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Abstract
When travelling in a room, any sound is distorted by a room impulse response (RIR). De-
termining RIR has always been an important task in acoustics, but nowadays, it is even
more important, as RIR can be used to augment data for training automatic speech recog-
nition (ASR) systems. Classically, a RIR is estimated from a pair of clean and reverberated
sound signals. This is however not practical for real scenarios (such as personal assistants,
smart homes, etc.), as the clean signal is not available. The aim of the bachelor thesis is
to investigate ”blind” RIR estimation only from a reverberated speech signal. We have
used the BUT ReverbDB data set and first, re-implemented techniques for classical clean-
reverberated signals estimation of RIRs. Then, we investigated two techniques for RIR
estimation only from a reverberated signal. The first technique uses reverberated impulse-
like phonemes in speech which are expected to resemble RIR. Averaging and deconvolution
of these phonemes were tested to improve the quality and robustness of the estimation.
The second technique makes use of a regression neural networks trained to produce the
RIR from a speech input. Although none of the techniques reaches the quality of classical
measurement, the estimated RIRs have the potential to help in augmenting data for ASR
system training.

Abstrakt
Jakýkoliv zvuk šířící se místností je zkreslen impulsní odezvou této místnosti. Měření těchto
impulsních odezev bylo vždy důležitou úlohou akustiky, která v dnešní době ještě nabyla na
důležitosti, díky možnosti požití impulsních odezev při augmentaci dat pro účely trénování
automatických rozpoznávačů řeči. Standardně je impulsní odezva místnosti měřena za
pomoci čisté a zkreslené formy zvukového signálu. To je však v praxi nepraktické (například
u domácích asistentů či chytrých domů), neboť zde je k dispozici jen zkreslený signál. Tato
bakalářská práce se zabývá odhadem impulsní odezvy „naslepo“, pouze pomocí zkresleného
řečového signálu. Nejdříve jsme za použití datasetu BUT ReverbDB re-implementovali
standardní techniky pro měření impulsní odezvy z čistého/zkresleného signálu. Poté jsme
testovali dvě techniky odhadující impulsní odezvu místnosti pouze ze zkreslené řeči. První
technika k tomu používá impulsní fonémy ve zkreslené řeči, u kterých se předpokládá, že se
podobají impulsním odezvám místností. Bylo testováno průměrování a dekonvoluce těchto
fonémů za účelem zvýšení kvality a robustnosti odhadu. Druhá technika využívá regresní
neuronové sítě generující impulsní odezvy místností z řeči na vstupu. Ačkoliv žádná z
navrhovaných technik nedosahuje odhadů na úrovni standardních měření, mají tyto odhady
potenciál při augmentaci dat pro trénování automatických rozpoznávačů řeči.
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Chapter 1

Introduction

Automatic speech recognition (ASR) is a science discipline focusing on transcribing recorded
human spoken language into a text. Just as most of computer science fields, it also has
made a huge progression over the last decades. What firstly was a transcription of several
carefully pronounced English words in the close surrounding of a microphone became a
technique able to correctly transcribe whole sentences spoken in various languages that
were recorded in rather noisy areas. Just as automatic speech recognition accuracy has
dramatically increased so has its role in our lives as it is a part of home assistants or in-car
systems which are used by millions of people every day.

However, this usage of automatic speech recognition in the real world introduced new
problems that are not present in small artificial tasks. Often, the location of a speaker
(especially in a room, such as an office, living room etc.) is far away from the microphone,
causing increased noise and reverberation of the recorded speech, which causes ASR’s accu-
racy to drop. In such cases, a possible solution is training the speech recognizer on a clean
speech signal augmented by a room impulse response of the room it is located in. Room
impulse response describes, how an impulsive sound is reverberated between two points in
the room. Such augmented speech then sounds as if it was recorded in the room, where the
impulse response was measured. An ASR trained on these augmented data is expected to
perform better, in the particular room, than a system trained on clean speech data only.

Most of the methods for room impulse response measurement are based on emission
of a known signal and its comparison with its recorded form. Another used approach is
estimation of room impulse response from the room’s parameters. As the emission of the
signal takes a huge amount of time (or can not be done at all) and parameters of the room
are usually unknown, those methods are not suitable for portable devices using ASR. For
such devices, a method estimating room impulse only from a speech signal would be
desirable, as it is the most common type of signal these devices come into contact with.

The goals of this thesis are to overview commonly used methods for measurement of
room impulse response (chapter 2), implement metrics for comparison of impulse responses
(chapter 3), introduce ReverbDB database and replicate some of its results (chapter 4) and
design and test methods estimating room impulse response from the speech signal only.
This core of this bachelor thesis is dealt with in chapter 5, where impulse responses are
estimated analytically and chapter 6 where impulse responses are estimated using neural
networks.
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Chapter 2

Reverberation and Standard
Techniques for Room Impulse
Response Measurement

When trying to characterize acoustics of a location, we want to describe, how a sound signal
is changed between its emission and recording. To characterize this change, a room impulse
response (RIR) is used to describe how a short, impulsive sound (in theory a Dirac pulse)
is reverberated between two points of the room.

To capture this response, several methods can be used which can be divided into two
categories. Methods of the first category measure real sound signals in the examined en-
vironment, while methods of the second one estimate the room impulse response using a
simulation of sound propagation in a model based on the examined environment.

2.1 Reverberation
When recording a sound signal in a room, the recorded signal is not only the emitted one,
delayed by a time which corresponds to distance between the speaker and the recording
device, but, as can be seen in Figure 2.1, also contains noise and reflections of the original
sound.

Figure 2.1: Comparison of an original form of signal (left) with its reverberated form (right).
Notice that impulses are ”smeared” within reverberation of previous part of signal and noise
of room.
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The relationship between reverberated signal 𝑦(𝑡) and its original form 𝑥(𝑡) can be
expressed as

𝑦(𝑡) = 𝑥(𝑡) * ℎ(𝑡) + 𝑛(𝑡) (2.1)

where ℎ(𝑡) denotes room impulse response, 𝑛(𝑡) additive noise of a room and * convolution
operator.

Room impulse response (shown in Figure 2.2) describes response of a room to an im-
pulsive sound with a flat frequency spectrum. It contains the initial impulse together with
its delayed, attenuated reflections. The initial impulse at the beginning of the RIR corre-
sponds to the shortest propagation path of the impulsive signal and usually possesses the
highest amount of energy of all received reflections. Reflections in the latter parts of RIR
are created by different propagation paths with greater length than the one of the initial
signal (which is the reason for their increased delay). As time grows, so does the number of
reflections from different surfaces before reaching the microphone. As every surface absorbs
a certain amount of the signal’s energy, based on its material (compare a rugged and a
plain wall), later reflections are usually less distinct than the early ones.

Figure 2.2: A look onto the impulse response with lines, representing parts of the response
as described by Yoshioka [18].
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Note that every two points of the room have at least slightly different RIRs, as prop-
agation paths of a sound between every two points are different. The propagation and
reflection of a sound signal is shown in Figure 2.3.

Figure 2.3: Visualization of how sound signal is distributed. Sound waves may be reflected
several times before they reach the receiver. Reprinted from Svedström [16].

Reverberated sound (including RIR) can be, according to Yoshioka [18], divided into
three parts:

∙ Direct sound – This part of the signal is generated by the shortest propagation path
and therefore has the lowest delay.

∙ Early reflections – This part strongly depends on speaker and microphone location
and is located within 50 ms after the Direct sound.

∙ Late reverberation – The last part of the reverberated sound is composed of re-
flections captured 50 ms after the Direct sound and is independent on position of the
speaker and the microphone.

Energy ratio of the direct sound and early reflections to the late reverberation has a high
influence on performance of an ASR system. The stronger the reverberation is, the higher
word error rate can be expected from the recognizer. This ratio mainly depends on the
distance between the speaker and the microphone.

In practice, 𝑇60 is used to measure the precise length of reverberation. It is defined as a
time it takes for a sound pressure to decrease by 60 dB after the original signal is stopped:

𝐿 = 10 log10

(︂
𝑝2
𝑝1

)︂
, (2.2)

where 𝑝2 and 𝑝1 are powers of recorded and original signals. Converted to the linear domain,
60 dB means that the signal has to become million times weaker. 𝑇60 may be expressed
by a single number if the original signal is wideband or as a set of numbers, each standing
for different frequency range, when several signals are used. According to NTI-Audio [8],
when 𝑇60 is difficult to measure and the signal decay is supposed to be linear, measuring
drop of 30 dB and multiplying the time by 2 or measuring drop of 20 dB and multiplying
the time by 3 is sufficient. These methods are then called 𝑇30 and 𝑇20.
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2.2 Maximum Length Sequence Method
Maximum Length Sequence (MLS) method, as proposed by Schroeder [13], is a RIR mea-
surement method, based on periodical emission of a pseudo-random noise-like signal. The
most commonly used noise, the one discussed here, is a binary one, containing two values.
Example of such signal can be seen in Figure 2.4. In MLS, the number of samples in one
period of the noise-like signal is 𝐿 = 2𝑚 − 1, where 𝑚 denotes the order of the MLS signal.

Figure 2.4: Zoom onto an MLS signal of order 𝑚 = 18, containing total of 262143 samples.

The noise-like signal can be generated using m-stage shift registers with arbitrarily set
of initial values, except all units set to one (considering values of the binary signal to be
±1), which would generate only values of one. Digits of output signal are, for each sample,
retrieved from the last register while the first register is set to value which equals to values
of the last and last-but-one registers after the XOR operation (⊕), as shown in Figure 2.5.

Figure 2.5: Scheme for generating noise-like signal using 4-stage shift register. ⊕ denotes
XOR operation, 𝑠[𝑛] the noise-like signal.

After the output signal reaches length 𝐿, registers are set to their initial value and any
further computation results in repeating of the original output signal of length 𝐿. The
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signal generation can be mathematically expressed as

𝑚−1∑︁
𝑛=0

𝑠[𝑛] ̸= 𝑚, for 0 ≤ 𝑛 ≤ 𝑚− 1,

𝑠[𝑛] = 𝑠[𝑛−𝑚] ⊕ 𝑠[𝑛−𝑚 + 1], for 𝑚 ≤ 𝑛 ≤ 2𝑚 − 1, (2.3)

where 𝑚 denotes the order and 𝑠[𝑛] the noise-like binary signal.
This noise-like signal is then emitted from one point of a room and recorded in another.

As the signal is reproduced periodically, recorded periods of the signal can be averaged to
partly eliminate the noise of the measured room. The noise does not have to be only that of
a silent room, as Schroeder [13] stated: “(MLS) looks promising for making measurements
in halls during actual performances!”. Experiments performed by Stan [15] did show that
MLS is the best method for RIR measurement in occupied rooms.

After the recording is done, the averaged signal is circularly cross-correlated with the
initial sound to obtain the impulse response of the room. This act of retrieving the RIR
from the reverberated signal is often called deconvolution. According to Hamici [5], circular
cross-correlation is based on a linear cross-correlation given by:

𝑙𝑥𝑦[𝑛] =

𝑀+𝑁−2∑︁
𝑘=0

𝑥[𝑛] 𝑦[𝑛− 𝑘] (2.4)

where 𝑥[𝑛] and 𝑦[𝑛] are compared signals and 𝑀 and 𝑁 are numbers of samples of these
signals.

Circular cross-correlation then has its signals circular, which means that indices out of
range are set back to the valid samples as if modulo operator was used:

𝑐𝑥𝑦[𝑛] =
𝑀−1∑︁
𝑘=0

𝑥[𝑛] 𝑦[(𝑛 + 𝑘) mod 𝑀 ]. (2.5)

Circular cross-correlation requires signals to be of the same length. Therefore, before
circular cross-correlating signals of different length, length alignment has to be performed.
The output of the circular cross-correlation has the same length as compared signals.

The pseudo-random noise-like signal is used as in its Fourier transformation, frequency
components (except the DC one) have the same magnitude and therefore, it has the same
power spectrum as a single impulse. The system (room) hence responds evenly to every
frequency.

MLS method assumes the room to be a Linear, Time-Invariant (LTI) system. Non-
linearities of the system are present as distortion peaks in the impulse response and have
no connection to the real acoustics of the measured room. These distortion peaks can be
reduced by thorough calibration of speaker/microphone devices.

Further suppression of distortion peaks can be achieved by using a signal of length 2𝐿,
derived from MLS signal as:

𝑥[𝑛] =

{︃
𝑠[𝑛], if n is even, for 0 ≤ 𝑛 < 2𝐿

−𝑠[𝑛], if n is odd, for 0 ≤ 𝑛 < 2𝐿
(2.6)

where 𝑠[𝑛] denotes the original, noise-like signal.
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Except for emitting and recording a different signal, the procedure stays the same. With
this change, the method is called Inverse Repeat Sequence (IRS).

This method also expects input/output sampling clock synchronization, however, clock
asynchronicity can be compensated, as proposed by Szőke [17], by applying cross-correlation
on the first and last recorded period of recorded signal and using the time shift to resample
recorded signal to match the original one.

2.3 Time Stretched Pulse Method
Time Stretched Pulse (TSP) method, as described in 1981 by Aoshima [1], is based on an
impulse signal with a flat power spectrum for RIR measurement. This signal is expanded
before emission and compressed after reception. Unlike any other method mentioned in
this thesis, TSP signal is created primarily in the frequency domain, from which is then
transferred into the time domain.

