
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

CLASSIFICATIONOF POTENTIALLYMALICIOUS FILECLUSTERS VIA MACHINE LEARNINGKLASIFIKÁCIAPOTENCIÁLNENEBEZPEČNÝCH ZHLUKOV SÚBOROVPOMOCOU STROJOVÉHO
UČENIA

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR PATRIK HOLOP
AUTOR PRÁCE
SUPERVISOR Ing. VLADIMÍR BARTÍK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2018/2019
Bachelor's Thesis Specification

Student: Holop Patrik
Programme: Information Technology
Title: Classification of Potentially Malicious File Clusters via Machine Learning
Category: Data Mining
Assignment:

1. Study the topic of machine learning. Focus on models applicable for classification.
2. Get acquainted with Clusty, which is a service used in Avast for clustering of files based on their shared

properties.
3. Design a service to automatically classify clusters of files created by Clusty. A classification should contain

the severity of a potential threat, and in case of malicious software its type and family. Supported file types
should be chosen after a discussion with the supervisor and consultant.

4. Implement the service designed in the previous step.
5. Thoroughly verify the implemented solution by creating a suite of unit and integration tests.
6. Evaluate your work and discuss future development possibilities.

Recommended literature:
S. Guido and A. Müller: Introduction to Machine Learning with Python, O'Reilly Media (2016), ISBN
978-1449369415
A. Géron: Hands-On Machine Learning with Scikit-Learn and TensorFlow, O'Reilly Media (2017), ISBN
978-1491962299
Internal Avast documentation.

Requirements for the first semester:
The first three items from the assignment and part of the fourth item.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Bartík Vladimír, Ing., Ph.D.
Consultant: Zemek Petr, Ing., Avast
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: October 26, 2018

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/21927/2018/xholop01 Strana 1 z 1

Abstract
This thesis proposes an alternative to currently used malware classification approaches
on the file-level often based on the detection of specific byte sequences. The experimentation
proved, that a cluster-level classification based on the shared properties of files in the clus-
ter is possible. That was achieved by a careful selection of the properties of the three file
types – PE, APK and .NET. By comparing various machine learning methods the highest
scoring classifiers were selected and a web service providing API for classification was imple-
mented, which was used for the integration with the internal clustering system of the Avast
company. This thesis also discusses drawbacks of the proposed approach and suggests steps
for improving the classification.

Abstrakt
Táto práca navrhuje alternatívu súčasných metód klasifikácie malvéru na úrovni súborov,
ktoré sú často založené na detekcii špecifických postupností bytov v daných súboroch. Ex-
perimentáciou bolo potvrdené, že je možné klasifikovať potenciálnu hrozbu aj na úrovni
zoskupení súborov založenej na spoločných vlastnostiach súborov v danom zoskupení. To
bolo dosiahnuté dôkladných výberom vlastností troch typov súborov – PE, APK a .NET.
Porovnaním niekoľkých metód strojového učenia boli vybraté klasifikátory s najvyššou
presnosťou a implementovaná webová služba poskytujúca API pre klasifikáciu, ktoré bolo
použité pre integráciu s interným systémom spoločnosti Avast zodpovedného za tvorbu
súborových zoskupení. Táto práca taktiež diskutuje možné nedostatky a navrhuje kroky
pre zlepšenie dosiahnutej presnosti klasifikácie.

Keywords
machine learning, clustering, classification, antivirus, analysis, malware

Kľúčové slová
strojové učenie, zhlukovanie, klasifikácia, antivírus, analýza, malvér

Reference
HOLOP, Patrik. Classification of Potentially Malicious File Clusters via Machine Learning.
Brno, 2019. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Vladimír Bartík, Ph.D.

Rozšírený abstrakt
Cieľom tejto práce je preskúmať možnosti klasifikácie potenciálnej hrozby na úrovni zosku-
pení súborov využitím metód strojového učenia. Tým sa odlišuje od aktuálne používaných
klasifikačných prístupov, ktoré sa zameriavajú na jednotlivé súbory. V prípade, že je klasi-
fikácia možná, taktiež navrhnúť a naimplementovať službu, ktorá bude schopná tieto klasi-
fikácie vykonávať.

V úvode práce sa objasňuje potreba klasifikácie hrozieb a práca analytikov zamest-
naných v antivírových spoločnostiach, ktorí sú za tvorbu klasifikácií zodpovední. Analytici
manuálne analyzujú súbory a hľadajú sekcie, v ktorých sa vykonáva podozrivá či nelegálna
aktivita. Taktiež sa zaoberá potrebou automatizovanej klasifikácie spôsobenej vysokými
počtami analyzovaných súborov. Jedna z možností automatizácie klasifikačnej služby je
využitie strojového učenia, ktorým sa táto práca zaoberá.

Nasledujúca kapitola prezentuje všeobecnú klasifikáciu hrozieb a súborov. Detailné za-
klasifikovanie súboru z hľadiska potenciálnej hrozby uľahčuje antivírovej spoločnosti nie len
sledovať aktuálne kampane a hrozby, ktoré sa vo svete vyskytujú, ale taktiež jednoduchšie
tieto hrozby detekovať. Rovnako umožňujú užívateľom poskytnúť bližšie informácie o po-
tenciálnom riziku. Najabstraktnejší typ klasifikácie je určiť závažnosť potenciálnej hrozby.
Rozlišujú sa štyri rôzne úrovne. Čistým súborom sa označuje taký, ktorý nejaví žiadne
známky hrozby ani podozrivého správania. Pokiaľ je daný súbor využívaný na konkrétne
účely, ako napríklad ťažba kryptomien, označuje sa ako nástroj. Potenciálne nežiadané
súbory vykonávajú podozrivé aktivity, ktoré ale neznamenajú priamu hrozbu, prípadne
inak obťažujú užívateľa, napríklad pomocou zobrazovania reklám. Ak súbor vykonáva
nelegálnu aktivitu alebo môže iným spôsobom ohroziť užívateľa či jeho dáta, je klasifikovaný
ako malvér1.

Klasifikácia závažnosti hrozby je prvý krok k určeniu ďalšieho postupu, ale kvôli vysokej
variabilite správania malvéru je ho potrebné bližšie zaklasifikovať. Skupina nebezpečných
súborov s podobným alebo rovnakým cieľom sa dá popísať určením typu malvéru, ktorý
sa môže bližšie rozdeľovať na rodiny. Zatiaľ, čo typ malvéru určuje abstraktný typ hrozby,
ako napríklad vydieranie užívateľa zablokovaním určitých funkcionalít jeho zariadenia či sys-
tému, rodina môže určovať konkrétnu kampaň, spôsob vydierania a podobne. Táto kapitola
bližšie popisuje najznámejšie typy malvéru a uvádza aj príklady niekoľkých rodín.

Následne sa diskutujú aktuálne používané klasifikačné systémy. Medzi dôležité služby
patrí Clusty, interná služba spoločnosti Avast zodpovedná za zhlukovanie súborov na zá-
klade ich spoločných vlasností. Služba rozlišuje mnohé typy súborov, ako napríklad PE
alebo PDF a pre každý typ súboru vytvára zhluky na základe jedinečných vlastností. Jed-
notlivé vlastnosti reprezentujú dáta získané zo statickej a dynamickej analýzi súborov. Sta-
tická analýza sa zameriava na analýzu formátu súborov a jeho obsahu uloženého v pamäti
na rozdiel od dynamickej analýzi, ktorá pokrýva spustenie súboru a sledovanie jeho správa-
nia. Zhluk súborov je reprezentovaný jedine takými vlastnosťami, ktoré sú pomedzi všetky
súbory v zhluku rovnaké. Clusty je taktiež zodpovedný za klasifikáciu vytvorených zhlukov.
Na tento účel využíva rôzne klasifikačné metódy, ako napríklad manuálne hlasovanie an-
alytikov, YARA pravidlá alebo cudzie antivírové detekcie. Na základe istoty jednotlivých
klasifikácií vyberie tú najvhodnejšiu. YARA pravidlá umožňujú popísať statické i dyna-
mické vlastnosti súborov a následne skontrolovať analyzovaný súbor, či nespĺňa popísané
podmienky. V prípade, že áno, je daný súbor klasifikovaný označením, ktoré sa nachádza
v metadátach pravidla.

1pojem malvér (z ang. malware – malicious software)

Nasledujúca časť práce popisuje konkrétne vlastnosti špecifické pre vybrané tri typy
súborov, ktorými sa táto práca zaoberá. Prvý z nich je PE (Program executable) špecifický
pre operačný systém Microsoft Windows. U tohto typu súboru sa rozoznáva 13 vlastností,
ktoré môžu byť pri klasifikácii použité. Niektoré z nich sa získali počas statickej analýzi, ako
napríklad podpis alebo importované funkcie, iné počas dynamickej, ako signatúry či zoznam
volaných API funkcií.

Súbory typu APK (Android package) sú typické pre mobilné zariadenia s operačných
systémom Android a slúžia na distribúciu a inštaláciu obsiahnutých aplikácií. Keďže
majú štruktúru archívu, je možné okrem signatúr, API tried či povolení, ktoré aplikácia
vyžaduje, získať i súborové cesty v rámci archívu.

Posledný typ súborov .NET je taktiež navrhnutý firmou Microsoft. Napriek tomu, že ofi-
ciálne dodržiava štruktúru definovanú formátom PE, v rámci zhlukovania a klasifikácie
sa pre tento typ uchovávajú špecifické vlastnosti, ktoré sa u PE súborov nerozoznávajú.
Súbory definované týmto formátom umožňujú uchovať veľké množstvo pomocných infor-
mácií a uľahčujú tak prípadnú analýzu. Príklad vlastností tohto súboru sú odkazované
typy vyskytujúce sa v aplikácii, prípadne deklarácie metód.

V ďalšej časti práca objasňuje problematiku strojového učenia a popisuje jeho všeobecné
princípy. Strojové učenie je vedecký odbor informatiky, ktorý popisuje algoritmy a štatis-
tické modely, ktoré sú schopné sa zlepšovať pre výkon úlohy, na ktorú sú zamerané. Ob-
jekty reálneho sveta, ako sú zhluky súborov, môžu byť popísané sadou diskrétnych alebo
spojitých vlastností, ktoré nazývame príznaky. Formát a tvar príznakov je pre každé po-
zorovanie rovnaký. Ku každému popisu objektu pomocou príznakov, ktorý nazývame vektor
príznakov, môžeme poznať i triedu, do ktorej daný objekt patrí. Táto práca sa zameriava
na techniky učenia s učiteľom, ktoré vychádzajú z myšlienky, že pokiaľ model s aktuál-
nou konfiguráciou vykoná predikciu, ktorá sa dá skontrolovať porovnaním s vopred známou
triedou objektu, je schopný na základe chyby, ktorú spravil, upraviť svoje parametre tak, aby
sa približoval k lepším výsledkom v budúcnosti. Ďalej sa práca zaoberá spôsobmi, akými
je možné transformovať príznaky reprezentované reťazcami znakov na numerické vektory,
a metódami, ktoré sú schopné zobraziť existujúce vektory príznakov do priestoru s nižšou di-
menzionalitou, čo môže mať pozitívny vplyv na čas, ktorý trénovanie klasifikátoru vyžaduje,
i samotné výsledky.

Medzi konkrétne metódy strojového učenia, ktorými sa táto práca zaoberala, patrí lo-
gistická regresia, rozhodovací strom a náhodný les, neurónová sieť, bayesovský klasifikátor
a metóda K-najbližších susedov. Práca objasňuje princíp, na ktorom je každá metóda
založená. Následne popisuje, akým spôsobom je možné validovať a porovnávať natréno-
vané klasifikátory. Jednou z použitých metrík je F1 skóre. Dôležitou metódou je taktiež
krížová validácia, ktorá umožňuje rozdeliť dáta na menšie úseky, kde sa iteratívne jeden
úsek použije na vyhodnotenie klasifikátorov a zvyšné úseky na trénovanie. Výsledky sú
potom vypočítané ako priemer hodnôt získaných z rôznych testovacích úsekov.

Pretože súčasťou úlohy nie je iba nájsť vhodné klasifikátory, ale taktiež vybrať vlastnosti
vhodné na klasifikáciu a zostaviť dátové sady, bola na základe popísaných metód navrhnutá
sada experimentov, ktorých účelom má byť nájdenie najlepšej klasifikačnej metódy, dá-
tovej sady a metód na spracovanie dát či extrakciu príznakov. Jednalo sa o deväť klasi-
fikačných úloh, pretože jednotlivé klasifikátory sú od seba nezávislé a určenie závažnosti
hrozby, typu a rodiny malvéru prebieha nezávisle od seba. Pre každý typ súborov bolo
navrhnutých niekoľko dátových sád, ktoré používajú rozdielne metódy spracovania dát a ex-
trakcie príznakov a na nich porovnané výsledky všetkých popísaných klasifikačných metód.
Výsledky dosiahnuté modelmi s najlepšou konfiguráciou sú zdokumentované ku každému

experimentu. Pri výbere klasifikátorov sa taktiež zohľadňoval čas, ktorý modely potre-
bovali k trénovaniu, a veľkosť pamäte potrebnej pre zostavenie dátovej sady a uchovanie
modelu. Pretože sa experimentovalo s viacerými metódami, ako sú popísané v teoretickej
časti práce, stručný popis experimentov s danými metódami je zhrnutý v samostatnej sekcii.
Ako najlepšie metódy sa ukázali náhodné lesy a neurónové siete, pričom dôležitou súčasťou
extrakcie dát pre klasifikáciu typu a rodiny malvéru bola lineárna diskriminačná analýza.
Výsledky boli taktiež porovnané s frameworkom umožňujúcim automatizovaný návrh vhod-
ného klasifikačného modelu, kde dosiahli podobné výsledky s jednoduchšou komplexitou
modelov.

Služba, ktorá bude dané klasifikátory využívať na klasifikáciu, bola navrhnutá ako we-
bová aplikácia implementovaná pomocou frameworku Flask v jazyku Python. Vytvorená
služba sa nazýva Hamlet2. Pretože často dochádza k reklasifikáciám existujúcich zhlukov
súborov, je potrebné vytvorené klasifikátory priebežne trénovať. Je možné, že sa začnú
rozoznávať nové rodiny a typy malvéru a niektoré zaniknú, preto je nutné klasifikátory
trénovať znova. Aby nevzniklo vysoké zaťaženie existujúcich systémov, Clusty raz denne
vygeneruje obraz svojej databázy, ktorý obsahuje aktualizované informácie o zhlukoch
a ich klasifikácii. Tieto dáta sa následne podľa konfigurácie načítajú z pamäte a trans-
formujú na dané dátové sady použité pre trénovanie implementovaných klasifikátorov. Pre
metódy strojového učenia bola použitá knižnica scikit-learn. Služba poskytuje webové
rozhranie, kde je možné zobrazovať výsledky klasifikácií, informácie o trénovaní, zobraziť
grafy o štatistikách klasifikácií a zadať vlastnosti zhluku na zaklasifikovanie. Pre ad-
ministrátorské učely sa všetky informácie zaznamenávajú do niekoľkých logov, ku ktorým
prístup je chránený údajmi špecifikovanými správcom v konfiguračnom súbore.

Aby sa odhalili prípadné chyby v implementácii či budúcom vývoji, bola vytvorená sada
jednotkových a integračných testov overujúcich funkcionalitu a reakciu aplikácie na prí-
padné chyby. Jednotkové testy sa zameriavajú na funkcionalitu jednotlivých tried a funkcií,
kde integračné testy už pracujú aj s údajmi z konfiguračného súboru, reálnymi databázami
a testujú spoluprácu modulov i výslednej služby.

V závere sa diskutujú nedostatky vytvorenej služby a navrhnutého klasifikačného prí-
stupu a poskytuje sa návrh na ich prípadné zlepšenie. Experimentovanie bolo obmedzované
výpočetným strojom, kde by vyššia pamäť dostupná pre výpočty mala pomôcť dosiahnuť
vyššie výsledky a rovnako tak využitie vlastností jednotlivých súborov než celých zhlukov.
Mnohé rodiny boli zastúpené nízkym počtom zhlukov, čiže by klasifikácia malých zoskupení,
ktoré sú momentálne službou zodpovednou za tvorbu zhlukov ignorované, mohla vytvoriť
vyšší počet trénovacích dát. Dosiahnuté výsledky súčasnej implementácie boli uspokojivé
a služba je momentálne nasadená ako jeden z čiastočných klasifikátorov v službe Clusty.

2názov Hamlet (Hierarchical automated machine learning tagger)

Classification of Potentially Malicious File Clus-
ters via Machine Learning

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Vladimír Bartík, PhD. The supplementary information was provided
by Ing. Petr Zemek, PhD. All the relevant information sources, which were used during
preparation of this thesis, are properly cited and included in the list of references.

. .
Patrik Holop
May 12, 2019

Acknowledgements
I would like to express thanks to the supervisor Ing. Vladimír Bartík, PhD. for academic su-
pervision of the technical report and to Ing. Petr Zemek, PhD. for consulting the clustering
system and for the help with the integration of the proposed service.

