BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

GENERATION OF SYNTHETIC RETINAL IMAGES
IN HIGH RESOLUTION

GENEROVANI SYNTETICKYCH SNiMKU SITNICE VE VYSOKEM ROZLISENI

MASTER’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. TOMAS AUBRECHT
AUTOR PRACE

SUPERVISOR Prof. Ing., Dipl.-Ing. MARTIN DRAHANSK?, Ph.D.
VEDOUCI PRACE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Master's Thesis Specification |||||\\|!ﬂ!!!\|||\||\|

Student: Aubrecht Tomas, Bc.
Programme: Information Technology Field of study: Information Systems

Title: Generation of Synthetic Retinal Images with High Resolution
Category: ~ Computer Graphics
Assignment:

1. Study the literature in the area of processing and recognition of human retinal images,
especially in ophthalmology sources, incl. generation of synthetic retinal images.

2. Propose your own method for generation of synthetic retinal images in high resolution (over
12 Mpix).

3. Implement the proposed method from the previous point. Generate a database of at least
1,000 images without pathological damage.

4. Test the implemented solution from the previous point, compare your results with real retinal
images (e.g. vessels distribution) and summarize the achieved results.

Recommended literature:

e BONALDI, Lorenza, et al. Automatic generation of synthetic retinal fundus images: vascular
network. Procedia Computer Science, 2016, 90: 54-60.

* WONG, Tien Yin; TING, Daniel Shu Wei. Generative Adversarial Networks (GANSs) for
Retinal Fundus Image Synthesis. In: Computer Vision-ACCV 2018 Workshops: 14th Asian
Conference on Computer Vision, Perth, Australia, December 2-6, 2018, Revised Selected
Papers. Springer, 2019. p. 289.

e FIORINI, Samuele, et al. Automatic Generation of Synthetic Retinal Fundus Images. In:
Eurographics Italian Chapter Conference. 2014. p. 41-44.

Requirements for the semestral defence:

* |tems 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Drahansky Martin, prof. Ing., Dipl.-Ing., Ph.D.
Consultant: Biswas Sangeeta, Ph.D., UITS FIT VUT

Head of Department: ~ Hanacek Petr, doc. Dr. Ing.

Beginning of work: November 1, 2019

Submission deadline: June 3, 2020

Approval date: October 31, 2019

Master's Thesis Specification/21968/2019/xaubre02 Page 1/1

Abstract

Special equipment, a fundus camera, is needed to capture the retina, which is the most
important part of the human eye. Therefore, the main objective of this work is to design
and implement a system that would be able to generate retinal images. The proposed
solution uses an image-to-image translation, where the system is provided with a black
and white image at the input containing only bloodstream, on the basis of which a color
image of the entire retina is generated. The system consists of two neural networks: a gen-
erator, which generates retinal images, and a discriminator, which classifies these images
as real or synthetic. Training of this system was performed on 141 images from publicly
available databases. A new database was created with more than 2,800 images of healthy
retinas in a resolution of 1024x1024. This database could be used as a learning tool for
ophthalmologists or for the development of various applications working with retinas.

Abstrakt

K porizeni snimkt sitnice, kterd predstavuje nejdulezitéjsi ¢ast lidského oka, je potifeba
specidlniho vybaveni, kterym je fundus kamera. Z tohoto dtvodu je cilem této prace
navrhnout a implementovat systém, ktery bude schopny generovat takovéto snimky bez
pouziti této kamery. Navrzeny systém vyuzivda mapovani vstupniho c¢ernobilého snimku
krevniho Fecisté sitnice na barevny vystupni snimek celé sitnice. Systém se sklada ze dvou
neuronovych siti: generatoru, ktery generuje snimky sitnic, a diskriminatoru, ktery klasi-
fikuje dané snimky jako realné ¢i syntetické. Tento systém byl natrénovan na 141 snimcich
z verejné dostupnych databazi. Nasledné byla vytvorena nova databaze obsahujici vice nez
2,800 snimku zdravych sitnic v rozliseni 1024x1024. Tato databaze muze byt pouzita jako
ucebni pomtcka pro o¢ni lékaife nebo muze poskytovat zaklad pro vyvoj riznych aplikaci
pracujicich se sitnicemi.

Keywords
human eye, eye retina, synthetic retinal images, image processing, image generation, ma-
chine learning, neural networks, GAN, high resolution, Python, TensorFlow

Klicova slova

lidské oko, sitnice oka, syntetické snimky sitnice, zpracovani obrazu, generovani obrazu,
strojové uceni, neuronové sité, GAN, vysoké rozliseni, Python, TensorFlow

Reference

AUBRECHT, Tomas. Generation of Synthetic Retinal Images in High Resolution. Brno,
2020. Master’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Prof. Ing., Dipl.-Ing. Martin Drahansky, Ph.D.

Rozsireny abstrakt

Diplomova préce se zabyva generovanim syntetickych snimku sitnic ve vysokém rozliseni.
Lidské oko je parovy organ, ktery nam poskytuje zrak. Diky nému mtzeme vnimat okolni
je zaroven i tou nejcitlivgjsi ¢asti. Z tohoto divodu mohou rizné nemoci nebo sebemensi
poskozeni sitnice vést ke ztraté zraku. Je tedy dulezité, aby si ¢lovék svij zrak chrénil,
protoze jeho ztrata vede k vyznamnému zhorSeni kvality zivota. K porizeni snimka sitnice
je potieba specidlniho vybaveni (fundus kamery), proto neni jednoduché ziskat takovéto
snimky ve vét$im poctu. Z tohoto diavodu je cilem této prace navrhnout a implementovat
systém, ktery bude schopny generovat nové syntetické snimky sitnic ve vysokém rozliseni,
které budou nerozeznatelné od téch redlnych. Dalsim krokem je pomoci tohoto systému
vytvoreni nové databdze snimku zdravych sitnic, tedy sitnic bez patologickych nalez.

Teoretickd ¢ast se zaméfuje na anatomii lidského oka, kterd je dilezitym zakladem
pro pochopeni jeho ¢innosti. V této Casti je popsdn i zplisob vysSetfeni o¢niho pozadi
a nasledné jsou uvedena vybrand onemocnéni sitnice spolu s jejich priznaky. Na zdkladé
téchto informaci je ¢lovék schopny si vytvorit predstavu o tom, jak vypadé zdrava sitnice.
7 technického hlediska je pozornost vénovana zakladnim typum strojovému uceni a vice
se zameéruje na neuronové sité, pomoci kterych byl realizovan navrzeny systém pro gen-
erovani snimku sitnic. Konkrétnéji se zabyva specialnimi typy neuronovych siti, jako jsou
konvoluéni a generativni neuronové sité. Praktickd ¢ést této prace poskytuje detailni popis
navrhu a nasledné implementace daného systému. V posledni ¢asti je uveden proces uceni
tohoto systému spolu se zhodnocenim dosazenych vysledki.

Navrzené Teseni vyuziva principu mapovani vstupniho snimku na vystupni. Na vstupu
systému je ¢ernobily obrazek obsahujici krevni fecisté sitnice, na jehoz zakladé se vygeneruje
barevny snimek celé sitnice. Samotny systém je tvoren generativni kompetitivni siti. Ta se
sklada ze dvou dil¢ich neuronovych siti, kde jednou z nich je generator, ktery ze vstupniho
obrazku generuje snimky sitnic, a druhou je diskriminator, ktery provadi klasifikaci, zdali
jsou dané snimky realné ¢i syntetické. Diskrimindtor ma na svém vstupu dva snimky.
Prvnim z nich je cernobily snimek krevniho fecisté néjaké sitnice a druhym je snimek
odpovidajici sitnice, ktery je ndsledné posouzen.

Aby byl tento systém schopen vytvaret realisticky vypadajici snimky sitnic, musi se
to nejprve naucit. Samotné uceni probihalo na snimcich z nékolika vetfejné dostupnych
databéazi sitnic, které obsahuji i potfebné snimky krevnich rec¢ist. Tyto databaze dohromady
poskytly 141 snimkii. Generator a diskriminator byly uceni soucasné, kde cilem bylo, aby
generator vytvatel snimky v takové kvalité, aby diskriminator nebyl schopny rozlisit, zdali se
jedna o realné ¢i syntetické snimky. Zaroven cilem diskriminatoru bylo, aby jeho rozliSovaci
schopnost dosdhla co nejvyssi arovné. Pti tomto soucasném uceni bylo potreba davat pozor
na to, aby jedna z téchto siti nedominovala té druhé, nebot systém jako celek by nésledné
produkoval vysledky nizké kvality. Z tohoto duvodu bylo potieba najit rovnovihu mezi
témito sitémi.

Po nauceni systému jiz nebylo potreba diskriminatoru a déale se pracovalo pouze s nauce-
nym generdtorem. Pomoci tohoto generatoru byla vytvorena databéaze, kterd obsahuje vic
nez 2,800 snimku zdravych sitnic, které jsou v rozliseni 1024x 1024 pixeli. Tato databaze
muze byt nasledné pouzita jako ucebni pomticka pro oc¢ni lékare nebo muze poskytovat
zaklad pro vyvoj raznych aplikaci pracujicich se sitnicemi. Mtze se jednat naptiklad o ap-
likace pohybujici se v oblasti medicinskych nebo biometrickych systémii. Mnohé z téchto
vytvorenych snimki jsou nerozeznatelné od snimkt skutecénych sitnic, coz bylo cilem této
préce.

Generation of Synthetic Retinal Images in High
Resolution

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of prof. Ing., Dipl.-Ing. Martin Drahansky, Ph.D. The supplementary
information was provided by Biswas Sangeeta, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Tomés Aubrecht
June 1, 2020

Acknowledgements

I would like to thank Mr. Martin Drahansky for his thorough guidance and his hints, and
Miss Biswas Sangeeta for her help during the thesis work, her valuable advice and her time
spent on consultations.

Contents

1 Introduction
1.1 AIMS . . o o
1.2 Contents e

2 Human Eye

2.1 Vision e e e e e e
2.2 Anatomy e
2.3 Retina e e e e e
2.4 Eye Examinationo
2.5 Retinal Diseases

3 Machine Learning

3.1 Types of Machine Learning,

3.2 Artificial Neural Network,

3.3 Deep Learning e
4 Proposed Solution

4.1 Conditional Generative Adversarial Network

4.2 Synthetic Retinal Image Generator

5 Implementation

5.1 Technologies L
5.2 Data Preprocessing L L o
5.3 Conditional Generative Adversarial Network
5.4 Source Code Structure and Usage,

6 Training and Testing

6.1 Data Source
6.2 Training Lo
6.3 Evaluation e

7 Conclusion
Bibliography
A Contents of the Attached DVD

B Generator Architecture

w w N

28
28
30

38
38
39
42
46

50
50
51
56

59

61

65

66

Chapter 1

Introduction

Eyesight allows us to interpret the surrounding environment using light in its visible spec-
trum. Thanks to this, we can perceive contrast, contours of objects and their distance
from us. It also contributes to the perception of spatial orientation. For this reason, it
is important to protect our eyesight, as its loss leads to a significant deterioration in the
quality of life.

We begin to see when the cornea, together with the lens of the eye, focuses light from
our surroundings on the light-sensitive membrane at the back of the eye, which is called
the retina. It contains specialized light-sensitive cells: rods that allow the perception of
contrast, and cones that allow the perception of color. These cells convert the light into
electrical signals that are transmitted to the visual cortex of the brain by the optic nerve.
Therefore, the retina is the most sensitive and most important part of the human eye, and
diseases or the slightest mechanical damage can lead to loss of vision.

Machine learning is an application of artificial intelligence that provides systems with
the ability to automatically learn and improve from previous experience without being
explicitly programmed. One of the most popular areas of machine learning today is deep
learning. This has been inspired by the human brain, and it generally consists of a large
number of parameters with multiple nonlinear layers. Generative models are an example
of deep learning, more specifically, generative adversarial networks.

A generative adversarial network (GAN) is a type of neural network that is based on two
models: a generator and a discriminator. The generator produces a synthetic image from
random noise, and the discriminator predicts whether the image is real or created by the
generator. The generator is trained to be able to fool the discriminator to such an extent
that it is not possible for the discriminator to distinguish between real and fake images.
Meanwhile, the discriminator constantly adapts to the gradually improving capabilities of
the generator. Therefore, both models are trained to surpass the other.

Synthesizing realistic images of the eye fundus is a challenging task. Recent advances
in technology have brought high computational power, leading machine learning to neu-
ral networks with deep architectures. Considering advances in deep learning algorithms,
GAN provides a valuable framework. Rapid enhancement of GANs facilitated the synthesis
of realistic-looking images, leading to slightly anatomically consistent retinal images with
reasonable visual quality [50].

1.1 Aims

The aim of this thesis is to design and implement an algorithm that allows the automatic
generation of high-resolution digital images of the retina using the generative adversarial
network. In the next step, this network needs to be trained using real retinal images from
existing databases. The results obtained from the algorithm will be compared with these
real images, and in case of high accuracy of this algorithm, a database of synthetic retinal
images will be created. This database could be used in practice for the development of
various medical or biometric systems.

1.2 Contents

Chapter 2 focuses on the anatomy of the human eye, which is an important basis for
understanding its physiology and the risks posed by various diseases. This chapter also
describes the most common methods of examining the eye and individual eye diseases,
along with a description of their symptoms and possible treatments. Information about
the human eye was taken from my previous work [8]. Chapter 3 provides an introduction
to the machine learning on which the proposed algorithm is based. This introduction
includes types of machine learning along with a description of the neural network. Chapter 4
contains the proposed solution of the system for generating synthetic images of the retina.
Its implementation is given in Chapter 5. The actual training and testing of the proposed
system are described in Chapter 6. The final chapter, Chapter 7, contains a summary of
this thesis, including the final evaluation of achieved results and plans for future work.

Chapter 2

Human Eye

Human eyes are paired organs of the visual system, which provide us with vision, an ability
to perceive the surrounding world and to orient ourselves in space thanks to the light in
its visible spectrum reflected by objects in the environment. Up to 80 % [23] of informa-
tion from the external environment is perceived by sight. Therefore, the eye is the most
important sensory organ. It has an approximately spherical shape, and it is made up of
three layers, enclosing various anatomical structures. The outermost layer is composed of
the cornea and sclera. The middle layer consists of the choroid, ciliary body, pigmented
epithelium and iris, and the innermost layer is the retina.

2.1 Vision

When looking at an object, light rays reflect from that object and enter the cornea. The
light rays are refracted and concentrated in one place through the cornea, lens and vitreous
humor. Of these three structures, only the lens can change its optical power, thus ensuring
that the rays are concentrated on the point of sharpest vision. The resulting image on the
retina is turned upside down. Photons of light falling on the light-sensitive cells of the retina
are converted into electrical signals that are transmitted to the brain by the optic nerve.
These signals are interpreted as the resulting image in the visual cortex of the brain [23].

2.2 Anatomy

The human eye is a very complex system made up of many parts that must work together
perfectly. The most important parts are described below. They are shown in Figure 2.1.

e The cornea is a transparent dome-shaped layer covering the anterior portion of
the eyeball. The cornea, with regard to its optical power, is the most important
component of the optical system of the eye, and is the largest contributor to quality
vision. Its main function is to refract light. It is responsible for focusing most of the
light that enters the eye. The cornea is colorless, completely transparent, and without
blood vessels, which may prevent it from refracting light properly and may adversely
affect vision. Since there are no nutrient-supplying blood vessels in the cornea, tears
and the aqueous humor in the anterior chamber provide the cornea with nutrients. It
represents a mechanical and chemically impermeable barrier between the inner and
outer environment together with the conjunctiva, sclera and tear film.

The conjunctiva is the clear, thin membrane that consists of two segments: bulbar
conjunctiva, which covers the anterior part of the sclera, and palpebral conjunctiva,
which covers the inner surface of both the upper and lower eyelids. The conjunctiva
has many small blood vessels that provide nutrients to the eye and lids. Its main
function is to keep the eye moist and lubricated by producing mucus and tears. It
also contributes to the protection from dust, debris and microorganisms that can
cause an infection.