The basic impulse is generated in the frequency domain. It’s spectrum is defined as:

𝑋[𝑘] = 999 exp

(︃
−
[︂
𝑘 − 900

800

]︂12)︃
for 0 ≤ 𝑘 ≤ 2047

𝑋[𝑘] = 𝑋[4097 − 𝑘] for 2049 ≤ 𝑘 ≤ 4095

𝑋[2048] = 0, (2.7)

where exp() denotes exponential function and 𝑋[𝑘] are coefficients of Discrete Fourier Trans-
form (DFT).

As can be seen in Figure 2.6, this complex function is conjugate symmetric which means
that its Inverse DFT produces a real signal. This signal is also shown in Figure 2.6. As the
transformed complex signal had its DC component located at its centre, high magnitudes
are located near its leftmost and rightmost edges.
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Figure 2.6: In the left panel is a real part of the complex spectrum given by Equation 2.7.
Imaginary part of this function is zero. In the right panel is the signal after application of
inverse DFT in which amplitudes are located on left and right edges.
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When the resulting signal is rearranged chronologically (using Octave or MATLAB
command fftshift, for example), the signal takes a form of an impulse (see Figure 2.7)
which can be further used for the purpose of obtaining impulse response.

Figure 2.7: Zoom onto the signal from Fig. 2.6 chronologically rearranged in the time
domain. Peaks which were located on left and right sides now meet in the middle.

The basic impulse response measurement with such a pulse signal is a very straight-
forward task since the emitted signal is an impulse itself and hence the recorded signal
would be the room impulse response. This approach, unfortunately, suffers from a low
signal-to-noise ratio (SNR) because of the low amount of energy emitted1.

For this reason, the signal from Equation 2.7 is stretched in time by a filter with fre-
quency response proposed by Aoshima [1] as

𝐻[𝑘] = exp

[︂
𝑗

(︂
12𝑘2

10000

)︂]︂
. (2.8)

This results in an increase of signal’s energy (compare Figures 2.7 and 2.8) and thereby
in improvement of SNR without increasing magnitude of the input signal, which might
cause distortion in the measured impulse response. After the reverberated time-stretched
pulse is recorded in the measured environment, the impulse response can be obtained by
inverse-filtering it. In the case of filter given in Equation 2.8, the inverse-filter frequency
response is:

𝐻−1[𝑘] = exp

[︂
−𝑗

(︂
12𝑘2

10000

)︂]︂
. (2.9)

1We have encountered the same problem when estimating the RIR from ”T” sounds in speech, see
chapter 5.
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Figure 2.8: Time Stretched Impulse created by stretching the simple impulse signal in time.

Filtering of the impulse signal can be substituted with creation of a new signal. A
spectrum of signal that would match the signal created by Equation 2.7 filtered with the
filter from Equation 2.8 is:

𝑋[𝑘] = 999 exp
(︃
−
[︂
𝑘 − 900

800

]︂12)︃
cos

(︂
12𝑘2

10000

)︂
for 0 ≤ 𝑘 ≤ 2047

𝑋[𝑘] = 𝑋[4097 − 𝑘] for 2049 ≤ 𝑛 ≤ 4095

𝑋[2048] = 0

𝑌 [𝑘] = 999 exp
(︃
−
[︂
𝑘 − 900

800

]︂12)︃
sin

(︂
12𝑘2

10000

)︂
for 0 ≤ 𝑘 ≤ 2047

𝑌 [𝑘] = −𝑌 [4097 − 𝑘] for 2049 ≤ 𝑛 ≤ 4095

𝑌 [2048] = 0, (2.10)

where 𝑋[𝑘] represents the real part of the spectrum and 𝑌 [𝑘] its imaginary part.
TSP method assumes the measured system to be LTI. Non-linearities of the measured

system may result in distortion peaks in the impulse response which produce cracking
sound when convolved with a clean sound. Generally, as the distortion error grows with
the amplitude of the emitted signal, lowering the excitation level of the signal decreases
the distortion error. This, however, also leads to an increase of noise error. The best
performance is achieved when error contribution from distortion and noise are equal. This
ideal excitation level is system-specific and has to be set individually for every measured
system based on its properties.

Furthermore, as stated by Dunn [2]: Averaging the results of N measurements will reduce
the noise contribution by factor of

√
𝑁 while the deterministic error due to distortion will

remain constant. Thus, averaging also reduces the optimum driving signal amplitude.
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2.4 Exponential Sine Sweep Method
The current state-of-the-art technique for the measurement of room acoustics is Exponential
Sine Sweep (ESS) method as proposed by Farina [3]. This method not only is capable of
obtaining a room’s impulse response but also can measure harmonic distortion. The ESS
is, unlike MLS and TSP, to some point vulnerable to time-variance of the system under
test and mismatch of an input/output sampling clock.

This method emits sine sweep with exponentially increased frequency, according to

𝑥(𝑡) = sin

⎡⎣ 𝜔1𝑇

ln
(︁
𝜔2
𝜔1

)︁ (︂𝑒 𝑡
𝑇
𝑙𝑛
(︁

𝜔2
𝜔1

)︁
− 1

)︂⎤⎦ , (2.11)

where 𝜔1 denotes starting angular frequency, 𝜔2 ending angular frequency and 𝑇 is the
total duration in seconds. This signal is shown in Figure 2.9.

Figure 2.9: A close look on exponential sine sweep signal, starting at frequency 𝑓1 = 5𝐻𝑧.

The ESS method uses linear deconvolution instead of circular deconvolution (discussed
in Section 2.2). This linear deconvolution has the property that when the time analysis
window has the same length as the sine sweep and is shorter than the impulse response
measured, the tail of the impulse is cut instead of making its way to the beginning of
the impulse response and therefore the time-aliasing error is avoided. To prevent the tail-
cutting, several seconds of silence are added to the end of the emitted sine sweep.
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The linear deconvolution is done by using an inverse filter of the original sine sweep
(Figure 2.10). As described by Stan [15], the inverse filter of an exponential sine sweep is
generated in two steps:

1. The original sine sweep is reversed and delayed, so it does not begin in time before zero.
This reversion of the signal leads to its inversion in its phase spectrum. Convolving
the original signal with its inverse version leads to squared magnitude spectrum.

2. To compensate for the different amount of energy emitted at lower and higher fre-
quencies, the magnitude spectrum is divided with regard to the current frequency.

Complete equation for calculation of inverse filter 𝐼(𝑡) for an exponential sine sweep signal
𝑥(𝑡) is given as

𝐼(𝑡) = rev (𝑥 (𝑡)) 𝑒
−𝑡 ln(𝜔2

𝜔1
)

𝑇 , (2.12)

where rev() denotes a function reversing its input, 𝑇 total duration of the sine sweep in
seconds and 𝜔1, 𝜔2 denote starting/ending angular frequency.
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Figure 2.10: An inverse filter for exponential sine sweep.
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The original sweep 𝑥(𝑡) convolved with its inverse filter 𝐼(𝑡) generates delayed Dirac’s
impulse 𝛿(𝑡) (Figure 2.11):

𝛿(𝑡) u 𝑥(𝑡) * 𝐼(𝑡) (2.13)

Figure 2.11: Delayed Dirac’s impulse resulting from convolution of exponential sine sweep
signal with it’s inverse filter.

The impulse response ℎ(𝑡) can be obtained by convolving recorded reverberated signal
𝑦(𝑡) with inverse filter 𝐼(𝑡):

ℎ(𝑡) = 𝑦(𝑡) * 𝐼(𝑡) (2.14)

ℎ(𝑡) not only contains the impulse response but also, if the sweep is slow enough, includes
measured distortion located prior to the impulse response. RIR calculated using the ESS
method with 15 s long sine sweep can be seen in Fig. 2.12. Notice that the impulse response
begins at time t = 15 s. Up to that time, measured distortions are present. They have a
form of smaller impulses where every impulse corresponds to one order of distortion. Orders
of distortion are thoroughly discussed in Farina [3].

Figure 2.12: Impulse response given by ESS method calculated from 15 seconds long sine
sweep.
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When using an exponential sine sweep signal, non-linear behaviour (distortion) of the
room results in creating clearly visible cracking peaks in the recorded reverberated sine
sweep signal. In case of linear sine sweep signal, these non-linearities become noise in the
reverberated signal which is correlated with the original signal and therefore, cannot be
averaged as a regular noise. If standard circular deconvolution was to be used for retrieval
of the RIR from the reverberated signal, these artefacts would appear within the impulse
response and corrupt it. However, when using linear deconvolution, these distortion peaks or
noise (depends on used sine sweep signal) move prior to the impulse response. As advantages
of exponential sine sweep are obvious when, apart from impulse response, distortion is to
be measured, exponential sine sweep also provides an improvement upon linear sine sweep
in form of better signal-to-noise ratio in lower frequencies.

As with MLS and TSP, it is possible to average several reverberated sweeps to improve
signal-to-noise ratio. In time-varying systems, however, Farina [3] suggests to rather use
one very long exponential sine sweep, as this prevents harmonic distortion from appearing
within the impulse response and the response is not affected by the time variation as only
single measurement was realized. Signal-to-noise ratio is also satisfying as a lot of energy
is emitted over a long time and is compressed to a short impulse response afterwards.

2.5 Methods Estimating Room Impulse Response from Sim-
ulation

While all the above-discussed methods were based on signal measurement in a real envi-
ronment, there is another group of methods which estimates room impulse response from a
mathematical model of the measured room. This estimation just from a model may come in
use when signals in the room can not be measured, for example in a hazardous environment
or when measuring non-existing areas (i.e. in a video game). This group of methods can
be further divided into two groups.

The first group are ray-based methods where the sound is represented by rays which are
propagated in free space. These rays can be seen as Dirac’s impulses which are propagated
only in one direction. Members of this group are Ray-Tracing method and Image Source
method (ISM).

In the Ray-Tracing method, a finite number of sound rays are cast into the room at a
single time. Every time a ray collides with a surface, the new trajectory of the ray, together
with its new energy is computed. The resulting room impulse response is then calculated
from rays captured by a microphone, located somewhere in the room.
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The ISM method creates a new virtual room every time a ray should be reflected from
a wall (illustrated in Figure 2.13). Every time a ray should be reflected from a surface, a
new virtual room is created, with a new sound source which has the same distance from
the surface as the previous one. This sound source then casts a new sound ray from its
virtual room back to the ”real” room. This new ray gets into the original room in the
place where the previous sound ray reached the surface and so the new ray acts as reflected
original ray, with its energy reduced according to the surface, the ray was ”reflected” from.
The final room impulse response is a summation of rays coming from virtual rooms into a
microphone.

Figure 2.13: Room unfolding performed by the Image Source Method.

The second group are wave-based methods which are designed to solve the wave equation
to estimate the response of the room. These methods provide more realistic results than
ray-based ones but at the cost of higher computational expense. Two members of this group
are the Boundary Element method and Finite Element method which discretize surface or
volume to elements behaving as described by the wave equation.

Room impulse responses given from these ”simulation” methods are not very suitable
for data augmentation as Ravanelli [12] noticed that usage of a room impulse response given
by methods using real sounds provides a more significant improvement on word-error-rate
than methods based on simulation even in a case when precise parameters of the room are
used.

2.6 Summary
In this chapter, information on reverberation and room impulse response were provided.
Also, the most commonly used techniques for measuring RIRs were discussed. As it was
shown, not every method is based on measuring of a signal in a real room and some meth-
ods are more appropriate for some environments than others. Maximum Length Sequence
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(which can be easily modified into the Inverse Repeat Sequence) is more suitable for mea-
suring noisy environment but also expects the measured room to be LTI, otherwise, the
captured room impulse response may be corrupted. Exponential Sweep Method is appro-
priate when measuring distortion together with room impulse response.

In chapter 4, pieces of information presented here are used as we try to replicate some
RIRs in the BUT ReverbDB database.

What is more, this list of methods showed us that there is currently no method for
estimation of a room impulse response estimation only from a recorded signal.
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Chapter 3

Comparison of Room Impulse
Responses

As it is shown later in Section 4.3, when room impulse responses are to be compared with
each other, a different metric than sample-by-sample comparison has to be implemented to
obtain a result which would objectively express how similar these responses are.

In this chapter, two methodologies are presented. The first, the Time-Ratio method,
compares responses in the time domain, while the second, the Frequency-Distance method,
does the comparison in the frequency domain.

3.1 Time-Ratio Method for Comparison of RIRs
The Time-Ratio method proposed by the author is based on a comparison of energy in
corresponding parts of aligned, normalised impulse responses in the time domain. It returns
one value, describing the similarity of compared signals. The returned value starts at zero,
meaning the same energy trend in signals over their duration. With increasing deviation of
signals, the value returned increases as well. An implementation of this method in Octave
is a part of this thesis.

The Time-Ratio method uses 2 inputs: 𝑟[𝑛] (standing for reference) and 𝑡[𝑛] (standing
for test) which are the compared signals. The returned value is independent on their order.

The Time-Ratio method can be split into nine steps:

1. In the first step, a length of a segment is chosen. These segments represent parts of
signal in further steps. Setting length of the segment too large will result in over-
generalized signals where similarity is found even for non-similar signals. On the
other hand, setting the length too low will result in intolerance for any deviations
(e.g. caused by noise). For purpose of sanity check and further experiments, the
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author uses length calculated as

𝑁𝑠𝑒𝑔 = 0.0025 × 𝐹𝑠, (3.1)

where 𝐹𝑠 denotes sampling frequency of the compared RIRs. This length (2.5 ms) is
used as this is the time for which two room impulse responses have the same initial
progression as seen in Figure 3.1.

Figure 3.1: Two different impulse responses have similar progression over the first 2.5 ms.

