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Abstract

The goal of this work was to research existing methods of computer vision and computer
recognition fooling. My focus was on group of methods called pixel attacks. Another part
of my thesis talks about methods of detecting and fighting against computer vision fooling.

Implementation of various pixel attack methods and methods of defending against these
kinds of attacks was done using the python programming language and python library
Keras.

Solution that I have created works as standalone application allowing user to perform
various pixel attack methods on chosen image. This tool also allows collection of statistics
from performed pixel attacks and is able to detect possible attacks in these images.

Abstrakt

Cilem této prace bylo zkouméani existujicich metod mateni poc¢itacového vidéni a rozpoznavani.
Zaméril jsem se zejména na metody typu pixel attack. Déle jsem porovnal jednotlivé metody
obrany proti témto atokium.

Jednotlivé metody typu pixel attack a moznosti obrany proti témto utokim jsem im-
plementoval v jazyce python s vyuzitim knihovny Keras.

V ramci prace jsem vytvoril nastroj, ktery umoznuje provést ttok metodou pixel at-
tack na uzivateli zvoleném obrazku, a z informaci ziskanych pri utocich dokaze generovat
statistiky. Nastroj také umoznuje detekovat mozné titoky v obrazcich.
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Rozsireny abstrakt

Cilem této bakalaiské prace bylo prozkoumani existujicich metod pro mateni algoritmi
pocitac¢ového vidéni, téz znamé pod ndzvem utoky na klasifikdtory obrazu. Ackoliv pokusy
o mateni pocitacového vidéni vznikly spolecné s prvnimi klasifikatory, vétsina pokrocilejsich
metod se zacala objevovat az v poslednich nékolika letech. Zatimco diive ke zmateni poci-
tacového vidéni stacily casto primitivni metody jako napf. nakresleni obliceje na nafukovaci
balének, dnes jsou softwarové klasifikdtory v nékterych vécech presnéjsi nez lidské oko a pro
jejich mateni jsou vyzadovany mnohem vyspélejsi technologie. Vzhledem k tomu, Ze se sys-
témy pocitacového vidéni se setkdvame v kazdodennim zivoté éim dal castéji, je nutné
zajistit, aby tyto systémy byly odolné vici co nejvice moznym ttoktum. Téma odhalovani
a detekce utokt na klasifikaci obrazu je v dobé, kdy velké firmy jako google, tesla a BMW
vytvareji samoridici automobily, problémem, ktery by se mél zacit resit.

V této préci jsou popsany nejcasteji pouzivané metody mateni, jejich principy, a moznosti
obrany proti témto metodam nebo alespon jejich detekce. Lze zde najit i nékteré méné
pouzivané metody, které jsou zajimavé spise pro zpusob, kterym dokazi zmast klasifika-
tory. V pozdéjsich kapitolach se da docist o metodach obrany a detekce titoku na obrazové
klasifikatory a o jejich v soucasné dobé casto podcenovaném vyzkumu. Jsou zde popsany
oblibené, ale Casto nepriliS spravné fungujici metody a také nékteré metody, které jsem
vymyslel a tspésné zprovoznil.

Uvodem préce popisuji obecné definice spésnych ttokt na klasifikdtory obrazu, jed-
notliva rozdéleni do kategorii a hlavni typy téchto utokt. Popisuji zde hlavni rozdily mezi
mifenym a nemirenim ttokem a jejich vyhody a nevyhody. V této ¢asti prace také popisuji
moznosti vyuziti téchto atokd v bézném zivoté, a to jak z pohledu pozitivnich, tak i moznych
negativnich dopada vyuziti této technologie.

V prvni kapitole se zamétuji na metody z kategorie adversarial pertubation attack,
fungujici na principu provedeni drobnych, okem témér nerozeznatelnych zmén v obrazku.
Do této kategorie patri napriklad Gtok univerzalnim filtrem nebo Gtok jednim pixelem. Tato
kategorie je zajimava hlavné tim, Ze umoznuje utocit na klasifikatory, o kterych nemame
témér zadné informace, a jedna se tedy o tzv. black-box nebo semi-black-box utok. Dalsi
zajimavosti téchto metod je to, ze ke zmateni klasifikatoru jim postacuji pouze minimalni
zmény — u metody 1-pixel-attack pouzité na obrazek s rozliSenim 32x32px odpovidd zména
jednoho pixelu zméné v priblizné 0.098% obrazku, u rozliseni 124x124px se dokonce jedna
o zménu priblizné 0.0065%. Metody typu pixel-attack jsou také zpracovany v jazyce python
jako soucést této prace a v pozdéjsich kapitolach porovnavamm dosazenou ispésnost téchto
utokil s tspésnostmi utokl jinych programi.

V dalsi kapitole popisuji metody patiici do kategorie mateni pocitacového vidéni gene-
rovanim vlastnich obrazku (High confidence prediction image generation). Tyto metody se
od metod z kategorie adversarial pertubation attack lisi tim, Ze misto toho, aby provadéli
utok na jiz existujici obrazek, generuji postupné obrazek vlastni, ktery je ¢lovékem nerozez-
natelny, ackoliv dany klasifikdtor v néj ma vysokou uroven jistoty.

Dale se muzete docist o specidlnich metodach mateni, které nespadaji do zadné z vyse
uvedenych kategorii. Popisuji zde naptiklad metodu, kterd dokaze zméast klasifikator na-
toc¢enim obrazku o urcity uhel, aniz by jakkoliv jinak zasahovala do obrazku napf. zménou
barvy pixelu nebo prohozenim nékterych pixela.



