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Abstract
Static analysis has nowadays become one of the most popular ways of catching bugs early in
the modern software. However, a frequent problem of static analysers, which are reasonably
precise, is their scalability. Moreover, these which are efficient and scale (e.g.: Coverity,
KlockWork, etc.) are often proprietary and difficult to openly evaluate or extend. An im-
provement to this state of practice is brought Facebook Infer, which offers an open-source
framework for compositional and incremental static analysis. In this thesis, we present
our Low-Level Deadlock Detector (L2D2) extending the capabilities of Infer. Our
algorithm fits the compositional analysis, based on a context independent computation of a
summary for each function, which results in its high scalability. We have implemented the
algorithm and evaluated it on a benchmark consisting of real-life programs derived from
the Debian GNU/Linux with in total 11.4 MLOC. While neither sound nor complete, our
approach is effective in practice, finding all known deadlocks and giving false alarms in less
than 4 % of the considered programs only.

Abstrakt
Statická analýza dnes patrí medzi najpopulárnejšie metódy na odhaľovanie chýb v mod-
ernom softvéri, no častým problémom dostatočne presných statických analyzátorov je ich
škálovateľnosť. Mnohé efektívne analyzátory (napr.: Coverity, KlockWork, atď.) sú
navyše proprietárne, čím sa ich ďalšia rozšíriteľnosť a použitie stávajú obťažnými. Pokrok
v tejto oblasti prináša Facebook Infer, ktorý ponúka open-source framework na tvorbu
kompozičných a inkrementálnych statických analýz. V tejto práci predstavujeme vlastný
Low-Level Deadlock Detector (L2D2), ktorý rozširuje funkcionalitu Inferu. Náš
algoritmus spĺňa princípy kompozičnej analýzy, založenej na kontextovo nezávislom výpočte
súhrnu pre každú funkciu, čo má za následok jeho vysokú škálovateľnosť. Algoritmus
sme implementovali a overili na sade príkladov z Debian GNU/Linux, ktorá pozostávala
z 11.4 MLOC. Aj keď náš prístup nie je ani presný ani úplný, ukazuje sa ako efektívny.
Okrem toho, že dokázal odhaliť všetky známe uviaznutia, hlásil falošné pozitíva v menej
ako 4 % z testovaných programov.
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Rozšírený abstrakt
V dnešnej dobe sa čoraz väčšmi kladie dôraz na kvalitu softvéru, a to aj v prípade apliká-
cií, ktorých zlyhanie nepredstavuje kritické riziká. S nárastom komplexnosti počítačových
programov sa manuálne odhaľovanie ich chýb stáva náročným až nemožným. Jedným z ex-
istujúcich prístupov na automatickú detekciu chýb je automatické testovanie a dynam-
ická analýza. Nevýhoda týchto metód spočíva predovšetkým v tom, že kvôli nedosta-
točnému pokrytiu kódu testovaného programu nemusia odhaliť všetky prítomné chyby.
Alternatívnym riešením je statická analýza, schopná objaviť aj chyby na zriedkavých ces-
tách programom, ktoré nemusia byť skontrolované v priebehu testovania. Práve táto sku-
točnosť súvisí s veľkou nevýhodu statických analyzátorov, a síce so vznikom falošných chýb
v dôsledku uvažovania neexistujúcich ciest v programe. Jedným z ďalších problémov stat-
ických analýz je ich škálovateľnosť, ktorá sa javí ako nevyhnutnosť pri testovaní veľkých
a rýchlo sa meniacich projektov.

Spoločnosť Facebook nedávno ponúkla vlastné riešenie na efektívne odhaľovanie chýb
a verifikáciu programov v podobe nástroja Infer — vysoko škálovateľný, kompozičný a inkre-
mentálny framework na vytváranie interprocedurálnych, statických analyzátorov. Napriek
tomu, že sa Infer stále vyvíja, je každodenne využívaný spoločnosťami ako Facebook,
WhatsApp, Uber či Amazon, kde pomocou neho odhaľujú rôzne druhy chýb vrátane únikov
pamäte (memory leaks), chýb súbehu (data races) a ďalších.

Keďže paralelné programy sa stávajú prevládajúcimi v dôsledku reality viacjadrových
procesorov a vytváranie kvalitných paralelných programov sa stalo kriticky dôležitým. Táto
práca sa preto zameriava na chyby vznikajúce práve v týchto programoch. Konkrétne sem
sa rozhodli rozšíriť nástroj Infer o analýzu slúžiacu na detekciu uviaznutí (deadlocks),
ktoré predstavujú pravdepodobne jednu z najčastejšie sa vyskytujúcich chýb v paralelných
programoch.

V súčasnosti je známych viacero typov statických analyzátorov, ktoré sa sústreďujú na
odhaľovanie uviaznutí, no žiaden z nich (aspoň podľa našich vedomostí), okrem analyzá-
tora Starvation (implementovaného v samotnom Inferi), nespĺňa princípy kompozičnej
analýzy používanej vo Facebooku. Problémom Starvation analyzátora je fakt, že bol vyv-
inutý primárne pre jazyky Java a C++, tým pádom nepodporuje nízkoúrovňové zamykanie,
ktoré ponúka napríklad knižnica Pthreads.

Aby sme túto situáciu vylepšili, predstavujeme náš Low-Level Deadlock Detector
(L2D2), založený na novej metóde odhaľovania uviaznutí, ktorá zvláda aj nízkoúrovňové
zamykanie. Náš prístup používa kompozičnú analýzu (presadzovanú v nástroji Infer)
založenú na počítaní súhrnov (summaries) pre každú funkciu v analyzovanom programe,
a to nezávisle od jej kontextu. Súhrn môže byť chápaný ako štruktúra obsahujúca relevantné
dáta potrebné na odhalenie detekovaného problému, čo v praxi znamená, že každá analýza
používa vlastný typ súhrnu na odhalenie konkrétneho problému. Práve tento prístup robí
naše riešenie vysoko škálovateľným a tiež umožňuje inkrementálnu analýzu, vďaka ktorej je
L2D2 použiteľný pri každodennej práci programátora.

Nami navrhnutú metódu sme úspešne implementovali v nástroji Infer a experimentálne
overili na sade príkladov z Debian GNU/Linux pozostávajúcej z 11.4 MLOC. Táto sada bola
použitá aj na experimentálne overenie nástroja Cprover, s‘ktorým sme sa porovnávali. Vo
výsledku náš analyzátor odhalil všetky známe uviaznutia (rovnako ako Cprover) s menej
ako 4 % falošných pozitív, čo je o 7.5 % menej ako v prípade nástroja Cprover. Taktiež
sme úspešne preukázali jeho škálovateľnosť, keďže na kontrolu testovacej sady potreboval
menej ako 1 % času v porovnaní s Cproverom.



Static Analysis Using Facebook Infer Focused on
Deadlock Detection

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of prof. Ing. Tomáš Vojnar, Ph.D. All the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

. . . . . . . . . . . . . . . . . . . . . . .
Vladimír Marcin

May 15, 2019

Acknowledgements
I would like to thank my supervisor Tomáš Vojnar for his support both during designing
the L2D2 analyser and in the critical time of writing this thesis. Further, I would like to
thank Nikos Gorogiannis and Sam Blackshear from Infer team at Facebook for helpful
discussions about the development of our analyser. Lastly, I thank for the support received
from the H2020 ECSEL project Aquas.



Contents

1 Introduction 2

2 Preliminaries 5
2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Facebook Infer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Existing Solutions of Deadlock Detection . . . . . . . . . . . . . . . . . . . . 11

3 A Modular Low-Level Deadlock Detector 13
3.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Deadlock Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 An Illustrating Example . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Reporting Possible Deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Reducing the Number of False Alarms . . . . . . . . . . . . . . . . . . . . . 21

4 Implementation and Experiments 23
4.1 Analyser Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Cprover Test-Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Conclusion 28

Bibliography 29

A Storage Medium 32

1



Chapter 1

Introduction

“Testing is about defect detection,
Quality Assurance is about defect
prevention.”

Amir Ghahrai

In the spirit of Amir Ghahrai’s claim, nowadays, the demand for quality assurance is
growing even for non-safety-critical applications. Large companies like Mozilla, Facebook,
Spotify, and others are increasingly focusing on the verification area, trying to reduce
the number of bugs in their products before they are deployed, ideally, already during
development.

With the increasing complexity of computer programs, manual error detection becomes
impossible and that is the reason why many studies have been made to detect errors au-
tomatically. Existing approaches to automatic errors detection can be divided into two
main categories, namely, automated testing & dynamic analysis and static analysis (which
is the focus of this thesis). Ideally, both of these approaches are used since they both have
various advantages and disadvantages.