2. In the second step, both signals are normalized so the maximal value of their absolute
values equals to 1. This is happening to ensure that signals fit into a
< −1; +1 > range. Even when signals do already fit into the range (e.g. they fit into
a < −0.5; +0.5 > range), the normalization takes place anyway.

𝑟[𝑛] = 𝑟/max (|𝑟[𝑛]|)
𝑡[𝑛] = 𝑡/max (|𝑡[𝑛]|) ,

(3.2)

where max() is a function returning maximal value of its input vector.

3. In the third step, each sample of signals is squared, as we will need energies in further
computation.

𝑟[𝑛] = 𝑟2[𝑛], for 0 ≤ 𝑛 < 𝑅

𝑡[𝑛] = 𝑡2[𝑛], for 0 ≤ 𝑛 < 𝑇, (3.3)

where 𝑅 denotes length of 𝑟[𝑛] and 𝑇 denotes length of 𝑡[𝑛]
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4. In the fourth step, samples are aligned using cross-correlation. The strongest coef-
ficient of linear cross-correlation is found and one of the signals is cut according to
a lag of the coefficient so the signals have maximal correlation coefficient. This is
happening to assure that the strongest samples of compared RIRs (presumably ones
representing the direct sound) are in the same compared segment in further steps.
An omission of this step could potentially damage correctness of result.

[corr, lag] = xcorr(r, t);
index = find(abs(corr) == max(abs(corr)));
shift = lag(index);

if shift > 0
r = r(shift : end);

else
t = t(abs(shift) : end);

endif

where xcorr is a function taking two signals as parameters and returning [R, LAG],
where R is a vector of correlation estimates between the signals and LAG is a vector of
correlation lags.

5. In the fifth step, signals are length-aligned. The maximal number of segments which
can be filled is found. Afterwards, both signals are cut so that their lengths correspond
to the length of this number of segments.

𝑟[𝑛] =

{︃
𝑟[0 : 𝑁𝑠𝑒𝑔 × floor(𝑇/𝑁𝑠𝑒𝑔) − 1], if 𝑅 > 𝑇

𝑟[0 : 𝑁𝑠𝑒𝑔 × floor(𝑅/𝑁𝑠𝑒𝑔) − 1], otherwise
(3.4)

𝑡[𝑛] =

{︃
𝑡[0 : 𝑁𝑠𝑒𝑔 × floor(𝑇/𝑁𝑠𝑒𝑔) − 1], if 𝑅 > 𝑇

𝑡[0 : 𝑁𝑠𝑒𝑔 × floor(𝑅/𝑁𝑠𝑒𝑔) − 1], otherwise
(3.5)

where floor() denotes floor function and 𝑠[𝑖 : 𝑗] operation returning signal made by
values of 𝑠 on indexes < 𝑖; 𝑗 >.

6. In the sixth step, signals are divided into segments and for each segment, its energy
is computed.

𝐸1[1] =

𝑁𝑠𝑒𝑔−1∑︁
𝑛=0

𝑟[𝑛]

𝐸2[1] =

𝑁𝑠𝑒𝑔−1∑︁
𝑛=0

𝑡[𝑛]

𝐸1[𝑘] =

𝑘×𝑁𝑠𝑒𝑔−1∑︁
𝑛=(𝑘−1)×𝑁𝑠𝑒𝑔

𝑟[𝑛] for 1 < 𝑘 ≤ 𝑅/𝑁𝑠𝑒𝑔

𝐸2[𝑘] =

𝑘×𝑁𝑠𝑒𝑔−1∑︁
𝑛=(𝑘−1)×𝑁𝑠𝑒𝑔

𝑡[𝑛] for 1 < 𝑘 ≤ 𝑇/𝑁𝑠𝑒𝑔 (3.6)
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7. In the seventh step, the energy values of segments of one signal, created in the sixth
step contained in vectors e1 and e2, are divided by corresponding energy values of
segments of the second signal. Which signal is divided by which is decided from the
mean value of the resulting vector of results. The result with higher mean value is
further used. This is done to assure independence of result on the order of signals
(parameters):

ratios =

{︃
e1 ./ e2, if mean(e1 ./ e2) > mean(e2 ./ e1)

e2 ./ e1, otherwise
(3.7)

where ./ denotes element-wise division of vectors and mean() function returning mean
value of vector on input.

8. In the eighth step, from each element of the vector, created in the seventh step, a
value of one is subtracted and the absolute value is computed. Due to this, groups of
the same energy have a value of zero instead of one. This is required since the method
returns values from zero, meaning the same movement of energy in signals.

ratios = |ratios− 1| (3.9)

9. An output of the method is then calculated as a mean value of the vector created in
the eighth step.

𝑅𝑒𝑠𝑢𝑙𝑡 = mean (ratios) . (3.10)
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3.2 Sanity Check of the Time-Ratio Method
A sanity check was performed to prove the correctness of the Time-Ratio method. Four
rooms with measured RIRs were chosen from the ReverbDB (more about the data set in
Section 4.2) and for each, 5 room impulse responses were picked – 3 measurements of the
same microphone – speaker pair and 2 randomly selected different responses. A visual
comparison of same and different RIRs can be seen in Figure 3.2.

Figure 3.2: Comparison of same (upper) and different (lower) pairs of signals. As can be
seen, the two measurements of the same signal copy each other almost sample-wise perfectly.
The ratios(n), displays values of vector ratios calculated in the 8𝑡ℎ step stretched in time
so its values can be compared with signals in time.
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The results of the sanity check are presented in Table 3.1. When a room was compared
with itself, the comparison was made among the 3 measurements corresponding to the the
same impulse response. When different rooms were compared, a sample from each room
was chosen randomly. Results clearly show that the Time-Ratio method returns a value
under 1 when given two measurements of the same RIR. When given two different RIRs,
the method returns a large variety of values above 1, depending on a number of variables.
Discovering how much such value depends on which variable is out of the scope of this
thesis.

D105 L207 Q301 L227
0.373 6.068 91.059 5649.800

D105 0.929 6.166 203.560 7502.500
0.453 7.332 33.225 9823.800

0.399 126.110 45092.522
L207 0.280 12.291 3829.200

0.454 89.981 45660.363
0.277 245132.415

Q301 0.333 116835.356
0.259 241227.120

0.156
L227 0.221

0.242

Table 3.1: Results of sanity check of Time-Ratio method. Values on the diagonal corre-
spond to comparisons of different measurements of the same RIR. The non-diagonal values
correspond to comparisons of RIRs of different rooms.

3.3 Frequency-Distance Method for comparison of RIRs
The Frequency-Distance method is based on calculating an average Euclidian distance be-
tween magnitude spectrograms of framed signals. As the returned value corresponds to the
average distance between spectrograms, it is always positive. This value starts at 0, indi-
cating that spectrograms of compared responses have the same magnitudes in all compared
frames. As the deviation between compared signals grows, so does the returned value of
the method. An implementation of this method written in Octave is a part of this thesis.

Inputs of this method are impulse responses 𝑟[𝑛](standing for reference) and 𝑡[𝑛]
(standing for test) or matrices R and T, representing their magnitude spectrograms. Rows
of these matrices represent frequency bands, with elements ordered from 0 (𝐷𝐶 component)
to 𝑁𝐹𝐹𝑇 /2 (half of sampling frequency). Columns represent time frames. As a distance
between two points is independent on their order, so is the Frequency-Distance method
independent on its inputs.

The Frequency-Distance method has 8 steps when 𝑟[𝑛] and 𝑡[𝑛] are inputs. When inputs
are R and T, steps 1 - 5 are omitted:

1. In the first step, signals are time aligned using linear cross-correlation of their squared
values. One of the signals is zero-padded according to a lag of the strongest coefficient
of the cross-correlation output. This is done to make sure that the strongest samples
of 𝑟[𝑛] and 𝑡[𝑛] will be located in corresponding frames of spectrograms:
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[corr, LAG] = xcorr(r .^2, t .^2);
index = find(corr == max(corr));
Shift = LAG(index);

if Shift < 0
r = [zeros(abs(Shift),1); r];

elseif Shift > 0
t = [zeros(abs(Shift),1); t];

endif

2. Time aligned signals are then cut to the length of the shorter one. This is happening
to ensure the same length of their spectrograms.

3. In the third step, both signals are divided into frames with 50% overlap and each
frame is multiplied by Hann’s function of the same size as the size of frames is. The
Hann’s function equation is given as

𝑤[𝑛] = 0.5
(︁

1 − cos
(︁

2𝜋
𝑛

𝐻

)︁)︁
, for 0 ≤ 𝑛 ≤ 𝐻 − 1. (3.11)

where the length of the function is 𝐻. Length of frames was set to 256 samples.
This value was selected as spectrograms generated using this length of the frame have
129 frequency bins, which is the same amount as outputs of our neural networks in
chapter 6 do have. This allows us to easily apply this method for all investigated
techniques of RIR estimation.

4. Multiplied frames are transferred into the frequency domain using Discrete Fourier
Transform and clipped from the length of 𝑁𝐹𝐹𝑇 to 𝑁𝐹𝐹𝑇 /2+1 as the upper half is the
complex conjugate of the lower one. These transformed, clipped frames are arranged
into matrices R and T with 𝑀 rows (frequency bins) and 𝑁 columns (frames).
Steps 3 and 4 are illustrated mathematically and with code in step 6 of Section 5.4.

5. In the fifth step, absolute values of matrices R and T are calculated. This is to get
rid of their phases. R and T are now magnitude spectrograms.

6. In the sixth step, matrices are normalized to unit total power using square root of
summation of all elements in each matrix squared (squaring each element produces
a power spectrum). This normalization allows us to compare the shape of RIRs
regardless of their total powers or energies.

𝐸𝑅 =
𝑀−1∑︁
𝑖=0

𝑁−1∑︁
𝑗=0

Rij
2

𝐸𝑇 =

𝑀−1∑︁
𝑖=0

𝑁−1∑︁
𝑗=0

Tij
2

R =
R√
𝐸𝑅

T =
T√
𝐸𝑇

(3.12)
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7. In the seventh step, Euclidian distances between each two corresponding time frames
are calculated:

𝑑[𝑗] =

⎯⎸⎸⎷ 𝑀∑︁
𝑖=0

(Rij −Tij)
2, for 0 ≤ 𝑗 ≤ 𝑁 − 1. (3.13)

8. In the last step, the mean value is calculated from the vector of distances between
single frames. Calculation of mean value rather than summation is important as
comparing longer responses would lead to a higher number of frames and therefore to
biased results.

𝑅𝑒𝑠𝑢𝑙𝑡 = mean (d) (3.14)

3.4 Sanity Check of the Frequency-Distance Method
A sanity check was performed to check the correctness of the Frequency-Distance method.
The test set used was the same as for the Time-Ratio method in section 3.2. Results of the
sanity check are shown in Table 3.2.

From the results, it obvious, which samples are two measurements of one RIR, and
which are two measurements of two different rooms. The measurements of the same room
do, in most cases, fit under the threshold of 0.01, while measurements of different rooms
start at 0.024. All results fit in a range of < 0; 1 >.

D105 L207 Q301 L227
0.006 0.036 0.032 0.036

D105 0.006 0.028 0.036 0.039
0.003 0.039 0.036 0.042

0.001 0.025 0.046
L207 0.001 0.024 0.048

0.001 0.025 0.045
0.003 0.057

Q301 0.003 0.047
0.003 0.053

0.020
L227 0.017

0.006

Table 3.2: Results of the sanity check of Frequency-Distance method. Values on the diagonal
correspond to comparisons of different measurements of the same RIR. Non-diagonal values
correspond to comparisons of RIRs of different rooms.

3.5 Summary
In this chapter, two methods were introduced for the purpose of comparing room impulse
responses. The first one, the Time-Ratio method operates in the time domain, while the
second, the Frequency-Distance method operates in the frequency domain.
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Both methods return one positive value describing how much different the two compared
responses are, starting at 0, which indicates equivalence. Both methods have a different
threshold of returned value after which the two responses do not match. We have ex-
perimentally found that for the Time-Ratio method, this threshold is located in interval
< 0.929; 6.068 > (as the highest returned value for same responses was 0.929 and the lowest
value returned for different responses was 6.068). For the same reasons, this interval is set
to < 0.020; 0.024 > for the Frequency-Distance method.

These methods are used further in this thesis as similarity between author’s results and
ReverbDB measurements are tested. They are also used when RIR is estimated from a
speech signal.
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Chapter 4

Experimental Evaluation of
Standard RIR Measurements

As it was shown in Chapter 2, there is a number of methods for room impulse response
measurement. In this chapter, the LibriSpeech and the ReverbDB data sets are introduced,
as they are used in further experiments throughout this thesis. Then the ESS method,
discussed in Section 2.4 is used in practice. Firstly, we compare its implementation done
by the author with the one used by the ReverbDB and secondly, we try to replicate some
of the ReverbDB results.

4.1 LibriSpeech
LibriSpeech is an English corpus publicly available1 under the Creative Commons Attribu-
tion 4.0 International Licence. It is derived from audiobooks which are part of the LibriVox
project. It contains 1000 hours of captured speech signal sampled at 16 kHz. Apart from
this corpus, language model training data and pre-built language models2 are also part of
the LibriSpeech to allow easy reproduction of tests discussed in Panayotov [9].