V zavéru prace se zaobirdm moznostmi detekce dtoku v obrazku a moznostem pred-
chdzeni riznych typt atokt. Zvlasté tato problematika se v soucasné dobé projevuje jako
velmi kriticka. Ukazuje se totiz, ze ackoliv ttoky na obrazové klasifikdtory je velmi snadné
zprovoznit i na téch nejlépe fungujicich klasifikatorech, detekce téchto utoki a obrana proti
nim nemuze byt zajisténa se 100% presnosti. Zvlasté problematické je i to, Ze metody pro
obranu proti utokiim cCasto v praxi viibec nefunguji, ackoliv teoreticky davaji smysl. Prik-
ladem tohoto problému je naptiklad to, ze pokud se snazime neuronovou sit doucit na prik-
ladech obrazki dspésnych utoki, pro tuto sit nebude problém vygenerovat dalsi, o trochu
jiny, ispésny utok. V této kapitole popisi i nékteré metody detekce itoku v obrazku, které
jsem navrnul a zprovoznil. Ackoliv tyto zptusoby detekce funguji na velmi jednoduchych
principech, na internetu jsem o téchto zpusobech detekce ttoku v obrazku nic nenasel.

Jadrem samotné prace je program psany v jazyce python s vyuzitim knihovny keras
umoznujici pouzit utoky typu n-pixel-attack (dtok pomoci n pixeli) pattici do kategorie
adversarial pertubation attack na uzivatelem zvoleny obrazek. Uzivatel si mlize zvolit libo-
volny pocet pixelt pro tatok a také to, zda se bude provadét itok mifenou nebo nemitrenou
metodou a u mirené metody si zvolit libovolnou tifidu, na kterou se bude pokouset zmast
klasifikator. Dalsi vlastnosti programu je generovani statistik pro vétsi datasety, poskytu-
jici informace o ispésnostech jednotlivych metod. Uzivatel miize prepinat mezi rezimem
pro rychly ttok na libovolny obrazek formatu jpg nebo png a nebo rezimem uréenym pro
vypis statistik provadéného utoku. Tyto statistiky Ize najit v této kapitole v podobé grafu.
Program déle umoznuje detekovat, zda byl urcity obrazek napadnut a zjistit jeho puvodni
klasifikaci. Detekei itoku se pokousi provést pomoci nékolika metod. Tyto metody byly
samostatné vymysleny a vypracovany a bylo u nich dosazeno velice dobrych vysledku, které
jsou v této kapitole také uvedeny.
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Chapter 1

Introduction

Computer vision fooling is a discipline that has been around ever since first image recog-
nition software came out. Since then, the technology for both image recognition and it’s
fooling has advanced quite a bit. While it could have been enough just to draw a face on
a balloon in the past to successfully fool face detection software, today some advanced help
is necessary in the form of computer vision fooling methods.

There is not one best image recognition fooling method, because depending on what
kind of image is being used, some methods might work better than others, and some might
not work at all. In this thesis, I will describe most commonly used methods and possible
ways to detect them or defend against them.

1.1 Definition

For convenience, any attempt to fool image recognition software will be called attack.
Definition of successful attack will be:

1. Changing image in a way that originally correctly classified image is misclassified

2. Creating image that does not represent any real-life object but is still classified as one

172\

(a) Frog classified as cat b) Image cla551ﬁed as assault rifle [

]

Figure 1.1: Two methods of fooling computer vision



Methods which could also be included are ones with the ability to fool people, but
without the ability to fool neural networks, as described by Miguel P. Eckstein and his
colleagues [2], but since this topic is more related to biology rather than image recognition,
I decided not to include them.

1.2 Types of attacks

In both cases defined above, we can further divide attack into two main categories — un-
targeted and targeted. As defined by Naveed Akhtar and Ajmal Mian [3], targeted attacks
are methods used to fool a model into falsely predicting a specific label for the adversarial
image, whereas untargeted or non-targeted attacks are methods in which the predicted la-
bel is irrelevant, as long as it is different from the original label.

In practice, untargeted attack are the result of minimizing confidence in originally pre-
dicted class of object and usually end up with similar labels. For example, using neural
network taught on CIFAR-10 dataset [4], where the ten classes are airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck, the results of untargeted attack often ends
with pairs like cat-dog, truck-automobile or bird-airplane. Advantage of this type of attack
is far higher success rate and it’s applicability on images where targeted attack is unable
to change prediction by even few percents.

Targeted approach on the other hand is done by maximizing confidence into specific
class. The attack is declared successful only after reaching certain confidence. The label
for targeted attack can be chosen at random, but choosing two classes with very different
characteristics diminishes probability of successful attack.

1.3 Real-life usage

Fooling computer vision could have terrible consequences if used nefariously. Example of
such usage could be fooling image recognition software inside self-driving cars so that it
mistakes traffic signs for a tree or a different sign, potentially endangering passengers. An-
other negative use for these fooling methods could be bypassing online image filters which
prevents some categories of images, e.g. nudity, to be displayed on certain websites.

The aim of this thesis is to show possible preventions to such attacks or at least methods
to detect them, while also observing how image classification works to get better under-
standing of it. Even if there are few possible uses that we can benefit from, for example using
attacked images for simpler captcha solving or various military uses, the overall danger of
image fooling methods is too high to be ignored.



Chapter 2

Adversarial perturbation attacks

One of the most represented categories of computer vision fooling methods is called adver-
sarial perturbation attack. It works by applying noise over image to change its prediction.
Some methods only need to change one or just a few pixels, whereas some might need to
change majority or even all of the pixels to be successful. Methods in this category are well
known for being very difficult to detect by people — this is often called quasi-imperceptible
change. Even with images where every single pixel is changed by small amount, human
perception is still unable to find anything different, even with both the attacked and original
image side-by-side.