Contents

1 Introduction 3

2 General malware classification 5
2.1 Severity . 5
2.2 Malware types . 5
2.3 Malware families . 7

3 Overview of current classification systems 8
3.1 Clusty . 8

3.1.1 Static analysis . 9
3.1.2 Dynamic analysis . 9
3.1.3 Clustering . 9
3.1.4 Classification . 10

3.2 YARA rules . 11

4 File formats 13
4.1 PE . 13
4.2 APK . 16
4.3 .NET . 17

5 Machine learning 18
5.1 Approaches . 18
5.2 Feature engineering . 19

5.2.1 One hot enconding . 19
5.2.2 Feature hashing . 19
5.2.3 Feature selection . 20
5.2.4 Feature extraction . 21

5.3 Machine learning methods . 23
5.3.1 Logistic regression . 23
5.3.2 Decision tree . 25
5.3.3 Neural network . 26
5.3.4 Naive Bayes . 27
5.3.5 K-nearest neighbours . 28

5.4 Model validation . 29
5.4.1 Confusion matrix . 29
5.4.2 Accuracy . 30
5.4.3 F1 score, precision and recall . 31
5.4.4 ROC and AUC curves . 31
5.4.5 Learning curve . 31
5.4.6 Cross-validation . 32

1

6 Experimentation 33
6.1 Experimentation design . 33
6.2 PE . 34

6.2.1 Datasets . 34
6.2.2 Severity . 35
6.2.3 Malware type . 36
6.2.4 Malware family . 37

6.3 APK . 38
6.3.1 Datasets . 38
6.3.2 Severity . 39
6.3.3 Malware type . 41
6.3.4 Malware family . 42
6.3.5 Data visualization . 42

6.4 .NET . 44
6.4.1 Datasets . 44
6.4.2 Severity . 44
6.4.3 Malware type . 45
6.4.4 Malware family . 46

6.5 Other approaches . 47
6.5.1 Voting classifier . 47
6.5.2 Stacking classifier . 47
6.5.3 Image classification with CNN . 48
6.5.4 SVM . 48
6.5.5 FeatureHasher . 48

6.6 Comparison with meta-learning framework 48
6.7 Summary of experimentation results . 49

7 Hamlet - web classification service 50
7.1 Training and input data . 50
7.2 Classification . 51
7.3 Logging . 53

8 Implementation 54
8.1 Used technologies . 54
8.2 API . 55
8.3 Classification . 55
8.4 Training . 58
8.5 Malware tree . 58
8.6 Charts . 59
8.7 Logging . 59

9 Testing 61
9.1 Unit tests . 61
9.2 Integration tests . 61

10 Conclusion 63

Bibliography 64

A Contents of the DVD 67

2

Chapter 1

Introduction

In the last century began an era of the fast development of computer science and informa-
tion technology. This phenomenon still continues nowadays. Common users are inspired
by lower prices, easy accessibility of the electronic devices and intuitive user interfaces
providing connection to users without previously necessary specific technical knowledge.
Companies are on the other hand inspired by higher earnings, easier management, predic-
tion tools and wild spreading their products to a high number of customers.

All of these reasons have led to everyday use and easy access to computer and mobile
software, web technologies and network communication, creating space attracting unwanted
attention of criminals and so called black hat hackers that are trying to exploit both user
and company devices or services for their own malicious intentions such as profit, company
espionage, cyberbullying.

Stopping the potential threat was and still is one of the main challenges and daily task
of system administrators at companies. Increasing network traffic, employees number and
technologies used by the companies made it nearly impossible to prevent all kinds of threats.
Also, common users using their computers at home remained unprotected against malicious
activities. This encouraged the emergence of antiviruses.

The antivirus is a set of tools providing security actions to protect the system on which
it is installed. One of the most important tools is a scanner, which scans the memory or
files stored in the system, warning about any potential malicious code or file, functioning
as a filesystem filter. To achieve this, antivirus contains a database of rules matching the
previously analysed malicious patterns, for which the scanner searches [24].

At the beginning, there was no need for automation of the file analysis and the job was
handled by a few malware analysts, experts at reverse engineering. They study machine
code, looking for malicious patterns. By the rising number of files that had to be analysed
from hundreds to millions, this task became harder and more challenging every day [9].
Hackers discovered many new vulnerabilities and there was no time to analyse the files
one by one manually, but rather grouping them to clusters. Malware analysts then might
analyse the files in the cluster and find patterns in the context of the analysed cluster. The
partial automation of malware analysis has also positive impact on the detection coverage.

Behaviour of the malicious files mutated over the years, but the core pattern similarities
among the file clusters remained the same. To describe the malicious behaviour more
precisely, it was categorized into multiple general types. Later on, each type of behaviour
could have been divided into specific families closely specializing the strain of the malicious
type.

3

The terms pattern finding and classification are one of the main focus areas of the
field of the artificial intelligence. Classification, as the systematic placement of observed
objects into categories, might be simulated by computers based on the observation of human
decision-making process. Experts in statistics and machine learning, the subfield of artificial
intelligence, designed multiple algorithms, which are able to automate the decision-making
process based on the data with or without the supervision of human experts. This scientific
field is hugely popular in the recent years, mainly due to financial sector, making predictions
of the future stock prices and computer vision for high level understanding of digital images
and videos [20].

Those algorithms are also applicable in the field of computer security. Some of them
try to convert the files into images, making the image classifier to decide, whether the file
is malicious, or to detect the infected area in the binary files [22]. Other classifiers try to
make the decision based on data gained from the static and dynamic analysis of the files,
either categorical, or continuous. In both cases the classification system has have access to
the files themselves and are often unable to provide closer information about the threat.

This thesis proposes an alternative approach to currently used file-level classification
systems. It tries to simulate the work of analysts and classify the clusters of files as accu-
rately as possible based on shared properties of files in the cluster and data gained from
both types of analysis. It would be implemented as a web service providing an interface for
making classification requests. The classification results will be mainly used as suggestions
to malware analysts, whether the files in the cluster are malicious and if so also specify
the type and family of the malicious behaviour. The implemented service would not need
access to the files themselves, just to the data extracted and gathered by the clustering
system. It would also provide closer information about the threat than just its possible
existence and would be able to calculate the confidence of its own decision. The confidence
might be used as a metric for comparison with classifications from other systems and help
to choose the best and final classification.

The text is structured as follows. In Chapter 2 is described the overview of classifica-
tion hierarchy created by antivirus companies, followed by the description of the currently
used classification approaches by these companies in Chapter 3. That chapter also provides
closer description of the process of gathering the cluster properties from various types of
analysis used for obtaining them. The following Chapter 4 describes the file formats that
would be classified and their specific properties also representing the clusters. The next
Chapter 5 sums up the base of machine learning methods, pre-processing of the properties
and approaches to validate the created models. Design of the experiments and results of
experimentation are described in the next Chapter 6. General description and design of
the service is presented in the next chapter followed by description of used technologies and
implementation details in Chapter 8. In Chapter 9 are described tests implemented for au-
tomated verification of the service functionality. Chapter 10 closes the text by summarizing
the goals and achieved results.

4

Chapter 2

General malware classification

This chapter describes the threat categories that the antivirus companies have to deal with
the most often. Each classification system or analyst tries to classify the observed files as
precisely as possible and estimate, whether it represents any risk and also closer describe
its category. This information might be used for detecting new types of threats, for other
automated detection systems or to inform the end users, what threat are they facing. The
more information can user obtain from the represented classification, the better he would
be informed, what steps should be taken in order to remove the threat.

2.1 Severity
Severity is the top-level classification of the potential threat and it represents the overall
threat risk of the file. Files and programs are created and modified on the daily basis. It
does not take any more necessary deep knowledge or higher education to develop simple
programs that access the filesystem or operating system interface on the high level basis.
The goal behind those actions might be to invoke any kind of malicious behaviour, like to
harm the potential user, steal his personal data or even hide a certain behaviour that the
user was not acknowledged about, or would not like to be executed. If the motivation behind
those actions is malicious, those programs are referred to as malware (malicious software),
which represents the first type of severity [12]. Those goals might also be achieved by using
tools like Metasploit to automatically generate malicious files [23]. One can even inject his
own malicious part of the code into existing file making the legitimate file malicious.

When the file does not have any malicious intentions, it is labelled as clean. Those might
be popular web browsers or products of the well-known and trusted companies. Clean files
are the most prevalent severity type. There exists also a gray area, when the file does not
have any strictly harmful behaviour, but there is a high chance that the user does not know
about its presence in the system or can harass the user otherwise. File like this is referred to
as PUP (potentially unwanted program) [37]. This might include some types of advertising
software, information gathering programs, etc. The last category are automated generators
or tools often used for specific tasks, like mining tools of cryptocurrencies.

2.2 Malware types
Many potential weaknesses were discovered due to the enlarging community taking interest
in the computer science throughout the years. Malicious files were often created for a certain

5

specific task that was easily discovered during the analysis. Some of them were trying to
infect other files, others to lock certain actions in the system or to restrict user’s access to
the system until he has paid a ransom. Malware type represents a category of malicious
files with common malicious behaviour. With the deployment of the antiviruses detecting
and stopping the potential threats, malware creators have started using various ways to
hide the malicious part of the software, making them seem like legitimate software for both
the detecting systems and users. Even then it is often possible to detect the malicious part
and classify its type. The malicious behaviour can be divided into several high level areas.
The most common malware types are described below [9, 30, 40].

1. Trojan: It is inspired by the Greek tale, where the citizens of Troy were tricked by
the statue of wooden horse and after moving the statue into the city of Troy, enemy
soldiers hidden in the statue started to rob them at night. This kind of malware tricks
the user by pretending to be the legitimate software, but after installation or execution
the software instantiates hidden connection with the attacker’s system allowing him
to perform malicious tasks on the target system. Trojan often represents a general
type of malicious behaviour in case that the file was not classified otherwise.

2. Worm: The goal of the worm is to spread over the network. Worms might contain
a malicious payload, leaving the infected hosts harmed or just increase the traffic of
the targeted network.

3. Fileinfector : Fileinfectors try to infect other files in the targeted system. Those
might be files necessary for system operation or just user’s content. They either try
to append the malicious part of the code to the targeted file or overwrite existing
sections of the file partially or completely changing its behaviour.

4. Adware: This name stands for Advertising software and the purpose of adware is to
show unwanted adverts to the user. This might be realized in many ways like showing
the advertising bars in the web browser or popup windows at the targeted system.

5. Ransomware: Software often threatens the user by locking the system or by encrypting
and deleting his files, unless he pays a financial ransom. This malware type has become
very widespread a few years ago. Example of detection rate of this type is shown in
Figure 2.1.

6. Dropper : Droppers also contain malicious payload and their purpose is not to perform
the malicious activity themselves, but to deploy other malicious files to the system.
They might contain encoded executable files or code in them as a payload or to
download them directly from the network.

7. Coinminer : Mining tools were introduced with the emergence of cryptocurrencies,
using the user’s computer to calculate transaction operations in exchange for a cut
in the cryptocurrency. Many websites try to execute the coin mining tools on the
victim’s computer or the executable files secretly running the mining software in the
background without the permission of the user.

Those are the most common types, but there exist many more others. There is no
standard describing the malware classification hierarchy and this task belongs to antivirus
companies that are responsible for naming the kinds of malware. Antivirus companies use

6

their own dialects with regard to classification, which leads to the synonyms describing the
same malware type with a different name.

Because it is often easy to detect whether it is the purpose of a specific section of
software to show an advertisement or to inject other files, it is not easy to classify a file
if it contains malicious sections that focus on multiple areas. It could append the payload
into other files as well as show ads. In this case, the analyst decides whether the software
is classified as a fileinfector or adware. The final malware type is often chosen based on
the most significant impact on the file’s behaviour. This phenomenon has caused that the
classifications of automated systems may vary depending on the final type chosen by the
service.

2.3 Malware families
To classify malware types it is useful to know, with what kind of the threat is the system
or analyst dealing with, but those areas are too general to provide any closer information.
This results in the classification of malware types into smaller specific areas referred to as
malware families [9].

Malware family is the description of a certain strain of the malware type. It may refer
to the specific software, time period or just specify closer area of the software’s behaviour.
Malware types are established by the community of experts and potential changes are minor.
Malware families, on the other hand, are completely left for the classification of a specific
antivirus company. They name the families for their own internal comfort of detecting them
and are not as widely shared. This results in multiple antivirus companies naming the same
family with completely different names or using the same name for slightly different software
behaviour. Antivirus companies might try to find those synonyms, but different names are
often treated as different classifications. Just for the PE file type there exist more than
4000 unique malware families [40]. Examples of malware families are described below.

1. Dealply: Adware that installs the advertisement popups to a targeted browser.

2. WannaCry: Type of ransomware introduced in May 2017 that infected more than
200 000 computers [4].

3. Zeus: Type of Trojan that tries to steal user credentials and confidential information
from the victim.

Figure 2.1: Detection rate of ransomware and its families (internal Avast system)

7

Chapter 3

Overview of current classification
systems

Because this project tries to find an alternative to current classification methods, it is
important to understand how they work. This chapter contains detailed information about
the clustering service Clusty, which provides the necessary data for classification and clusters
the files based on their shared properties, the process of gathering and extracting the file
properties, analysis types and current classification methods.

3.1 Clusty
Clusty is the internal clustering system used at Avast to cluster files based on their shared
properties. It is a real-time service, which collects approximately 500 000 file samples
from a variety of sources every day, grouping them into clusters and makes classifications
over the created clusters [40]. The file samples are being constantly collected using external
services from users, other antivirus products, etc. When the sample is collected, it is sent to
multiple independent services responsible for the sample analysis. List of systems, to which
the file would be sent, depends on the file type and other high level attributes gathered
during collection. Figure 3.1 shows a web interface of Clusty and the classification of the
PE cluster based on the external detections.

Figure 3.1: Web interface of Clusty showing cluster information

8

3.1.1 Static analysis

Static analysis involves information gathering from a binary file without its execution.
Analyst or automated system parses the binary file by using the decompiler (software
used for reverse engineering to assemble higher level information from the binary files) or
disassembler that translates the binary code into assembly language, the symbolic machine
code [9]. For non-binary files exist specific parsers. During the disassembling file format
dependent data are shown. The data include file format headers, information about used
API and libraries or even identifiers named by the author. Then the analyst tries to find
malicious patterns or shared patterns among the files.

When a new sample is analysed, firstly its format is recognized. Clusty supports multiple
file formats like PE, APK, ELF and is able to retrieve those information automatically with
the specific parsers for each file format. For this purpose the tool named Fileinfo is used,
which is able to analyse most of the formats and it is part of the RetDec1 (Retargatable
Decompiler). Once the static analysis is completed and all obtainable information are
gathered from the Fileinfo, the clustering process is initiated [40].

3.1.2 Dynamic analysis

Dynamic analysis involves running the tested sample in the sandbox environment [9]. Sand-
box environment is an isolated virtual machine, which based on how the program behaves
in the emulated environment generates an analysis report containing sandbox signatures.
Signatures generated during dynamic analysis are short labels generally describing the trig-
gered behaviour. They are mostly high level tags describing a wide area of functionality,
for example, connected_to_internet. Others are more specific, like trojan_behaviour. Al-
ternative to sandbox environments are the emulators. While the software in the sandbox is
running natively, emulator simulates most of the machine instructions and runs the software
step by step [26]. Avast uses its own implementation of the popular sandbox environment
Cuckoo and emulator GVMA (Grisoft Virtual Machine AMD64). GVMA has its own filesys-
tem, registers, emulated processor and virtual memory. During dynamic analysis can also
be triggered certain YARA rules described in Section 3.2.

When the file is sent to Clusty, it is also independently sent to other services, few
of which are the sandboxes and emulators providing API for dynamic analysis. The dy-
namic analysis is in comparison with static analysis significantly slower, because it involves
running the file in real time and collecting information during the program’s execution.
Because the program’s execution might take a long time, each analysis is limited to a cer-
tain duration, after which the program is terminated and analysis completed. Because
Clusty often completes the static analysis sooner and the clustering process already began,
those services automatically send event information through an agreed channel to Clusty
about the completion of analysis and Clusty can gather the necessary information from the
dynamic analysis later [40]. When obtaining the event message, it is considered also as a
change of the cluster information, thus the reclustering process based on the new properties
is triggered.

3.1.3 Clustering

Once all the important data about the file from the static analysis are gathered, Clusty tries
to find the most proper cluster for the sample based on file similarity. One sample can be

1https://retdec.com/

9

clustered only into one cluster if the clustering conditions are met. The sample properties
that are considered during the clustering are sorted by their settled priority and Clusty tries
to find a proper cluster for the file. Once the sample was clustered, shared properties of
the cluster that obtained the new sample have to be recalculated. For example, the sample
might not use some dynamic libraries and even though all other samples in the cluster do,
these libraries have to be removed from the shared properties. The sample might remain
unclustered if Clusty failed to cluster it by all of its properties. During the clustering process
multiple sample properties have a different priority. New obtained information about any
file of the cluster results in reclustering of all the samples in the cluster [40].

File priorities on which the clustering is dependent are carefully chosen. Retrieved
absolute file path or signing authorities has higher priority than the section names or hashes
of byte sequences. To overview these priorities, example of the top four properties used
during the clustering of PE file is listed below:

1. Corruption

2. Cuckoo YARA rule

3. Uncommon mutexes (100% match)

4. Uncommon named sections (100% match)

From the list is obvious that the highest considered priority has the information about
the integrity of files. The corrupted files are then clustered into same clusters and do not
introduce noise into clusters with compact files. As is shown in the case of uncommon
mutexes, the files have to have some properties exactly the same to be clustered in the
same cluster. File formats and their properties are described in Chapter 4.

3.1.4 Classification

Once the cluster is created or changed, it has to be classified. Because the files are being
constantly changed and updated, for performance purposes the cluster triggers the re-
classification process if any of the first 1 000 samples in the cluster has changed. Clusty
allows malware analysts to submit a manual classification, which has the highest priority
over all the classification approaches, because the experienced analyst manually analysed
the created cluster. YARA rules have lower priority than manual votes and classification
results of other automated systems have the lowest importance [40].

Clusty uses the API of Virus Total2, service assembling the most common antivirus
services into one and allowing a user to get the classification summary of the submitted files
or web sites. Virus Total currently supports dozens of different antivirus products. These
classifications are then internally parsed by Clusty, because each antivirus company uses
different convention of naming malware types and families. If any other previous method
failed to classify the cluster, those parsed information are used as the final classification.
To get the final decision from all supported antiviruses by the service, Clusty calculates
simple ratio between those minor classifications.

