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Abstract
The goal of this thesis is to provide a new method of image reconstruction out of data gen-
erated using Photo-Acoustic imaging. Photo-Acoustic imaging is a very popular biomedical
in-vivo imaging modality based on the non-invasive laser-induced generation of ultrasound
waves recorded by the acoustic sensors, during which very large amounts of data are gen-
erated. The amount of data makes the image reconstruction process very time-consuming.
This thesis demonstrates image reconstruction using Back-Projection, an algorithm that is
simple enough to be optimized for execution on modern accelerated processor architectures.
Two versions of this algorithm are designed: from the perspective of the pixel and from
the perspective of the sensor. Both versions are implemented using 3 different execution
acceleration methods: vector-level parallelism, thread-level parallelism, and parallelism on
the Graphical Processing Unit (GPU). All 3 implementations of both algorithm versions are
tested and their results are compared to the much slower but more accurate Time-Reversal
reconstruction method. The results have shown that the GPU parallelism implementation
offers the fastest execution, which is faster more than 200 times on average compared to
the Time-Reversal method. This possibly makes it suitable even for real-time applications.

Abstrakt
Hlavním cílem této práce je navrhnout novu metodu rekonstrukce obrazu z dat fotoaku-
stického snímkování. Fotoakustické snímkování je velmi populární neinvazivní metoda
snímkování založená na detekování ultrazvukových vln vyvolaných laserovým paprskem.
Proces snímkování generuje velké množství dat, a kvůli tomu je proces rekonstrukce obrazu
velmi časově náročný. Táto práce demonstruje proces rekonstrukce obrazu pomocí zpětné
projekce, algoritmu který je dostatečně jednoduchý na přizpůsobení moderním architek-
turám procesorů umožňující různé způsoby optimalizovaného výpočtu. Dvě různé variantu
algoritmu byly navrženy: z pohledu pixelu a z pohledu senzoru, který detekuje ultrazvukové
vlny. Obě varianty byly implementovány třemi různými způsoby: pomocí vektorového par-
alelismu, vláknového paralelismu a paralelismu na grafické karetě (GPU). Všechny 3 im-
plementace obou variant algoritmu byly testovány a výsledky byly srovnány s výsledkem
rekonstrukce algoritmu reverzního času, přesnějšího ale mnohokrát pomalejšího algoritmu.
Výsledky ukázaly, že GPU paralelismus nabízí nejrychlejší výpočet, cca. 200 krát rychlejší
než u algoritmu reverzního času, a proto se dá použit i v aplikacích pracující v reálném
čase.
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Rozšířený abstrakt
Fotoakustické snímkování je velmi populární metoda snímkování používaná v biomedicíně.
Jedná se o neinvazivní metodu, což znamená, že se dá použit přímo na snímkování živé tkání.
Tato metoda je založená na detekování ultrazvukových vln, které vygeneruje snímkovaný
objekt. Ultrazvukové vlny jsou vyvolány laserovým paprskem. Laserový světelný paprsek
musí mít přesně nastavenou vlnovou délku tak, aby byl propuštěn skrz snímkovanou tkáň
ale zároveň absorbován potenciálním objektem uvnitř tkáně, který je cílem detekce. Při
absorbování světelného paprsku nastává tzv. fotoakustický jev, tj. vznik akustických (ul-
trazvukových) vln. Tyto vlny trvají jen krátkou dobu a proto musejí byt detekovaný pomocí
ultrazvukových senzorů s krátkou časovou odezvou. Senzory jsou umístění kolem snímko-
vané tkáně. Čím je větší počet senzorů, tím je větší rozlišení výsledného zrekonstruovaného
obrazu, ale zároveň je také větší velkost nasnímaných dat. Aby se zrekonstruoval obraz
rozumného rozlišení právě je zapotřebí mí velké množství dat, což znamená, že je samotný
proces rekonstrukce pomalejší.