The sclera, also known as the white of the eye, is the protective, opaque, outer
layer of the human eye. The whole sclera is white, contrasting with the coloured iris.
It is continuous with the cornea offering resistance to internal and external forces
to protect sensitive eye structures stored inside. The sclera also provides a sturdy
attachment for the extraocular muscles that control the movement of the eyes. It is
perforated by many nerves and vessels passing through its posterior part, where the
hole is formed by the optic nerve.

The choroid, also known as the choroidea, is another layer surrounding the eyeball
that lies between the sclera and the retina. It provides oxygen and nourishment to
the outer layers of the retina and maintains the temperature and volume of the eye.

The anterior chamber of the eyeball is the space inside the eye that is behind
the cornea and in front of the iris. It is filled with a clear, watery fluid known as
the aqueous humor. This is where the excess fluid can normally flow out. If the
normal outflow of aqueous humour is blocked, the intraocular pressure is increased
and glaucoma usually develops. This can lead to progressive damage to the optic
nerve head, and eventually blindness.

The iris is a thin, circular structure located behind the anterior chamber that is
usually strongly pigmented. The color of our eyes is determined by the amount of
pigment in the iris. It contains a circular opening in the center called a pupil. The
primary function of the iris is to regulate the amount of light entering the eye by
dilating or contracting the pupil. The iris contracts the pupil when the ambient
illumination is high and dilates it when the illumination is low [26].

The lens is composed of transparent, flexible tissue, and is located directly behind the
iris and the pupil. It is important for the refraction of light and its accommodation.
The accommodation is a process of changing the curvature of the lens, allowing closer
objects to be brought into better focus by changing the optical power of the lens.

The posterior chamber of the eyeball is the second chamber consisting of small
space directly behind the iris and in front of the lens. Like the anterior chamber of
the eye, it is also filled with the aqueous humor. This fluid normally passes into the
posterior chamber from where it flows into the anterior chamber. There, the excess
fluid can flow out of the eye.

The vitreous humor, also known simply as the vitreous, is a clear, colorless fluid
that fills the space behind the lens and in front of the retina in the eye. It has
a firm gelatinous consistency, and it makes up most of the volume of the eyeball. The
vitreous helps to hold the shape of the eye, and its pressure helps to keep the retina
in place.

e The optic nerve connects the eye to the visual cortex of the brain. It is the nerve
that transmits visual information in the form of impulses formed by the retina. These
impulses are dispatched through the optic nerve to the brain, which interprets them
as images. Glaucoma is a disease which results in damage to the optic nerve and
causes vision loss. It is caused by high intraocular pressure, which compresses the
optic nerve and causes its cells to die. It is referred to as the atrophy of the optic
nerve.

e Retina is the most important part of this work, so it is described separately and in
more detail in the following Section 2.3.

Anterior chamber Cornea
(aqueous humour)

Posterior chamber

Suspensory
ligament
of lens

Sclera

/

blood

vessels Macula

Fovea

Optic disc

Figure 2.1: Schematic diagram of the human eye [43].

2.3 Retina

The retina is the most important and also the most sensitive part of our eye. It is a thin
layer of tissue that lines the inner surface of the back of the eyeball. The retina processes
light through a layer of light-sensitive cells, responsible for detecting qualities such as color
and light intensity. These specialized cells are called photoreceptors. The retina captures
the light falling on these photoreceptors and converts the light into neural signals that are
transmitted through the optic nerve to the visual cortex of the brain for visual recognition.

Photoreceptors

A photoreceptor is a specialized light-sensitive cell found in the retina that is responsible
for converting light into signals that can stimulate biological processes. The photoreceptor
absorbs photons that are striking the retina, which triggers a change in the membrane
potential of the cell. There are two types of photoreceptor cells in the human retina: rods

and cones. There are major functional differences between the rods and cones. Rod cells
are much more sensitive than cone cells. At very low light levels, the visual experience is
based solely on the rod signal, so they are responsible for night vision. However, they do
not mediate color vision, which is the main reason why colors are much less apparent in dim
light, and not at all at night. The rods are concentrated at the outer edges of the retina,
and are used in peripheral vision. Cones require significantly larger number of photons
to produce a signal. They are responsible for the perception of color and for high spatial
acuity used for tasks such as reading. Cones are most concentrated in the center of the
retina in an area called the macula, and their density gradually decreases towards the outer
edges of the retina [29].

Macula

The macula is a yellow oval-shaped area near the center of the retina where the light is
focused by the cornea and lens. The macula is responsible for the central, high-resolution
and color vision. Therefore, the macula provides us with the ability to read and see in
great detail. In the very center of the macular region is the fovea that has a very high
concentration of photoreceptor cells, more specifically, a high density of cones and low
density of rods.

Optic Disc

The optic disc, also called the optic nerve head, is located at the optic papilla, where the
optic nerve fibres leave the eye. There are no photoreceptors in this area, so it is sometimes
called the blind spot. The optic disc appears as an approximately oval area, and it is the
entry point for the blood vessels that supply the retina. These structures can be seen in
Figure 2.2.

Fovea Opt|C disc

Central

Macula ; .
retinal vein

Central retinal

Retinal artery

arterioles
Retinal venules

Figure 2.2: Retina of the human eye [49].

2.4 Eye Examination

Ophthalmology is a branch of medicine dealing with anatomy and physiology of the eye,
and with the diagnosis, treatment and prevention of diseases of the whole visual system.
This is a very specialized field, especially since the eye is a very complicated apparatus. An
ophthalmologist is a medical doctor who specializes in diagnosing and treating eye-related
conditions. In other words, an ophthalmologist is a specialist in ophthalmology. An eye
examination is a series of tests performed by an ophthalmologist, evaluating vision and
ability to focus on and recognize objects.

Ophthalmoscopy

Ophthalmoscopy is an examination of the back part of the eye. This part of the eye is called
the fundus, and consists of: retina, optic disc, choroid and blood vessels. Ophthalmoscopy
may also be called funduscopy or retinal examination. Through ophthalmoscopy, an eye
doctor can find evidence of many kinds of eye problems including, but not limited to,
glaucoma, high blood pressure damage, retinal detachment, diabetes, eye tumors, and
many other problems. The dilation of the pupils, also known as mydriasis, is a simple
and effective way to better observe the structures behind them. This is often done with
eye drops before the examination. There are three different types of examinations: direct,
indirect and slit-lamp examination.

Direct ophthalmoscopy produces an upright image of approximately 15x magnification.
The handheld instrument that our primary care physician uses to look into our eyes is
called a direct ophthalmoscope. One can be seen in Figure 2.3. It is about the size of
a small flashlight, and it consists of a concave mirror and a battery-powered light. The
doctor looks through a single monocular eyepiece into the eye of a patient in a darkened
room. The ophthalmoscope is equipped with a rotating disc of lenses to permit the eye to be
examined at different depths and magnifications. It provides good, but limited visualization
of the back of the eye. This type of ophthalmoscope is most commonly used during a routine
physical examination.

Indirect ophthalmoscopy provides a wider view of the inside of the eye and produces
an inverted image of 2 to 5x magnification using an indirect ophthalmoscope (Figure 2.4).
An indirect ophthalmoscope can be either monocular or binocular. It constitutes a bright
light attached to a headband positioned on the forehead of the eye doctor and magnifying
lenses. The eye doctor holds the eye open while shining a very bright light into the eye using
this indirect ophthalmoscope and views the back of it through the lens held close to the
eye. Some pressure may be applied to the eye using a small, blunt probe. The pupil must
be fully dilated for a satisfactory result. This examination is usually used for peripheral
viewing of the retina, and to look for a detached retina.

The slit lamp is the most widely used ophthalmic device. It has a place for us to rest our
chin and forehead. This will help keep our head steady. This procedure gives us the same
view of the eye as an indirect examination, but with greater magnification. A microscope
is connected to a lamp, which is a high-intensity light source that can be focused to shine
a thin ray of light into the eye. The doctor directs the light right into the eye of the patient,
thus illuminating the area accurately. During the examination, the tissues are illuminated
either by a thin ray of light, or by reflected light. By examining the illuminated eye with
the microscope, the ophthalmologist then obtains a magnified image of the observed area,
allowing the detection of very subtle changes and symptoms of eye diseases.

Figure 2.3: Direct ophthalmoscope [34]. Figure 2.4: Indirect ophthalmoscope [46].

Fundus Photography

Fundus photography uses a fundus camera to record images of the condition of the interior
surface of the eye, also known as the fundus. Ophthalmologists use these retinal photographs
for detailed evaluation as well as to document clinical observations and possible diagnosis of
eye diseases. The fundus camera (Figure 2.5) is a device that replaces the ophthalmoscope.
It is a specialized low power microscope with an attached camera, and it is based on the
principle of monocular indirect ophthalmoscopy. The optics of a fundus camera are similar
to those of an indirect ophthalmoscope in that the observation and illumination systems
follow dissimilar paths. Fundus cameras are described by the angle of view, and provide an
upright, magnified view of the back of an eye. A typical camera captures images between
30° and 50° of the retinal area with a magnification of 2.5x. This relation can be modified
using zoom or auxiliary lenses. Wide-angle fundus cameras capture images between 45°
and 140°, and provide proportionately less retinal magnification. For a better inspection,
dilating eye drops are applied prior to the examination to enlarge the pupil, thus increasing
the angle of observation [9].

Figure 2.5: Fundus camera [38].

2.5 Retinal Diseases

Retinal diseases vary widely, but most of them cause visual symptoms. Retinal diseases can
affect any part of the retina, and they are always very serious, often irreversible and can
lead to severe vision loss or blindness. Treatment is available only for some retinal diseases.
Depending on the retina condition, treatment goals may be to stop or slow the disease
and preserve, improve or restore the vision. Common retinal diseases and conditions are
described below.

Macular Degeneration

Macular degeneration, also known as age-related macular degeneration (AMD or ARMD),
is a macular disease that occurs in patients over age 50, and is the most common cause
of practical blindness in economically developed countries. With the increasing number of
seniors, it becomes a major societal health problem. Several factors influence the origin and
development of this disease. In addition to increasing age, it can also be high blood pressure,
smoking, poor eating habits and the associated obesity and genetic predisposition. Patients
describe its symptoms so that visual acuity gradually decreases, they are complaining about
image distortions, and in more advanced stages, a blurred or sometimes even black spot
appears in the center of the field of view. Color vision also deteriorates. There is currently
no known cure for macular degeneration, but there are options to reduce the risk and
possibly slow the progression of the wet form. Vision will no longer improve and only the
current quality of vision will stabilize [24].

AMD is divided into 2 forms: dry (atrophic, nonexudative) and wet (exudative). Up to
90 % of patients are affected by the dry form, but it causes severe visual damage in only
12—21 %. Fewer patients suffer from the wet form, but it is far more dangerous than the
dry form because, it progresses very quickly. Both forms can be combined during disease.
In the macular area of the patients, changes and loss of retinal pigment epithelium and
drusen are found. Drusen are divided according to their appearance and size into hard and
soft. Their comparison can be seen in Figure 2.6 and 2.7. Hard drusen are small bounded
deposits of yellowish color under the retina. On the contrary, soft drusen have no sharp
boundaries and may even coalesce, they are associated with a significantly higher risk of
the formation of the wet form of AMD [28].

Figure 2.6: Hard drusen [28]. Figure 2.7: Soft drusen [28].

10

Dry AMD starts with the build-up of drusen in the retina. Vision is usually good or
only slightly reduced at this stage. Most of these patients with mild dry AMD can continue
to read and drive, although it may not be as easy as it was when they were younger. Some
patients, but not all, progress to a more advanced stage of dry AMD called geographic
atrophy (Figure 2.8). This can result in severe loss of central vision and loss of the ability to
read and drive. Even in these severe cases, patients almost always retain normal peripheral
vision, enough to see where they are going. Unfortunately, there is no treatment for dry
AMD. However, supplementation of antioxidant vitamins C, E and minerals zinc, selenium
and essential omega-3 fatty acids may have a beneficial effect on preventing or slowing its
progression. A diet rich in fish, vegetables and fruits also has a supporting role [28].

Wet AMD occurs when abnormal new blood vessels grow into the retina and start
leaking fluid. Macular edema is the build-up of this fluid in the macula. This causes the
retina to swell, and the longer it is swollen, the more the retinal fibres deteriorate. Because
these blood vessels are abnormal, they are more fragile than typical blood vessels and can
bleed into the retina. This bleeding can cause irreversible damage to the photoreceptors and
rapid vision loss if left untreated. A characteristic image of a retina with the macular edema
can be seen in Figure 2.9. It is usually, but not always, preceded by the dry form of AMD.
The wet form progresses faster compared to the dry form, and the loss of vision is more
significant. Rapid deterioration occurs within a few weeks and practical blindness within
a few months. Treatment previously consisted of destruction of the neovascular membrane
by photocoagulation or thermotherapeutic laser. However, treatment results were variable.
The starting point should be a more targeted so-called photodynamic therapy, in which
the intravenously injected substance is absorbed by the target tissue and then activated by
laser [28].

Figure 2.8: Geographic atrophy, which is Figure 2.9: Wet form of AMD with the
a more advanced stage of dry AMD [35]. macular edema [36].

Diabetic Retinopathy

Diabetic retinopathy is a diabetes complication that affects eyes. Retinopathy occurs when
high blood sugar levels lead to the blockage of the tiny blood vessels that nourish the
retina, cutting off its blood supply. The weakened blood vessels leak fluid into the retina
and some of them break and bleed. This is called retinal haemorrhage, and can be seen in
Figure 2.10. As the disease becomes more advanced, new abnormal blood vessels may grow
and these new blood vessels can bleed, cause cloudy vision, and destroy the retina. This

11

condition can develop in anyone who has type 1 or type 2 diabetes. The longer the patient
has diabetes and the less controlled his blood sugar is, the more likely he is to develop this
eye complication. Diabetic retinopathy begins before the patient has any symptoms, but
as the problem gets worse the patient may have: blurred vision, temporary or permanent
blindness or distortion of vision. Early treatment is the key to reduce vision loss. A laser
is used to seal leaking blood vessels or destroy abnormal blood vessels [42].

Figure 2.10: Retinal haemorrhage [11].

Retinal Detachment

A retinal detachment is defined by the presence of fluid under the retina. If a hole develops
in the retina, then the suction force is lost and the fluid that normally fills the inside of
the eye passes through the hole and enters the space underneath the retina. As more fluid
passes underneath it, the retina gradually detaches from the inner wall of the eye. If the
retina remains detached, it will slowly deteriorate and lose function permanently, but if
the retina can be reattached with surgery quickly enough, it is possible to recover some
function and to avoid permanent vision loss [42].

Retinal Vein Occlusion

A retinal vein occlusion is a blockage of one of the veins draining blood from the eye.
Retinal vein occlusion is divided into categories, based on the size of the vein which is
blocked. A branch retinal vein occlusion is a blockage of one branch only, and affects
only part of the retina and a central retinal vein occlusion is a blockage of the main vein
and affects the whole retina. If there is a very severe blockage and the blood flow stops
altogether, the retinal cells die due to lack of oxygen. This is called ischaemia, and there
is no treatment that can bring the cells back to life. The increased pressure in the small
vessels in the eye results in fluid leaking into the retina, making it swollen. A swollen
retina does not see as well, and the longer the retina remains swollen, the more the vision

12

deteriorates with time. Possible treatment options are intravitreal injections to reduce the
swelling, or laser surgery. If the blood supply is not restored, new blood vessels can grow
into the retina. These new vessels are very fragile and can bleed, which can dramatically
reduce the vision. In some cases, this bleeding will require surgery to remove the blood in
order to restore vision [42].

Retinitis Pigmentosa

Retinitis pigmentosa is a group of rare, genetic disorders that involve a breakdown and loss
of cells in the retina. The rods are more severely affected than cones in the early stages,
and people have difficulty seeing at night and lose the peripheral vision. The loss of rods
eventually leads to a breakdown and loss of cones. In the late stages, people tend to lose
more of the visual field, developing tunnel vision. Retinitis pigmentosa is diagnosed by an
examination of the retina, which typically reveals abnormal, dark pigment deposits that
streak the retina. There is currently no cure for this disorder [37].

