
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

MOBILE APP FOR CAPTURINGAND VIEWING PHO-TOGRAPHS OF THE SAME OBJECT AT DIFFERENTTIMESMOBILNÍ APLIKACE PRO POŘIZOVÁNÍ A PROHLÍŽENÍ FOTOGRAFIÍ STEJNÉHO OBJEKTU
V RŮZNÝCH ČASECH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. DOMINIK PLŠEK
AUTOR PRÁCE
SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2018/2019
Zadání diplomové práce

Student: Plšek Dominik, Bc.
Program: Informační technologie Obor: Počítačová grafika a multimédia
Název: Mobilní aplikace pro pořizování a prohlížení fotografií stejného objektu v různých

časech
 Mobile App For Capturing and Viewing Photographs of the Same Object at Different

Times
Kategorie: Zpracování obrazu
Zadání:

1. Seznamte se s problematikou vývoje pro iOS. Zaměřte se na pořizování a prohlížení fotografií.
2. Vyhledejte a analyzujte existující aplikace pro pořizování, prohlížení a porovnávání fotografií stejného

objektu v různé časy.
3. Prototypujte dílčí prvky uživatelského rozhraní pro pořizování fotografií téhož objektu v různé časy. Testujte

prototypy na uživatelích a iterativně je vylepšujte.
4. Navrhněte aplikaci pro pořizování fotografií téhož objektu v různé časy a pro prohlížení těchto fotografií.
5. Implementujte navrženou aplikaci, testujte ji na uživatelích a iterativně ji vylepšujte.
6. Demonstrujte funkčnost vytvořené aplikace na vhodných datech sbíraných po delší časový úsek.
7. Zhodnoťte dosažené výsledky a navrhněte možnosti pokračování projektu; vytvořte plakátek a krátké

video pro prezentování projektu.
Literatura:

Steve Krug: Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability, ISBN:
978-0321965516
Steve Krug: Rocket Surgery Made Easy: The Do-It-Yourself Guide to Finding and Fixing Usability, ISBN:
978-0321657299
Matthew Mathias, John Gallagher: Swift Programming: The Big Nerd Ranch Guide (2nd Edition), Big Nerd
Ranch Guides
Soonmin Bae, Aseem Agarwala, Frédo Durand: Computational Rephotography, ACM Transactions on
Graphics (TOG), Volume 29, Issue 3, June 2010

Při obhajobě semestrální části projektu je požadováno:
Body 1 a 2, značné rozpracování bodů 3 až 6.

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Herout Adam, prof. Ing., Ph.D.
Vedoucí ústavu: Černocký Jan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 22. května 2019
Datum schválení: 7. listopadu 2018

Powered by TCPDF (www.tcpdf.org)

Zadání diplomové práce/21913/2018/xplsek00 Strana 1 z 1

Abstract
Rephotography has been a popular research topic in the photography field for a long time.
The purpose of rephotography itself is to repeatedly take photographs of the same scene
at a different time. As a result, the sequence of rephotographs with the reference, often
historical, the picture provides a compelling visualization of the evolution of the subject
or capture its changes in time. However, the act of rephotography is difficult for the
rephotographers as they have to cope with the ambiguous motions in six degrees of freedom
and with the changes of the subject itself or its surrounding environment.

This thesis aims to create a mobile application that would help its users to capture a
rephotograph more accurately and allow them to share the scenes amongst other users. The
designed application uses available on-device sensors to navigate the user to the location
and guide the user during the rephotography process to capture a precise rephotograph.
Furthermore, the application contains user interface elements designed explicitly for repho-
tography. Moreover, the work describes topics about user interface design, iOS application
development, and designing and deploying backend API for the mobile application.

Abstrakt
Refotografie je již dlouhou dobu zkoumaným tématem v oboru fotografie. Cílem refotografie
samotné je opakovaně pořizovat fotografie stejné scény v různých časech. Výsledkem je
kolekce fotografií s referenční, mnohdy historickou fotografií zachycující vývoj a případně
změny focené scény. Nicméně refotografie samotná je pro fotografy nesnadným úkonem.
Fotograf se musí vyrovnat s pohyby v šesti stupních volnosti a případnými změnami před-
mětu fotografie nebo změnou jeho okolního prostředí. V poslední době se výzkum zabývá
výpočetní refotografií využívající výpočetní postupy a algoritmy z oboru počítačového
vidění, se záměrem omezit překážky při pořizování opakované fotografie.

Cílem diplomové práce je vytvořit mobilní aplikaci sloužící uživatelům k zachycení pre-
ciznější refotografie a umožnit její sdílení s ostatními uživateli aplikace. Navržená ap-
likace využívá dostupných senzorů na zařízení k navigaci uživatele na odpovídající lokaci.
Současně uživatele provází během procesu k vyfocení přesnější refotografie. Uživatelské
rozhraní aplikace je specificky navrženo pro refotografii. Práce obsahuje témata návrhu
uživatelského rozhraní, vývoje mobilních aplikací pro operační systém iOS a návrh a pro-
dukční nasazení serverové části služby a API pro mobilní aplikaci.

Keywords
rephotography, mobile applications, user interfaces, iOS, Ruby on Rails, photo and video
applications

Klíčová slova
refotografie, mobilní aplikace, uživatelská rozhraní, iOS, Ruby on Rails, foto a video aplikace

Reference
PLŠEK, Dominik. Mobile App For Capturing and Viewing Photographs of the Same Object
at Different Times. Brno, 2019. Master’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor prof. Ing. Adam Herout, Ph.D.

Rozšířený abstrakt
Refotografie je již dlouhou dobu zkoumaným tématem v oboru fotografie. Cílem refotografie
samotné je opakovaně pořizovat fotografie stejné scény v různých časech. Výsledkem je
kolekce fotografií s referenční, mnohdy historickou fotografií zachycující vývoj a případně
změny focené scény. Nicméně refotografie samotná je pro fotografy nesnadným úkonem.
Fotograf se musí vyrovnat s pohyby v šesti stupních volnosti a případnými změnami před-
mětu fotografie nebo změnou jeho okolního prostředí. V poslední době se výzkum zabývá
výpočetní refotografií využívající výpočetní postupy a algoritmy z oboru počítačového
vidění, se záměrem omezit překážky při pořizování opakované fotografie.

Cílem diplomové práce je vytvořit mobilní aplikaci sloužící uživatelům k zachycení pre-
ciznější refotografie a umožnit její sdílení s ostatními uživateli aplikace. Navržená ap-
likace využívá dostupných senzorů na zařízení k navigaci uživatele na odpovídající lokaci.
Současně uživatele provází během procesu k vyfocení přesnější refotografie. Uživatelské
rozhraní aplikace je specificky navrženo pro refotografii. Práce obsahuje témata návrhu
uživatelského rozhraní, vývoje mobilních aplikací pro operační systém iOS, návrh a pro-
dukční nasazení serverové části služby a API pro mobilní aplikaci.

Mobilní aplikace přistupuje k problematice výpočetní refotografie odlišným způsobem
než články popisované v textu. Namísto aplikace algoritmů počítačového vidění, mobilní
aplikace využívá dostupné senzory na mobilním zařízení. Na základě dat z akcelerometru,
gyroskopu a magnetometru aplikace uloží rotaci zařízení při focení scény. Následně při refo-
tografii je na základě uložených dat (kvaternionů) vypočítávána relativní rotace aktuálního
natočení zařízení vůči referenčnímu. Tato informace je prezentována ve formě navigačního
obdélníku, který navádí uživatele ke správnému natočení zařízení. V případě, že je navi-
gační obdélník zarovnán ve středu mřížky, rotace zařízení odpovídá referenčnímu natočení.
Při focení nové scény reprezentuje navigační obdélník rotaci okolo osy 𝑧 a vede uživatele
k zarovnání zařízení s mřížkou. Data ze senzorů jsou získávána pomocí frameworku Core
Motion.

Uživatelské rozhraní aplikace je optimalizováno pro iOS zařízení s důrazem na uži-
vatelskou přívětivost a jednoduchost. Některé ovládací prvky jsou navrženy s ohledem na
průzkum jiných mobilních aplikací a projektů se zaměřením na fotografii a refotografii, které
jsou diskutovány v textu práce. Jednotlivé prvky uživatelského rozhraní jsou navrženy tak,
aby pomohli uživatelům v procesu refotografie zachytit přesnější refotografii dané scény,
případně vizualizovali důležité informace o scéně. Příkladem je funkce pohledu nohou,
která napomáhá při vyhledávání přesného místa focení původní scény. Překryv původní
fotografie s pohledem z kamery slouží k preciznímu zarovnání při vytváření refotografie. Po
vyfocení refotografie aplikace umožňuje porovnat rozdíl mezi právě pořízenou refotografií
a původní fotografií. Uživatel může procházet existující scény ve dvou režimech zobrazení
– galerii scén a anotované mapě. Obrazovka s dodatečnými informacemi o scéně obsahuje,
kromě referenční scény a data pořízení, i adresu získanou reverzním geokódováním a galerii
refotografií dané scény. Refotografie scény lze zobrazit v módu časové osy.

Při vytváření nové scény lze na mapě přesně definovat lokaci, odkud byla fotografie
pořízena. K zobrazení mapových podkladů slouží framework Map Kit. Ke sběru dat
o poloze uživatele je použita technologie Core Location. Aplikace k přístupu a konfiguraci
kamery na mobilním zařízení a programování funkcí fotoaparátu využívá AVFoundation.
Síťová komunikace mobilní aplikace se serverem s aplikačním rozhraním je implementována
pomocí URLSession z frameworku Foundation. Persistenci uživatelských dat obstarává
technologie Core Data.

Serverová část a aplikační rozhraní je implementováno prostřednictvím frameworku
Ruby on Rails. Aplikační rozhraní je postaveno na architektuře REST a data jsou posílána
ve formátu JSON. Ke snížení objemu zasílaných dat jsou fotografie přenášeny jako binární
data a k tomuto účelu mobilní aplikace sestavuje odpovídající URL dotazy. V produkčním
prostředí je použita databáze PostgreSQL. Multimediální data jsou ukládána v cloudovém
úložišti Amazon S3 Bucket. Webová aplikace s databází je hostována na službě Heroku.

Výsledky testování potvrzují, že navržená mobilní aplikace pomáhá uživatelům zachytit
přesnější refotografie, které mohou být použity ke sledování změn dané scény v různých
časech. Aplikace byla v průběhu testování uživateli dobře přijata a její uživatelské rozhraní
bylo hodnoceno jako jednoduché a uživatelsky přívětivé. V průběhu testování uživatelé
nevyužívali všechny funkce aplikace. Zpětná vazba poskytuje informace o funkcích vyhod-
nocených uživateli jako účelných. Naopak poukazuje na potřebu případných změn v uži-
vatelském rozhraní pro získání většího komfortu při ovládání aplikace. Jedná se například
o přidání tlačítka k zobrazení záběru nohou přímo do obrazovky kamery, pokud je aplikace
v režimu refotografie.

Výsledná aplikace poskytuje základ pro platformu využitelnou k refotografii ve větším
měřítku. K dosažení daného cíle je třeba mobilní aplikaci zaměřit na focení venkovních
scén, kde navržený a implementovaný navigační systém, na základě poznatků z testování,
funguje nejlépe.

5

Mobile App For Capturing and Viewing Photographs
of the Same Object at Different Times

Declaration
Hereby I declare that this thesis was prepared as an original author’s work under the
supervision of prof. Ing. Adam Herout, Ph.D. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Dominik Plšek
May 21, 2019

Acknowledgements
I would like to express my gratitude to my supervisor prof. Ing. Adam Herout, Ph.D. for
his guidance and continuous support.

Contents

1 Introduction 2

2 Rephotography and Capturing and Viewing Photographs 3
2.1 Rephotography . 3
2.2 Camera applications . 7
2.3 Applications for sharing and viewing photographs 11
2.4 Applications for capturing the same object in different times 14

3 Mobile Application Development for iOS 22
3.1 Developing Applications for iOS . 22
3.2 Programming camera-based applications . 28
3.3 Using location and motion services in mobile applications 31

4 Design of the Mobile Application 35
4.1 Requirements and Design Goals . 35
4.2 Possible Solutions . 38
4.3 Proposed Solution . 42

5 Implementation 49
5.1 Implementing User Interface . 49
5.2 Developing Application Features . 52
5.3 Programming and Deploying API . 54

6 Results 58
6.1 Evaluating User Interface . 58
6.2 Accuracy Analysis of Rephotographed Photos 59

7 Conclusion 63

Bibliography 64

1

Chapter 1

Introduction

Rephotography has been a popular research problem in the photography field for a long
time. The rephotography aims to take a photograph from the same vantage point as the
reference (historical) photograph [60]. However, the task of taking an accurate rephotograph
is challenging and often imprecise. The rephotographer must identify correct motions in
six degrees of freedom, including 3D translation and 3D rotation [45] [69]. Furthermore,
the subject may look different from new photographs due to structural changes, weather,
and other elements [45].

Nevertheless, when the modern rephotograph accurately aligns with the historical pho-
tograph, rephotography can provide a visualization of the progression of the photographed
subject [45]. Rephotography is, in many cases, used to study history. Several rephotogra-
phers and rephotography projects capture changes in major world cities and landscapes [45].
However, rephotography is also used to study changes and the impact of external factors
in the environment [45].

This thesis focuses on developing a mobile application applicable to rephotography.
The application allows the users to capture new scenes, share scenes amongst users of the
application, view the timeline that illustrates the changes of the scene at different times,
and guide the users when rephotographing an existing scene. Furthermore, the application
includes user interface elements explicitly devised for the task of rephotography.

The work covers topics about the design and implementation of the application. Individ-
ual chapters describe the iOS operating system, technologies and framework for persisting
data, collecting motion data from device’s sensors, determining the geographical location
of the user, and showing the scene locations on a map. Furthermore, the text discusses
programming server-side application and designing the API for communication between the
mobile application and the server. Finally, the thesis presents results of the user interface
evaluation and accuracy analysis of rephotographed photos.

2

Chapter 2

Rephotography and Capturing and
Viewing Photographs

2.1 Rephotography
Rephotography, also known as repeat photography, is the action of repeatedly taking pho-
tographs of the same scene at a different time. The delay between the two images is
commonly referred to as a then and now view of the scene. The overall precision and
quality of the rephotographed photo depend on photographers skill and their selection of
camera and lenses. Furthermore, to capture an accurate rephotograph, the photographer
has to figure out various details [48].

First of all, the photographer has to decide which photo they want to rephotograph.
Rephotographers generally capture a building or other significant object in the photo-
graph which is present in the current view to show the continuity between the two pho-
tographs [45]. Additionally, in order to create a precise rephotograph, the photographer has
to reproduce a vantage point of the original photograph. Reproducing the original view-
point can be challenging because historical images can look different from new photographs
due to architectural changes, weather, daytime, and other factors [45]. Furthermore, as
modern digital cameras and lenses differ from older equipment, the photographer has to
consider the fact that the historical photographs are captured by a camera of unknown
calibration [45]. If the rephotograph of the original image is accurate, cross-fading or plac-
ing the original and rephotographed image next to each other reveals which scene elements
changed and which have stayed the same [45].

2.1.1 Computational Rephotography

Computational rephotography is an approach of using a computer or smartphone with a
camera to assist humans with the rephotography process. Rephotography without compu-
tational assistance relies on human’s subjective judgment by eye, which is very challenging
as the user has to deal with motions in 6 degrees of freedom. As a result, recaptured pho-
tographs are very inaccurate or take considerable time and skill to capture precisely [69].

Reliable rephotography can be done using a robot platform mounted with a camera.
The platform can dynamically adjust the pose of the camera. Therefore, the scene can be
consistently rephotographed with a high degree of accuracy. However, due to the size and
cost of such platform, this solution is not easily transportable nor accessible to the majority
of photographers [45].

3

To overcome disadvantages of the human performed rephotography and the robotic
platform with a mounted camera, researchers focused on more accessible technology such
as computers with connected camera or smartphones to make the process of capturing a
precise photograph of the same scene easier. Notable papers in this field are discussed in
section 2.4.

2.1.2 Applied Rephotography

Comparison of an original and rephotographed image provides a then and now view of the
scene. Rephotography can show the progress or decline of the subject and be used as a
tool to study history and changes of the subject in some circumstances [45]. Examples of
rephotography used as a tool to study history include Second View, New York Changing,
Then and Now and Time After Time. Second View is a rephotographic survey of landscape
images of the American West [45]. New York Changing (2004) is a rephotograph project
of photographer Douglas Levere who rephotographed photographs from Berenice Abbot’s
Changing New York (1939) [61]. Then and Now is a series of 40 books each containing
rephotographs of a major world city [45]. Lastly, Time After Time is a rephotography
project from Mark Hersch in which the photographer merges historic images with pho-
tographs from the present into a single image [33].

In addition to history, rephotography can be used to document environmental changes
such as glacier melting or geological erosion [45]. Furthermore, rephotography is used in
science, for example, to capture vegetation phenology [64]. Moreover, rephotography can
be applied to monitor personal, health, or cultural changes [45].

rePhoto

rePhoto is an application accompanied by a website designed for repeat photography. The
application shows a transparent overlay of the previous photograph on the camera screen,
to help the user to capture accurately aligned rephotograph. The user can see all nearby
sites for rephotography on a map. When the user selects a specific location, they can repho-
tograph the rephotography subject. As mentioned earlier, the application only shows the
transparent overlay of the previous photograph. After the user finishes the rephotography
process, the application uploads the image with all relevant metadata to a database [27].

The rePhoto project consists of mobile applications for iOS and Android and a website.
Visitors of the website can browse through the rephotography projects using the rePhoto
applications. The website also allows users to create a new project or manage an existing
one [27]. At the time of writing, the application for iOS is not available.

WhatWasThere

WhatWasThere project displays historic photographs which can be blended in with pho-
tographs from Google Street View. The website supports browsing, uploading and manag-
ing photographs and suits as an online archive which reflects the history of the location.
The visitor of the website can also switch between photos from the same location and see the
differences [26]. The user interface of WhatWasThere’s website can be seen in Figure 2.1.

The website on itself does not support capturing new photographs, but the project has
a companion application for mobile devices with the iOS operating system. The iPhone and
iPod Touch application should show historic photographs on a map based on the current
user location. Furthermore, the application offers an augmented reality experience using

4

Figure 2.1: Screenshot from WhatWasThere website. The screenshot shows the historic
photograph placed in the location where it was taken but fitted in current time. What-
WasThere makes use of Google Street View technology to show the current context in which
the historic photographs are placed manually by users.

the device embedded camera and offer a historical experience of locations surrounding
the user. Moreover, the application also uses the camera to obtain the current state of
the location and offers a screen fader feature to transition between past and present on
locations containing historic photographs in WhatWasThere database [26]. However, none
of the features nor the application could be tested as it is not available on the App Store
in the region of the author. Additionally, even after switching to the US App Store, the
application was advertised as not available on the store.