Speech signals of the LibriSpeech are divided into parts stored in folders corresponding
to voices of actors who read them. Each of these actor-representing folders is further divided
into subfolders based on a chapter of the book which is read. Speech signals located in these
chapter-representing folders are not stored in form of one continuous audio file but are cut
into, up to 35 seconds long, tracks. Apart from the tracks themself, a text file containing
transcription of these tracks is located in each subfolder. These text files are organized so
that every line corresponds to one track of the subfolder. In total, the LibriSpeech is made
by 2485 voice actors and 1568 books divided into 5831 chapters.

As the total size of the corpus extends 50GB, it was split into 7 subsets. The speakers
were labelled as ’clean’ or ’other’ based on performance on ASR trained on Wall Street
Journal corpus [10], where speakers with lower WER were tagged as ’clean’ and speakers
with higher WER were tagged as ’other’. Based on their label and sex, speakers were moved
into LibriSpeech’s subsets as can be seen in Table 4.1.

1http://www.openslr.org/12/
2http://www.openslr.org/11/

27

http://www.openslr.org/12/
http://www.openslr.org/11/


subset hours per-spkr minutes female spkrs male spkrs total spkrs
dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

Table 4.1: Data subsets in LibriSpeech. Table taken from Panayotov [9].

4.2 ReverbDB
ReverbDB, with its full name Brno University of Technology Speech@FIT Reverb Database,
is a product of BUT research group Speech@FIT.

Its main components are a set of RIRs measured for every used speaker-microphone
pair, background noise of every speaker-microphone pair, detailed metadata and recordings
of reverberated LibriSpeech test-clean, 2000 HUB5 English evaluation and part of NIST
Speaker Recognition Evaluation 2010 data sets. ReverbDB is accompanied by a journal
paper by Szőke et al. [17] with a thorough description of the set and of ASR experiments
which were performed on the data set. The last part of the ReverbDB is a Kaldi-based
recipe on close-talk data augmentation so everyone can replicate experiments from the
journal. A part of the ReverbDB can be freely obtained3 under the Creative Common 4.0
Licence.

The BUT ReverbDB contributes to the DRAPAK4 project, sponsored by Czech Ministry
of Interior, which focuses on speech data mining in the security domain. This includes
eavesdropping devices such as ”bugs” which is the reason why some of speaker - microphone
pairs in the data set take place in rather unusual locations with no clear visibility between
each other.

The ReverbDB project is constantly being developed and at the time of writing this
thesis, it contains reverberated data from 9 rooms (3 office rooms, 1 stairway, 2 conference
rooms, 2 lecture rooms and a meeting room). For each room, the database contains 31
microphone positions and usually 5 speaker locations, creating over 150 unique speaker-
microphone pairs per room.

When ReverbDB was designed, other available data sets (such as ACE Corpus and
Sweet-Home sets) were studied and a conclusion was made that there is no available data
set which would include retransmitted freely accessible speech data set in a large variety
of rooms. It was observed that existing data sets focus rather on variety of microphone
locations than on diversity of rooms and their amount. This type of variety is less useful
as Ravanelli [11] pointed out that for an ASR performance, the variety of rooms is more
important. Furthermore, it was discovered that all the observed data sets provide only
recordings captured in ideal conditions where microphones were located within 4 meters
from a speaker and with direct visibility. This placement is insufficient not only when
intelligence ”gadgets” are developed but just as well when personal assistants are built as
many users do not stand in a direct line of sight when interacting with them. Metadata

3https://speech.fit.vutbr.cz/software/but-speech-fit-reverb-databa
4https://www.fit.vut.cz/research/project/1009/.en
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in other data sets were problematic as well since there was often no information on precise
coordinates and directions of microphones and speakers.

As already stated, the above mentioned shortcomings were taken in mind when Re-
verbDB was created: it contains retransmitted freely available speech data set (the Lib-
riSpeech test-clean subset), variety of rooms with different acoustics, microphones located
in remote places as well as in close, visible positions and detailed metadata describing
measured rooms and placing of speakers and microphones.

4.3 Comparison of Author’s and ReverbDB’s Approach to
the Exponential Sine Sweep Method

In this section, a comparison of the Exponential Sine Sweep method used by the author and
ReverbDB is provided. A link5 to the Matlab code for calculating room impulse response
used in ReverbDB (further called FSC (Free Source Code)), was shared in Szőke et al. [17]
and it is publicly available. Author’s implementation of the ESS method is a part of this
thesis.

In the first part, exponential sine sweep and its inverse filter generation, both the author
and FSC use Equation 2.11 to generate the sine sweep signal. FSC then, unlike the author,
sets the value of samples located after the last intersection of the resulting sine sweep with
the x-axis to zero (Figure 4.1).

Figure 4.1: Comparison of authors’s and FSC’s sine sweep. Values are the same until the
last intersection of signal with x-axis. FCS’s values are further on set to zero.

5http://freesourcecode.net/matlabprojects/69639/exp.sweep-and-impulse-response-in-matlab
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When generating the inverse filter, the author and FSC use Equation 2.12. In the FSC
approach, the resulting signal is then normalized as

𝐼(𝑡) = 𝐼(𝑡)/max (abs (𝐼(𝑡))) , (4.1)

where 𝐼(𝑡) is the inverse filter. Since the maximum of abs (sin (𝑥)) is 1 and Equation
2.12 decreases signal in time, this normalization has no other effect than to “beautify” the
resulting signal by setting its maximum absolute value to 1.

In the second part, extraction of RIR from reverberated signal, author’s Octave code
retrieves the room impulse response as:

1 function RIR = calculateRIR (rev,f1,f2,T,fs)
2 inv = inverseFilter(f1,f2,T,fs);
3
4 RIR = cconv(rev, inv);
5 RIR = RIR(round(length(RIR)/2): round(length(RIR)/2)+fs);
6 RIR = RIR / max(abs(RIR));

where rev denotes reverberated recorded sine sweep, f1 starting frequency, f2 ending fre-
quency, T length of sine sweep in seconds, and fs sampling frequency.

On line 2, the inverseFilter function is used to generate an inverse filter of the original
sine sweep in author’s approach.

On line 4, the ESS method output is computed using a cconv function. The cconv
function convolves signals on its input. This ESS method output, apart from the impulse
response, also contains measured distortion, as it was discussed in Section 2.4.

On line 5, one second long part is cut from the impulse response computed on line 4,
originating in the middle of the signal. This new RIR now contains only the desired impulse
response.

On line 6, this impulse response is normalized. This is because Octave/MATLAB repre-
sent sound signals as arrays of values in range <-1;+1> and the RIR before its normalization
may possess values out of this range.

The core of FSC’s MATLAB code for retrieving room impulse response is:

1 function h =sweepIR(rec, Nimp,T,f1,f2,offset,fs)
2 [temp,filt]=expsweep(T,f1,f2,0,fs);
3
4 t_end=find(20*log10(abs(rec(end:-1:1)))>-20,1,’first’);
5 t=length(rec)-t_end-T*fs-0.5*fs;
6 rec=rec(t:end,:);
7 filt=[filt;zeros(round((length(filt)+length(rec))/2),1)];
8 h_full=fftfilt(rec,filt);
9 h_full=h_full./max(max(abs(h_full)));

10
11 t_start=find(20*log10(abs(h_full))>-20,1,’first’)-offset;
12 h=h_full(t_start+1:t_start+Nimp,:);

where rec denotes recorded sine sweep, T length of sine sweep in seconds, f1 starting
frequency, f2 ending frequency, offset silence before the sweep in samples and fs sampling
frequency. Argument Nimp is nowhere documented or mentioned, the author assumes it to
be the required length of the returned room impulse response.
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On line 2, the expsweep function is used to generate an inverse filter of the original sine
sweep in FCS’s approach.

On lines 4 to 6, a clipping of the recorded signal can be seen, based on its volume. This
part, however, raised an index error every time the author tried to run it (line 5 always
returns a negative number) and therefore these lines of code had to be removed to make
the code executable.

On line 7, the extension of the inverse filter is performed in order to ensure sufficient
length of the resulting room impulse response.

On line 8, fftfilt function is used instead of function cconv. The fftfilt returns the
same values as function filt. The difference is that while filt multiplies each element of
the filter with each element of signal while fftfilt uses an FFT-based method of overlap-
adding, making it more suitable for longer signals (i.e. sound signals). The filt function
differs from the cconv function in the length of the returned array. While filt returns an
array of length 𝑁 , where the 𝑁 is the length of the filtered signal, cconv returns an array
of length 𝑀 + 𝑁 − 1, where the 𝑀 denotes length of the filter. Since the first 𝑁 samples
of cconv are the same as those of filt and only a part of the resulting output is required,
both functions are suitable.

Comparison of results of author’s and FSC’s implementation is shown in Figure 4.2. As
it was shown in this section, author’s and FSC’s approach differ, when calculating room
impulse response using the Exponential Sine Sweep method. Using different signals and
different ways of handling them makes it impossible to compare outputs sample-by-sample.

Figure 4.2: Comparison of room impulse responses generated by author and FSC. Notice
their similarity, except of the shift presented in author’s response.

4.4 Comparison of Replicated Room Impulse Responses with
ReverbDB Values

Using the Time-Ratio method, it is possible to compare results of the author’s ESS method
implementation with the values of the ReverbDB (calculated using FSC’s implementation).

To test, how author’s room impulse responses correspond to responses contained in the
ReverbDB, from each room contained in the data set, 3 impulse responses were randomly
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picked. These responses were then replicated, using the author’s ESS implementation and
compared using the Time-Ratio method. As the sampling frequency of reverberated sine
sweeps is 48 kHz, the results have this sampling frequency. Since the sampling frequency of
impulse responses contained in the ReverbDB is 16 kHz, the 48 kHz results were downsam-
pled using Octave/MATLAB command resample. Reverberated sine sweeps were provided
by Igor Szőke.

Results are shown in Table 4.2. All results are set under or close to the value of 1
and the range of < 0.929; 6.068 > was not exceeded for a single value. The average value
of deviations between corresponding results is 0.392, which is a value similar to results of
Table 3.1 when the same room impulse response was measured several times. This proves
the validity of author’s implementation.

Sample
#1

Sample
#2

Sample
#3 AVG

C236 0.088 0.045 0.142 0.092
Conference
Room 2 0.104 0.235 1.319 0.553

D105 0.041 0.070 0.313 0.141
E112 0.382 0.101 0.481 0.321
L207 0.992 0.389 0.463 0.615
L212 0.957 0.414 1.220 0.864
L227 0.238 0.075 0.072 0.385
Q301 0.184 0.139 0.041 0.121
Room 112 0.254 0.078 0.976 0.436

0.392

Table 4.2: Results of comparison between replicated room impulse responses and original
data measured using the Time-Ratio method.

4.5 Summary
In this chapter, audio data sets were introduced and the Exponential Sine Sweep method
was used in practice. In the first section, the LibriSpeech dataset was briefly introduced,
as it is used in the ReverbDB. The ReverbDB itself was discussed in the second section,
where it was stated which data it contains, what is the motivation behind it and who the
authors are. Next, a comparison between the author‘s implementation of the ESS method
and implementation used by ReverbDB creators was made. This comparison revealed that
impulse responses computed by author and ReverbDB cannot be compared sample-by-
sample. For this purpose, the Time-Ratio method presented in Chapter 3 was used for a
comparison of results. In the fourth section, the two implementations of the ESS method
were compared and their correctness was proven.

The data sets discussed in this chapter are further used when we try to estimate room
impulse response only from reverberated speech signal as the ReverbDB not only contains
various recorded voice signals but also contains impulse responses describing their rever-
beration. This will allow us to check the validity of results.
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Chapter 5

Analytical Approach to RIR
Estimation from a Speech Signal

As we have seen in previous chapters, calculation of a room impulse response is a straightfor-
ward task, when both clean and reverberated forms of a signal are provided. This however
changes, when only a reverberated form of a speech signal is available. In this chapter,
we try to blindly estimate room impulse response from impulse-like phonemes found in
speech signal and we check the correctness of this estimation against the measured impulse
response from ReverbDB using numerical metrics and listening evaluation.

5.1 Principles
We know from signal processing, that to recover an impulse response of a system, we need
to excite it with a Dirac pulse 𝛿(𝑡), that, in discrete time, becomes a unit pulse of 𝛿[𝑛]

When we try to estimate the impulse response of a room using only a speech signal, we
do not have any signal strongly resembling the Dirac’s impulse as a handclap or a gunshot.
Still, some phonemes (units of speech), such as ‘P’, ‘K’ or ‘T’ do, to some point, resemble
an impulse as they emit energy over a short time. Their reverberated forms can then
be seen as approximations of the room impulse response we are trying to estimate (see
Figure 5.1). In this chapter, we try to estimate RIR using these impulse-like phonemes and
their reverberation.

Figure 5.1: Reverberated impulse-like phoneme can be seen as an approximation of a room
impulse response.
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Extraction of these phonemes can be done in several ways based on additional informa-
tion provided (such as transcription or clean form of speech). A scheme showing these ways
and their accuracy can be seen in Figure 5.2. In practice, the fourth possibility would have
to be handled (estimation using only reverberated speech), in this thesis a functionality
of proposed methods is tested using phonemes extracted using all additional information
(a clean form of speech and text transcript). In case of proving the methods functional,
extraction of phonemes using less additional information would have to be dealt with (i.e.
using ASR or windowing a signal and analyzing the histogram of its squared values).

Figure 5.2: Additional information provided, its effect on precision of phoneme extraction
and possible approach to the phoneme extraction. We assume that we always have the
target (reverberated) speech available.

