E-TDNN arks LC

—— E-TDNN arks LC HT-PLDA

0.1 05 1.0 2.0

Figure 5.1: Detection error tradeoff curve for systems trained on VoxCeleb! and VoxCeleb2

data for sitwFvalC-C condition.

Table 5.5: Results for domain specific systems on VAST-similar datasets.
column indicates whether diarization was used as pre-processing step. FEnroll only means,

5.0

T
10.0

T T
20.0 40.0

FAR [%]

that we used only enrollment segments annotated by NIST.

T
60.0

T
80.0

System Diarization sitwEvalM-C srel8EvalVAST
EER[%] DCFg4: | EER[%] DCFgis
x-vector LC no 5.20 0.363 13.33 0.746
E-TDNN no 5.09 0.338 13.33 0.758
E-TDNN enroll only 13.33 0.765
x-vector LC yes 4.14 0.292 13.59 0.713
E-TDNN yes 4.02 0.269 12.35 0.738
E-TDNN 5m cuts yes 4.86 0.355 14.33 0.821

5.3.1 Speaker Diarization Implementation

In our work, we also implemented an automatic diarization system in python; it can be found
together with one of our best x-vector models (E-TDNN) at !. The work on diarization is
based on work done at 2017 Jelinek Summer Workshop on Speech and Language Technology

"https://github.com/Jamiroquai88/VBDiarization

38

Diarization

https://github.com/Jamiroquai88/VBDiarization

80.0 | | — Xx-vector LC
E-TDNN
60.0 4= —— E-TDNN 5m cuts

40.0

20.0 1

10.0

5.0 1

FRR [%]

2.0 4
1.0 4
0.5

0.1

0.01

T T T T T T T T T T T
05 10 20 5.0 10.0 20.0 40.0 60.0 80.0 90.0 95.0

FAR [%]

Figure 5.2: Detection error tradeoff curve for systems trained on VoxCeleb! and VoxCeleb2
data for sre18FvalVAST condition using diarization marks for test and oracle annotations
for enrollment.

(JSALT) at CMU 2. The primary motivation to implement own speaker diarization system
is to have the possibility to experiment with diarization sufficient for speaker verification
described later.

In our implementation, we run clustering on top of x-vectors, which represent concise
segments from one second up to two seconds in audio recording. At first, we analyzed the
main topic of diarization - who spoke when. We used AMI corpus ® for this purpose, using
summed individual head-mounted microphones into a single channel. We used oracle voice
activity detection generated from oracle rttm files which were also used for evaluation. In
our approach, we clustered x-vectors using a k-means algorithm or in case of normalized
x-vectors, using spherical k-means. In the second stage, we use PLDA scores in k-means
clustering for fine-tuning of clustering. We used gaussian PLDA backend with LDA and 12
normalization. Since k-means expects the known value of k (number of clusters), we used
the oracle number of speakers. We also analyzed the case, when the number of speakers
is unknown and in this case, we used x-means algorithm [35] for estimating the number of
clusters.

Results for these diarization scenarios are shown in Table 5.6. Based on the results, we
can see that clustering using PLDA k-means reduced DER by 27% relative compared to

2https://www.lti.cs.cmu.edu/2017-jelinek-workshop
3http://groups.inf.ed.ac.uk/ami/corpus/

39

https://www.lti.cs.cmu.edu/2017-jelinek-workshop
http://groups.inf.ed.ac.uk/ami/corpus/

Table 5.6: Diarization Error Rate (DER) results for evaluation and development part of
AMI dataset containing summed individual head-mounted microphones in the single chan-
nel. We used a collar size of 250 ms.