Historypin

HistoryPin collects local history through contributions from the community. In comparison
with the other projects, HistoryPin does not lead its users to rephotograph locations in the
archive. The project aims to collect diverse and broad historic content and group related
subjects into collections which users can explore [25].

At the time of writing, HistoryPin does not offer a mobile application. However, the
project’s website states that a new application with a redesigned interface is being devel-
oped.

Retake Melbourne

Retake Melbourne is a project of Deakin University from Victoria, Australia. The project
was successfully crowd-funded at a Pozible platform. The goal of the initiative is to repho-
tograph more than a fifty-year-old archive of photographies of Melbourne. Money raised
from the crowd-funders is planned to use to develop a mobile application which should help
volunteers with the rephotography process. Through the power of community effort, the
project wants to retake about 5000 original photographs of Melbourne [62].

5

Figure 2.2: HistoryPin project is very similar to WhatWasThere. The website offers sim-
ilar features, but HistoryPin’s core functionality is collections of content (photos, sounds,
videos) with a similar theme. The Figure shows an overlay of a historical photograph placed
in the Google Street View.

Retake Melbourne was successfully funded on 18th of June, 2013 and raised 6417
AUD [62]. An update from 10.12.2014 posted on the project’s funding page states that
the mobile application development is in progress. However, a comment posted on 12th
of March, 2015 from one of the project supporters reveal that the application is still non-
existent. As of 4th of January, 2019, the application is not published on App Store, and
the project’s page does not contain additional information about the state and the progress
of the application nor the overall rephotography project.

TimeLens

TimeLens is a mobile application for creating time-lapse videos. The application allows
adding new sites to photograph or submitting new photographs to already created one.
After the site is created and photographs of the site are submitted by users, the application
generates a time-lapse video from photographs collected by one or multiple users [66].

In the application, users can browse already created sites on a map. When a detail of
a selected site is opened, the user can play the created time-lapse video, see a comparison
of two site’s photographs and star the site which adds the site to the user starred list.
Furthermore, when the user taps on the info button, the application displays location and
additional information about the site [66]. Screenshots of the discussed screens can be seen
in Figure 2.3.

The application helps users to find already photographed locations or create new lo-
cations to photograph. It provides useful information about the location and helps other
users to reach the location. However, while taking a new photograph of the same location,
the user is not provided with any computational navigation, and thus, the photograph is
captured based on the eye judgment from the user. Nevertheless, the user can use the com-
parison feature to compare their photograph with an already captured photograph. The

6

Figure 2.3: Screenshots from TimeLens application. The first screenshot shows a map with
pins representing locations already photographed from the users. The second screenshot
displays detail of the location. In the third screenshot, location and additional information
about the location can be found. The last screenshot shows the comparison between the
two photographs.

ability to collaboratively photograph different locations allows anyone to contribute and
add to the variety and length of the created time-lens video.

2.2 Camera applications

2.2.1 Camera (iOS)

Camera is default photography and video application on iOS devices. It offers a convenient
way to capture high-quality photos and videos. Moreover, the application has a clean and
straightforward user interface and essential configurability. Furthermore, the application
supports multiple capture modes – time-lapse, slow-motion, video, photo, portrait, square,
and pano [72].

In the time-lapse mode, Camera application captures multiple photos of the scene over
some time and then combines the photos into a sped-up video [53]. Slow-motion mode
captures video at a faster frame rate. Afterward, when the video is played at a standard
frame rate, time seems to be slowed down [54]. Video mode allows capturing of video
footage with a selected frame rate and video resolution.

When the Camera is in photo mode, the user can capture live photos. The live photo is
1.5 seconds long video with audio before and after the user pressed the shutter button to
capture a photo. After capturing a live photo, a video with a total duration of 3 seconds
is saved to the user’s photo gallery while one frame is selected as a title photo [73]. Photo
and square mode allows the user to hold down on a shutter button to activate burst mode
in which the camera takes ten photos every second [75]. In photo, portrait and square
mode the camera allows to capture HDR photos, use a self-timer, and apply filters with a
live and thumbnail preview located under the camera view-finder. Portrait mode detects
a subject and a background and then blurs the background [51]. Furthermore, Camera

7

Figure 2.4: Screenshots of Camera (iOS) application from Best Camera App For iPhone:
Compare The 4 Best Camera Apps [72]. The first screenshot shows manual controls over
focus and exposure in the application. The second screenshot displays Camera’s Portrait
mode with the option to choose from several light effects.

supports multiple light effects in portrait mode. Lastly, the pano mode allows capturing of
panoramic photographs.

During the video and photo capture, the user can manually set focus and adjust expo-
sure. Additionally, the user can customize the camera view-finder to display an adaptive
grid with levels. Finally, on dual camera devices Camera can zoom in using a telephoto
lens [72].

2.2.2 Halide

Halide is a camera application for iOS devices with a gesture-based interface. The user
interface of the application is designed specifically for iPhone 8 and iPhone X devices. On
iPhone X and newer devices, the application is usable with one hand due to the custom-
designed user interface [3]. Halide provides an intelligent automatic mode as a default option
and a manual mode with control over ISO sensitivity, shutter speed, and white balance.
Additionally, the application supports depth capture and has a dedicated portrait mode.
Furthermore, features include live histogram for checking exposure, adaptive level grid,
and focus peaking. Controls available in Quick Bar are customizable, and the application
supports location data removal before sharing an image to social networks or messaging
applications.

Images of the application in Figure 2.5 shows the user interface and selection of features
from the application. The first screenshot from the left shows Halide’s application view-
finder. The screen contains an adaptive grid, a live histogram (located in the top left
corner of the device) and exposure value in the right top corner. User customizable Quick
Bar is located directly underneath the camera view-finder. There are two toggles located
under the quick bar – autofocus or manual focus and depth capture toggle. The bottom of
the screen contains a preview of the last picture, the shutter button, and a zoom toggle.
The image thumbnail also acts as an entry point to the photo gallery. The zoom and
depth toggle is available only on devices with a dual camera. The second screenshot of
the application shows the focus peaking feature. Focus peaking shows highlighted edges of
objects in focus [71]. In Halide detected edges are highlighted in green color.

8

Figure 2.5: Halide application screenshots from Halide’s Press Kit [3]. The leftmost picture
shows a screen of Halide’s user interface. The camera view-finder contains the adaptive
level grid. In the top left corner, a live histogram indicates the current exposure. In the
right corner, the application shows the current exposure value. The second screenshot from
the applications displays the focus peaking feature. The last screenshot shows the portrait
view while taking a photo from the front camera.

In comparison with the first screenshot, the second screenshot reveals that the applica-
tion is switched into manual mode and ISO sensitivity, white balance, and shutter speed is
configurable. ISO and white balance are configured by tapping on corresponding buttons
while shutter speed can be changed by scrolling up and down or left to right on the camera
view-finder. The last screenshot displays a portrait mode with a depth capture.

Halide supports three different depth visualizations in the view-finder. The first one is
depth peaking, Halide’s unique depth visualization, which is similar to the focus peaking.
Depth peaking overlays detailed depth information while still allowing the user operating
the application to view the subject. The depth peaking visualization is the default option
in Halide. The second visualization is portrait preview, which displays the effects before
capturing the photo and can be seen in the last screenshot in Figure 2.5. The third vi-
sualization is called depth view. Depth view shows the depth map. In this visualization,
the user loses details, but it can help to see if there is enough information to determine
foreground and background while capturing a photo with depth [68].

In addition to the three depth visualizations in the view-finder, the application allows to
view the depth information in augmented reality through Augmented Reality Viewer feature
after the image is captured. Halide’s AR Viewer projects depth capture into augmented
reality and lets users explore the photo in three dimensions. AR Viewer is built on top of
Apple’s ARKit framework to display content in augmented reality [68].

9

Figure 2.6: Halide various depth visualizations. Images taken from Halide’s blog article
Halide 1.7: In Depth [68]. The first picture shows the portrait view. Portrait view shows
the depth effect before capturing a photo. The second image displays depth peaking which
overlays detailed depth information while still allowing to see the subject while capturing a
photo. The third image shows a depth map showing which pixels are located in foreground
and background. In the last visualization, the user loses details about the subject, but the
depth map helps to identify foreground and background [68].

2.2.3 ProCamera.

ProCamera. is iOS mobile photography and video application with full control over the
camera. The application is highly customizable, and users can select features available in
the camera view-finder. The user interface provides seamless control and access to the ap-
plication’s functions. The application provides manual control over the shutter speed, ISO
sensitivity, and white balance. Also, the user can optionally set exposure and focus sepa-
rately. Furthermore, the application provides modes for HDR photography, video recording
in HD and 4K resolutions and special modes for lowlight photography. Additionally, the
application supports Portrait mode and has a dedicated Selfie mode for front-camera pho-
tography and Scan mode for scanning QR codes and other types of barcodes. Lastly,
ProCamera. includes a set of photo editing tools and convenient share options such as
removing geographical metadata and resizing of the image before sending them to social
media [72, 57, 15].

Screenshots of the application shown in Figure 2.8 present a selection of the application
features. The leftmost screenshot shows the customizability of ProCamera. application.
The top part of the screen displays a button for flash settings and information about shut-
ter speed, exposure, and ISO sensitivity. The top bar ends with a button to switch between
front and back camera. Bottom bar contains a button to access application settings (left-
most button), and on devices, with various cameras, the bottom bar offers an option to
selected a specific type of camera. The rightmost button acts as a control panel which is
visible as an overlay over the camera view-finder and contains shortcuts to various func-
tions of the application. The second screenshot displays detail of the selected image with
geographical metadata and navigation compass. The third screenshot shows a Tiltmeter
functionality. Tiltmeter visualizes the device’s attitude as a point moving on two axes. The
last screenshot displays a live histogram and the ability to set focus and exposure separately
(blue rectangle represents a focus, and the yellow circle represents exposure) [15].

10

Figure 2.7: Screenshots from Halide’s Augmented Reality Viewer. Images taken from an
article Halide 1.7: In Depth [68]. Augmented Reality Viewer projects depth capture into
augmented reality and allows the user to explore the photo in three dimensions. The
technology is using ARKit framework from Apple to display the content in augmented
reality [68].

2.3 Applications for sharing and viewing photographs

2.3.1 Instagram

Instagram is a social network focused on photo and video sharing. Instagram launched as a
mobile application for iOS in October 2010. The application was released only for iOS, and
the Android version was released in about year and a half later in April 2012. A limited
web application was released in November 2012 followed by a release of Windows Phone
application in November 2013 [6, 5, 1, 10].

The application initially started solely as a photo sharing social network. From the
beginning, Instagram offered many photographic filters to modify the photo. Users can add
tags and hashtags to help other users to discover relevant content and other users to follow.
In June 2013, the application gained a video sharing functionality [13]. The application
obtained more features such as private messaging between users (Instagram Direct, 2013),
video and photo story sharing similar to Snapchat’s Stories (Instagram Stories, 2016), and
vertical video (IGTV, 2018) [9, 11, 20]. Until August 2015, photos and videos on Instagram
were shared in 1:1 aspect ratio (square) and the square format was the distinguishing factor
from other social networks [18].

Apart from the main application (Instagram), the company also released several stand-
alone mobile applications – Boomerang, Hyperlapse, Layout, and IGTV. Boomerang is
an application for creating short videos that loop back and forth [7]. Hyperlapse creates
automatically stabilized time lapse videos [8]. Layout helps users to create personalized
layouts from their photographs [12]. IGTV is a video application primarily focused on
smartphones with videos solely in vertical format [20]. Length of videos is limited from
minimum 15 seconds to a maximum of 10 minutes and 60 minutes for users with popular
or verified accounts [21]. The stand-alone applications from Instagram offer an option to

11

Figure 2.8: Screenshots from ProCamera. application (How To Use ProCamera App To
Shoot Stunning iPhone Photos, 2017) [57]. The leftmost screenshots shows opened con-
trol panel containing shortcuts and options for various application’s features. The second
screenshots (What’s New in ProCamera 8 v6.3, 2015) displays an image detail with geo-
graphical metadata and navigation compass [65]. The third screenshots shows Tiltmeter
which represents current device attitude as a moving point on two axis. The last screen-
shots shows a live histogram and the focus (blue rectangle) and exposure (yellow circle)
configured separately [14].

share the content to Instagram with IGTV being tightly integrated into Instagram’s primary
application [20].

2.3.2 Snapchat

Snapchat is a messaging application for sending multimedia content which is usually avail-
able only for a short period. The original application, first publicly available in 2011, focused
primarily on person-to-person messaging – Android version of the application launched in
2012. The application gradually evolved and introduced Stories in which people share
chronologically ordered content available for 24 hours and Discover providing an advertis-
ing platform for brands [17].

Snapchat is known for its mobile-first approach for social media, and a vital part of the
application is the focus on users interaction. A well-known example of this is the augmented
reality content users can interact within the Snapchat’s camera and virtual stickers [46].

The application’s version 5.0 for iOS released in June 2013 introduced new swipe nav-
igation between the application screens [49]. Until then, the application honored a more
traditional approach of screen navigation, as shown in Figure 2.9. The novel user interface
design with swipe navigation unlocked new possibilities as Snapchat applications obtained
more features. Figure 2.10 shows screenshots from Snapchat’s application page on the
App Store. The user interface, in comparison with the application’s interface displayed in
Figure 2.9, changed significantly. The navigation is multidimensional to the point that on
the camera screen, swipes from left to right and up to down navigate the user to various
application parts. Furthermore, instead of using multiple buttons, Snapchat makes use of

12

Figure 2.9: Screenshots of Snapchat application from 2011 (Snapchat’s History: Evolution
Of Snapchat And Timeline (2018) [17]). Back then, the application used common navigation
between the application screens. The leftmost and middle screenshot reveals the use of a
navigation bar to indicate the position in the application’s flow to the user with back button
returning the user to the camera screen. Even in the first version, the application’s initial
screen is the camera for the reason to empower users to create content instead of just
consuming content of others [50].

gestures such as double tapping and holding for their functionality, changing the traditional
meaning of the gesture at the same time [50].

By breaking the design rule Don’t Make People Think, Snapchat requires to some extent
a tribal knowledge to use. The application abandoned intuitive user interface in favor of
shareable user interface. As a result, Snapchat makes people talk and consult their friends
on how to use the application, which in the context of Snapchat being a social network,
may, in the end, help Snapchat [50].

2.3.3 Flickr

Flickr is a company providing image and video hosting services through its website and
mobile applications for iOS and Android. The website allows users to upload and manage
their collection of photos, browse and add photos of other users into their favorites list and
join groups with a common interest. Also, users can create photo books online from their
albums on Flickr. Furthermore, the website allows users to view supported equirectangular
images in 360∘ without any additional equipment. Additionally, Flickr offers Flickr VR
application for compatible Galaxy smartphones. If the user owns a compatible Samsung
Galaxy smartphone with Samsung Gear VR headset, they can explore supported photos
and experience a 360∘ view of the image [19].

Flickr’s mobile application offers almost the same features as the website, but the in-
terface is optimized for smartphones. In comparison with the website, users of the mobile
application can not order photo books or view equirectangular images 1. However, the
application allows users to take photos through the camera of the smartphone directly in
the application. The application’s camera supports several image filters and offers image
enhancing, cropping and editing saturation, color balance, levels, and sharpness of the
image.

To put the importance of smartphone photography into context, the Most Popular
Cameras in the Flickr Community are iPhone 6, iPhone 6S, iPhone 5S, iPhone 7, and

1Flickr’s application in version 4.10.1 was tested on iPhone X with iOS 12 (version 12.1.2.)

13

Figure 2.10: Snapchat’s screenshots of version 10 from App Store [16]. The leftmost screen
shows a chat screen. The second screenshot displays a camera using Snapchat’s camera
lenses. Camera lenses display augmented reality content on the subject. Users can access
camera lenses on the camera screen by holding their finger on the screen. The third screen-
shot shows Discover screen. Stories from user’s friends are displayed on top of the screen
while subscription from brands and algorithmically generated content is displayed below.
The last screenshot shows nearby friends and stories on a map.

iPhone 7 Plus. Same smartphones are the most popular camera phones. The rank 1 in
Camera Brands used in the Flickr Community is Apple with top models consisting of iPhone
6S, iPhone 6, and iPhone 7. Samsung has a fourth position with top models being Galaxy
S7, Galaxy S6, and Galaxy S5 [2]. Relevant charts from the Flickr’s website are shown in
Figures 2.11 and 2.12.

Data represented in charts in Figures 2.11 and 2.12 are normalized and shows the
number of Flickr members who have uploaded at least one photo or video with a specific
camera on a given day over last year. The up and down movement in the chart represents
the change of camera’s popularity relative to all other cameras used by Flickr members [2].

2.4 Applications for capturing the same object in different
times

2.4.1 Computational Rephotography

Computational Rephotography is an article which presents an interactive, computational
technique for rephotography. The solution focuses on the task of matching the viewpoint
of a reference photograph at capture time. The software allows users to point the camera
towards the scene shown in the reference image and in real-time it estimates and visualizes
the camera motion to reach the desired viewpoint [45].

From the implementation point, the technique is built on top of existing computer
vision algorithms. Camera pose estimation is computed by two techniques - robust and
lightweight estimation. The robust camera pose estimation is based on computing current
camera location relative to the first camera location. The use of the first frame instead of
the reference frame is to avoid degeneracy when the user gets close to the desired view-
point. Correspondence estimations between the first and the current frame are computed
by using SIFT feature points. Real-time estimation of the essential matrix between two

14

Figure 2.11: The first chart (Flickr Camera Finder [2]) shows the most popular camera-
phones in the Flickr Community. The total number of photos captured by many camera-
phones can be higher as Flickr relies on automatically detecting the camera used to take
the photo, but this is not usually possible with camera phones. The second chart (Flickr
Camera Finder [2]) shows the most popular point and shoot (compact) cameras [2].

Figure 2.12: The chart (Flickr Camera Finder [2]) shows that Apple’s smartphones are
the most popular cameras in the Flickr Community, surpassing DSLR cameras, compact
cameras and the competition’s smartphone models [2].

calibrated cameras is done by using Stewénius’s five-point algorithm. Inliers and the best
fitting essential matrix are found by using m-estimator sample consensus (MSAC) [45]. The
computation flow of the camera pose estimation is shown in Figure 2.13.

The lightweight pose estimation is computed by using KLT implementation for tracking
feature points. The implementation performs an affine check and multi-scale tracking that
refines from coarse to fine resolution. This lightweight computation runs at more than ten
frames per second [45].