Figure 2.11: Fundus of a patient with retinitis pigmentosa [21].

13

Chapter 3

Machine Learning

To solve a problem on a computer, we need an algorithm. An algorithm is a sequence of
instructions that should be carried out to transform the input to output. For some tasks,
however, we do not have an algorithm. Therefore, we do not know how to transform the
input to output. What we lack in knowledge, we make up for in data. With advances
in computer technology, we currently have the ability to store and process large amounts
of data, as well as to access it from physically distant locations over a computer network.
There are certain patterns in the data. Such patterns may help us better understand
the data, or we can use those patterns to make predictions. Assuming that the future,
at least the near future, will not be much different from the past when the sample data
was collected, the future predictions can also be expected to be right. Application of
machine learning methods to large databases is called data mining. Its application areas
are abundant. In finance, banks analyze their past data to build models to use in credit
applications, fraud detection, and the stock market. In manufacturing, learning models are
used for optimization, control, and troubleshooting. In medicine, learning programs are
used for medical diagnosis. In telecommunications, call patterns are analyzed for network
optimization and maximizing the quality of service, and in science, large amounts of data
in physics, astronomy, and biology can only be analyzed fast enough by computers.

Machine learning is not just a database problem; it is also a part of artificial intelligence.
To be intelligent, a system that is in a changing environment should have the ability to
learn. The key concept is learning from data since data is what we have. Machine learning,
then, is about making computers modify or adapt their actions, so that these actions get
more accurate, where accuracy is measured by how well the chosen actions reflect the correct
ones. If the system can learn and adapt to such changes, the system designer does not need
to foresee and provide solutions for all possible situations. Machine learning also helps us
find solutions to many problems in vision, speech recognition, and robotics. One example
of pattern recognition is face recognition. This is a task we do effortlessly. Every day, we
recognize family members and friends by looking at their faces or from their photographs,
despite differences in the pose, lighting, hairstyle, and so forth. But we do it unconsciously
and are unable to explain how we do it. Because we are not able to explain our expertise,
we cannot write the computer program. At the same time, we know that a face image is
not just a random collection of pixels. A face has structure. It is symmetric. There are
the eyes, the nose, the mouth, located in certain places on the face. Each face of a person
is a pattern composed of a particular combination of these. By analyzing sample face
images of a person, a learning program captures the pattern specific to that person and
then recognizes by checking for this pattern in a given image [1].

14

One of the most interesting features of machine learning is that it lies on the bound-
ary of several academic disciplines, principally computer science, statistics, mathematics,
and engineering. This has been a problem as well as an asset since these groups have
traditionally not talked to each other very much [32]. Machine learning is programming
computers to optimize a performance criterion using example data or past experience. We
have a model defined up to some parameters, and learning is the execution of a computer
program to optimize the parameters of the model using the training data or past experi-
ence. The model may be predictive to make predictions in the future, or descriptive to gain
knowledge from data, or both. Machine learning uses the theory of statistics in building
mathematical models, because the core task is making inference from a sample. The role
of computer science is twofold. First, in training, we need efficient algorithms to solve the
optimization problem, as well as to store and process the massive amount of data we gen-
erally have. Second, once a model is learned, its representation and algorithmic solution
for inference needs to be efficient as well. Training does not happen very often, and is not
usually time-critical, so it can take longer. However, we often want a decision about a test
point quickly, and there are potentially lots of test points when an algorithm is in use,
so this needs to have low computational cost. In certain applications, the efficiency of the
learning or inference algorithm, namely, its space and time complexity, maybe as important
as its predictive accuracy.

3.1 Types of Machine Learning

Learning can be loosely defined as a process of getting better at some task through prac-
tice. This leads to a couple of vital questions: how does the computer know whether it is
getting better or not, and how does it know how to improve? There are several possible
answers to these questions, and they produce different types of machine learning. Machine
learning algorithms are typically classified into three broad categories: supervised learning,
unsupervised learning, and reinforcement learning [52].

Supervised Learning

The most common type of learning is supervised learning. A training set of examples
with the corresponding targets are provided, and based on this training set, the algorithm
generalizes to respond correctly to all possible inputs. This is also called learning from
examples [32]. When the target vectors are categorical, the problems are known as classi-
fication or pattern recognition, and when the target vectors are real-valued, the problems
are known as regression.

If we had examples of every possible piece of input data, then we could put them
together into a big look-up table, and there would be no need for machine learning at all.
The thing that makes machine learning better is a generalization: the algorithm should
produce sensible outputs for inputs that weren’t encountered during learning. This also
has the result that the algorithm can deal with noise, which are small inaccuracies in the
data. In other words, the goal of supervised learning is to learn mapping from the input to
an output whose correct values are provided by a supervisor.

This work is based purely on supervised learning, so further details are given in the
following Section 3.2 on artificial neural networks and Section 3.3 on deep learning.

15

Unsupervised Learning

In unsupervised learning, there is no supervisor, no targets are defined so that the training
data consist of only a set of input vectors. The goal is to find the regularities in the input
data. There is a structure to the input space such that certain patterns occur more often
than others, and we want to see what generally happens and what does not. In statistics,
this is called density estimation. One method for density estimation is clustering. Therefore,
a variety of clustering algorithms are canonical examples of unsupervised learning. One
specific example of density-based clustering is shown in Figure 3.1 below.

o

Dimension 2

o

P
! o

Dimension 1

Figure 3.1: Example of density-based clustering that connects areas of high input data
density into clusters.

Reinforcement Learning

This is somewhere between supervised and unsupervised learning. The algorithm gets told
when the answer is wrong, but does not get told how to correct it. It has to explore and
try out different possibilities until it works out how to get the answer right. The goal of
reinforcement learning is to learn how to act or behave in a given situation for the given
reward or penalty signals. In this type of learning, a state for current status is defined,
and an environment, usually a criterion function, evaluates the current state to generate
a proper reward or penalty action through a set of policies. Instead of having exact target
values, it learns with critics. Therefore, reinforcement learning is sometimes called learning
with a critic because of this monitor that scores the answer, but does not suggest any
improvements [52].

A robot navigating in an environment in search of a goal location is one possible appli-
cation area of reinforcement learning. At any time, the robot can move in one of a number
of directions. After a number of trial runs, it should learn the correct sequence of actions
to reach the goal state from an initial state, doing this as quickly as possible and without
hitting any of the obstacles.

16

One factor that makes reinforcement learning harder is when the system has unreliable
and partial sensory information. For example, a robot equipped with a video camera has
incomplete information, and thus, at any time, is in a partially observable state and should
decide taking into account this uncertainty. For example, it may not know its exact location
in a room, but only that there is a wall to its left. A task may also require a concurrent
operation of multiple robots that should interact and cooperate to accomplish a common
goal [1].

3.2 Artificial Neural Network

An Artificial Neural Network is a computational model inspired by networks of biological
neurons. In animals, learning occurs within the brain. While the brain is an impressively
powerful and complicated system, the basic building blocks that it is made up of are fairly
simple and easy to understand. In computational terms, the brain deals with noisy and
even inconsistent data, and produces very quick answers that are usually correct even from
very high dimensional data, such as images.

Neuron

A neuron is an electrically excitable cell that communicates with other cells via specialized
connections called synapses. There are hundreds of billions of neurons in a human brain [7].
The input to the neuron is provided by dendrites, a number of ramifying branches, which
continually monitor changes in the external and internal environment. The output of the
neuron is provided by a long fiber called the axon. The general operation of a neuron is
that transmitter chemicals within the fluid of the brain raise or lower the electrical potential
inside the body of the neuron. If this membrane potential reaches some threshold, the
neuron spikes (or fires), and a pulse of fixed strength and duration is sent down the axon.
The axons divide into connections to many other neurons, connecting to each of these
neurons in a synapse. Each neuron is typically connected to thousands of other neurons [7].
A picture of two neurons can be seen in Figure 3.2.

Each neuron can be viewed as a separate processor, performing a very simple compu-
tation, which is deciding whether or not to fire. This makes the brain a massively parallel
computer. The basic principle of learning is to modify the strength of synaptic connections
between neurons, and to create new connections.

Changes in the strength of synaptic connections are proportional to the correlation in
the firing of the two connecting neurons. So if two neurons consistently fire simultaneously,
then any connection between them will change in strength, becoming stronger. However, if
the two neurons never fire simultaneously, the connection between them will die away. The
idea is that if two neurons both respond to something, then they should be connected [32].

17

—Dendrites

—

N/ \ &

|/ \ 7~ Stimulus
) ' \\:. l\ _/_/L) \/
s _
Nucleus ‘.,'_.‘,d;; A N
~ ’)ﬂ /Aé-on\\“.
y 7\ hillock 1
f - Cell N \

/ body f\ \ ‘
%Axon
|

Signal .
direction
Synapse

. \ V Synaptic terminals
%9 gg \\ ~ — ’/J/
AY » 5 . T Synaptic terminals<__J/ ¢

. .

T S —

Neurotransmitter

Figure 3.2: A neuron consisting of a cell body, an axon and multiple dendrites creating
a connection to another neuron [33].

Perceptron

Perceptrons were invented as simple computational models of neurons. A perceptron is
a neural network with one artificial neuron. It takes many inputs and has one output.
Its first half consists of a vector of weights w = [w;...wpy], one for each input, plus
distinguished weight, b, called the bias. Weights represent weighted connections between
neurons. These weights are equivalent to the synapses in the brain. Weights and bias are
called the parameters of the perceptron. The basic operation performed by the perceptron
is to multiply the values of each input x; by its weight w;, sum the results up and add the
bias. It can be written as:

=1

where © = [x] ... xy] is the input vector. The bias is added for cases where all of the inputs
are zero. In such a case, it does not matter what the weights are, since zero times anything
equals zero. The only way to control the output of the perceptron is through the bias. It
represents an extra input weight to the perceptron, with the value of input always being
fixed.

The second half of the work of the perceptron is to decide whether to produce output
of 1 or output of 0 depending on whether the value z is above some threshold 6. This is
also known as an activation function:

a:a(z):{l if 2> 0 (52)

0 otherwise

18

Perceptrons are binary classifiers, so 1 indicates that x is a member of the class, and 0 not
a member [13]. A graphical representation of the perceptron is shown in Figure 3.3.

Inputs Weights

4»(\ \\
X W N
: Q}\ AN Activation
> . function
DN\ :
- 3 a

Figure 3.3: A perceptron with n inputs. A weighted sum z of the inputs and the bias is
passed through an activation function o that gives an output of 1 if the sum is greater than
the defined threshold and an output of 0 otherwise [16].

The activation function o is to be selected on the basis of the nature of the problem. It
mathematically defines the properties of perceptrons. It can be any step function or non-
linear sigmoid function, depending on the problem. The most common activation functions
are shown in Figure 3.4 below.

Sigmoid Tanh RelU Leaky RelU
1 e —e* g(z) = max(ez, 2)
zZ) = = = 0
9(=) =10 e= 9 = e 9() = max(0,2) with e < 1

3

r— 1+ 1+ 1t
t t - | ST '

| 4
IS
=] | — -
'
|
'S
|
~
-
-

Figure 3.4: Different types of functions used as activation functions of percep-
trons [5][6][4][2].

The perceptron needs to be trained before it can be used. The training algorithm works
by iterating over the training data several times, adjusting the weights to increase the
number of correctly identified examples. Each pass through the data is called an epoch.
The corresponding input of the perceptron is set, and then Equations 3.1 and 3.2 are used
to calculate the output, which is then compared to the target that is known to be the
correct answer for this input. Loss or distance functions are defined between the current
output vector and the target vector for each input vector, and optimization is performed
to minimize the loss over all training examples.

19

If the answer of the perceptron is correct, there are no adjustments, but if the answer
is incorrect, the perceptron needs to have its weights changed. Some of the weights will
be too big if the perceptron produced 1 when it should not have, and too small if it did
not produce 1 when it should. Therefore, the difference between the target ¢, which is
the anticipated answer, and the output y of the perceptron is computed. If the result is
positive, then the perceptron should have produced 1 and it did not, so the weights are
made bigger, and vice versa if it is negative. The rule for updating a weight w; is:

wi = wi + 1t —y) - i (3-3)

where 7 is a parameter called the learning rate. The value of the learning rate decides how
much the weight should change by, and thus how fast the network learns. If the learning
rate is missed out, the weights change a lot whether there is a wrong answer, which tends
to make the network unstable, so that it never settles down. The cost of having a small
learning rate is that the weights need to see the inputs more often before they change
significantly. However, it will be more stable and resistant to noise and inaccuracies in the
data [32]. An element of the input could be negative, which would switch the values over,
therefore, the difference in Equation 3.3 is multiplied by x;, which makes the value of the
weight negative as well.

Perceptrons are linear models. They try to separate out the cases where they should
produce an output of 1 from those where they should not. This is done by finding a straight
generalization line in 2D, a plane in 3D, or a hyperplane in higher dimensions. This line is
called the decision boundary or discriminant function [32]. An example of one is given in
Figure 3.5. The cases where there is a straight line are called linearly separable cases.

F 3

z

c

A 4

=

Figure 3.5: A decision boundary separating two classes of data.

Multi-Layer Perceptrons

Linear models are easy to understand and use. They can identify straight lines, planes
or hyperplanes, but the majority of problems are not linearly separable. Learning in the
neural network happens in the weights, and thus, adding more neurons between the input
nodes and the outputs will make more complex neural networks, such as the one shown in
Figure 3.6. Adding extra layers of nodes makes a neural network more powerful. All these
nodes are interconnected, so the output of one node is connected to the inputs of all nodes
in the next layer.

20

Input layer Hidden layer 1 Hidden layer k Output layer

Figure 3.6: A neural network consisting of multiple layers of interconnected neurons [3].

To train this network, the difference between the targets and outputs can be computed,
but it is not possible to find out which weights were wrong and in which layer. Nor is
it possible to determine what the correct activations are for neurons in the middle of the
network. This fact gives the neurons in the middle of the network their name. They
are called the hidden layer, because it is not possible to examine and correct their values
directly.

Learning process uses two popular algorithms named feed-forward and backpropagation.
The term feed-forward describes how the neural network processes and recalls patterns.
In a feed-forward neural network, neurons are only connected forward. Each layer of the
neural network contains connections to the next layer, but there are no connections back.
In this way, values are fed forward. The term backpropagation describes how this type of
neural network is trained. Backpropagation is a form of supervised training. It calculates
the error by comparing the anticipated outputs against the actual outputs for a given
input, and propagates them back to the earlier layers. The weights of the various layers are
adjusted backwards from the output layer to the input layer to reduce the value of error. It
is a form of gradient descent (Figure 3.7). If a function is differentiated, we get the gradient
of that function, which is the direction along which it increases and decreases the most. So
if we differentiate an error function, we get the gradient of the error. Following the function
in the direction of the negative gradient will minimise the error, and that is the purpose of
learning [40].

There is no theory for choosing the number of hidden nodes or the number of hidden
layers. The only way is to experiment by training networks with different numbers of
hidden nodes, and then choosing the one that gives the best results. The backpropagation
algorithm can be used for a network with as many layers as needed, although with an
increasing number of layers it gets progressively harder to keep track of which weights are
being updated at any given time.

For a network with one hidden layer, there are (m 4+ 1) -n + (n + 1) - p weights, where
m, n, o are the number of nodes in the input, hidden and output layers, respectively. Bias
nodes also have adjustable weights, so they must be taken into account (the extra +1s).
This is a potentially huge number of adjustable parameters that are needed to be set during
the training phase. The more training data there is, the better the learning, although the
time required for learning increases.

21

Error

Learning step

Minimum

Random W w
initial value

Figure 3.7: Gradient descent is an optimization algorithm for finding the minimum of
a function. To find the local minimum of a function, proportional steps to the negative of
the gradient are taken at the current point [3].