System | Clustering | DER [%]
E-TDNN | k-means 9.16%
E-TDNN | k-means + PLDA k-means 6.67%
E-TDNN | x-means + k-means + PLDA k-means | 15.54%
E-TDNN | ahc 14.09%

spherical k-means only. We can conclude, that x-means algorithm is not the best choice
for estimating the number of clusters and in our experiments usually estimated a smaller
number of clusters than there were speakers. We also experimented with clustering using
AHC, labeled as ahc in Table 5.6. In the case of AHC we trained a linear Gaussian model
with two components with shared variance for calibration of scores. The threshold of
the linear Gaussian model was used in AHC, and the number of speakers was estimated
together with per-embedding labels. We can see, that AHC slightly outperforms x-means
with PLDA k-means model by 1.45% DER.

The goal of these experiments was to show, that speaker diarization is working quite
well in terms of DER and the best system with PLDA k-means is investigated further in
multi-speakers scenario focused on speaker recognition.

5.3.2 Diarization Sufficient for Speaker Verification

It is important to note, that diarization task of defining who spoke when is not necessarily
the same task to the one in speaker verification when we want to know the answer to
the question is this enrollment speaker in that test recording, which may include multiple
speakers? This could be the case, if diarization itself yielded outstanding results on any
testing conditions, which is not the case, as shown in recent DIHARD challenge * where
using ground truth VAD the best systems got 23.73% DER [43] and without these ground
truth labels achieving much worse performance, only 35.53% DER [15]. For some of the
domains, it was even better to say that there is a single speaker in the whole recording,
even when it was not a case.

Therefore, as shown in recent publication [18], where authors show excellent results on
multi-speaker conversations, we analyzed speaker diarization specific for speaker recogni-
tion.

AHC-based diarization typically requires a well-chosen cluster stopping threshold to
achieve good performance. This threshold is sensitive to the domain of the data, and
a poorly chosen threshold will result in bad performance. In K-Means algorithm it is a
similar case with a number of clusters, which is frequently unknown. This is a particularly
concerning possibility when a reliable development set is not available, as in case of NIST
SRE 2018 VAST data. To improve robustness, the authors of [18] propose a simple change
in the clustering algorithm. Instead of relying on a tuned AHC threshold, they estimate the
maximum number of speakers in recording and run clustering iteratively with the different
number of clusters exactly K times, with k£ € {1,2,..., K}. The final number of cluster is

‘https://coml.lscp.ens.fr/dihard/2018/results.php

40

https://coml.lscp.ens.fr/dihard/2018/results.php

Table 5.7:

System Diarization sitwEvalM-C srel8EvalVAST

EER[%] DCFy% ‘ EER[%] DCFg5
E-TDNN ahc+vb 4.02 0.269 12.35 0.738
E-TDNN | iterative k-means 2.87 0.262 12.03 0.789

then defined as N = K(I;H, where K is a maximal number of speakers in the recording.
The output of clustering is then N cluster centers.

We tried to replicate this setup with K = 5 as shown in the original paper, but with
the K-Means algorithm instead of AHC. Our results are shown in Table 5.7, we compared
our previous results from multi-speaker conversations (ahc+vb) with our new approach
(iterative k-means). Based on results, we can conclude that for sitwFvalM-C there is a
significant gain in terms of EER, reduced from 4.02% to 2.87%. Our approach was less
successful for the sre18FEvalVAST condition, where we can see a small improvement in
EER, but system obtains worse results for DCFgfﬁ. When we compare these results to
results of E-TDNN system on sitwEvalC-C condition with EER 2.60% and DCFFi 0.242,
a scenario with a single speaker at the test side is still more successful. However, the
difference is substantially smaller. For srel8FEvalVAST condition, it is however not clear,
why this approach does not improve performance.

41

Chapter 6

Conclusion

6.1 Experiments Summary

In this experimental work, we analyzed the state-of-the-art speaker verification pipeline
using x-vector based speaker embeddings which superseded i-vectors in recent years. De-
veloping a robust system which would work across various conditions, such as unseen lan-
guage, distinctive acoustic conditions or problem of multi-speaker recordings remains very
difficult.