Robust and lightweight estimations are interleaved in order to provide real-time updates
to the user. Each of the estimations runs on its dedicated thread. Third thread commu-
nicates with a camera. At the end of the robust estimation, a set of inliers is passed to
the lightweight estimation process. After the lightweight estimation acquires a new set of
inliers, it starts tracking from the next frame of the key frame [45].

Prototype implementation relies on a laptop connected to a camera. The computer vi-
sion tool running on the laptop shows the user arrows directing him towards the computed
camera pose. Also, the tool allows switching between multiple visualizations – edge visual-
ization, flipping visualization and visualization with a reference camera projected onto the

15

Figure 2.13: The diagram (Computational Rephotography, 2010 [45]) shows the process of
the camera pose estimation. The robust camera estimations parts are represented by yellow
boxes while purple ellipses represent the lightweight estimation [45].

current frame. In the edge visualization, a linear blend of the edges of the reference image
and the current scene after rotation stabilization is shown. In the flipping visualization,
users can flip between the reference photo and the current frame from the camera. Lastly,
in the third visualization, a 3D model of the reference camera as is projected as a visual
target onto the current frame. In the extensive user interface evaluation, done by two pi-
lot user studies and two final user studies, the edge visualization was chosen as a primary
visualization for the prototype interface [45].

As a result, the use of a computational system navigating users with arrow visualization
helps users take more accurate rephotographs in every test case than with a simple visual-
ization. The average error of the method is 40% of the average error with the linear blend.
It is important to note that the article states that if historical photographs are taken into
account, it can take approximately 15–30 minutes to reach the desired viewpoint. More-
over, the use of the laptop with a connected camera with a tripod limits the portability.
Researches envision their solution to run directly on the camera in the future [45]. Nowa-
days, it would make sense to run a similar application on a smartphone device instead of a
professional DSLR camera.

2.4.2 Fast and Reliable Computational Rephotography on Mobile Device

Fast and Reliable Computational Rephotography on Mobile device presents a fast and reliable
computational rephotography method with near real-time navigation on a mobile device,
guiding the user through the rephotography process. The article introduces fast matching,
which alternately uses features and optical flow to accomplish near real-time navigation

16

Fast and Effective Matching

Extract
feature?

Flow-based Fast Matching

Matching
Point Set ck

Online Rephotography Navigation

Extract
ORB

Feature

Descriptor
Substitution

RANSAC-based
Reliable Maching

yes

no

Compute Homography
Matrix H cr

Generate Navigation
Rectangle ,b r

Navigation Vector v Generate
Navigation Vector v

Navigation Rectangle

b
r

up

down

left right
front

back
v1 v2 v3

x

y
z

v6v5v4

Rephoto
completely?

yes

no

Keyframe Set
kf

Kbest

Kref

Captured Image Sequence

Fcur

Result

Update
Keyframe Set

kf

and
Best Keyframe Kbest

Capture
Image Fcur

Figure 2.14: Computational process of the fast rephotography method on a mobile device
(Fast and Reliable Computational Rephotography on Mobile Device, 2018 [69]). During the
computation, a keyframe and best frame are retained. After a new frame is captured, the
algorithm performs fast and effective matching between the current frame and best frame
and outputs matching point set. Next step is a computation of homography transformation
between current and reference frame and generating navigation rectangle and vector. Navi-
gation rectangle and vector are used to guide users to the intended camera pose. Afterward,
the keyframe set is updated, and unless the rephotography process is finished, computation
continues with a new frame [69].

on a mobile device. Furthermore, the authors also present techniques for improving the
robustness of the method on great illumination and target changes [69].

Instead of relying on robust but more computationally expensive methods such as SIFT
and SURF, authors chose more lightweight yet less robust ORB feature descriptor. ORB
feature matching is followed by a fast optical flow tracking in a few succeeding frames.
After the extraction of ORB feature points, matching outliers are removed through the
use of RANSAC to enhance the matching accuracy. As light conditions in reference and
current frame can differ, the procedure makes use of substituting feature descriptors in
the reference frame by corresponding feature points in the current frame. However, this
substitution of corresponding feature descriptors happens only during specific conditions
discussed more in detail in the original paper. In contrast with the system introduced in
section 2.4.1, the Fast and Reliable Computational Rephotography on Mobile Device uses
only the mobile device screen to guide the user. As a result, the navigation system had to
be changed due to the limited screen size of the mobile devices, and the paper proposes
the use of navigation rectangles. Navigation rectangles are computed from the homography
matrix and corresponding points between the current and the reference frame. Based on
the relation between the two navigation rectangles, a navigation vector is generated. The
vector indicates the motion direction [69]. Figure 2.15 shows navigation rectangles and the
appropriate navigation vector.

Results presented in the paper state that the authors’ method makes the rephotography
process more successful and less time-consuming. In summary, when the user is guided by
the method from Fast and Reliable Computational Rephotography on Mobile Device, the
AFD (Average Feature-point Displacement) is lower than other methods in nine cases from
total eleven test cases. Time spent with the rephotography process is the lowest in all test
cases. The amount of time saved is in tens of seconds [69].

17

rp2

rp1

rp3

rp4

bp2

bp3

bp4

bp1

v =12

Move Right

rp2

rp1

rp3

rp4

bp2

bp3

bp4

bp1

rp1

rp2

rp4

rp3

bp1

bp2

bp3
bp4

rp1

rp2

rp4

rp3

bp1

bp2

bp3

bp4

rp2

rp1

rp3

rp4

bp1

bp2

bp4

bp3

rp1

rp2

rp3

rp4

bp2

bp3

bp4

bp1

v =11

Move Down
v =13

Move Forward

Rotate Right Rotate Down
v =14 v =15 v =16

Rotate Clockwise

Figure 2.15: The interpretation of motion in six degrees of freedom using navigation rect-
angles with a corresponding navigation vector. (Fast and Reliable Computational Repho-
tography on Mobile Device, 2018) [69].

Figure 2.16: The user interface of the application (Collaborative Rephotography, 2013 [74]).
In the first screen, the map shows various locations to rephotograph as pins. After arriving
at the location, the user can verify the site to rephotograph. While capturing the site, a
transparent overlay helps the user to align the camera correctly. Finally, the user has an
option to upload their submission to the rephotography project [74].

2.4.3 Collaborative Rephotography

Collaborative Rephotography demonstrates a tool allowing multiple users to rephotograph
various locations over time. The resulting tool is a mobile application in which the user
can explore sites on a map, choose the desired site to rephotograph and rephotograph the
location using a linear blend between the reference and current subject. The most valuable
contribution in comparison with other rephotography projects is lowering the barrier to
entry for volunteer users [74].

Screenshots from the application can be seen in Figure 2.16 and 2.17. The application
shows a full-screen map on which pins represent locations for rephotography. When the
user selects a specific location to rephotograph, they can verify the photographed subject.
During the rephotography process, a transparent overlay on the screen helps the user align
the current camera frame to capture a more accurate rephotograph. After the rephotograph
is captured, the user has an option to upload the image.

The application introduced in Collaborative Rephotography paper helps to collect sub-
missions to rephotography projects from a community. Furthermore, by creating a better
user experience, the application makes it easier for volunteer users to participate in the

18

Figure 2.17: Screenshots from the application showing one of the participating rephotogra-
phy projects (Collaborative Rephotography, 2013 [74]). In this case, the application helps
to rephotograph and monitor the health, changes and local environment of street trees in
New York City [74].

rephotography projects. The paper mentions national scenic overlooks and the Gowanus
Conservancy in NYC as projects using the application. As a result of the use of the appli-
cation, participating projects collect more various data more frequently [74].

2.4.4 Rephotography Using Image Collections

Rephotography Using Image Collections presents a novel technique to create rephotographs.
Instead of providing some computational navigation system or blending reference and cur-
rent image to help the user to capture a more accurate rephotograph, their solution relies
on a collection of modern images around the target scene. Other papers in computational
rephotography such as Computational Rephotography [45] and Fast and Reliable Computa-
tional Rephotography on Mobile Device [69] provide a near real-time solution to guide the
user to find the accurate viewpoint of the reference photograph. However, in some cases,
the users might not be able to go back to the original place to capture a rephotograph.
Additionally, even with a real-time system, it can be hard to guide the user to the correct
vantage point. The proposed technique generates a rephotograph of a historical photograph
with some modern images. Using the historical photograph as a reference, it renders an
image with the same view from the collected new photographs [60].

Figure 2.18 shows the rephotography process of the proposed method. The technique
takes a historical reference photograph and a collection of modern images around the target
scene as an input. At the beginning of the rephotography process, the system estimates
camera parameters of the modern photographs through a camera calibration. Further, it
constructs a 3D point cloud of the scene and then estimates depth maps. Camera calibration
consists of estimating the intrinsic and extrinsic matrices of each camera. The 3D point
cloud of the scene is generated using a structure from motion technique2. Next step is
the estimation of camera parameters of the reference photograph. Instead of using SIFT
or ORB features as in [45] and [69], the estimation of the camera parameters relies on
the user-specified corresponding features between the reference photograph and 3D point
cloud. This is due to the differences in photograph qualities, noise, and perspective, which
contribute to a lot of incorrect feature correspondences when using SIFT. In this point, the
system posses all camera parameters of each photograph and its depth map. The method

2Structure from motion is a method which aims to recover the camera motion and scene structure from
image sequences [70].

19

User-specified
Matched Features

Camera Calibration for
Historical Photograph

Backward warping

Forward warping

Reprojection

Blending

Inpainting

Content-
preserving
warping

Hole Filling &
Perspective
Refinement

Camera
Calibration

3D Point Cloud
Construction

Depth Map
Estimation

Scene
Reconstruction

3D Point Cloud
&

Depth map
Initial

Rephotograph

Input Rephotography Process Output

Figure 2.18: Overview of the rephotography process (Rephotography Using Image Collec-
tions [60]). The input of the system is a reference (historical) photograph, and a sequence of
recent photographs captured close to the subject. First, the method estimates the camera
parameters and constructs 3D point cloud of the scene by using structure from motion tech-
nique. Next, it asks the user to specify corresponding features between the reference image
and 3D point cloud. After that, the system estimates camera parameters of the reference
photograph and computes depth map of every photograph. Then, it computes forward and
backward warping and generates two initial rephotographs. Finally, the system performs
image inpainting and content-preserving warping and produces the resulting image.

then projects the 3D point cloud onto the historical viewpoint. This operation is called
forward warping. As a result of the forward warping, a new view matching the viewpoint
of the reference photograph is rendered, and its depth map is computed at the same time.
Forward warping is followed by backward warping. In backward warping, pixels of the new
view are reprojected back to each input photograph to render an initial rephotograph.

Before the final output is rendered, the system performs operations to handle possible
mismatch of the scene structure. First, to fill some holes in the image after the forward
and backward warping, the method blends the two rendered photographs. Furthermore,
due to the occlusion, projection error or lack of scene structure information, the system
performs inpainting to fill holes caused by one of the errors. The inpainting selects pixels in
the holes individually in a best-first algorithm. After the selection of the pixel, it searches
the entire image and finds a squared patch which is the most similar to the patch centered
at the selected pixel. Finally, the system performs content-preserving warping to fix the
mismatch of the scene structure. In content-preserving warping, a grid mesh constructed
on the resulting image is warped in a way that the matching points between the result
and reference image locate precisely at the position of the matching points of the historical
image [60].

Rephotography result of the proposed technique can be seen in Figure 2.19. The leftmost
image shows the reference photograph selected from the image collection shown in the
second image. The second image shows the remaining image collection which is used to
generate the result rephotograph. The third image displays the result of the rephotography
process. The last image shows the difference between the rephotography result and the
reference photograph. Darker shades of a red color signal the fact that the error is larger [60].
Table 2.1 shows computational times of the rephotography process and additional details
about the selected photographs.

20

Figure 2.19: The result of the rephotography process and its comparison with the reference
photograph (Rephotography Using Image Collections [60]). Leftmost image displays the
reference photograph. The second image shows the collection of remaining photographs
used in the system. The third image contains the generated result from the rephotography
process. The last image displays the difference between the reference and result image.

Number of photos 16
Resolution 855 × 570
Depth map (sec.) 5.558
Ref. resolution 600 × 450
Ref. view (sec.) 10.93

Table 2.1: Computational times and details about the experimental data (Rephotography
Using Image Collections [60]). The table shows computational times and additional details
about the photographs in Figure 2.19.

21

Chapter 3

Mobile Application Development
for iOS

3.1 Developing Applications for iOS

3.1.1 Overview of iOS Operating System

iOS is a mobile operating system for iPhone, iPad, and iPod Touch devices. It is developed
by Apple, Inc. and the system was first introduced alongside the introduction of the first
iPhone in 2007 [58]. iOS manages the device hardware and provides technologies required
to implement native applications. The system is layered, and the set of layers is shown
in Figure 3.1. Most of the system interfaces are delivered as a special package called
framework. The framework is a directory that contains a dynamic shared library and the
resources such as header files, images, and others [44]. The application-framework of iOS is
called Cocoa Touch. The most critical framework for applications is the UIKit framework,
which is the core Cocoa framework in iOS [44] [28]. Following frameworks can be found at
each layer of the iOS system:

∙ Core OS level contains kernel, file system, networking infrastructure, security, power
management, and device drivers [28].

∙ Core Services is a collection of frameworks providing the following services – string
manipulation, collection management, networking, URL utilities, contact manage-
ment, and preferences. Furthermore, it contains frameworks for hardware-based fea-
tures such as GPS, compass, accelerometer, and gyroscope. Examples of frameworks
in this layer are Core Location and Core Motion [28]. Additionally, this layer contains
both Foundation and Core Foundation frameworks providing abstractions for com-
mon data types. Lastly, the Core Services layer contains the Core Data framework for
object graph management and object persistence, which is discussed more in detail
in section 3.1.2 [28].

∙ Media layer include frameworks supplying graphical and multimedia services to the
Cocoa Touch layer. The layer includes frameworks such as Core Graphics, Core Text,
Core Animation, AVFoundation, and Core Audio.

∙ Cocoa Touch layer consists of frameworks directly supporting iOS applications. An
of frameworks in the Cocoa Touch layer is Map Kit [28].

22

Application

Cocoa Touch

Media

Core Services

Core OS

Figure 3.1: Cocoa in the architecture of iOS Operating System. The hierarchical diagram
shows framework layers each giving the application access to its underlying technologies [28].
Figure based on Cocoa in the architecture of iOS [28].

Two particularly essential frameworks for developing applications for iOS are UIKit and
Foundation.

UIKit is a framework providing objects to an application which are used to construct
and manage its user interface [28]. Furthermore, the framework defines the structure for
application behavior, including event handling and drawing [28].

Foundation defines a base layer of classes usable for any Cocoa application. It provides
objects for primitive data types, collections, and operating-system services and serves as
an object-oriented version of the Core Foundation framework. Furthermore, it introduces
conventions for memory management, object mutability, and notifications [28] [44].

3.1.2 Persisting data in Core Data

Core Data is an object graph management and persistence framework used for managing
the model layer objects in iOS applications [37]. The framework is located in the Core
Services layer. Core Data abstracts the details of the mapping application’s model objects
to store. Thus it makes it easier to save data without managing a database directly [30].
The framework is initialized in the application as a stack consisting of Model, Context,
Store Coordinator, and Persistent Container. The stack, shown in Figure 3.2, has to be
initialized before accessing application data [30]. The initialization process prepares Core
Data for creation and data requests of the application data.

Model describes the data accessed by the Core Data stack [37]. The NSManagedObject-
Model contains one or more objects representing the entities in the schema [30]. Further-
more, it maintains a mapping between each of its entity objects and an associated managed
object class. The model is usually created by using a data modeling tool in Xcode. How-
ever, the model can be created in code when needed [30]. Finally, NSManagedObjectModel
is loaded into memory as a first step of the creation of the Core Data stack [37].

Context is a group of related model objects representing an internally consistent view
of one or more persistent stores [31]. Changes made to the managed objects are stored

23

Persistent Container

Model Context Store Coordinator

Figure 3.2: The diagram shows a Core Data stack which manages and persists the appli-
cation’s model layer. Store Coordinator is responsible for fetching and saving instances of
the application types from stores. Context manipulates and tracks changes to instances of
the managed object. The model contains one or more objects representing entities in the
application’s schema. Lastly, Persistent Container encapsulates Core Data stack in an iOS
application and provides a simplified creation and management of the stack. Figure based
on Core Data Stack [37].

in memory in the corresponding managed object context. Only after the managed object
context is saved, the changes are persisted to one or more persistent stores [31].

Store Coordinator is used by instances of Context (NSManagedObjectContext) to
save object graphs and retrieve model data from persistent storage. The context uses the
coordinator to access the model. Moreover, the coordinator unifies and presents a group
of persistent stores as an aggregate store to the managed object context [31]. There are
several types of persistent stores – SQLite, Binary, and In-Memory. Fourth persistent store
type XML is not available on iOS [30].

Persistent Container encapsulates Core Data stack in the application. It simplifies
the creation and management of the set of classes that collectively supports the application’s
model layer. NSPersistentContainer is used to set up those classes all at once [37].

Figure 3.3 shows the data modeling tool in Xcode. The left side of the screen shows a
list of entities. New entities are added using a button located at the bottom of the screen.
The middle of the screen shows attributes and relationships for a selected entity. The right
side accompanies an inspector where the corresponding class for the entity can be set. The
data modeling tool supports two different editor styles – table and a graph style. Figure 3.3
shows the table style with the entities list, editor area, and data model inspector. Figure 3.4
shows the graph style. The graph style visually represents relationships between entities
and shows their attributes. New relationships can be made between entities by control
dragging from one entity to another.

3.1.3 Showing map and annotations of nearby places

The iOS operating system offers a framework in the Cocoa Touch layer to display maps in
applications – MapKit. MapKit allows developers to embed maps into their applications,
add annotations and overlays to the map and customize call outs. The framework also
supports reverse geocoding and can be used to determine placemark information for map
coordinates [29].

24

Figure 3.3: Data modeling tool in Xcode used for creating the Core Data model. The
screenshots show the interface of the data modeling tool with entities list on the left side,
editor area with attributes, relationships, and fetched properties list and data model inspec-
tor on the right. The bottom part of the screen contains a button for adding new entities,
attributes, and a switch for changing the editor style between table and graph style. Figure
source Configuring Entities [37].