To estimate how much Clusty believes its own classification results, each cluster con-
tains additional percentage information about the confidence of the final decision. Manual
classifications have the highest confidence of 100%. YARA rules have different confidence

2https://www.virustotal.com/#/home/upload

10

ranges from 95-98%. Confidence of other antivirus detections is calculated as a ratio of
the most prevalent classification result compared to all other classifications. This number
is in the range from 1 to 95%. The highest possible confidence is being purposely limited,
because it was obtained from the external sources. Example of those detections can be
found in Figure 3.2.

Figure 3.2: Subset of AV detections supported by VirusTotal

3.2 YARA rules
YARA (Yet Another Recursive Acronym) is the language used by many antivirus compa-
nies to describe the patterns for malware detection [6]. It provides expressions to precisely
describe the properties of the analysed files. These properties might be either binary pat-
terns, strings, regular expressions or basic logical conditions, which are also supported by
YARA. The situation when a sample matches the properties described by the YARA rule is
called the YARA hit. Rules created by the analysts can be used both during the static and
dynamic analysis and the rules would hit only the described properties or behaviour like
malware type. To store the classification information of the rule, YARA allows to specify
the metadata. In this section can the analyst specify any information like the name of the
author, version of the rule or the classification itself.

rule AdwareDetection
{

meta:
severity = "malware"
type = "adware"

strings:
$string_1 = { A5 FF B1 4C }
$string_2 = { FD 12 AF 10 11 }

condition:
$string_1 or $string_2

}

Figure 3.3: Example YARA rule

11

YARA rules are also used for clustering. When the sample triggers a YARA rule hit,
it is clustered with other samples that triggered the same YARA rule [40]. When the
cluster is described by the YARA rule, as classification are simply used metadata containing
information about severity, type and family as shown in Figure 3.3. Rules have to be
constantly updated to minimize the number of unwanted hits on the clean samples and
keep track with the newest malware traits.

12

Chapter 4

File formats

Each file has a defined structure and layout containing necessary information for operating
system or any software that needs to parse it, extract the data or execute it. Based on
the file format can user easily identify the purpose of this file, like image or document.
Some files target specific platform or operating system, for example, PE or APK files are
intended for specific platform (Microsoft Windows and Android respectively), but document
file formats like PDF (Portable document file) are multi-platform, which means that they
are supported by multiple platforms with different architectures. Executable files often
depend on the specific platform [9].

YARA rules and malware analysts are looking for a specific pattern when analysing
samples. Each file type has it own unique descriptive properties. For the most malware
classification systems it is necessary to recognize the file format at first to run the correct
parsing subroutines and classifiers [40]. Also, the techniques used by malware creators for
exploitation are often completely different across the file formats. The file types that are
used in this project are described below. Even though the proposed classification solution
does not need access to the files themselves, it uses specific file format properties extracted
by the clustering system Clusty shared by all files in the cluster. Within each file type
description in this chapter is the list of properties recognized by Clusty.

4.1 PE
PE (Program Executable) is the file format created by Microsoft Corporation and describes
the structure of executable files of the operating system Microsoft Windows [5]. This
includes simple executable files or dynamic-link libraries (DLLs) that contain functions and
interfaces usable in the other executables. Files in the format .NET are also a subset of the
PE file format description. However, Clusty tries to extract different properties, which will
be described in Section 4.3 as a separate file format. Each PE file consists of DOS header,
PE header, Optional header and Section table followed by the specific sections [13].

DOS Header is used mainly for compatibility with the DOS operating system. PE
Header contains information about the main structure of the file, for instance information
about platform machine or number of sections defined in the following parts. Optional
header contains much useful information about the integrity of the file, like a checksum or
size of the stack and heap necessary for allocating memory during the execution.

13

Data are separated into many specific sections. Executable code is often stored in the
section .text, but constants and literal strings represent read-only data stored in section
.rdata. Information about section locations and their sizes are stored in the Section table.

Common way of obfuscating the files is the usage of packers. Packers are programs
that based on multiple compression algorithms change the structure of PE file and their
sections. Parser, which does not support packed files or the specific algorithm used for
packing, thinks that the file is corrupted, making it much harder for analysis [9].

Most of the files processed by Clusty are of this file format, supporting the fact that
Windows is the most targeted platform by the malware creators, mainly caused by the
market share [2]. The attributes that might be used for classification obtained during the
static and dynamic analysis are described below [9, 36, 40].

1. Imports: Section containing Import address table stores information about functions
that the application imports from other modules and serves as a lookup table when
the external function is called. Because the compiler does not know the addresses of
those functions, this table is filled by the loader, program responsible for running and
loading the binary before execution, after it has imported external libraries. Import
name table contains a list of the names of these functions that might be used to
classify files, because imported functions might specify the programs behaviour and
its purpose. For instance, ransomware might use file system interface functions in
comparison with worms that focus on networking. Example of retrieved imports
using IDA Free1 dissasembler is shown in Figure 4.1.

Figure 4.1: Imports retrieved during PE file analysis

2. API calls: API calls are related to the same functions as imports, but these are the
functions that were really called during the program’s execution. Malware authors try
to obfuscate the software, so that the detection systems fail to extract the properties
from the binary and thus do not recognize its malicious behaviour or indented purpose.
For this reason, functions can be dynamically loaded and being listed in the PE import
tables, but they are never called during the programs execution. These functions are
not detected by the sandbox during dynamic analysis, but other functions might be
called very frequently. Clusty contains only the names of the called functions, not the
frequency of their calls.

1https://www.hex-rays.com/products/ida/

14

3. Cuckoo and GVMA signatures: Cuckoo is the name of one of the sandboxes used at
Avast, GVMA is emulator of PE files described in Section 3.1.2. Generated signatures
describe program behaviour during the execution and cover mostly high level areas,
such as networking.

4. Entry point address: Entry point is the relative address within the binary of the first
instruction, which will be executed, when the operating system hands control to the
application. For dynamic load libraries is specifying of the entry point optional. Very
simple technique of executing the injected malicious part of the code is a change of
this address in the PE header, so it points directly to malware code. This is easily
detected, so the better obscuring techniques use more complicated code redirection.

5. Entry point bytes: The first 100 bytes located at the entry point. Those bytes repre-
sent the sequence of machine instructions executed after the application gains control
from the operating system. This might be used for detecting the malware containing
the malicious code directly at the entry point or generated program patterns.

6. Resources: These values represent additional resource data used by the application,
like string values, icons, cursors or images stored in the section .rsrc. Each resource
is represented by the previously described resource type and language. Language
might be useful for localization, because certain languages are more prevalent in the
malware than in the clean files.

7. Sections: Each binary file is divided into sections and each section contains different
type of data. For example, .text section often contains the executable code of the
application. Those sections can be modified and packers often encode or modify them
to hide malicious behaviour. This process often changes the number and names of
the sections and might be detected. Number of sections is information stored directly
in the PE header. Clusty can retrieve the list of section names.

8. Rich header: It is a small section of binary data stored after DOS Header created by
Microsoft linker. There is no official documentation describing the structure. Rich
header might be manipulated in order to cause false detections, as was proven by the
malware named OlympicDestroyer in 2018 [3].

9. Signer: When the file is signed by the signer authority, it provides a certain informa-
tion of trust. For a certain amount of money, companies can buy a digital certificate
trusted by the Windows OS. Using the certificate and file hashes can be calculated the
final signature called Authenticode. However, during the validation of Authenticode
are used hashes of only three parts of the PE file, allowing the malware creators to
store the malicious code in the other non-validated sections.

10. Exports: As opposite to PE imported functions, when the file also provides a objects
to be used in other files, for instance dynamic load libraries, it has to contain infor-
mation about the functions they export. Exports are extracted from the Export name
table and represented by the names of exported objects.

11. Languages: Computer programming languages that were used to create the software.
This is important, because recent trends show that malware creators tend to focus
on a specific set of languages like Delphi. Also, languages like C and C++ require
more complex memory management by the programmer and can be more vulnerable
to exploitation than others.

15

12. PDB path: PDB file (Program Data Base) is produced by the linker and contains ad-
ditional information about the executable required to run the program in debug mode.
This is very useful for analysis of the crashes caused by invalid memory management
or unexpected behaviour of the process. This property is in the Clusty represented
by absolute filesystem path to this file.

13. Size: File size of the executable in bytes.

4.2 APK
APK (Android Package) is the file format used by Android operating system mainly on
mobile devices. It is typically recognized by the .apk or .xapk extensions and contains all
necessary data for distribution of the mobile applications. APK files are used for application
installation and also serve as an archive of the application files [19].

APK package has a strict structure. Each file has to contain META-INF directory con-
taining the certificate and the manifest file. Manifest is a file describing the main archive
attributes. There can be modified the entry point of the application, paths to classes and
other important properties. Lib folder contains compiled code sorted into directories based
on the target platform. Directory res stands for resources that are used by the application.
The additional Android manifest file named AndroidManifest.xml describes the top-level
package information in XML format. This manifest file contains information about appli-
cation permissions, used sensors or supported screen sizes [1, 19].

The Android programming language used to create Android applications is mainly based
on the Java. During the compilation is the code transformed into byte code typical for
Java and then stored in the DEX file format (Dalvik Executable). File Classes.dex in
the package contains compiled classes that are being interpreted during runtime. Dalvik
execution environment was later replaced by the ART (Android Runtime). ART supports
native code execution meaning that the DEX files are compiled into ELF file format and
the whole application is managed as a native executable. This process requires additional
time for compilation but it is compensated with faster execution. Properties of this file
type are described below [1, 40].

1. API classes: Names of the of classes that are implemented in the analysed application.
The classes are organized in the package hierarchical structure. Classes having similar
functionality or design sections can be grouped into packages. Top-level package is
usually Landroid that contains all other packages and classes. In the class paths
are the packages separated by the dot characters, for example, Landroid.app.Activity.
They are stored in DEX file format as the part of package content.

2. Sandbox signatures: Labels describing behaviour generated by a sandbox during the
dynamic analysis. They are similar to PE signatures, but focused on the Android
device services like sending SMS.

3. Archive members: Relative paths of files stored in the package.

4. Android permissions: Each Android application needs user’s permission for execution
of certain actions. This feature was introduced to restrict access to files, sensors or the
camera by suspicious applications. When a simple music player application requests
permission for camera, there is a chance that it is a malware taking photos without the

16

user’s knowledge. Those permissions are typically granted during package installation
but can be later modified.

4.3 .NET
Files of this file format represent a subset of PE files and they share similar traits. Frame-
work .NET was developed by Microsoft Corporation and serves as a platform for execution
of these files [29]. Even though they can be considered as PE files having the same structure,
they are recognized by the analysis systems as a different format with unique properties due
to their separate traits and behaviour. The most popular programming language for devel-
opment of the .NET applications is C#. Clusty recognizes the following properties [29, 40].

1. Classes: They represent the classes declared in the application and their format is
similar to API classes extracted from the APK package. They are structured in the
tree hierarchy, but they might also have the form of a hexadecimal code. Interface of
this framework for C++ language was used for developing the application in uncom-
mon cases. In that case C++ elements like StandardIterator could be found within
the classes.

2. Referenced types: References are in the context of .NET platform variables storing
addresses of the actual objects stored in the memory rather than raw data. Those are
represented not only by classes or interfaces, but can also be declared with keywords
delegate, dynamic, object, string.

3. Cuckoo signatures: Labels describing software’s behaviour in the Cuckoo sandbox
during the execution.

4. Methods: Function declarations reconstructed from the binary. The declaration of the
method contains information about the return variable type or class, library hierar-
chy and parameters. Those information are usually discarded during the compilation.
However, C# permits to include the declarative information into the binary. Infor-
mation about object’s visibility, base classes, interfaces, its members and methods,
security permission and many others can be retrieved during the static analysis. Ex-
amples of the reconstructed method declarations are shown in Figure 4.2.

void JARVIS.Thread.EntryPoint.EndInvoke(System.IAsyncResult result)
void JARVIS.Thread.abort()
bool JARVIS.Thread.isAlive()
int JARVIS.Thread.length()

Figure 4.2: .NET reconstructed method declarations

5. Properties: Information about the type and name of the properties contained in the
.NET assemble, for example, string MusicExpress.MusicReader.Path.

17

Chapter 5

Machine learning

Machine learning is the scientific branch of computer science studying algorithms and sta-
tistical models improving their performance on a specific task. This procedure is called
learning, because the models consequently change their own decision-making attributes
based on new observations they encountered and based on the error they’ve made either
update or confirm their decisions [14].

The most common types of problems are classification and regression. While regression
models attempt to predict future values in time series (used in financial sector for stock price
prediction), this project focuses on classification. Classification is defined as the systematic
placement of observed objects into categories (classes). The observed sample can be any
object that is being classified, like the cluster of files. The classes represent groups, into
which would be the objects classified. If the task is to estimate the severity of the clusters,
then the labels of the classes would be malware, clean, tool and pup.

Each sample is identified by features, carefully selected traits describing the object. Data
represented by the features are often divided into training and testing set [28]. Training
set is a subset of original data space used by models to iteratively increase the model’s
approximation of the mathematical relations over data resulting into better classification
accuracy and other statistical attributes. Testing dataset is used to verify model’s ability
to classify unseen data.

5.1 Approaches
There exists multiple approaches of improving the model’s performance based on the infor-
mation that are already known during the model’s training [14].

1. Supervised learning: The basic principle of this approach is that the correct labels of
the dataset samples are already known. When the model iterates through the data
samples, it can modify its inner attributes based on the error between the current
model’s classification of the sample and the expected result.

2. Unsupervised learning: This method is often used for clustering. Nothing other than
features is known during the learning and the model tries to find relations between
samples based only on features, for example, clusters by their similarity.

3. Semi-supervised learning: This is a special case of learning that combines the unsu-
pervised and supervised approach. It is used when the labels are known, but only
for a small subset of the original dataset. Based on these classified samples are by

18

the unsupervised methods automatically predicted labels for the rest of the samples.
Then the model is trained under supervision.

4. Reinforcement learning: This type of learning is an approach using the challenges for
the trained model (agent) and correctly fulfilling the challenges leads to a reward for
the agent, failing the task to punishment. The goal of the agent is to gain the highest
possible score. For example, it is used for the training of automated bots in computer
games.

5.2 Feature engineering
Choosing the right descriptive features representing the objects is one of the crucial tasks
for high classification accuracy. Most models work mainly with numerical features. Fea-
tures can be discrete or continuous. Discrete features are often referred to as categorical.
Categorical features represent the mapping of vocabulary (a set of possible attribute values)
into the space of numbers [28]. For example, when a person is a man or a woman, this
might be described by only one feature named gender acquiring two possible values, 1 for
the woman and 0 for the man (or vice versa). Continuous features might represent values
like height or weight of the person and assume a value within a specified interval. The
number of features 𝑛 and their order has to be unified for all samples. The sample X is
then described by the feature vector of length 𝑛, in which the 𝑥𝑖 represents the numerical
value of the feature 𝑖 (equation 5.1) [14]. A set of independent observations represented
by the features is called the feature matrix. The number of observations 𝑗 is equal to the
number of rows in the feature matrix and the number of features 𝑛 is equal to length of
𝑣-th observation 𝑋𝑣 [33]. For supervised learning approach, when the class 𝐶 is known for
each observation in the feature matrix, a set of ordered pairs, where 𝑋𝑣 is an observation
and 𝐶𝑣 is its true class, a dasaset has form described by equation 5.2.

𝑋 = (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) (5.1)
𝐷 = {(𝑋1, 𝐶1), (𝑋2, 𝐶2), . . . , (𝑋𝑗 , 𝐶𝑗)} (5.2)

5.2.1 One hot enconding

Attributes of the real objects might be described by strings. Names, types and many other
attributes are sequences of characters. Because many machine learning models expect
numerical features, those values have to be transformed. Let the attribute have n possible
values represented by strings. A set of all possible values that the feature might gain is called
the vocabulary of the feature. Then we can transform this attribute into n features acquiring
only boolean values 1 and 0. Each feature represents one possible value of the attribute’s
vocabulary. The only feature with the value 1 is the one representing the attribute’s value.
All other features have value 0 [28]. The example of this encoding is shown in Table 5.1.

5.2.2 Feature hashing

When the size of the vocabulary of the features is too big, for example, when just by
transformation of one attribute using the One Hot Encoding would be created several
thousands of binary features, it is necessary to lower the dimension of this space, because
any computation over those data would require extremely high computational resources.

19

Vocabulary of the attribute 𝑓𝑎𝑐𝑢𝑙𝑡𝑦 = {𝐹𝐼𝑇, 𝐹𝐸𝐾𝑇,𝐹𝐴𝑆𝑇}

Features FIT FEKT FAST
faculty = FIT 1 0 0

faculty = FEKT 0 1 0
faculty = FAST 0 0 1

Table 5.1: Example of One hot encoding

This might be achieved by the method called Hashing trick, which is often used in the field of
Natural language processing when the vocabulary is a set of all words of the certain human
language. Because the number of all possible words is high and representation by binary
feature for each possible word would exhaust the resources, we can transform this vector into
vector with lower dimension by proper hashing function like Murmurshash3 [33]. Hashing
function takes the value of the feature and calculates the index in the lower dimensional
vector. Depending on the hashing value the calculated number might be negative, so it is
important to use its absolute value. To ensure that the index is valid and in the range of
the lower dimensional vector, the operation modulo can be used. Each value in the hashed
vector represents the number of features mapped into its position [7]. This way is memory
efficient but often results into lower accuracy than using the original features. The process
of the hashing is shown in Algorithm 1.