The first of the mentioned approaches, automated testing & dynamic analysis, has
the task to detect real or potential problems by executing an analysed program. The ad-
vantage of this approach is that no source code is needed for testing, although testing with
the source code available is usually better. However, if we want to test the program during
its development, this approach becomes sometimes more complicated: one has to write
unit tests (or use some advanced tool for their at least partially automated generation). If
larger pieces of code are missing, this approach may become infeasible (at least for some
kinds of tests). Another disadvantage is the possibility of not revealing some issues due to
insufficient test coverage.

On the other hand, static analysis (at least in some of its forms) can be faster and does
not require complete runnable code. Such analyses are easier to use during development.
Moreover, static analysis is capable of discovering bugs even in rare execution traces that
need not be spot during testing — though, on the other hand, this can lead to generation of
false alarms due to considering non-existent paths in the program. Furthermore, the use of
the tools such as Coverity and FindBugs in the industry provides evidence that static
analysers meet the scalability requirement, which is a necessity to handle large and fast-
changing codebases [1].
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One way how to achieve scalability is compositional and incremental static analysis
as supported, e.g., in the Infer1 tool developed by Facebook. This tool is still under
further development, and it is in everyday use in Facebook (and several other companies,
such as Uber, WhatsApp, Amazon, and others) and it already provides many checkers for
various kinds of bugs. It is Facebook Infer that is the subject of the thesis that aims at
contributing some new checker into the suit of the already available ones.

Since concurrent programs are becoming prevalent due to the reality of multi-core hard-
ware and since writing good quality concurrent programs has become critically important,
the focus of this thesis is in particular on finding problems in these programs. Another
motivation is that detecting errors in such programs is very difficult because of the non-
deterministic behaviour of concurrently running threads due to which concurrent errors
need not show up even when repeated tests are run.

To create a non-trivial multi-threaded program, programmers must use some sort of
synchronisation between threads. However, most of them think sequentially and easily make
mistakes when designing the needed synchronisation. Incorrect synchronisation then results
in various kinds of errors, including, e.g., data races and deadlocks as two of the probably
most prominent concurrency related errors. In this thesis, we will deal with the second
mentioned kind of errors, that is, deadlocks.

f L1 L2 g

Thread1

Thread2

Thread1        |  Thread2
               | 
void f(...) {  |  void g(...) {
    lock(L1);  |      lock(L2);
    ...        |      ...
    lock(L2);  |      lock(L1);
}              |  }

Figure 1.1: A deadlock and its lock
graph.

A deadlock is a situation where each thread of
some set of threads waits for a resource that is
owned by some thread from the same set which
will not release it before getting the resource that
it is itself asking for. Figure 1.1 shows a deadlock
between two threads and its lock graph, which is de-
fined by the order in which threads access the locks.
A cycle in this graph denotes a deadlock.

There exist various static analyses for dead-
locks, which are discussed later on, but none (to
the best of our knowledge) fitting the computation
loop of Infer, except the Starvation checker im-
plemented in Infer itself. A problem of the Star-
vation checker is that it is developed primarily
for Java/C++ locks and does not handle low-level
locks as used, e.g., in C/Pthreads.

To improve on this situation, in this thesis, we present our Low-Level Deadlock
Detector (L2D2) which is based on a new method for deadlock detection that handles
low-level locking and that fits the compositional analysis style common to Facebook Infer.
This approach makes our solution highly scalable and also allows for incremental analysis
which makes it useful in everyday development. It also requires no additional help from
the programmer to detect bugs (no annotations). Our method was only weakly inspired by
the general principles and some heuristics of some other analysers (especially [8]).

We have already successfully implemented our method in Infer and experimentally
show the effectiveness on the benchmark consisting of 11.4 MLOC derived from Debian
GNU/Linux distribution, which was used to experimentally evaluate the Cprover tool
presented in [16].

1https://fbinfer.com/
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Some parts of this thesis were taken from the article [10], published at the Excel@FIT’19
conference, presenting the preliminary results of this work. Our work was there awarded
a Prize of Jíři Kunovský2 and also an award of an expert committee composed of FIT3

academics.

Structure of this paper. The rest of this thesis is structured as follows. Chapter 2
introduces the reader to the theory of abstract interpretation and provides an overview
of the Infer tool. Also, it describes some of the existing solutions which use various ap-
proaches to deadlock detection. After that, a complete design of the L2D2 analyser is
presented (Chapter 3). Further, Chapter 4 summarises the current state of implementa-
tion, followed by its experimental evaluation. Finally, Chapter 5 addresses directions for
future research and concludes this thesis.

2The Jíři Kunovský Prize is awarded to five works that receive the most votes from the professional
public during the conference.

3Faculty of Information Technology of Brno University of Technology
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Chapter 2

Preliminaries

2.1 Static Analysis
Static analysis is one of formal verification methods (or, at least, it can be — if its soundness
is not sacrificed to scalability). Formal verification of a program consists of verifying whether
the semantics of the program (“what the program actually does”) meets the pre-determined
specification (“what the program should do”). Except for static analysis, formal verification
can also be performed by methods like theorem proving or model checking.

In short, static analysis collects information about the program behaviour based on
its source code without executing the program at all, or at least without executing it
under its original semantics as in dynamic analysis or (basic) model checking. Obtained
information can be used to find potential errors in the code but also, e.g., for optimisation,
code generation, etc.

The area of static analysis is very extensive and includes many different approaches
such as data flow analysis, constraint-based analysis, type-based analysis, and abstract
interpretation, which is the approach used in this work.

Abstract Interpretation

The description of Abstract Interpretation is mostly inspired by [4, 7] and web article called
“Abstract Interpretation in a Nutshell”1. All of these sources were written by the author
of the original paper [6].

The concrete semantics of a program gives the set of all possible executions of the pro-
gram in all possible execution environments. When a semantic analysis of programs is to
be automated, in the general case, the answers can only be partial or approximate since
concrete, precise information is in general not computable within finite time and memory
(see Rice’s theorem [21] and the halting problem [22]).

Abstract Interpretation [6] is a method for approximating the semantics of programs
which can be used to gain information about them in order to provide sound answers to
questions about their run-time behaviours. From a practical point of view, the purpose
of abstract interpretation is to design automatic program analysis tools for statically de-
termining dynamic properties of programs. To achieve this, abstract interpretation defines
an abstract semantics of a program that is a superset of the concrete semantics of the pro-
gram. If an execution of a program is represented by a curve showing an evaluation of
the vector f(t) of the values of the input, state, and output variables of the program as

1https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
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t

f(t)

Possible trajectories

Figure 2.1: Concrete semantics.

t

f(t)

Abstraction of the trajectories

Figure 2.2: Abstract semantics.

a function of time t, the concrete semantics can be represented as in Figure 2.1. An ex-
ample of a corresponding abstract semantics is shown in Figure 2.2. One can see that
the abstract semantics covers all possible executions, therefore if the abstract semantics
meets the pre-determined specification, then the concrete semantics meets it too. However,
the consequence of the overapproximation of the possible executions is that inexisting ex-
ecutions are considered, some of which may be erroneous, which may lead to false alarms
(also called false positives). Another case of the false alarms are the so-called false nega-
tives. These errors arise as a result of insufficient coverage of a concrete semantics (abstract
semantics do not covers all possible cases of the concrete semantics).

Concrete and abstract semantics are defined on suitable concrete and abstract lattice-
based domains. To establish the correspondence between these domains, abstract inter-
pretation uses a Galois connection2 (𝐷, ⊑) (𝐷*, ⊑*)

𝛼

𝛾
which links a concrete domain

(𝐷, ⊑) with an abstract domain (𝐷*, ⊑*) by a pair of monotone functions — the so-called
abstraction and concretisation, denoted 𝛼 and 𝛾, respectively. Under such a connection,
a concrete program property 𝑝 ∈ 𝐷 is approximated by any abstract program property
𝑝* ∈ 𝐷* such that 𝑝 ⊑ 𝛾(𝑝*) and has a best/most precise abstraction 𝛼(𝑝) ∈ 𝐷*.

Example 1 ([5]): Answering a concrete question in the abstract

The concrete question, “Is there a partial trace in 𝑋 which has 𝑠, 𝑠′ and 𝑠′′ as initial,
intermediate and final states?” can be replaced by the abstract question “Is there a pair
⟨𝑠, 𝑠′′⟩ in 𝛼(𝑋)?”. If there is no such pair in 𝛼(𝑋), then there is no such partial trace
in 𝛾(𝛼(𝑋)) whence none in 𝑋 since 𝑋 ⊆ 𝛾(𝛼(𝑋)). However, if there is such a pair in
𝛼(𝑋), then we cannot conclude that there is such a trace in 𝑋 since this trace might
be in 𝛾(𝛼(𝑋)) but not in 𝑋.