MapKit supports following map types – standard, satellite, hybrid, satellite flyover,
hybrid flyover, and muted standard [41]. Standard map type is a street map that shows
the position of all roads and some road names [41]. Satellite type includes images of the
area from a satellite while hybrid includes a satellite image of the area with roads and road
names information on top. Both satellite and hybrid flyover map types include satellite
images with flyover data when available. The flyover is a view from the air with photo-
realistic and interactive 3D models. As the time of writing, two cities in the Czech Republic
support flyover mode in Apple Maps – Brno and Prague. Lastly, map type muted standard
is a street map where the additional application data are emphasized over the underlying
map details [41].

Figure 3.5 contains images of four different map types – standard, satellite, hybrid, and
satellite flyover. The images show the difference between different map types. The standard
map type shows roads with road names and can be used for navigation applications or
applications where the information about roads and streets is more important to the user
than the view and layout of the area of interest. Satellite and hybrid map type shows a
satellite image of the area while the hybrid map type has additional information about
road names. The satellite and hybrid map type can give users a better understanding of
the area, such as the structure of buildings, green areas, and others. The last image shows
a flyover that displays photo-realistic 3D models. However, flyover map type can be only
used in supported cities.

25

Figure 3.4: The screenshot shows a graph style of the editor with two attributes and a
relationship between them. Apart from the relationship, the graph editor style also displays
entity attributes. The editor style is selected by using the switch at the right bottom part
of the data modeling tool. (Configuring Relationships [37])

The framework supports map annotations based on location-specific data with cus-
tomized annotation views and callouts [29]. The developer provides annotation as an object
that conforms to MKAnnotation protocol with required coordinate property and optional
title and subtitle properties. MapKit offers default annotation views for point-based an-
notations – MKPointAnnotation, MKMarkerAnnotationView and MKPinAnnotationView.
MKPointAnnotation is an object tied to the specified point on the map. MKMarker-
AnnotationView displays a balloon-shaped marker at the designated location. Finally,
MKPinAnnotationView displays a pin image on the map. Figure 3.6 shows a customized
map annotation with an application provided shape and a callout with a custom image,
title, and subtitle.

3.1.4 Network communication

Foundation framework includes an API for downloading and uploading data to URL end-
points. The API is provided by URLSession class and related classes. Additionally, it allows
downloads in the background when the application is not running or when the application
is suspended. Authentication and notifications about redirections and other network events
are supported through delegate methods.

The URLSession API can be used to create one or more sessions, each managing a group
of related data transfer tasks [42]. Individual tasks represent a request for a specific URL.
For basic requests with no configuration object, the API has a singleton shared session. The
shared session is not as customizable as created sessions. However, URLSession contains
several session types with the following configurations:

∙ Default session similar to the shared session. The difference between the two is that
the default session allows more configuration and supports an incremental download
of the data through its delegate methods [42].

26

Figure 3.5: Different map types available in MapKit framework. The leftmost screenshots
shows a standard map type with a street map and road names. The second image shows
a satellite map type and the third screenshots displays hybrid map type. In hybrid map
type satellite image contains road information. Last screenshot shows a satellite flyover of
the area with 3D models. [41].

∙ Ephemeral session, in contrast with the shared session, does not persist caches, cook-
ies, or credentials to disk [42].

∙ Background session allows performing upload and download tasks in the background
while the application is not running [42].

Tasks used inside the mentioned sessions are responsible for uploading data to a server
and then downloading response data into a file on disk or as objects in memory. URLSession
provides three types of tasks:

∙ Data task is a task that sends and receives objects of type Data. This task is desig-
nated for a short request to a server [42].

∙ Upload task is similar to the data task but supports uploads in the background.
Furthermore, upload tasks often send data in the form of file [42].

∙ Download task retrieves data from a server in the form of file and supports background
upload and download of data [42].

Asynchronicity in URLSessions can be achieved by using completion handlers or calls
of appropriate delegate methods. Completion handler blocks are called when the transfer
finishes with success or with an error. With the second approach, a class conforming to
respective protocols handles the delegate methods and implements custom logic. Figure
3.7 shows the flow when completion handler is used to handle success and error paths of
URLSessionDataTask. On the contrary, Figure 3.8 displays the process of using appropriate
delegates.

27

Figure 3.6: Screenshot from Apple’s sample code application Annotating a Map with Cus-
tom Data. The image shows a custom map annotation with a callout that contains an
image, title and subtitle.

Creates

URLSession
Sends data, requests,

error parameters

URLSessionDataTask CompletionHandler

Figure 3.7: The diagram shows the flow of receiving result from URLSessionDataTasks by
using a completion handler to take care of error and success path of the transfer process.
Figure based on Fetching Website Data into Memory [42].

Supported networking protocols in URLSession API are HTTP/1.1, HTTP/2 and SPDY.
The API supports by default data, file, ftp, http and https URL schemes. Developers
can subclass URLProtocol and provide custom networking protocols and URL schemes.
However, custom networking protocol or URL scheme is only usable for the application’s
private use [42]. After the release of iOS 9.0 and OS X 10.11, a new security feature
App Transport Security (ATS) is enabled by default for all HTTP connections made with
URLSession. The App Transport Security requires to use HTTPS over HTTP in all con-
nections.

3.2 Programming camera-based applications

3.2.1 Capturing photos using AVFoundation

AVFoundation framework unites four major technologies for working with multimedia on
Apple platforms. It supports capturing, processing, synthesizing, controlling, importing,
and exporting multimedia content.

The AVFoundation Capture subsystem provides functionality for capturing photos and
recording video. It supports configuration of built-in cameras, microphones, and external

28

Call backs with progress, errors, data,
authentication challenges, etc.

Creates
URLSession

URLSessionDataTask

URLSessionDelegate
URLSessionTaskDelegate
URLSessionDataDelegate

Figure 3.8: The implementation of delegate to receive results from a task. Figure based on
Fetching Website Data into Memory [42].

AVCaptureSession
AVCaptureDeviceInput

AVCaptureDevice

AVCaptureOutput

Figure 3.9: AVFoundation Capture subsystem architecture with its three main parts –
capture sessions, inputs and outputs. Figure based on Cameras and Media Capture [36].

capture devices. Through its video, photo and audio capture services the subsystem can
be used to build a custom camera UI with a combined photo or video shooting inside the
application. Furthermore, it provides direct control over the photo and video captures, such
as focus, exposure, and stabilization options [36]. Additionally, the subsystem can be used
to produce photos in RAW format, depth map, or videos with custom timed metadata.
Finally, it gives access to pixel or audio data streaming directly from a capture device [36].

The Capture subsystem is divided into three main parts – sessions, inputs, and outputs.
Capture sessions connect one or more inputs to one or more outputs [36]. Inputs are sources
of media, including capture devices built-in devices on iOS and Mac devices. Outputs obtain
media from inputs and produce outputs such as raw pixel buffers or movie files [36]. Figure
3.9 displays the architecture of AVFoundation Capture subsystem.

It is recommended to interact with and configure AVCaptureSession on a dedicated
serial dispatch queue to prevent blocking of the main queue on which the UI render-
ing and interaction with user happen [36]. After receiving inputs, the session sends the
data to relevant outputs for processing. Furthermore, the application needs to provide
AVCapturePhotoSettings with configuration parameters such as focus, flash, and resolu-
tion. In camera applications, generally, the process of capturing a photo is initiated by the
user by pressing a button functioning as a shutter button on a real camera. When the user
taps on the button the application initiates a photo capture with specified settings by call-
ing capturePhotoWithSettings:delegate: method on a selected AVCapturePhotoOutput
object. Once the capturePhotoWithSettings:delegate: method is called, the process
for starting photography ends. Operations on that individual photo capture are handled in
delegate callbacks [36]. Figure 3.10 summarizes the capture process and shows its timeline
with delegate methods.

3.2.2 Persisting user captured photographs

There are multiple ways to save multimedia data on the iOS platform. The first method
to analyze is saving photographs as a file on the device. Foundation framework includes
NSFileManager class that supports saving and loading files from and into the file system.
This method does not require authorization from the user, and the application can create a
custom folder structure inside the application’s bundle. When the most common workflow

29

Time

capturePhotoWithSettings:delegate:

Shutter sound

willBeginCapture...

willCapturePhoto... didCapturePhoto...

didFinishProcessingPhoto...

didFinishCapture...

Figure 3.10: The process of capturing a still photo using AVFoundation framework. After
the users taps on a shutter button capturePhoto:WithSettings:delegate: method on
AVCapturePhotoOutput is called. From this point, the process of the photo capture gets
handled in the delegate methods. Figure based on AVCam: Building a Camera App [36].

of camera-based application is taken into account, the application creates folders based on
albums and stores photographs based on their belonging to the album. However, when
the application model layer is managed in the database, the developer needs to track file
paths of all saved photographs and their corresponding album. Therefore, manipulating
with data becomes more troublesome and error-prone.

The second approach would be to save image data directly into the SQL database.
In this scenario, the photo model would have an attribute containing image data. The
relationship between the photo and its respective album is achieved by a one-to-many (as
long as one photo can be only in one album) between an album and photos. Moreover, the
application model is now united, and the metadata are saved in the same way as image data.
The model can be extended with relationships between its entities and common CRUD1

operations are easier to do then in the first method. However, saving large binary data
into SQL databases is an anti-pattern, and it can negatively influence the performance of
SQL operations on affected entities. Even if the model is optimized with an entity holding
only the down-sized thumbnail data, the database is bloated with large binary data and
retrieving hundreds or thousands of entities can become slow.

Last discussed method is using Core Data to save and retrieve user captured pho-
tographs. This approach combines the positives of the two previously mentioned approaches
while suppressing their negatives. Core Data allows to save extensive binary data as an
attribute of an entity but saves the data outside of the SQL database. At the same time,
the framework automatically manages the data and performs appropriate operations on the
device’s file system. From a developer perspective, objects of the specified managed class
get fetched from the database, and their attributes contain the image data.

Furthermore, if the developer provides a value transformer class, the framework can
automatically transform raw data from a file system into an UIKit class such as UIImage.
It is important to note, that becomes of the nature of Core Data being an object-graph, the
objects from the database are being held in the memory. It is the developer’s responsibility
to design the application in such a way that it does not fetch hundreds or thousands of

1CRUD stands for Create Read Update Delete.

30

photographs into the memory. This scenario results in the application getting killed by the
system to free the device’s memory. A viable architecture with Core Data as a persistence
layer would consist of a class incrementally fetching tens of photographs visible in the user
interface while maintaining a low memory footprint. Furthermore, by levering Core Data’s
faulting2 mechanism and incorporating a thumbnail entity with a reasonably sized image
data, the application can perform CRUD operations on such data effortlessly.

3.3 Using location and motion services in mobile applica-
tions

3.3.1 Core Location

Core Location framework provides services for resolving device’s geographic location, al-
titude, orientation or position relative to a nearby iBeacon3 [38]. Core Location uses all
available on device hardware to collect data. The hardware includes Wi-Fi, GPS, Blue-
tooth, magnetometer, barometer, and cellular hardware [38]. The use of Core Location
services in the application has to be authorized by the user. When the request for per-
mission to use location services is granted by the user, and the framework determines if
the required services are available, the services can be started using a CLLocationManager
object. Results from location services are handled in the associated delegate object within
its delegate callbacks [38].

The framework provides three unique services for retrieving the user’s location. The
services differ in authorization and power requirements, each providing different advantages.
The developer can use one or more services at different times, depending on the application’s
needs [38]. Table 3.1 summarizes available location services.

Visits location service is the most power-efficient method to retrieve location data. It
delivers location updates when the user has spent time in one location and then moves
on. Every update includes both the location and the amount of time spent at that lo-
cation [38]. This service is used for detecting patterns in the user’s behavior, but it is
not intended for navigation or real-time activity tracking. Visits location services require
Always authorization.

Significant-change location service is a less power-demanding alternative to track the
user’s location without the need for frequent updates or the precision provided by GPS [38].
It depends on more power-conscious alternatives to determine the user’s location and sends
updates only when significant changes to the user’s location occur. The service requires
Always authorization.

Standard location service is a configurable and general-purpose method for fetching the
user’s location in real time. It uses considerably more power than its alternatives. However,
it delivers the most accurate and immediate location data. The service is intended for
real-time navigation or recording a user’s path. The service requires In-Use or Always
authorization.

2Faulting reduces the application’s memory usage by keeping placeholder objects (faults) in the persistent
store [30].

3Devices with iBeacon technology can be used to establish a region around an object. The technology
allows the iOS device to determine when it has entered or left the region. Furthermore, the device provides
an estimation of closeness to the beacon. The technology itself leverages Bluetooth Low Energy (BLE) [40].

31

Se
rv

ic
e

P
ow

er
-e

ffi
ci

en
cy

Lo
ca

ti
on

pr
ec

is
io

n
A

ut
ho

ri
za

ti
on

V
isi

ts
lo

ca
tio

n
se

rv
ic

e
T

he
m

os
t

po
w

er
-e

ffi
ci

en
t

D
el

iv
er

s
lo

ca
tio

n
da

ta
w

he
n

th
e

us
er

st
ay

s
on

th
e

sa
m

e
lo

ca
tio

n
fo

r
so

m
e

tim
e.

T
he

se
rv

ic
e

al
so

se
nd

s
th

e
am

ou
nt

of
tim

e
sp

en
t

at
th

e
gi

ve
n

lo
ca

tio
n.

A
lw

ay
s

Si
gn

ifi
ca

nt
-c

ha
ng

e
lo

ca
tio

n
se

r-
vi

ce
Po

w
er

-fr
ie

nd
ly

Tr
ac

ks
us

er
’s

lo
ca

tio
n

w
ith

lo
w

er
-p

ow
er

se
rv

ic
es

an
d

se
nd

s
lo

ca
tio

n
up

da
te

s
on

ly
w

he
n

im
-

po
rt

an
t

ch
an

ge
s

to
th

at
lo

ca
tio

n
oc

cu
r.

A
lw

ay
s

St
an

da
rd

lo
ca

tio
n

se
rv

ic
e

U
se

s
sig

ni
fic

an
tly

m
or

e
po

w
er

th
an

th
e

al
te

rn
at

iv
es

D
el

iv
er

s
th

e
m

os
t

ac
cu

ra
te

an
d

im
m

ed
ia

te
lo

ca
tio

n
da

ta
.

In
-U

se
/

A
lw

ay
s

Ta
bl

e
3.

1:
O

ve
rv

ie
w

of
di

ffe
re

nt
lo

ca
tio

n
se

rv
ic

es
w

ith
th

ei
r

co
rr

es
po

nd
in

g
po

w
er

-e
ffi

ci
en

cy
,l

oc
at

io
n

pr
ec

isi
on

an
d

re
qu

ire
d

au
th

or
iz

at
io

n
in

fo
rm

at
io

n
[3

8]
.

32

3.3.2 Core Motion

Core Motion collects motion and environment related data from the on-device hardware
of iOS devices. Devices are equipped with accelerometers, gyroscopes, pedometer, mag-
netometer, and barometer. Most of the services in the Core Motion framework provides
both the raw values recorded by the hardware and a processed version of those values [39].
Processed values do not include sorts of bias that might negatively affect how the data are
used [39].

Accelerometer measures changes in velocity along one axis. Every iOS device has a
three-axis accelerometer. This accelerometer collects data in each of the three axes. The
values delivered by the accelerometers are measured in increments of gravitational accel-
eration. Acceleration value 1.0 represents an acceleration of 9.8 meters per second in the
corresponding direction. Based on the direction of the acceleration, the values may be
positive or negative [39]. CMMotionManager class provides two techniques of accessing the
accelerometer data. The first method is to pull accelerometer data only when the ap-
plication needs the data. The second approach is to push accelerometer updates to the
application at consistent intervals. The maximum frequency at which the application can
request updates is dependent on the hardware and is generally at least 100 Hz. When
the application requests a frequency that is greater than the frequency supported by the
hardware, the framework uses the supported maximum instead [39].

The gyroscope measures the rate at which the device rotates around a spatial axis [39].
Most of the iOS devices have a three-axis gyroscope that collects data in all three axes. The
gyroscope measures values in radians per second around the particular axis. The values
may be positive or negative, depending on the direction of rotation [39]. CMMotionManager
provides the same interface for gyroscope as for the accelerometer. Therefore, there are
interfaces for pulling and pushing the gyroscope data. The unprocessed data collected from
the gyroscope interfaces may be biased by other factors such as device acceleration [39]. In
the case the application needs gyroscope values without bias, the documentation recom-
mends to use device-motion interfaces of CMMotionManager class instead.

The device-motion service provides an interface to access unbiased motion-related data.
The raw values delivered by accelerometer and gyroscope has to be processed to remove
bias from other factors such as gravity or device acceleration. The service makes use of
all associated hardware and generates a CMDeviceMotion object. The CMDeviceMotion
object contains information about the device’s orientation in three-dimensional space rela-
tive to the reference frame, unbiased rotation rate, and current gravity vector. Moreover,
it includes a vector representing user-generated acceleration without gravity and current
magnetic-field vector [39]. The techniques for accessing the device-motion data is similar
to the ones of accessing accelerometer and gyroscope data.

The device attitude delivered by the device-motion service is always defined relative
to a fixed reference frame. The used reference frame is based on the interfaces used
to start the service. Core Motion offers four reference frames – xArbitraryZVertical,
xArbitraryCorrectedZVertical, xMagneticNorthZVertical and xTrueNorthZVertical.
The xArbitraryZVertical reference frame describes a frame in which the Z-axis is ver-
tical, and the X-axis points in an arbitrary direction in the horizontal plane. Further-
more, xArbitraryCorrectedZVertical describes the same reference frame as xArbitrary-
ZVertical. However, in contrast with xArbitraryZVertical, when the magnetometer is
available and calibrated, delivered values from the magnetometer are used to improve long-
term yaw accuracy. As a result, using xArbitraryCorrectedZVertical reference frame

33

Figure 3.11: The figure shows the direction of the 𝑥, 𝑦, 𝑧-axis and the corresponding Euler
angles reported from the Core Motion framework. Source: Understanding Reference Frames
and Device Attitude [39].

leads to an increased CPU usage. The xMagneticNorthZVertical reference frame describes
a frame in which the Z-axis is vertical, and the X-axis points toward magnetic north. When
using this specific reference frame, the magnetometer may need to be calibrated. Finally,
the xTrueNorthZVertical reference frame describes a frame in which the Z-axis is vertical,
and the X-axis points toward true north. This reference frame may require the magnetome-
ter to be calibrated. Also, the reference frame requires the location to be available in order
to calculate the difference between magnetic and true north [39]. Every reference frame
assumes a device that is lying on a flat surface and is rotated in a specific direction [39].