(a) Prediction: Radiator (b) Prediction: Wooden spoon

Figure 2.1: Even with attacked and original image side-by-side the changes might be difficult
to detect by human eyes (notice disruption in the top left corner of the attacked image)



Instead of changing many pixels only slightly, some methods work by changing few
pixels by large amount. Putting attacked and original image next to each other in this
case makes the change very obvious. These methods are therefore easier to detect and
defend against. Nevertheless, changing prediction of image using simpler attacks where
only tiny percentage of image is changed, sometimes less than 0.01%, makes these methods
interesting to research and helps us better understand how image classifiers work.

(a) Prediction: Bird (b) Prediction: Truck

Figure 2.2: Even though only two pixels were changed to fool the classificator (compared to
every pixel changed in previous figure), the change is very easily perceptible if the images
are put side-by-side, or even by looking at the attacked image by itself

By comparing methods that work by changing many pixels by small amount to methods
changing tiny amount of pixels while completely changing the pixel color, we can see that for
the quasi-imperceptibility the amount of pixels changed is not as important as the change
within the pixel itself. This is true for both human and computer perception and makes it
more difficult to defend against certain attacks while making some much easier to detect.



2.1 Adversarial filters

Adversarial filter attack is name used for attacks on image classifiers which try to change
the prediction by creating and applying special filter over image. This filter can be applied
over any image with varying levels of success.

(a) Prediction: Beer bottle (b) Adversarial filter (c) Prediction: Ping-pong ball

Figure 2.3: Applying filter over image can drastically change its prediction

As with most of the attacks mentioned in this thesis, adversarial filter attacks can also be
divided into targeted and untargeted. In this case the distinction between the definition of
targeted attack is needed because the existence of filter that would always change prediction
into the same class in every successful attack cannot be proven given the infinite amount
of possible images. Adversarial filter attacks have therefore been divided into two sub-
categories. These are called universal and image-dependent image perturbations. As the
name implies, in the case of universal image perturbation we are trying to create filter that
can work with large variety of images. Image-dependent filters are specifically created for
every image that we are trying to attack. This process is often more time consuming and
is therefore not applicable in some cases where the image often changes [5].

Universal image perturbations

As mentioned above, universal image perturbation is a method of attacking image classi-
fication by applying filter over it. In the case of this method the resulting filter is called
universal adversarial filter.

Main benefit of this method is the ability to create the filter without the knowledge
of images that will be attacked. Since the development of the filter is usually a longer
process and sometimes takes few minutes even with high-end hardware, while the deploy-
ment of filter over image only takes few milliseconds, universal image perturbation gives us
the ability to apply attack in environment where the image is changed very frequently, for
example video. The main drawback of this attack is the much lower success rate compared
to image-dependent attacks. This is true for both untargeted and targeted approach.



Indian elephant
................................. > "

grey fox

Universal
Adversarial
Perturbation
(UAP)

Figure 2.4: Universal filter can work on variety of images [0]

Image-dependent perturbations

As the name suggests, image-dependent perturbation works by creating filter specific for the
single image we are attacking. One of the benefits over universal perturbation is it’s higher
overall success rate. This attack takes the input image into consideration when creating the
filter, calculating the impact of certain pixels on prediction. Main problem of this method
is that if the image is even slightly rotated, the attack success probability might drop by
a large margin. Since the creation of the filter considers all the edges of the object, even
tiny movement of these edges ruins the overall balance of this filter, which gives us better
chance to combat this type of attack.

Filter transferability

Transferability (sometimes also called flexibility [7]) of adversarial images is term used for
measuring how well can adversarial image trained for one model be used on different models.
High enough transferability allows us to transfer attack on models where we have no idea
about their inner workings and no output besides predicted class, thus making the attack
effectively a black-box-attack [8].

This is a very important property, because many image classifiers are proprietary and
without good enough transferability of created filter the attack would be otherwise very
difficult to carry out if not impossible.



Universal | Image-dependent
Speed Slow* Slow

Success rate Average | High
Transferability | Average | Average

image reliance | Low Very high

* Universal image filters can be created in advance, making the speed very fast

Figure 2.5: Comparison of universal and image-dependent perturbation

From the table we can see that both types of attack can be used, but due to the simplicity
of universal image perturbation attacks it has become the more popular method of attack.
The ability to launch the attack in real-time turned out to be the advantage that not many
of the attacks I talk about in this thesis have.

Conclusion

In this section I compared the various types of attacks called adversarial filter attacks.
I looked at various benefits of using these methods and also their possible drawbacks. The
quasi-imperceptibility and ability to commence black-box attack makes this category of
attacks one of the most popular.

(a) Original image (b) Original image segmentation

(c) Perturbed image (d) Perturbed image segmentation

Figure 2.6: Filter attack can even fool semantic segmentation [5]



2.2 N-pixel-attacks

N-pixel-attacks is the second category of adversarial perturbation attacks. It is one of the
most basic attack types mentioned in this thesis and is therefore ideal starting point for
many beginners in computer vision fooling. Both targeted and untargeted attacks can be
done with N-pixel-attacks and multiple well written works can be found on this topic. The
general idea of this type of attack is very similar to adversarial filter attacks, but there are
some major differences putting this attack type into its own category.