Each program’s statement has assigned a corresponding concrete and abstract trans-
former that represents the effect of the statement on a concrete and abstract context. These
transformers are modelled as monotone functions: 𝑓𝑎 : 𝐷* → 𝐷* for the abstract trans-
former and 𝑓𝑐 : 𝐷 → 𝐷 for the concrete transformer. So, if we consider as a concrete
domain a set of integers and as an abstract domain a set of even and odd numbers, for

2A monotone Galois connection between two partially ordered sets (𝐴, ⊑𝐴) and (𝐵, ⊑𝐵) consists of two
monotone functions: 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐴 such that ∀𝑎 ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐵 : 𝑓(𝑎) ⊑𝐵 𝑏 ⇐⇒ 𝑎 ⊑𝐴 𝑔(𝑏).
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the x++ statement, the transformers may look like:

𝑓𝑐(𝑥) = 𝑥 + 1

𝑓𝑎(𝑥) =
{︃

𝑒𝑣𝑒𝑛 if 𝑥 is 𝑜𝑑𝑑
𝑜𝑑𝑑 if 𝑥 is 𝑒𝑣𝑒𝑛

In a more general formulation of abstract interpretation [7], the requirement of dealing
with a Galois connection is lifted, and the analysis is defined in terms of a concretisation
(or, dually, abstraction) function only, which, however, excludes the possibility of defining
best abstract transformers. A consequence of using the more general setting is that there
is no easy way of comparing the precision of abstractions.

The program analysis is then performed by iterating the abstract transformers over
the control flow graph3 (CFG). It is possible that there are multiple paths leading to a sin-
gle program point, therefore abstract interpretation defines an operator for accumulation
of abstract values computed for that point via all program paths. This operator is called
join, and usually denoted ∘. Moreover, when the abstract domain is large or infinite, widen-
ing ▽ and narrowing △ operators should be used to tune the cost/precision compromise.
The main property of the widening operator is that for any infinite sequence of abstract val-
ues 𝑥0, 𝑥1, 𝑥2, . . . , the sequence 𝑦0, 𝑦1, 𝑦2, . . . where 𝑦0 = 𝑥0 and 𝑦𝑖+1 = 𝑦𝑖 ▽ 𝑥𝑖+1 eventually
stabilises. The widening operator is an overapproximation of the join operator and is used
at loop junctions where it is generally not guaranteed that, without widening, the anal-
ysis will terminate in acceptable or even finite time. As an example, imagine a cycle in
which each repetition increases the array’s index by one. It will lead to states with this
variable having values of {0}, {0, 1}, {0, 1, 2} etc. until the range of the type of variable
is reached. So, a widening operator can define that if a fixed point4 is not reached after,
e.g., ten iterations through the cycle, the value of our variable will be set to some value
that guarantees termination, e.g., ∞ (generally top value5 of the given abstract domain).
In summary, the widening operation decreases the precision of the computation to make
it faster. Sometimes, a narrowing operator may be used after the widening operation to
refine its efect (the narrowing operator may be sometimes missing).

2.2 Facebook Infer
Infer is an open-source static analysis tool, written in OCaml, which is used for analysing
Objective C, Java and C/C++ code bases at Facebook on daily basis. Initially, Infer
was based on an academic work about Separation Logic [19], [20], which attempted to
make algorithms for reasoning about memory safety of programs with pointers scalable.
Since then it has evolved into an analysis framework supporting a variety of sub-analysis,
including ones for data races [2] (RacerD), for buffer overruns (Inferbo), and for other
specialised properties.

Infer is notable mainly for its ability to perform in-depth interprocedural analysis, and
yet still scales to large code bases. Other popular open-source tools such as FindBugs and
Clang Static Analyser are also scalable, but in comparison to Infer, their reasoning

3A control flow graph is a graph representation of all paths that might be traversed through a program
during its execution.

4A fixed point is reached when all values in the given state before cycle execution and afterwards are
the same.

5The top value of an abstract domain is the most imprecise value, which covers all possible values.
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is typically limited to a single function/file. There are also many research tools, which offer
interprocedural analysis but require a sophisticated whole-program analysis, which may be
precise, but sadly cannot scale to millions of lines of code.

Infer scales by using a technique called compositional program analysis, where the re-
sult of the whole program analysis is computed from the analysis results of the individual
parts of the program — the so-called summaries. A compositional analyser computes a sum-
mary of each function independently from its context and then uses the summary in all
its call sites. A consequence of that is that each function is analysed once only, making
the analysis scale. Another consequence of compositionality is that Infer can work incre-
mentally, which means that after a change in the program, it analyses only the parts affected
by the change instead of the entire program. These properties are an advantage especially
for large code bases, where a complete re-analysis of the project after each change would be
infeasible. This is especially true when the analysis is to be used within live development
when programmers are mostly willing to correct the bugs [3].

The Infer.AI Framework

Infer.AI6 (Abstract Interpretation) is a framework which provides an API to Infer’s
backend compositional analysis infrastructure, based on abstract interpretation. It makes
the development process of new analysers much easier, because the developer can focus
mostly on the design of the new analysis instead of dealing with the backend of abstract
interpretation.

A block diagram of a simplified architecture of the framework can be seen in Figure 2.3.
The architecture consists of three main components, which are the frontend, scheduler and
abstract interpreter.

0101001 
0000010 
1111010 
1001000 

Frontend

Scheduler + results database

Procedure summary

Analyzer Plugins

Program

Figure 2.3: The architecture of the Infer.AI framework.

Frontend. The task of the frontend component is to compile the analysed program from
its source language to the Smallfoot Intermediate Language (SIL) which is the intermediate

6https://fbinfer.com/docs/absint-framework.html
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language used by Infer during the analysis. The frontend provides an output in the form
of a CFG for each function in the analysed program, where each of its nodes consists of
a list of SIL instructions. In SIL there are four main instructions:

∙ LOAD – loads the value from the heap into a temporary identifier. The heap is repre-
sented by an address expression, which can denote the address of a simple program
variable, array or structure. In the case of a structural type, the LOAD instruction also
provides an offset within the structure.

∙ STORE – stores the value of an expression into the heap. The heap representation
is the same as in the case of LOAD, and the value is represented by an expression
consisting of constants and temporary identifiers created by the LOAD instruction.

∙ CALL – represents a function call and provides information about the return value,
return type, list of function’s parameters (also their values and types), and some call
flags like, e.g., is_virtual, is_interface, ...

∙ PRUNE – splits the CFG into two new branches based on a boolean expression. It
also provides information about the source of the pruning (a conditional, a ternary
operator, a cycle, etc.).

Infer also provides an abstraction over SIL, which is called as the High-level Intermedi-
ate Language (HIL). It consists only from three instructions (CALL, ASSIGN — abstraction
of STORE, and ASSUME — abstraction of PRUNE), but still is sufficient for many analyses,
including the one presented in this thesis.

Analyzer Plugin. Another component of the Infer.AI framework is the abstract in-
terpreter which has to be instantiated by every analyser implemented in Infer. This is
the way a new analyser plugin is created. The plugin then takes as its input the CFG
of the analysed function and the transfer functions module (of a specific analyser), which
defines abstract transformers for SIL instructions. The effect of these transfer functions is
then applied to an abstract state of the analyser, which is tied to its abstract domain.

Transfer Functions

Abstract Interpreter

Control Flow Graph

Command

0101001 
0000010 
1111010 
1001000 

StateOUT

Domain

0101001 
0000010 
1111010 
1001000 

StateIN

Domain

Figure 2.4: Intraprocedural analysis flow.
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A basic building block of the Infer’s analysis approach is an intraprocedural analysis
that is illustrated in Figure 2.4. The main component is the already mentioned abstract
interpreter, which manages the entire analysis flow. At the beginning of the analysis,
it selects the first instruction from the CFG and applies it to an initial abstract state
using the appropriate transformer. Next, it takes the output state of the transformer and
applies the next instruction to it. In case of conditionals and loops, the role of the abstract
interpreter is to call the join and widen operation, respectively. This repeats until all
instructions from the given CFG are processed, and a fixpoint is reached. The result is
a summary of the analysed function.

The intraprocedural analysis is lifted to an interprocedural one by adding a new abstract
transformer into the transfer functions module that is responsible for handling function calls
under the given analysis. Then, if a call of a user-defined function appears in the analysed
code, the abstract interpreter uses the given transformer and instantiates the summary of
this function at actual callsite.