We compared systems based on i-vectors to x-vectors on narrowband and wideband
conditions. We could see, that data augmentation is an easily implemented and effective
strategy for improving x-vectors performance. We showed, that using in-domain wideband
data for training, in this case, VoxCelebl and VoxCeleb2, we were able to outperform
systems trained on 8 kHz telephone data. VoxCelebl and VoxCeleb2 datasets are also
extensive, containing over 1 million utterances from thousands of speakers and allow us to
use state-of-the-art deep learning methods.

Score normalization and system adaptation, such as mean normalization using in-
domain data and supervised and unsupervised adaptation of PLDA backend showed as
crucial in tuning the system for specific evaluation conditions and led to improved results
on srel16EvalYUE by 32% and on sre18FEvalCMN2 by 21% relative in terms of EER.

We also experimented with improving our scoring backend, and we used Heavy Tailed
PLDA for scoring, yielding 2.02% EER on the sitwEvalC-C dataset, using an out-of-the-box
system, without any adaptation to SITW dataset. Comparing our results on voxcl test
dataset to ResNet architecture from [10], in terms of equal error rate using E-TDNN with
HT-PLDA backend we obtained 2.27% EER compared to their 3.95%.

Also, our best wideband system produced during NIST SRE 2018 evaluations was used
as one of the submission systems and was very competitive considering all submissions of
other teams. Using diarization in speaker verification, however, still looks like a problematic
area with very high error rates and should also be included as an active area of speech
technology research. Interestingly, results for srel8FvalVAST condition remains very noisy
and improvements showed for the sitwEvalC-C condition does not generalize.

6.2 Future Work

Our future work will be focused on experimenting more with E-TDNN architecture, such as
extending the context of time-delay layers and stacking more of these layers into a network.

42

Also, we would like to experiment more with types of DNN architectures which show very
results in face recognition, such as residual networks from [56]. Even though Kaldi toolkit is
very easy to use and yields very good results, we would like to experiment more with popular
python toolkits, such as TensorFlow or PyTorch and try to replicate results obtained in
Kaldi.

Also, we want to focus more on diarization, either for scenario who spoke when, when
our results could be improved using variational Bayes as an additional step and the same
assumption might be applied for diarization scenario focused on speaker verification. We
would like to release our diarization code and models for the research community to use.

43

Bibliography

1]

[10]

[11]

[12]

Abadi, M.; Agarwal, A.; Barham, P.; et al.: TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015. software available from tensorflow.org.
Retrieved from: http://tensorflow.org/

Abbas, O. A.: Comparisons Between Data Clustering Algorithms. International Arab
Journal of Information Technology (IAJIT). vol. 5, no. 3. 2008.

Agrawal, P.; Kapoor, R.; Agrawal, S.: A hybrid partial fingerprint matching
algorithm for estimation of Equal Error Rate. In Advanced Communication Control
and Computing Technologies (ICACCCT), 2014 International Conference on. IEEE.
2014. pp. 1295-1299.

Auckenthaler, R.; Carey, M.; Lloyd-Thomas, H.: Score normalization for
text-independent speaker verification systems. Digital Signal Processing. vol. 10, no.
1-3. 2000: pp. 42-54.

Bishop, C. M.: Pattern recognition and machine learning. springer. 2006.

Briimmer, N.; Du Preez, J.: Application-independent evaluation of speaker detection.
Computer Speech & Language. vol. 20, no. 2-3. 2006: pp. 230-275.

Briimmer, N.; Silnova, A.; Burget, L.; et al.: Gaussian meta-embeddings for efficient
scoring of a heavy-tailed PLDA model. arXiv preprint arXiv:1802.09777. 2018.

Burget, L.; Plchot, O.; Cumani, S.; et al.: Discriminatively trained probabilistic
linear discriminant analysis for speaker verification. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on. IEEE. 2011. pp.
4832-4835.

Castan, D.; McLaren, M.; Ferrer, L.; et al.: Improving Robustness of Speaker
Recognition to New Conditions Using Unlabeled Data. In INTERSPEECH. 2017. pp.
3737-3741.