The CMDeviceMotion has attitude property, which contains pitch, roll, and yaw values
for the device that are relative to the reference frame. The values correspond to the device’s
attitude in three-dimensional space. In the case when all three values are equal to 0, the
device’s attitude matches the orientation of the reference frame. Rotation values are in
the range −𝜋 to 𝜋 and reflect the amount of rotation in radians around the specified axis.
Figure 3.11 shows how pitch, roll, and yaw values are delivered in each of the three axes.
Pitch is a rotation around the device’s x-axis, the roll is a rotation about the y-axis and
yaw corresponds to a rotation along the z-axis.

34

Chapter 4

Design of the Mobile Application

4.1 Requirements and Design Goals

4.1.1 User Interface

The process of designing a user interface for application for rephotography had to take
several constraints into account. First, the main content of the application is user captured
photographs. Therefore, the user interface should make the photographs the core part
of the interface and should not distract the user with unnecessary colors or UI elements.
Second, the photographs are connected to scenes. The scenes are captured at a specific
geographical location, and the location must be presented to the user.

Furthermore, the user interface needs to communicate which captured image is the
reference and the distance from the user’s location to the scene’s location. The capture
process should be seamless and should guide the user to input all necessary information
before the scene gets saved. The user should always have the option to go back and change
the input, and the application should show an overview of all inputted data before the
object is saved. Lastly, the application is planned to be available on the iOS platform only.
Therefore, the user interface should use default system UI elements and follow Apple’s
Human Interface Guidelines1.

Figure 4.1 shows two wireframes. The wireframes show the first screen in the application
that the user sees after logging in. The Discover screen has two modes – Nearby and Map.
Nearby screen shows a gallery of scenes nearby the user’s location. The data are sorted
by the distance from the user’s location to the scene’s location. The second mode (Map)
shows a map with annotations of nearby scenes. On both screens, when the user taps on a
scene, the application will show detail for it. The detail screen is shown in Figure 4.2.

The detail should contain the most crucial information, such as the reference image,
scene’s location, and an option to rephotograph the same scene. Furthermore, the screen
should provide a human-readable representation of the scene’s coordinates and a way to nav-
igate to its location. Additionally, the detail screen should show all captured photographs
of the scene.

The exploration capability of nearby scenes is the first part of the application core fea-
tures. The second is capturing new and rephotographing existing scenes. The functionality
of capturing a new scene should be accessible to the user at most of the times when using
the application. A common solution to this on iOS platform is to use tab bar element. The

1https://developer.apple.com/design/human-interface-guidelines/ios/overview/interface-
essentials/

35

https://developer.apple.com/design/human-interface-guidelines/ios/overview/interface-essentials/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/interface-essentials/

Figure 4.1: The Discover screen displays data of nearby scenes in two modes – as a grid of
images (Nearby) or on a map (Map).

tab bar is a view at the bottom of the screen serving as an access point to different parts
of the application. The application’s tab bar in 4.1 consists of Discover, Camera and Me
icons. Each of them navigates the user to the corresponding screen. The Camera screen
starts a new capture session and immediately shows the direct feed from the device’s cam-
era. The interface of the camera is designed as a modal – it is presented over the whole
screen. To dismiss the presented modal screen, the user can tap on a cancel button in the
top left corner. The photograph is captured by tapping on a virtual shutter button. After
the user captures the image, the application displays the captured photograph to the user
for a review. After the user confirms the new scene’s image, the application asks for a
feet shot. When the user captures the place where they stand and confirms the image, the
application shows a map with a pin to specify the location on the map. By using a drag
and drop the user specifies the precise location using the pin. Finally, after the location is
confirmed, the application shows an overview containing the captured image, the location,
feet shot, and the user can optionally provide a descriptive name for the scene. Figure 4.3
shows the complete flow of capturing a new scene.

4.1.2 Mobile Application Architecture

The mobile application for iOS is based on Model-View-Controller (MVC) architecture. The
MVC is a design pattern that divides objects into three roles based on their responsibilities.
The roles are model, view and controller. Furthermore, the pattern defines the way how
those objects communicate with each other. Model objects represent the data specific to
an application and provide the business logic that manipulates and process that data. A
view is an object that the user can see; it knows how to draw itself on the screen and can
respond to user actions. Controllers are objects that act as a mediator between one or more

36

of an application’s view objects and one or more of its model objects [32]. Figure 4.4 shows
the communication between the respective roles in MVC.

In the case that a model object changes, the object notifies a controller which updates
the corresponding view objects and the controller interprets user actions in the view objects
that create or modify data and updates the model or creates a new model object.

Moreover, the application uses the Target-Action pattern to handle manipulations with
control objects such as buttons and sliders2. Furthermore, one of the most used design
patterns in the application is Delegation as most of the APIs used for the core functionality
of the application using this pattern. Additionally, the delegation is used to make one
object act on behalf of, or in coordination with, another object3. The application leverages
Dependency Injection design pattern to pass dependencies to other objects through segues
or its initializers. Finally, the application makes use of the Singleton pattern in a few
cases. Even when the Singleton pattern is used in Cocoa framework, the application uses
this pattern in sporadic cases where it is desired to have a single point of control, e.g.,
DeviceLocationService class that creates CLLocationManager and handles its delegate
methods.

The application uses container view controllers to implement some parts of the user
interface. Furthermore, this concept is used to prevent the Massive View Controller prob-
lem where one view controller has too many responsibilities. The Discover screen (Figure
4.1) displays grid of nearby scenes or shows them on map. The user can select the Nearby
and Map mode through a UISegmentedControl inside a UIToolbar which is attached to
the top of the screen. Figure 4.5 illustrates how a container view controller is used to
distribute responsibilities between several view controllers. The CameraViewController
manages the camera and handles user interactions such as tapping on a shutter button.
In its view, the CameraViewController embeds a CameraOverlayViewController inside
the container view. The CameraOverlayViewController is responsible for drawing over-
lay content over the camera feed such as the grid, navigation rectangle, or displaying the
overlay of the reference image. This way, each view controller has its responsibilities. The
communication between those separate view controllers can be accomplished by delegation.

4.1.3 Designing API Service

The application allows users to browse scenes captured nearby their location and upload
new scenes and photographs. The server with the application interface has to provide
the functionality to handle requests with multimedia data and build responses based on
specified parameters. The chosen server’s architecture style is REST (Representational
State Transfer). The application’s REST web service leverages and is build on top of
HTTP methods to perform CRUD operations on a resource. The resource in the context
of the application is a Scene, User, Photo, and others. The service uses GET, POST, PUT,
DELETE and PATCH HTTP methods to perform corresponding action with the resource. The
API service responds to the client with an HTTP header and a response data in JSON
format [4].

Moreover, the client serializes the data for upload into JSON and sends them in a body
of the request. When designing a REST API with data in JSON format, there are two

2https://developer.apple.com/library/archive/documentation/General/Conceptual/Devpedia-
CocoaApp/TargetAction.html

3https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-
CocoaCore/Delegation.html

37

https://developer.apple.com/library/archive/documentation/General/Conceptual/Devpedia-CocoaApp/TargetAction.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/Devpedia-CocoaApp/TargetAction.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Delegation.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Delegation.html

conventional approaches in regards to transferring images or other binary data. The first
approach is to encode the data into the JSON amongst the other transferred data. The
transfer of image data inside a JSON serialized data can be accomplished by encoding
binary data and representing them in Base64. The result of the encoding process is a
sequence of ASCII characters which can be sent as a string in JSON. However, the output
bytes to input bytes ratio is 4:3 yielding a total of 33% overhead on the transferred data [34].
The overhead can be mitigated in some cases with a compression algorithm, but the use
of Base64 encoding to send images from a server to the mobile application rises additional
concerns4. The second approach is to build HTTP request with a multipart content-
type [47]. In this case, a specific boundary string divides the whole body of the request
into one or more body parts [47]. In the scenario of uploading a new scene, the application
would send three distinctive body parts – JSON formatted metadata and binary data for
the captured image and feet shot. The application uses the second approach to mitigate
the problems of using Base64 encoding for sending images between a server and a mobile
client.

The API should provide public API endpoints for user registration and login or log out.
However, operations such as creating a new scene or adding a photograph should require
user authentication. The REST architecture style is stateless, and thus the authentica-
tion cannot be implemented by traditional stateful authentication such as by using sessions
or cookies. A standard solution for a stateless authentication is a token authentication.
Whenever the user registers a new account or logs in, the server responds with an authen-
tication token which the client safely saves. Furthermore, the client’s application embeds
the authentication token into the HTTP header, and the server can authenticate the user
with each request.

The API service should save the model data into a database, but the binary image data
should not be saved into the SQL database. The reasons behind this are discussed more
in-depth in section 3.2.2. Moreover, the saving process to the several data storages should
be atomic, and when a part of the transaction fails, the transaction should rollback all
modified data and revert the database to the previous state.

4.2 Possible Solutions

4.2.1 Various methods of camera pose estimation

Relative camera pose estimation is a process of accurately estimating the location and ori-
entation of the camera concerning another’s camera’s reference system. The task of camera
pose estimation in the papers discussed in sections 2.4.1 and 2.14 is accomplished by using
a SIFT or ORB feature-detector for extracting key-points, computing correspondences be-
tween those key-points and then estimating the essential or homography matrix. In the case
of estimating the essential matrix, the solution uses a 5-points algorithm. In both cases,
the RANSAC algorithm is used to detect inliers for robust matching. Finally, the discussed
systems compute a translation or navigation vector and visualize navigation elements guid-
ing the user to the desired viewpoint. The drawbacks of this feature-based camera pose
estimation are that the estimation depends in no small extent on the correspondence as-
signment. In a case of textureless objects there are too few correspondences. On the other
hand, in the case of objects with repetitive texture or considerable viewpoint change, there
are too many noisy correspondences [55].

4https://medium.com/snapp-mobile/dont-use-base64-encoded-images-on-mobile-13ddeac89d7c

38

https://medium.com/snapp-mobile/dont-use-base64-encoded-images-on-mobile-13ddeac89d7c

Lately, researches apply convolutional neural networks (CNNs) to solve the task of cam-
era pose estimation [55, 59, 63]. The [59] proposes an end-to-end CNN-based method for
absolute 6-DoF5 camera pose estimation from a single RGB image. The proposed net-
work is robust to difficult lighting, motion blur, and different camera intrinsics [59]. Unlike
the [59], the [63] focuses on the problem of relative camera pose estimation. The relative
pose estimation provides methods for relation and representation learning for previously
unseen scenes and objects [63]. The method produces a translation vector up to scale. The
comparison of the best model from [63] with feature-based methods – SURF and ORB,
confirms that the proposed model performs better than the baseline feature based meth-
ods [63]. Lastly, the [55] in comparison with [63] recovers a full translation vector. As for
the comparison, the [55] compares the model with SURF. The results are compared with
two implementations of SURF – SURFSmall and SURFFull. The versions differ in the
resolution of the image. SURFSmall uses scaled images of 256 × 455 pixels, followed by
a center-crop to 224 × 224 pixels. The SURFFull uses the original images without down-
sampling. In the case of the SURFSmall, the RPNet family reduces the error from 5% to
70% on both translation and rotation in most of the cases. SURFSmall slightly outperforms
the RPNet-based methods on one dataset (KingsCollege). SURFFull significantly boosts
the performance of traditional key-point based methods. However, the RPNetFC outper-
forms the traditional approach on OldHospital and ShopFacade. The SURFFull performs a
little better on KingsCollege and StMarysChurch datasets. Further, The RPNetFC signifi-
cantly outperforms SURFFull in cases when the images contain large viewpoint changes [55].
In conclusion, the system described in [55] produces competitive or better results over the
traditional feature-based methods [55].

4.2.2 Types of device attitude representation

Core Motion framework, discussed in section 3.3.2, collects data from on-device the hard-
ware and generates objects of type CMDeviceMotion. . The CMDeviceMotion objects con-
tain attitude property. The property is of type CMDeviceAttitude and represents the
device’s orientation to a known frame of reference at a point in time [39].

The CMDeviceAttitude offers three different mathematical representations of the atti-
tude - a rotation matrix, a quaternion, and Euler angles.

Euler angles representation of the device’s attitude consists of the roll, pitch, and yaw
values. The roll, pitch, and yaw values describe rotation in radians about a corresponding
axis. Specifically, the pitch is rotation around x-axis, the roll is rotation around y-axis and
yaw is rotation around the z-axis. Figure 3.11 shows the projection of roll, pitch, and yaw
onto the axes.

Any rotation can be described by a sequence of three coordinate rotations [52]. Let
the first rotation is an angle 𝜓 about the 𝑘-axis, the second rotation is an angle 𝜃 about
the 𝑗-axis, and the third rotation is an angle 𝜑 about the 𝑖-axis. Euler angle vector that
arranges the angles in a three-dimensional vector is defined in [52] by:

u := [𝜑, 𝜃, 𝜓]𝑇 . (4.1)
The function that maps a Euler angle vector to its corresponding matrix 𝑅𝑖𝑗𝑘 : R →

𝑆𝑂(3) is defined in [52] as:

𝑅𝑖𝑗𝑘(𝜑, 𝜃, 𝜓) := 𝑅𝑖(𝜑)𝑅𝑗(𝜃)𝑅𝑘(𝜓) (4.2)
5Six degrees of freedom

39

There are 27 possible rotation sequences of three integers in {1, 2, 3} but only 12 satisfy
the constraint that no two consecutive numbers in a correct sequence may be equal [52].
These Euler sequences are:

(𝑖, 𝑗, 𝑘) ∈

⎧⎨⎩
(1, 2, 1), (1, 2, 3), (1, 3, 1), (1, 3, 2),
(2, 1, 2), (2, 1, 3), (2, 3, 1), (2, 3, 2),
(3, 1, 2), (3, 1, 3), (3, 2, 1), (3, 2, 3)

⎫⎬⎭ (4.3)

Let us assume a Euler Angle sequence (2, 1, 3), then:

𝑅213(𝜑, 𝜃, 𝜓) = 𝑅2(𝜑)𝑅1(𝜃)𝑅3(𝜓). (4.4)
Rotational matrix is an orthogonal matrix whose multiplication with a vector rotates

the vector while preserving its length [52]. The special group of 3 × 3 rotation matrices is
denoted by 𝑆𝑂(3). Furthermore, if 𝑅 ∈ 𝑆𝑂(3), then:

𝑑𝑒𝑡𝑅 = ±1, 𝑅−1 = 𝑅𝑇 . (4.5)
The elements of a rotation matrix are referenced in [52] as:

𝑅 =
[︀
r1 r2 r3

]︀
(4.6)

=

⎡⎣ 𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎤⎦ (4.7)

Rotation about a single coordinate axis is known as a coordinate rotation [52]. The
corresponding coordinate rotations for the 𝑥, 𝑦, 𝑧-axes are:

𝑅𝑥(𝛼) =

⎡⎣ 1 0 0
0 cos (𝛼) sin (𝛼)
0 − sin (𝛼) cos (𝛼)

⎤⎦ (4.8)

𝑅𝑦(𝛼) =

⎡⎣ cos (𝛼) 0 − sin (𝛼)
0 1 0

sin (𝛼) 0 cos (𝛼)

⎤⎦ (4.9)

𝑅𝑧(𝛼) =

⎡⎣ cos (𝛼) sin (𝛼) 0
− sin (𝛼) cos (𝛼) 0

0 0 1

⎤⎦ . (4.10)

Core Motion outputs a direction cosine matrix (DCM) [39]. The elements of the direc-
tion cosine matrix are cosines of the unsigned angles between the body-fixed axes and the
world axes [52].

Let us consider the Euler Angle sequence (2, 1, 3). The corresponding rotation matrix
is defined in [52] as

𝑅213(𝜑, 𝜃, 𝜓) =⎡⎣ cos (𝜑) cos (𝜓) − sin (𝜑) sin (𝜃) sin (𝜓) cos (𝜑) sin (𝜓) + sin (𝜑) sin (𝜃) cos (𝜓) − cos (𝜃) sin (𝜑)
− cos (𝜃) sin (𝜓) cos (𝜃) cos (𝜓) sin (𝜃)
sin (𝜑) cos (𝜓) + cos (𝜑) sin (𝜃) sin (𝜓) sin (𝜑) sin (𝜓) − cos (𝜑) sin (𝜃) cos (𝜓) cos (𝜑) cos (𝜃)

⎤⎦ .
(4.11)

40

Quaternions were discovered on 16 October 1843 by Irish mathematician William
Rowan Hamilton. A quaternion can be expressed as:

𝑞 = 𝑎+ 𝑏i + 𝑐j + 𝑑k. (4.12)

The quaternion described in 4.12 has one real dimension and three imaginary dimen-
sions [24]. The 𝑎 in the equation 4.12 is the real (scalar) part of the quaternion while the
𝑏i + 𝑐j + 𝑑k is the vector (imaginary) part. Imaginary parts 𝑖, 𝑗, 𝑘 have a unit value of the
square root of −1. However, the parts are all mutually perpendicular to each other and
have different square roots of −1. Furthermore, a quaternion q can be represented as a
vector:

q = [𝑞0, 𝑞1, 𝑞2, 𝑞3]
𝑇 =

[︂
𝑞0
q1:3

]︂
. (4.13)

The norm of a quaternion is defined in [52] as:

||q|| =
√︁
𝑞20 + 𝑞21 + 𝑞22 + 𝑞23. (4.14)

A unit quaternion is a quaternion with unity norm [52]:

||𝑞|| = 1, (4.15)

and is produced by dividing a non-zero quaternion 𝑞 by its norm [24],

u =
𝑞

||𝑞||
. (4.16)

Let us consider the Euler Angle sequence (2, 1, 3) again, the conversion formula from
quaternion to Euler angles for this sequence is defined in [52] as

u213(𝑅𝑞(q)) =

⎡⎢⎢⎢⎢⎢⎣
atan2(−2𝑞1𝑞3 + 2𝑞0𝑞2,

𝑞23 − 𝑞22 − 𝑞21 + 𝑞20)
asin(2𝑞2𝑞3 + 2𝑞0𝑞1)
atan2(−2𝑞1𝑞2 + 2𝑞0𝑞3,

𝑞22 − 𝑞23 + 𝑞20 − 𝑞21)

⎤⎥⎥⎥⎥⎥⎦ . (4.17)

Quaternions offer some advantages over the matrices. They are easier to normalize than
matrices. Normalization cancels out a build-up of small rounding errors. Interpolation
between quaternions is more straightforward by using SLERP6 than interpolating between
rotation matrices. Lastly, the quaternion representation is more compact as it requires only
four scalars in comparison with a matrix which requires nine scalars.

However, matrices offer a more natural way to transform a point by multiplying a vector
by a matrix instead of a sandwich form needed for quaternions. Moreover, there are more
available libraries for matrices than quaternions [35].