Summary. Infer represents its summaries as specifications in a program logic. In more
detail, a specification is a pair of a precondition and a postcondition known from the Hoare
logic [13] which uses Hoare triples of the form {𝑝𝑟𝑒} 𝑐𝑜𝑑𝑒 {𝑝𝑜𝑠𝑡} where 𝑝𝑟𝑒 is a precondi-
tion, 𝑝𝑜𝑠𝑡 is a postcondition, and 𝑐𝑜𝑑𝑒 is a program part (one function in case of Infer).
The interpretation of a (𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡) pair is that if the logical property 𝑝𝑟𝑒 is fulfilled before
executing a function, 𝑝𝑜𝑠𝑡 will be fulfilled afterwards. As an example, we could imagine
a function which closes a resource 𝑟 given to it as a parameter:

{𝑟 ↦→ 𝑜𝑝𝑒𝑛} 𝑐𝑙𝑜𝑠𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑟) {𝑟 ↦→ 𝑐𝑙𝑜𝑠𝑒𝑑}.

Scheduler and results database. Another main component of the Infer.AI architec-
ture is the scheduler. Its role is to determine the order in which the functions are analysed.
Once the analysis of a function is ended, Infer stores a summary of the function to the re-
sults database such that it can be used repeatedly at different call sites. The analysis
of individual functions cannot be arbitrary if an interprocedural analysis is considered.
The reason is that during the interprocedural analysis the abstract interpreter needs to
have a valid summary for each function that is called by the currently analysed one. To
handle this issue Infer.AI uses a call graph7 to ensure that functions will be analysed in
a suitable order.

An example of such a call graph can be seen in Figure 2.5. Using this figure, we can
illustrate the order of analysis in Infer and its incrementality. The underlying analyser
starts with the sink nodes8 F5 and F6 and then proceeds towards the root FMAIN while
respecting the dependencies represented by the edges. Each subsequent code change then
triggers a re-analysis of the directly affected functions only as well as a re-analysis of all
the functions up the call chain. For example, if function F6 were changed, Infer would
have to re-analyse functions F3, F1, and FMAIN only. However, a change in function F2
affects only FMAIN, and the summaries of all other functions stay untouched, which brings
scalability to rapidly changing codebases. This approach also brings one more advantage
to the analysis. Thanks to it, independent functions can be analysed simultaneously, which
is another reason why Infer scales so well.

7A call graph is a CFG, which represents calling relationships between functions in a program.
8A sink node in a graph is a node such that no edge emerges out of it.
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F6 F5

F4F3

F2F1

FMAIN

Figure 2.5: A call graph.

2.3 Existing Solutions of Deadlock Detection
Nowadays, there are many tools used for deadlock detection in multi-threaded programs.
A common deficiency of a large number of them is that they are unsound and/or incomplete
(produce many false positives/negatives) or they are precise but their requirements on time
and resources are unacceptable in case of large codebases.

This section lists some of the most popular existing analysers using different approaches
to deadlock detection.

Dynamic Tools. There are many analysers that detect deadlocks dynamically. An ad-
vantage of such tools is that they see concrete executions which allows them to reduce
the number of false alarms. On the other hand, they may fail to detect specific errors due
to insufficient test coverage. Moreover, while performing a single test run of a given system
may seem quite scalable, the scalability of such tools is reduced by (1) a need to repeat
the runs many times to mitigate the non-determinism and/or (2) the slow-down generated
by monitoring code or (3) techniques such as noise injection [9] used to increase the achieved
coverage of the possible thread interleavings.

Dynamic approaches such as Visual Thread [11] and GoodLock [12] use deadlock
prediction to detect a deadlock. These tools make predictions about an exponential number
of permutations of a single execution history. Essentially, both tools monitor the lock
acquisition history by creating a dynamic lock-order graph, followed by checking the graph
for existence of deadlock candidates by searching for a cycle in it. A handicap of these
approaches is that they may produce a high rate of false positives.

Another group of dynamic analysers are tools like DeadlockFuzzer [15] that verify
the candidates produced by a deadlock predictor by re-executing the program. They effi-
ciently try out different schedules to see if they can recreate the deadlock, but the additional
runs come with no guarantee of success.

Like any dynamic analysers, these approaches cannot be applied to open programs and
without test input data. This makes it impossible to use them during development unless
suitable test suites and models of the missing parts of the code are created. Moreover,
creating test suites that would suitably exercise various thread interleavings is not easy
(nor common).
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Static Tools. One group of static analysers are those that use annotations to detect
deadlocks. This group includes analysers such as Warlock [23] or ESC [17]. The main
disadvantage of these analysers is that the aforementioned annotations must be supplied
by programmers, which represents an unnecessary burden and increases the time needed to
verify the software.

Another group consists of tools using dataflow analysis. This group includes the Rac-
erX analyser introduced by Engler and Ashcraft in [8]. It performs a flow-sensitive and
contex-sensitive interprocedural analysis of C programs to compute a static lock-order
graph, by computing so-called locksets, i.e., sets of currently held locks, and reports a pos-
sible deadlock in case of a cycle in it. This approach scales quite well but produces false
alarms due to the used approximations. Moreover, the approach is based on classical for-
ward analysis that differs from the analysis loop of Infer.

Williams et al. [24] present an algorithm for deadlock detection in Java libraries. Their
detector uses interprocedural, context and flow sensitive analysis to create a lock-order
graph. To build the graph, the algorithm iterates over procedures in a library building
a lock-order graph for each of them. Then the graphs of all procedures are combined into
a single graph for an entire library. Combining information into one graph allows one to
represent any calling pattern of library’s methods across any number of threads. However,
it considers infeasible paths and impossible alias relationships, resulting in false positives.
Moreover, the algorithm is not designed as compatible with the common analysis loop of
Facebook Infer.

The Chord static analyser presented in [18] reduces the number of false alarms ob-
tained by a pure data-flow interprocedural analysis using a novel combination of static
analyses each of which approximates a necessary condition for a deadlock. The algorithm
then reports only deadlocks that fulfil all of the necessary conditions. However, since this
approach combines six analyses, the algorithm becomes a bit heavy-weight and does not
scale well. Another limitation is that they may fail to report some real deadlocks due to
using a may-alias pointer analysis instead of a must-alias analysis (when deciding whether
some reentrant lock is locked repeatedly and hence its locking can be ignored). They also
report some false positives due to limitations of their thread-escape analysis.

The Cprover tool implements the approach introduced by Kroening et al. in [16],
which also uses a combination of multiple analysis to create a sound (i.e., misses no dead-
locks) static deadlock analysis for C/Pthreads. They also build a lock-order graph and
search for a cycle in it to detect deadlocks. The biggest limitation of Cprover is the pointer
analysis used, which takes most of the analysis time (making the analysis less scalable),
and it is also a source of false alarms. Further, as with the above approaches, the approach
of [16] does not meet the principle of compositional analysis used in Infer.

According to our knowledge there is only one deadlock detector which uses a com-
positional approach in the spirit of analyses used in Infer, and that is the Starvation9

checker, already mentioned in Chapter 1. It detects deadlocks by deriving lock dependen-
cies for each function, followed by checking whether some other function uses the locks in
an inverse order. The problem of this analyser is that it uses a heuristic based on the class
of the lock to determine the functions whose summaries should be checked for an inverse
lock dependency. So, if a program uses low-level locks (e.g. C/Pthreads), which do not
provide this information, the analyser will not detect any deadlocks on it.

9https://fbinfer.com/docs/checkers-bug-types.html
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Chapter 3

A Modular Low-Level Deadlock
Detector

This chapter presents the design of our L2D2 analyser. First, we sketch the basic ideas of
our analysis. As the next step, we introduce the algorithm of our analyser in more detail
and demonstrate its use on a simple example. After that, we describe an algorithm for
reporting deadlocks, and at the end of this chapter, we will talk about some techniques
which we use to reduce false positives.

3.1 Design Principles
The design of L2D2 is based on the following principles:

(1) Interprocedural analysis: to be able to find deadlocks between multiple functions.
(2) Compositional analysis: each function is analysed independently from its context.
(3) Process locks sequentially while reasoning conservatively about all possible interleav-

ings between threads.
(4) Represent locks by access paths: the analyser should not perform a more detailed

alias analysis.

The first two decisions are motivated by the need to run L2D2 on a real-world, fast-
changing, large code basis and still meet the scalability requirement. Since most known
deadlocks occurring in real-world code are interprocedural, we have also decided to de-
sign an analysis which can handle this kind of bugs. As already mentioned, one way to
achieve the desired scalability of interprocedural analysis is compositionality [3]. This is
the approach that we also strive to use.