Overfitting and Underfitting

The main purpose of using a neural network is to perform well on new, previously unseen
inputs. This ability of the neural network is called generalization. Therefore, we want the
generalization error, to be as low as possible, where the generalization error is defined as
the expected value of the error on a new input [19].

The neural network has to be sufficiently trained to generalize well. However, there is
at least as much danger in over-training the network as there is in under-training it. If the
network is trained for too long, then it will overfit the data, which means that the network
has learned about noise and inaccuracies in the data as well as the actual function. The
network will be too complicated, and it will not be able to generalize. This is shown in
Figure 3.8.

A model can be controlled whether it is more likely to overfit or underfit by altering
its capacity. Capacity is the number of learnable parameters. Machine learning algorithms
will generally perform best when their capacity is appropriate for the true complexity of the
task they need to perform and the amount of training data they are provided with. Models
with insufficient capacity are unable to solve complex tasks. Models with high capacity
can solve complex tasks, but when their capacity is higher than needed to solve the present
task, they may overfit [19]. The relationship between capacity and generalization error is
shown in Figure 3.9.

22

Degree 1 Degree 4 Degree 15

—— Model —— Model —— Model
True function True function True function
e Samples e Samples e Samples

| -»-\ \ \/\f\/ |

Figure 3.8: The graph shows a part of the cosine function that should be approximated. In
addition, samples from the true function and its approximations are displayed. The models
can use the polynomial functions of different degrees. A linear function on the left is not
sufficient to fit the training samples. This is called underfitting. A polynomial of degree 4
in the center approximates the cosine function almost perfectly, but for higher degrees on
the right, the model will overfit the training data, since the solution passes through all the
training samples exactly [45].

There are several methods that prevent a model from overfitting. They are called
regularization, and they are based on constraining the amount of information that the
model is allowed to store. If a network can only afford to memorize a small number of
patterns, it will force the network to focus on the most prominent patterns, which have
a better chance of generalizing well. These methods are described below:

¢ Reducing the size of the network is the simplest way to prevent overfitting. To
reduce the size of the network, the number of its learnable parameters is decreased.
A network with more parameters has more memorization capacity, and therefore, can
easily learn a perfect mapping between training samples and their targets without
any generalization power.

e Adding weight regularization. A model where the distribution of parameter values
has less entropy is less likely to overfit than a complex one. Thus a common way to
reduce overfitting is to force its weights to take only small values, which makes the
distribution of weight values more regular. This is called weight regularization, and
it is done by adding a cost associated with having large weights to the loss function
of the network. There are two types of weight regularization:

1. L1 regularization — the added cost is proportional to the absolute value of the
weight coefficients

2. L2 reqularization — the added cost is proportional to the square of the value of
the weight coefficients

e Adding dropout, which is one of the most effective and most commonly used reg-
ularization techniques for neural networks. Dropout, applied to a layer, consists of
randomly dropping out a number of output values of the layer during training. The

23

dropout rate is the fraction of the values that are zeroed out. At test time, no units
are dropped out. Instead, the output values of the layer are scaled down by a factor
equal to the dropout rate, to balance for the fact that more units are active than at
training time [14].

— - Training error
Jnderfitting zone | Overfitting zone

—— Generalization error

Error

0 Optimal Capacity
Capacity

Figure 3.9: The graph shows the relationship between capacity and generalization error.
At the left end of the graph, both the training error and the generalization error are high.
This is the underfitting zone. As capacity increases, training error decreases, but the gap
between training and generalization error also increases. The size of this gap eventually
outweighs the decrease in training error, and it gets to the overfitting zone, where capacity
is too large, above the optimal capacity [19].

Training, Testing and Validation

We should have at least two and preferably three sets of problem examples. The first is the
training set. It is used to adjust the parameters of the model. In order to decide when to
stop learning, we have to check how well the network is learning during the training. We
can not use the training data for this because we would not be able to detect overfitting.
Therefore, we keep the second dataset back, called the validation set. This set is used to
validate the learning so far. This is known as cross-validation in statistics [32]. Whenever
an artificial neural network is trained, it should be tested how well it works, but it is not
sensible to test it using the same data on which it was trained because, it would not tell
us anything at all about how well the network generalises nor anything about whether or
not overfitting had occurred. Therefore, we must keep the third set, called the test set,
which we do not use for training. The only problem is that it reduces the amount of data
available for training. The exact proportion of training to testing to validation data is up
to us, but it is typical to do something like 60:20:20 [32].

3.3 Deep Learning

Deep learning is a specific subfield of machine learning. It puts an emphasis on learning
successive layers of increasingly meaningful representations. The word deep in deep learning
is not a reference to any kind of deeper understanding achieved by this approach, but rather,
it stands for this idea of successive layers of representations. How many layers contribute
to a model of the data is called the depth of the model [14].

24

Convolutional Neural Network

Convolutional neural networks, or CNNs, are a specialized kind of neural network for pro-
cessing data that has a known grid-like topology. The core element of convolutional neural
networks is data processing using a mathematical operation called convolution. Convolution
of any signal with another signal produces a third signal that may reveal more information
about the signal than the original signal itself. For example, by convolving a grayscale im-
age as a 2D signal with another signal, generally called a filter or kernel, an output signal
can be obtained that contains edges of the original image, which may be useful for several
applications.

The most general form of convolution is an operation on two functions f and g of a real-
valued argument. The convolution operation is typically denoted with an asterisk [41]:

u(t) = (f * 9)(t) (3-4)

In machine learning applications, the input is usually a multidimensional array of data, and
the kernel is usually a multidimensional array of parameters that are adapted by the learning
algorithm. We can use the following Equation 3.5 to get the value V' of the convolution of
an image I at a position z, y, and a kernel K [41]:

V(:B,y):(I*K)(:L',y):ZZI(:U+m,y+n)K(m,n) (3.5)

An example of such a convolution is shown in Figure 3.10.

The main difference between a fully connected layer, found in a typical neural network,
and a convolution layer is that fully connected layers learn global patterns involving all
pixels, whereas convolution layers learn local patterns, in the case of images, patterns found
in small 2D windows of the input. The patterns CNNs learn are translation invariant. For
example, after learning a certain pattern in the middle of a picture, a convolutional neural
network can recognize it anywhere. A fully connected network would have to learn a new
pattern if the existing one appeared at a new location. This makes convolutional networks
data-efficient because they need fewer training samples to learn representations that have
generalization power.

CNNs can also learn spatial hierarchies of patterns. The first convolution layer will learn
small local patterns such as edges, the second convolution layer will learn larger patterns
made of the patterns of the first layers, and so on. This allows convolutional networks to
efficiently learn increasingly complex and abstract visual concepts to represent the visual
world.

25

Input

Kernel
c d T —
w T
g h
Y z
i j i ! S—
v Output
—>
aw + br + bw + e + caw + dr +
ey + [z fy + g2 gy + hz

ew + fr + fw + gr + gw + hr +
W+ iz v + kz ky + Iz

Figure 3.10: An example of 2D convolution. The output is restricted to only positions
where the kernel lies entirely within the image [19].

Generative Adversarial Network

Generative adversarial network, or GAN, is an unsupervised deep learning machine, intro-
duced by Ian Goodfellow in 2014 [20]. It enables the generation of fairly realistic synthetic
images by forcing the generated images to be statistically almost indistinguishable from
real ones. This type of neural network is based on two models:

1. Generator network that takes as input a random vector and decodes it into a syn-
thetic image.

2. Discriminator network that takes as input a real or synthetic image and predicts
whether the image came from a training set or was created by the generator network.

A GAN chains the generator and the discriminator together:

GAN (z) = Discriminator(Generator(x)) (3.6)

The generator is trained to be able to fool the discriminator to the extent that it is impos-
sible for the discriminator to distinguish between real and fake images. It evolves toward
generating increasingly realistic images as training goes on. Meanwhile, the discriminator
is constantly adapting to the gradually improving capabilities of the generator. Therefore,
both models are being trained to best the other. Once training is over, the generator is
capable of turning any point in its input space into a believable image. Figure 3.11 shows
a diagram of a generative adversarial network.

26

Noisez [—

Generator

Real Images

Real
—— Synthetic

Figure 3.11: The generator transforms random vectors (noise) into images and the discrim-
inator tries to distinguish between real and synthetic images [50].

A GAN is a system where the optimization minimum is not fixed. Normally, gradient
descent consists of rolling down hills in a static loss landscape. But with a GAN, every
step taken down the hill changes the entire landscape a little. It is a dynamic system where
the optimization process is seeking not a minimum, but an equilibrium between the two
models. For this reason, GANs are notoriously difficult to train. Getting a GAN to work
requires lots of careful tuning of the model architecture and training parameters [14].

27

Chapter 4

Proposed Solution

Generating realistic-looking images of the retina is not an easy task. The retina contains
many structures that have a certain shape and color, and there are also dependencies
between their locations. For this reason, I chose the image-to-image translation approach,
where the generator is provided with a black and white image of the bloodstream, from
which a synthetic image of the retina is subsequently generated. In this way, the generator
is prevented from generating an unrealistic bloodstream where, for example, some vessels
are not connected to each other, are too wide or, conversely, there is a minimum of blood
vessels in the generated retina. Conditional generative adversarial networks are used to
implement image-to-image translations, on which I based my solution. This type of network
is described below, followed by a description of the proposed system for generating synthetic
images of the retina.

4.1 Conditional Generative Adversarial Network

GANSs are generative models that learn mapping from random noise vector z to output image
y, G: z — y. In contrast, conditional GANs learn mapping from observed image x and
random noise vector z to y, G: {x, 2z} — y. The generator G is trained to produce outputs
that cannot be distinguished from real images by an adversarially trained discriminator,
which is trained to do as well as possible at detecting fake images of the generator [25].
This training procedure is shown in Figure 4.1.

Generator

A defining feature of image-to-image translation problems is that they map a high resolution
input grid to a high resolution output grid. In addition, the input and output differ in
surface appearance, but both are renderings of the same underlying structure. Therefore,
structure in the input is roughly aligned with structure in the output.

The generator uses an encoder-decoder network. In such a network, the input is passed
through a series of layers that progressively downsample, until a bottleneck layer, at which
point the process is reversed. This network requires that all information flow pass through
all the layers, including the bottleneck. For many image translation problems, there is
a great deal of low-level information shared between the input and output, and it would be
desirable to shuttle this information directly across the network [25].

To give the generator a means to circumvent the bottleneck for information like this, skip
connections are added, following the general shape of a U-Net [44]. U-Net is a convolutional

28

neural network that was developed for biomedical image segmentation. Its typical shape,
for which it got its name, is shown in Figure 4.2.

Noise z

fake

Discriminator

Real image

real

Discriminator

Figure 4.1: Training a conditional GAN to map blood vessels to retinal images. The
discriminator learns to classify between fake and real tuples. The generator learns to fool
the discriminator. Unlike an unconditional GAN, both the generator and discriminator
observe input images of blood vessels.

64 64
128 64 64 2
input
i output
image |»|w R .
e [> segmentation
tile JA
gl ol & & map
N| Off @ bal x| x| b
eEE
| = =
N| Off ©
~| &l ©
558
¥ 126 126
256 128
=B R
Nl S |;|z
ANf N o~
' 256 256 S0 956 t
SEE Q[I?I?I = conv 3x3, RelLU
Al R k-
Ty SER copy and crop
512 512 1024 512
-0 R # max pool 2x2
@
S 1024 | L 4 up-conv 2x2
& [> [>
STy & = conv 1x1
™ N

Figure 4.2: U-net architecture. Each blue box corresponds to a multi-channel feature map.
The number of channels is denoted on top of the box. The dimensions are provided at the
lower left edge of each box. White boxes represent copied feature maps. The arrows denote
different operations, where the grey ones represent skip connections [44].

29

Discriminator

It is well known that the L2 loss and L1 produce blurry results on image generation prob-
lems [30]. Although these losses fail to encourage high-frequency crispness, in many cases
they nonetheless accurately capture low frequencies. In such cases, L1 enforces correctness
at the low frequencies. Therefore, the GAN discriminator is restricted to only model high-
frequency structure, relying on an L1 term to force low-frequency correctness. In order to
model high frequencies, it is sufficient to examine the structure in local image patches. In
this way, the discriminator architecture is designed to only penalize structure at the scale
of patches, where it tries to classify if each N x N patch in an image is real or fake. This
discriminator is run convolutionally across the image, averaging all responses to provide
the ultimate output of the discriminator.

N can be much smaller than the full size of the image and still produce high quality
results. This is advantageous because a smaller network has fewer parameters, runs faster,
and can be applied to arbitrarily large images. Such a discriminator effectively models the
image as a Markov random field, assuming independence between pixels separated by more
than a patch diameter. Therefore, it is called Markovian discriminator or PatchGAN [25].

4.2 Synthetic Retinal Image Generator

Synthetic Retinal Image Generator, or SRIG, is the proposed system for generating syn-
thetic retinal images with a resolution of 1024x1024 pixels. The same width and height
of the input and output was chosen because the retina has a round shape. I also tried to
create an extended version of this system that would produce images in a higher resolution
of 2048x2048 or more, but I encountered a problem where I was running out of memory
during training. That is why the final resolution is 1024 x1024.

SRIG is a conditional neural network that generates color images of entire retinas from
black and white images containing only segmented blood vessels. SRIG, like GANs, consists
of two parts: a generator and a discriminator, where these two models are trained simulta-
neously by an adversarial process. Once the whole system achieves the desired results, the
discriminator is no longer needed and only the generator and its learned weights are used
to generate new images. To distinguish real images from fake (generated) images, values 1
and 0 are used, where 1 represents the real image and 0 fake. The mapping of the input
to the output by the generator is schematically shown in Figure 4.3. Both the generator
and the discriminator use binary cross-entropy loss as their loss function, because there
are only two classes into which images are classified — real and fake. Therefore, binary
cross-entropy is described in more detail here. This section also describes the architecture
of the generator and discriminator, which together form the SRIG system.

y

Generator

Figure 4.3: The generator learned to map the observed black and white image x to the
color output image y, G: * — y, in order to create a new, previously unseen retina.

30

Binary Cross-Entropy Loss

Binary cross-entropy loss, also called sigmoid cross-entropy loss, is a sigmoid activation
function with a cross-entropy loss. An example of a sigmoid function is the logistic function

shown in Figure 4.4 below.
1 -
s

Figure 4.4: The logistic function: g(z) = with a characteristic sigmoid curve [5].

_1
14+e—*?

Cross-entropy loss, or log loss, measures the performance of a classification model, the
output of which is a probability value between 0 and 1. Cross-entropy loss increases as the
predicted probability deviates from the actual value. Thus, predicting a probability of, for
example, 0.01 would result in a high loss value if the actual observed value is 1. A perfect
model would have a log loss of 0. An example of cross-entropy loss is given in Figure 4.5.
Cross-entropy can be calculated as [47]:

M
- Z yo,c . lOg(po,c) (41)
c=1

where M is the number of classes of the classification problem, y is a binary indicator,
whether the class c is the correct classification for the observation o, and p is the predicted
probability that observation o is of class c¢. Binary cross-entropy loss is used when there
are only two classes, in this case whether the image is real or not. Substituting M = 2 into
Equation 4.1, binary cross-entropy can then be calculated as:

— (y - log(p) + (1 —y) - log(1 — p)) (4.2)

10

log loss

L L
0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

Figure 4.5: The graph above shows a range of possible loss values given a true observation.
As the predicted probability approaches 1, log loss slowly decreases. However, as the
predicted probability decreases, the log loss increases rapidly [17].

31

Generator

The architecture of the generator is a modified U-Net. As already mentioned, the generator
uses an encoder-decoder network. There are skip connections between the encoder and
decoder. This allows us to share information between the input and output, so it better
captures the resulting structure that is based on the input structure. Specifically, skip
connections are added between each layer ¢ and layer n — ¢, where n is the total number
of layers. Each skip connection simply concatenates all channels at layer ¢ with those at
layer n — ¢. This architecture can be seen in Figure 4.6, but for simplicity and clarity,
the input and output resolution of the image is only 16x16 pixels. The architecture of the
actual generator, which generates images in the resolution of 1024 x1024 pixels, is presented
in Appendix B. More specifically, the encoder is shown in Figure B.1 and the decoder is
shown in Figure B.2.