N-pixel attacks care more about the amount of pixels changed rather than overall quasi-
imperceptibility, and when quasi-imperceptibility is achieved it is most likely a side effect of
successful attack. Since we are attacking just a few pixels, sometimes just one, this attack
has better success with low resolution images. Although even single-pixel-attack can work
on 124x124 pixel resolution, making it just about 0.0065% change in the image, the success
potential of attacks drops very quickly with increasing resolution and decreasing number
of pixels changed. The change within the image can be either expressed in percentage
change within the image itself or the amount of pixels changed in image of given resolution.
Transferring the change into percentage marked as 0 uses following formula, with N meaning
the total number of pixels changed, and W and H marking the width and height of the
image in pixels:

g ¥ 100 =10 (2.1)

Due to the difference in complexity between n-pixel-attacks where n is equal to one and
where n is greater than one, a subcategory of n-pixel-attack has been created called one-
pixel-attack. This subcategory functions in the same manner as other n-pixel-attacks, but
has some interesting properties.

One-pixel-attacks

During one-pixel-attack only one pixel is allowed to change. This pixel is usually found
using various methods of machine learning, with most scientific papers describing genetic
algorithms, namely differential evolution, to be the most optimal [7][9]. The main benefit of
using differential evolution is the easy switch between minimalization needed for untargeted
attack and maximalization needed for targeted attack.

With differential evolution in place, the attack itself is done using array of 2 values
marking position and 3 values marking red, green and blue values respectively.

[z, y, 7, g, b] (2.2)

With this array and a simple function that can change one pixel within the image
with the values from this array, attack can be attempted. This attack operates as a semi-
black-box attack, because along with the predicted class we are receiving information about
classification confidence. If untargeted attack is applied to image, the differential evolution
is trying to minimize confidence of the original class and is searching for a pixel that would
decrease the confidence the most. On the other hand, when targeted attack is attempted,
the function is trying to maximize confidence into the class that we are targeting. Both
the success chance of the attack and the resulting class when untargeted attack is chosen
are dependent on many factors. These factors are mainly the confidence and class of
initial prediction, the initial randomization of arrays chosen for differential evolution, and
the chosen target class during targeted attack. The model used for classification and the



amount of possible classes are also very important for the end result. Since only one-
pixel-attack is considered at the moment, the percentage change within picture can only be
influenced by the image resolution, which is also very important factor affecting the chance
of success.

Some of these factors are randomized at the start of each attack, which causes many
possible end results when the attack is run on one image multiple times. When possible
the attack should be run multiple times, and best result should be chosen. This can make
difference between the attack not succeeding and succeeding with over 90% result as the
final confidence in different class.

) Prediction: Dog (99.98%) (b) Prediction: Bird (49.48%)
) Prediction: Cat (81.47%) ) Prediction: Dog (44.48%)

Figure 2.7: Running the same attack multiple times yields vastly different results
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N-pixel-attack where n is greater than 1

Increasing the complexity of 1-pixel-attack by increasing the number of pixels changed can
bring us slightly improved chance of the attack succeeding. In that case we need to take
into consideration the array we are optimizing using differential evolution. Where 5 value
array was sufficient for 1-pixel-attack, the length of this array needs to be increased by 5
for each pixel we are adding, the array ends up in this format (the position of individual
values can be switched around, this is just an example):

[:L‘l: Y1, 71, 91, b17 x2, Y2, 12, g2, b27 -+ Tns Yny Tny Gn,s bn] (23)

It must be noted that increasing the length of the array that is being passed through
differential evolution greatly affects the time it takes to generate the attack. It is there-
fore recommended not to go over 5 pixels when attempting n-pixel-attack, as it would be
counterproductive for both the quasi-imperceptibility of the attack as well as its time cost.
The program I have written as part of this thesis allows the user to choose any amount of
pixels, but displays a warning when number above 10 is chosen.

. & S
-.

y
O

Figure 2.8: Image of ostrich attacked using 100 pixels. Final prediction was airplane with
confidence of over 98%. This image took over 20 minutes to generate on high-end laptop.
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Another important note about n-pixel-attacks is the fact that while the probability
of success increases with the amount of pixels changed, the final confidence may not be
greater than attacks where less pixels are affected. This is often surprising and most likely
explanation for this effect is the randomization of various starting factors as explained
above. Often by simply re-running the attack multiple times we get a large range of final
confidences from which we can pick the best one. This is especially the case of untargeted
attack, where the minimalization of confidence into original class is taking place and the
final confidence is not important as long as the attack succeeds.

(a) Horse (99.9%) — Original image (b) Cat (65.5%) — 1-pixel-attack

(c) Cat (56.1%) — 2-pixel-attack (d) Cat (50.5%) — 3-pixel-attack

Figure 2.9: Even with the amount of attacked pixels increasing, the final confidence with
the same target class is decreasing



During some n-pixel-attacks certain pixels might affect the predictions more than the
others. For convenience these pixels will be henceforth called ,leader* pixels. While
changing non-leader pixel often does not affect the predicted class, any minor edit to
the leader pixel often changes the prediction back into the original class. Typical at-
tribute of leader pixel is that when the attack is attempted multiple times or with different
amount of pixels, the leader pixel appears in similar position. This can be noticed in pre-
vious figure where in both 1-pixel-attack and 2-pixel-attack similar change occurs in the
riders shoulder. Leader pixels are very important traits when detection of attacked image
is considered, and I will be using them in future chapters.

Conclusion

In this section I talked about second category of adversarial perturbation attacks. I took a
close look at subcategory called one-pixel-attack and its features.