5.2 Phoneme Selection
As it was stated, when we try to estimate an impulse response using a phoneme, it is rea-
sonable to search for a phoneme, that itself resembles an impulse. This means a phoneme,
which contains a short burst of energy followed by silence. A ’T’ phoneme did show such
property, as a voiceless plosive1, and therefore is used in further experiments. For illus-
tration, a comparison between the ’T’ phoneme and a ’K’ phoneme is shown in Figure
5.3.

However, detection of every ’T’ phoneme in a speech signal would not be sufficient. As
the duration of reverberation may last hundreds of milliseconds or more, it is desired to
have the longest possible silence before the ’T’ phoneme as a reverberation of previous
speech could damage the reverberation of the ’T’ phoneme.

Also, an appearance of any speech signal located shortly after the ’T’ phoneme would
corrupt the reverberation of the ’T’ phoneme and therefore it is important to have silence
located after the phoneme as well.

Requirements of having silence present before and after the phoneme are not realistic
as single ’T’ phonemes do not occur in standard speech signals. For this reason, the re-
quirement for silence before the phoneme was changed to a requirement for silence or a
noise-like phoneme (e.g. ’HH’, ’V’) before the impulse-like phoneme. As these noise-like
phonemes do not possess a high amount of energy, their reverberation should not affect the
reverberation of the ’T’ phoneme.

1https://simple.wikipedia.org/wiki/Stop_consonant/
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Figure 5.3: Comparison of a ’T’ phoneme (on the left) and a ’K’ phoneme (on the right).
Notice that ’K’ is longer and slightly voiced.

The lengths of silent segments were chosen to be at least 100 ms before the phoneme and
400 ms after the phoneme. Such times were picked as they should be suitable for further
analysis and it is not uncommon to find a ’T’ phoneme with such conditions.

Another important property of the phoneme is its level of noise against the sound of
the phoneme. As obtaining a silence of the measured room is not complicated, SNR can be
calculated as

10log10

(︂
𝐸𝑝

𝐸𝑠𝑖𝑙

)︂
, (5.1)

where 𝐸𝑝 is energy of the ’T’ phoneme signal followed by silence and 𝐸𝑠𝑖𝑙 is energy of
background noise signal of the measured room. A threshold for phoneme usability was
selected as 6 dB of phoneme over the silence of the room. Low SNR ratio is usually caused
by a too silent sample of ’T’ phoneme, which is exposed to background noise and therefore
useless.

5.3 Phoneme Extraction
To extract phonemes from the reverberated speech signal, we use every additional informa-
tion possible, as was already stated. This can be done since we use the ReverbDB for the
testing which uses publicly available data set LibriSpeech that includes a transcription of
its speech signals. Therefore, a force-aligner can be used to detect locations of phonemes
in signal.

To match the transcription with speech signal, freely available Montreal Force-Aligner2

is used. For sake of precision, non-reverberated (the original LibriSpeech) speech signals
are used as inputs of the force-aligner.

The force-aligner takes as input speech signals and their transcripts of the same name
(i.e. file1.wav and file1.txt) and transforms them into a TextGrid format (i.e. file1.TextGrid)
containing a transcript where every phoneme of each word of the speech has its time of
beginning and time of the end. TextGrid files are then searched for ’T’ phonemes with
noise-like phonemes or silence in their surroundings by a GetPhonemes.py script (which is

2https://montreal-forced-aligner.readthedocs.io/en/latest/
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a part of this thesis). An output of this script (i.e Phonemes.txt) is a text file containing, on
each line, information about suitable phoneme found. This text file is then, together with
reverberated forms of speech signals, used as input for a SeparateSound.py script (also a
part of this thesis) which extracts phonemes from the speech signals into .wav files (0.wav,
1.wav. . . N.wav). As extracted phonemes are several hundreds of milliseconds long, the few
samples long shift between clean and reverberated form of speech can be neglected.

5.4 Phoneme Combination-based Method
An analytical method based on a phoneme combination is presented in this section. This
method is based on an assumption that, as it was stated above, reverberated forms of
impulse-like phonemes resemble impulse response of the room. However, these reverberated
phonemes differ speaker to speaker and are noised by, at least, background noise. Therefore,
using only one phoneme extracted from speech would not be sufficient. As we know from
signal processing, combining several estimations leads to better results. For this reason,
in this method, several phonemes are combined into one. This is illustrated in Fig. 5.4.
This combination has to be done by averaging magnitude spectrograms of phonemes, as
averaging the phonemes in time or combining their spectrograms containing their phase
would lead to their mutual attenuation and the result would be close to zero for all values.
Phases of the longest phoneme used are applied onto resulting magnitude spectrogram. This
combination of phonemes should eliminate non-correlated noise and speaker dependency.
An Octave implementation of this method is a part of this thesis.

Figure 5.4: In Phoneme Combination-based method, several impulse-like phonemes are
combined into one, using their magnitude spectrogram averaging, to obtain an estimation
of a room impulse response.

Input for this method is a matrix X (called Matrix in code) containing one extracted
phoneme on every line. These phonemes are zero-padded on their right side, so the number
of columns of the matrix corresponds to the length of the longest phoneme extracted. This
matrix has 𝑀 rows (phonemes) and 𝑁 columns.
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The method is split into the following steps:

1. In the first step, the power of each phoneme is calculated as

𝑃𝑖 =
1

𝐿

𝐿−1∑︁
𝑛=0

𝑥𝑖[𝑛]2, (5.2)

where 𝑥𝑖[𝑛] is the 𝑖𝑡ℎ phoneme and 𝐿 is the phoneme’s length without padding. The
phoneme with the biggest power is moved to the first row of X and will be used as a
reference phoneme from now on.

2. Next, all the phonemes are aligned with the referential phoneme. Length of the shift
for each, except the reference, phoneme is calculated using cross-correlation of its
squared, normalized to unit size of maximal absolute value, form.

for sample=2:rows
Matrix(sample,:) = CorrAlign(Matrix(1,:), Matrix(sample,:));

endfor

where CorrAlign is a function taking 2 signals as parameters and returning the second
signal aligned to the first one. This is done using zero-padding or cutting, based on
the result of cross-correlation of the two signals. See similar signal alignment done in
Section 3.3.

3. In the third step, an index of the longest phoneme is found. Its phases will be used
in further steps. At the same time, a vector v with length 𝑁 is created. Each of
its elements is set to a number of non-zero values in the corresponding column of X.
This creates a vector, indicating the number of phonemes present in each column of
the X. Visualization of this vector is in Figure 5.5.

Figure 5.5: v vector contains number of signals for each column of X.
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v = zeros(colsOfMatrix, 1);
longestSignal = 0;
longestSignalLength = 0;
for signal = 1:rows

starts = find(Matrix(signal,:), 1, "first");
ends = find(Matrix(signal,:), 1, "last");
v = v +
[zeros(1, starts-1), ones(ends-starts+1,1), zeros(1, colsOfMatrix-ends)];

if(ends-starts > longestSignalLen)
longestSignal = signal;
longestSignalLen = ends - starts;

endif
endfor

4. Afterwards, each phoneme is normalized to zero mean value and unit standard devi-
ation:

xi = (xi − mean(xi))/std(xi), for 0 ≤ 𝑖 < 𝑀 (5.3)

where xi denotes vector containing 𝑖𝑡ℎ signal of X and std() function calculating the
standard deviation of vector on its input.

5. In the fifth step, phonemes are divided into frames, with 50% overlap. Their mean
value is again subtracted in each frame and each frame is multiplied by a square
root of Hann’s function. Square root of the Hann function is especially suitable for
spectrogram manipulations as it ensures smoothing of transitions when re-synthesizing
the signal. Standard frame length, when dealing with speech, is about 25 ms. This
roughly corresponds to 512 samples at a sampling rate of 16 kHz. This length of
window is therefore used, however various frame lengths are tested in Section 5.5.

6. Next, every frame from the previous step is transformed into the frequency domain
using a Discrete Fourier Transformation. These transformed frames are clipped from
length of 𝑁𝐹𝐹𝑇 to 𝑁𝐹𝐹𝑇 /2+1 (e.g. frame of length 512 is clipped to a length of 257).
This is due to the redundancy of the upper half, which is the complex conjugate of
the lower half of the spectrum.
The following code includes steps 5 and 6 as their code-separation would require extra
space due to needed code-leading constructions.
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w = hann(WindowSize)’.^(1/2);
Nframes = 1 + floor((colsOfMatrix - WindowSize) / (WindowSize/2));
S = zeros(WindowSize/2+1, Nframes, rows)
nstart = 1;

for ii =1:Nframes
for signal = 1:rows;

frame = (Matrix(signal, nstart:nstart+WindowSize-1) -
mean(Matrix(signal, nstart:nstart+WindowSize-1))).* w;

FRAME = fft(frame);
S(:,ii, signal) = FRAME(1,1:WindowSize/2+1)’;

endfor
nstart = nstart + WindowSize/2;

endfor

Each layer of the S tensor then represents a spectrogram of one phoneme. Every
specrogram has 𝑀𝑆 = 𝑁𝐹𝐹𝑇

2 + 1 rows (frequency bins) and 𝑁𝑆 columns (frames).

S(:, :,𝑚) =

⎛⎜⎜⎜⎝
𝑥0(1) 𝑥0(𝑡) . . . 𝑥0(𝑁𝑆)
𝑥𝑘(1) 𝑥𝑘(𝑡) . . . 𝑥𝑘(𝑁𝑆)

...
... . . . ...

𝑥𝑀𝑆−1(1) 𝑥𝑀𝑆−1(𝑡) . . . 𝑥𝑀𝑆−1(𝑁𝑆)

⎞⎟⎟⎟⎠ , for 0 ≤ 𝑚 < 𝑀 (5.4)

where 𝑥 ∈ C, 𝑀 denotes number of phonemes in X, 𝑘 frequency bins and 𝑡 time in
frames. The S(𝑥, 𝑦, 𝑧) indexing syntax denotes element of tensor S on 𝑥𝑡ℎ row, 𝑦𝑡ℎ
colomn and 𝑧𝑡ℎ layer. The : character denotes every element on given dimension.

7. In the seventh step, frames are combined. This is done by averaging magnitudes of
corresponding frames. This creates a new sample, composed of frames throughout
samples. Averaging frames of this resulting sample using only the total number of
phonemes used can not be performed, as the number of used samples is different
across frames (see step 3). Also as we are combining signals in spectra, we can not
locate the exact number of samples from count vector v. Therefore we search the
vector for the maximal value in the range corresponding to averaged frame to be on
the safe side.

Sout =
𝑀−1∑︁
𝑚=0

|S(:, :,𝑚)|

Sout(:, 𝑛) = Sout(:, 𝑛)/max(v((𝑛− 1)
𝑁𝐹𝐹𝑇

2
+ 1 : (𝑛 + 1)

𝑁𝐹𝐹𝑇

2
)), for 0 ≤ 𝑛 < 𝑁𝑆

(5.5)

v vector created in step 3, max() function returning maximal value from input vector,
and v(𝑖 : 𝑗) operation returning vector made by values of v on indexes < 𝑖; 𝑗 >.
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8. In the eighth step, phases are added into this resulting averaged sample which now
contains only averaged magnitudes. For this purpose, phases of the longest sample,
which was found in step 3 are used. Parts of the sample’s phases are copied for
every corresponding frame. Using phases of shorter signal could corrupt the resulting
combined phoneme in areas beyond the length of phases donator.

Sout(𝑚,𝑛) = Sout(𝑚,𝑛) e 𝑗 angle(S(𝑚,𝑛,𝑙)), for 0 ≤ 𝑚 < 𝑀𝑆

for 0 ≤ 𝑛 < 𝑁𝑆 (5.6)

where 𝑙 denotes index of the longest phoneme in X and angle() denotes a function
returning the argument of its input in radians.

9. After this, the resulting signal is transformed into the time domain and assembled
into one continuous signal. This is achieved by applying the Inverse Fourier Trans-
formation on every frame of the resulting sample. Every transformed frame is then
once again multiplied with the square rooted Hann’s function and arranged into one
continuous signal.

Result = zeros(1,cols);
nstart = 1;

for ii = 1:Nframes
SPEK = SOut(:, ii)’;
FRAME = [SPEK conj(fliplr(SPEK(2:WindowSize/2)))];
frame = ifft(FRAME);
Result(nstart:nstart+WindowSize-1) = Result(nstart:nstart+ WindowSize-1)

+ frame .*w;

nstart = nstart + WindowSize/2;
endfor

Result = real(Result);

Function fliplr() returns a copy with order of its columns reversed (i.e. fliplr([1, 2; 3, 4]) =
[2, 1; 4, 3]) and is used to complete the spectrum with its upper part before the inverse
DFT.

10. Finally, as previous steps were performed in order to suppress noise and speaker
dependency, frames estimated from only one signal could not be improved enough
and are cut away from the result.

start = 1;

for i = 1:Nframes
AvgSignals = mean(divideVector(start:start + WindowSize-1));
if(AvgSignals < 1.5)

Result = Result(1:start);
break

endif
start = start+ WindowSize/2 ;

endfor

40



A comparison of room impulse response estimation with the measured impulse response
of the estimated room can be seen in Figure 5.6. The noise in the latter part of the
estimation was not completely eliminated. Also, the direct sound is not as significant as in
case of the measured impulse response. Notice, however, that both responses are primarily
located in the first 0.2 seconds.

Figure 5.6: Comparison of the estimated impulse response obtained using the phoneme
combination-based method (left) and reference RIR (right).