Proces fotoakustického snímkovaní vypadá následovně. Nejdříve se snímkovaná tkáň
položí do misky s tekutinou, která dobře přenáší ultrazvukové vlny. Kolem misky jsou
umístěny senzory. Tkáň je pak osvícená laserovým paprskem s přesně zvolenou vlnovou
délku. V snímkované tkání se potenciálně nachází objekt, který předmětem detekce. Tento
objekt absorbuje světelný paprsek a zareaguje tak, že se fyzický zdeformuje a vygeneruje
ultrazvukové vlny. Tyto vlny jsou nakonec detekovány senzory kolem misky.

Hlavním cílem této práce je navrhnout novu rychlou metodu rekonstrukce obrazu z
dat fotoakustického snímkování. Z existujících algoritmů rekonstrukce byl zvolen algorit-
mus zpětné projekce. Tento algoritmus byl zvolen jelikož se jedná o relativně jednoduchou
metodu rekonstrukce, která se dá přizpůsobit moderním akcelerovaným architekturám pro-
cesorů. Tento algoritmus spočívá v tom, že se, na základě časového zpoždění detekované
vlny, její amplitudě a znalosti rychlostí šíření vlny skrz tkáň, dá vzdálenost bodu vzniku
vlny, umístěného na kružnici kolem senzoru. Byly navrženy 2 varianty algoritmu zpětné
projekce. První varianta provádí zpětnou projekci z pohledu senzorů, tak že se pro každý
senzor zvlášť, na základě jeho nasnímaných dat, vykreslí všechny kružnice kolem jeho.
Druhá varianta provádí zpětnou projekci z pohledu pixelů, tak že se pro každý pixel zvlášť
vypočítá jeho hodnota na základě vzdálenosti od každého senzoru a nasnímaných dat pro
odpovídající vzdálenost.

Tři nejpoužívanější metody akcelerovaného výpočtu v dnešní době jsou vektorový par-
alelismus a vláknový paralelismus na CPU a paralelismus na GPU. Všechny tři metody byly
použity k implementaci navržených variant zpětné projekce. Implementace pro výpočet na
CPU jsou určeny k spuštění na procesorech podporovaných kompilátorem společnosti In-
tel. Implementace pro výpočet na GPU je určená pro grafické karty s technologií CUDA.
Vektorový paralelismus spočívá v tom, že je procesor schopen provádět stejnou operaci
nad několika operandy současně. Jedná se o tzv. datový paralelismus (podle Flynovy
klasifikace patří do kategorie SIMD). Vláknový paralelismus spočívá v tom, že se procesor
skládá z více jader. Procesor je pak schopen na každém jádru provádět jednu spuštěnou
instanci programu. Pro každou instanci programu může jádro provádět vektorový paralelis-
mus. GPU paralelismus je kombinací předchozích dvou popsaných metod. Grafická karta
(GPU) nabízí velký počet samotných jader (mnohem větší než u CPU), ale každé jádro
je schopno provádět pouze jednoduší operace (vzhledem k vláknům CPU) efektivně. Na
rozdíl od vláken CPU, všechna GPU vlákna by měla provádět stejný kód aby šlo dosáhnout
efektivnímu výpočtu.



Výsledky ukázaly, že nejrychlejší výpočet nabízí GPU paralelismus a to pro zpětnou
projekci z pohledu pixelů. Tato implementace je cca 200 krát rychlejší ve srovnání s neop-
timalizovaným kódem algoritmu reverzního času. Algoritmus zpětné projekce je obecně
rychlejší i beze žádné optimalizace za cenu nižší přesnosti (která je ale stale dostačující).