Data: Feature vector of length v
Result: Transformed vector hashed_vector of length d, where d < v
initialize hashed_vector with zeros;
foreach feature in features do

index = HashingFunction(feature);
index = absolute_value(index) mod d;
hashed_vector[index] += 1;

end
Algorithm 1: Example of feature hashing

5.2.3 Feature selection

Data collected by the companies are often too wide and it is not easy to choose the proper
set of features that are useful for the represented problem like classification. One approach
is using every information that is available. This often results in a highly dimensional
feature vector. Number of features might reach thousands or millions and can far exceed
the number of observations, which makes for many machine learning methods an obstacle
to be trained properly. Many features might be correlated, meaning that the values of one
feature might be estimated based on the values of the correlated feature. This decreases
the advantage of having the values of multiple features and using only one of those might
not only lower the necessary amount of memory to store the feature matrix but also allows
the models to focus on other more discriminative features. The curse of dimensionality is
the term used in machine learning describing the fact that the more highly dimensional
feature space is due to number of features, the harder it is for most models to find a
relations between the observed data and the models tend to learn a noise, meaning that
they focus on relations that are not increasing the general classification performance of the

20

model [14]. With so many features the classification models might even ignore the values
of a few features, based on which the classification accuracy might be even higher. The
idea behind the feature selection is to decrease the number of features by the removal of
those that might either not provide any new information due to high correlation with other
features or by the empirical background. Some models are able to estimate the feature
importance, meaning that they can numerically express, on which features they tend to
focus more during their calculations [27].

5.2.4 Feature extraction

Feature extraction is the process of transforming the features into a completely different
form based on proper mathematical methods. The motivation might be either dimensiona-
lity reduction such as with the feature selection (reducing the number of features resulting
into lower dimensional space) or the assumption that the transformed features would repre-
sent more discriminative space [14]. Visualization of dataset with a chart or by plotting the
decision regions of the classifiers in the form humans can understand and easily interpret
is also possible when the data are in two or three-dimensional space, in special cases also
four. Those values might be thought of as coordinates in the space and transformed into
the image. Projecting the features into proper feature subspaces is computationally more
demanding than the feature selection.

Principal component analysis

Principal component analysis is statistical method that transforms the N dimensional data
into lower D-dimensional space, where 𝐷 < 𝑁 . The main idea of the algorithm is in
preserving the highest variance of the data while decreasing the number of features necessary
to describe it [14]. The motivation behind preserving the highest variance is based on
the changes in distances of the data points. When the data are projected into the lower
dimensional space, the relative distances between the original data points may vary. It is
presumed that the observations of the same class are close to each other in the original space
and randomizing the distances during the transformation may destroy this relationship
between data. By projecting the data into the space with the highest variance is reduced
the number of cases when the data that were distant in the original space are by the
transformation close to each other and vice versa [21]. Data represented in this new space
are linear combination of the original data. This algorithm counts with only the data
variance, so there is no guarantee that the separation of classes in the new projected space
would be higher than in the original one.

Linear discriminant analysis

Linear discriminant analysis (also called Fisher’s discriminant analysis) is similar to the
PCA. However, the algorithm calculates not only the variance within each class when es-
timating the projection space of the data, but also the variance between the classes. For
that purpose it is necessary that the algorithm has access to the labels of the observations
to identify them and it is considered a supervised approach in comparison with the un-
supervised PCA [33]. From the covariance matrix are later calculated eigenvalues 𝜆 and
eigenvectors 𝑣 representing the projection space similarly to the PCA. Eigenvectors repre-
sent a new axes of the feature subspace. Those vectors have always a size of 1, meaning
that they represent only the directions of the projection. Eigenvalues, on the other hand,

21

represent the variance in the new subspace. With the highest value of the eigenvalues will
be chosen the corresponding eigenvectors as the new axes. In this space due to nature of
the algorithm would not only the data have the lowest variance within the classes, but also
the highest distance between classes, which often tends to help the classification by the
separation of classes in the space [38]. LDA is a very memory and computational complex
algorithm, limiting the resources when the number of dimensions and observation is high.

First it is necessary to calculate the Between class separability or variance 𝑆𝐵. Each
class can be represented by mean values of its feature vectors. The distance between the
classes can be represented by the sum of distances between the overall mean value �̄� and
the mean value of the 𝑖-th class 𝑥𝑖, where 𝑐 is equal to the number of classes (equation 5.3).

𝑆𝐵 =
𝑐∑︁

𝑖=1

𝑁𝑖(𝑥𝑖 − �̄�)(𝑥𝑖 − �̄�)𝑇 (5.3)

The within class matrix represents the distance of the observations belonging to the
given class from its own mean value (equation 5.4). Within class variance is in comparison
to the between class variance minimized, because we want the data of the same classes to
be closer to each other. In this equation the 𝑥𝑖𝑗 represents a sample of the 𝑗-th class, where
the 𝑥𝑗 is the mean value within the class and 𝑛𝑗 represents the number of samples of the
𝑗-th class.

𝑆𝑊 =
𝑐∑︁

𝑖=1

𝑛𝑗∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝑥𝑗)(𝑥𝑖,𝑗 − 𝑥𝑗)
𝑇 (5.4)

Based on those 2 values is calculated the projection matrix representing the transfor-
mation into the lower dimensional space based on the LDA criterion. The eigenvalues are
in this method calculated from the 𝑆−1

𝑊 𝑆𝐵, because we need to both maximize the between
class variance 𝑆𝐵 and minimize the within class variance 𝑆𝑊 [33]. Once are the discriminant
components calculated, the data are projected into new subspace.

The difference between the PCA and the LDA is shown in Figure 5.1. The projection of
the classes in the direction of the highest variance might not always be a good technique to
transform the data and the LDA provides a solution to find a better transformation space.
In production problems, the LDA does not often beat the PCA and for the problems where
the speed of both training and prediction has to be very high, PCA is more popular option
for dimensionality reduction [33].

LDA

PCA

Figure 5.1: Comparison of the PCA and LDA

22

5.3 Machine learning methods
This section describes the most commonly used machine learning algorithms and methods
for solving the real classification problems. There are no strict rules for choosing the best
method and finding the best performing method is often left on supervised experimentation,
educated guesses and assumptions about the data.

Common classification of the machine learning methods is by their ability to classify lin-
early separable and non-linearly separable data [16]. Linearly separable data are considered
the data that are separable by any linear object in the space described by the features. For
example, if it is possible to measure the height of flowers with respect to the number of their
leafs and from a plot representing this relation, where each axis represents numerical value
of those attributes, be precisely estimated whether the plant is muscatel or rose just by
drawing a line representing the decision line into this plot, it represents linearly separable
classification problem. On the other hand, some problems are not linearly separable and
the decision function needed to correctly classify data is not a linear object, for example,
circle as shown in Figure 5.2.

F1 F1

F2F2

Figure 5.2: Linear vs non-linear classification problem

5.3.1 Logistic regression

Logistic regression is a statistical method used for binary classification. This method results
in binary dependent variable. It uses similar idea as the Perceptron designed in 1957 as
the simplest neural network and it is based on assigning to each feature 𝑖 a weight 𝑤𝑖

representing the dependency of outcome on the given feature [14]. The higher is the value
of the weight, the higher impact is estimated in making the classification prediction.

For that calculation the concept of odds is used. Odds represent the ratio between the
probability 𝑃 of a certain class given the certain features 𝑥 versa the probability of a different
class, which in the binary classification is an opposite probability 1 − 𝑃 . Then a natural
logarithm 𝑙𝑛 of the odds is calculated [33]. This function is called Logit (equation 5.5).

𝐿𝑜𝑔𝑖𝑡 (𝑃 (𝑥)) = 𝑙𝑛

(︂
𝑃 (𝑦 = 1|𝑥)

1 − 𝑃 (𝑦 = 1|𝑥)

)︂
(5.5)

Because the relationship between the probability given the features and the logit is
linear, it can be also represented as the linear function based on the weights and values of
the features (equation 5.6).

23

𝐿𝑜𝑔𝑖𝑡(𝑃 (𝑥)) = 𝑥1 · 𝑤1 + 𝑥2 · 𝑤2 + 𝑥3 · 𝑤3 + · · · + 𝑏𝑖𝑎𝑠 (5.6)

Logit does not represent the final decision, because it only maps the probability values
to the range of real numbers. The proposed decision function is the inverse of the logit
function called the Sigmoid or logistic function (equation 5.7). This function removes the
significant impact of the feature value exceeding the expected value once the weights are
estimated and also maps the calculated values in to the range of ⟨0, 1⟩ [14].

𝑆(𝑥) =
1

1 + 𝑒−𝑥
(5.7)

The algorithm iterates over dataset and values of the weights change based on the
processed samples. The value that each feature provides for the calculation of the final result
is represented as the multiplication of weight and feature. This value is then transformed
by the sigmoid function transforming the weighted value into the range of ⟨0, 1⟩. For value
in this interval we can estimate a threshold for determining the output value. For example,
if the threshold is set to 0.5, any output of the activation function lower than 0.5 is classified
as the first class, higher than 0.5 as the second class. To be able to shift the activation
function itself, the bias has to be added to the final sum of the weighted features and it is
represented as the additional feature always having the value 1 [14].

Error function and gradient descent

To estimate how to change the weights based on the prediction error, the error function
has to be used. The main purpose of changing the values of the weights is to minimize the
overall error made during the training. The error function representing the relation between
the value of the weight and the predicted error (equation 5.8) is a quadratic parabola, which
means it has only one minimum value. If the predicted class 𝑦_𝑝𝑟𝑒𝑑 and the correct class
𝑦_𝑡𝑟𝑢𝑒 are represented by numbers and can gain only values 0 and 1, the error can be
easily calculated [16].

𝑒𝑟𝑟𝑜𝑟(𝑋) =
1

2

(︂
𝑦_𝑝𝑟𝑒𝑑− 𝑦_𝑡𝑟𝑢𝑒

)︂2

(5.8)

Each weight has an initial value. This might be a random number or zero. The direction,
in which we would like to move the value of the weight is an opposite direction of the gradient
increase, which is a vector representing the direction of the highest increase of the function
in the given point (Figure 5.3).

The changes in the weight should not be too big, because the needed change in the value
might be lower and the weight might be changed in the direction of the gradient increase.
For that purpose a learning rate, which represent the percentage in the changing the weight
value, is chosen [33]. New value of the weight would be then calculated as shown in the
equation 5.9.

𝑤𝑖 = 𝑤𝑖 + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 · 𝑒𝑟𝑟𝑜𝑟 · 𝑥𝑖 (5.9)

24

w

Error

Initial weight
value

Gradient

Global minimum

Figure 5.3: Gradient decrease method

With more features this function becomes the function of multiple variables equal to the
number of weights. The more complex the error function is, the harder it might be to find
minimum of the function. It might contain more local minimums and with the incorrect
learning rate it might never converge to the global minimum.

5.3.2 Decision tree

Classification and detection might be viewed at as a sequence of following decisions based
on the features, each partial decision more specifying the classified sample [35]. This allows
us to split the one classification as a result of more partial decisions. Those decisions might
be represented by the tree structure called decision tree. Decision tree is a flow-chart like
structure, where each node in the decision tree contains specific conditions describing and
separating observed samples, for example, whether the height of the man is higher than 1.7
meters. Each node has to also contain references to at least two other nodes, one of which
represents the next decision node in case the conditions are met, the other when they are
not. The leafs of the decision tree represent the final decisions, in classification case the
labels [28]. Example of the decision tree is shown in Figure 5.4

Imports

Connection Registers

Malware Clean Debug Section Malware

Clean Malware

does not contain
"KERNEL32.dll" contains "KERNEL32.dll"

connects to
internet no connection

no register
modification modifies registers

size of
DS <= 120B

size of
DS > 120B

Figure 5.4: Example of the decision tree

25

Decision tree can be constructed using multiple algorithms, for example, Iterative Di-
chotomiser 3 (ID3) or Gini index [14]. Both algorithms describe which features to choose
and how to create rules necessary to split the observed data into smaller chunks based on
feature values. At the start the root node needs to be chosen. With each descending rule
node in the tree we expect to separate as much observation as possible, so the root node
should contain a rule that splits the highest number of observations.

Algorithm ID3 calculates entropy of the dataset. The decision, which features and
which values to use in the condition selection is determined by the information that can
be obtained from feature (equation 5.10). It describes the fact that the less probable an
occurrence of the value 𝑐 is, the more information it has for the classifier [33].

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =

𝑁∑︁
𝑐=1

𝑝(𝑐) · −𝑙𝑜𝑔2𝑝(𝑐) (5.10)

Random forest

Decisions trees represent an intuitive approach. However, they tend to overfit meaning the
rules constructed by the decision trees are too strict to be able to generalize and describe
not observed samples. For this purpose is often used an ensemble method called Random
Forest. Random forest is a set of decision trees. Each tree was constructed on different
partial set of features, which helps the algorithm to generalize [28]. Prediction is done by
each partial decision tree followed by a vote among all trees. The class with the most votes
is chosen as the final decision. Construction of random forests is easily parallelized, but
the model needs more memory. The main attribute that influences the final decision is the
number of trees, but many algorithm support specification of the maximum height of the
partial decision trees, number of features that are randomly assigned to each tree, etc.

5.3.3 Neural network

Neural network is a model representing neural activity in the human brain. When humans
make decisions, the neural system of human consisting of neurons spreads the electricity
though the brain and the body. Each neuron has two types of threads. The first type
dendrites represents the input of the neuron and based on the value of electric signal received
by them either generates or not generates the electric signal. This electric activity might
be described by the feature values. The single output thread axon is connected to one or
more dendrites of other neurons, which connects the neurons into the net and the signal can
be transmitted through the body. Neural network simulates this approach and connects
multiple neurons in several layers to represent the neural system [33].

The single neural cell perceptron is very similar to the logistic regression. The main
difference between the original design of perpectron and the logistic regression is that while
the output of the logistic regression is a continuous number in the range of ⟨0, 1⟩, the output
of the perceptron is either 0 or 1, which means that a single perceptron is not able to express
the probability neither confidence of its decision, because of the activation function used.
There exist many types of neurons based on their activation functions [31]. For example,
rectifier function (equation 5.11) propagates the output only if the neuron’s calculation was
positive.

𝑟𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (5.11)

26

When more than one layer of neurons are connected between each other, they are able
to approximate more complex functions. Neural networks consist of several layers [25]. The
input layer consists of neurons which are connected directly to the input values. Each of
those neurons might be connected to the neurons the next layer and so on until the final
layer. The final output layer then represents the final decision and the probability of the
given class. This architecture is called feedforward neural network (Figure 5.5).

Layers between the input and output layer are referred to as the hidden layers. The
neural network without any hidden layer can be trained to solve only linear classification
problems. To solve the complex non-linear problems neural net has to have at least one
hidden layer [28].

Input layer Output layer

Hidden
layers

Figure 5.5: Simple feedforward neural network

There exists no rule for choosing the type and the number of neurons and layers in each
layer of the neural network called the configuration. However, common practice is to choose
the number of neurons in the following layers smaller than the previous one. Therefore,
relu neurons are very useful in the first layers of the neural network, where the number of
input values and neurons is high, but for more precise calculation in the later layers are
often chosen different types of neurons. If each neuron of each layer is connected to each
neuron in the next layer, we call this configuration the fully connected neural network.

Backpropagation

The general error of the neural network is not so straightforward as with the logistic regres-
sions. To update each weight there has to be an assumption of the impact of the current
weight value on the error of the given neuron. After the prediction was made, we know the
error of the last output layer neurons. The error of neurons in the previous layer has to be
calculated with the respect to the error of the neurons in current layer and the weights can
be updated. This process can be repeated until all weights of the network were updated [16].

5.3.4 Naive Bayes

𝑁𝑎𝑖𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 classifier is also a statistical model, which is suitable and often used when
there exists an assumption about the observed data that they do have a specific form of

27

distribution. With that assumption it applies the Bayes’s theorem (equation 5.12) [10].
It describes the conditional probability calculating the probability of sample belonging to
the certain class 𝑦 given the feature vector 𝑥. The 𝑃 (𝑥) usually normalizes the data but
does not change the distribution itself, so it might be omitted. 𝑃 (𝑦) is the probability of
the response variable and is represented by the proportion of the dataset belonging to the
given class 𝑦. Finally, 𝑃 (𝑥|𝑦) represents the likelihood of the training data for the given
class. It would be complex to compute, but the algorithm uses an assumption to decrease
the complexity. The assumption is that the features are conditionally independent to the
given class, so the final distribution is proportional to 𝑃 (𝑐𝑖)

∏︀𝑛
𝑗=1 𝑃 (𝑥𝑗 |𝑐𝑖). The goal of the

algorithm is to estimate the most likely category [34].

𝑃 (𝑦|𝑥) =
𝑃 (𝑦) · 𝑃 (𝑥|𝑦)

𝑃 (𝑥)
(5.12)

𝑃 (𝑦|𝑥) is also called posterior probability, where the output variable depends on the
evidence data 𝑥. For the Gaussian naive Bayes is the expected distribution of the of
features 𝑃 (𝑥𝑖|𝑦) a Gaussian or Normal distribution (equation 5.13) [39]. This distribution
is based on the assumption that the most data would be around the mean value 𝜇 and
spread around based on the standard deviation 𝜎 as shown in Figure 5.6. The second
distribution that the feature might follow is the multinomial distribution more typical for
the natural language processing problems.

𝑃 (𝑥𝑖|𝑦) =
1√︁

2𝜋𝜎2
𝑦

𝑒𝑥𝑝

(︂
− (𝑥𝑖 − 𝜇𝑦)2

2𝜎2
𝑦

)︂
(5.13)

Figure 5.6: Examples of normal distributions

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 is a decision rule, which describes the process of choosing the
most likely class based on the highest probability of the given data points values in the
distribution calculated based on the expected distribution (equation 5.14).