The encoder consists of several blocks, where the total number of these blocks depends
on the required output resolution of the generated images. To achieve the bottleneck layer
(1x1) at the input resolution of 1024x1024, it is necessary that the number of blocks in the
encoder is 10. Each block downsamples the image to half its size, so log2(1024) blocks are
needed for this input resolution, which is 10. Additional blocks may be added to increase the
image resolution, but the network will need to be trained again. Each block in the encoder
consists of a strided convolution, batch normalization, and leaky ReLU as the activation
function of the block. A strided convolution is convolution with a stride. The stride defines
the step size of the kernel when traversing the image. Although its default value is usually 1,
a stride of 2 is used for downsampling. Batch size represents the number of training samples
to work through before the internal parameters of the model are updated. For example, if
the batch size is one, the neural network parameters are updated after each sample, and if
the batch size is equal to the total number of samples in a dataset, the parameters are not
updated until the entire epoch is completed. Batch normalization is a type of layer that can
adaptively normalize data even as the mean and variance change over time during training.
It works by internally maintaining an exponential moving average of the mean and variance
across the batch of the data seen during training. The main effect of batch normalization
is that it helps with gradient propagation and thus allows for deeper networks. Instead
of ReLU activation, I used leaky ReLU layer because it is similar to ReLLU, but it relaxes
sparsity constraints by allowing small negative activation values. Side by side comparison
between ReLU and leaky ReLU is shown in Figure 3.4 in the previous chapter. A diagram
of one encoder block is shown in Figure 4.7.

The number of blocks in the decoder depends on the number of blocks in the encoder,
because the encoder and decoder must form a symmetric pattern in order to use the skip
connections and generate the same output resolution as the input resolution. Each block in
the decoder consists of a transposed convolution, batch normalization and leaky ReLU as
the activation function of the block. A transposed convolution, also called deconvolution,
represents a transformation going in the opposite direction of a normal convolution, i.e.,
from something that has the shape of the output of some convolution to something that
has the shape of its input, while maintaining a connectivity pattern that is compatible with
said convolution. To minimize the risk of overfitting, dropouts were added to ensure that
weights are regularized. In this way, each block upsamples the image to twice its size. The
last block of the decoder uses tanh instead of leaky ReLLU as the activation function to get
the resulting pixel values. The decoder structure can be seen in Figure 4.8.

32

mput: | [(7, 16, 16, 3}]
output: | [(?, 16, 16, 3}]

Inputlimage: InputLayer

y

mput: | (2, 16, 16, 3}
output: | (?, 8, 8, 512)

EncoderBlockl: Sequential

e

mput: | (2, 8, 8, 512)
output: | (2,4, 4, 512)

EncoderBlocl2: Sequential

mput: | (2,4, 4, :

output: | (7,2, 2, 512)

EncoderBlock3: Sequential

e

mput: | (2,

output: | (2,

EncoderBloclk4: Sequential

mput: | (2,

output: | (2,

N

SkipConnectionl: Concatenate

DecoderBlockl: Sequential

mput:

output:

\

DecoderBlock2: Sequential

mput: | (?,2,2,1024)
output: | (7, 4,4, 512)

\

mput: | [(7, 4,4, 512), (7, 4, 4, 512}]
output: (7. 4. 4,1024)

\

DecoderBloclk3: Sequential

SkipConnection2: Concatenate

mput: | (2,4, 4, 1024)
output: | (7,8, 8, 512)

N

mput: | [(7, 8, §, 512), (7, 8, 8, 512)]
output: (7. 8, 8,1024)

SlipConnection3: Concatenate

mput: | (2, 8, 8, 1024)

DecoderBloclk4: Sequential —
output: | (2, 16, 16, 3)

Figure 4.6: Generator architecture with input and output resolution of 16x16 pixels.

33

mput: | [{7, 16. 16. 3)]
output: | [(?, 16, 16, 3)]

Input: InputLayer

Y

mput: | (2, 16, 16, 3)
output: | (7, 8,8, 32)

StridedConvolution: Conv2D

Y

mput: | (7, 8, 8, 32)
output: | (2, 8, 8, 32)

BatchNormalization: BatchNormalization

Y

mput: | (?, 8, 8, 32)
output: | (2. 8, 8, 32)

LealyReLU: LeakyReLU

Figure 4.7: Encoder block of the generator, consisting of a convolution layer, batch nor-
malization and leaky ReLU. The data shape is (batch size, height, width, channels), where
different channels represent specific colors of the RGB input. After convolution, channels
no longer represent colors, but rather stand for filters that encode specific aspects of the
input data. The input shape is (?, 16, 16, 3) and the output shape is (7, 8, 8, 32).

mput: | [(Z. 8, 8, 32)]
output: | [(?, 8, 8, 32)]

Input: InputLayer

Y

mput: | (7,8, 8, 32)
output: | (2, 16, 16, 3}

Deconvolution: Conv2DTranspose

mput: | (2, 16, 16, 3)
output: | (2, 16, 16, 3)

BatchNormalization: BatchNormalization

mput: | (2, 16, 16, 3)
output: | (2, 16, 16, 3)

Dropout: Dropout

Y

mput: | (7, 16, 16, 3)
output: | (7, 16, 16, 3)

LeakyReLU: LeakyReLU

Figure 4.8: Decoder block of the generator, consisting of a transposed convolution layer,
batch normalization, dropout and leaky ReLU. The input shape is (?, 8, 8, 32) and the
output shape is (7, 16, 16, 3).

34

Loss of the generator quantifies how well the generator was able to trick the discrimina-
tor. If the generator is performing well, the discriminator will classify fake images (or 0) as
real (or 1). Therefore, the discriminator decision on the generated images is compared to
a set of ones using binary cross-entropy. The previously mentioned L1 loss is added, where
L1 loss is the mean absolute error between the generated image and the target image. This
allows the generated image to become structurally similar to the target image. The mean
absolute error can be calculated as:

MAE = M (4.3)

n

where g; is the generated value, t; is the target value and n is the number of samples. The
total loss of the generator thus consists of cross-entropy loss and L1 loss:

total loss = cross-entropy loss + (L1 loss - \) (4.4)

where the value of A is 100 [25]. Its purpose is to regulate the impact of L1 loss. A graphical
representation of the total loss calculation of the generator is given in Figure 4.9 below.

Input Image Target Image

J

Generator

Discriminator L1 loss
Binary Cross
Array of ones { Entropy) Lambda

Total generator loss

Figure 4.9: The process of calculating the total loss of the generator.

Discriminator

The architecture of the discriminator is a PatchGAN. It is sufficient to examine the structure
of an input image in local patches. For this reason the output of the discriminator is a set
of patches and not a single response, resulting in higher overall performance. Each patch
of the output classifies a given portion of the input image, whether it is real or fake. The
input image is therefore downsampled to 32x32 patches, from which the total result is

35

obtained by averaging all patches. The discriminator contains 5 downsampling blocks,
because to reduce the input resolution of 1024x1024 to 32x32, the discriminator needs
logg(%) blocks, which is 5. Each block consists of a strided convolution that performs the
downsampling, followed by batch normalization and leaky RelLU as the activation function,
except for the last block, where there is a linear activation function to get the desired output.
The architecture of the whole discriminator is shown in Figure 4.10 below. A diagram of

one block of the discriminator is shown in Figure 4.11.

mput: | [(7, 1024, 1024, 3)] mput: | [(7, 1024, 1024, 3)]
Inputlnage: InputLayer Targethnage: InputLayer
output: | [(?, 1024, 1024, 3)] output: | [(?, 1024, 1024, 3)]

\ /

mput: | [(?, 1024, 1024, 3), (7, 1024, 1024, 3)]
output: (7, 1024, 1024, 6)

Concatenate: Concatenate

mput: | (?,1024, 1024, 6)

DownsamplingBlockl: Sequential -
output: | (2,512, 512, 64)

mput: | (7,512, 512, 64)

DownsamplingBlocl2: Sequential - -
output: | (7, 256, 256, 128)

. . mput: | (7, 256, 256, 128)
DownsamplingBlock3: Sequential

output: | (?, 128, 128, 256)

mput: | (7,128, 128, 256)

DownsamplingBlocld: Sequential —
output: | (?, 64, 64, 512)

mput: | (7,64, 64, 512)

DownsgamplingBlocks: Sequential
output: | (2, 32, 32, 1024)

y

.) . mput: | (7,32, 32, 1024)
DownsamplingBlock6: Secuential

output: (7.32.32.1)

Figure 4.10: Discriminator architecture that classifies images with an input resolution of
1024 x1024 pixels. It has two images (input, target) on the input, which it concatenates
and then progressively downsamples to the output form of 32x32 patches, from which the
final prediction is made.

36

mput: | [(7, 16, 16, 6)]
output: | [(?, 16, 16, 6)]

Input: mputLayer

4

mput: | {2, 16, 16, 6)
output: [(2,8, 8, 64)

StridedConvolution: Conv2D

Y

put: | (7, 8. 8, 64)
output: [(7, 8, 8, 64)

BatchNormalization: BatchNormalization

4

input: | (2,8, 8, 64)
output: [(7. 8, 8. 64)

LealyR.eLU: LealyReLU

Figure 4.11: One block of the discriminator, consisting of a convolution layer, batch nor-
malization and leaky ReLLU. The number of channels on the input represents the channels
of the concatenated input and target image.

Loss of the discriminator quantifies how well the discriminator is able to distinguish
real images from the fake ones. Predictions of the discriminator on real (target) images are
compared to an array of ones, and predictions on fake (generated) images to an array of
zeros. The discriminator loss function therefore takes 2 inputs: predictions on generated
and target images. The total discriminator loss is:

total loss = g _loss +t_loss (4.5)

where g_loss is a binary cross-entropy loss of the generated image and an array of zeros and
t_loss is a binary cross-entropy loss of the target image and an array of ones. A graphical
representation of the calculation of the total loss of the discriminator is given in Figure 4.12.

Input Image Target Image

Generator

| i |

1 1
: G)iscriminator G)iscriminatca !

1
1

Array of zeros AG“”;%EPTSﬂ Gglné‘f?tffc(’:ljr)?s% Array of ones

=

Total discriminator loss

Figure 4.12: The process of calculating the total loss of the discriminator.

37

Chapter 5

Implementation

This chapter will introduce what technologies are used to implement the proposed system
from the previous chapter, followed by a description of the actual implementation of each
part.

5.1 Technologies

The proposed program for generating retinal images is implemented in Python programming
language using TensorFlow library. I chose Python for several reasons, mainly because it is
freely available for academic and commercial purposes, it is multi-platform, and is becoming
very popular for both general computing and scientific computing. TensorFlow was chosen
because it provides a high-level API that makes it easier to build and train machine learning
models without sacrificing speed or performance. With TensorFlow, I could simply focus
on the overall logic of the application, instead of dealing with the details of implementing
the algorithms.

Python

Python is a scripting language that is strongly typed, but it performs all the declaration
and creation of variables for us. Any set of commands or functions in a single source file is
known as a module. Python has a fairly small set of commands and is designed to be fairly
small and simple to use. Writing extension packages for Python is also simple. It does
not require any special programming commands. Any Python module can be imported as
a package, as can packages written in C (a low-level programming language), which can
significantly increase performance.

Python is not a functional programming language, but it does incorporate some of its
concepts alongside other programming paradigms, such as higher order functions. Higher
order functions either accept a function as an argument or return a function for further
processing. Python has implemented some commonly used higher order functions from
functional programming languages that make processing iterable objects like lists and iter-
ators much easier. One of them is the map() function, which allows us to apply a function
to every element in an iterable object. Another frequently used function is the filter() func-
tion, which tests each element in an iterable object with a function that returns either True
or False while keeping only those that evaluate to True.

38

TensorFlow

TensorFlow is a free and open-source software library for numerical computation and ma-
chine learning using data flow graphs. These structures describe how data moves through
a graph or a series of processing nodes. Nodes in the graph represent mathematical op-
erations, and each connection or edge between nodes is a multidimensional data array, or
tensor. Nodes and tensors in TensorFlow are Python objects, and TensorFlow applications
are themselves Python applications.

The actual math operations, however, are not performed in Python. It uses Python
to provide a convenient front-end API for building applications with the framework, but
the libraries of transformations that are available through TensorFlow are written as high-
performance C++ binaries. The flexible architecture allows us to deploy computation to
one or more CPUs or GPUs in a desktop, server, or mobile device with a single APT [51].

TensorBoard

TensorBoard is a visualization software that comes with any standard TensorFlow instal-
lation. In machine learning, to improve something, we often need to be able to measure it.
TensorBoard is a tool for providing the measurements and visualizations needed during the
machine learning workflow. This allows us to visualize the model, track metrics, such as loss
and accuracy as they change over time, and much more. TensorBoard uses an interactive,
web-based dashboard to display this data.

Nvidia CUDA and cudNN

CUDA is a parallel computing platform and programming model developed by Nvidia for
general computing on graphical processing units (GPUs). In GPU-accelerated applications,
the sequential part of the workload runs on the CPU, while the computationally intensive
portion of the application runs on thousands of GPU cores in parallel.

The Nvidia CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library
of primitives for deep neural networks. cuDNN provides highly-tuned implementations for
standard routines, such as convolution, normalization, and activation layers. It accelerates
widely-used deep learning frameworks, including TensorFlow. This allows TensorFlow to
run up to 50% faster on the latest Nvidia GPUs and scale well across multiple GPUs [39].

5.2 Data Preprocessing

Machine learning algorithms tend to learn much more efficiently if preprocessing of inputs
and targets is performed before the network is trained. In order to simply read and process
data, the DataLoader class is implemented. It provides a set of static methods for working
with images and creating datasets.

Images that are used as input to a neural network must meet certain requirements
because the neural network has a fixed architecture. First, it is resized to match the
input resolution of 1024x1024 pixels. Then, because the neural network uses tanh as
the activation function (Figure 3.4) for the output, the pixel values of the input images
need to be between -1 and 1. This also helps to stop the weights from getting too large
unnecessarily. Scaling one interval to another is called normalization. The default value
range for the pixels is <0,255> when the image is loaded. To scale these values down to

39

<-1,1>, a simple calculation is performed:
x
127,5

normalize(x) = -1 (5.1)

where x is the input value of the pixel.

Training Data Preparation

To train the proposed neural network, it is necessary to provide an input image together
with the corresponding target image so that the network can learn the mapping between
them. It is, therefore, necessary to provide two directories to prepare the input data.
One contains images of blood vessels, and the other contains corresponding images of the
retinas. Each pair must have the same file name, but may differ in image format. Supported
image formats for training data preparation are JPEG, PNG, GIF and TIF. Both specified
directories are searched to find all supported images they contain. The Path class from the
standard library pathlib is used to work with paths, which ensures the correct path format
on different platforms. From these images, the corresponding pairs (input, target) are then
created. In the next step, the individual images of each pair are loaded using the Image
class from the PIL library and are further processed.

Because the architecture of the neural network has a fixed format of input data, it is
necessary that the input images also have a fixed format, which requires the dimensions
(width and height) of the input images to be the same. For this reason, images are resized
to meet these requirements. To prevent information from being lost due to cropping, the
image is resized by extending its smaller dimension. The original image is placed in the
middle, and the newly created space is filled with black pixels. An example of such an
image is shown in Figure 5.1.

=)

Figure 5.1: The process of resizing an image to the same width and height.

The pairs of images prepared in this way are placed side by side and saved in one file
in JPEG format. Figure 5.2 shows an image that is ready to be used as an input image
of the neural network for training. The main reason why data is prepared and stored in
this way is that during training itself, TensorFlow functions are used to load such images.
These functions are better optimized and, therefore, perform better, but do not support as
many image formats as the functions in the PIL library.

40

Figure 5.2: An image prepared for training.