Výsledky této práce považuji za úspěšné, jelikož dosažené zrychlení se zachováním
dostačující přesností umožňují, aby se výsledná implementace používala v aplikacích pracu-
jící v reálném čase.
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Chapter 1

Introduction

Photo-Acoustic imaging (sometimes called Opto-Acoustic imaging or Photo-Acoustic to-
mography) is a new and rapidly expanding biomedical imaging method based on the de-
tection of light-induced ultrasound waves[16]. The main advantage of this method is that
it uses non-invasive laser light pulses. These non-destructive properties allow it to be used
on living biological structures. It offers a very high optical contrast and high ultrasonic
resolution[8]. This means that it can be used for visualizing almost all kinds of biomolecules
and displaying them very clearly in high-resolution images. The price of the high-resolution
images is the amount of the generated data during the scanning process, which can be in
orders of tens or hundreds of GB, and large amounts of data cause the image reconstruction
algorithm to be very slow[2]. Even small images could take many hours to develop. The
main goal of this thesis is to reduce the computational time of the image reconstruction
algorithm and optimizing it for the modern processor acceleration techniques. It would be
of great importance for the biomedical field if the reconstruction could be done in near real-
time. Because of its high resolution and high contrast capabilities, Photo-Acoustic imaging
has a great potential for replacing other invasive imaging methods such as X-ray Com-
puted Tomography, Positron Emission Tomography (PET), or even non-invasive regular
ultrasound imaging. Even small improvements may have a great impact on the biomedical
industry.

The next chapter (2) describes Photo-Acoustic imaging and the fundamental physical
principles behind it in more detail. It also shows several usage examples and comparison
with other imaging methods. Lastly, it explains how the whole scanning and imaging
process is performed.

Chapter 3 is devoted to the Back-Projection image reconstruction algorithm. It de-
scribes how the general algorithm works and how it is modified to work with Photo-Acoustic
imaging. Two different version of the algorithm are developed for this purpose.

Chapter 4 explains three possible acceleration techniques that can be used to optimize
code for modern processors. It also discusses the positives and negatives of each of them,
both in general and in the context of using them for the 2 developed versions of Back-
Projection algorithm.

The actual implementation of the programs is explained in the chapter 5. This chapter
also gives information on the requirements for compiling and running the programs.

The results and performance of the implemented programs and are discussed and com-
pared in the chapter 6.

The final chapter (7) evaluates the results of this thesis and discusses several ideas for
future extension of the programs.
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Chapter 2

Photo-Acoustic Imaging

The following chapter describes the Photo-Acoustic imaging and its usage in biomedicine
in more detail.

In the scientific literature, Photo-Acoustic imaging can be known by several different
names, such as Photo-Acoustic topography, Opto-Acoustic imaging, Ppto-Acoustic topog-
raphy, etc. Throughout the document, the term Photo-Acoustic imaging or its abbreviated
form PAI will be used. Its most general definition is, as its name suggests: visualizing
structures based on observing sound waves (acoustic) induced by the laser light (photo).

This hybrid imaging modality has been broadly studied in biomedicine. In recent years,
it has been evolving rapidly, leading to a variety of exciting discoveries and applications,
with clinical applications on the way.[9] Several attractive characteristics such as the use
of non-ionizing and non-invasive electromagnetic waves, very good resolution and contrast,
portable instrumentation, etc. have made Photo-Acoustic useful for imaging cancer cells,
wound healing, gene expression and many other both human and animal kinds of tissue[15].

2.1 Photo-Acoustic Effect
More than a century ago, Alexander G. Bell first observed the Photo-Acoustic effect. He
found that absorption of electromagnetic waveforms, such as radio-frequency (rf) or optical
waves, can generate transient acoustic signals in media. Such absorption leads to local
heating and thermoelastic expansion, which can produce megahertz ultrasonic waves in
materials.[15] The principle is depicted in Figure 2.1. However, research on the PA effect
made little progress for about 80 years after its discovery, primarily due to the lack of
appropriate light sources. It was not until the 1970s that Photo-Acoustics regained interest
and since then Photo-Acoustics has since been widely implemented in physics, chemistry,
biology, engineering, and medicine. Progress was slow until the last decade of the 20th
century when many pioneering works demonstrated the PA effect in optically scattering
media and biological tissue.[9]