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃 (𝑐𝑖)

𝑛∏︁
𝑗=1

𝑃 (𝑥𝑗 |𝑐𝑖) (5.14)

5.3.5 K-nearest neighbours

K-nearest neighbours is a method based on different metrics than the previous classifiers.
It is not based on prediction of a certain distribution. However, it assumes that the feature
values might be looked at as 𝑛-dimensional space coordinates, where 𝑛 is the number of

28

features. Based on the correct distance metric used for calculation of distance in the given
space, samples as data points of the same class should be located close to each other [33].
When two points in this space are both labelled with the different classes, we assume that
the third unlabelled point’s class is the same as of the point that is closer to it. This
represents a decision based only on the one nearest neighbour. The more neighbours are
chosen for the class estimation, the lower variance is expected. This method is very sensitive
to not normalized data, because if the features have very different feature ranges, it tends
to ignore the feature with the smaller values, because they are insignificant from the view
of the distance metric [15]. For example, this may happen when one feature is represented
in centimeters and the other in kilometers.

The important step is to choose the correct distance metric. For the boolean value
features the proper distance is called the Hamming distance. Hamming distance represents
the minimum number of substitutions to make the two sequences the same. The non-
binary data often use the common Euclidean distance as the proper metric. The Euclidean
distance between two points 𝑥 and 𝑦, both represented by 𝑛-dimensional coordinates, can
be calculated as in the equation 5.15.

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥, 𝑦) =
√︀

(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + · · · + (𝑥𝑛 − 𝑦𝑛)2 (5.15)

When the point is classified, a distance to every point of the training dataset must be
calculated, then are chosen K points with the lowest distance between those points and the
classified one, followed by the vote. The most common class between the K chosen points
is set as the prediction.

5.4 Model validation
Once the model is trained, it has to be validated, because it is not known whether the
model is not overfitted or underfitted and how it would adapt to new data, which were not
used for the training. For that purpose there exist many metrics, which might be used [18].
Those might be used not only for estimating the model’s performance, but also to compare
more models in order to find the best for the given problem. When trying to estimate the
best classification method and configuration of the model, it should not be trained on the
whole dataset rather than splitting it into two parts. The first part called training dataset
would be used to train the classifier and find the necessary patterns. The second validation
part would represent the unseen data on which the model has not been trained on and we
can observe, whether the model is generalized enough to make valid predictions on those
data. Proportion of testing data is often chosen between 10 to 30% based on the amount
of collected data [14].

5.4.1 Confusion matrix

Confusion matrix offers a closer description of the classification results. For the binary
classification problem, it is shown in Table 5.2. It is based on the relation between the
actual classes of the testing observations with the predicted ones by the tested model.
Confusion matrix visualizes missclassifications between the classified classes [28]. It can be
used to spot the classes that are often misclassified between each other.

29

Actual class 0 Actual class 1
Predicted class 0 True positives False positives
Predicted class 1 False negatives True negatives

Table 5.2: Confusion matrix

1. True positives - Number of samples of the class 0 that the classifier predicted correctly

2. True negatives - Number of samples of the class 1 that the classifier predicted correctly

3. False positives - Number of samples of the class 1 that the classifier predicted incor-
rectly.

4. False negatives - Number of samples of the class 0 that the classifier predicted incor-
rectly.

In malware classification and detections problems, false positives often represent the
number of the clean files that were classified as malware. The motivation of antivirus
companies is to minimize those values, because the antivirus could mark as malware system
files or other legitimate files resulting into dissatisfied customers and in the worst case also
system crashes. Example of the confusion matrix of the file severity problem is shown in
Figure 5.7.

Figure 5.7: Example confusion matrix for file severity

5.4.2 Accuracy

The most intuitive metric is the accuracy. It is the simple metric which represents the ratio
of the correctly predicted samples 𝑐 to the number of samples 𝑛 (equation 5.16).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐

𝑛
(5.16)

The accuracy might be a useful metric when validating the balanced classification prob-
lem and all classes have the same or similar proportions in the dataset. However, when

30

the classes are imbalanced, it might be misleading [28]. For example, in the binary clas-
sification problem with the 100 samples where the first class is represented by 99 samples
and the second class by only one sample, many classifiers would just ignore the one sample
belonging to the second class. This results into accuracy 99%, what would be an excellent
result, but the model’s ability to discover nor predict the second class is insufficient.

5.4.3 F1 score, precision and recall

Precision and recall are the metrics that represent the facts that accuracy ignores. Precision
represents how well the classifier predicts the labels from the chosen ones with respect to the
given class (equation 5.17). High precision means that for every class the model predicted,
the majority of samples of the classes were classified correctly. Recall, on the other hand,
represents how well can model identify the class with regard to other classes (equation 5.18).
High recall means that from all the classes in the dataset the model was able to identify
most of the samples correctly [14].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(5.17)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(5.18)

To combine precision and recall into one metric is used F1 score, which merges them
into one common metric (equation 5.19). The higher are precision and recall values, the
higher is F1 score and the performance of the model [14].

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5.19)

5.4.4 ROC and AUC curves

Receiver operating characteristics is a metric used to visualize the relationship between the
true positives and false positives. This required the application of multiple thresholds from
the interval ⟨0, 1⟩. For these thresholds is then estimated the true positive rate and false
positive rate [28]. If the classifier would be dummy and in the binary classification problem
would guess a random class for each prediction, the ROC curve would be linear relationship
between false positives and true positives. Every classifier trained better than the random
decision has the ratio between true positives and false positives higher. If the ROC curve
values would be under ROC curve of the random classifier, the classifier was trained to
classify incorrectly caused most likely by an error in the implementation. Very similar
metric is the Area under curve (AUC) basically representing the area under ROC curve.
The higher are this values, the better classification performance the classifier has [17].

5.4.5 Learning curve

Learning curve is in machine learning used for detection of overfitting and underfitting
of the model with respect to the number of training data. Learning curve represents the
achieved accuracy with the continually increasing amount of the training data [32]. The
plot visualizes values of accuracy of the model with regard to size of the training dataset

31

for both training and testing data. Expected behaviour is that the accuracy on the training
dataset iteratively decreases, because the model is generalizing during the training and with
more samples it cannot make any longer as accurate predictions on the training data [28].
This is caused by the higher bias. But this should result in the accuracy increase on the
validation set. If the model is not able to learn any new information from more data, the
curves would become horizontal meaning that with the increasing number of observed data
the accuracy does not change. For the better result is then necessary a change in the model
configuration or preprocessing. The distance between the curves on the training data and
testing data represents the variance of the model. The goal is to find the best trade-off of
the bias and variance.

5.4.6 Cross-validation

When the dataset splits into training and testing set, there is a chance that the training set
was formed by the best representative samples for training and the validation score would
be high. However, the model should be able to train properly on any subset of the dataset
with the chosen proportion, because the next time the model would be trained might be the
training set composed of different observations and the higher score might be bound just
with this specific distribution. To ensure that the model handles these situations properly,
an approach called cross-validation is used. The main idea is to choose a proper number 𝑘
representing the number of folds, into which would be the whole dataset split [33]. One fold
is chosen as the testing set and all other folds form the training data during each iteration
of the algorithm. The model is trained each iteration and for all iterations are saved the
results. The final metrics are calculated as the mean values of all collected results.

32

Chapter 6

Experimentation

Using the methods and algorithms stated in the previous chapter we try to find the file
format properties described in Chapter 4 that have impact on classification performance
of the models. The experimentation includes various data pre-processing approaches and
configurations of the models themselves. The goal is to design representative datasets and
the best performing classification models that would be used by the implemented service.
During experimentation for the evaluation of the models would not only be considered
achieved classification results, but also memory requirements of the trained classifiers and
the time necessary to train them. Because the experimentation involved many approaches,
methods with lower accuracy or other reasons not to select them as suitable for the given
classification problems are summarized in Section 6.5.

6.1 Experimentation design
The inability to uniquely estimate one specific malware type for each malware family affects
the view on the malware classification as a strict tree hierarchy. One malware family
can belong to multiple malware types that might vary. Classification of severity, malware
type and family is considered as three different problems. Every file format also requires
unique classifiers based on different properties. Because the classifiers are independent, the
experimentation involves nine classification problems. Data required for experimentation
are gathered from database dumps generated by Clusty every day.

Experimentation would be performed using scikit-learn1, a high level experimentation
framework for machine learning in Python. This framework provides a highly optimized
implementation of all classification methods described in the previous chapter. If a need
for a change in the implemented algorithms occurs during the experimentation, we would
use our own implementation. Experiments are performed on internal company server with
128 GB of RAM and two Intel Xeon processors with 48 threads. The implemented service
would be deployed on the same server. All nine classifiers and other modules that would
be required to pre-process the data need to be stored in memory simultaneously. During
experimentation would be multiple methods trained in parallel using multiprocessing sup-
ported by scikit-learn. However, the number of processes used during training of the model
and predicting must remain the same and it cannot be changed later. The implemented
service would require multiple instances of the trained classifiers to create predictions si-
multaneously, so the total number of running processes intensively consuming the time of

1https://scikit-learn.org/stable/

33

the processor should not be higher than the agreed threshold to keep additional resources
for other services and tasks.

Experimentation with each file format firstly involves a high level analysis of the data.
There is estimated whether the classification problem is balanced or imbalanced, the number
of classified classes, prevalence of missing data, etc. This helps to design a set datasets
used for training the models. On each dataset would be trained a set of classifiers based
on the classification methods described in Chapter 5.3 with the default configuration of the
models. Learning curves of the models with cross-validated results are generated during
the training together with other metrics calculated using the test dataset. Based on the
results are then repeatedly changed configurations of the models. Grid search method is
used for estimation of the best value of certain parameters. The classification methods with
best results would be compared and the best method would be chosen. To further validate
the method performance meta-learning framework auto-sklearn described in Section 6.6 is
used. Model validation based on only one dump might not consider the changes of class
prevalences and the number of data in time. For that purpose are the results averaged over
five dumps, where the difference in time of creation between the dumps is one month.

A set of datasets used for experimentation with each file format described in the fol-
lowing sections is only the best scoring subset of all tested datasets. The experiments also
included comparison between one hot encoding and feature hashing, various ranges of hash-
ing function and hashing the properties into the same or separate sections of feature vector,
eventually their combination.

Only data that have assigned confidence of current classification stored in Clusty higher
than 30% should be used in order to remove the samples with higher probability of poten-
tially wrong labels. Each cluster with lower confidence would be ignored.

Malware family classification problem differs from others, because the number of mal-
ware families is very high in comparison with severities or malware types and in the dumps
are often only one or few samples representing its family. This problem partially requires
the approach called One shot learning, which makes it difficult to properly validate trained
models. For that reason is the testing dataset composed only of samples representing fam-
ilies with prevalence higher than one, otherwise it would be impossible to split the data.
The samples with unique or low prevalent class would be still used for training.

6.2 PE
PE file format is represented by the highest number of properties that might be used for
classification. Most of them are stored as collections of string values, but others originally
stored as strings, like entry point address, should be converted into hexadecimal number.
By the initial analysis of the dump and the cluster information generated by the Clusty
we observe that the dumps contain the highest number of samples among all file types
exceeding 300 000. This number is a combination of all clusters including various severities
and malware types.

6.2.1 Datasets

Feature hashing and one hot encoding were used to generate the first proposed datasets A
and B. The original data represented by strings are before hashing or encoding not pre-
processed in any way. The number of imports, API calls and symbols exceeds multiple
millions so those features are being hashed into lower dimensional vector. Experimentation

34

includes hashing them separately into multiple concatenated lower sized feature vectors
and hashing them together into the same space. Signatures have lower vocabulary with
multiple hundreds of unique values, so they are one hot encoded. Multiple ratios of the
hashed vector sizes were tested during the experimentation.

Dataset C contains the hashed values of properties and also their numbers as features.
Only four selected properties were used for hashing: imports, signatures, API calls, re-
sources. The sizes of hashed vectors were initially selected based on the vocabulary of the
given property and were consequently changed based on the classification results.

Dataset D was generated using the obtained values and extracting potentially useful
data. From resources was extracted a name of the language and type of the resource. Lan-
guages are one hot encoded and types are hashed. Programming languages that were used
for application development are one hot encoded, because in dumps were present only few
languages, mainly C++, Java, Delphi, VisualBasic and C#. API calls are already repre-
sented by pure function names, which are also extracted from the imports. An additional
feature contains boolean value whether the file was signed or not.

Datasets E and F represent the application of PCA and LDA applied to previously
mentioned datasets, respectively. This set of datasets uses either PCA or LDA to extract
the important features. The proper number of components and discriminants was estimated
experimentally.

Dataset G is composed out of function categories. Functions described by imports and
API calls are divided by Microsoft Corporation into 96 unique categories based on their
purpose or use case, for example, registry or networking. The number of functions from
each category can be used as a feature and then used for training together with other pre-
processed attributes. To them one hot encoded signatures and the rest of hashed attributes
are being appended. This method was tested by various malware research groups focused
on malware classification via machine learning [36].

6.2.2 Severity

Each PE cluster in dump has a valid severity label. By comparing the ratio of all severity
labels we observe that the classification problem is imbalanced. The most prevalent are clean
clusters with total number over 150 000, followed by malware, PUP and lowest number of
samples have tools represented by only few hundreds of clusters. The highest achieved scores
among various methods differ. The summary of achieved results is shown in Table 6.1.

A high number of samples resulted into exhauster of memory during application of LDA
and PCA. To test those approaches under-sampling of random samples from the original
datasets was used up to 7 000 samples per class and on those datasets was the application
of LDA and PCA possible. However, this approach has not outperformed the classifiers
trained on the original datasets.

K-nearest neighbours classifier performed best with lower number of neighbours (2–4),
increasing this number have led to lower model performance. Euclidean distance used as
a metric have outperformed the default Minkowski distance. This method performed best
on the dataset B.

The best performing classifiers were random forests. Time of the decision trees con-
struction was much lower than the time necessary to train neural networks and together
with neural networks was this the only method that achieved higher accuracy than 0.9. The
well chosen number of decision trees was set to 50 with no constrains regarding the depth
of decision trees, the gain in scores achieved by higher number of trees was insignificant.

35

Lower number of trees also helped to keep lower size of the trained model, which was high
in comparison with other methods. Maximum number of features assigned to each decision
tree was set to log 𝑛, where 𝑛 is the total number of features.

This method had similar classification results as neural networks. Experimentation
involved various configurations, numbers and types of neurons as well as the number of
layers. Configurations with one hidden layer containing 55–60 neurons achieved the best
results. Increasing the number of hidden layers had a negative impact on classification
results, because based on the learning curves of the models they required more data to
train properly. However, models with multiple hidden layers and low number of neurons
achieved similar scores. The best performing type of neurons was relu.

In terms of recall, linear regression achieved similar results as K-nearest neighbours or
naive Bayes. However, its precision was significantly lower. Slightly lowering the default
regularization helped to improve the F1 score. This approach was outperformed by naive
Bayes, where the precision was higher by 0.11. However, the training time was longer.

Method Dataset Precision Recall F1 score
KNN B 0.859 0.833 0.846
RF C 0.968 0.932 0.950
NN C 0.954 0.921 0.937
LR B 0.721 0.849 0.800
NB C 0.832 0.867 0.849

Table 6.1: PE severity – achieved results

6.2.3 Malware type

Information about cluster classification retrieved from dump should contain valid malware
type, but it might not be further specified by malware family. To use as much information
as possible for training, those clusters are not ignored and used for malware type training.
Dumps provide information about 26 unique PE malware types. The number of malware
types contained in the latest generated dump was higher than in the oldest one. Because
the number of malware samples is lower than the total number of samples with any assigned
severity, experimentation with LDA and PCA did not result in memory exhauster. Achieved
results are shown in Table 6.2.

K-nearest neighbours classifier did not achieve high accuracy when trained on the orig-
inal datasets and the application of LDA was necessary to achieve higher classification
scores of the models. K-nearest neighbours had the best performance when the number of
neighbours was chosen between five and seven together with Minkowski distance as active
metric.

Random forests had the best results among the tested methods with F1 score above
0.85. The proper number of decision trees for classification was estimated to be 30 with
number of features assigned to each tree equal to

√
𝑛. The application of LDA was also

necessary for this method to achieve the highest score. However, application of LDA on
datasets with highly dimensional vectors necessary to achieve F1 score 0.880 did use most
of the available system memory and would not be applicable in the classification service.
For this reason was chosen as the final classifier random forest trained the dataset F, which

36

contains hashed values of properties into lower dimensional space. The best results were
achieved when the number of LDA components was 30.

Neural networks achieved the second best score among the tested methods on the dataset
F. The best performing configuration contained one hidden layer with 45 hidden relu neu-
rons. Logistic regression performed similarly to neural network regarding the datasets.
However, naive Bayes classifier achieved the worst result among all methods.

Method Dataset Precision Recall F1 score
KNN B 0.726 0.702 0.714
RF F 0.850 0.852 0.850
NN F 0.824 0.865 0.844
LR F 0.781 0.776 0.778
NB F 0.696 0.672 0.684

Table 6.2: PE malware type – achieved results

Although most methods have achieved the highest scores on the dataset F, dataset G
consisting of numbers representing prevalence of function categories has achieved better
results than during severity or malware family classification. The importance of the most
relevant categories generated using trained random forest is shown in Figure 6.1.

Figure 6.1: Feature importance of PE function categories

6.2.4 Malware family

Not all clusters with malware severity have to have assigned a type or family, but there
are cases when the cluster classification information contains only the severity malware and
family. High number of PE malware families (3814 in the latest dump) is not common in
machine learning classification problems. The number of families also slightly varies among
the multiple generated dumps. As was stated in Section 6.1, many families are represented
by only one or few clusters. Classification results are shown in Table 6.3. The average
achieved precision was generally higher than recall.

37

K-nearest neighbours performed well on the randomly over-sampled dataset A. However,
the highest number of neighbours must have been chosen up to three. The oversampling
has caused longer training time of this method in comparison with previous types of clas-
sification problems. As one of the few methods, the application of LDA have not resulted
into better results.

Random forest achieved the highest results on dataset F. Similarly to malware type,
larger feature vectors with application of LDA resulted into the highest classification accu-
racy. Limitation for decision tree depth or increasing the number of features used by each
tree did not have positive impact and the best performing classifier was the forest with
30 trees, where each tree uses

√
𝑛 sized subset of features. Application of LDA increased

the performing accuracy by ≈ 12% in comparison to the original dataset. The number of
discriminants was estimated to be 150.