Creating a Dataset

A dataset represents a potentially large set of elements. To create one, the TensorFlow
class Dataset is used, which can apply dataset transformations to preprocess the data. To
load the prepared input images, the specified directory is first checked and searched, from
which a list of files to be loaded is created. This list is passed to the Dataset to initialize
it. The map function mentioned in Section 5.1 is then used on this dataset to load and
preprocess the individual files.

To prevent the neural network from learning the order of the individual images when
using the same training set, the data must be well-shuffled before each training. Once all
the images have been loaded and preprocessed, the entire dataset is randomly shuffled using
the built-in function shuffle(). This function also allows the shuffle order to differ for each
epoch. The consecutive elements in the dataset are then combined into batches of variable
size. The batch size is a parameter that controls the number of training samples to work
through before the internal parameters of the model are updated.

To enhance the overall performance, the cache() function is used. It caches the elements
in the dataset. The first time the dataset is iterated over, its elements are cached either in
the specified file or in memory. Subsequent iterations then use the cached data.

Data Augmentation

Data augmentation is the process of generating more training data from existing training
samples by augmenting the samples via a number of random transformations that yield
believable-looking images. The goal is that at training time, the model will never see the
exact same image twice. This helps to expose the model to more aspects of the data and
generalize better.

To augment the training data, the images were zoomed in and some of them were flipped
horizontally and/or vertically. To zoom inside an image, the image is enlarged and then
randomly cropped to its original size. The flipping is relevant because retinal images are

41

not horizontally or vertically symmetrical. An example of augmenting an image is shown
in Figure 5.3.

The augmented images are still heavily intercorrelated because they come from a small
number of original images. Data augmentation cannot produce new information; it can
only modify existing information.

Figure 5.3: Image augmentation. The image on the left is the original image. The image on
the right was created by randomly cropping and flipping (both horizontally and vertically)
the original image.

5.3 Conditional Generative Adversarial Network

To implement the proposed conditional generative adversarial network from Chapter 4,
several classes were created, namely, Model, Generator, Discriminator and ConGAN. Their
purpose and detailed description is given in the following sections. The corresponding class
diagram is shown in Figure 5.4.

Model

Because the generator and the discriminator are models that have certain things in common,
the abstract Model class was created, which forms the common basis of these models. This
class provides a basic interface for working with these models by implementing an object-
oriented mechanism — class inheritance. It allows access to individual properties of the
model, such as its loss function, optimizer, training variables or the model itself. The
Model class has two abstract methods that must be implemented by its sub-classes. These
are methods for creating the model and calculating the losses.

It also provides an implemented method for updating model weights that is common to
both the generator and the discriminator. This method takes the calculated gradients as an
input argument and applies them to its trainable variables using the optimizer. Trainable
variables represent model weights that are not fixed. An optimizer is a class in TensorFlow
that ensures applying the gradients to the variables.

42

Model <<abstract>>
+model
+loss_function
+optimizer
+{rainable_variables
+build_model() <<abstract>>
+calculate_loss() <<abstract>>
+create_downsampling block()
+create_upsampling_block()
+update_weights()

7
[]

Generator Discriminator
+load_weights()
+generate()
ConGAN
+train()

+train_step()

Figure 5.4: Class diagram of the proposed conditional generative adversarial network.

Both the generator and the discriminator use the Adam optimizer from TensorFlow.
Adam optimization is a stochastic gradient descent method that is based on adaptive esti-
mation of first-order and second-order moments. This method is computationally efficient,
has little memory requirement, and is well-suited for problems that are large in terms of
parameters [27]. The input parameter of Adam is the learning rate.

Since both the generator and the discriminator are made up of similar blocks, the
Model class provides two static methods for creating them. One method is used to create
a downsampling block, and the other method is used to create an upsampling block.

A downsampling block consists of a convolution layer, batch normalization and leaky
ReLU. The Conv2D class is used for the realization of the convolution layer. Its main input
parameter is the number of filters used for convolution. Another parameter is the size of
these filters, and the stride, which is set to 2 for downsampling. The BatchNormalization
and LeakyReL U classes are used to implement batch normalization and leaky ReLU.

An upsampling block consists of a transposed convolution layer, batch normalization,
dropout and leaky ReLLU. The Conv2DTranspose class is used to realize the transposed
convolution. Its parameters are the same as in the case of the convolution layer. The stride
is also set to 2, but now it is for upsampling. The dropout layer is implemented using
the Dropout class. This layer randomly sets input units to 0 with the specified frequency
at each step during training time. This frequency is an input argument whose values are
between 0 and 1. Batch normalization and leaky ReLLU are implemented in the same way
as in the downsampling block. All of the above-mentioned classes are implemented within
TensorFlow. The individual parameters and their values are described in more detail in
Section 6.2 in the following chapter.

43

Generator

The Generator class is inherited from the Model class. It represents the generative part
of the system. As mentioned in the previous section, the generator must implement both
abstract methods of the Model class.

The first one is a method for calculating the loss of the generator. This method has
three input arguments. The first one is the prediction of the discriminator on the generated
image, the second is the generated image itself, and the last argument is the target image. To
calculate the binary cross-entropy loss, the BinaryCrossentropy() function from TensorFlow
is used. The discriminator prediction is passed to this function, together with an array
of ones created from this prediction using the ones_like() function from TensorFlow. To
calculate L1 loss, which is the mean absolute error, the TensorFlow functions reduce__mean()
and abs() are used, to which the difference between the pixel values of the target image and
the generated image is passed. The value thus obtained is multiplied by the lambda. For
the total loss of the generator, these two calculated values are then summed.

The second abstract method that needs to be implemented is the method for creating
the model itself. The prepared methods for downsampling and upsampling are used to
create individual encoder and decoder blocks. These blocks are stored in two arrays. The
array with encoder blocks is iterated over to create the encoder part. In each iteration,
the output of one block is connected to the input of another block, and, at the same time,
these blocks are stored in an auxiliary array, which represents the skip connections. After
creating the encoder part, this auxiliary array is reversed. In the next step, it is iterated
over this array and the array with decoder blocks. In each iteration, a skip connection
between the encoder and decoder is created using the TensorFlow Concatenate layer. This
creates the final structure of the generator.

For the purpose of generating synthetic retinal images, the Generator class provides two
other methods. One method to generate an image and the other to initialize the generator.
The first method has three input arguments, the first of which is the input black and white
image with segmented blood vessels. The second argument specifies the name of the output
file, in which the generated image will be saved. To plot and save images, the Pyplot library
is used, which, however, requires that the pixel values of the image lie in the interval <0,1>.
And because the values of the generated image lie in the interval <-1,1>, it is necessary to
normalize them. To do so, the following equation can be used:

z+1

normalize(z) =) (5.2)

The last optional argument, whose default value is Fulse, is a flag indicating whether the
generated image should be displayed on the screen or not.

To generate an image that is not just random noise, the generator needs to be initialized.
To initialize the generator, the second of the mentioned methods is used. It initializes the
generator weights from a checkpoint located in the directory passed as the input parameter
of the method. The Checkpoint class from TensorFlow is used to work with checkpoints.

Discriminator

The Discriminator class is the second class that is inherited from the Model class. The
discriminator is only used in the training phase, so it provides implementations of only the
abstract methods of the parent class that are sufficient to achieve the desired result.

44

The first is again the method for calculating the total loss of the discriminator, which
has two input parameters: prediction of the discriminator on the real (target) image and
prediction on the fake (generated) image. The total loss of the discriminator is the sum of
the binary cross-entropy loss of the real images and an array of ones (using ones_like()),
and the binary cross-entropy loss of the generated images and an array of zeros (using
zeros_like()). The BinaryCrossentropy() function is used again to calculate these losses.

The second abstract method that the Discriminator class implements is the method for
creating the model. Since the discriminator has two images on the input, it is necessary to
concatenate these inputs first. The Concatenate layer is used for this. This layer is followed
by a series of downsampling blocks, which were created using the prepared method in the
same way as for the generator. In this way, the final structure of the discriminator proposed
in the previous chapter is achieved.

ConGAN

This section describes how the generator and discriminator are interconnected using the
ConGAN class. Its purpose is that these two models are trained simultaneously by an
adversarial process. The generator learns how to create realistic-looking images, while the
discriminator learns how to distinguish real images from generated ones. When this class
is initialized, a log directory and instances of the Checkpoint and SummaryWriter classes
are created. The log directory is a directory in which the data created during the training
will be stored.

The Checkpoint class is used to save and restore models, which can be helpful in case of
interruption of a long running training task. A checkpoint saves a graph of dependencies
between Python objects, such as layers and optimizers, with named edges, and this graph
is used to match variables when restoring a checkpoint. A checkpoint is also used by the
generator, where, before generating synthetic images, the generator is initialized with values
from that checkpoint. The generator and discriminator, together with their optimizers, are
passed as input parameters of the checkpoint so that they can be monitored and stored.

The SummaryWriter class is used to record the losses of individual models, which can
then be examined. It is an interface representing a stateful summary writer object. The
output of this class can be easily viewed in the TensorBoard visualization tool to monitor
the progress of the training.

The core of ConGAN is the method for training these models. Its input parameters
are the total number of epochs, the training dataset, the testing dataset, the output period
and the checkpoint period. At the beginning of each epoch, one image is generated and
saved. The testing dataset is used to generate this image. This allows us to see what the
generated images look like in each epoch. The generator method, already described in this
section, is used for the image generation itself. How often individual images are generated
is regulated by the input argument of this method — the output period.

The generation is followed by the training process itself. It iterates over the training
dataset, and a training step is taken for each batch. One training step consists of the
following parts:

1. For each example input, an output is generated.

2. The discriminator receives the input image and the generated image, from which it
makes a prediction about the generated image. It then receives the input image and
the target image, from which it makes a prediction about the target image.

45

3. Based on these predictions, the losses of the generator and discriminator are then
calculated using the implemented methods of these models.

4. Gradients are calculated from these losses. The GradientTape class is used for this
purpose. It records operations for automatic differentiation. The gradients of loss
are calculated with respect to both the generator and the discriminator variables
(trainable and non-trainable).

5. These gradients are applied to the optimizer, using the implemented method for
updating weights, which ensures that the gradients are applied to the variables.

6. Lastly, these losses are logged using Summary Writer.

After completing the training step, a checkpoint is saved. The checkpoint period can also
be regulated by the input parameter of the training method — the checkpoint period.

During the training, information about the status of the training is printed to the
console, such as the epoch number, how many training steps are completed, and how long
the epoch lasted. After the training is completed, the last checkpoint is saved, and summary
statistics for the given training process are printed, containing the total training time and
the average time per epoch.

5.4 Source Code Structure and Usage

The source code is divided into several files. Their hierarchy is given below:

e pretrained/

o chasedbl/
o combined/
o drive/

o hrf/

o stare/
e srig/

o __init__.py

o congan.py

o data_loader.py

o discriminator.py
o generator.py

o model.py

e requirements.txt

e srig.py

46

The pretrained directory contains subdirectories with checkpoints where the weights of
pretrained models are stored. These checkpoints are used to initialize the retinal image gen-
erator. The srig directory contains the source code for each of the implemented classes de-
scribed in the previous sections. The __init__.py file is used to mark the srig directory as
the Python package directory from which the classes are imported. The requirements.txt
file contains a list of libraries that were used during the implementation. These libraries
are required to run the program. The last file, srig.py, represents the entry point of the
program where the input arguments are processed. Based on these arguments, further ex-
ecution of the program takes place. The individual arguments are described later in this
section.

Installation

The implemented program requires, in addition to the libraries used, Python 3 installed
along with PIP and tkinter. PIP is the package manager for Python packages, and tkinter
is the standard graphical user interface (GUI) for Python. The PIP is used to install all
the required libraries so that the user does not have to install them one by one. A list of
these libraries is given in the requirements.tzt file.

To install them, one of the following commands can be used:

e pip install -r requirements.txt

e python3 -m pip install -r requirements.txt

This will automatically install all the libraries listed in that file. The program is then ready
for use.

Program Arguments

The program can do three different things: prepare training data, train the model, or
generate retinal images. These operations are mutually exclusive, and only one of them
can be performed while the program is running. Therefore, the program has a required
argument in which one of the three options is selected, and then further arguments to the
corresponding option can be specified. All supported arguments are listed below.

Mutually exclusive arguments

--prepare Prepare input data for training.
--train Train the model.
--generate Generate retinal images.

Data preparation arguments
--bv_dir BV_DIR Specify a directory with images of blood vessels.

--retina_dir RET_DIR Specify a directory with retinal images.

47

Training arguments
-—train_dir TRAIN_DIR

--test_dir TEST_DIR

--log_dir LOG_DIR

—--checkpoint_period C_PERIOD

--output_period O_PERIOD

--epochs EPOCHS

--batch_size BATCH_SIZE

Generation arguments
--input INPUT
--checkpoint_dir CHCKP_DIR

--display_output

Common arguments
-h, --help

--output_dir OUT_DIR

Examples

Specify a directory with training images.

Specify a directory with testing images. The default
value is the training directory.

Specify the log directory. The default value is . /logs.

Specify the period of checkpoint storing. The default
value is 1. Negative values disable the checkpoints.

Specify the period of output image generation. The
default value is 1. Negative values disable the gener-
ation.

Specify the number of epochs. The default value is 1.

Specify the batch size. The default value is 1.

Specify the input file or directory.
Specify the checkpoint directory.

Display generated output.

Display the help.

Specify the output directory. The default value is
./output.

To illustrate, below are examples of how to run this program.

e python srig.py --prepare --bv_dir blood_vessels/ --retina_dir retinas/
--output_dir training_data/

This processes images from the blood_vessels and retinas directories, prepares
them for training and saves the resulting images in the training_data directory.

e python srig.py --train --train_dir training_data/ --epochs 100

This trains the model for 100 epochs using images in the training_data directory. On
each epoch, it generates an output image to show its progress, and saves a checkpoint
with the current weights. All generated data are stored in the default directory, logs.

48

e python srig.py --train --train_dir training data/ --test_dir
testing_data/ --log_dir summary/ --epochs 100 --output_period 10
—--checkpoint_period 20

This trains the model for 100 epochs using images in the training_data directory
It generates an output image every 10 epochs and saves a checkpoint every 20 epochs.
It uses images from the testing_data directory to generate output images. All
generated data are stored in the summary directory.

e python srig.py --generate —--input examples/image.jpg --display_output

This generates an image of the retina using image. jpg as input, saves it in the default
directory, output, and displays the generated image on the screen.

e python srig.py --generate --input examples/ --checkpoint_dir
output/checkpoints/ --output_dir generated_retinas/

This generates as many retinal images as there are images in the examples directory.
Images are generated using the model with weights initialized from a checkpoint
from the output/checkpoints directory. The generated images are saved in the
generated_retinas directory.

49

Chapter 6

Training and Testing

This chapter focuses on the actual training of the model, which was proposed in Chapter 4
and subsequently implemented in Chapter 5. It contains a description of what data was
used to train this model, a description of the training process itself, along with problems
that occurred during the training and how I solved them. Finally, an evaluation of the
obtained results is given.

6.1 Data Source

An important basis for training and subsequent testing of the algorithm for automatic
generation of synthetic retinal images is to have a sufficiently large number of retinal images.
These images should form a representative set of retinas. From publicly available databases
of retinas such as ADCIS [15], CHASE_DBI1 [31], DRIVE [12], FIRE [22], HRF [10] and
STARE [18]. Only those databases that already contain professionally annotated blood
vessels were used.

Those used databases include the CHASE_DB1 database, which consists of 84 color
digital images with a resolution of 999x960 pixels. 28 of these images are retinal images
and 56 images of blood vessels. Each retina has two corresponding images of segmented
blood vessels that differ in the number of visible blood vessels. Therefore, it is possible to
create 56 pairs, where an example of one such retina is given in Figure 6.1 below.

Figure 6.1: Example of a retina from the CHASE_DBI1 database. The two images with
segmented blood vessels differ slightly in the number of visible blood vessels.

50

Another database used is the DRIVE database, which contains 100 images with a res-
olution of 565x584 pixels. This database already divides these images into a training and
testing set, where each contains 20 different retinas. For each retina, there is one image of
the retina itself and one image with a background mask. Only the training set contains the
required segmented blood vessels. Therefore, only 20 pairs of images can be created from
this database.