5.5 Testing of Phoneme Combination-based Method
To test the method, ’T’ phonemes from microphone number 1 in rooms L207 (SpkID01),
Q301 (SpkID01) and microphone number 2 in room D105 from the ReverbDB data set were
chosen. This was due to low reverberation of the microphones and their close distance to
speaker. These conditions were found desirable for initial experiments as in this environ-
ment, a general efficiency of the method can be tested and in case of success, it can be
tested in others, more reverberated or noisy environments.

The similarity between the output of the method and the referential room impulse
response is measured using the Frequency-Distance method presented in Section 3.3 as it
omits possible deviations in phase, which may be neglected when convolving/deconvolving
in the frequency domain using spectrograms. Hann function of length 512 was used. The
baseline was obtained as the best RIR estimate using a single ’T’ phoneme. Results of
testing are shown in Table 5.1.

D105 L207 Q301
Number of
phonemes 14 9 9

Baseline 0.071 0.074 0.074
Results of
method 0.073 0.079 0.093

Table 5.1: Results of testing of Phoneme Combination-based method.

As we can see, the baseline was not overcome for any microphone. Also, the distance
between the estimation and measured room impulse did not get into or below the range of
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< 0.020; 0.024 > which, as was presented in Section 3.5, empirically makes the difference
between the room impulse response corresponding to the measured room and an impulse
response of a different room.

Another experiment was performed with increased/decreased size of the Hann’s function
to 1024/256 samples. The same phonemes were used as for the experiment in Table 5.1.
Results can be seen in Table 5.2. Even with better performance achieved by lowering the
frequency resolution, baseline values were not met or overcome. For further experiments,
however, length of Hann’s function’s is set to 256 samples as it brings the best results in
most cases.

D105 L207 Q301
Baseline 0.071 0.074 0.074
Hann 256 0.074 0.078 0.082
Hann 512 0.073 0.079 0.093
Hann 1024 0.070 0.084 0.087

Table 5.2: Results as function of Hann’s window length.

5.6 Clean Phoneme Deconvolution Method
Another tested analytical approach for RIR estimation is based on an assumption that the
difference between speaker specifics of ’T’ phonemes can be neglected and their deconvo-
lution with a clean form of the phoneme, prepared in advance, returns a room impulse
response similar to the referential impulse response.

The Clean Phoneme Deconvolution method deconvolves (using circular cross-correlation
discussed in Section 2.2) extracted reverberated phonemes with a preloaded clean form of
these phonemes as

𝑒[𝑛] = 𝑟[𝑛] ∘ 𝑐[𝑛], (5.7)

where the estimation is calculated using reverberated phoneme 𝑟[𝑛] (standing for reverberated)
and a clean form of different phoneme 𝑐[𝑛] (standing for clean). The ∘ denotes circular
cross-correlation operator.

An Octave implementation of the method is a part of this thesis. The XCORR function
used within the code was taken from MATLAB File Exchange3.

As an input, the method takes a signal of a reverberated phoneme r and a signal of a
clean phoneme c.

The method follows these steps:
1. First, the needed size of signal padding is calculated to prevent time aliasing from

occurring. The needed length of circular cross-correlation is at least

𝑅 + 𝐶 + 1, (5.8)

where 𝑅 denotes length of signal 𝑟[𝑛] and 𝐶 length of signal 𝑐[𝑛]. Each phoneme is
then zero-padded according to the calculated value.
L = length(r)+length(c)+10;
c = [c; zeros(L-length(c),1)];
r = [r; zeros(L-length(r),1)];

3https://www.mathworks.com/matlabcentral/fileexchange/4810-circular-cross-correlation
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2. In the second step, r and c are aligned using cross-correlation, as in step 2 in the
Phoneme Combination-based method (Section 5.4).

r = CorrAlign(c, r);

3. Next, aligned signals are circularly cross-correlated according to Equation 5.7.

RIR = CXCORR(r, c);

4. In the fourth step, correlation coefficients are cut after the first appearance of zero-
valued coefficient as this indicates the correlation between zero-padding of signals,
after which a ‘tail’ of circular cross-correlation is located.

ends = find(RIR == 0, 1, "first");
RIR = RIR(1:ends);

5. Finally, possible coefficients of the correlation which are located before the maximal
coefficient (representing the direct sound) are cut as the initial direct sound part of
room impulse response posses the maximal coefficient.

starts = find(RIR == max(RIR));
RIR = RIR(starts:end);

A comparison of resulting room impulse response estimation with the reference impulse
response of the estimated room can be seen in Figure 5.7. We can observe that differences
between input phonemes caused the resulting estimation to have greater reverberation than
the measured room impulse response has.

Figure 5.7: Comparison of the estimated impulse response obtained using the Clean
Phoneme Deconvolution method (left) and reference RIR (right).

5.7 Testing of the Clean Phoneme Deconvolution Method
For testing of the Clean Phoneme Deconvolution method, 3 ‘T’ phonemes from LibriSpeech
were chosen as c. For each microphone, they were applied onto 3 different reverberated ‘T’
phonemes with the highest SNR. If the phoneme was about to be deconvolved with itself,
‘T’ phoneme with 4𝑡ℎ highest SNR was picked instead.
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Tested rooms and microphones were chosen the same as for the testing of the Phoneme
Combination-based method.

For the measurement of similarity between the result and measured impulse response
the Frequency-Distance method is used again as it allows us to compare results of both
methods presented. The baseline was obtained as the best RIR estimate using single ’T’
phonemes.

In Table 5.3, results of the testing are presented. As can be seen, the method overcame
the baseline4 for every room by applying the 𝐶𝑙𝑒𝑎𝑛2 or 𝐶𝑙𝑒𝑎𝑛3 phoneme onto the rever-
berated phoneme with the highest SNR. This means that the results of the method are
numerically closer to the measured impulse response than reverberated phonemes. Also,
results of the Phoneme Combination-based method were surpassed for each room.

D105 L207 Q301
rev1 rev2 rev3 rev1 rev2 rev3 rev1 rev2 rev3

Baseline 0.084 0.089 0.087
Clean1 0.080 0.093 0.067 0.077 0.085 0.078 0.090 0.093 0.093
Clean2 0.060 0.068 0.069 0.071 0.067 0.069 0.080 0.077 0.066
Clean3 0.067 0.065 0.064 0.067 0.087 0.089 0.074 0.078 0.062

Table 5.3: Results of the Clean Phoneme Deconvolution method.

Despite the success in overcoming the baseline, as results did not reach the range of
< 0.020; 0.024 >, they are still not numerically suitable for usage in favour of others,
measured impulse responses.

Even though the best numerical results were obtained by using phonemes 𝐶𝑙𝑒𝑎𝑛2 and
𝐶𝑙𝑒𝑎𝑛3, in further experiments 𝐶𝑙𝑒𝑎𝑛1 phoneme is used instead, as its results are visually
and acoustically closer to referential RIR (see Figure 5.8).

Figure 5.8: A comparison of results obtained when using 𝐶𝑙𝑒𝑎𝑛1 phoneme (left) and 𝐶𝑙𝑒𝑎𝑛2
phoneme (right).

4The baseline values are in table 5.3 slightly different from those in tables 5.1 and 5.2 since some of
phonemes resembling the reference RIR the most had to be removed from data set since their clean forms
were used as 𝑐[𝑛].
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5.8 Testing of Combinations of Clean Phoneme Deconvolu-
tion Method and Phoneme Combination-based Method

Finally, we are going to use both earlier introduced methods at once and compare results
with those of earlier tests. Two types of combination are performed. In the first one,
the Clean Phoneme Deconvolution method is applied to every phoneme, leading to several
estimated impulse responses, which are then combined using the Phoneme Combination-
based method. In the second one, phonemes are combined using Phoneme Combination-
based method and afterwards, the Clean Phoneme Deconvolution method is applied onto
the result. The reverberated form of the 𝐶𝑙𝑒𝑎𝑛1 sample from Section 5.7 was removed from
test sets.

For the testing, the same phonemes are used as in testing the phoneme combination-
based method (Section 5.5). Frequency-Distance method is used for similarity measure-
ment.

Results are presented in Table 5.4. In the table, we can see that results are numerically
similar to results of the Phoneme Combination-based method. In most of cases, the variant
of combination where the Phoneme Combination-based method was followed by the Clean
Phoneme Deconvolution method resulted in numerically better results. No result reached
the
< 0.020; 0.024 > range.

D105 L207 Q301
Baseline 0.071 0.076 0.073
Combination
Deconvolution 0.066 0.094 0.082

Deconvolution
Combination 0.076 0.081 0.087

Table 5.4: Resuls of combination of methods presented earlier in this thesis.

5.9 Listening Evaluation
To analyze outputs of methods presented above by listening, for each room eight estimates
of room impulse responses and eight augmentations of a clean speech signal were generated.
The augmentation was done using convolution and was done to allow comparison of speech,
instead of impulse responses5. These estimated impulse responses consist of 3 estimates gen-
erated by the phoneme combination-based method using three lengths of Hann’s function,
3 estimations generated using different clean phonemes in the clean phoneme deconvolution
method and 2 estimates obtained by application of the two methods in a different order.
For rooms D105 and L207, one extra augmentation was generated, obtained by clipping the
impulse response calculated by using Phoneme Combination-based method using Hann’s
function of length 256 samples as the latter part of the RIR contained only noise.

For the Phoneme Combination-based method, impulse responses generated are impul-
sive sounds, however, followed by a strong noise (as it was shown in Figure 5.6). The
impulses themselves also do not resemble the sound of impulse responses very much as they
sound very artificial. When convolved with a clean signal, the augmented version contains

5As an impulse response is a ”clap”-like sound, their comparison is not doable by listening.
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very long reverberation time and artefacts. When the noise is cut away from the estimated
response, the augmentation starts to resemble the original reverberation, by the length of
the reverberation time, however, the sound itself is not very clear. Of all the used Hann’s
function lengths, the 256 samples long sounds the best as it creates the smoothest sound.

In case of the Clean Phoneme Deconvolution method, impulse responses generated using
the 𝐶𝑙𝑒𝑎𝑛1 phoneme resemble an impulse, followed by an echo. Augmentations generated
by this clean phoneme resemble the original signal the most for all cases, although in case
of Q301, where the reverberation time was presumably shorter than the phoneme, the
augmented version possess longer reverberation time than original. Also, in the case of
D105, the augmented version sounds as if the signal was captured underwater. The 𝐶𝑙𝑒𝑎𝑛2
and 𝐶𝑙𝑒𝑎𝑛3 do not have impulse character and augmentations created using them resemble
recording the original signal underwater with no reverberation resembling the room. None
of the results has the clarity of the original reverberated signal.

Lastly, when combining the methods, the resulting estimates again sound like impulses
followed by an echo. When methods are combined so the Clean Phoneme Deconvolution
is applied first, the impulse end contains an artificially-sounding buzz. The speech aug-
mented using these estimates also sound less clear than when the Phoneme Combination-
based method is used first. When a signal is augmented using the estimate based on a
combination of methods, where the Phoneme Combination-based method was used first,
augmented version of signal in a room with short reverberation time (room Q301) contains
deep humming sound, throughout the signal.

In the author’s opinion, the best results were achieved, when using the 𝐶𝑙𝑒𝑎𝑛1 phoneme
in the Clean Phoneme Deconvolution method and when a combination of methods was used,
with Phoneme Combination-based method performed first as they have a similar level of
reverberation and possess the clearest sound.

5.10 Summary
In this chapter, analytical procedures which would allow us to transform speech, particularly
impulse-like phonemes, into impulse response were subject of our interest. Two possible
approaches were suggested.

The first one, the Phoneme Combination-based method, uses averaging of magnitude
spectrogram of aligned phonemes to eliminate noise and specifics of the speaker while keep-
ing the phoneme’s reverberation, which can be used as a room impulse response. Testing
of this method, however, did not show its usability, as results did not for most of cases
match or surpass the baseline – the highest measured resemblance between a reverberated
phoneme, used in the combination process, and the measured room impulse response.

The second approach, the Clean Phoneme Deconvolution method, neglects specifics of
speakers and deconvolves recorded phonemes using a different, prepared, clean form of the
phoneme. Testing of the method did overcome the baseline, again given by the highest
resemblance between reverberated phoneme and measured impulse response, however, its
results were not sufficient to use this estimation instead of different measured impulse re-
sponse as the resemblance did not reach the range of < 0.020; 0.024 >, separating responses
of different rooms from impulse responses of the same room, with little deviations.

The third attempt to estimate the room impulse response was made using a combination
of the two methods in both possible orders. The < 0.020; 0.024 > range was still not met
or surpassed.
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Reasons for the inability to estimate room impulse response well enough to be on par
with measured RIRs are possibly too large deviation of the impulse-like phoneme from a real
impulse and too large diversity between forms of the phoneme, based on speaker and con-
text. Also, the reverberated phonemes possess relatively low energy and are easily corrupted
by background noise. This corruption apparently can not be sufficiently suppressed by com-
bining several phonemes. For this low-energy reason, standard measurement techniques,
discussed in Chapter 2, use long-lasting, highly energetic, signals which, when compressed
into a short signal of a room impulse response avoid this background noise corruption.

These numerically huge deviations between the original impulse response and its estima-
tions, however, do not necessarily mean that the estimations could not be used to improve
ASR training to bridge the gap between clean and target data. Usage of these estimated
impulse responses (possibly further modified by e.i. a denoiser) was, however, beyond the
scope of this thesis.