2.2 Working Principle of the Imaging Process
As mentioned previously, recorded ultrasound signals originate from optical absorption.
The process of Photo-Acoustic signal generation can be described in three steps: (1) an
object absorbs light, (2) the absorbed optical energy is converted into heat and generates
a temperature rise, and (3) thermoelastic expansion takes place, resulting in the emission
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Figure 2.1: Principle of Photo-Acoustic effect (obtained from [12])

of acoustic waves. To generate acoustic waves, the thermal expansion needs to be time-
variant. This requirement can be achieved by using a pulsed laser. Pulsed laser excitations
are the most widely used because they provide high signal to noise ratio than other meth-
ods. For an effective PAI signal generation, the laser pulse duration is normally within
several nanoseconds, which is less than both the thermal and stress confinement times.
The generated ultrasound pressure signal propagates through the sample and is detected
by an ultrasonic transducer or transducer array. The goal of Photo-Acoustic image re-
construction is to recover the distribution of ultrasound pressure from the time-resolved
received signals.[14] An example of PAI setup is shown in Figure 2.2.

Since different biological tissues have different absorption coefficient, by measuring the
acoustic signals with ultrasonic transducers, one can rebuild the distribution of optical
energy deposition and ultimately obtain images of the biological tissues. The combination
of high ultrasonic resolution with good image contrast due to optical absorption is quite
advantageous for imaging purposes. When compared with optical imaging, in which the
scattering in tissues limits the spatial resolution with increasing depth, PAI has higher
spatial resolution and deeper imaging depth since the scattering of the ultrasonic signal in
tissue is much weaker. When compared with ultrasound imaging, in which the contrast is
limited due to the mechanical properties of biological tissues, PAI has better tissue contrast
which is related to the optical properties of different tissues. Also, the absence of ionizing
radiation makes PAI safer than other imaging techniques such as computed tomography
and radionuclide-based imaging techniques.[15]

2.3 Photo-Acoustic Imaging Scenarios
An ideal scenario for Photo-Acoustic imaging would be that light absorption of normal
tissue should be low for deeper signal penetration, while the absorption for the object of
interest should be high for optimal image contrast.[15] The color of the scanned tissue can
be estimated based on the absorption wavelength. If the same object is scanned multiple
times each time with pulses of different wavelength fine-tuned to target different inner
structures the whole 3D image of the object’s inside structure could be obtained.

There are scenarios where the absorption of the object of interest is not high enough.
In these cases, a special material called contrast agent could be used. The purpose of such

4



Figure 2.2: An example of PAI setup (obtained from [6])

material is to be bounded to the object of interest. The application of contrast agents
can increase the sensitivity and specificity during PAI. Both organic dyes and inorganic
nanoparticles are good candidates as Photo-Acoustic contrast agents.[4] Several contrast
agents are shown in Figure 2.3.
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Figure 2.3: A wide variety of contrast agents (obtained from [15])
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Chapter 3

Back-Projection Image
Reconstruction

After the Photo-Acoustic imaging process, many simulations need to performed on the
recorded ultrasound data to recreate the initial pressure distribution and thus visualize the
scanned object. During the simulation, some sort of reconstruction method must be used.
In this thesis, Back-Projection was chosen as the reconstruction method.

Back-Projection (not to be confused with Back-Propagation) is one of the oldest and
most-known reconstruction method. It originates from X-ray Computed Tomography. Even
though there are more precise algorithms such as Time-Reversal algorithm, Back-Projection
is relatively easy to implement and produces satisfactory results. It consumes the input in
one go and directly produces the output, making it suitable for the real-time applications[2].

This chapter explains the original Back-Projection algorithm and how it is adapted for
Photo-Acoustic imaging.

3.1 Original Back-projection Algorithm
The well known usage of the Back-Projection algorithm was in X-ray Computed Topog-
raphy. During the process of X-ray scanning, the only thing that is being recorded is the
amount of absorbed radiation. Thus the recorded value is the highest in places where the
scanned object cast a shadow on a detector array. Figure 3.1 shows how the absorbance
values are recorded for 3 different angles of scanning.