Chung, J. S.; Nagrani, A.; Zisserman, A.: VoxCeleb2: Deep Speaker Recognition.
arXiv preprint arXiv:1806.05622. 2018.

Clouse, D. S.; Giles, C. L.; Horne, B. G.; et al.: Time-delay neural networks:
Representation and induction of finite-state machines. IEEE Transactions on Neural
Networks. vol. 8, no. 5. 1997: pp. 1065-1070.

Dahl, G. E.; Sainath, T. N.; Hinton, G. E.: Improving deep neural networks for
LVCSR using rectified linear units and dropout. In 2013 IEEFE international
conference on acoustics, speech and signal processing. IEEE. 2013. pp. 8609-8613.

44

http://tensorflow.org/

[13]

[14]

[15]

[16]

[18]

[19]

Dehak, N.; Kenny, P. J.; Dehak, R.; et al.: Front-end factor analysis for speaker
verification. IEEE Transactions on Audio, Speech, and Language Processing. vol. 19,
no. 4. 2011: pp. 788-798.

Diez, M.; Burget, L.; Matéjka, P.: Speaker Diarization based on Bayesian HMM with
FEigenvoice Priors. In Odyssey 2018, The Speaker and Language Recognition
Workshop. 2018.

Diez, M.; Landini, F.; Burget, L.; et al.. BUT System for DIHARD Speech
Diarization Challenge 2018. In Proc. Interspeech. 2018. pp. 2798-2802.

Doddington, G.: Speaker recognition based on idiolectal differences between speakers.
In Seventh Furopean Conference on Speech Communication and Technology. 2001.

Fér, R.; Matéjka, P.; Grézl, F.; et al.: Multilingual bottleneck features for language
recognition. In Sizteenth Annual Conference of the International Speech
Communication Association. 2015.

Ghahremani, P.; BabaAli, B.; Povey, D.; et al.: A pitch extraction algorithm tuned
for automatic speech recognition. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. IEEE. 2014. pp. 2494-2498.

Glembek, O.: Optimalization of Gaussian Mixture Subspace Models and Related
Scoring Algorithms in Speaker Verification. PhD dissertation. Brno University of
Technology, Faculty of Information Technology, Brno. 2012.

Glembek, O.; Ma, J.; Matéjka, P.; et al.: Domain adaptation via within-class
covariance correction in i-vector based speaker recognition systems. In Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on.
IEEE. 2014. pp. 4032-4036.

Hannun, A.; Case, C.; Casper, J.; et al.: Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567. 2014.

Hinton, G.; Deng, L.; Yu, D.; et al.: Deep neural networks for acoustic modeling in
speech recognition. IEEE Signal processing magazine. vol. 29. 2012.

Kenny, P.: Bayesian speaker verification with heavy-tailed priors. In Odyssey. 2010.
page 14.

Kenny, P.; Boulianne, G.; Ouellet, P.; et al.: Joint factor analysis versus
eigenchannels in speaker recognition. IEEE Transactions on Audio, Speech, and
Language Processing. vol. 15, no. 4. 2007: pp. 1435-1447.

Kinnunen, T.; Li, H.: An overview of text-independent speaker recognition: From
features to supervectors. Speech communication. vol. 52, no. 1. 2010: pp. 12-40.

Lukas Burget, IKR Slides: Gaussian distribution.
https://www.fit.vutbr.cz/study/courses/IKR/
public/prednasky/02_bayesovska_teorie/bayesovska_teorie.pdf.

Martin, A.; Doddington, G.; Kamm, T.; et al.: The DET curve in assessment of
detection task performance. Technical report. National Inst of Standards and
Technology Gaithersburg MD. 1997.

45

28]

[29]

[34]

[35]

[36]
[37]

Matéjka, P.; Glembek, O.; Castaldo, F.; et al.: Full-covariance UBM and heavy-tailed
PLDA in i-vector speaker verification. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2011. pp. 4828-4831.