All of the mentioned representations – Euler angles, rotation matrices, quaternions, are
convertible to one another. However, Euler angles have singularities which originate from
gimbal lock. Gimbal lock results from the indistinguishability of changes in the first and
third Euler angles when the second angle is at some critical value [52]. Mathematically, the
gimbal lock is represented as a singularity at which specific expressions are undefined [52].

6Spherical linear interpolation

41

As the place of singularity depends on the type of Euler angles, it is common to change the
representation when an object approaches a singularity to avoid the gimbal lock. Moreover,
the problem of gimbal lock can be entirely avoided by using unit quaternions to represent
the device’s attitude [52].

4.3 Proposed Solution

4.3.1 Using on device accelerometer and gyroscope sensors for rephotog-
raphy

The application prefers a different approach than the rephotography systems described in
chapter 2. Rather than estimating a camera pose through the feature-based methods, the
application leverages the use of the on-device hardware sensors to enhance the rephotogra-
phy process. The application uses the Core Motion framework to get device attitude data.
The device attitude is collected from the CMDeviceMotion object. Core Motion merges the
data from different sensors. Figure 4.7 shows the process of sensor fusion.

The CMDeviceMotion encapsulates measurements of the attitude, rotation rate and
acceleration of a device. The CMAttitude provides three mathematical representations of
the attitude – Euler angles (roll, pitch and yaw values), a rotation matrix and a quaternion.
The application saves all the available information about the device’s attitude. The data
are saved during the capture process and thus represent the device orientation at the time
of capture.

The application saves all the data from CMDeviceMotion. However, the most impor-
tant properties of the Motion is the quaternion. The values quaternionW, quaternionX,
quaternionY, quaternionZ are the corresponding parts of a CMQuaternion structure col-
lected from the CMAttitude property of CMDeviceMotion object. The CMQuaternion math-
ematically represents a unit quaternion defined as

𝑞𝑥 * 𝑖+ 𝑞𝑦 * 𝑗 + 𝑞𝑧 * 𝑘 + 𝑞𝑤,

where 𝑞𝑥, 𝑞𝑦, 𝑞𝑧 equals to 𝑏, 𝑐 and 𝑑 in equation 4.12 [39]. The 𝑞𝑤 stands for the scalar
part and equals to 𝑎 in the equation 4.12. The 𝑖, 𝑗 and 𝑘 are imaginary parts as in 4.12.

The unit quaternion 𝑞 corresponds to a rotation of 𝜃 radians about the unit vector
{𝑥, 𝑦, 𝑧}. The quaternion 𝑞 satisfies

𝑞𝑥 = 𝑥 * sin

(︂
𝜃

2

)︂
(4.18)

𝑞𝑦 = 𝑦 * sin

(︂
𝜃

2

)︂
(4.19)

𝑞𝑧 = 𝑧 * sin

(︂
𝜃

2

)︂
(4.20)

𝑞𝑤 = cos

(︂
𝜃

2

)︂
. (4.21)

The equations 4.18–4.21 are derived from CMQuaternion [39]. Furthermore, the quater-
nion 𝑞 is used to represent the primary camera (device) attitude. Let 𝑞0 be the quaternion
saved at the capture time. Further, let 𝑞1 be the current quaternion collected from the

42

sensors while recapturing a previously captured scene, then

𝑞Δ = 𝑞−10 * 𝑞1, (4.22)

is a relative rotation between the reference and the current device attitude.
At last, the application persists the location data from the Core Location framework.

The application uses the scene’s coordinates to navigate the user to the correct place.
Additionally, the feet shot (image of the place where the user has been standing) helps to
locate the exact capture spot.

4.3.2 Navigating user to the desired camera pose with navigation rect-
angle

Section 4.3.1 describes how the application uses the sensors available on the device to collect
the motion data representing the device attitude while the user captures a new scene. When
the same scene is being recaptured, the application needs to guide the user to rotate the
device to the same position as the reference. The equation 4.22 calculates a quaternion
𝑞Δ representing a relative rotation between the reference and current orientation. The
relative rotation denotes the rotation that needs to be performed to get from a current to
the reference orientation. The application uses a system of a navigation rectangle with a
grid to visualize the device pose.

First, let us consider the scenario that the user wants to capture a new scene. The user
opens a camera screen in the application and the screen stars showing the feed of data from
the camera. Furthermore, the camera shows a grid and a yellow rectangle representing an
alignment level. Figure 4.8 shows the scenario in which the device is tilted to the right. The
rectangle guides the user to align the device with the static grid. As mentioned before, after
the user aligns the device and captures the scene with the shutter button, the application
saves the motion data representing the device attitude.

Later, when the user wants to recapture the scene and taps on a Retake button on
the scene’s detail, the application shows a similar screen to the one when capturing a new
scene. However, instead of using the rectangle only as a representation of an alignment
level, the rectangle now represents the relative rotation. In order to move the rectangle and
use it as a visualization of a rotation represented in a unit quaternion, the application has
to convert the quaternion to a point on a screen. The point has an 𝑥 and 𝑦 coordinates in
a range of [0,WIDTH] for 𝑥 coordinate and [0,HEIGHT] for 𝑦 coordinate, where WIDTH
and HEIGHT are constants equal to the maximum width and height of the camera’s view.
The coordinates are computed as

𝑥 =
ROLL + 𝜋

2𝜋
* WIDTH

𝑦 =
PITCH + 𝜋

2

𝜋
* HEIGHT,

where ROLL and PITCH are Euler angles derived from the quaternion 𝑞Δ. The conversion
between the quaternion and Euler angles is done by using the equation 4.17. Specifically,
the ROLL and PITCH values are calculated as

ROLL = atan2
(︀
−2 * 𝑞𝑥 * 𝑞𝑧 + 2 * 𝑞𝑤 * 𝑞𝑦, 𝑞2𝑧 − 𝑞2𝑦 − 𝑞2𝑥 + 𝑞2𝑤

)︀
(4.23)

PITCH = asin (2 * 𝑞𝑦 * 𝑞𝑧 + 2 * 𝑞𝑤 * 𝑞𝑥). (4.24)

43

The rectangle’s position is then set to the point (𝑥, 𝑦). Whenever the device rotates
around 𝑥-axis (pitch), the rectangle moves up and down. At the same time, when the
device rotates around 𝑦-axis (roll), the rectangle moves left and right. Figure 5.3 shows the
navigation rectangle guiding the user when retaking an existing scene.

4.3.3 Designing user interface for rephotography applications

The section 4.1.1 contains description of the essential application’s functions and Figures
4.1, 4.2 and 4.3 shows the wireframes of several application’s screens. The principles dis-
cussed in section 4.1.1 apply to other types of applications with images as their primary
content, such as social networks and photo editing applications. This section focuses solely
on features designed to help users with the rephotography process.

The figure 4.2 shows an image of the scene’s detail screen. The View feet shot buttons
shows an image of the place from which the reference image was taken. The feet shot’s
purpose is to guide the user to the correct location better and capture the most accurate
rephotograph of the reference image. If the environment contains distinctive features such
as marks on the ground, the feet shot image can precisely pinpoint the location from which
the original photograph has been photographed. Additionally, View timeline navigates the
user to a screen showing images ordered by their capture date thus creating a view of how
the scene looks at different times. Lastly, View on map shows a reference image and the
scene’s location at the same time in order to help the user navigate in an environment and
spot the object of interest more easily.

The first wireframe of the camera process, shown in Figure 4.3, displays a camera
screen with a shutter button and two additional buttons. The Flip button animates a flip
transition between the feed from the device’s camera and a scene’s reference image. Flip
allows the user to have a quick look at the reference image and find the object of interest in
the environment. Furthermore, the Overlay button shows a reference image as an overlay
on the camera feed. Additionally, the user can change its opacity through a slider. The
overlay helps the user to align the device better to match the reference photograph.

44

Figure 4.2: The detail screen of a scene. The detail screen shows a reference image in
its header with the scene’s optional name and capture date. The Retake button starts a
camera with a navigation rectangle guide system. The location information is obtained
from reverse geocoding of the scene’s GPS coordinates. Below the location, the Navigation
button opens the Apple Maps application with the scene’s location set as a destination.
The View feet shot button shows the photo from the exact place where the scene was
captured. The horizontal grid of images shows the rephotographs of the scene. Further,
View timeline shows the timeline of photographs with the corresponding date. Lastly, View
on map shows a reference image on the top and a map view on the bottom to help the user
orientate nearby the scene’s location.

45

Figure 4.3: The figure shows the flow of capturing a new scene. The first screen is a camera
through which the user captures a photograph of a new scene. Furthermore, the application
shows a preview of the captured photo for the user to confirm. When the user confirms
the photograph, the application lets the user capture a photo of its feet and thus mark the
place from which the scene has been captured. Then, the application shows a preview of
the feet shot for the user to confirm. After that, the application allows the user to refine
the location of the scene on the map through a pin. Lastly, the application shows the user
overview of the captured scene.

Update

Update

Controller
User action

View
Notify

Model

Figure 4.4: The communication between the roles in the Model-View-Architecture on iOS.
Figure based on Model-View-Controller [32].

46

CameraViewController

View

View

CameraOverlayViewController

Figure 4.5: The view controller containment is a technique of embedding a view controller
inside another view controller’s view. The figure shows the application of the view controller
containment on one case from the application where CameraOverlayViewController is
embedded inside a container view in CameraViewController’s view. Figure based on View
Controller Containment [56].

yʹʹʹ

yʹʹ, yʹ

y

θ

ψ

z, ʹʹʹ

xʹ

φ

θ

xʹʹʹ, xʹʹ

φ

ψ

zʹʹ

zʹ

x

z

Figure 4.6: Euler Angle Sequence (2, 1, 3). (Source: Representing Attitude: Euler Angles,
Unit Quaternions, and Rotation Vectors) [52]

47

Accelerometer
(CMAccelerometerData)

Magnetometer
(CMMagnetomerData)

Gyroscope
(CMGyroData)

Sensor Fusion
(CMDeviceMotion)

Device attitude
(CMAttitude)

Figure 4.7: The figure shows a sensor fusion of data from several on-device sensors to one
representation of the device attitude. Figure based on Your Phone has Attitude! [43].

Figure 4.8: Screenshot from the application showing a camera screen with a grid and a
rectangle representing the device’s alignment level. The rectangle helps the user align the
device with the static grid.

48

Chapter 5

Implementation

5.1 Implementing User Interface
The chapter 4 contains a description and wireframes of the envisioned application. The
application uses several technologies from the Foundation framework. Namely, it uses
AVFoundation for a custom camera implementation, Core Location and Core Motion for
collecting location and motion data, and MapKit to show map with annotations of nearby
scenes. While Core Location and Core Motion deliver only data, MapKit and AVFoundation
require the use of dedicated views and layers to integrate into an application.

Most of the application’s user interface is built by using Interface Builder. The Interface
Builder tool is integrated into Xcode and offers functionality to build the scaffolds of the
application’s user interface visually. As the application makes the most use of user interface
elements from the standard library, the tool helps to visualize the interface of the application
before building and running the application in the simulator or on the device. The individual
screens are represented as view controllers with views inside a Storyboard. A storyboard
is an encapsulation of the design-time view controller graph represented in an Interface
Builder storyboard resource file1. The individual storyboard scenes are connected through
segues. Segue is an object that prepares and performs the visual transition from one view
controller to another2. The scene with a view controller can be located in a Storyboard file
with other view controller scenes or refactored to a dedicated Storyboard file. Furthermore,
the segue can connect a scene and a reference to a scene. Figure 5.1 displays a document
outline with a view controller’s view hierarchy and the corresponding view controller scene.

The fundamental building blocks of the application’s user interface are UITableView
and UICollectionView. The UICollectionView is a class that offers a customizable
way to present ordered collection of data. The property collectionViewLayout on
UICollectionView provides a customization point to provide the layout used to orga-
nize the items. Both the Discover screen in its Nearby mode (Figure 4.1, left) and Profile
screen use the UICollectionView to display a grid layout of images. The grid is ac-
complished by using the UICollectionViewFlowLayout with the cell’s width and height
equal to the half of the view’s width. The UITableView is used to build the Scene De-
tail (Figure 4.2, left), Timeline (Figure 4.2, middle), and Scene Overview (Figure 4.3,
last) screens. Furthermore, the Scene Detail and Scene Overview support drill-down
navigation. The Scene Detail screen’s UITableView contains a UICollectionView in

1https://developer.apple.com/documentation/uikit/uistoryboard
2https://developer.apple.com/documentation/uikit/uistoryboardsegue

49

https://developer.apple.com/documentation/uikit/uistoryboard
https://developer.apple.com/documentation/uikit/uistoryboardsegue

Figure 5.1: The Figure contains screenshots from Xcode that shows view hierarchy (left)
and Storyboard scene (right) of the Scene Detail.

50

Figure 5.2: The first image in the Figure depicts a Nearby mode that shows scenes around
the user’s location. The second image shows a timeline of a scene.

its cell. The collection view is added as a subview of one of the UITableview’s cells
and configured in tableView:willDisplayCell:forRowAtIndexPath: delegate method of
UITableViewDelegate. Furthermore, the scroll direction is horizontal instead of vertical
as it is in the case of Nearby and Profile UICollectionViews.

The camera scene contains a CameraViewController responsible for controlling the
device’s camera and two container view controllers dedicated for managing the camera
overlay and control panel. The AVCaptureVideoPreviewLayer added as a sublayer to the
camera view controller’s view displays the feed from the device’s camera as it is being
captured.

The camera overlay is responsible for drawing a grid, an overlay reference image, a
slider for changing the opacity of the reference image overlay and the navigation rectangle.
The grid view is drawn as lines between pairs of CGPoints. The class GridView uses
the @IBDesignable, and @IBInspectable attributes and thus the grid gets rendered in
the Interface Builder and the grid color is configurable in Interface Builder’s Attributes
Inspector. The overlay of a reference image on top of the camera view is done by changing
the opacity of a UIImageView through the UISlider. Additionally, to make the UISlider
vertical and not horizontal, a transformation matrix with a rotation angle −𝜋

2 is applied.
Lastly, the navigation rectangle is drawn as CALayer. The process of moving the rectangle
based on the device motion is described in section 4.3.2. In the case of capturing a new
scene, the rectangle rotates based on the yaw angle of the device. The yaw is computed
from the quaternion collected from Core Motion. Finally, a rotation matrix applied to the
CALayer’s transform matrix rotates the rectangle around the z-axis by the angle equal to
the yaw.

The control panel shows the Flip and Overlay button when recapturing an existing
scene. The overlay image with the slider and the navigation rectangle is drawn only in the
mode when the user is recapturing an existing scene. Furthermore, the flip animation is

51

Figure 5.3: The first image displays the Retake mode with an activated overlay and naviga-
tion rectangle. The middle image shows the feet shot capture in process of creating a new
scene. The last image depicts a Preview view that is available after recapturing an existing
scene. The slider changes the opacity of the corresponding image and the screen shows the
differences between the reference and newly captured photograph.

done by using transition animation on UIView class. The animation effectively hides one
view while setting the other view’s changing its hidden property to true and opacity to
value 1.0, making the second view visible on a screen.

The map scene contains a view controller with a MKMapView as its subview. The map
type is set to Standard and the difference between the other map types is discussed more
in detail in section 3.1.3. The annotations are customized MKMarkerAnnotationViews with
the scene’s reference image and a camera icon set as its glyph image. The MapKit does
not allow to change the appearance of the MKMapView yet on iOS. It is possible to show
a MKMapView with a dark appearance on iOS by using Apple’s private API, which is the
case of this application. As a result, the application would not meet requirements to be
accepted to the Apple’s App Store. Other solution would be to use a different framework
for showing maps such as Mapbox framework which offers a lot more customization than
MapKit. However, as MapKit is a native framework, the application does not need to have
third-party dependencies, and the integration of MapKit into an application is seamless.

5.2 Developing Application Features
The section 4.1.1 defines the functionality and user interface of the application. The appli-
cation shows the users scenes nearby their geographical location in two modes – grid view
and map view. Furthermore, the user can capture a new scene through the application, and
the capturing flow is illustrated in Figure 4.3. The application connects to the web service
that serves as API. The application uses the API to upload new scenes, download scenes
nearby the user, and create new user accounts. As a result of this, the application uses

52

Figure 5.4: The Figure illustrates the Map mode (left) that displays nearby scenes on the
map. Furthermore, the middle image shows the location confirmation screen in the process
of capturing a new scene. The user can specify the exact location by drag and dropping
the pin. Lastly, the Scene Overview contains the captured image, snapshot of the map and
additional scene data such as feet shot.

many technologies available on iOS such as Core Location, Core Motion, AVFoundation,
and Core Data.

The CameraViewController is responsible for managing the interaction with the device
camera. It holds a strong reference to CaptureSessionController which sets up and con-
trols AVCaptureSession from AVFoundation framework. The CaptureSessionController
is class that sets up which on-device camera will be used and configures the capture device.
Moreover, it sets up the AVCaptureVideoPreviewLayer to show the feed from the camera in
a view on screen. Additionally, it exposes capturePhoto:withSettings:delegate method
that the CameraViewController uses to capture a photo. The CameraViewController
retrieves the videoPreviewLayer from the CaptureSessionController object, sets its
frame to the camera view’s bounds and adds it as a sublayer to the view. Furthermore,
the CameraViewController calls configureCaptureSession method on the Capture-
SessionController and updates the control panel based on the capturingState which
can be equal to newSceneCapture in the case that the user taps on the camera button
from the tab bar or retakeCapture when the user taps on Retake button on existing
scene’s detail screen. This configuration is done in viewDidLoad method of the con-
troller. In the viewWillAppear method the controller calls the startCaptureSession
method on CaptureSessionController object which starts the flow of data from the con-
figured inputs to the outputs connected to the AVCaptureSession instance. The view
controller’s viewDidAppear method contains a code that sets up the motion services and
starts accelerometer updates. These updates are then used to determine the orientation
of the device, e.g., landscape or portrait orientation. When the user taps on the shut-
ter button, through the Target-Action pattern, the controller’s didTapOnShutterButton

53

method is called. This method calls controller’s capturePhoto function that creates
AVCapturePhotoSettings object. The method creates a new instance of PhotoCapture-
Processor and through Dependency Injection pattern it passes the photoSettings through
the initializer. The controller adds this object to an array of PhotoCaptureProcessor
objects to keep a strong reference and avoid deinitialization of this object. Finally, the
capturePhoto:withSettings:delegate function on CaptureSessionController instance
is called.