At any point in the recorded projection, the absorbance value is the sum of all absorption
along the way. The simplest assumption about this pattern of absorption is that it is
uniform along the trajectory. That is is equivalent to assuming that the object is completely
homogeneous and that the attenuation arises equally from all points along the way. The
summed value is then back-projected into a pixel grid. Using the known values of the
projection angle and the distance along the projection, the measured attenuation is divided
up equally among the pixels along the measurement beam path, as it is demonstrated in
Figure 3.2.[11]

This procedure is then repeated for each obtained projection. This method is sometimes
called the summation method, as it sums up all projections at every pixel position. As shown
in Figure 3.3, the dense point in the object will now be represented as the intersection of
stripes obtained from all projections. After a few projections, the reconstructed layout
of the object will have the appearance of a star with the highest value in the center of
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Figure 3.1: Example of X-ray scanning for 3 different angles (obtained from [11])

Figure 3.2: Example of a single back-projection. Thick point recorded along a single pro-
jection shows up as a strip through the pixel grid. (obtained from [11])
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Figure 3.3: Sum of several back-projections. The most dense part is the intersection of all
projections. (obtained from [11])

all intersections. After many projections of the back-projected object will have a circular
symmetrical shape with noticeable artifacts around it.[11]

Ideally, each point in the actual image would be represented only as a single point in
the reconstructed image, but using the back-projection, the point in the output image is
blurred by the star pattern. This the biggest drawback of the back-projection and it is
the main reason why the alternative filtered back-projection is used more often in X-ray
imaging.[11]

3.2 Back-Projection Algorithm Adaptation for Photo-Acoustic
Imaging

There are a few key differences between Photo-Acoustic and X-ray scanning. The first is
that, as it was described in the previous chapter (2), during the Photo-Acoustic scanning
the recorded value is time-varying ultrasound pressure wave. Here, 2 information are known
(value of a pressure wave and the time of its recording), whereas in X-ray scanning only
single information (the amount of absorbed radiation) is known. The other difference is
that the ultrasound wave is spreading in a form of an expanding circle (or a sphere in case
of 3D) from its source, whereas X-ray travels in a straight path. The final key difference
is that in Photo-Acoustic imaging the source of a signal is the unknown observed object,
and in X-ray scanning, there is a separate source and the unknown observed object is the
signal absorber. These differences are the reason why the back-projection method needs to
be adapted in order to work with Photo-Acoustic imaging.

Back-projection in Photo-Acoustic imaging can be simplified as the triangulation prob-
lem. The time and pressure values are known. If the recorded time is multiplied with the
speed of sound in an observed tissue, the result is the distance of a wave source from the sen-
sor. Since the recorded value is a wave, it could have come from every direction around the
sensor, and thus the source is somewhere on a circle with the radius equal to the previously
calculated distance. If there enough sensors are used, the intersection of concentric circles
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Figure 3.4: Example of signal recording during Photo-Acoustic imaging (obtained from
[11])

rasterized by them give an accurate representation of the wave sources. In other words, the
recorded wave pressure is Back-Projected to the pixel grid and it is equally spread along
all the pixels on a calculated circle around the sensor. The Back-Projection is performed
for every sensor on the same grid. The resulting image is a sum of all projected values.
The grid is then usually normalized, ie. all the values on it are divided by the number
of sensors.[2] Figure 3.4 shows how pressure values are recorded and Figure 3.5 how the
back-projection works.

Equation 3.1 for Photo-Acoustic imaging back-projection is: [2]

𝑝𝑃𝐵(𝑥) =
1

𝑁

𝑁∑︁
𝑖=1

𝑝(𝜏𝑖(𝑥))

2𝜋|𝑥0𝑗 − 𝑥|2
(3.1)

where 𝑥 is the current pixel position, N is the number of sensors, 𝑝(𝜏𝑖(𝑥)) is the recorded
pressure value at time delay 𝜏𝑖(𝑥), and finally |𝑥0𝑗 − 𝑥|2 is the calculated distance from the
sensor (radius of a circle).