After that I compared one-pixel-attacks with their extended version called n-pixel-
attacks. I explained how these attacks are executed and mentioned their strong and weak
points. At the end, I talk about leader pixels in n-pixel-attacks, a very important attribute
that we will meet with in future chapters.
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Chapter 3

High confidence image generation

Unlike the previous method of fooling computer vision, the high confidence image genera-
tion does not need any starting image. The point of this attack is to create image that is
unrecognizable to human but computer can see certain object with extremely high confi-
dence — often above 99%.

Strangely enough, this attack can be deployed as both targeted and untargeted attack.
The untargeted attack is very rarely used for anything, because like every untargeted attack,
we cannot determine the final prediction. In this case, the final images are used mostly for
art related purposes, even being accepted to art exhibition [1].

Similarly to adversarial perturbation attacks, high confidence image generation can be
done using two main methods. One of them creates completely unrecognizable images to
human eyes which look like static or randomized dots. The second method uses composi-
tional pattern-producing network (CPPN) [10] together with the image generation, creating
more distinctive patterns, sometimes partially recognizable to human eyes. In this chapter
I will take a look at both of these methods along with interesting discovery that I have
accidentally reached during the programming of n-pixel-attack.

-

(a) Cheetah (b) Sunglasses

Figure 3.1: Comparison between CPPN unassisted and assisted network [1]
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3.1 Evolutionary algorithm method

As explained above, first of the methods generates images that look like no real life object
and still get classified as one with extremely high confidence. These images often end up
looking like static noise. The interesting property of this noise is that very often by looking
at it for a while certain outline starts to appear.

The process of generating such images is very similar to the one of n-pixel-attack. We
use evolutionary algorithm and either try to maximize confidence of any random class (un-
targeted attack) or maximize the confidence of certain class (targeted attack) by changing
the initial uniform background.

While researching this topic, I experimented with my program that allows user to com-
mence n-pixel-attack on any image. If we choose high enough number of pixels, we can
simulate the process of image generation. I named this method hijacking n-pixel-attack,
because we are using it to simulate completely different method and type of attack it was
originally designed for.

Hijacking N-pixel-attack

When using n-pixel-attack to simulate the process of image generation, one must be pre-
pared for it to take a while. As initial image any image of uniform background must be
used, usually white or black. This image is then passed through as normal n-pixel-attack
with the n being very high number. It is best to choose the amount of pixels to be changed
to be at least 20% of the original image resolution, otherwise the image will mostly be the
color of the background.

The attack itself can be run as both targeted and untargeted with similar results as
generating image using targeted or untargeted method. Only major difference is that the
untargeted attack cannot generate the image of the original class. For example, uniform
background that was originally classified with highest confidence as bird cannot be gener-
ated as image of bird during untargeted attack.

Using n-pixel-attack is unfortunately very ineffective and time consuming, therefore I
would not recommend using it for anything other than simple experiments.
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(a) Frog (250 pixel attack) (b) Car (300 pixel attack) (c) Cat (350 pixel attack)

Figure 3.2: Hijacked n-pixel-attack used for generating high confidence prediction images
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3.2 CPPN-assisted method

The only difference between the processes of creating image using purely evolutionary al-
gorithms and supporting it using compositional pattern-producing network is the output
image that these methods generate.

Supplementing previously described method by the option of generating more patterns
within the image brings us no additional benefit to recognizability by human eyes. On the
contrary, these images can be more easily recognized due to the fact that shapes and colors
often at least figuratively resemble the generated class.

Generating such images has proven that evolutionary algorithms are able to generate
images that both neural networks and humans are able to classify [11].

Figure 3.3: Familiar looking images created using CPPN [11]

Conclusion

In this chapter I compared two methods of generating images that can fool image classifica-
tion. Both of the methods explained can be used to better understand the inner workings
of machine learning and allow us to create improved versions of such algorithms.

I also talked about my experiments with using n-pixel-attack to create similar looking
images. These experiments proved to be quite successful, proving that n-pixel-attack can
be used to simulate basic image generation that uses evolutionary algorithm.
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Chapter 4

Unusual methods of fooling
computer vision algorithms

In this chapter I will compare various methods that are not in any of the previous categories.
These methods are interesting in the way they are able to fool computer vision using very
unusual approaches.

I will first take a look at somewhat different kind of image transformation, where instead
of applying filter over image or changing its pixels, the image itself is rotated against the
background [12].

Next thing I will talk about are adversarial patches. It is the name given to very specific
method of attack involving generated image that can be placed next to normal object to
offset real-time classification [13].

4.1 Rotation and translation attack

As the name suggests, this method works by rotating the original image by certain degree
and using minor translations. It shows the need for creating more robust neural network in
the future, as this attack could naturally occur by accident without the need for attacker.

One important goal of creating images using this attack is to keep visual similarity
between the attacked and original image. Since this is issue of individual human perception,
concrete definition for visual similarity does not exist. This is applies mainly to rotations,
as image rotated 180°does not keep much of its visual similarity.

(a) Revolver (b) Mousetrap

Figure 4.1: Rotation against black background is able to fool classifier [12]
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4.2 Adversarial patch

This method of attack is very similar to universal adversarial filter method, but small
differences put this attack into different category. It works as a targeted attack, creation of
untargeted adversarial patch has not been tested yet. The created patch can be put next to
most real-life objects, and after the image of both the real object and the patch is classified,
it returns the target class of the adversarial patch (successful attack).

The benefit is the possibility to create multiple adversarial patches in advance and then
just fooling the classifiers in real-time. The main drawback is the localization of the attack
makes it easier for some methods like gradient smoothing [14] to defend against adversarial
patch attacks.

Figure 4.2: Example of adversarial patch [13]

Conclusion

In this chapter I took a look at two methods of fooling computer vision algorithms which
are not that common. These are not only interesting for their novelty, but mainly due to
the fact that they might either easily occur naturally or be applied as very simple attack.