In the previous types of classification problems were the results achieved by neural
networks similar to the random forests. However, in this problem has the random forest
significantly outperformed neural network. This might be caused by the high number
of classes and higher number of missing data among the clusters than in the previous
classification problems. The best type of neuron was sigmoid. To properly classify the
malware families was required one hidden layer of 60 neurons.

Logistic regression and naive Bayes performed poorly in comparison with other file types
or severity classification. Logistic regression with lower regularization performed better, but
neural networks has outperformed it significantly.

Method Dataset Precision Recall F1 score
KNN B 0.812 0.799 0.805
RF F 0.845 0.810 0.827
NN F 0.814 0.802 0.808
LR A 0.769 0.756 0.762
NB F 0.756 0.693 0.723

Table 6.3: PE malware family – achieved results

6.3 APK
APK dumps contain lower number of clusters than are contained in dumps of other file
formats. In comparison with PE and .NET dumps where the number of missing values is
noticeable, APK clusters often contain most of the properties and therefore the number of
missing data is significantly lower. This might have positive impact on classification results
and allows us to experiment with all properties. The second main difference in comparison
with other file formats is that APK dumps do not contain any clusters with tool severity,
so only malware, clean and pup would be used as severity labels.

6.3.1 Datasets

Experimentation with APK clusters involves various combinations of all four cluster prop-
erties described in Section 4.2. Not only properties in raw format as stored in the dump
without any pre-processing were tested during experimentation, but also various techniques
to change their format or extract partial information from them. All APK properties are

38

represented by the lists of string values. In the case of APK information extraction only
two attributes had impact on the final classification results – API classes and Android per-
missions. Name of the class can be extracted from the signature of API class. In order to
do this, it has to be removed template information from the signature identified by pointy
brackets if the class is generic. Class can be identified by the last name in the hierarchy.
It is also necessary to remove additional identifier information recognized by the character
’$’. Finally the name is converted to lowercase.

To lower the memory requirements necessary to store one hot encoders it is possible to
remove the permission structure and extract only the name of permission action (last in
the hierarchy, also lowercased). Modifying the paths of archive members was not necessary,
because removing the relative path of the file inside archive and keeping only its filename
did not result into any improvement from the experimentation.

The first proposed dataset A contains hashed values of original properties contained in
the dump. The only pre-processing step was converting the string values into lowercase
characters. Experimentation involved testing different sizes of the vector and ranges of the
hashing function. Experimentation also involved comparison of hashing the properties into
the same space and separately.

The next step involves comparison of dimensionality reduction techniques. The second
dataset B applies PCA to the best performing instance of dataset A with and without
additional data pre-processing. The third dataset C applies LDA to the same feature
vector. Experimentation involves finding the best number of principal components and
discriminants as well as regularization properties of the algorithms.

Datasets D, E and F represent customized combinations using different feature ranges
for specific properties that also contain the total numbers of specific properties representing
the cluster as independent features. Detailed description of composition of feature vectors
is shown in Table 6.4. Summary of all datasets used for learning of APK classifiers is
described in Table 6.5.

Dataset Features
D, E, F No. archive members No. signatures No. API classes No. permissions

D Hash(300) OHE
API classes permissions – –

+ signatures
E Hash(10000) OHE Hash(10000)

API classes permissions archive members –
+ signatures

F Hash(20000) OHE Hash(20000)
API classes permissions archive members –

+ signatures

Table 6.4: Custom datasets – APK

6.3.2 Severity

Severity classification of APK clusters is a three class classification problem, because APK
Clusty dumps do not contain any tools. The average ratio of class prevalence in the five
observed dumps is as follows: Malware ≈ 28%, clean 67%, pup 5% with total number of

39

Dataset Expected No. features Used methods
A 1000-20000 Hashing
B 30-200 Hashing, PCA
C 10-200 Hashing, LDA
D 800-1000 Hashing, OHE
E 10-200 Hashing, OHE, LDA
F 10-200 Hashing, OHE, LDA

Table 6.5: Summary of tested APK datasets

samples around 195 000. The variance of those numbers is up to 3% among the various
dumps, so we can estimate that this distribution is relatively stable. To weight the preva-
lence of the classes equally during the training, so the classifiers would not overestimate
certain classes, the significance of each sample is changed accordingly to the prevalence of
its class using class_weight parameter when fitting scikit-learn models.

The best results of methods for certain dumps are shown in Table 6.6. As the best
classification method was chosen neural network with 100 neurons in the first hidden layer
on dataset D. Worst results on the other hand achieved naive Bayes classifier.

K-nearest neighbours did perform well with low number of neighbours (2–3), further
increasing the number of neighbours lowered the performance of the model. The best
metric used for distance calculation was Euclidean that performed better than the default
Minkowski.

Logistic regression performed best on the simplest dump A using only feature hashing
with no pre-processing of dump properties. This was achieved by lowering the L2 regular-
ization parameter and using the default stopping criteria to be 10−4.

Neural networks took the longest time necessary for training among all methods, because
other methods were trained using in parallel using multiple processes. Best performed
configurations were composed of relu neurons. One hidden layer with 100 neurons was
enough to achieve expected results. Increasing the number of hidden layers nor changing
the number of neurons did not have any positive impact on models performance, only on
the increase in training time. Neural networks had the best classification results.

Random forest had slightly lower its best estimated performance than neural networks.
However, the number of tested datasets where random forests outperformed neural network
was higher. It significantly outperformed single decision tree with the increase in accuracy
over 20% when using 30 to 40 decision trees. The best performance achieved the models
that have the number of assigned features for each decision tree calculated as the square
root of the overall number of features.

Naive Bayes had the worst results among all methods. They were outperformed regard-
ing the training time and final accuracy and this method did not have the best performance
on any dataset.

Datasets that use feature extraction techniques were not tested completely, because
application of LDA or PCA resulted into exceeding available memory. To test those methods
the first 7000 samples of each type were selected to lower the number of samples used for pre-
processing calculations, while the testing set was composed out of the rest of the samples.
However, this approach had lower results than other approaches.

40

Method Dataset Precision Recall F1 score
KNN A 0.947 0.950 0.948
RF D 0.965 0.969 0.967
NN D 0.970 0.970 0.970
LR A 0.961 0.962 0.961
NB D 0.855 0.654 0.741

Table 6.6: APK severity – achieved results

6.3.3 Malware type

In average APK dump there are ≈ 54 000 malware samples. The number of samples for
each class is highly unequal. Malware types like exploit have only few dozens of samples
while the most prevalent type trojan ≈ 10 000. The total number of malware types in APK
dumps is 19. Class weights need to be balanced properly for balanced classification.

As is visible from the results of malware type classification (Table 6.7), the most signif-
icant impact on the performance of the models had an application of LDA increasing the
F1 score more than 8% in comparison with the training on the original datasets. PCA did
not improve achieved classification results and neither did the not previously pre-processed
dataset A. Highest results were achieved when the number of discriminants was close to
the number of classes, the best was estimated to be 10 using random forest with 30 trees.
Changing this number had a negative impact on the results. The time of LDA calculations
exceeded the time of training the models on dataset without application of LDA.

Neural networks have slightly lower accuracy than random forests possibly caused by
higher number of classes resulting into higher amount of output neurons. Also, a higher
number of neurons in the hidden layer was needed. However, changing the number of hidden
layers had no positive effect. Equally as with severity classification for neural networks had
to be slightly lowered regularization parameter.

Linear regression achieved lower classification results. K-nearest neighbours classifier
performed similarly to severity classification with the best results when using low number
of neighbours (2–4). Both methods performed best on dataset C.

For better separation of malware types were needed longer feature vectors than for sever-
ity classification. The best results achieved the random forest on the dataset E. Its results
are better than other methods and its construction was performed faster than training the
neural network.

Method Dataset Precision Recall F1 score
KNN C 0.955 0.954 0.954
RF E 0.962 0.960 0.961
NN E 0.959 0.962 0.960
LR C 0.950 0.959 0.954
NB E 0.948 0.945 0.946

Table 6.7: APK malware type – achieved results

Performance of some models like logistic regression was improved by using semi-supervised
learning approach. Only manually classified samples were used as the initial labels and the

41

rest of the labels were calculated through label propagation method. As shown in Fig-
ure 6.2, it had an positive impact on the performance of logistic regression. However, this
phenomenon was achieved only on worse performing datasets.

Figure 6.2: Semi-supervised approach improvement

6.3.4 Malware family

More than 1100 malware families are present in APK dumps. That is a high number not
common for machine learning problems. Further data analysis revealed that majority of
the families is in the dump present only several times and part of them only once, which
makes the malware family classification problem partially a One shot learning problem.

Linear discriminant analysis was again significant for creating a dataset that correctly
separates classes. The best performing classification method was random forest similarly
to malware type, easily handling the high number of classes opposing to logistic regression
and naive Bayes. The application of LDA results into small number of features and low
number of trees was sufficient enough to classify the malware families, when the height of
the trees was not reduced by any constraints. The number of LDA discriminants was 350,
what is the highest among all other classification problems.

Logistic regression achieved the lowest results together with naive Bayes and any tested
configuration of those methods did not increase the classification accuracy.

K-nearest neighbours did also not respond well to One shot learning problem. For that
reason an oversampling method increasing the number of samples using SMOTE approach
was applied [8]. While it slightly improved classification accuracy of linear classification
methods and K-nearest neighbours, it did not outperform random forest trained on the
original datasets using LDA.

For testing of LDA on the oversampled dataset we did not have sufficient computational
resources, mainly enough memory for such computation. Summary of the best results is
shown in Table 6.8.

6.3.5 Data visualization

A visualization of the most prevalent types and families in the APK datasets is shown
in this section (Figure 6.3). Images were generated using dataset A (not pre-processed

42

Method Dataset Precision Recall F1 score
KNN E 0.878 0.874 0.875
RF C 0.896 0.908 0.902
NN C 0.874 0.872 0.873
LR E 0.739 0.778 0.758
NB E 0.779 0.632 0.698

Table 6.8: APK malware family – achieved results

hashed features) and then LDA for dimensionality reduction into three-dimensional space
was applied. Axes represent values of the extracted features. Images confirm results from
confusion matrices about the classes that are often miss-predicted between each other.
Classes are represented with different colors. Overlapping colors of the classes in those
images predict a missclassification possibilities between those classes in real classification.

Figure 6.3: Visualization of APK malware types and families

43

6.4 .NET
Dumps of this file format require the most disk space to be stored, because they contain
long function signatures and properties represented by a high number of string values. They
also contain a high number of clusters, slightly lower than the largest PE dumps. Most
of those clusters are clean, so amount of data used for malware and family classification is
comparable with other file formats. Properties of .NET clusters also contain higher number
of missing data than APK clusters. All properties are represented by the lists of strings.

6.4.1 Datasets

Clusters of this file format are represented by five properties described in Section 4.3.
Signatures do not require any pre-processing. However, from other properties it is possible
to extract additional information. A return type, number and types of parameters can be
extracted from method signatures. Return types are then one hot encoded as well as short
vector of selected extracted types as parameters that are observed. The hierarchy might
be omitted from the class information and only the relevant class name should be hashed.
Referenced types are also represented by the full hierarchy of the given type, so the same
method is applicable on them as well. Properties are represented by their type and name.
Types might be one hot encoded or hashed and property names are hashed.

The first proposed dataset A does not contain any additionally pre-processed data and
all features are hashed into vectors, where the experimentation involves length of those
vectors and hashing combinations. Datasets B and C apply LDA and PCA on best vectors
of approach A achieving the highest results to compare dimensionality reduction techniques
and their impact on class separation.

Datasets D, E and F are designed to combine various features and pre-processing tech-
niques, experimentation with them involves data pre-processing as described above, using
feature hashing and one hot encoding and application of LDA and PCA. Custom feature
vectors are described in Table 6.9.

Dataset Features
D, E, F No. classes No. signatures No. properties No. methods

No. ref. types – – –
D Hash(1000) Hash(200) Hash(1000) Hash(1000)

classes signatures methods referenced types
Hash(1000) – – –
properties

E Hash(10000) Hash(100) Hash(100) –
classes + methods signatures referenced types

F Hash(50000) – – –
all properties

Table 6.9: Custom datasets – .NET

6.4.2 Severity

The structure of .NET dump is similar to APK dumps, because significant part of the
dump consists of clean clusters. The average ratio in the dumps between the classes is as

44

follows: malware ≈ 14%, clean 85% and the rest are tool and pup. To weight the prevalence
of the classes equally during the training so that the classifiers would not overestimate
certain classes, the significance of each sample is changed accordingly to the prevalence of
its class. Classification results are shown in Table 6.10.

Classification results were compared during experimentation when the training set was
constructed out of all original samples and when under-sampling of the most prevalent
clean class was applied. Results have shown that under-sampling had a negative impact on
classification performance of the models implicating diversity of .NET clean samples. This
fact remained true even after application of LDA on subsampled dataset.

The best performing models were instances of random forests followed by K-nearest
neighbours. Increasing the number of decision trees in random forest had a significant
impact up to 50 trees, after this number the results did not change significantly. Positive
effect did also have a change in number of features for each decision tree from

√
𝑛 to log 𝑛.

K-nearest neighbours performed best when 𝐾 = 6, what is slightly higher number than in
severity classification of other file formats.

Neural network with one hidden layer with 35 sigmoid neurons did outperform logistic
regression. However, the achieved result was lower than the F1 score achieved by random
forests. Usage of relu neurons in the hidden layer resulted into slightly lower score. The
worst performing method was naive Bayes with F1 score only 0.585. On the other hand
the precision of this method was comparable with other approaches.

Method Dataset Precision Recall F1 score
KNN E 0.948 0.952 0.950
RF D 0.961 0.962 0.961
NN D 0.948 0.949 0.948
LR D 0.941 0.945 0.943
NB A 0.901 0.433 0.585

Table 6.10: .NET severity – achieved results

6.4.3 Malware type

Twenty different malware types are present in the latest .NET dump, what is a higher
number than the number of APK malware types. The number of malware samples is
however lower than PE format (≈ 30 000). This allows us to use longer feature vector for
feature hashing as well as application of LDA on the whole dataset.

All achieved results except K-nearest neighbours performed best on the dataset C. The
best result was achieved when all properties were hashed together and not into separate
ranges of final feature vector. This dataset must have been transformed by LDA of 20
discriminants, which supports the theory proposed during experimentation with APK clus-
ters, suggesting that the number of components required for the best classification is close
to number of classes for general malware type classification. The best performing dump
and results are shown in Table 6.11.

Random forests and neural networks achieved similar results that outperformed other
methods. Best configuration of neural networks contained hidden layer with 30 relu neurons.
Figure 6.4 shows learning curve visualizing the phenomenon that similar results might have
been achieved also by training random forest using higher number of decision trees on

45

under-sampled dataset. Neural network required less memory to store the trained classifier
than the constructed decision trees. However, the training time was higher, so the random
forest was chosen as the final classifier.

Logistic regression outperformed K-nearest neighbours and naive Bayes, which had the
lowest overall score. Logistic regression required increase in the number of iterations to
converge. Since the LDA was necessary for all classifiers to achieve F1 score above 0.90,
K-nearest neighbours was the only method than performed better on dataset E.

Method Dataset Precision Recall F1 score
KNN E 0.911 0.895 0.902
RF C 0.925 0.920 0.922
NN C 0.920 0.923 0.921
LR C 0.912 0.917 0.914
NB C 0.913 0.907 0.909

Table 6.11: .NET malware type - achieved results

Figure 6.4: Learning curve of random forest

6.4.4 Malware family

Clusters of this file format were identified by 419 malware families. This value had changed
over time and multiple dumps contained different number of families. However, this number
is still lowest in comparison with APK and PE clusters. Application of LDA had again
impact on increasing the overall classification results and the best results were achieved
using 30 components.

Even though usual experimentation results of severity or malware type classification
resulted into similar F1 scores among top performing classifiers, experimentation with .NET
clusters has shown that random forests are the best classification methods with higher
difference between the best and the next method. Also, usually the best performing datasets
for malware family classification were the ones with longer feature vectors than necessary

46

for malware type classification and this was also true in this classification problem, because
the classifier performed best on dataset F. Results are shown in Table 6.12.

K-nearest neighbours performed best with only 1 neighbour using Euclidean distance
as a metric. Neural networks required higher number of relu neurons in the hidden layer
(65–70), but it outperformed logistic regression in both precision and recall. Neural network
also used adaptive learning rate, which was constant until the error sequentially decreased,
but in the later phases of training it started to slightly decrease.

Naive Bayes classifier was the only method that achieved F1 score over 0.9 together
with random forests. However, its training time was slower.

Method Dataset Precision Recall F1 score
KNN B 0.844 0.858 0.851
RF F 0.916 0.924 0.920
NN E 0.867 0.884 0.875
LR E 0.678 0.731 0.704
NB E 0.913 0.907 0.909

Table 6.12: .NET malware family - achieved results

6.5 Other approaches
Overview of used approaches and experimentation results described in the previous sections
focuses on the models applicable in the final implemented web service. However, experimen-
tation was done using many other techniques, but there was not enough space to describe
them. This section represents a high level overview of other classification approaches that
did not achieve expected results or were not applicable in the classification service due to
different reason.

6.5.1 Voting classifier

Voting classifier is an ensemble method that combines multiple weak classifiers into one,
trains them separately and the final prediction is based on voting among them. The final
chosen class is the one with the highest number of votes among them [14]. This approach
is supposed to suppress the disadvantages of individual classification methods and achieve
higher results. Experiments have shown that this approach achieved the best results during
classification of severity and malware type of APK clusters with slightly higher accuracy
(≈ 0.5%). The voting classifier was composed out of random forest, neural network and
KNN. However the significantly increased training time and higher model size were reasons
for not selecting this method as the final classifier.