3.3 Proposed Versions of Back-Projection Algorithms
Back-Projection can be performed in two different ways, from the perspective of each sensor
and from the perspective of each pixel.

Sensor’s Perspective Back-Projection

This version of the algorithm reconstructs the image by rasterizing concentric circles of all
possible radius values around the center of the sensors for each sensor. The radius of the
circle of each recorded value is determined by the time delay of the recording of that specific
value and the speed of sound propagation through the scanned medium. The benefit of

10



Figure 3.5: Example of Photo-Acoustic imaging back-projection. (obtained from [11])

this version is that there aren’t any computationally heavy mathematical operations, the
only essential operation is the multiplication of time and speed to calculate the distance
(radius). The negative property of this version is the need to perform circle rasterization,
which (if implement correctly) has more of a non-deterministic behavior. Accurate circle
rasterization is implemented with the loop of unknown number of iterations (while loop)
with several selection constructs (if else branching) inside the loop body.

Pixel’s Perspective Back-Projection

The second version of the Back-Projection algorithm calculates the value for each pixel
separately. It is somewhat the opposite in principle form the first one. As opposed to
calculating the values of all pixels around each sensor, it calculates the value of 1 specific
pixel by accumulating corresponding recorded values for that pixel from all sensors. The
corresponding value is determined by the distance from the pixel to each of the sensors and
speed of sound propagation converted to time delay - the opposite compared to the previous
version. The positive property of this version is that its behavior is very deterministic, i.e.
each pixel performs the exact same operations. The drawback of this version is that the
calculation of the distance between the pixel and each sensor - Cartesian distance equation:√︁

|𝑥𝑝𝑖𝑥𝑒𝑙 − 𝑥𝑠𝑒𝑛𝑠𝑜𝑟|2 + |𝑦𝑝𝑖𝑥𝑒𝑙 − 𝑦𝑠𝑒𝑛𝑠𝑜𝑟|2
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Chapter 4

Code Acceleration Methods

The 3 most commonly used techniques for accelerated execution are vector-level parallelism
and thread-level on the CPU and the GPU parallelism. All three methods were used in
this thesis for implementing the Back-Projection algorithm.

Vector-level parallelism is based on the fact that the CPU is capable of executing 1
operation on several operands at the same time. It also sometimes referred as data par-
allelism. According to the Flyn’s classifications it belongs to Single Instruction Multiple
Data (SIMD) category. Thread-level parallelism is based on the fact that the processor is
consisted of several cores, each of which is capable of executing its own instance of running
program. The running programs may be executing the same code and the individual cores
can perform vector-level parallelism on their own. GPU parallelism is the combination of
previous two techniques. GPU constructs of many cores, but each core can only effectively
perform relatively simple operation, as opposed to the CPU cores, which are smaller in
count but are computationally more powerful. Another difference from the CPU cores is
that, if the GPU is supposed to run code effectively in parallel, each of the core must ex-
ecute the same code. More detailed explanations of these 3 techniques is explained in the
following sections.

4.1 CPU Vectorization
Vectorization is the process of converting an algorithm from operating on a single value at
a time to operating on a set of values at one time. Modern CPUs provide direct support for
vector operations where a single instruction is applied to multiple data (SIMD).[5] SIMD
stands for Single Instruction Multiple Data; the same instruction is used on multiple data
elements simultaneously. [10].

For example some processors provide registers that are 512 bits wide. One of these
registers may be filled with 8 double precision floating point values, or 16 single precision
floating point values, or 16 integers. When the register is fully populated a single instruction
is applied that operates on 8 to 16 values, like shown in the Figure 4.1.