The other two decisions came about as a compromise between scalability and preci-
sion. The third decision is motivated by the large number of possible interleavings between
threads. For example, the number of interleavings between two threads where 𝑡ℎ𝑟𝑒𝑎𝑑1
has 𝑁 instructions and 𝑡ℎ𝑟𝑒𝑎𝑑2 has 𝑀 instructions is the binomial coefficient

(︀𝑁+𝑀
𝑁

)︀
. As

the number of instructions increases, the number of interleavings will increase rapidly, mak-
ing it impossible to explore all interleavings by brute force. The decision to reason about
any thread interleavings is based on programming intuition. When writing multi-threaded
programs, programmers usually do not think about different possible interleavings in too
many details and they use synchronisation conservatively. Hence, if the analysis assumes
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that any interleaving is possible, this will often not be a too drastic overapproximation (at
least in common programs). However, this over-approximation may of course lead to false
positives because our analyser may consider cases that may not occur.

The last decision is motivated by the fact that, according to our knowledge, there is
no sufficiently precise alias analysis that works compositionally and at scale. The principle
of using the access paths has been taken from an existing analyser for data race detection
(RacerD [2]) which is already implemented in Infer and it uses this principle to report
races between syntactically identical access paths [14]. The access paths represent heap
locations via the paths used to access them (see Figure 3.1).

variables x ∈ Var
field names f ∈ Field
access paths 𝜋 ∈ Path ::= Var x Field* | 𝜋 := x.f1. . . . .f𝑛

Figure 3.1: An access path is represented by a base variable Var followed by a sequence
of fields Field.

According to the authors of [2], using the syntactic equality of access paths is a rea-
sonably effective way to say (in an underapproximate fashion) that heap accesses touch
the same address. Also, by using access paths, they have been able to detect many errors
in real-world programs (especially in Facebook codebases), proving that the use of access
paths can reveal real errors. That is why we have decided to use this principle to represent
locks in our analysis.

However, many projects provide their own wrappers for functions like lock/unlock when
using low-level locks. For instance, Listing 1 shows a lock wrapper from the VLC project
which uses the C/Pthreads library. Using just the access paths in this case will fail and
result in many false alarms because all of the locks that would be locked by this wrapper
would be named as “p”. To deal with this problem, all of the function’s formal parameters
are replaced by the actual ones at the concrete call site in our analyser.

1 void vlc_mutex_lock (vlc_mutex_t *p) {
2 int val = pthread_mutex_lock(p);
3 VLC_THREAD_ASSERT("locking mutex");
4 }

Listing 1: Lock wrapper.

3.2 Deadlock Detection
We divide our explanation of L2D2 into two parts. First, we will show the main idea
of our analyser and describe the entities we use for our compositional deadlock detection
(Subsection 3.2.1), and the second part is devoted to a detailed description of an algorithm
used to calculate these entities (Subsection 3.2.2).

3.2.1 An Illustrating Example

To help ground the following discussion, the principle of L2D2 will be illustrated by the ex-
ample in Listing 2.
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Workflow of L2D2. L2D2 works in two phases. In the first phase, it computes a sum-
mary for each function by looking for lock and unlock events present in the function.
An example of a lock and unlock event is illustrated in our example on lines 5 and 8. If
a call of a user-defined function appears in the analysed code during the analysis, like at
line 7 of our example, the analyser is provided with a summary of the function if avail-
able. Otherwise, the function is analysed on demand (which effectively leads to analysing
the code along the call tree, starting at its leaves, as usual in Infer). The summary is then
applied to an abstract state at the call site. Hence, in our example, the summary of foo
will be applied to the abstract state of thread1.

In the second phase, L2D2 looks through all the computed summaries of the analysed
program and concentrates on so-called dependencies that are part of the summaries and rep-
resent a possible locking behaviour of an analysed program. L2D2 interprets the obtained
set of dependencies as a relation, computes its transitive closure, and reports a deadlock if
some lock depends on itself in the transitive closure.

1 void foo() {
2 pthread_mutex_lock(&L2);
3 }
4 void *thread1(...) {
5 pthread_mutex_lock(&L1);
6 ...
7 foo();
8 pthread_mutex_unlock(&L1);
9 }

10 void *thread2(...) {
11 pthread_mutex_lock(&L2);
12 ...
13 pthread_mutex_lock(&L1);
14 }

Listing 2: A simple example illustrating a deadlock between two global locks in the C lan-
guage using the POSIX threads execution model.

Structure of Function Summaries. To detect potential deadlocks, we need to record
information that will allow us to answer the following questions:

(1) What is the state of the locks used in the analysed program at a given program point?
(2) Could a cyclic dependency on pending lock requests occur?

To answer Question (1), we compute sets lockset and unlockset, which contain the currently
locked and the currently unlocked locks, respectively. These sets are also a part of the post-
conditions of functions and record what locks are locked/unlocked upon returning from
a function. Further, we also compute sets locked and unlocked that serve as a precondition
for a given function and contain locks that should be locked or unlocked before calling this
function.

Each summary contains also a set of dependencies using which we can answer Ques-
tion (2). The dependencies record that some lock got locked at a moment when another lock
was still held. For example, if lock L2 is in the current lockset (which means it is currently
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locked) and lock L1 has just been acquired the dependency L2→L1 will be emitted. This
exact situation can be seen in Listing 2 on line 13.

To be able to create these dependencies interprocedurally, we had to add two more sets
to the summary to solve the following issues:

(1) What if some of the locks which were acquired in a callee were also released there?
(2) What if the lock from the lockset of a caller was unlocked in the callee before another

lock was locked there?

Both of this situations are illustrated in Listing 3. The first case is represented by
locks L3 and L1 in function g, which are unlocked at the end of this function (lines 6
and 7). In this case, these locks will not be in the set of the currently held locks (lockset),
and we have no information that they were locked. As a result, we would not create
any dependencies, which could lead to false negatives (we could miss some real errors).
Therefore, we added a wereLocked set to the summary which contains all the locks that
were locked in the function. Thus, the wereLocked set for function g in our example will
look like this: wereLocked = {L1, L3}. So now, if we call function g, as on line 11 in
our example, we have information about which locks were locked there and we can create
dependencies with the already acquired lock L2.

However, using only this set would create a non-existent dependency L2→L1 since lock
L2 was unlocked before locking lock L1 (line 3). This situation represents the second of
the problems that arise when creating dependencies between multiple functions. In order
to avoid this problem, we create dependencies of the unlock→lock type in the summaries,
that can be used to safely determine the order of operations in the callee. This finally
ensures that the only newly created dependency in our example will be L2→L3. These
newly created dependencies are stored in a set called order.

1 void g() {
2 pthread_mutex_lock(&L3);
3 pthread_mutex_unlock(&L2);
4 pthread_mutex_lock(&L1);
5 ...
6 pthread_mutex_unlock(&L1);
7 pthread_mutex_unlock(&L3);
8 }
9 void f() {

10 pthread_mutex_lock(&L2);
11 g();
12 }

Listing 3: A motivation example showing the problems with creating lock dependencies
between multiple functions.

To sum it up, the summary is a 6-tuple consisting of sets locked, unlocked, lockset, un-
lockset, wereLocked, order, and dependencies. Out of these sets, sets locked and unlocked
form a precondition for a given function and the remaining four sets represent its postcon-
dition. An example of how the summaries for the functions in Listing 2 looked like is shown
in Listing 4 (for simplicity, there are only sets that are not empty in the listing).
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1 foo()
2 PRECONDITION:
3 unlocked = { L2 }
4 POSTCONDITION:
5 lockset = { L2 }, wereLocked = { L2 }
6 thread1(...)
7 PRECONDITION:
8 unlocked = { L1, L2 }
9 POSTCONDITION:

10 lockset = { L2 }, unlockset = { L1 }, wereLocked = { L1, L2 },
11 dependencies = { L1->L2 }
12 thread2(...)
13 PRECONDITION:
14 unlocked = { L1, L2 }
15 POSTCONDITION:
16 lockset = { L1, L2 }, wereLocked = { L1, L2 },
17 dependencies = { L2->L1 }

Listing 4: Summaries of the functions from Listing 2.

3.2.2 Algorithm Details

The algorithm for the summary computation is given in Listing 5. Throughout the following
explanation we use L to denote the most recently locked/unlocked lock. In our explanation,
we also use the state variable which represents the abstract state in the specific program
point of the analysed function and has the same type as the above described summary.