6.5.2 Stacking classifier

This is a meta-learning method that adds a new meta-layer into the training pipeline.
Predictions of multiple classifiers can be considered as independent features for another
classifier, which tries to learn, when certain classifiers miss-predict samples and corrects
those errors [14]. Stacking classifier had generally lower final accuracy than proposed solu-

47

tions described in previous sections and required a second layer that generated dataset out
of existing classifiers to be trained, which required necessary time and memory.

6.5.3 Image classification with CNN

Malpedia2 is a website that focuses on malware and cybersecurity. It uses interface called
Apiscout that allows to generate images of malware samples based on their properties.
Those colourful 32x32 pixel images might be used as dataset for further classification by
Convolutional neural networks, special kind of neural network used in computer vision and
image classification [22]. Multiple common CNN configurations like LeNet-5 were tested.
The experimentation also involved black and white image classification, various feature map
sizes in convolutional layers and layer sizes. Achieved results were significantly worse than
methods described in previous sections.

6.5.4 SVM

SVM (Support vector machines) is a classification algorithm maximizing the margin be-
tween the separating hyperplane and samples [33]. A general rule3 proposed by scikit-learn
creators suggests that their implementation of SVM is suitable when the number of sam-
ples is lower than 100 000. Otherwise the time necessary to train the classifier might be
extremely long. Experimentation with SVM had an overall classification performance sim-
ilar to K-nearest neigbours and slightly lower than the best found configuration of neural
networks. The time necessary to train this classifier with current library implementation
exceeded other methods even on smaller datasets.

6.5.5 FeatureHasher

Scikit-learn implements its own feature hashing class called FeatureHasher. This method
uses Murmurhash3 as hashing function equally as our own implementation. However, it does
not calculate absolute values out the function output to ensure that the index is positive,
but if the resulting index is negative, the value 1 is subtracted from the value stored on the
given index. This approach should penalize the hashing collisions with a certain probability.
However, only increasing the value on the calculated index in our implementation achieved
slightly better classification results.

6.6 Comparison with meta-learning framework
Auto-sklearn is a high level framework built as extension of scikit-learn to provide automated
search for the best classification methods [11]. User can select memory and time constraints
as well as methods that should be used for creation of the final classifier. Auto-sklearn
also supports data pre-processing methods and feature manipulation. This framework was
trained for each classification problem on the best performing dataset after evaluation of
proposed experiments described in the previous sections. Training time necessary to find
the best models was set to three days for each problem. The difference in F1 score between
our proposed models and the ensemble models found by this framework was not higher than
0.02, but the structures and configurations of the generated ensemble models were far more

2https://malpedia.caad.fkie.fraunhofer.de/
3https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

48

complex and resource consuming regarding the training time and memory requirements.
Our classifiers proposed for PE and .NET format classification outperformed the classifiers
generated by this framework.

6.7 Summary of experimentation results
The purpose of the experimentation was to find the best classification models of the cluster
severity, malware type and malware family. Various feature pre-processing approaches and
machine learning methods were tested in order to achieve the highest classification results.
The experiments were conducted for nine imbalanced classification problems involving three
file formats – PE, APK and .NET.

The best results for cluster severity classification were achieved with datasets composed
of hashed properties and one hot encoded data. Application of linear discriminant analysis
had the most significant impact on the classification results of malware types and malware
families. LDA has not only increased the class separation that resulted into higher classi-
fication accuracy, but it has also reduced the dimensionality of feature vectors. Principal
component analysis did not achieve similar improvements in terms of accuracy. Because
the application of LDA on the whole datasets was impossible for severity classification due
to memory limitations of the server, experimentation also involved application of LDA on
under-sampled datasets, but this approach did not achieve a sufficient positive impact on
classification performance.

The results have shown that our implementation of feature hashing not allowing the
collision elimination during the data transformation has slightly improved the classification
results in comparison with the default implementation of feature hashing in scikit-learn.

Random forests were chosen as the best classification method (except for the severity of
APK clusters) due to their superior accuracy, training time and ability to handle missing
data. Severity of APK clusters should be classified by neural networks. In the case of
APK classification, additional extraction of data from the stored properties also helped to
achieve higher classification results. Classifiers of PE malware types and families achieved
lower scores than classifiers of other file formats.

All classification results were validated among multiple dumps generated by Clusty and
later compared with classifiers generated by automated meta-learning framework that did
not achieve higher results in the most cases.

49

Chapter 7

Hamlet - web classification service

Based on the results of classifiers described in the previous chapter, the best performing
datasets and classification models should be used in the implemented service. Because
Clusty needs to be able to get the classification results of those classifiers, an independent
internal web service was designed. The official name of the service is Hamlet (Hierarchical
automated machine learning tagger). Clusty generates the necessary updated data for
training of the classifiers and Hamlet provides an interface that Clusty can use to request
cluster classification and get classification results or additional information. This chapter
describes a general design of the service.

7.1 Training and input data
Clusty saves all the information about active clusters in the internal database. For perfor-
mance reasons it generates a partial dump of this database once a day. This dump contains
only necessary properties about clusters that Hamlet needs for training. The extracted
data are serialized using the JSON serialization format.

Each cluster is identified by unique cluster_id as shown in Figure 7.1. Hamlet can later
gain information about the cluster classification directly from Clusty. Labels that repre-
sent classes during the supervised learning are saved as string values of the corresponding
classification type (severity, malware type or family). Information, whether the classifica-
tion was manually submitted by the analyst and was not generated by other automated
classifier, is stored together with the classification labels. If the tag was generated by an
automated service, a confidence provides closer percentual information about how confident
is the selected classifier with the current classification. Confidence of the manual vote is
100%. Properties of clusters are mostly represented by the lists of attributes.

A separate file is generated into shared folder on the hosting server for each classified
file format. Because the storage capacity of the hosting server is limited and everyday
creation of dumps would consequently exhaust the memory in few days, Hamlet should
automatically remove dumps over time.

Hamlet loads data from the generated dumps each day at the same time and retrains
the classifiers. For the training Hamlet ignores clusters with classification of lower confi-
dence than empirically estimated threshold 30%. This threshold is used to ensure that low
confident classifications would not be used for training, because they might lower the clas-
sification results by introducing missclassified clusters. The time of training together with
other essential configuration variables of the service such as supported file types, properties,

50

{
"cluster_id": "5ab0afdecbd30d42147041f3",
"classification": {

"severity": "malware",
"type": "worm",
"family": "Xindl",
"manual": true,
"confidence": 30

},
"properties": {

"imports": [
"MSVBVM60.DLL:DllFunctionCall",
"MSVBVM60.DLL:EVENT_SINK_AddRef",
"MSVBVM60.DLL:EVENT_SINK_QueryInterface",
"MSVBVM60.DLL:EVENT_SINK_Release",
"MSVBVM60.DLL:_CIatan"

]
}

}

Figure 7.1: Example of the JSON cluster

number of loaded samples, etc., can be specified using a configuration file. When the service
is initiated, it tries to load stored classifiers from the memory based on the implementation
of the classifiers. If any partial object like one hot encoder or scikit-learn classifier necessary
for file format classification is corrupted or the stored file does not exist, new instances of
those objects are automatically generated. Until the scheduled training Hamlet would be
unable to classify clusters of the specific file format. Figure 7.2 shows an overview of the
training process and classification flow.

For the functionality of the web service are responsible multiple processes, instances of
the service able to simultaneously fulfil client requests, both the API and web interface.
These processes (also called workers) are managed by the web server, but the main master
worker is also delegated and responsible for retraining of the classifiers. When the training
is done, it sends a signal to itself that triggers updating of other web workers.

Each new encountered malware family, malware type or severity from the dump is stored
into Hamlet’s internal database deployed on independent database server. Users could then
access the results from the web interface and see which classes is Hamlet not able to classify
by highlighting all of the currently classified families and types extracted from the classifier
objects.

7.2 Classification
Because Hamlet is an independent service and not a direct part of Clusty itself, it has
to provide an HTTP API that other services like Clusty can use. For this purpose the
application supports multiple endpoints to which Clusty can send POST data representing
JSON containing information about cluster. The response is also a JSON object containing
generated classification tag and additional information about classification. Each JSON
representing classification contains exact time of the classification (standard ISO 86011),

1https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en

51

Figure 7.2: Initial design of the action flow

confidence of each partial classification and also the names of the estimated classes. Once
Clusty gets the Hamlet’s response, it uses the partial confidence information to calculate
the overall confidence of the whole tag and compare it to other classification methods such
as decisions based on other antiviruses. Classification with the highest confidence is selected
as the final classification and stored into Clusty’s database. To ensure lower number of false
positives and proper comparison with foreign antivirus classifications, the confidence of the
whole classification is recalculated by the formula stated in equation 7.1.

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
7 · 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦_𝑐𝑜𝑛𝑓 + 4 · 𝑡𝑦𝑝𝑒_𝑐𝑜𝑛𝑓 + 3 · 𝑓𝑎𝑚𝑖𝑙𝑦_𝑐𝑜𝑛𝑓

14
(7.1)

Each made classification decision has to be saved into Hamlet’s internal database. If
there is a problem with missclassifications or specific cluster, it must be possible to find
all or just the latest classifications generated by Hamlet for the given cluster by using the
cluster ID. Also, it must be possible to generate plots representing the latest classification
trends based on the aggregated information.

Observation of the implemented service in time and analysis of its classification results
in production environment have led to implementation of secondary classification rules and
additional change in original design. Multiple times has occurred the same missclassifica-
tion pattern. When the cluster was missclassified as clean and the confidence of severity
classification was low, both malware type and malware family classifiers would agree with
high confidence on the result that would be correct. Also, if the confidence of malware type
classification is low and confidence of malware family is high or vice versa, the analysed clas-
sifications were often correct in favor of the higher confidence. For the change of predicted
malware type or family Hamlet needs to know which malware families belong to a certain

52

type and also confidences of the lower probable classes. When Hamlet needs to change the
type or family, it chooses the class with the next highest probability that also belongs to
the certain family or type based on the information from dump. Hamlet then might also
change the severity to malware. Those rules must be applied after all machine learning
estimations are done. This means that the cluster needs to be classified by all classifiers
and Hamlet must not finalize the tag when the severity is not estimated as malware. This
slightly changes the initial classification flow shown in Figure 7.2.

7.3 Logging
To monitor the functionality of application, performed activities and to catch any un-
expected behavior or error, web service needs to log its activity. Because logging of all
information into one log would make it harder to easily find needed information, Hamlet
separates the logged data into four different logs, each focused on different aspects of the
overall behaviour of the service described in Table 7.1.

Log name Examples of logged events
SERVER Main service flow, loading or generating of classifiers

CLF Performed classifications, IP addresses of requesting clients
DB Database access, information handling

TRAINING Encoding progress, application of LDA

Table 7.1: Service logs

53

Chapter 8

Implementation

In this chapter are described implementation details based on the design presented in the
previous chapter, used technologies and description of the provided API that other services
use for communication with Hamlet. It also presents designed web interface of the service.

8.1 Used technologies
For each functionality an appropriate existing technological solution that fulfils the neces-
sary demands or provides usable interface was chosen. As the base of machine learning was
chosen Python library scikit-learn. This machine learning framework for Python provides
high level model implementations and most of the data pre-processing methods. If the
methods were either not implemented or the behavior differs from the expected one, they
were implemented from scratch. For example, this was used for implementation of custom
feature hashing.

Because the scikit-learn was implemented in Python and many other internal Avast sys-
tems like Clusty are as well, Python 3 was chosen as the main language for implementation
of the web service using the Flask1 framework. Flask is useful web development framework
often used if the demands on the web interface should be simplicity and easy maintenance
with focus on back-end functionality, what meets the demands on Hamlet. Flask provides
default development WCGI library called Werkzeug. However, it is not recommended for
production deployment. For this reason was used Gunicorn2 - Unix WSGI HTTP server.
Gunicorn also supports multiple workers for hosting the web application.

Basic structure of the web interface was designed using HTML and its style using
CSS. For creation of dynamic web pages a templating language for Python called Jinja2
was used. By inserting pseudo Python commands directly into HTML template can then
Flask, which supports Jinja2, based on attributes passed to generating function execute
the template commands and generate the final HTML page. This is useful for generating
HTML documents with dynamic content, for example, visualization of classification results.
For chart creation was used Python package called Pygal3, which allows an easy integration
with web frameworks like Flask.

Because Hamlet needs to store information without specific scheme, like the list of
families for each dump, NoSQL database MongoDB was chosen as the main database to

1http://flask.pocoo.org/
2http://gunicorn.org/
3http://pygal.org/en/stable/

54

store the data. Furthermore, Clusty uses the same type of database, so Hamlet can share
the same database server. This is shown in Figure 8.1.

Figure 8.1: MongoDB access flow

8.2 API
Hamlet provides API for other services that require its classification results, mainly focused
on the needs of Clusty. Response of Hamlet is JSON containing requested information. API
covers all demanded use cases of the service. All implemented endpoints are described in
Table 8.1. For accessing private information like logs the user needs valid credentials that
are stored in the configuration file of the running service. The JSON representing cluster has
the same format as the one generated into dumps and used for training. However, it does
not have to include current classification information and if so, they would be discarded.

Endpoint Description
server/api Overview of API endpoints

server/api/log/<log_name> Content of requested log
server/api/classify_cluster/ Classification of JSON cluster sent

via HTTP POST request. Returns
JSON representing classification tag.

server/api/cluster_info/<id> Returns the list of classification results
of cluster (JSON data) for the given id.
If the parameter last_only has assigned
value True, only the last classification
result is returned.

Table 8.1: Overview of API endpoints

8.3 Classification
The core of classification service is represented by classifiers that are implemented as
an independent set of classes for each file format. They all share the same base class
GeneralClassifier. This class should serve as an abstract base for all classification mod-
els implemented also in the future. It contains the property classifiers together with all

55

necessary constraints for them. From the class are derived main production classifier classes
PE, APK and DOTNET_FeatureHashingClassifier. Although they share similar methods
and traits, those are not covered by the base class to highlight the independence of classifiers
and to allow easier changes in the future models without dependency on other formats. Such
a classifier contains multiple dictionaries where each key represents type of partial classifi-
cation like severity and contains models like encoders or feature extractors ensembling the
final classifier. During the initialization of the object it tries to load saved models from the
memory and if this task fails, it also generates new untrained models. User can explicitly
forbid the loading process on initialization or set the expected model destination to testing
directory. Each classifier implements multiple core functions described below.

1. prepare_data: Based on the arguments passed to this function it transforms received
object representing loaded data into feature vector based on the design of dataset for
either severity, malware type or family classification estimated by experimentation.

2. fit: Trains the models so that they can be able to generate predictions. This method
receives the classification type, which describes the classifier that should be trained.
If the classifier uses one hot encoding, those models are trained beforehand. This
method returns the accuracy score calculated on training dataset.

3. fit_all: Trains severity, malware type and family models.

4. predict: Generates prediction for obtained JSON representing properties of the clus-
ter. This prediction contains full classification tag (severity, malware type and family),
even if the severity is not clean, and help description representing the order of lower
probable decisions, because those information are necessary for secondary classifica-
tion rules.

5. save: Saves the models into specified destination.

Classifiers require data pre-processing models like hashing functions and one hot en-
coders. They are implemented in the module data_preprocessing. Hasher is implemented
manually because of the phenomenon described in Section 6.5.5. The implementation is
based on Algorithm 1.

The older versions of classifiers are represented by CERClassifier (Classifier-encoder-
reduction) and DSCClassifer. Those were implemented as prototypes of the classifiers and
were based on the emphasis that all classifiers for severity, type and family would use the
same dataset and varies only in the final machine learning methods. They were also used
during the experimentation.

User can see stored classification tags on the default webpage of the web service. The
classification results are visualized by table. The classified names are colourfully distin-
guished based on the severity tag using the same color scheme as Clusty. To easily access
cluster information from Clusty is the cluster ID also a reference to Clusty web page showing
information about the selected cluster. User can also search the results based on file type,
classification tags, cluster ID, confidence or limit the number of shown results. Example of
the shown results is represented by Figure 8.2.

Once the Flask receives a classification request and leaves control to routine responsible
for handling the given endpoint, the data are checked for validity. The cluster JSON must
contain properties, ID and other necessary attributes to be valid. If the validity checks fail,
JSON representing error message is returned to client. Once the validity is confirmed, then

56

Figure 8.2: Hamlet – classification results

is the cluster classified by the classifier and the results are post-processed by the secondary
rules. After that, the full classification tag is generated containing the classification time
and saved to DB. User obtains JSON representing the classification.

Many internal services either generate or process the JSON data. When the classification
request is made manually using the web interface and not API, user can easily copy the
generated JSON and paste it into an input area. The input area already contains a cluster
JSON template by default. Each time the data in the input area change, JSON is parsed
and checked by Javascript functions. If the JSON data are valid, they are visualized on
the right side of the page where supported keywords like file format properties are also
highlighted. If the JSON is missing key information like properties or cluster ID, warning
is shown in the bottom section and the form submit button is disabled until the data are
valid. The interface for manual classification is shown in Figure 8.3.

Figure 8.3: Hamlet – classification request interface

57

8.4 Training
To be able to make predictions, the classifiers need to be trained. The clusters are often
changed or reclassified. Clusty is able to generate dump once a day into shared folder with
Hamlet. The classifiers are trained each day at time specified in the configuration file. For
this purpose a background scheduler is activated during the service initialization. This
allows Hamlet to run a job similar to CRON jobs used on Unix operating systems. When
the scheduler triggers an event, the main master worker is delegated to train the classifiers.
The file format classifiers are trained sequentially. However, to train partial classifiers, from
which they are composed, is used parallelism.