In order for code to be successfully vectorized, the arrays upon which the operations
are performed should be aligned in memory on the value of the width of vector registers.
The data can then easily be copied from an array to the vector register. If an array is
not properly aligned, time consuming shift operations would need to be performed and will
thus reduce the effect of the vectorization.
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Figure 4.1: Example of SIMD operations on 512 registers (obtained from [10])

4.2 CPU Multi-threaded Parallelism
A thread is a run time entity that is able to independently execute a stream of instructions.
The operating system creates a process to execute a program: it will allocate some resources
to that process, including pages of memory and registers for holding values of objects. If
multiple threads collaborate to execute a program, they will share the resources,including
the address space, of the corresponding process. The individual threads need just a few
resources of their own: a program counter and an area in memory to save variables that
are specific to it (including registers and a stack). Multiple threads may be executed on
a single processor or core via context switches; they maybe interleaved via simultaneous
multi-threading. Threads running simultaneously on multiple processors or cores may work
concurrently to execute a parallel program. Multi-threaded programs can be written in
various ways, some of which permit complex interactions between threads.[13]

The main advantage of multi-threading parallelism is that multiple threads are executed
separately, thus if one threads in a blocking state and/or waiting for data IO, the other
threads can effectively use the hardware resources. One problem which may occur in a
multi-threading parallelism is that the threads can interfere with each other while sharing
hardware resources.

4.3 GPU CUDA Parallelism
CUDA is a hardware platform for parallel computing created and supported by NVIDIA
Corporation to promote access to high-performance parallel computing. The hardware as-
pect of CUDA involves graphics cards equipped with one or more CUDA-enabled graphics
processing units (GPUs).[3] The most essential property of a GPU that enables paralleliza-
tion is that the device contains not one or several computing units (like a modern multicore
CPU) but hundreds or thousands of computing units. CUDA employs the single instruction
multiple thread (SIMT) model of paralleliza-tion. CUDA GPUs contain numerous funda-
mental computing units called cores, and each core includes an arithmetic logic unit (ALU)
and a floating-point unit (FPU). Cores are collected into groups called streaming multi-
processors. Executing the same instructions is not just an exercise in redundancy, because
each thread performs distinct computations using unique index values that are provided
by CUDA [3]. The SIMT approach is scalable because computational throughput can be
increased by providing more SMs to share the computing load. Figure 4.2 illustrates the
contrast between the architecture of a CPU and a GPU. The CPU has a few computing
cores occupying a small portion of the chip and a large area dedicated to control and cache
to help those few cores run fast. It is a general rule (and a recurring CUDA theme) that
the time required to access data increases with the distance between the computing core
and the memory location where the data is stored.[3]
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Figure 4.2: Illustration of architecture difference between CPU and GPU. (obtained from
[1])
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Chapter 5

Implementation

Instead of performing Photo-Acoustic scanning in real life, it was decided for the purposes
of this thesis that the simulation could be performed instead. A special script was created,
which performs a simulation of Photo-Acoustic scanning within a specified way. This is done
by using the k-Wave toolbox. K-Wave is an open-source MATLAB toolbox designed for
the time-domain simulation of propagating acoustic waves[7]. Other then simulating PAI
scanning, the script also performs a very precise but slow method of image reconstruction
based on time-reversal. This reconstructed image will serve as a comparison for the Back-
Projection reconstructed image.

There are 3 implementations of the Back-Projection program. Each implementations
offers both versions of Back-Projection algorithm.

Vector-level parallelism code is implemented with the help of Intel C/C++ compiler and
requires Intel processor in order to run. Multi-threaded parallelism code is implemented as
well with the help of Intel C/C++ compiler and requires Intel processor in order to run.
It also requires OpenMP library. GPU parallelism is implemented with the help of CUDA
Compiler.

Software Requirements

∙ Matlab

∙ Intel C/C++ Compiler

∙ CUDA C/C++ Compiler

Hardware Requirements

∙ Intel processor

∙ CUDA GPU
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Chapter 6

Results

This chapter briefly describes the results of the implemented programs. The output recon-
structed images of all 3 implementations are the same, the only difference is the computa-
tional time.