As we said before, L2D2 looks for lock/unlock events in the function being analysed and
also tracks calls of user-defined functions. Upon encountering each of these statements, it
calls the corresponding abstract transformer which updates the abstract state. So, together,
we have three transformers, and in our explanation we will describe each of them separately
in the following:

(1) The acquire transformer is called upon every lock acquisition and takes an abstract
state state and a currently acquired lock L as the input. First, it updates the pre-
condition for the analysed function f by asking if the encountered lock operation
is the first operation with that lock in the function f (line 3). If this condition is
true (the lock is not in the set locked nor unlocked yet), the lock L is added to
the unlocked set. Intuitively, this reflects the fact that the lock should be unlocked
before calling f — otherwise, we would encounter double locking1. Since this set con-
tains locks unlocked before calling the analysed function, local locks are not added
to it. Subsequently, the acquisition itself takes place, which, in our case, means that
the lock L is added to the lockset and removed from the unlockset, if it is there.
The acquired lock is also added to the set of all locks which were locked by the func-
tion f (line 8). Since this set is used to create interprocedural dependencies, we only
add locks that are not local to it. The final part of the transformer is an extraction
of new dependencies and order edges. To extract dependecies, we iterate over every

1In the basic algorithm of Listing 5, the sets locked/unlocked are maintained, but not used. We will
show how they can be used in Section 3.4.
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lock in the current lockset, emiting the constraint produced by the current acqui-
sition. The extraction of order edges works the same, but instead of iterating over
the current lockset, it iterates over the unlockset.

(2) The release transformer works similarly like the acquire one, but it is called upon
every lock release. Initially, it adjusts the precondition of the analysed function
(lines 18 and 19). Then it releases the lock L, which, in our case, means that the lock
is removed from the lockset and added to the unlockset.

(3) The integrate_summary transformer applies a summary of a callee (denoting
the name of a called function) to the abstract state. L2D2 first finds the summary
of the callee and updates it by replacing formal parameters with the actual ones
provided that some of the locks were passed to the callee as parameters. We also
check that all the locks that should be locked/unlocked before calling the callee are
present in the current lockset or unlockset, respectively. If they are not, it means
that they must be locked/unlocked even before the currently analysed function, and so
we update its precondition (lines 27–30). Next, we edit the set of currently held locks
(lockset) by first adding the locks acquired in the callee and then removing all locks
which were released there (line 31). The set of currently released locks (unlockset)
is updated by removing locks acquired in the callee and then adding locks which
were released there (line 32). The decision to compute the lockset and unlockset
as described comes from the observation that if some lock will appear at the same
time in both the lockset and unlockset, then we consider the lock to be unlocked to
decrease the number of possible false alarms (indeed, the analysis must have caused
the situation by the over-approximation used — in reality, it is not possible to have
a lock both locked and unlocked). An example of a situation where a lock may appear
in both sets is shown in Listing 7, which will be discussed later on. Before the last step,
it is necessary to extend the wereLocked set by adding locks acquired in the callee.
Finally, the last step is to add new dependencies between the currently held locks
and locks acquired in the callee. This is accomplished by iterating over all the locks in
the current lockset and generating a dependency with locks in the wereLocked set of
callee for each of them. However, before adding a newly created dependency X→Y,
we still need to verify whether the lock X from the current lockset was not unlocked
before locking the lock Y in the callee (line 38).

At run time, our analyser also has to deal with combining states along confluent program
paths (e.g., if statements). For this purpose, a join operator is defined, which takes
two different abstract states as an input and combines them to produce an output state.
Since we are interested in locking patterns along any possible path, our join operator is
simply the union of incoming states’ values for all the sets in the summaries. The widening
operation is defined simply as the join operation as we are working with finite-domain
summaries and we do not need any accumulation at loop points.

After processing all the instructions in the analysed function, all local locks are removed
from the lockset and unlockset, as they are destroyed after the function is completed. This
will prevent local locks from being propagated to other functions. The modified last abstract
state (without any local locks) is declared as the summary of the analysed function and is
applicable in all contexts where this function is called.
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1 let acquire ( L, state ) {
2 (* Is it a first operation with the lock? *)
3 if (L /∈ state.locked && L /∈ state.unlocked && not(is_local(L))) then
4 add L state.unlocked
5 add L state.lockset
6 remove L state.unlockset
7 if ( not(is_local(L)) ) then
8 add L state.wereLocked
9

10 for X in state.lockset
11 add X->L state.dependencies
12 for Y in state.unlockset
13 add Y->L state.order
14 }
15

16 let release ( L, state ) {
17 (* Is it a first operation with the lock? *)
18 if (L /∈ state.locked && L /∈ state.unlocked && not(is_local(L))) then
19 add L state.locked
20 remove L state.lockset
21 add L state.unlockset
22 }
23

24 let integrate_summary ( callee, state ) {
25 summary:= read_summary callee
26 replace_formals_with_actuals summary
27 if (∃Lock: Lock ∈ summary.unlocked && Lock /∈ state.unlockset) then
28 add Lock state.unlocked
29 if (∃Lock: Lock ∈ summary.locked && Lock /∈ state.lockset) then
30 add Lock state.locked
31 state.lockset:= (state.lockset ∪ summary.lockset) ∖ summary.unlockset
32 state.unlockset:= (state.unlockset ∖ summary.lockset) ∪ summary.unlockset
33 state.wereLocked:= state.wereLocked ∪ summary.wereLocked
34

35 for X in state.lockset
36 for Y in summary.wereLocked
37 (* if X was not unlocked before Y was locked *)
38 if( X->Y /∈ summary.order ) then
39 add X->Y state.dependencies
40 }

Listing 5: The algorithm used for summary computation in L2D2.
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3.3 Reporting Possible Deadlocks
In this section we describe the core deadlock checking algorithm. We begin by noting that
our algorithm currently reports deadlocks between two locks only. Deadlocks between more
than two locks are also possible and it is easy to detect them using our approach. A Problem
arises in reporting: we are unable to tell between which locks the deadlock occurs. However,
empirical evidence from bug databases such as http://issues.apache.org, shows that
the vast majority of deadlocks involve two locks only (in fact, we could not find any deadlock
that involves more than two locks).

The deadlock detection itself takes place after the summaries for all functions in the anal-
ysed program are calculated. L2D2 then merges all of the emitted locking dependency
constraints into one set. This set is interpreted as a relation, and its transitive closure
is computed. If any lock depends on itself in the transitive closure, our analyser will find
dependencies that have caused the deadlock and will report a deadlock between the locks of
these dependencies2. Every deadlock found by our analyser is reported twice — at the be-
ginning of each of the two conflicting locking sequences.

If we run L2D2 on our example in Listing 2, it will report a possible deadlock due to
the cyclic dependency between L1 and L2 that arises if thread 1 holds L1 and waits on L2
and thread 2 holds L2 and waits on L1 (see Listing 6). This is caused by dependencies
L1→L2 and L2→L1 in the summaries of thread1 and thread2.

Found 2 issues
pthr.c:21: error: DEADLOCK
Deadlock between: lock L1 on line 21 -> lock L2 on line 17, in "thread1"

lock L2 on line 28 -> lock L1 on line 29, in "thread2"
19.
20. void *thread1() {
21. > pthread_mutex_lock(&L1);
22. foo();
23.

pthr.c:28: error: DEADLOCK
Deadlock between: lock L2 on line 28 -> lock L1 on line 29, in "thread2"

lock L1 on line 21 -> lock L2 on line 17, in "thread1"
26.
27. void *thread2() {
28. > pthread_mutex_lock(&L2);
29. pthread_mutex_lock(&L1);
30. }

Summary of the reports
DEADLOCK: 2

Listing 6: The output of L2D2 in case we run it on the example from Listing 2.
2A deadlock is represented in the transitive closure 𝑅* as a lock dependency (𝑎, 𝑎). Then, in the case of

a deadlock between two locks, we look for the lock 𝑏 : (𝑎, 𝑏) ∈ 𝑅* ∧ (𝑏, 𝑎) ∈ 𝑅*, and report the dependencies.
However, if a deadlock occurs between, three and more locks, the current algorithm is unable to find the path
that caused the dependency (𝑎, 𝑎), e.g., 𝑎 → 𝑏, 𝑏 → 𝑐, 𝑐 → 𝑎.
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3.4 Reducing the Number of False Alarms
Like many static analysers, our tool also reports false positives. In our case, they are
caused by false locking dependencies created during the summary computation. Wrong
dependencies are caused by invalid locksets, and the main reasons for it are imprecision in
dealing with conditionals (all outcomes are considered as possible), function calls (missing
context), and lock aliasing. False positives reduce the usability of the tool because verifying
that a report is false can be tedious. This section describes technique we use to reduce
the number of false positives.