The rotation and translation attack is one of the reasons why autonomous car industry
should focus on computer vision fooling algorithms. Although this method has extremely
low success rate, it only takes one car to mistake traffic sign for a tree to cause a major
accident.

The Adversarial patch attack method has many similarities to the universal filter attack,
especially due to its capability to be prepared in advance to the actual attack. That is very
strong ability for computer vision fooling algorithms that many do not have.
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Chapter 5

Detection and defense against
computer vision fooling

In previous chapters I have shown the potential attacks that can fool computer vision. It
is therefore important to talk about ways to defend against these attack or at least be able
to detect whether the image has already been attacked.

For this, we use the knowledge from previous chapters regarding the ways the attack
methods operate, as well as simple methods that have been tried with varying amount of
success.

5.1 Adversarial filters

Defense against adversarial attacks can be done in multiple ways, but only very few of them
give results sufficient for practical use. Generally, these defenses either work by increasing
the robustness of neural network by providing adversarial examples during training [15], or
by parsing the images before classifying them. The benefit of the first type of defense is that
although it takes longer time during the training of the neural network due to increased
amount of training images, once the neural network is trained, the speed of the neural
network is the same to the one not trained on adversarial examples.

Another group defense methods work by preprocessing the image before passing it
through the neural network. One method from this group that has been recorded to have
adequate results is called gradient smoothing [14]. The benefit of this method is that we can
detect the more uncommon type of attacks such as the LaVAN attack [16] or adversarial
patch attack. The main drawback is the needed pre-processing that can slow down the
detection and classification speed.

5.2 N-pixel-attacks

Similarly to when N-pixel-attack were described few chapters back, we will divide the n-
pixel-attack to two subcategories — one-pixel-attack and n-pixel-attack where n is greater
than one. Both of them have minor differences that make the methods of detection slightly
easier for 1-pixel-attacks.
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5.2.1 1-pixel-attacks

To detect 1-pixel-attack in the image we can apply 2 basic approaches. Firstly, we can
try to use machine learning to teach neural network to find suspicious looking pixels and
try to correct them. The neural network should try to detect few of these pixels and
after correcting these pixels (for example by averaging their color with the one of their
neighbors) passing them through image classifier. If the confidence of the edited image
prediction changes by large amount, there is a chance that the image has been attacked.

Second approach takes advantage of the fact that n-pixel-attacks in general are done on
images of lower resolutions. It is therefore not as time consuming to try and use bruteforce
for detecting the pixel attack. We can either use very basic bruteforce attack without any
complex inner logic which will walk through every pixel and try to average it similarly to the
first approach, or we can build slightly improved version which tries to order the pixels it
will try to walk through before commencing the bruteforce attempt. This can significantly
improve the speed when going through a large batch of potentially attacked images.

As is often the case with computer vision fooling algorithms, the detection of attack is
much easier than defense. If we want to ensure that our neural network is harder to fool,
we can use some of the methods described by Jiawei Su, Danilo Vasconcellos Vargas and
Kouichi Sakurai [7]. One of the methods to improve neural networks robustness is based on
preprocessing image before passing it through classifier, for example by squeezing color bits
or utilizing basic noise reduction. The drawback of using this method is the added layer of
preprocessing that slows down the speed of the classifier.

5.2.2 N-pixel-attacks with n greater than 1

For detection of attack in images where greater number of pixels has been changed we will
take into consideration the weaknesses caused by the existence of leader pixels described in
the adversarial perturbation attacks chapter.

For the most part, same bruteforce approach can be used on images attacked with
smaller amount of pixels. This is often sufficient as the n-pixel-attacks are mostly done
with less than 10 pixels. When the image is attacked using more pixels than that, some
improved methods are needed, because the amount of leader pixels changes together with
the attacked pixels and bruteforcing multiple pixels gives us exponential complexity. One
way to solve this issue is by searching for the most suspicious pixels similarly to the approach
described in the detection of 1-pixel-attack but using this method to change multiple pixels
at the same time instead of just a single pixel.

Other approaches that work well with 1-pixel-attack often work as well, but it is more
difficult for both detection and defense to work the more pixels are attacked. The extreme
case where the n-pixel-attack has been hijacked to generate high confidence image from
scratch is the perfect example of such attack. In this case, the methods for detection and
defense are described in the following section.
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5.3 High confidence image generation

This method is possibly the most difficult method to detect and defend against from all the
other methods described in this thesis. The main problem is its high transferability onto
other neural networks and almost infinite possible combinations of generated images.

The one method that has been tried is the same as the one used with most other fooling
methods. It consists of training the network on adversarial examples to teach the network
how to recognize fooling attempts [1]. Unfortunately, this method did not work well for this
attack and I have not found any other mentions of attempting to detect images generated
in this attack.

Conclusion

In this chapter I talked about methods of detecting and defending against attacks that
have been described in previous chapters. I found out that methods of actively defending
against various attack are not as simple as they might seem, and often the methods that
make sense in theory work with only minimal results or not at all.

I consider defense and detection of attacks a very important field for the future of
computer vision, especially for the military and automobile purposes. Due to many of the
attacks working as black-box attacks, there could be many undiscovered methods that could
extremely simplify the defense and detection, they just need to be discovered first.
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Chapter 6

Implementation

As part of this thesis I have written a python3 program. This program allows users to
commence attacks from the adversarial perturbation category, namely various kinds of n-
pixel-attacks. This program uses CLI mixed with basic GUI to display results of user-defined
attacks. Another feature of my program is the ability to detect various n-pixel-attacks in
the image using some methods that I have discovered and implemented. Lastly, my program
allows user to measure statistics of various attacks.