The PhotoCaptureProcessor implements AVCapturePhotoDelegate methods. Figure
3.10 shows the process of capturing a photo through AVFoundation framework and the
corresponding delegate methods. In the willBeginCapture... function the processor
fetches current location and motion data. In the didFinishProcessing... function,
the processor retrieves the photo and adds GPS metadata to its file data representation.
Moreover, it keeps reference to the image data, metadata, and preview pixel buffer. Finally,
the didFinishCapture... method creates a custom CaptureSessionData and passes it
through a captureDidFinish delegate method back to the CameraViewController.

The CameraOverlayViewController is a view controller embedded inside a container
view in CameraViewController’s view. The process of drawing a navigation rectangle, grid
and animation of the flip and overlay buttons is described in sections 4.3.2 and 5.1.

The DiscoverViewController manages two embedded view controllers – Nearby-
CollectionViewController and MapViewController. Based on the state of the UI-
SegmentedControl, the appropriate view controller is shown on the screen. The controller
listens to notifications from the DeviceLocationService class, and when user location gets
updated, it fetches the location’s coordinates. Furthermore, it loads scenes from the remote
web server through APIClient class. The model objects are initialized from the decoded
data from the API. The JSON from the web service contains URLs for the photos. There-
fore, for each scene, a feet shot image has to be downloaded, and for all photos that belong
to the scene, the image data has to be downloaded. The application uses DispatchGroup
API to synchronize these asynchronous network tasks. After the network calls finish, the
data are persisted in-memory effectively, creating a cached object graph backed by Core
Data.

The MapViewController uses the NSManagedObjectContext that is responsible for ma-
nipulating and tracking the view of the in-memory persistent store. The controller fetches
scenes from the context and creates annotation views for each scene. Further, the controller
implements NSFetchedResultsControllerDelegate; thus, the annotations are dynami-
cally added, updated, or removed when the model changes.

5.3 Programming and Deploying API
The application allows a user to upload captured scenes and display scenes captured by
other users. The requirements for this sharing and viewing functionality are described in
section 4.1.3. The API is designed as a REST API that communicates with a database and
serializes the data into a JSON. The data are then sent to the client (mobile application)
with a corresponding status code in an HTTP header.

The application server is programmed in Ruby on Rails framework. Rails is a web ap-
plication development framework written in Ruby language3. It is a Model-View-Controller
(MVC) framework, and Rails enforces a structure for the application. In MVC architec-

3https://guides.rubyonrails.org/getting_started.html

54

https://guides.rubyonrails.org/getting_started.html

3

Controller
Controller

View
View

Model
Model

1

4

Controller

2

Routing

5
View Model Database

Figure 5.5: The Model-View-Controller architecture of Ruby On Rails application. Source:
Agile Web Development with Rails 4 [67].

ture, a model is responsible for maintaining the state of the application. In some cases the
state is temporary in others it is persisted outside of the application, e.g., in database.

Furthermore, the view is responsible for generating a user interface. Most often, the
user interface is based on data in the model. However, the view does need to be a user
interface per se, but in specific cases such as in an API service, the view is, in fact, the
model data serialized in JSON. Moreover, even when the view may present various inputs
for the user, it never handles incoming data. The view’s responsibilities are finished at the
moment the data is displayed. The controller is in charge of the application. Controllers
receive events from the clients, interact with the model, and display views [67].

Figure 5.5 shows the process of handling an incoming request to Rails application.
Let us assume that the client posts new scene from the device to http://localhost:
3000/api/v1/scenes/. The routing component receives the incoming request and parses
it. The request contains a HTTP method POST and a path /api/v1/scenes. The path
/api/v1/ denotes a nested namespace consisting of api and v1 namespaces. The reason
behind using a namespace is to organize group of controllers4. Additionally, the v1 part
indicates the version of the API. As a result, the API service can change but still maintain
a backwards compatibility with its clients. The part scenes corresponds to controller
class ScenesController and by convention, POST methods are associated with create()
actions [67].

The create() method in ScenesController handles the request. First, it parses the
parameters sent with the request, checks if the request’s header contains multipart/form
-data as its content type, parses JSON metadata and the data for scene’s image and
feet shot. Additionally, the actions on ScenesController require the user to be logged-
in. The authentication is handled in ApiController. The controller uses Rails function
authenticate_with_http_token to retrieve the token from the HTTP header, the function
finds the user in the database based on the token and securely compares the SHA256 digest of
the sent token and user’s token. The ScenesController prepares a hash of attributes con-
taining the parsed parameters from the request and current user id. Furthermore, it creates
and calls a new scene Create transaction and passes it the attributes and a block which gets
executed later in the transaction. The Rails application uses dry-transaction gem. The
gem provides a way to define complex business transactions that includes processing over
many steps and by many different objects. It takes a Railway Oriented Programming5

4https://guides.rubyonrails.org/routing.html
5http://fsharpforfunandprofit.com/rop/

55

http://localhost:3000/api/v1/scenes/
http://localhost:3000/api/v1/scenes/
https://guides.rubyonrails.org/routing.html
http://fsharpforfunandprofit.com/rop/

approach to capturing and returning errors from any step in the transaction6. The transac-
tion uses several steps to create all necessary objects before saving the scene. The steps are
wrapped around in a db_transaction step which creates ActiveRecord transaction that
rollbacks all the changes in the database when an error occurs in any part of the transac-
tion. The image data are stored on the disk in the development environment and uploaded
into Amazon S3 Bucket7 in production environment through the ActiveStorage API.

In a successful case, the transaction returns an object, which is the newly created scene.
Whenever an error occurs, the transaction fails and returns all errors that occurred during
the transaction. The ScenesController then returns a response with JSON serialization
of the object and HTTP status code 201 (Created) in a successful case or JSON containing
error messages and HTTP status code 422 (Unprocessable Entity) in a failure case.

The process of fetching scenes nearby a given location is handled in index() method in
ScenesController. The controller’s action corresponds to GET http://localhost:3000/
api/v1/scenes/?longitude=X&latitude=Y request where X and Y are the appropriate
GPS coordinates. The request’s URL can have one optional query string radius. The
radius sets the distance from the user’s location to search within. The default value is
2500 meters. The index() method handling the request calls nearby method with the
provided longitude, latitude and radius as its parameters. The nearby method computes a
square region around the user location using the equation 5.4. The equation computes the
distance between two points. Each point has a pair of latitude, and longitude coordinates
denoted (𝜑𝑖, 𝜆𝑖). Differences in latitude and longitude are identified as ∆𝜑 and ∆𝜆 and can
be calculated by using the following formulas from [23]:

∆𝜑 = 𝜑2 − 𝜑1 (5.1)
∆𝜆 = 𝜆2 − 𝜆1. (5.2)

The values of ∆𝜑 and ∆𝜆 are in radians. The mean latitude is represented as 𝜑𝑚 and
computed in [23] as follows:

𝜑𝑚 =
𝜑1 + 𝜑2

2
, (5.3)

where 𝜑1 and 𝜑2 are latitude coordinates for point 𝑃1 and 𝑃2 respectively. Additionally, let
us assume that the Earth’s radius is denoted as 𝑅 and the radius is equal:

𝑅 = 6371009 kilometers.

Finally, the equation to compute the distance between the two points is calculated in [23]
as follows:

𝐷 = 𝑅
√︀

(∆𝜑)2 + (cos(𝜑𝑚)∆𝜆)2. (5.4)

The method uses the value of the radius parameter, or the default value 2500, as the
distance 𝐷. Additionally, it computes the 𝜑𝑚, ∆𝜑 and ∆𝜆 values. Furthermore, the method
applies the computed values to calculate minLatitude, maxLatitude and minLongitude,
maxLongitude. Finally, the method queries the database and retrieves identifiers of scenes
which are in the computed radius. The query that performs INNER JOIN and selects the
scenes matching the criterion is shown in listing 5.1.

6https://dry-rb.org/gems/dry-transaction/
7Amazon Simple Storage Service is a cloud web storage for storing and retrieving data.

56

http://localhost:3000/api/v1/scenes/?longitude=X&latitude=Y
http://localhost:3000/api/v1/scenes/?longitude=X&latitude=Y
https://dry-rb.org/gems/dry-transaction/

Scene . joins (: location) . where (" (? <= l o n g i t u d e) AND (l o n g i t u d e <= ?) AND (? <= ←˒
l a t i t u d e) AND (l a t i t u d e <= ?) " ,

minLongitude , maxLongitude ,
minLatitude , maxLatitude)

Listing 5.1: The query performs an INNER JOIN with a single associated model – location.
The query’s where clause contains the condition that the scene’s coordinates needs to be
in a specified radius around the user location.

The API is deployed to Heroku cloud application platform. The application uses the
PostgreSQL database, which is provided as an add-on on Heroku. Furthermore, the images
are stored in Amazon S3 Bucket. The keys needed to connect and access the bucket are
configured in Heroku’s config vars. The deployment method is set to Github, and the
application is connected to a private repository on Github from which a selected branch
can be deployed to the platform.

57

Chapter 6

Results

6.1 Evaluating User Interface
The application’s user interface is evaluated through the observations of testers interactions.
The testers were handed over a device with the application already installed. The users
were asked to explore the application, try to find a scene, display the information in the
detail screen, and capture a new scene. Moreover, the application was tested with pairs
of testers – one tester was responsible for capturing a new scene while the second had to
recapture the same scene.

The first impressions from the application were generally positive. The users testing
the application were mostly people acquainted with the iOS system, but one respondent
had problems navigating the application because he was not familiar with the system.
Apart from that, the users were pleasantly surprised by the fast navigation, simplicity, and
three testers explicitly said that they like the color theme of the application. However, the
purpose of the application had to be described to the testers before the testing. Otherwise,
the testers were confused with the fact that they will be recapturing existing scenes. The
confusion may be caused by the fact that most of the testers were not the actual target
audience of the application, which is photographers with interest in rephotography. The
best results were accomplished when the testers worked in a pair. One tester was tasked
to find a scene, capture it, and follow through the process in the application. The second
tester was then asked to go and capture the same scene. In this scenario, the first tester
knew that the second tester depends on the input from the application, such as the feet
shot and adequately placed the pin on the map. This way, the first tester tried to find a
place which has distinctive features on the ground and captured a scene which would make
sense to rephotograph such as a building or a tree.

There are some points from the testing that shows which functionality is indeed helpful
from the point of the user and which not. One issue is that almost no one used the Flip
button without explicitly said to do. The Overlay button was used almost in every case.
However, the testers found out the functionality mainly after they were introduced to it.
The Navigate functionality was also not used as the testers were in the walking distance
from the scene, and they preferred the View on map functionality. The navigation system
was understood without many trials and errors, but the users had first to try navigating
the phone to different sides to understand it fully. After that, it was found helpful. In
most cases, the user used the navigation system to align the device approximately and then
proceed to find more subtle differences with the reference photo using the Overlay.

58

During the testing, the testers were asked to provide opinions about the functionality
of the application and the overall review of the application. As for the user interface, one
tester would prefer to have access to feet shot in the camera. The application has an easily
extendable control panel, and the button could also be placed next to the shutter button
on either side. In one case, the tester would prefer to capture the feet shot first and then
proceed with capturing the scene. However, this could be the problem of a missing tutorial
and a product page where the application would have more time to explain the purpose
and flow of the capture process. One tester proposed unique QR code stickers that would
be placed on the ground nearby some objects, and when the user scans the QR code, the
application will start in a retake mode for the corresponding scene. However, this proposal
is hard to implement as distributing the stickers would be troublesome and may cause
problems. Nevertheless, in some use-cases where the owner of the place or the authority
over the specified area would be interested in rephotographing its scenes or objects inside
the area, then this proposal could be useful.

Overall, the application was reviewed as a well-designed application. The best reviews
were given when the testers were using the application in pairs, or the tester had prior
experience with photography and some interest in capturing the same scene at different
times. The application found interest in the testers, and it even sparked creativity as they
started to share more use-cases in which the application could be used and proposed some
changes and functionality. The testers agreed that the navigation system with the proposed
interface and functionality helped to capture a more accurate rephotograph.

6.2 Accuracy Analysis of Rephotographed Photos
The accuracy analysis of rephotographed photos is done on a selected scene that was repho-
tographed by the testers. The scene (see Figure 6.1) was rephotographed four times by
different testers in order to capture the scene at different times and by various users. This
models the envisioned common use-case of the application. In order to compare the repho-
tographs against the reference photograph, the selected scene has to include several signif-
icant points and edges in order to make the comparison. The scene contains a building
and fountain, and both these objects can be used to align the reference photo onto the
rephotograph as they contain straight lines and create edges. The testers used the naviga-
tion rectangle and Overlay feature before capturing the rephotograph. The rephotographs
captured by the testers are displayed in Figure 6.2.

The accuracy of the rephotographed photos itself is determined based on Euclidean
distance between selected points in the reference photo and corresponding points in the
rephotographs. Figure 6.1 shows the key points used for the computation. Furthermore,
Table 6.1 lists coordinates of the key points in the corresponding images. The coordinates
are normalized to a range ⟨0, 100⟩ to make the results comparable amongst images with
different resolution.

The Euclidean distance between two points in 2D is defined in [22] as

𝑑(p,q) =
√︀

(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2, (6.1)

where p = (𝑝1, 𝑝2) and q = (𝑞1, 𝑞2). Furthermore, for each key point 𝑃 , the distance is
computed in pairs where point p is the point in the reference image and q𝑖, 𝑖 ∈ 0 . . . 4 is
the corresponding point in rephotographs. The table 6.2 contains the computed Euclidean
distances between the appropriate pairs for all key points.

59

Figure 6.1: The reference photograph with four key points used to determine the accuracy
of the rephotographs.

Image 𝑃1 𝑃2 𝑃3 𝑃4

IMG_3419 (31.51, 60.74) (2.65, 33.85) (96.46, 33.16) (86.38, 76.93)

IMG_3420 (32.57, 59.28) (2.98, 33.80) (96.33, 34.03) (85.48, 75.17)

IMG_3432 (33.04, 60.96) (3.84, 34.47) (97.22, 33.73) (87.17, 76.96)

IMG_3433 (30.59, 63.17) (1.92, 36.88) (94.91, 36.53) (84.69, 79.24)

IMG_3434 (31.51, 63.59) (3.01, 37.00) (95.87, 36.36) (85.91, 79.74)

Table 6.1: The key points coordinate normalized to a 100 × 100 image.

60

Image 𝑑𝑃1(𝑝0, 𝑞𝑖) 𝑑𝑃2(𝑝0, 𝑞𝑖) 𝑑𝑃3(𝑝0, 𝑞𝑖) 𝑑𝑃4(𝑝0, 𝑞𝑖)

IMG_3419 0 0 0 0

IMG_3420 1.81 0.33 4.09 1.97

IMG_3432 1.54 1.34 23.01 0.79

IMG_3433 2.60 3.11 47.12 2.86

IMG_3434 2.85 3.17 18.28 2.84

Table 6.2: The Euclidean distances computed for the corresponding key point and image
against the reference photo IMG_3419.

dPx(p0,qi) �̄� 𝜎

𝑑𝑃1(𝑝0, 𝑞𝑖) 2.20 0.53

𝑑𝑃2(𝑝0, 𝑞𝑖) 1.99 1.15

𝑑𝑃3(𝑝0, 𝑞𝑖) 23.13 12.00

𝑑𝑃4(𝑝0, 𝑞𝑖) 2.12 0.73

Table 6.3: The arithmetic mean and standard deviation for the appropriate distances.

Table 6.3 shows the arithmetic mean and standard deviation for individual distances
between the points. The overall arithmetic mean �̄� based on all computed distances for each
key point is 7.36%, and the standard deviation is 3.60%. The task of photographing the
same scene at different times is difficult, in particular without the use of a tripod or other
photographic equipment. The resulting accuracy achieved only with software guidance,
based on a motion and location data, can be considered as an impressive result. Even the
rotation of the rephotograph was not significant. Furthermore, by achieving this result,
captured photographs can be used for the original purpose of tracking the scene changes
over time.

However, this type of result is not achievable at locations with the non-distinctive
ground, which is often the case of indoor photography. Moreover, the navigation system
is dependent on several device sensors, and even with the sensor fusion, the accuracy and
reliability of those sensors are not guaranteed.

Figure 6.2: Photographs of the fountain scene.

61

Figure 6.3: The Figure shows difference between the reference photograph (white color)
and one of the rephotographs (green color). The edges were detected by using Canny edge
detector.

62

Chapter 7

Conclusion

This thesis presents the problem of rephotography and introduces its application in several
fields. Furthermore, the work explains the concept of computational rephotography and
discusses related papers. Moreover, the project shows numerous rephotography projects and
focuses on distinctive features. The analysis of camera applications for iOS devices shows
their capabilities and concentrates on technologies applied in such applications. Further,
the part about applications for viewing photographs presents widely known applications
focused on sharing and viewing photographs and multimedia content. Additionally, the text
discusses distinguishing features and user interface elements of the mentioned applications.
Furthermore, the work contains a detailed description of several rephotography methods
in section 2.4. The section presents algorithms, modules, and use-cases of the designed
systems in their respective subsections.

The work describes the process of designing the mobile application, its user interface,
and the server side and API. The text contains an overview of the iOS operating system and
discusses several techniques of persisting data on iOS devices, showing map and annotations
and network communication. Moreover, the work describes the process of capturing photos
and using location and motion services on iOS devices.

The goal of the thesis is to devise a prototype of a mobile application focused on col-
laborative rephotography. In order to support sharing and viewing scenes and photographs
amongst the users, a server with API for communication between the server and mobile
application had to be implemented and deployed. The user interface is designed specifically
for the task of rephotography with emphasis on user experience and optimized for the iOS
platform.

The results of testing performed on a group of testers show that the application helps
users capture rephotographs usable for tracking the scene changes over time. Moreover, the
application was well-received during the testing, and the testers appreciated its simplicity
and ease of use. Although the testers did not use some features, the evaluation of the
user interactions shows that the application has to present and educate the users about
rephotography and support requested controls in the camera screen such as the function to
view a feet shot directly in the camera screen in recapture mode.

The mobile application provides a solid foundation for a platform that could be used for
rephotography on a larger scale. The application would have to primarily focus on outdoor
rephotography where the current system for navigating the user works best.