Further tests in harsher environments with stronger reverberation and a higher level of
noise were not performed as results of tests where the microphone was located close to the
speaker (and low reverberation was present) were not sufficient and no ASR system was
trained yet to show usability of the estimations.
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Chapter 6

Machine Learning Approach to
RIR Estimation from Speech

As it was shown in the previous chapter, combining phonemes to receive room impulse
response produces results which resemble the real room impulse response to some point, but
their similarity to reference ones, computed using the Frequency-Distance method, is still
at levels corresponding to impulse responses of different rooms. Also in listening tests, some
results sound similar to the original recordings but still are easily distinguishable. In this
chapter, we try to blindly estimate room impulse response using deep neural networks. As
no architecture for impulse response estimation is known to the author, several architectures
are tried and their results are compared.

6.1 Principles
One of the reasons why methods in the previous chapter did not generate very precise
results may be the limitation in input data used. From all the speech signals where every
spoken word contains information about the reverberation of the room, only several carefully
selected phonemes were extracted and used for the impulse response estimation. This
situation changes when deep neural networks are used. When using DNNs, several seconds
of continuous speech (or even whole signals) can be used without a need for any phoneme
detection and measurement of its SNR. As we want to transform values representing speech
into different values representing room impulse response, we will be using regression neural
networks (see Figure 6.1).

Figure 6.1: For transformation speech signal into a room impulse response, regression DNN
has to be used.
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Both input (speech) and output (RIR) can be represented in several forms. They
can be represented in the time domain as arays of samples or in the frequency domain
as spectrograms. As dealing with phases-containing spectrograms would be troublesome,
magnitude, power and logarithmic spectrograms are considered as suitable.

Also, as speech and RIR signals tend to have high dynamics, its suppression should be
considered, using normalization, to achieve better results.

6.2 System Setup
To create, train and test neural networks, Python3 framework PyTorch was used. PyTorch
is an open-source machine learning framework allowing GPU acceleration1. Features of
PyTorch’s sub-package TorchAudio, as spectrogram generation or audio resampling, were
used during the data sets generation2.

An input used for all architectures tested in this chapter is a power spectrogram received
from initial 4.016 seconds of an audio signal sampled at a frequency of 8000 kHz. This part
of the audio signal is then transformed into a spectral domain by operating on 256 samples
weighted by Hann function. This results in spectrogram with 129 bands and 251 frames.
0𝑡ℎ band, containing the DC component, is then removed as it is unnecessary for the
impulse response estimation. The length of 4.016 s was chosen as it fills 251 frames of the
spectrogram.

For training of models, Adam optimizer was used. Adam, firstly introduced in Diederik
et al. [6], is an adaptive learning rate method, meaning that it computes individual learning
rates for different parameters. The name itself stands for ADAptive Moment estimation.
The initial learning rate is in all cases is set to 0.001 and ReduceLROnPlateau learning rate
scheduler is used with factor set to 0.1 and patience set to 3. Every model training takes
30 epochs. The objective function used is the Mean Squared Error. A size of batch is set
to 8.

1https://pytorch.org
2https://pytorch.org/audio/
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6.3 Outputs and their Normalization
When values are presented to models, target impulse responses are normalized, based on
their domain to suppress their high dynamics.

6.3.1 Signals

If a room impulse response signal in the time domain is the target of a model, it is first
normalized by a result of an exponential regression calculated over averaged absolute values
of all impulse responses contained in data set (see Section 6.4). The normalization is
calculated as:

𝑥[𝑛] =
ℎ[𝑛]

𝑦[𝑛]
, (6.1)

where ℎ[𝑛] is the first 0.496 s of the RIR, and 𝑦[𝑛] is the result of the exponential regression.
The result of exponential regression has form of

𝑦[𝑛] = 𝑎𝑒𝑏𝑛, (6.2)

where 𝑎 and 𝑏 are parameters returned by the exponential regression. Result of such
regression can be seen in Figure 6.2.

Figure 6.2: Averaged absolute values of room impulse responses and a result of an expo-
nential regression.

The regression was done using a combination of script RIRNormalization.py, which
searches for impulse responses in specified directory, averages their absolute values and
exports them into a single RIRavg.scv file, which is then imported into Excel where the
regression itself is performed using its scatter graph functions. Excel was used as curve_fit
function contained in scipy.optimize Python3 package did not return sufficient results. Im-
pulse response normalized this way in the time domain is displayed in Figure 6.3.
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Figure 6.3: Room impulse response normalized using the exponential regression.

6.3.2 Spectrogram

When impulse response in the frequency domain is the target of a model in form of a
spectrogram (of any kind, see Table 6.5), target spectrograms are normalized using mean
and standard deviation values calculated from all impulse responses contained in data set.
The normalization is computed as:

𝑆[𝑚,𝑛] = (𝑆[𝑚,𝑛] −𝑀𝐸𝐴𝑁𝑅𝐼𝑅𝑆)/𝑆𝑇𝐷𝑅𝐼𝑅𝑆 , (6.3)

where 𝑀𝐸𝐴𝑁𝑅𝐼𝑅𝑆 and 𝑆𝑇𝐷𝑅𝐼𝑅𝑆 denote mean and standard deviation values calculated
from initial 0.496 s of all RIRs contained in data set. These RIRs were in forms of spectro-
grams according to the output form of the model. This means that i.e. power spectrograms
have different 𝑀𝐸𝐴𝑁𝑅𝐼𝑅𝑆 than magnitude spectrograms.

The 𝑀𝐸𝐴𝑁𝑅𝐼𝑅𝑆 and 𝑆𝑇𝐷𝑅𝐼𝑅𝑆 values were calculated using the RIRNormalization.py
script, as it returns these values as well as averaged absolute values of RIRs.

6.3.3 Reconstruction of RIRs

When outputs of models are tested, they are un-normalized again. If a signal in the time
domain is the output of a model, its restoration is calculated using the result of exponential
regression:

ℎ[𝑛] = 𝑥[𝑛] × 𝑦[𝑛]. (6.4)

This will return the original dynamic to the signal. Similarly, when any kind of spectro-
gram is the output of a model, its dynamics is restored by re-applying mean and standard
deviation values of RIRs in given form of spectrogram:

𝑆[𝑚,𝑛] = 𝑆[𝑚,𝑛] × 𝑆𝑇𝐷𝑅𝐼𝑅𝑆 + 𝑀𝐸𝐴𝑁𝑅𝐼𝑅𝑆 . (6.5)
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When the output of a model is in form of any spectrogram, the impulse response in the
time domain, used for purpose of listening evaluation, is calculated using the Griffin-Lim [4]
algorithm, which’s implementation is a part of the TorchAudio library. The Griffin-Lim
algorithm iteratively estimates phases for a magnitude spectrogram by minimalizing the
mean squared error between Short-time Fourier transform of the estimation of signal and
the provided magnitude spectrogram. Result of the Griffin-Lim algorithm achieved with 64
iterations can be seen in Figure 6.4.

Figure 6.4: Restoration of phases from a magnitude spectrogram using the Griffin-Lim
algorithm produces results similar to the original signal.

6.4 Data Sets And Their Generation
As a source of data for networks, the ReverbDB database was used. For training, validating
and testing, microphones were selected manually, excluding ones which were partly or fully
boxed and those with long reverberation times. After this exclusion, 105 microphones
were left, each containing its room impulse response and its recording of LibriSpeech test-
clean set. These microphones were then split into 3 non-overlapping groups: TRAINING,
VALIDATING and TESTING with sizes of 83, 10 and 12 microphones. The composition
of groups is shown in Table 6.1.

TRAINING VALIDATING TESTING

D105 03, 04, 05, 09, 10, 13, 19
01, 07, 08, 11, 14, 15, 29 02, 06, 16 26

L207
SpkID_01

01, 06, 07, 09, 12, 19, 22, 24
02, 03, 04, 08, 18, 20, 21, 25 / 05, 23, 31

L207
SpkID_06

03, 04, 06, 07, 08, 19, 20, 22
01, 05, 09, 18, 21, 23, 25 02 31

L212
SpkID_01

04, 06, 08, 13, 15, 19
03, 05, 07, 10, 11, 14, 16, 24 01 02, 26, 31

L212
SpkID_02

03, 05, 07, 08, 09, 15, 22, 24, 28
01, 02, 06, 11, 14, 26, 31 04, 16 13

Q301 04, 24
06, 07, 09, 16, 19, 20 01, 02, 03 05, 08, 26

Table 6.1: Distribution of microphones into groups. The bold microphones stay in TRAIN
group when test 6.6.2 is performed.
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Data sets were then generated by randomly picking files from group corresponding to
generated data set (i.e. TESTING group corresponds to test data set), checking whether
the file’s length is sufficient, resampling the file to 8 kHz, cutting off the part after the 4.016
seconds, transforming the signal into a spectrogram and removing the 0𝑡ℎ coefficient. The
room impulse response of the microphone the file belongs to was then added to a different
dimension of the tensor in which the spectrogram was located (so in [0, :, :] the room
impulse response was located and in [1, :, :] the spectrogram was located). This tensor
was then saved into a folder dedicated to the currently generated data set. After the whole
data set was generated, an entry was added into a text descriptor, containing a path to the
data set, its length and its mean value.

A data set generator used in this chapter is a part of this thesis. Data sets used in this
chapter have a total length of 50000 samples if no other value is stated with 40500 samples
being at training set, 4500 being at validation set and 5000 being at test set. As there are
105 microphones across data sets, one microphone was used to generate about 476 samples.

6.5 Models
Four architectures of neural networks were designed.

The first architecture is inspired by Zeinali’s et al. [19] implementation of Snyder’s et
al. [14] architecture originally used for speaker verification, in which several changes were
made and discussed, due to uncertainty of how the original architecture was implemented
in Kaldi. This architecture is described in Table 6.2. The BandNorm layer type normalizes
every band of input using mean and standard deviation value. StatisticsPooling calculates
mean and standard deviation value of every input layer, creating linear output of length
2 × number of input’s layers. After every Hidden Layer, except the 1𝑠𝑡 and the 7𝑡ℎ, a ReLu
non-linearity is located. After non-linearities of Hidden Layers #2 #3 #4 #5 and #6,
BatchNormalizations are located.

Architecture 1
Layer Name Layer Type
Input Layer (128,251)

Hidden Layer #1 BandNorm(128)
Hidden Layer #2 1dConv(128, 512, 5)
Hidden Layer #3 1dConv(512, 512, 5)
Hidden Layer #4 1dConv(512, 512, 7)
Hidden Layer #5 1dConv(512, 512, 1)
Hidden Layer #6 1dConv(512, 1536, 1)
Hidden Layer #7 StatisticsPooling(1536, 3072)
Hidden Layer #8 Linear(3072, 3967)
Hidden Layer #9 Linear(3967, 3967)
Hidden Layer #10 Linear(3967, 3967)

Output Layer See Table 6.5

Table 6.2: Architecture 1 scheme.

The second and third architectures are inspired by an autoencoder described by Novotný
et al. [7]. The third model uses wider linear layers in order to test, whether wider layers
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may lead to better results. Architectures 2 and 3 are described in Table 6.3. After every
Hidden Layer, except the 1𝑠𝑡, a Tanh non-linearity is located.

Architecture 2 Architecture 3
Layer Name Layer Type Layer Type
Input Layer (128,251) (128,251)

Hidden Layer #1 BandNorm(128) BandNorm(128)
Hidden Layer #2 Linear(128*251, 1500) Linear(128*251, 4096)
Hidden Layer #3 Linear(1500, 1500) Linear(4096, 4096)
Hidden Layer #3 Linear(1500, 1500) Linear(4096, 4096)

Output Layer See Table 6.5 See Table 6.5

Table 6.3: Architectures 2 and 3 scheme.

The fourth architecture handles the input spectrogram as a figure, unlike previous mod-
els by application 2d convolution layers. Architecture 4 is described in Table 6.4. After
every Hidden Layer, except 1𝑠𝑡, 4𝑡ℎ and the 7𝑡ℎ, a ReLu non-linearity is located. After
non-linearities of Hidden Layers #2 #3 #5 and #6, BatchNormalizations are located.

Architecture 4
Layer Name Layer Type
Input Layer (128,251)

Hidden Layer #1 BandNorm(128)
Hidden Layer #2 2dConv(1, 6, 3)
Hidden Layer #3 2dConv(6, 6, 3)
Hidden Layer #4 MaxPool(2)
Hidden Layer #5 2dConv(11, 11, 5)
Hidden Layer #6 2dConv(11, 11, 5)
Hidden Layer #7 MaxPool(2)
Hidden Layer #8 Linear(16929, 8464)
Hidden Layer #9 Linear(8464, 3967)
Hidden Layer #10 Linear(8464, 3967)

Output Layer See Table 6.5

Table 6.4: Architecture 4. scheme.
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The output layer of architectures presented above depends on their required output.
A list of possible forms of output and corresponding output layers is located in Table 6.5
As can be seen, when impulse response is generated in the time domain, its length is 3967
samples (0.4959 s). This is a sufficient time as only microphones with short reverberation
time were chosen and hence 𝑇60 is located up to this time. 3967 samples are also enough
to fill 31 frames of spectrogram with Hann’s function length of 256, which is the size of
spectrogram, produced by output layers producing spectrograms.

Output Layers
Form of impulse response Layer Type

Time Domain Linear(X, 3967)
Magnitude

Spectrogram Linear(X, 129*31).abs()

Power
Spectrogram Linear(X, 129*31).abs()

Log. Mag.
Spectrogram Linear(X, 129*31)

Table 6.5: A list of output layers. X denotes number of outputs of previous layer and .abs()
method calculating absolute value for every element in tensor.