The HRF database is also divided into retinal images, corresponding background masks
and segmented blood vessels. A total of 45 different images of retinas with a resolution
of 3504x2336 pixels are available in this database, which is the highest resolution of all
databases.

The last database used is the STARE database. It contains a total of 397 different
images of retinas, but only 20 are hand-labeled images by an expert, so only 20 pairs were
created. The resolution of individual images is 700x605. Other databases were not used
because they do not contain segmented blood vessels.

A total of 141 pairs of images (retinas and their segmented blood vessels) are available.
Since the input resolution of the system is 1024x 1024 and the images from the DRIVE and
STARE databases have a much lower resolution, these images were enlarged using an online
tool' that uses a neural network with an algorithm adjusted for images, thus making the
enlarging process in high quality. Details on individual sets of images are given in Table 6.1
below.

Database Resolution | Pairs
CHASE DBI1 999 x 960 56
DRIVE 1130x 1168 20
HRF 3504 %2336 45
STARE 1400x 1210 20
> 141

Table 6.1: Used databases that are publicly available.

6.2 Training

In order for the generator to generate retinal images, it must first be trained. The training
loop begins with the generator receiving a black and white image of blood vessels. This
image is used to create an image of the retina. The discriminator then classifies real images
(drawn from the training set) and fake images (produced by the generator). The loss is
calculated for each of these models in order to calculate the gradients used to update the
generator and discriminator weights. This is the basic concept of how the combined model
is trained.

Monitoring

The implemented training loop saves the logs of each epoch, so they can be easily viewed in
the TensorBoard tool to monitor the progress of the training. For this purpose, a separate
TensorBoard process can be started using the following command:

tensorboard --logdir [log_dir]

https://bigjpg.com/

51

https://bigjpg.com/

where log_dir is a directory containing the training logs. The default directory with this
data is logs/summary in the current working directory.

The loss during training typically reduces fairly quickly during the first few training
iterations, and then the reduction slows down because the learning algorithm performs
small changes to find the exact local minimum. This is shown in Figure 6.2. The value of
In(2), which is approximately 0.69, is a good reference point for these losses, as it indicates
a perplexity of 2 — that the discriminator is, on average, equally uncertain about the two
options. For the discriminator loss, a value below 0.69 means the discriminator is doing
better than random on the combined set of real and generated images. For the generator
loss, a value below 0.69 means the generator is doing better than random at fooling the
discriminator.

loss

epochs

0 20 40 60 80 100 120 140 160 180 200

Figure 6.2: Loss of the discriminator during the 200 epochs. The horizontal axis shows
epochs, vertical axis losses. The values are smoothed for better clarity.

The generator and discriminator are trained simultaneously. It is important that the
generator and discriminator do not overpower each other. When training a GAN, it is
therefore necessary to monitor the loss of individual models. If either the loss of the
generator or the loss of discriminator gets very low, it indicates that this model is dominating
the other, and the combined model is not being successfully trained. This situation is shown
in Figure 6.3. In order to solve this, the learning rate of the model that dominates must be
reduced or, conversely, the learning rate of the model that is dominated must be increased.

0.185

loss

0.18
0175
0.17
0.165
0.16
0.155
0.15
0.145
0.14
0135
0.13
0125

Figure 6.3: Loss of the discriminator that dominates the generator. The horizontal axis
shows epochs, vertical axis loss. The values are smoothed for better clarity.

52

Training Duration

The training of the combined model requires that the algorithm runs over the entire training
set many times, with the weights changing as the model makes errors in each iteration. The
problem is how to decide when to stop learning. It is not desirable to stop training until
the local minimum has been found, but training too long leads to overfitting of the model.
There are many ways to solve this problem, but the most obvious ones are not sufficient.
One of these solutions is to set some predefined number of iterations and train until that
is reached, but this poses a risk that the model will be overfitted by then, or not learned
enough. Another solution is to stop only when some predefined minimum loss is reached,
but that might mean the algorithm never terminates, or that it overfits.

This is where the testing set comes in useful. The model is trained for a predetermined
period of time, and then the testing set is used to estimate how well the model can generalize.
The training is carried on for a few more iterations, and the whole process is repeated.
As training progresses, the generated images will look increasingly real. The first image
generated by an untrained generator contains mostly noise (Figure 6.4), but thanks to the
architecture of the generator, where generation depends on the input image of blood vessels,
a slight structure of blood vessels can already be seen in the generated image. After just
one epoch, the generated image resembles a real retina, where this retina begins to acquire
its shape and color. Such an image is shown in Figure 6.5.

Figure 6.4: An image that was created by an untrained generator from an input image of
blood vessels.

Therefore, I approached such a training solution, where at the beginning of each epoch,
an image from the testing set is generated. These images can be used to monitor the
generalization capability of the model at its current stage of learning. Based on the quality
of these images, a decision when to stop training the model is made. Another indicator of
when to stop training is monitoring the loss of both the generator and the discriminator.
The training can be terminated once the error stops decreasing. At some stage the error on
the testing set will start increasing again, because the model has stopped learning about
the function that generated the data, and started to learn about the noise that is in the
data itself. At this stage the training is stopped.

53

Figure 6.5: An image that was created by a generator from an input image of blood vessels.
The generator was trained for only one epoch.

Model Parameters

Building machine learning models requires a selection of various parameters of these models,
such as the dropout rate in a layer or the learning rate. These decisions impact the metrics
of the model. Therefore, an important step in the machine learning workflow is to identify
the best parameters for a given problem.

The final parameters of the model were obtained by experimenting with different values
of these parameters and their combinations, where the values that produced the best results
were selected. Details on each parameter are given below. The number of epochs varied for
each database and their exact values are given in Section 6.3.

e Weights are the first parameter that was set. The weights are initialized to small
random numbers, both positive and negative. Random values in this range were used
so that the learning starts from different places for each run. These values are also
about the same size, as it is desirable for all of the weights to reach their final values
at about the same time. To initialize the weights in this way, a normal (or Gaussian)
distribution was used. A normal distribution is a type of continuous probability
distribution for a real-valued random variable. The general form of its probability
density function is [48]: .

oV 2

_lez—py2
o3

fl@) = (6.1)
where the parameter y is the mean of the distribution, and o is its standard deviation.
In this case, the mean is set to 0 and the standard deviation is set to 0.025. Resulting
distribution can be seen in Figure 6.6.

e Learning rate is a parameter that indicates how much these weights will change each
iteration. It was necessary to choose it so that both models are trained at a similar
rate. Thanks to this, there will be no situation where one of the models dominates the
other. If one model dominates the other, the model as a whole gives poor results. For
the generator the learning rate 0.00025 was chosen, and for the discriminator 0.0003
was chosen.

54

e Dropout layers are located only in the decoder part of the generator. During training,
they randomly drop out a number of output values of the layer, which helps prevent
overfitting. The exact number is given by the dropout rate, which is a fraction of the
values that are dropped out. The dropout rate of these layers was set to the value of
0.5 (half of all values were dropped), but only in the first three upsampling layers.

e Batch size is the number of training examples utilized in one iteration. With small
values the model converges quickly at the cost of noise in the training process. The
smaller the batch the less accurate the estimate of the gradient will be. It also requires
less memory, since the model is trained using fewer samples at once. On the other
hand, with large values it converges slowly, but with more accurate estimates of the
gradient. Based on the available data and computational power, I was only able to
use a value of 2 as the batch size.

e Number of filters differs for individual convolution or deconvolution layers. Con-
volutional neural networks do not learn a single filter. They learn multiple features
in parallel for a given input. This gives the model many different ways of extracting
features from an input. In this case, I started with 32 filters for the first layer and
gradually doubled this number up to 512 filters. The last deconvolution layer uses 3
filters in the case of the generator, which correspond to the individual color channels
of the output image. In the case of the discriminator, the last convolution layer uses
only one filter, thanks to which the required 32x32x1 patches are obtained.

e Filter size represents the size of each filter. In the generated images, I came across
checkerboard artifacts caused by unequal coverage of the pixel space in the generator,
as shown in Figure 6.7. To solve this problem, a filter size that is divisible by the
stride size was used. The selected value is therefore 4x4 pixels. This value is used
wherever convolution and transposed convolution layers are used, i.e., in the generator
and discriminator.

20
15
X 10
5
-0.09 -0.06 -0.03 0.00 0.03 0.06 0.09
X

Figure 6.6: Probability density function of a normal distribution with the mean value of 0
and the standard deviation of 0.025.

55

Figure 6.7: Checkerboard artifacts caused by mismatching strides and filter sizes.

Final Training of the Model

The generator model contains a total of 13,184 fixed parameters that do not change during
training, and over 67,000,000 trainable parameters, the values of which need to be adjusted
by learning. The discriminator model has less than 700,000 parameters in total.

The learning itself was performed on individual databases and then one learning was
performed on images from all databases together. Some images are of poor overall quality
or contain retinas with various diseases or other damage, so these images were excluded
from training sets so that the generator learns to generate only high quality images of
healthy retinas. Testing sets were created from the excluded images, which were used to
monitor how well the generator generalizes. A different number of epochs was used for
each database, as each database contains a different number of images. More detailed
information about individual trainings is given in Table 6.2, which contains information
about the number of images in each set, the total number of epochs and how long the given
training lasted. In this way, several files containing learned weights for individual databases
and their combinations were created and used to generate new retinal images.

Database Training Testing Epochs Time
Images Images (minutes)

CHASE_DBI1 42 14 24 29

DRIVE 16 4 18 12

HRF 32 13 37 42

STARE 12 8 21 11

| All combined | 102 | 39 T 139

Table 6.2: Training on individual databases.

6.3 Evaluation

Using the implemented and trained generator, several databases of synthetic retinal images
were created, one for each database on which the generator was trained. This generator
was able to generate new images of retinas in a resolution of 1024 x 1024 pixels. The original

56

databases together provided 141 input images with segmented blood vessels. To increase
the number of input images from which retinal images were generated, the original images
were flipped horizontally, vertically, and both horizontally and vertically. In this way, three
new images were created from each input image that produce a slightly different output.
Thus, 564 input images were available for the generation process. A total of 2,820 retinal
images were created from five different sets of learned weights. These newly created retinas
were subsequently evaluated.

The person evaluating the generated data does not need to have the expertise of an
ophthalmologist to be able to assess whether a given retina is real or not. It is only
sufficient if he is an informed layman familiar with the subject. Thanks to this, I was able
to perform this evaluation myself without the need for the assistance of an ophthalmologist.

The generalization capabilities of the model are at a high level for individual databases,
where Figure 6.8 shows an example of a newly generated image, as well as the original
image and the corresponding blood vessels for comparison. Some of the generated images
are indistinguishable from the real ones, which was the goal of this thesis.

Figure 6.8: Example of a generated image. The image on the left is the input, the image
in the middle is the original, real image, and the image on the right is the synthetic image.

Despite the fact that the newly generated images are similar to the original ones, as they
have the same bloodstream, it can be said that they are new retinas. The new images have
different colors, the optic disc and fovea are different, and they also differ in small structures
on the retina. Thus, this generator allows to generate an image of a healthy retina from the
blood vessels of a damaged retina, as shown in Figure 6.9, or from an overexposed image to
an image with a normal exposure that is less bright. An example of an overexposed image
is shown in Figure 6.10.

However, if the images from different databases are combined with each other, such
quality is no longer achieved. For example, the CHASE_DBI1 database consists of retinal
images that are centered on the optic disc. As a result, its position and shape were over-
fitted, which was reflected in images from other databases. An example of such a case is
shown in Figure 6.11. The generator trained on combination of all databases had the best
generalization capability because they contained a large number of different images. These
images were taken from different angles and captured differently sized parts of the retina.
On the contrary, the DRIVE and STARE databases achieved the worst results, as they
were trained on a small number of images. For a higher quality of images from different
databases of blood vessels, it would be necessary to have a larger number of input images
on which the model would be trained.

57

Figure 6.9: Example of a generated image. The image on the left is an image of a damaged
retina and the image on the right is the image generated from the bloodstream of the retina
on the left.

Figure 6.10: On the right is an example of an image generated from the bloodstream of the
retina on the left, which is overexposed.

Figure 6.11: Example of an image generated by the generator trained on the CHASE_DB1
database. The optic disc is overfitted to the center of the retina. The input blood vessels
for this image are from the DRIVE database.

58

Chapter 7

Conclusion

Human eyes provide us with vision, and the most important part of the human eye is the
retina. The retina is also the most sensitive part of the human eye, and therefore diseases of
the retina can lead to vision loss. For this reason, it is important to protect our eyesight, as
its loss means a significant deterioration in our quality of life. Special equipment, a fundus
camera, is needed to capture the retina, so it is not an easy task to obtain these images in
large quantities. Therefore, the main objective of this work was to design and implement
a system that would be able to generate new synthetic images of retinas that would extend
existing databases. These images could then be used as a learning tool for ophthalmologists
to practice their knowledge or for the development of medical or biometric systems.

This thesis provides a theoretical basis for the anatomy of the human eye and some
selected retinal diseases. From a technical point of view, it focuses on various methods of
machine learning and on the basic principles of neural networks. Specifically, it focuses on
deep learning, which includes specific types of neural networks, namely, convolutional and
generative adversarial networks, based on which a method of generating synthetic retinal
images was proposed. The thesis provides a detailed description and implementation of
this solution and eventually describes the process of training the proposed system. After
the system was trained, a database of synthetic retinal images was created, the quality of
which was subsequently assessed.

The proposed solution uses an image-to-image translation, where the system is provided
with a black and white image at the input containing only bloodstream, on the basis of
which a color image of the entire retina is generated. The system consists of two neural
networks, one of which is a generator that generates retinal images from an input image
of blood vessels, and the other is a discriminator that has two images at the input — the
same image of blood vessels and a corresponding retinal image that is classified as real
or synthetic. In order for this system to be able to generate realistic-looking images of
retinas, it had to be trained first. The training was performed on several publicly available
databases, which together provided 141 input images. The generator and discriminator
were trained simultaneously, where the aim was for the generator to produce images of
such a quality that the discriminator would not be able to distinguish them from real ones,
and at the same time that the discriminator had its classification capability at the highest
possible level. Care had to be taken to ensure that one model did not dominate the other,
as the system as a whole would produce poor results. It was therefore necessary to find an
equilibrium between these models.

After the system has been trained, there is no need for the discriminator and only the
trained generator is used. With this generator, a database of over 2,800 synthetic images

59

in a resolution of 1024x1024 pixels was created from the available data. Many of the
images generated in this way were indistinguishable from real images of the retina, which
was the aim of this work. Despite the fact that these generated images are based on the
bloodstream of real retinas, they can be considered as images of new retinas, as, except for
the given blood vessels, they differ in everything else, such as color, optic disk and fovea. In
addition, the generator was trained on a set of healthy retinas, so it is possible, for example,
to generate a healthy retina from the bloodstream that belongs to a retina with a disease.

Future work should focus on training this network on a larger number of retinal images
from different databases. This network can be extended to generate images in much higher
resolution, but it would be necessary to provide sufficient computing power and also to
provide input images that are in at least as high a resolution as the desired output res-
olution of the generator. Another possible continuation of this work would be to design
and implement a system that would generate black and white images of segmented retinal
blood vessels from random noise. The output of that system would then be connected to
the input of the generator from this thesis. In this way, it would be possible to generate
completely new retinas that would not depend on the input data, as the input data would
be random noise.

60

Bibliography

[1] ALPAYDIN, E. and BAcCH, F. Introduction to Machine Learning. 2nd ed. Cambridge,
London: MIT Press, 2014. ISBN 978-0-262-02818-9.

[2] AMIDI, A. and AMIDI, S. Leaky ReLU function. 2018. [Online; visited 14.03.2020].
Available at:
https://stanford.edu/~shervine/teaching/cs-229/illustrations/leaky-relu.png.

[3] AmipI, A. and AMIDI, S. Neural network architecture. 2018. [Online; visited
14.03.2020]. Available at: https:

//stanford.edu/~shervine/teaching/cs-229/illustrations/neural-network-en.png.