Errors caused by the lack of context and aliasing of locks are not subject of our optimi-
sations as we would violate the principles described in Section 3.1. Specifically, by adding
some context, we would lose the compositionality, and alias analysis would incur overhead
which reduce the scalability. That is why, the technique used focuses on errors caused by
infeasible sets of paths through the program. It is this group of errors that, according to
our observations, produced the greatest number of mistakes in locksets. Almost all false
dependencies arise from situations like the one in Listing 7.

1 void bar(int x) {
2 if(x)
3 pthread_mutex_lock(&L);
4 ...
5 if(x)
6 pthread_mutex_unlock(&L);
7 }

Listing 7: An example of data-dependent locking operations. Since L2D2 does not per-
form a path-sensitive analysis, it will believe that there are four paths through the bar
function, one of which locks L, but does not release it. This invalid path will result in
a wrong lockset containing lock L which causes a prompt generation of spurious dependen-
cies.

The method we use seeks to eliminate these errors by pruning the lockset on paths
that contain a locking error. By a locking error, we mean the situation of double locking
or double unlocking. If such an error occurs during the analysis, we can look at it from
two perspectives. First, it can really be a locking error, which means the system is in
an inconsistent state. Secondly, this may be the case when our analysis has made a mis-
take and the subsequent reports are neither surprising nor trustworthy. Therefore, L2D2
distinguishes between two run modes:

(1) In the first mode, the analysis runs in the classical way as described in the previous
section, and in the case of a locking error, the analyser will emit a warning so the user
can inspect the reported warnings.

(2) In the second mode, the analyser will not report warnings, but will adjust the current
lockset as shown in Listing 8. In the case of a lock acquisition, we ask whether it is
a double locking (line 3). If this is the case, it is assumed that our analysis considered
some non-existent path, and the current lockset is no longer trustworthy. Therefore,
it is emptied, and the only lock left in it is the currently acquired one, as this is
the only one about which we can safely say that it is locked.
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We also check double locking/unlocking when a function call appears in the analysed
code. This consists in checking the precondition of a callee, specifically asking whether
some lock that should be unlocked is currently held, or whether some lock that should
be locked is currently released (line 13 and 14). In case such a lock is found, it is
again assumed that L2D2 used a non-existent path to reach the function call, and
therefore the current lockset is discarded and as the new one the lockset of the callee
will be used.
The last algorithm modification can be found in the release function. The modifica-
tion consists in checking whether the currently released lock is unlocked yet (line 8). If
it is, the current lockset is simply set to empty, thereby eliminating any dependencies
that would be caused by the locking error.

1 let acquire ( A, state )
2 (* double locking *)
3 if ( A ∈ state.lockset) then
4 state.lockset = { A }
5 ...
6 let release ( A, state )
7 (* double unlocking *)
8 if ( A ∈ state.unlockset ) then
9 state.lockset = {}

10 ...
11 let integrate_summary ( callee, state )
12 (* double locking/unlocking *)
13 if ( state.lockset ∩ callee.unlocked ̸= {} ∨
14 state.unlockset ∩ callee.locked ̸= {} ) then
15 state.lockset = callee.lockset
16 ...

Listing 8: Extensions of the algorithm from Listing 5 to reduce the number of false
positives.
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Chapter 4

Implementation and Experiments

The first section of this chapter gives the reader a “recipe” on what it takes to expand
Facebook Infer with a new analysis, while concentrating on our analyser L2D2. The next
section gives a short guide to L2D2’s use, and the last one presents results of an experi-
mental evaluation of L2D2.

L2D2 is implemented as a specialised program analysis using the Infer.AI analysis
framework. Its implementation is currently hosted in a GitLab Git repository1.

The repository contains a clone of the entire Infer tool extended by our analyser. Also,
it contains all the information (install instructions, dependencies) necessary to get Infer
(containing L2D2) working. In addition, the repository also includes the entire benchmark
on which the prototype of our analyser was tested, along with the test results. The source
code is provided under the MIT licence2.

The code of our analyser is written in OCaml3 (as Infer itself) and its main part can
be found in files Deadlock.ml and DeadlockDomain.ml.

4.1 Analyser Plugin
To be able to extend Infer.AI by a new analyser, one has to provide the framework with:

(1) an abstract domain (symbolic values for the analysis to track),
(2) transfer functions that specify how program statements transform values from

the abstract domain,
(3) and a way to make a summary of a function that is independent of its calling

context (only when considering an interprocedural analysis).

As a result, one obtains an analysis that works compositionally and can (often) scale to big
code. Moreover, without any additional effort, the analysis can run on all of the languages
Infer supports (C/C++, Obj-C and Java). However, in practice, it is not so simple. For
example, in the case of our analyser, we also need to create models of the appropriate
library functions — specifically, locking mechanisms.

1https://pajda.fit.vutbr.cz/xmarci10/fbinfer_concurrency
2https://opensource.org/licenses/MIT
3Ocaml is an industrial strength programming language supporting functional, imperative, and object-

oriented styles. More details at http://www.ocaml.org/.

23

https://pajda.fit.vutbr.cz/xmarci10/fbinfer_concurrency
https://opensource.org/licenses/MIT
http://www.ocaml.org/


Abstract Domain. In order to create a new abstract domain in Infer, there is a need
to define the values determined by the required signature (see Listing 9). Specifically, it
is necessary to define the type of an abstract state that the analysis will use (astate).
Next, it is necessary to define the join and widen operators discussed in Chapter 2 and
the comparison operator (<=) used to determine a partial order over the abstract states
(which is needed when checking whether the analysis reached a fixpoint). As the last step,
it is necessary to define the pp function (pretty print), which is used to printout the abstract
state of our analyser.

1 module type S = sig
2 (* the type of an abstract state *)
3 type astate
4 (* the partial order induced by join *)
5 val ( <= ) : lhs:astate -> rhs:astate -> bool
6 val join : astate -> astate -> astate
7 val widen : prev:astate -> next:astate -> num_iters:int -> astate
8 val pp : F.formatter -> astate -> unit
9 end

Listing 9: The required signatures of the operations needed in an abstract domain.
If one is not familiar with the syntax used in this listing, its specific meaning can
be understood as a C language declaration. For example, the widen’s declaration in
the C language would look like: struct astate widen(struct astate prev, struct
astate next, int num_iters);. The definition of all these operations for the L2D2
analyser can be found in the DeadlockDomain.ml file.

Transfer Functions. Transfer Functions are represented as a separate module whose
main part is the function exec_instr. In this function, one has to define an abstract
transformer for every SIL/HIL instruction. The function takes as its input a SIL/HIL
instruction and the current abstract state and applies the effect of the instruction to it.
The output is then a new abstract state with which the analyser continues to work.

In our case, the CALL instruction is the only one that changes the abstract state. After
recognising the call in the analysed code, we then identify whether it is a locking event4.
We find this out by comparing the name of the called function with models5 of lock/unlock
functions and then the corresponding transformer is called for each of these events as
described in Subsection 3.2.2. The Definition of the Transfer Functions module can be
found in Deadlock.ml file.

Interprocedural analysis. By defining the abstract domain and the Transfer Func-
tions module, it is possible to create an analyser that works intraprocedurally only.

So, in order to create an interprocedural analysis, one has to define the type of sum-
maries, add logic for using summaries in transfer functions, and define a mechanism of
conversion between an intraprocedural abstract state and a summary.

4A locking event means locking or unlocking one of the locks in the analysed program.
5Under the models, we can easily imagine the names of the functions used to acquire or release the lock

(e.g.: ”pthread_mutex_lock“ represents the model for the function from the Pthreads library that acquires
the lock).
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The summary type must be registered in the files Payloads.ml and Payloads.mli. All
further work with summaries, such as saving, loading and updating, is provided by Infer.
In the case of our analysis, the type of the abstract state and summary is the same, which
means that it is not necessary to convert an abstract state to a summary. Generally, this
conversion occurs after the completion of a single function analysis, whose last abstract
state is converted and saved as a summary for future use.

The last issue to solve is to extend the transfer functions with the transformer that
instantiates the summary of a callee at the current call site. To do that, we also check for
calls of user defined functions. We recognise these calls in a way that if it is not a lock-
ing event, we will try to read the summary of the callee (Payload.read_summary pdesc
callee_pname). If the summary cannot be read, it means that it is a call of a library func-
tion whose definition we do not have, and it will not affect the abstract state at the current
program point. Otherwise, the read summary is instantiated as described in Section 3.2.2.