6.1 Used software and libraries

As was already mentioned in the introduction, my program was written for python3 lan-
guage. For the program to run without any issues, some libraries need to be added first.
One of those libraries is Keras [17], which is a python deep-learning library. Keras was
chosen over similar libraries like PyTorch [18] due to the fact that I found it easier library
to work with and it was easier for me to find pretrained models for CIFAR-10 [4].

In addition to Keras few more libraries are needed for the program to run. Namely,
SciPy [19] library is needed for its implementation of differential evolution and NumPy [20]
library by the same creators for its mathematical functions. To display the result image if
program is run with verbose option, python library matplotlib [21] is needed.

6.2 Program functions

The final program has been divided into multiple subprograms, with specific ones for attack,
defense and statistics collection. Each one of them can be ran by itself as standalone
program.

6.2.1 1-pixel and n-pixel attacks

Program allows user to commence attacks from the n-pixel-attack category on any image in
PNG or JPEG format. User can choose between untargeted and targeted attack using the
bt argument and also choose the amount of pixels to be changed using the ,-n“ argument
with the number of pixels. Additional optional arguments are ,-v* for verbose output,
which prints more information during the attack and also shows the final result image, and
s argument for printing output easier for collecting statistics about the results.
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The program uses the SciPy [19] implementation of differential evolution — one of the
genetic algorithms used for optimization [22]. This algorithms is used in two ways depend-
ing on the optional argument choosing whether the attack will be targeted or untargeted.

In the case of untargeted attack the goal of the program is to minimize confidence of
original class. This is done by searching for the pixel or pixels which lowers the prediction
the most. The cut-off point I chose was the confidence falling bellow 50%, but this too
can be easily changed. This cut-off point is only taken into consideration when callback
function of the differential evolution is called, therefore the successful attacks usually reach
far better results, sometimes decreasing the confidence bellow 0,1%.

Targeted attack on the other hand is trying to maximize confidence of any class cho-
sen. This can be used to either improve the confidence of already correct prediction, or
to maximize confidence into completely different class. The SciPy implementation of dif-
ferential evolution is only able to be used for minimalization, it is therefore needed for the
targeted attack to try to decrease the number (1 - target class confidence) instead. Al-
though targeted attack can be used to change prediction of any class into any other class,
for best results it is recommended to use similar looking combinations. For example, the
combination of bird-airplane will have much higher chance of success over combination like
frog-truck, where the amount of pixels to be changed could be increased or the attack could
be run multiple times to make the attack success more probable.

N-pixel-attack hijacking

During the experimentation with n-pixel-attacks I have discovered interesting method to
generate high confidence prediction images. I named this method n-pixel-attack hijacking
due to the fact that we are using somewhat unrelated method for completely different
purpose.

This method is not practical for high confidence image generation because of its slow
run-time, but can reach confidence results comparable to methods dedicated for creating
high confidence prediction images. While experimenting with n-pixel-attack hijacking, I
have discovered that its better to run multiple n-pixel-attack where the n is lower number
over just a single attack with very high number of pixels. Although some of the pixels will
be overwritten, the overall time consumed per pixel will be lower.

Figure 6.1: Hijacked n-pixel-attack generated image. Prediction: automobile (99.8%)
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6.2.2 Detection of n-pixel-attack

Most methods described in science journals involve increase of robustness [23] of the neural
network, either by retraining it using adversarial examples or older methods such as the
distillation defense [24]. T have decided to attempt the detection of n-pixel-attack in the
image using simpler methods that work well on consumer hardware.

The n-pixel-attack detecting program written as part of this thesis uses two methods to
try to find the pixel or pixels that were used to attack the image and find out the original
class. Both of these methods are somewhat similar in their nature, with the second method
being improved version of the first method.

The first of these methods works on the basis of brute-force searching for the attacked
pixel. The method works through each of the pixels in the image and changes the pixel into
the average of its four neighbors. It then passes the newly created image through classifier
and tries to see whether the confidence of new prediction has any significant change. This
method works well even if the image was attacked with more than a single pixel, because
the attack often loses significant prediction confidence even when one of the pixels is found.

The second method improves on the speed of the first method. This method is called
suspicious pixel search and can be ran with the argument ,,-s“. This method does not simply
walk through each pixel in the image until the correct one is found, but firstly does some
pre-sorting of the most suspicious pixels found in the image. The level of suspiciousness
of the image is decided by calculating the average of its neighboring pixels colors. This
average is then compared to the color of each pixel and the difference is saved into array.
This array is then sorted from the most different ones and the pixels are compared in the
order from the most suspicious until the pixel is found or all of the pixels have been checked.
Although this method is slightly slower on large batches where no attacked images can be
found, the speed improvement on mixed batches was rather significant. Often the pixel is
found in the first few of the suspicious pixels, whereas in the brute-force method the pixel
is found on the average afer testing half of the pixels.

6.2.3 Statistics collector and various useful tools

Last part of my program is simplified version of pixel-attack software that allows user to
run the attack on larger batches of images while collecting basic statistics about the attack
and saving the results of successful attacks.

Most of the other subprograms written as part of this thesis also allow the user to use
them as standalone programs. For example, the subprogram written for changing the input
file into CIFAR-10 friendly format can be ran with various arguments to convert concrete
file or directory. Similarly, there are also programs for fetching images from CIFAR-10
database and for displaying result images in figure form together with description.
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6.3 Experiments

The experiments with the 1-pixel and n-pixel attacks have been done on images from the
keras library dataset. Firstly, the images were downloaded as batches of hundreds of images,
using one of the programs written as part of this thesis. Then, these images have been run
through another program — statistics collector. This program collected the results of various
attacks.