6.6 Experiments

6.6.1 Networks with Different Outputs

In the first test, every network architecture proposed in Section 6.5 is trained for every
form of output. An average difference between outputs of networks and the reference room
impulse responses is measured using the Frequency-Distance method (FD). When resulting
room impulse response is in the time domain, the average difference is also measured using
the Time-Ratio method (TR). Also, an average difference between consecutive outputs
(DIFF) is measured using the Frequency-Distance method to observe, whether tested model
truly returns estimations based on inputs. The DIFF value of target results of testing set
had the value of 0.084. As we know that the produced RIRs should be mostly different for
consecutive outputs, a value significantly lower than 0.084 will, therefore, raise a suspicion
about the distinctiveness of results. Results are displayed in Table 6.6.

Time
Domain

Magnitude
Spectrogram

Power
Spectrogram

Log. Mag
Spectrogram

TR FD DIFF FD DIFF FD DIFF FD DIFF
Architecture 1 22.640 0.083 0.000 0.113 0.044 0.149 0.000 0.063 0.042
Architecture 2 158.924 0.096 0.044 0.130 0.000 0.154 0.001 0.084 0.005
Architecture 3 87.072 0.093 0.031 0.145 0.004 0.164 0.005 0.111 0.004
Architecture 4 22.197 0.084 0.000 0.127 0.043 0.146 0.000 0.064 0.013

Table 6.6: Comparison of models based on different architectures and with different outputs.

As can be seen, most of the models have a problem with overfitting as they return
the same output with no or very distinctiveness. In case when outputs have form of a
power spectrogram, this is happening for every architecture. This might be, in the author’s
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opinion due to requiring too small values still possessing too high dynamics (despite the
output normalization performed). However, the overfitting is not present for all models,
which proves that wrongly selected training data are not the reason for this phenomenon.

Architectures 1 and 4-based models proved to be capable of outputting input-dependent
results when outputs take form of magnitude or logarithmical magnitude spectrograms.
While the magnitude outputs of the architectures do not visually resemble the required
outputs very much as their later-time values are often zero, the logarithmical magnitude
spectrograms, despite being ”smoother” than correct results, visually do resemble correct
outputs. This can be seen in Fig 6.5. The architecture 1-based model outputting logarith-
mical magnitude spectrograms achieved the best score of all models tested with its average
Frequency-Distance score of 0.063. As it did not reach the < 0.020; 0.024 > range, results
are still, numerically, at levels corresponding to different impulse responses. This average
score is also close to the best result achieved using analytical methods, achieved by the
Clean Phoneme Deconvolution method, where the 𝐶𝑙𝑒𝑎𝑛2 phoneme was used to decon-
volve 𝑟𝑒𝑣1 in room D105. It is, however, important to keep in mind that despite obtaining
the best Frequency-Distance result, the listening evaluation showed that results with worse
Frequency-Distance score may sound better in practice.

Figure 6.5: Comparison between outputs of architectures 1 and 4 when magnitude and
logarithmical magnitude spectrogram is the output form. The Original denotes spectrogram
of reference RIR.
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Interestingly, as architectures 2 and 3-based models were not capable of producing input-
dependent outputs of any form of a spectrogram, they do output input-dependent results
in form of signal in the time domain. Spectrograms of these results visually also resemble
the correct output, see Fig 6.6. Deviations measured using both TR and FD proved, that
using wider linear layers, in this case, leads to results numerically closer to the correct ones.
However, they are also less distinctive.

Figure 6.6: Comparison between spectrograms of architectures 2 and 3 when output has
a form of RIR signal in the time domain. The Original denotes spectrogram of reference
RIR.

This suitability of different architectures for different outputs may, in the author’s opin-
ion, be given by the fact, that architectures 1 and 4-based models, which are the most suit-
able for outputting logarithmic magnitude spectrograms do use convolution layers. These
layers can make them more suitable for outputting figure - like outputs, such as spectro-
grams, especially the logarithmical magnitude ones, where a great range of values is on the
output, while restricting them from variety when estimating one-dimensional outputs, such
as the impulse response in time.

Architectures 2 and 3-based models, containing only linear layers do not have this
restriction and hence might be more suitable for estimation of RIRs in time. This absence
of convolution layer may then be the reason for the inability to estimate figure-like outputs.

Another possible reason for this behaviour could be the nonlinearity used, as architec-
tures 1 and 4-based models contain ReLU while architectures 2 and 3-based models contain
Tahn non-linearity.

6.6.2 Impact of Training Set Length And Amount of RIRs Onto
Networks Performance

In the second test, we observe how results of networks change when the size of training set
is increased and when the number of impulse responses located in training set is reduced.
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By increasing the size of training set, we observe, whether a larger size of training set,
not containing any new impulse responses, can improve results. Training set size is for this
experiment increased from the initial size of 40500 to 70000 samples.

By reducing the number of impulse responses used for training, we want to measure
how much is the performance of models influenced by the number of impulse responses in
training set. Models with higher performance drop are more likely to perform better in
cases when more impulse responses are added to the training set. The number of impulse
responses is, in this experiment, reduced from the initial 83 microphones to 40. The size of
training set remains 40500 samples.

Models used for this experiment are architecture 1-based model outputting magnitude
spectrogram, architecture 1-based model outputting logarithmic magnitude spectrogram
and architecture 3-based model outputting signal in the time domain. These architectures
and their outputs forms were chosen as they provided the best results for given form of
output while keeping the difference between its outputs above 0.030 on average. That is
also the reason why no power spectrogram-generating model was used.

Results can be seen in Table 6.7. All values were measured using the Frequency-Distance
method. A#𝑋 -> Mag. / Log. Mag. / Time denotes model based on architecture 𝑋 with
magnitude / logarithmic magnitude / time output.

Original
Result

70k Trainset
Result

40 RIRs
Result

FD DIFF FD DIFF FD DIFF
A#1 -> Mag. 0.113 0.044 0.119 0.039 0.120 0.021
A#1 -> Log. Mag. 0.063 0.042 0.063 0.046 0.065 0.037
A#3 -> Time 0.063 0.031 0.093 0.020 0.098 0.029

Table 6.7: Results of increased training set size with no additional RIRs and reduced number
of RIRs contained in training set.

It can be observed that use of a larger training set with no additional RIRs not only did
not improve the accuracy of models (as in case of architecture 1-based model outputting
logarithmical magnitude spectrograms), but it even decreased accuracy for other models.
Larger training set also decreased distinctiveness of outputs, except for the architecture
1-based model outputting logarithmical magnitude spectrograms, where small improvement
was measured. This may be caused, in the author’s opinion, by the large number of inputs
corresponding to the same output. Due to this, models may tend to output results heavily
inspired by training data. Further research which would search for the optimal number of
speech signals used for one provided RIR in training set is out of the scope of this thesis.

In case of reducing the number of RIRs provided in training set from 83 to 40, a
decrease of accuracy and distinctiveness of outputs was observed for every model. Despite
the biggest accuracy drop was measured in case of architecture 1-based model outputting
magnitude spectrograms, the author does not think that provision of more training RIRs
would dramatically increase its accuracy, due to its outputs, where later frames consist
of zero-valued elements. For this reason, architecture 3-based model outputting the room
impulse responses in the time domain has the highest potential for improvement in case of
more RIRs were provided.

We have experimentally discovered that the number of impulse responses provided in
the training set has a bigger positive impact on the performance of models than provision of
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more speech signals reverberated using the same set of RIRs. What is more, too large train-
ing set containing too few impulse responses may even cause accuracy and distinctiveness
of results to drop.

6.7 Listening Evaluation
For purpose of listening evaluation of results, microphone 2 in room D105 and microphone
1 in rooms L207 (SpkID1) and Q301 (SpkID01) were chosen for RIR estimation, due to
the previous estimation of their RIR in Section 5.9, which allows us to compare results of
estimations for both approaches. Clean speech signal was augmented using the estimated
RIR as listening only to 0.5 s long RIR estimation would not be sufficient for comparison.

The listening evaluation was done for models outputting logarithmical magnitude and
magnitude spectrograms based on architectures 1 and 4 and models outputting RIR in the
time domain, based on architectures 2 and 3. These models were chosen as distinctiveness
of their results based on their input was observed in Table 6.6. As input of each model,
random speech from the estimated microphone was used.

Results obtained from models outputting logarithmic magnitude spectrograms do re-
semble the correct RIR and the reverberated speech signal. The reverberation is on the
same level as in the original reverberated recording. The model based on architecture 1
provides, in the author’s opinion, clearer-sounding results than the model based on archi-
tecture 4, especially for the room Q301, where the reverberation time is shorter than in
other rooms.

All models outputting magnitude spectrograms do have, in their augmented speech
results, artificially-sounding echo, which is not located in the reference reverberated signal.
Furthermore, for the architecture 4–based model, all results sound similar. This invariance
of results is not present in the architecture 1-based model and also this model does not
have the artificial-sounding echo as distinct as the architecture 4-based one.

Lastly, results of models outputting their estimation in the time domain, do not have
any artificially-sounding artefacts. Their results are, however, very similar to each other in
terms of reverberation time length and sound’s cleanness.

Of all the models, the architecture 1-based model, outputting logarithmic magnitude
spectrograms has its results the most resembling the original impulse responses. This
highest resemblance is not only of all the DNN models but also of all the analytical methods
tested in Chapter 5 as well. A comparison of room impulse response generated by this model
with correct impulse response can be seen in Figure 6.7 on the next page.
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Figure 6.7: Comparison of an estimation of impulse response with short reverberation time
(left) with reference RIR (right). The impulse response was estimated using architecture
1-based model outputting logarithmic magnitude spectrograms.

6.8 Summary
In this chapter, we tried to estimate room impulse responses from speech signals using deep
neural networks using power spectrograms containing the first four seconds of reverberated
speech as input.

Four different neural network architectures were proposed and each was implemented
in four variants, with different forms of resulting RIR representation. These outputs are
signal in the time domain, magnitude spectrogram, power spectrogram and logarithmic
magnitude spectrogram.

Of all networks, the numerically best results were achieved when using architecture
inspired by Snyder, outputting logarithmical magnitude spectrogram. Despite its results,
it, however, did not match or surpass the < 0.020; 0.024 > range of Frequency-Distance
method separating two measurements of the same impulse response and two different im-
pulse responses. During listening evaluation, the model produced estimations closest to
original responses. However, as no testing was performed on an ASR, the effect of its
results on WER are unknown.

Finally, we have experimentally discovered that increased size of training set, not con-
taining any new impulse responses not only does not improve results of neural networks but
even may cause their accuracy to drop and decrease distictiveness of their results. For accu-
racy and result-distinctiveness improvement, additional room impulse responses in training
set are required.
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Chapter 7

Conclusion

7.1 Summary
In this thesis, we have introduced the reader to the subject of reverberation, which can
be represented as a room impulse response. We also presented methods used for the room
impulse response measurement (i.e. Maximum Length Sequence method or Exponential
Sine Sweep method). Methods estimating the impulse response only from a mathematical
model of the room were mentioned as well (i.e. Ray-Tracing method).

Further, we have introduced two methods designed for comparison of measured impulse
responses. The Time-Ratio method, comparing signals in the time domain, and Frequency-
Distance method, operating in the frequency domain. The functionality of both methods
was successfully checked.

The Time-Ratio method was used in chapter 4, where we have replicated some of results
from the ReverbDB database. This was done using the Exponential Sine Sweep method.
We have observed differences between the author’s implementation of the method and
implementation used in the ReverbDB. Using the Time-Ratio method we have proved that
both implementations return similar results.

Next, we have tried to estimate the impulse response of a room using methods process-
ing impulse-like phonemes. The first method proposed, the Phoneme Combination-based
method, combines magnitude spectrograms of phonemes to get rid of the uncorrelated
sound. The second one, the Clean Phoneme Deconvolution method, neglects the speaker-
specifics and deconvolves reverberated phonemes with prepared clean phonemes. Combi-
nation of the methods was also tested. Despite the results did not numerically succeed
(similarity of results with original responses was measured using the Frequency-Distance
method), listening test have shown that several results were similar to the original rever-
berated speech. As the results were not used for training of an ASR, we cannot tell, how
they would affect its performance.

Lastly, deep neural networks were used for impulse response estimation as they can use
continuous speech instead of extracted phonemes. Four architectures were proposed and
trained for several forms of outputs. The best results were achieved with an architecture
inspired by Snyder outputting logarithmic magnitude spectrograms. Despite numerically
failing to resemble reference RIR, listening tests have revealed similarity of augmented
speech to genuine reverberated one. This way, we have proved suitability of neural networks
for estimations of room impulse responses.
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7.2 Short-Term Perespective
As analytical methods presented in this thesis showed us, estimation of impulse response
only from small windows of speech does not bring any huge success in terms of creating
estimations of RIRs undistinguishable from the measured ones. In the author’s opinion,
neural networks are promising to achieve numerically and acoustically accurate RIR esti-
mations. Testing current architectures with different forms of input could lead to better
results. Also, models could be trained to estimate larger reverberation times in case of suc-
cess on short reverberations. New architectures can be tested as well as already proposed
architectures used for a different purpose, i.e. embeddings-using architectures. The first
thing that should be done, however, is training an ASR system on data augmented by RIRs
obtained from methods/models presented in this thesis to objectively evaluate their results.

7.3 Long-Term Perespective
From a broader point of view, as the RIR estimation’s main goal is to augment data for
an ASR to perform better during far-field speech recognition, experiments could be made
which would aim to transfer reverberated speech into its clean form, instead. If a neural
network was able to do this, no expensive microphone arrays would be needed for this task.
Also, an experimental speech recognizer could be trained, which would use a combination
of data from a camera and a microphone to improve its performance.
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