63

Bibliography

[1] Announcing Instagram Profiles on the Web!
Retrieved from:
https://www.tumblr.com/dashboard/blog/instagram/35068144047

[2] Camera Finder.
Retrieved from: https://www.flickr.com/cameras

[3] Halide Press Kit.
Retrieved from: https:
//www.dropbox.com/sh/pc0owz863y4jqdi/AABS08x6CaRdr-GZExLidcX3a?dl=0

[4] HTTP Methods.
Retrieved from: https://restfulapi.net/http-methods/

[5] Instagram for Android.
Retrieved from: https://instagram-press.com/blog/2012/04/03/instagram-
for-android-available-now/

[6] Instagram Launches.
Retrieved from:
https://instagram-press.com/blog/2010/10/06/instagram-launches-2/

[7] Introducing Boomerang from Instagram.
Retrieved from: https://instagram-press.com/blog/2015/10/22/introducing-
boomerang-from-instagram/

[8] Introducing Hyperlapse from Instagram.
Retrieved from: https://instagram-press.com/blog/2014/08/26/introducing-
hyperlapse-from-instagram/

[9] Introducing Instagram Direct.
Retrieved from: https:
//instagram-press.com/blog/2013/12/12/introducing-instagram-direct/

[10] Introducing Instagram for Windows Phone.
Retrieved from: https://instagram-press.com/blog/2013/11/20/introducing-
instagram-for-windows-phone/

[11] Introducing Instagram Stories.
Retrieved from: https:
//instagram-press.com/blog/2016/08/02/introducing-instagram-stories/

64

https://www.tumblr.com/dashboard/blog/instagram/35068144047
https://www.flickr.com/cameras
https://www.dropbox.com/sh/pc0owz863y4jqdi/AABS08x6CaRdr-GZExLidcX3a?dl=0
https://www.dropbox.com/sh/pc0owz863y4jqdi/AABS08x6CaRdr-GZExLidcX3a?dl=0
https://restfulapi.net/http-methods/
https://instagram-press.com/blog/2012/04/03/instagram-for-android-available-now/
https://instagram-press.com/blog/2012/04/03/instagram-for-android-available-now/
https://instagram-press.com/blog/2010/10/06/instagram-launches-2/
https://instagram-press.com/blog/2015/10/22/introducing-boomerang-from-instagram/
https://instagram-press.com/blog/2015/10/22/introducing-boomerang-from-instagram/
https://instagram-press.com/blog/2014/08/26/introducing-hyperlapse-from-instagram/
https://instagram-press.com/blog/2014/08/26/introducing-hyperlapse-from-instagram/
https://instagram-press.com/blog/2013/12/12/introducing-instagram-direct/
https://instagram-press.com/blog/2013/12/12/introducing-instagram-direct/
https://instagram-press.com/blog/2013/11/20/introducing-instagram-for-windows-phone/
https://instagram-press.com/blog/2013/11/20/introducing-instagram-for-windows-phone/
https://instagram-press.com/blog/2016/08/02/introducing-instagram-stories/
https://instagram-press.com/blog/2016/08/02/introducing-instagram-stories/

[12] Introducing Layout from Instagram.
Retrieved from: https://instagram-press.com/blog/2015/03/23/introducing-
layout-from-instagram/

[13] Introducing Video on Instagram.
Retrieved from: https:
//instagram-press.com/blog/2013/06/20/introducing-video-on-instagram/

[14] ProCamera Quick Start Guide.
Retrieved from:
https://www.procamera-app.com/procamera_manual/QuickStartGuide_en.pdf

[15] ProCamera User Manual.
Retrieved from: https://manual.procamera-app.com/en/Manual_en.pdf

[16] Snapchat on the App Store.
Retrieved from: https://itunes.apple.com/app/snapchat/id447188370

[17] Snapchat’s History: Evolution Of Snapchat And Timeline (2018).
Retrieved from: https://www.buycustomgeofilters.com/blog/snapchat-history-
and-updated-timeline

[18] Thinking Outside the Square: Support for Landscape and Portrait Formats on
Instagram.
Retrieved from:
https://instagram-press.com/blog/2015/08/27/thinking-outside-the-
square-support-for-landscape-and-portrait-formats-on-instagram/

[19] VR.
Retrieved from: https://www.flickr.com/vr

[20] Welcome to IGTV.
Retrieved from:
https://instagram-press.com/blog/2018/06/20/welcome-to-igtv/

[21] What are the video upload requirements for IGTV?
Retrieved from: https://help.instagram.com/1038071743007909

[22] Euclidean distance. 2001-.
Retrieved from: https://en.wikipedia.org/wiki/Euclidean_distance

[23] Geographical distance. 2001-.
Retrieved from: https://en.wikipedia.org/wiki/Geographical_distance

[24] Quaternion. 2001-.
Retrieved from: https://en.wikipedia.org/wiki/Quaternion

[25] Historypin. 2010.
Retrieved from: https://www.historypin.org

[26] WhatWasThere. 2012.
Retrieved from: http://www.whatwasthere.com

65

https://instagram-press.com/blog/2015/03/23/introducing-layout-from-instagram/
https://instagram-press.com/blog/2015/03/23/introducing-layout-from-instagram/
https://instagram-press.com/blog/2013/06/20/introducing-video-on-instagram/
https://instagram-press.com/blog/2013/06/20/introducing-video-on-instagram/
https://www.procamera-app.com/procamera_manual/QuickStartGuide_en.pdf
https://manual.procamera-app.com/en/Manual_en.pdf
https://itunes.apple.com/app/snapchat/id447188370
https://www.buycustomgeofilters.com/blog/snapchat-history-and-updated-timeline
https://www.buycustomgeofilters.com/blog/snapchat-history-and-updated-timeline
https://instagram-press.com/blog/2015/08/27/thinking-outside-the-square-support-for-landscape-and-portrait-formats-on-instagram/
https://instagram-press.com/blog/2015/08/27/thinking-outside-the-square-support-for-landscape-and-portrait-formats-on-instagram/
https://www.flickr.com/vr
https://instagram-press.com/blog/2018/06/20/welcome-to-igtv/
https://help.instagram.com/1038071743007909
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Geographical_distance
https://en.wikipedia.org/wiki/Quaternion
https://www.historypin.org
http://www.whatwasthere.com

[27] rePhoto. 2013.
Retrieved from: http://projectrephoto.com

[28] What Is Cocoa? 2013.
Retrieved from: https://developer.apple.com/library/archive/documentation/
Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html#/
/apple_ref/doc/uid/TP40002974-CH3-SW16

[29] Location and Maps Programming Guide. 2016.
Retrieved from: https://developer.apple.com/library/archive/documentation/
UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html#/
/apple_ref/doc/uid/TP40009497-CH3-SW1

[30] Core Data Programming Guide. 2017.
Retrieved from: https://developer.apple.com/library/archive/documentation/
Cocoa/Conceptual/CoreData/index.html#//apple_ref/doc/uid/TP40001075

[31] Core Data Core Competencies. 2018.
Retrieved from: https://developer.apple.com/library/archive/documentation/
DataManagement/Devpedia-CoreData/persistentStore.html#//apple_ref/doc/
uid/TP40010398-CH29-SW1

[32] Model-View-Controller. 2018.
Retrieved from: https://developer.apple.com/library/archive/documentation/
General/Conceptual/DevPedia-CocoaCore/MVC.html

[33] Time After Time. 2018.
Retrieved from: https://www.markhersch.com

[34] Base64 encoding and decoding. 2019.
Retrieved from: https://developer.mozilla.org/en-US/docs/Web/API/
WindowBase64/Base64_encoding_and_decoding

[35] Maths - Transformations using Quaternions. c1998-2017.
Retrieved from: http://www.euclideanspace.com/maths/algebra/
realNormedAlgebra/quaternions/transforms/index.htm

[36] Cameras and Media Capture. c2019.
Retrieved from: https://developer.apple.com/documentation/avfoundation/
cameras_and_media_capture

[37] Core Data. c2019.
Retrieved from: https://developer.apple.com/documentation/coredata

[38] Core Location. c2019.
Retrieved from: https://developer.apple.com/documentation/corelocation

[39] Core Motion. c2019.
Retrieved from: https://developer.apple.com/documentation/coremotion

[40] Getting Started with iBeacon. c2019.
Retrieved from:
https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf

66

http://projectrephoto.com
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html#//apple_ref/doc/uid/TP40002974-CH3-SW16
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html#//apple_ref/doc/uid/TP40002974-CH3-SW16
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html#//apple_ref/doc/uid/TP40002974-CH3-SW16
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html#//apple_ref/doc/uid/TP40009497-CH3-SW1
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html#//apple_ref/doc/uid/TP40009497-CH3-SW1
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/LocationAwarenessPG/MapKit/MapKit.html#//apple_ref/doc/uid/TP40009497-CH3-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CoreData/index.html#//apple_ref/doc/uid/TP40001075
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CoreData/index.html#//apple_ref/doc/uid/TP40001075
https://developer.apple.com/library/archive/documentation/DataManagement/Devpedia-CoreData/persistentStore.html#//apple_ref/doc/uid/TP40010398-CH29-SW1
https://developer.apple.com/library/archive/documentation/DataManagement/Devpedia-CoreData/persistentStore.html#//apple_ref/doc/uid/TP40010398-CH29-SW1
https://developer.apple.com/library/archive/documentation/DataManagement/Devpedia-CoreData/persistentStore.html#//apple_ref/doc/uid/TP40010398-CH29-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://www.markhersch.com
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture
https://developer.apple.com/documentation/avfoundation/cameras_and_media_capture
https://developer.apple.com/documentation/coredata
https://developer.apple.com/documentation/corelocation
https://developer.apple.com/documentation/coremotion
https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf

[41] MapKit. c2019.
Retrieved from: https://developer.apple.com/documentation/mapkit

[42] URL Loading System. c2019.
Retrieved from:
https://developer.apple.com/documentation/foundation/url_loading_system

[43] Your Phone has Attitude! c2019.
Retrieved from:
http://trueviewvisuals.com/2015/02/20/your-phone-has-attitude/

[44] Apple, I.: IOS Technology Overview. 2012.

[45] Bae, S.; Agarwala, A.; Durand, F.: Computational Rephotography. ACM Trans.
Graph.. vol. 29, no. 3. July 2010: pp. 24:1–24:15. ISSN 0730-0301.
doi:10.1145/1805964.1805968.
Retrieved from: http://doi.acm.org/10.1145/1805964.1805968

[46] Bernazzani, S.: A Brief History of Snapchat.
Retrieved from: https://blog.hubspot.com/marketing/history-of-snapchat

[47] Borenstein, N.; Freed, N.: MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format of Internet Message Bodies.
RFC 1521. RFC Editor. September 1993.

[48] Burke, P.: Eyewitnessing. Ithaca, USA: Cornell University Press. first edition. 2008.
ISBN 978-0801473180.

[49] Crook, J.: Snapchat Launches v5.0 With Revamped UI, Swipe Navigation, And
In-App Profiles. 2013.
Retrieved from:
https://techcrunch.com/2013/06/05/snapchat-launches-v5-0-banquo-with-
revamped-ui-address-book-friend-finder-and-in-app-profiles/

[50] DeAmicis, C.: Did Snapchat succeed because of its controversial UI?
Retrieved from: https://www.figma.com/blog/did-snapchat-succeed-because-
of-its-controversial-ui/

[51] Dempsey, J.: Portrait Mode.
Retrieved from: https://iphonephotographyschool.com/portrait-mode/

[52] Diebel, J.: Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors. Matrix. vol. 58. 01 2006.

[53] Dunsford, R.: iPhone Time Lapse.
Retrieved from: https://iphonephotographyschool.com/iphone-time-lapse/

[54] Editor, C.: Understanding How Slow-Motion Video Works.
Retrieved from: https://www.creativeplanetnetwork.com/news/understanding-
how-slow-motion-video-works-608921

[55] En, S.; Lechervy, A.; Jurie, F.: RPNet: an End-to-End Network for Relative Camera
Pose Estimation. CoRR. vol. abs/1809.08402. 2018. 1809.08402.
Retrieved from: http://arxiv.org/abs/1809.08402

67

https://developer.apple.com/documentation/mapkit
https://developer.apple.com/documentation/foundation/url_loading_system
http://trueviewvisuals.com/2015/02/20/your-phone-has-attitude/
http://doi.acm.org/10.1145/1805964.1805968
https://blog.hubspot.com/marketing/history-of-snapchat
https://techcrunch.com/2013/06/05/snapchat-launches-v5-0-banquo-with-revamped-ui-address-book-friend-finder-and-in-app-profiles/
https://techcrunch.com/2013/06/05/snapchat-launches-v5-0-banquo-with-revamped-ui-address-book-friend-finder-and-in-app-profiles/
https://www.figma.com/blog/did-snapchat-succeed-because-of-its-controversial-ui/
https://www.figma.com/blog/did-snapchat-succeed-because-of-its-controversial-ui/
https://iphonephotographyschool.com/portrait-mode/
https://iphonephotographyschool.com/iphone-time-lapse/
https://www.creativeplanetnetwork.com/news/understanding-how-slow-motion-video-works-608921
https://www.creativeplanetnetwork.com/news/understanding-how-slow-motion-video-works-608921
1809.08402
http://arxiv.org/abs/1809.08402

[56] Gregersen, R.: View Controller Containment. 2013.
Retrieved from: https:
//www.objc.io/issues/1-view-controllers/containment-view-controller/

[57] Hemmings, M.: How To Use ProCamera App To Shoot Stunning iPhone Photos.
Retrieved from: https://iphonephotographyschool.com/procamera/

[58] Honan, M.: Apple unveils iPhone. 2004.
Retrieved from: https://www.macworld.com/article/1054769/iphone.html

[59] Kendall, A.; Grimes, M.; Cipolla, R.: Convolutional networks for real-time 6-DOF
camera relocalization. CoRR. vol. abs/1505.07427. 2015. 1505.07427.
Retrieved from: http://arxiv.org/abs/1505.07427

[60] Lee, K.-T.; Luo, S.-J.; Chen, B.-Y.: Rephotography Using Image Collections.
Computer Graphics Forum. vol. 30, no. 7. 2011: pp. 1895–1901. (Pacific Graphics
2011 Conference Proceedings).

[61] Levere, D.; Yochelson, B.; Abbott, B.: New York changing. New York: Museum of
the City of New York. first edition. c2005. ISBN 15-689-8473-1.

[62] McArdle, J.: Retake Melbourne : mobile application for re-photography and
comparative imaging research. 2013.
Retrieved from: http://hdl.handle.net/10536/DRO/DU:30056177

[63] Melekhov, I.; Kannala, J.; Rahtu, E.: Relative Camera Pose Estimation Using
Convolutional Neural Networks. CoRR. vol. abs/1702.01381. 2017. 1702.01381.
Retrieved from: http://arxiv.org/abs/1702.01381

[64] Nijland, W.; Coops, N.; Coogan, S.; et al.: Vegetation phenology can be captured
with digital repeat photography and linked to variability of root nutrition in
Hedysarum alpinum. Applied Vegetation Science. vol. 16, no. 2. 2013: pp. 317–324.
doi:10.1111/avsc.12000.
https://onlinelibrary.wiley.com/doi/pdf/10.1111/avsc.12000.
Retrieved from: https://onlinelibrary.wiley.com/doi/abs/10.1111/avsc.12000

[65] ProCamera, T.: What’s New in ProCamera 8 v6.3.
Retrieved from:
https://www.procamera-app.com/en/blog/whats-new-in-procamera-8-v6-3/

[66] Raghu, S.: TimeLens. 2018.
Retrieved from: https://itunes.apple.com/us/app/timelens/id1240390371?mt=8

[67] Ruby, S.; Thomas, D.; Hansson, D. H.: Agile Web Development with Rails 4.
Pragmatic Bookshelf. fourth edition. 2013. ISBN 1937785564, 9781937785567.

[68] Sandofsky, B.: Halide 1.7: In Depth.
Retrieved from: https://blog.halide.cam/halide-1-7-in-depth-17105d3ff740

[69] Shi, Y.-B.; Tian, F.; Miao, D.; et al.: Fast and Reliable Computational
Rephotography on Mobile Device. 07 2018. doi:10.1109/ICME.2018.8486559.

68

https://www.objc.io/issues/1-view-controllers/containment-view-controller/
https://www.objc.io/issues/1-view-controllers/containment-view-controller/
https://iphonephotographyschool.com/procamera/
https://www.macworld.com/article/1054769/iphone.html
1505.07427
http://arxiv.org/abs/1505.07427
http://hdl.handle.net/10536/DRO/DU:30056177
1702.01381
http://arxiv.org/abs/1702.01381
https://onlinelibrary.wiley.com/doi/pdf/10.1111/avsc.12000
https://onlinelibrary.wiley.com/doi/abs/10.1111/avsc.12000
https://www.procamera-app.com/en/blog/whats-new-in-procamera-8-v6-3/
https://itunes.apple.com/us/app/timelens/id1240390371?mt=8
https://blog.halide.cam/halide-1-7-in-depth-17105d3ff740

[70] Snavely, N.; M. Seitz, S.; Szeliski, R.: Photo tourism: exploring photo collections in
3D. ACM Trans Graph 25(3):835-846. ACM Trans. Graph.. vol. 25. 07 2006: pp.
835–846. doi:10.1145/1141911.1141964.

[71] Steiner, S. C.: What is Focus Peaking?
Retrieved from: https://www.bhphotovideo.com/explora/photography/tips-and-
solutions/what-focus-peaking

[72] Wesson, K.: Best Camera App For iPhone.
Retrieved from:
https://iphonephotographyschool.com/best-camera-app-for-iphone/

[73] Wesson, K.: Live Photos.
Retrieved from: https://iphonephotographyschool.com/live-photos/

[74] West, R.; Halley, A.; Gordon, D.; et al.: Collaborative Rephotography. In ACM
SIGGRAPH 2013 Studio Talks. SIGGRAPH ’13. New York, NY, USA: ACM. 2013.
ISBN 978-1-4503-2343-7. pp. 20:1–20:1. doi:10.1145/2503673.2503693.
Retrieved from: http://doi.acm.org/10.1145/2503673.2503693

[75] Zappa, D.: How To Use iPhone Burst Mode For Incredible Action Photos.
Retrieved from: https://iphonephotographyschool.com/iphone-burst-mode/

69

https://www.bhphotovideo.com/explora/photography/tips-and-solutions/what-focus-peaking
https://www.bhphotovideo.com/explora/photography/tips-and-solutions/what-focus-peaking
https://iphonephotographyschool.com/best-camera-app-for-iphone/
https://iphonephotographyschool.com/live-photos/
http://doi.acm.org/10.1145/2503673.2503693
https://iphonephotographyschool.com/iphone-burst-mode/

	Introduction
	Rephotography and Capturing and Viewing Photographs
	Rephotography
	Camera applications
	Applications for sharing and viewing photographs
	Applications for capturing the same object in different times

	Mobile Application Development for iOS
	Developing Applications for iOS
	Programming camera-based applications
	Using location and motion services in mobile applications

	Design of the Mobile Application
	Requirements and Design Goals
	Possible Solutions
	Proposed Solution

	Implementation
	Implementing User Interface
	Developing Application Features
	Programming and Deploying API

	Results
	Evaluating User Interface
	Accuracy Analysis of Rephotographed Photos

	Conclusion
	Bibliography