Matéjka, P.; Glembek, O.; Novotny, O.; et al.: Analysis of DNN approaches to
speaker identification. In Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on. IEEE. 2016. pp. 5100-5104.

Matéjka, P.; Novotny, O.; Plchot, O.; et al.: Analysis of Score Normalization in
Multilingual Speaker Recognition. In INTERSPEECH. 2017. pp. 1567-1571.

Matéjka, P.; Plchot, O.; Novotny, O.; et al.: BUT-PT System Description for NIST
LRE 2017.

Matéjka, P.; Zhang, L.; Ng, T.; et al.: Neural network bottleneck features for
language identification. Proc. IEEE Odyssey. 2014: pp. 299-304.

McLaren, M.; Castan, D.; Nandwana, M. K.; et al.: How to train your speaker
embeddings extractor. In Odyssey: The Speaker and Language Recognition Workshop,
Les Sables d’Olonne. 2018.

McLaren, M.; Ferrer, L.; Castan, D.; et al.: The 2016 Speakers in the Wild Speaker
Recognition Evaluation. In INTERSPEECH. 2016. pp. 823-827.

Nagrani, A.; Chung, J. S.; Zisserman, A.: Voxceleb: a large-scale speaker
identification dataset. arXiv preprint arXiv:1706.08612. 2017.

Paszke, A.; Gross, S.; Chintala, S.; et al.: Automatic differentiation in PyTorch. 2017.

Peddinti, V.; Povey, D.; Khudanpur, S.: A time delay neural network architecture for
efficient modeling of long temporal contexts. In Sizteenth Annual Conference of the
International Speech Communication Association. 2015.

Pelleg, D.; Moore, A. W.; et al.: X-means: extending k-means with efficient
estimation of the number of clusters. In Ieml, vol. 1. 2000. pp. 727-734.

Povey, D.; Ghoshal, A.; Boulianne, G.; et al.: The Kaldi Speech Recognition Toolkit.
In IEEFE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE
Signal Processing Society. December 2011. iEEE Catalog No.: CFP11SRW-USB.

Prince, S. J.; Elder, J. H.: Probabilistic linear discriminant analysis for inferences
about identity. In 2007 IEEE 11th International Conference on Computer Vision.
IEEE. 2007. pp. 1-8.

Reynolds, D. A.; Quatieri, T. F.; Dunn, R. B.: Speaker verification using adapted
Gaussian mixture models. Digital signal processing. vol. 10, no. 1-3. 2000: pp. 19-41.

Sadjadi, S. O.; Kheyrkhah, T.; Tong, A.; et al.: The 2016 NIST Speaker Recognition
Evaluation. In Interspeech. 2017. pp. 1353-1357.

Sell, G.; Snyder, D.; McCree, A.; et al.: Diarization is hard: Some experiences and
lessons learned for the JHU team in the inaugural DIHARD challenge. In Proc.
Interspeech. 2018. pp. 2808-2812.

46

[44] Silnova, A.; Brummer, N.; Garcia-Romero, D.; et al.: Fast variational Bayes for
heavy-tailed PLDA applied to i-vectors and x-vectors. arXiv preprint
arXiw:1803.09153. 2018.

[45] Snyder, D.; Garcia-Romero, D.; McCree, A.; et al.: Spoken language recognition
using x-vectors. In Proc. Odyssey 2018 The Speaker and Language Recognition
Workshop. 2018. pp. 105-111.

[46] Snyder, D.; Garcia-Romero, D.; Povey, D.: Time delay deep neural network-based
universal background models for speaker recognition. In 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU). IEEE. 2015. pp. 92-97.

[47] Snyder, D.; Garcia-Romero, D.; Povey, D.; et al.: Deep neural network embeddings
for text-independent speaker verification. In Proc. Interspeech. 2017. pp. 999-1003.