Test Case 1

Execution Times:

∙ Reference Time-Reversal: 330.46s

∙ Vectorized Back-Projection: 65.32s

∙ OpenMP Multi-threaded Back-Projection: 12.75s

∙ CUDA Back-Projection: 2.46s
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Figure 6.1: Original sensors (circle) and signal sources visualization, 1024x1024 px,
30x30mm

Figure 6.2: Refrence Time-Reversal reconstructed image
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Figure 6.3: Back-Projection reconstructed image

Figure 6.4: Absolute difference
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Figure 6.5: Relative difference (in percentage)
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Chapter 7

Conclusion

Photo-Acoustic imaging is a very popular imaging modality in the biomedical industry, with
the potential of being the dominant one as it has many advantages over its competition
like X-ray Computed Tomography (X-ray CT), Magnetic Resonance Imaging (MRI), etc.
However, current image reconstruction methods for this imaging modality are very slow
(which is one of the setbacks for its progress). The reason for that is the amount of data
(generated during imaging) that needs to be processed. The main goal of this thesis was
to develop an accelerated implementation of the image reconstruction process. The Back-
Projection algorithm was chosen as it is one of the most well-known ones, and it (in its
general form) is not very complicated for adaptation for accelerated execution offered by
modern processors.

The Back-Projection algorithm is firstly analyzed and adapted to Photo-Acoustic imag-
ing. Two versions of the algorithm specific to the Photo-Acoustic imaging were developed.
The first one performs Back-Projection from the perspective of the sensor by rasterizing
concentric circles around it according to measured values corresponding to recorded time.
The optimization of this algorithm was achieved by making each parallel execution unit per-
forming the task for one sensor. The midpoint algorithm was chosen for circle rasterization.
The second version of the algorithm performs the Back-Projection from the perspective of
the pixel. It was optimized by making each execution unit performing a task for one pixel.
The value of the pixel is computed by first calculating the distance to each sensor, and then
taking its data recorded at a specific time corresponding to the calculated distance.

Three different accelerated execution techniques were used to implement both versions
of the algorithm: vector-level parallelism, thread-level parallelism, and parallelism on the
GPU. The version of Back-Projection from the perspective of the sensor performed worse
for all 3 techniques, as it has less deterministic behavior because of the circle rasterization
algorithm. The GPU acceleration technique gave the best results. It was more than 200
times faster than the referenced unoptimized Time-Reversal algorithm. All other imple-
mentations were much faster than the referenced algorithm.

There is room for future improvements. Only 2D image reconstruction is supported by
the current implementation. The programs could be extended to support 3D reconstruction
as well. The version of the Back-Projection algorithm from the perspective of the pixel is
very easy to adapt in this regard. The only necessary modification is to calculate the
3D Euclidean distance for each voxel (3D pixel) from each sensor. The version from the
perspective of the sensor is however harder to adapt. The main reason for this is that instead
of rasterizing all possible circles, the program would need to rasterize all possible spheres
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with the sensor in its center. Rasterization of a sphere could be achieved by rasterizing
many circles of various radii separated by 1 pixel in the 3rd dimension.

Another way to extend the current implementation is to modify it in a way, so that
program can read live data in real-time. The current implementation of the Back-Projection
reconstruction is fast enough, so the computing time will only be bound by the speed of the
incoming data. The reconstruction implementation would need to be slightly adjusted, as
the current implementation expects that all the data is present (from the whole duration
of the Photo-Acoustic imaging) at the time of the beginning of image reconstruction.

Program can also be improved by performing the filtered version of Back-Projection
algorithm, which first filters recorded data in the frequency domain and thus removes
unwanted noise.

Overall, I consider the goal of the thesis to be accomplished, as all the implementations
were very fast while still producing images of acceptable quality.
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