Figure 6.2: Sample images from batch 1-100 of the CIFAR-10 database

Next series of experiments has been done regarding the ability to detect n-pixel-attack
in the image using both the bruteforce method and the suspicious pixel search method.
This has proven to be very successful for both of these methods as will be later seen in the
results.
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6.3.1 N-pixel-attack results

The attacks have first been done on first batch from the keras library dataset from the first
100 images, or batch 1-100. The attacks attempted have been untargeted, and only run
once on each image. First, the attack has been done as 1-pixel-attack, then 2-pixel-attack
and lastly 3-pixel-attack.

I studied the comparison of success rate between these three attacks and found direct
correlation between the amount of pixels attacked and the success rate of attack used. For
comparison, the same test has been done one the batch of another 100 cifar-10 friendly
images, also called batch 101-200. The results were very similar.

) 1-pixel-attack b) 2-pixel-attack ¢) 3-pixel-attack

Figure 6.3: Untargeted attack results, first batch of 100 images

) 1-pixel-attack ) 2-pixel-attack ¢) 3-pixel-attack

Figure 6.4: Untargeted attack results, second batch of 100 images

From these results we can see large jump between the success rate of 1-pixel-attack and
2-pixel-attack, but there is not such a great improvement when one more pixel is added.
The smaller jump between two attacks with higher amount of pixels changed has been
already recorded with similar results [25], but I have not found any mention to the reason
of such a discrepancy between the success rate of 1-pixel-attacks and 2-pixel-attacks. It is
possible this difference is caused by the consideration of successful attack being determined
by changing the class with at least 50% confidence and by decreasing this number we could
also decrease these jumps.
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6.3.2 N-pixel-attack detection results

N-pixel-attack detection has been attempted on various images attacked by one-pixel-attack
to three-pixel-attacks. Since not all of the images have been successfully attacked, the
batches for detection are smaller in size.

) 1-pixel-attack b) 2-pixel-attack ) 3-pixel-attack

Figure 6.5: Detection rate of successful attacks from second batch of images

Since both the brute-force and the suspicious-pixel-search detection methods try each
pixel in case of non-attacked image or unsuccessful detection, the success rate for both of
them is exactly the same. Only difference is the speed with which these methods operate
depending on what percentage of attacked images is in the batch.

Given the simplicity of the methods used for detection compared to commonly used
methods [26], the success rate of these methods is still sufficient for some uses. Main
benefit of this method is the possible speed that can be reached when the processes are
parallelized and every single pixel is being checked simultaneously. In that case, the purely
brute-force method is preferred as using suspicious-pixel-search brings no benefit when all
pixels are checked regardless of their level of suspicion.

s AN

) 1-pixel-attack, Deer b) 2-pixel-attack, Dog ) 3-pixel-attack, Cat

Figure 6.6: Successful attacks where detection was possible
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) 1-pixel-attack, Cat b) 2-pixel-attack, Frog (c) 3-pixel-attack, Bird

Figure 6.7: Successful attacks where detection was not possible

I have found no major difference between the detectable and undetectable attacks.
Except for the attacks where less pixels were used, where it is easier to find the one pixel
that changes the prediction confidence by major amount. Both of my methods can be used
on n-pixel-attacks where n is higher than 1, but the results slowly diminish with increasing
amount of pixels changed. If that happens, the detection program can be recalibrated to
consider lower change in prediction confidence as successful detection.

Figure 6.8: Successful detection of 5-pixel-attack (deer), original prediction: Dog (90.19%)
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Chapter 7

Conclusion

In this thesis I have described various methods of fooling algorithms of computer vision.
I studied various methods ranging from the very simple ones to the more advanced and
compared their usefulness in using them to attack various neural networks.

I also studied methods of detecting or defending against such attacks. Most of the
attacks mentioned in this thesis have multiple ways of defending against them or at least
detecting them if they already happened. These methods are explained and compared in
one of the chapters.

As part of this thesis I have written a python program allowing user to attack any image
in .jpg or .png format using various n-pixel-attack types described in this thesis. User can
also collect statistics from his attacks to study them later. This program also allows user to
try detecting the attack in either attacked or not attacked image and collect statistics from
these attempts. The part of the program allowing user to detect attack uses two methods
that I have designed and programmed that turned out to be quite efficient.

The results of my experiments have shown that even well trained neural network can
be easily fooled with simple changes that are almost imperceptible to human eyes, while
the detection and defense against such attacks is much more complex or in some cases even
impossible. Many of the attacks described in this thesis can be used for evil causes like
fooling of the self driving car recognition software or online image filters.

While the focus on training the neural networks to be more accurate has risen in recent
years, even latest neural networks can be easily fooled with simple programs such as the one
written as part of this thesis. Luckily, as of today there has not been any major accident
involving intentionally fooled computer vision, but since this technology is appearing in
our lives more and more often, this might be just a question of when will the first attack
happen and what will be the consequences.
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Appendix A

Contents of attached CD

Python programs

attack.py — Program for various n-pixel-attacks

defend.py — Program for detection of n-pixel-attacks

stat.py — Program for collecting attack statistics

figure_ creator.py — Program for creation of figures from images
converter.py — Program for converting images into CIFAR friendly format
dataset_ getter.py — Program for getting images from the Keras dataset

Folders

models — Folder containing ResNet model used for fooling
dataset — Images from Keras dataset
successful__attack — Images of successful attacks
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