[48] Snyder, D.; Garcia-Romero, D.; Sell, G.; et al.: SPEAKER RECOGNITION FOR
MULTI-SPEAKER CONVERSATIONS USING X-VECTORS.

[49] Snyder, D.; Garcia-Romero, D.; Sell, G.; et al.: X-vectors: Robust DNN embeddings
for speaker recognition. Submitted to ICASSP. 2018.

[50] Snyder, D.; Ghahremani, P.; Povey, D.; et al.: Deep neural network-based speaker
embeddings for end-to-end speaker verification. In Spoken Language Technology
Workshop (SLT), 2016 IEEE. IEEE. 2016. pp. 165-170.

[51] Tranter, S. E.; Reynolds, D. A.: An overview of automatic speaker diarization
systems. IEEE Transactions on audio, speech, and language processing. vol. 14, no. 5.
2006: pp. 1557-1565.

[52] Vesely, K.; Karafiat, M.; Grézl, F.: Convolutive bottleneck network features for
LVCSR. In 2011 IEEE Workshop on Automatic Speech Recognition € Understanding.
IEEE. 2011. pp. 42-47.

[53] Vesely, K.; Karafiat, M.; Grézl, F.; et al.: The language-independent bottleneck
features. In 2012 IEEE Spoken Language Technology Workshop (SLT). IEEE. 2012.
pp- 336-341.

[54] Widrow, B.; Lehr, M. A.: 30 years of adaptive neural networks: perceptron, madaline,
and backpropagation. Proceedings of the IEEE. vol. 78, no. 9. 1990: pp. 1415-1442.

[55] Wooters, C.; Huijbregts, M.: The ICSI RT07s speaker diarization system. Multimodal
Technologies for Perception of Humans. 2008: pp. 509-519.

[56] Xie, W.; Nagrani, A.; Chung, J. S.; et al.: Utterance-level Aggregation For Speaker
Recognition In The Wild. arXiv preprint arXiv:1902.10107. 2019.

47

Appendix A

Content of the CD

e DP.pdf - this document in pdf format

e VBDiarization/ - diarization code from
https://github.com/Jamiroquai88/VBDiarization

configs/ - directory with configuration files

examples/ - directory with examples, see mainly diarization.py
models/ - directory containing pre-trained models

vbdiar/ - code of the library

LICENCE - file with MIT licence

README.md - main README with steps how to install this package
requirements.txt - python requirements file

setup.py - setup script

e pysid/ - python library for speaker verification

e evaluator/ - configuration files and scripts for evaluation of datasets

48

https://github.com/Jamiroquai88/VBDiarization

	Introduction
	Theoretical Background
	Speaker Recognition
	Voice Activity Detection
	Feature Extraction
	Mel Frequency Cepstral Coefficients
	Bottleneck Features
	Other Feature Sets

	i-vector
	Gaussian Mixture Model

	Neural Networks
	Time-Delay Neural Networks

	x-vector
	E-TDNN x-vector

	Backend
	Linear Discriminant Analysis
	Probabilistic Linear Discriminant Analysis
	Score Normalization

	Diarization
	Variational Bayes
	Segmentation Based Approach
	K-Means

	Experimental Setup
	NIST SRE
	Data
	Training Data
	Evaluation Data

	Evaluation Metrics
	Equal Error Rate
	Cost Model
	Detection Error Tradeoff
	CLLR
	Diarization Error Rate

	Pipeline Setup
	Voice Activity Detection
	Acoustic i-vector
	Phonetic bottleneck i-vector
	x-vector
	Diarization

	Experiments - CMN2 condition
	Baseline Systems
	Backend Experiments
	Domain Adaptation

	Processing Speed

	Experiments - VAST condition
	Baseline Systems
	Domain Specific System
	Diarization in the Loop
	Speaker Diarization Implementation
	Diarization Sufficient for Speaker Verification

	Conclusion
	Experiments Summary
	Future Work

	Bibliography
	Content of the CD