Supported properties for the given file formats are loaded during training of each clas-
sifier. The dump is validated by the function validate_dump provided by the core.io
module. Name of the dump is generated by using a system date. If the file exists and dump
is valid, function generate_input_data is used to load the information from dump and
transform the data into format that is passed to classifiers. The function provides many
parameters that might describe the loaded data, like specifying the classification type, min-
imal confidence, allowed severities, etc. After that process is the model trained and saved
in the set destination.

When the training is completed, the main worker sends a signal to itself, which triggers
update of all slave workers. Malware tree is also generated from the current dump and
stored into database. If any error occurs during the training, the training information
is stored into DB and training is scheduled on the next day because the problem would
probably occur repeatedly on the same dump. Training information is saved separately
for each file format and contains partial accuracy scores of severity, malware type and
family classifiers achieved on the training dataset and the status whether the training was
completed successfully. If the training process was not finished due to an error or problem,
the accuracy of the partial classifiers shows value None. The reason can be easily found in
the service logs. Time of the beginning and end of the training process is also saved.

User can also limit the number of shown reports or search by the status or file format.
The training information interface is shown in Figure 8.4.

Figure 8.4: Hamlet – training reports

8.5 Malware tree
The malware tree is generated by function core.io.construct_malware_tree once the
scheduled training was completed successfully and classifiers are updated. The malware

58

tree is a hierarchical tree structure, which is constructed from the dump, containing three
layers: severity, malware types and families. Malware tree is generated using all names
that are present in the dump. The set of all existing labels differs from the classified ones
due to application of confidence threshold when the data are loaded into memory. When
the family is represented by a few samples with very low confidence, they were not used
for training and are not classified by Hamlet. User can access the supported and classified
severities, malware types and families through the Malware tree option in the main menu.
The handling routine obtains the classes classified by the currently used trained instances
of classifiers in the memory, loads the last malware tree for the given file format from the
database and subsequently highlights any names that occur in the tree. Example is shown
in Figure 8.5. If the classifiers are not trained yet, the trained objects do not contain
attribute classes_ and the generated tree is blank. This functionality is not useful only
for observation of Hamlet classification capabilities, but also for identification of the total
number of families or lookup of all malware types that contain searched malware family.

Figure 8.5: Hamlet – malware tree

8.6 Charts
Visualization of classification charts is an additional functionality, which allows the users
to see classification statistics from the latest reports. Each chart represents the changing
values of recorded properties in time. Three main properties were chosen to be visualized:
total number of classifications, number of classifications per file format and malware types.
When the classification result is saved to database, it is immediately counted into new
generated charts. Users can access chart interface from the main menu. The charts show
the latest results and user can specify time window and time step, from which are the charts
generated. Generated charts are shown in Figure 8.6.

8.7 Logging
Logging interface is the only one not accessible from the main menu. To access the logging
interface, user has to specifically request server/log endpoint. Both the user interface
and API are protected by credentials. The credentials are specified in the configuration file
and loaded during the service initialization. After accessing the log interface, user can see

59

Figure 8.6: Hamlet – generated charts

the latest reports of the logs, select the active log and also select the type of reports to be
shown (Figure 8.7). Python logging interface supports multiple priorities of the event logs
from DEBUG with the lowest priority to CRITICAL with the highest. Error reports are
distinguished from others using the red color, so they are easily identified. Logging reports
are sorted by the logged date and time.

Figure 8.7: Hamlet – logging interface

60

Chapter 9

Testing

The implemented web service was properly tested with a set of unit and integration tests
to verify and validate its functionality. Both types of tests focus on different areas of
functionality and are a common combination for testing of production services. All tests
were implemented using the Python 3 module unittest providing a high level interface
for implementation of test cases. All tests are fully automated and do not need user’s
interaction. After the execution of tests is completed, a short statistic of passing and
failing tests is printed to the standard output.

9.1 Unit tests
Unit tests focus on testing the functionality of specific modules, classes or functions. They
do not test the overall functionality of application and cooperation between modules [40].
All tests are sorted into categories and can be run separately for each category or as a
whole set. Basic description of each category is shown in Table 9.1. Unit tests do not need
configuration file information, any access to external services or other servers. Manually
chosen data and files that are stored in the testing directory are be used if any test needs a
sample, cluster information or a small dump to work with. Total number of implemented
unit tests is 101.

category description
core Core functionality & input, output

classification Performing classification & predictions estimation
apiscout_qr Apiscout image generators and converters

visual Plotting, chart generation & animation
data_preprocessing Preprocessing of dataset and properties

web Web utils and handling functions

Table 9.1: Overview of unit test categories

9.2 Integration tests
Integration tests are in comparison with unit tests meant to verify the integration of modules
and various parts of the service to function properly using the real database access and web

61

interface [40]. They load all credentials and necessary information from the configuration
file. Many of them require to start the whole service as a sub-process that is terminated after
the test run. A specific port different from the one used by production version is reserved
for this purpose. Execution of integration tests takes longer time due to initialization of
the whole service and connection to external services. Tests focused on the web interface
are executed using Firefox1 browser, which is downloaded and set by an automated script
together with webdriver responsible for communication between the browser and Selenium2,
testing framework for the browser automation. A basic description of each category is shown
in Table 9.2. Total number of implemented integration tests is 97.

category description
actions Web interface transactions

db Database modules & connection
web_api API requests and JSON validation

web_interface Web interface, forms and visualization

Table 9.2: Overview of integration test categories

1https://www.mozilla.org/en-US/firefox/new/
2https://www.seleniumhq.org/

62

Chapter 10

Conclusion

The goal of this thesis was to estimate whether malware classification is possible on the
cluster-level using the machine learning methods. The results described in Chapter 6 show
that the malware classification of PE, APK and .NET clusters is possible with lower ac-
curacy than common file-level classification approaches. However, the machine learning
methods provide one layer of detection behind other approaches that warns about suspi-
cious clusters and the achieved results were satisfactory. Especially effective classification
machine learning methods were random forests and neural networks. Comparison with
meta-learning framework has shown that during experimentation proper classification mod-
els were designed, which were also validated using multiple different dumps. Classification
of cluster severity was generally more accurate than classification of malware types and
families.

The best classification results were achieved for classification of APK clusters. This
might be caused by the higher number of missing features in clusters of other file formats.
Extraction of properties that are not shared by all files in the cluster should increase the
classification accuracy, for example, calculation of the mean file size value of cluster. Better
validation of the current classifications made by Clusty would lower the irreducible error of
the current datasets. The experimentation was also limited by the system resources. Linear
discriminant analysis was not applicable on larger datasets or for severity classification.
Because this method has significantly increased the accuracy for malware type and family
classification, we can expect the increase for the severity classification as well. With more
memory it would be also possible to increase the size of feature vectors containing the values
of hashed cluster properties, which has resulted into increased accuracy as well.

To provide a classification interface for users and external services, a web classification
service called Hamlet was implemented, which uses the proposed machine learning models
for the classification of clusters. This service allows users to classify clusters, see the clas-
sification results, generate charts representing the latest classification trends or to access
the service logs. Functionality of the web service was also properly verified by the set of
automated unit and integration tests.

Hamlet is currently used as a weak classification system of Clusty when the classification
using YARA rules fails. The confidence of classification result is recalculated based on
confidence of severity, malware type and family classification to achieve lower false positive
numbers and also to properly compare the confidence of classifications with other classifiers.

63

Bibliography

[1] Application Fundamentals. Android developers. [online; cit. 14.11.2018].
Retrieved from:
https://developer.android.com/guide/components/fundamentals

[2] Operating System Market Share. NetMarketShare. NetApplications.
[online; cit. 18.3.2019].
Retrieved from: https://netmarketshare.com/

[3] The devil’s in the Rich header. Global Research and Analysis Team. Kaspersky Lab.
[online; cit. 18.3.2019].
Retrieved from:
https://securelist.com/the-devils-in-the-rich-header/84348/

[4] Investigation: WannaCry cyber attack and the NHS. National Audit Office. Apr 2018.
[Online; cit. 17.10.2018].
Retrieved from: https://www.nao.org.uk/wp-content/uploads/2017/10/
Investigation-WannaCry-cyber-attack-and-the-NHS.pdf

[5] PE Format. Microsoft Corporation. 2018. [online; cit. 12.12.2018].
Retrieved from:
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format

[6] Alvarez, V. M.: YARA - The pattern matching swiss knife for malware researchers.
[Online; cit. 14.2.2019].
Retrieved from: http://virustotal.github.io/yara/

[7] Attenberg, J.; Weinberger, K.; Dasgupta, A.; et al.: Collaborative Email-Spam
Filtering with the Hashing Trick. In Sixth Conference on Email and Anti-Spam
(CEAS). Jan 2009.

[8] Chawla V., N.; W. Bowyer, K.; Lawrence O. Hall, L.; et al.: SMOTE: Synthetic
Minority Over-sampling Technique. 2002. pp. 321–357.

[9] Elisan, C. C.: Advanced Malware Analysis. McGraw-Hill Education. 2015. ISBN
978-0-07-181975-6.

[10] Fajmon, B.; Hlavičková, I.; Novák, M.; et al.: Numerická matematika a
pravděpodobnost. Ústav matematiky FEKT VUT v Brně. 2014. [online; cit. 4.4.2019].
Retrieved from: http:
//matika.umat.feec.vutbr.cz/inovace/texty/INM/CZ/INM_plna_verze_CZ.pdf

64

https://developer.android.com/guide/components/fundamentals
https://netmarketshare.com/
https://securelist.com/the-devils-in-the-rich-header/84348/
https://www.nao.org.uk/wp-content/uploads/2017/10/Investigation-WannaCry-cyber-attack-and-the-NHS.pdf
https://www.nao.org.uk/wp-content/uploads/2017/10/Investigation-WannaCry-cyber-attack-and-the-NHS.pdf
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format
http://virustotal.github.io/yara/
http://matika.umat.feec.vutbr.cz/inovace/texty/INM/CZ/INM_plna_verze_CZ.pdf
http://matika.umat.feec.vutbr.cz/inovace/texty/INM/CZ/INM_plna_verze_CZ.pdf

[11] Feurer, M.; Klein, A.; Eggensperger, K.; et al.: Efficient and Robust Automated
Machine Learning. In Advances in Neural Information Processing Systems 28, edited
by C. Cortes; N. D. Lawrence; D. D. Lee; M. Sugiyama; R. Garnett. Curran
Associates, Inc.. 2015. pp. 2962–2970.
Retrieved from: http://papers.nips.cc/paper/5872-efficient-and-robust-
automated-machine-learning.pdf

[12] Gavriluț, D.; Cimpoesu, M.; Anton, D.; et al.: Malware detection using machine
learning. Nov 2009. pp. 735 – 741. doi:10.1109/IMCSIT.2009.5352759.

[13] Goppit: Portable Executable File Format – A Reverse Engineer View. 2006.

[14] Géron, A.: Hands-On Machine Learning with Scikit-Learn & TensorFlow. O’Reilly.
2017. ISBN 978-1-491-96229-9.

[15] Guo, G.; Wang, H.; Bell, D.; et al.: KNN Model-Based Approach in Classification. In
On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE.
Aug 2003. ISBN 978-3-540-39964-3.

[16] Gurney, K.: An introduction to neural networks. Taylor & Francis e-Library. 2004.
ISBN 0-203-45151-1.

[17] Ho Park, S.; Goo, J. M.; Jo, C.-H.: Receiver operating characteristic (ROC) curve:
practical review for radiologists. Korean journal of radiology : official journal of the
Korean Radiological Society. vol. 5. Mar 2004: pp. 11–8. doi:10.3348/kjr.2004.5.1.11.

[18] Hossin, M.; M.N, S.: A Review on Evaluation Metrics for Data Classification
Evaluations. International Journal of Data Mining & Knowledge Management
Process. vol. 5. Mar 2015: pp. 01–11. doi:10.5121/ijdkp.2015.5201.

[19] Hrádek, I.: Štruktúra APK súboru na OS Android. Master’s Thesis. Masaryk
University, Faculty of informatics. 2015. [online; cit. 15.01.2019].
Retrieved from: https://is.muni.cz/th/uiuub/thesis.pdf

[20] Ivanović, M.; Radovanović, M.: Modern machine learning techniques and their
applications. Jun 2015. ISBN 978-1-138-02830-2. pp. 833–846.
doi:10.1201/b18592-153.

[21] Jolliffe, I.: Principal Component Analysis. Springer. 2002. ISBN 0-187-95442-2.

[22] Kalash, M.; Rochan, M.; Mohammed, N.; et al.: Malware Classification with Deep
Convolutional Neural Networks. In 2018 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS). Feb 2018. ISSN 2157-4960. pp. 1–5.
doi:10.1109/NTMS.2018.8328749.

[23] Kennedy, D.; O’Gorman, J.; Kearns, D.; et al.: Metasploit: The penetration tester’s
guide. William Pollock. 2011. ISBN 978-1-59327-288-3.

[24] Koret, J.; Bachaalany, E.: The antivirus hacker’s handbook. John Wiley and Sons,
Inc. 2015. ISBN 978-1-119-02875-8.

[25] Kriesel, D.: A Brief Introduction to Neural Networks. 2007.
Retrieved from: http://www.dkriesel.com

65

http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
https://is.muni.cz/th/uiuub/thesis.pdf
http://www.dkriesel.com

[26] Kruegel, C.: Full System Emulation: Achieving Successful Automated Dynamic
Analysis of Evasive Malware. In Proc. BlackHat USA Security Conference. Lastline,
Inc. 2014. pp. 1–7.

[27] Li, J.; Cheng, K.; Wang, S.; et al.: Feature Selection: A Data Perspective. ACM
Computing Surveys. vol. 50. Jan 2016. doi:10.1145/3136625.

[28] Müller, A. C.; Guido, S.: Introduction to Machine Learning with Python. O’Reilly.
2017. ISBN 97814449369415.

[29] Nakov, S.; et al.: Fundamentals of computer programming in C#. Faber Publishing.
Bulgaria. 2013. ISBN 987-954-400-773-7.

[30] Namanya, A. P.; Cullen, A.; Awan, I. U.; et al.: The World of Malware: An
Overview. In 2018 IEEE 6th International Conference on Future Internet of Things
and Cloud (FiCloud). Aug 2018. pp. 420–427. doi:10.1109/FiCloud.2018.00067.

[31] Nwankpa, C. E.; Ijomah, W.; Gachagan, A.; et al.: Activation functions: comparison
of trends in practice and research for deep learning. 2018. [online; cit. 14.1.2019].
Retrieved from: https://arxiv.org/pdf/1811.03378.pdf

[32] Perlich, C.: Learning Curves in Machine Learning. Jan 2011.
doi:10.1007/978-0-387-30164-8_452.

[33] Raschka, S.: Python Machine Learning. Packt Publishing. 2015. ISBN
978-1783555130.

[34] Rish, I.: An Empirical Study of the Naive Bayes Classifier. IJCAI 2001 Work Empir
Methods Artif Intell. vol. 3. Jan 2001.

[35] Rokach, L.; Maimon, O.: Decision Trees. The Data Mining and Knowledge Discovery
Handbook. vol. 6. Jan 2005: pp. 165–192. doi:10.1007/0-387-25465-X_9.

[36] Sami, A.; Yadegari, B.; Peiravian, N.; et al.: Malware detection based on mining API
calls. In Proceedings of the 2010 ACM Symposium on Applied Computing. SAC ’10.
USA: ACM. 2010. ISBN 978-1-60558-639-7.

[37] Shahzad, R. M. K.: Classification of potentially unwanted programs using supervised
learning. Blekinge Institute of Technology. Sweden. 2013. ISBN 978-91-7295-247-8.

[38] Tharwat, A.; Gaber, T.; Ibrahim, A.; et al.: Linear discriminant analysis: A detailed
tutorial. Ai Communications. vol. 30. May 2017: pp. 169–190,.
doi:10.3233/AIC-170729.

[39] Walck, C.: Hand-book on statistical distributions for experimentalists. Particle Physics
Group Fysikum. University of Stockholm. Stackholm. 2007. [online; cit. 10.2.2019].
Retrieved from:
http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf

[40] Zemek, P.: What is Clusty. Internal Avast documentation. [Online; cit. 30.04.2019].

66

https://arxiv.org/pdf/1811.03378.pdf
http://www.stat.rice.edu/~dobelman/textfiles/DistributionsHandbook.pdf

Appendix A

Contents of the DVD

∙ src/ - Source code of the application

∙ tests/ - Unit and integration tests

∙ data/ - Samples of JSON dumps

∙ docs/ - Folder into which documentation is generated

∙ bt_documentation/ - Source and PDF file of technical report

∙ requirements.txt - List of all required Python packages

∙ config.ini - Configuration file

∙ Makefile

∙ README.md

67

	Introduction
	General malware classification
	Severity
	Malware types
	Malware families

	Overview of current classification systems
	Clusty
	Static analysis
	Dynamic analysis
	Clustering
	Classification

	YARA rules

	File formats
	PE
	APK
	.NET

	Machine learning
	Approaches
	Feature engineering
	One hot enconding
	Feature hashing
	Feature selection
	Feature extraction

	Machine learning methods
	Logistic regression
	Decision tree
	Neural network
	Naive Bayes
	K-nearest neighbours

	Model validation
	Confusion matrix
	Accuracy
	F1 score, precision and recall
	ROC and AUC curves
	Learning curve
	Cross-validation

	Experimentation
	Experimentation design
	PE
	Datasets
	Severity
	Malware type
	Malware family

	APK
	Datasets
	Severity
	Malware type
	Malware family
	Data visualization

	.NET
	Datasets
	Severity
	Malware type
	Malware family

	Other approaches
	Voting classifier
	Stacking classifier
	Image classification with CNN
	SVM
	FeatureHasher

	Comparison with meta-learning framework
	Summary of experimentation results

	Hamlet - web classification service
	Training and input data
	Classification
	Logging

	Implementation
	Used technologies
	API
	Classification
	Training
	Malware tree
	Charts
	Logging

	Testing
	Unit tests
	Integration tests

	Conclusion
	Bibliography
	Contents of the DVD