Putting it all together. Once one defines all of the above mentioned parts, one can
finally introduce a new analysis into Infer. This is achieved by instantiating the Infer’s
abstract interpreter to which we, as one of the parameters, give the Transfer Functions
module tied with our abstract domain as shown below:

module L2D2 =
LowerHil.MakeAbstractInterpreter (ProcCfg.Normal) (TransferFunctions)

So, now, we have the abstract interpreter module (L2D2) that we can use for the analysis.
It offers many useful functions where the main one is compute_post, which takes a function
as its input and computes its postcondition. We invoke it in a callback (Deadlock.checker;
see Listing 10) which is called by Infer upon every function of the analysed program in
the order given by a callgraph.

let checker {Callbacks.proc_desc; tenv; summary} =
...
match L2D2.compute_post proc_data ~initial: DeadlockDomain.empty with
| Some postcondition ->

(* here one can update the postcondition or report some errors *)
...
(* *

Saving the postcondition as a summary of the analysed function.
If the types of abstract state and summary are different,
there is the place to convert it.

*)
Payload.update_summary postcondition

| None -> ()

Listing 10: The callback, which is used to run an analysis over each function in the anal-
ysed program. The basic structure shown is mandatory for each Infer analyser. A complete
definition of this callback for L2D2 can be found in the Deadlock.ml file.

The last step is to hook the new analyser up to the Infer CLI. This means that we
can run it from CLI along with other analyses in Infer. To do that, we have to register
our Deadlock.checker callback in the RegisterCheckers.ml module. Besides, it requires
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the creation of a record of our analyser in the Config.ml module, where one has to define
a CLI option that will run our analyser, and there is also a message to be displayed in
the help after entering infer --help.

Reporting. For reporting, we use the Reporting.ml module also provided by Infer,
and we distinguish two types of reports in our analyser.

The first of them is a deadlock report that is reported as an error. The algorithm used for
reporting deadlocks has been described in Section 3.3, and an example of the report is shown
in Listing 6. Deadlock reporting is defined in a special callback (Deadlock.reporting) that
will be called by Infer after the analysis of all functions has been completed. It is also
necessary to register this callback in the RegisterCheckers.ml module.

The second kind of reports are warnings when there is a situation of double locking or
double unlocking. These warnings are generated after the analysis of each function, and
the reporting is called in the Deadlock.checker callback mentioned above.

To use the Reporting.ml module, each of the mentioned types of errors must be addi-
tionally defined in the IssueType.ml file.

4.2 Usage
L2D2 itself accepts its input in the form of C/C++ files and prints all detected errors/warn-
ings on the standard output. It is also possible to choose the mode in which the analysis
will run by using the appropriate option (see Listing 11).

(* default mode *)
infer --deadlock-only -- gcc -c source_code.c
(* *

suppressing the warnings and using the heuristics
described in Section 3.4

*)
infer --locking_error --deadlock-only -- gcc -c source_code.c

Listing 11: Possible instances of running L2D2 analyser.

4.3 Experimental Evaluation
In this section, we will experimentally evaluate our analyser using two independent test
sets consisting of concurrent C programs using the POSIX threads execution model. We
will also compare our analyser with the Cprover tool mentioned in Section 2.3.

4.3.1 Basic Examples

The first set consists of 349 student projects with total 82 949 LOC6; all programs in this
test set have been verified to have no deadlocks. This fact was successfully proved by our
analyser when it concluded the analysis with zero false positives rate in both of its modes.
To analyse these programs, L2D2 needed only 3 minutes, which demonstrates its scalability.

6Lines of code were measured using cloc 1.74.
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4.3.2 Cprover Test-Suite

The analyser was also put through a testing with a set of 1 002 concurrent C programs
derived from the Debian GNU/Linux distribution. These programs were originally used
for an experimental evaluation of Daniel Kroening’s static deadlock analyser [16] imple-
mented in the Cprover framework with which we have compared our results. The entire
benchmark, along with the test results, is also available online at https://bit.ly/2WJBQLQ.

The benchmark set consists of 11.4 MLOC. Of all the programs, 994 are assumed to
be deadlock-free, and 8 of them contain a known deadlock. Our experiments were run
on a CORE i7-7700HQ processor at 2.8 GHz running Ubuntu 18.04 with 64-bit binaries.
The Cprover experiments were run on a Xeon X5667 at 3GHz running Fedora 20 with
64-bit binaries. In the case of Cprover, the memory and the CPU time were restricted to
24 GB and 1 800 seconds per benchmark, respectively.

Results. Like Cprover, L2D2 was able to detect all eight (potential) deadlocks in both
of its modes. A comparison of the results obtained for deadlock-free programs can be seen
in Table 4.1. The table gives numbers of programs shown as deadlock-free, numbers of false
alarms, number of time-outs and memory-outs, and, finally, numbers of programs for which
the analysis failed.

Table 4.1: Results for programs without a deadlock (t/o — timed out, m/o — out of mem-
ory). Within the table, we recognise two modes of our analyser. Namely, 𝑚𝑜𝑑𝑒1 which is
the default mode of L2D2, and 𝑚𝑜𝑑𝑒2 which uses the above described optimisations. For
a more detailed description of each mode, see Section 3.4, mode (1) and mode (2).

proved alarms t/o m/o failures
Cprover 292 114 453 135 0
L2D2𝑚𝑜𝑑𝑒1 833 83 0 0 78
L2D2𝑚𝑜𝑑𝑒2 877 39 0 0 78

As one can see, our analyser has achieved better results than Cprover in both its
modes. The first mode of our analyser reported by 31 fewer false positives than the Cprover,
and the second mode even reported by 75 false alarms fewer. A much larger difference can
be seen in the cases where it was proved that there was no deadlock. Here the differences
against Cprover are as follows: 541 examples in favour of the first mode and 585 examples
in favour of the second mode.

The only aspect where L2D2 was worse compared to Cprover is the number of failures
of the analysers. For L2D2, the failures were caused by the syntax of analysed programs
that Infer does not support. On the other hand, Cprover did not manage 588 examples
that were unsuccessful either because of the lack of time or memory needed to verify them.

Finally, the most significant difference was in the time needed for the benchmarks anal-
ysis. While Cprover needed 300 hours for the analysis, L2D2 needed an average of 1 hour
and 45 minutes, which is less than 1 % of the time of Cprover. These results successfully
demonstrate the scalability of our solution.

To sum it up. The L2D2 analyser running in 𝑚𝑜𝑑𝑒2 is the best of this comparison.
However, its disadvantage over 𝑚𝑜𝑑𝑒1 is the fact that it may not reveal a bigger number of
real errors due to the approximations it uses to reduce false positives. On the other hand,
the first mode produces more false errors which represent a higher burden on the program-
mer to control them.
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Chapter 5

Conclusion

In this thesis, we have presented the L2D2 analyser which is based on a new method for
deadlock detection that handles low-level locking and that fits the compositional analysis
style used in the Facebook Infer static analysis framework. We have implemented our
analyser as one of the Infer checkers and applied it to a suite of multi-threaded C pro-
grams (using Pthreads library) comprising 11.4 MLOC. While unsound and incomplete,
our approach shows as effective, finding all of the known deadlocks in the test suite with
reporting false positives in 3.9 % of the tested programs only. We have also successfully
demonstrated the scalability of our approach, needing only 1 hour and 45 minutes to analyse
1 002 concurrent programs.

Future work will focus on further increasing the accuracy of our approach. For that, we
might use more advanced techniques to reduce the number of false alarms. The plan is to,
for example, implement the modified unlockset analysis introduced at [8]. Its main idea is:
at a program point p, remove any lock L from the current lockset if there exists no successor
statement s reachable from p that contains an unlock of L. If L does not reach any unlock
operation after the program point p on any subsequent path, then it is almost certain our
analysis has made a mistake. Another possibility is to perform various kinds of filtering
of the obtained alarms: e.g.: (1) removing cases of deadlocks that appear multiple times,
since it is likely that many errors of the same kind would be spotted by the programmer
or (2) combining our analyser with a dynamic analysis based on the noise injection, where
noise can be inserted in the vicinity of problematic locks and thus maximise the chance of
revealing real errors, etc. Also, we would like to extend the reporting module to the ability
to report deadlocks between more than two locks and also provide the user with more
detailed reasons why deadlocks (may) occur. The last plan is to find a more appropriate
way to determine the lock aliasing.
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Appendix A

Storage Medium

/L2D2/* — source code of Infer (containing L2D2) from date May 15, 2019

/README.txt — useful information about the storage medium content

/text/* — source code of this thesis

/xmarci10.pdf — final version of this thesis
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