[4] Amip1, A. and AMIDI, S. ReLU function. 2018. [Online; visited 14.03.2020]. Available
at: https://stanford.edu/~shervine/teaching/cs-229/illustrations/relu.png.

[5] AmipI, A. and AMIDI, S. Sigmoid function. 2018. [Online; visited 14.03.2020]. Available
at: https://stanford.edu/~shervine/teaching/cs-229/illustrations/sigmoid.png.

[6] AMIDI, A. and AMIDI, S. Tanh function. 2018. [Online; visited 14.03.2020]. Available
at: https://stanford.edu/~shervine/teaching/cs-229/illustrations/tanh.png.

[7] ArBIB, M. A. The Handbook of Brain Theory and Neural Networks. 2nd ed.
Cambridge, London: MIT Press, 2003. ISBN 0-262-01197-2.

[8] AUBRECHT, T. Detekce onemocnéni ve snimku sitnice oka. Brno, 2017. 40 p.
Bachelor’s thesis. Vysoké uceni technické v Brné. Fakulta informacnich technologii.
Vedouci prace Ing. Lukas Semerad.

[9] BENES, P. Pristroje pro optometrii a oftalmologii. 1st ed. Brno: Nérodni centrum
osetrovatelstvi a nelékarskych zdravotnickych obori, 2015. ISBN 978-80-7013-577-8.

[10] Bupal, A., Bock, R. et al. High-Resolution Fundus Image Database. 2013. [Online;
visited 10.03.2020]. Available at:
https://wwwb.cs.fau.de/research/data/fundus-images/.

[11] CALHOUN, J. S. Retinal Hemorrhage. 2013. [Online; visited 20.11.2019]. Available at:
https://imagebank.asrs.org/file/10070/retinal-hemorrhage.

[12] CHALLENGE, G. DRIVE: Digital Retinal Images for Vessel Extraction. 2012. [Online;
visited 10.03.2020]. Available at: https://drive.grand-challenge.org/.

[13] CHARNIAK, E. Introduction to Deep Learning. 1st ed. Cambridge, London: MIT
Press, 2018. ISBN 978-0-262-03951-2.

61

https://stanford.edu/~shervine/teaching/cs-229/illustrations/leaky-relu.png
https://stanford.edu/~shervine/teaching/cs-229/illustrations/neural-network-en.png
https://stanford.edu/~shervine/teaching/cs-229/illustrations/neural-network-en.png
https://stanford.edu/~shervine/teaching/cs-229/illustrations/relu.png
https://stanford.edu/~shervine/teaching/cs-229/illustrations/sigmoid.png
https://stanford.edu/~shervine/teaching/cs-229/illustrations/tanh.png
https://www5.cs.fau.de/research/data/fundus-images/
https://imagebank.asrs.org/file/10070/retinal-hemorrhage
https://drive.grand-challenge.org/

[14]

[15]

[16]

CHOLLET, F. Deep learning with Python. 1st ed. Shelter Island, NY: Manning, 2018.
ISBN 978-1-61729-443-3.

DECENCICRE, E. TeleOphta: Machine learning and image processing methods for
teleophthalmology. 2013. [Online; visited 10.03.2020]. Available at:
http://www.adcis.net/en/Download-Third-Party/E-Ophtha.html.

DESHPANDE, M. Perceptron scheme. 2017. [Online; visited 20.02.2020]. Available at:
https:
//pythonmachinelearning.pro/wp-content/uploads/2017/09/Single-Perceptron.png.

FORTUNER, B. Cross-Entropy. 2017. [Online; visited 22.3.2020]. Available at:
https://ml-cheatsheet.readthedocs.io/en/latest/_images/cross_entropy.png.

GoLDBAUM, M. STARE: Structured Analysis of the Retina. 2004. [Online; visited
10.03.2020]. Available at: http://cecas.clemson.edu/~ahoover/stare/.

GOODFELLOW, 1., BENGIO, Y. and COURVILLE, A. Deep Learning. 1st ed.
Cambridge, MA: MIT Press, 2016. ISBN 978-0-262-03561-3.

GOODFELLOW, 1. J., POUGET ABADIE, J., MiRzA, M., XU, B., WARDE FARLEY, D.
et al. Generative Adversarial Networks. 2014. [Online; visited 18.03.2020]. Available at:
https://arxiv.org/abs/1701.00160.

HaMEL, C. Fundus of patient with retinitis pigmentosa. 2006. [Online; visited
20.11.2019]. Available at:
https://en.wikipedia.org/wiki/Retinitis_pigmentosa#/media/File:
Fundus_of_patient_with_retinitis_pigmentosa,_mid_stage.jpg.

HERNANDEZ MATAS, C., ZABULIS, X. et al. FIRE: Fundus Image Registration
Dataset. 2017. [Online; visited 10.03.2020]. Available at:
http://www.ics.forth.gr/cvrl/fire/.

HRVOLOVA, B. Biofyzika. 1st ed. Ostrava: Vysokd Skola bariska - Technicka
univerzita Ostrava, 2013. ISBN 978-80-248-3105-3.

HycL, J. and TRYBUCKOVA, L. Atlas oftalmologie. 2nd ed. Praha: Triton, 2008.
ISBN 978-80-7387-160-4.

IsoraA, P., Zuu, J.-Y., ZHou, T. and EFROS, A. A. Image-to-Image Translation with
Conditional Adversarial Networks. 2016. [Online; visited 21.03.2020]. Available at:
https://arxiv.org/abs/1611.07004.

JAIN, A. K. et al. Introduction to Biometrics. 1st ed. Spring Street, New York:
Springer, 2011. ISBN 978-0-387-77325-4.

KinGgMA, D. P. and BaA, J. Adam: A Method for Stochastic Optimization. 2014.
[Online; visited 01.04.2020]. Available at: https://arxiv.org/abs/1412.6980.

KOLAR, P. et al. Veékem podminénd makuldrni degenerace. 1st ed. Praha: Grada,
2008. ISBN 978-80-247-2605-2.

KVAPILIKOVA, K. Anatomie a embryologie oka. 1st ed. Brno: Institut pro dalsi
vzdélavani pracovnikl ve zdravotnictvi, 2000. ISBN 80-7013-313-9.

62

http://www.adcis.net/en/Download-Third-Party/E-Ophtha.html
https://pythonmachinelearning.pro/wp-content/uploads/2017/09/Single-Perceptron.png
https://pythonmachinelearning.pro/wp-content/uploads/2017/09/Single-Perceptron.png
https://ml-cheatsheet.readthedocs.io/en/latest/_images/cross_entropy.png
http://cecas.clemson.edu/~ahoover/stare/
https://arxiv.org/abs/1701.00160
https://en.wikipedia.org/wiki/Retinitis_pigmentosa#/media/File:Fundus_of_patient_with_retinitis_pigmentosa,_mid_stage.jpg
https://en.wikipedia.org/wiki/Retinitis_pigmentosa#/media/File:Fundus_of_patient_with_retinitis_pigmentosa,_mid_stage.jpg
http://www.ics.forth.gr/cvrl/fire/
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1412.6980

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

LARSEN, A. B. L., SONDERBY, S. K., LAROCHELLE, H. and WINTHER, O.
Autoencoding beyond pizrels using a learned similarity metric. 2015. [Online; visited
21.03.2020]. Available at: https://arxiv.org/abs/1512.09300.

LonNDoN, K. U. Retinal Image Analysis. 2016. [Online; visited 10.03.2020]. Available
at: https://blogs.kingston.ac.uk/retinal/chasedbl/.

MARSLAND, S. Machine Learning, An Algorithmic Perspective. 1st ed. Boca Raton,
FL: CRC Press, 2009. ISBN 978-1-4200-6718-7.

MAZINANI, S. R. Development of novel organic optoelectronic technologies for
biomedical applications. Saint-Etienne, France, 2017. 93 p. Dissertation. I'Ecole des
Mines de Saint-Etienne.

MEDISAVE.CO.UK. Direct ophthalmoscope. 2017. [Online; visited 11.11.2019]. Available
at: https://www.medisave.co.uk/heine-mini3000-2-5v-ophthalmoscope.html.

MF.cz. Geografickd atrofie. 2016. [Online; visited 20.11.2019]. Available at:
https://img.mf.cz/060/617/b.jpg.

MF.cz. Vihkd forma s edémem. 2016. [Online; visited 20.11.2019]. Available at:
https://img.mf.cz/062/617/c.jpg.

NEI. Retinitis Pigmentosa [online]. 2014. Updated July 10, 2019 [cit. 20. November
2019]. Available at: https://www.nei.nih.gov/learn-about-eye-health/eye-
conditions-and-diseases/retinitis-pigmentosa.

NIDEK INTL.COM. Fundus camera. 2015. [Online; visited 11.11.2019]. Available at:
http:
//www.nidek-intl.com/product/ophthaloptom/diagnostic/dia_retina/afc-330.html.

NVIDIA. GPU-Accelerated TensorFlow [online]. 2018 [cit. 16. February 2020]. Available
at: https:
//www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/tensorflow.

PATHAK, Y. Artificial Neural Network for Drug Design, Delivery and Disposition. 1st
ed. Cambridge, US: Academic Press, 2015. ISBN 9780128017449.

PATTANAYAK, S. Pro deep learning with TensorFlow : a mathematical approach to
advanced artificial intelligence in Python. 1st ed. New York: Manning, 2017. ISBN
978-1-4842-3095-4.

PASTA, J. Zdklady océniho lékarstvi. 1st ed. Praha: Univerzita Karlova,
Nakladatelstvi Karolinum, 2017. ISBN 978-80-246-2460-0.

RHCASTILHOS. Schematic diagram of the human eye. 2007. [Online; visited 11.11.2019].
Available at: https://en.wikipedia.org/wiki/Human_eye#/media/File:

Schematic_diagram_of_the_human_eye_en.svg.

RONNEBERGER, O., FISCHER, P. and BRox, T. U-Net: Convolutional Networks for
Biomedical Image Segmentation. 2015. [Online; visited 21.03.2020]. Available at:
https://arxiv.org/abs/1505.04597.

63

https://arxiv.org/abs/1512.09300
https://blogs.kingston.ac.uk/retinal/chasedb1/
https://www.medisave.co.uk/heine-mini3000-2-5v-ophthalmoscope.html
https://img.mf.cz/060/617/b.jpg
https://img.mf.cz/062/617/c.jpg
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/retinitis-pigmentosa
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/retinitis-pigmentosa
http://www.nidek-intl.com/product/ophthaloptom/diagnostic/dia_retina/afc-330.html
http://www.nidek-intl.com/product/ophthaloptom/diagnostic/dia_retina/afc-330.html
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/tensorflow
https://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/tensorflow
https://en.wikipedia.org/wiki/Human_eye#/media/File:Schematic_diagram_of_the_human_eye_en.svg
https://en.wikipedia.org/wiki/Human_eye#/media/File:Schematic_diagram_of_the_human_eye_en.svg
https://arxiv.org/abs/1505.04597

[45]

SPHINX GALLERY. Underfitting vs. Querfitting. 2019. [Online; visited 16.3.2020].
Available at: https://scikit-learn.org/stable/_images/
sphx_glr_plot_underfitting_overfitting_001.png.

WELCHALLYN.COM. Indirect ophthalmoscope. 2017. [Online; visited 11.11.2019].
Available at:
https://www.welchallyn.com/en/products/categories/physical-exam/eye-exam/
ophthalmoscopes--binocular-indirect/binocular_indirect_ophthalmoscope.html.

WIKIPEDIA. Cross entropy [online]. 2020 [cit. 22. March 2020]. Available at:
https://en.wikipedia.org/wiki/Cross_entropy.

WIKIPEDIA. Normal distribution [online]. 2020 [cit. 12. April 2020]. Available at:
https://en.wikipedia.org/wiki/Normal_distribution.

WoNGa, G. Retina of the human eye. 2016. [Online; visited 11.11.2019]. Available at:
https://d3b3by4navwsif.cloudfront.net/177901919.jpg.

Wonga, T. Y. and TING, D. S. W. Generative Adversarial Networks (GANs) for
Retinal Fundus Image Synthesis. In: CARNEIRO, G. and (EDs.), S. Y., ed. Computer
Vision-ACCYV 2018 Workshops: 14th Asian Conference on Computer Vision. Perth,
Australia: Springer, 2019, p. 289-302. ISBN 978-3-030-21073-1.

YEGULALP, S. What is TensorFlow? The machine learning library explained [online].
2019 [cit. 14. February 2020]. Available at: https://www.infoworld.com/article/
3278008/what-is-tensorflow-the-machine-learning-library-explained.html.

ZHANG, Y.-Q. and RAJAPAKSE, J. C. Machine Learning and Biometrics. 1st ed.
Hoboken, N.J.: Wiley, 2008. ISBN 978-0-470-11662-3.

64

https://scikit-learn.org/stable/_images/sphx_glr_plot_underfitting_overfitting_001.png
https://scikit-learn.org/stable/_images/sphx_glr_plot_underfitting_overfitting_001.png
https://www.welchallyn.com/en/products/categories/physical-exam/eye-exam/ophthalmoscopes--binocular-indirect/binocular_indirect_ophthalmoscope.html
https://www.welchallyn.com/en/products/categories/physical-exam/eye-exam/ophthalmoscopes--binocular-indirect/binocular_indirect_ophthalmoscope.html
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Normal_distribution
https://d3b3by4navws1f.cloudfront.net/177901919.jpg
https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html
https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-learning-library-explained.html

Appendix A

Contents of the Attached DVD

The directory structure on the attached DVD is shown and described below.

e databases

o real — contains individual databases of real retinal images

o synthetic — contains individual databases of synthetic retinal images
e datasets — prepared training data
e implementation

o source files — source code of the program

o documentation — documentation of the source code
o text

o latex — source files for PDF generation

o pdf — Master’s thesis in PDF format

65

Appendix B

Generator Architecture

input: | [(7, 1024, 1024, 3)]
output: | [(?, 1024, 1024, 3)]

Inputhinage: InputLayer

mput: | (7, 1024, 1024, 3)
output: | (7,512,512, 32)

EncoderBlockl: Sequential

e

mput: | (7,512, 512, 32)

output: | (2, 236, 256, 64)

EncoderBlock2: Sequential

/

mput: | (7,236, 256, 64)

output: | (7, 128, 128, 128)

EncoderBlock3: Sequential

e

input: | (2,128, 128, 128)
output: | (2, 64, 64, 256)

EncoderBlockd: Sequential

/

mput: | (7, 64, 64, 256)
output: | (2,32, 32, 512)

EncoderBlocks: Sequential

/

input: | (2, 32,32, 5

output: | (2,16,16, 5

EncoderBlocké: Sequential

/

nput: | (2,16, 16, 512)
output: | (7, 8, 8, 512)

EncoderBlock?: Sequential

/

input: | (2,8.8,5
output: [(2,4, 4,512

EncodeirBlocks: Sequential

input: | (7.4, 4,512)

output: | (7,2,2,512)

EncoderBlock¥: Sequential

/

mput: | (2, 2,2, 512)

output: | (2,1, 1,512)

l sutput

Figure B.1: Architecture of the encoder part of the SRIG generator. Outputs of the encoder
are connected to the decoder inputs in Figure B.2.

dpys
dpys

EncoderBlockl0: Sequential

Goreeuuos A
Uoneauuos dpps
uopasuuos dpys
uopasuuos dpys
Gonpsuuos diys
Uonssuucs diys
Uopssuucs dpys

-

66

dnys
dpps
s
dps

*inpul
input: | (2.1, 1,512)
oufput: | (2,2,2.512

")

DecoderBlockl: Sequential

uorzesuucs dpps
uonPauUGs dpjs
UoResuues dpjs
uo3Iuu? dijs
uo323uu0? dpjs

input:
co : Co
output:
. input:
DecoderBlock2: Sequential
output:

\

iput: | [(?, 4.4, 512), (2. 4,4, 512)]
output: (2,4, 4,1024)

\

DecoderBlock3: Sequential

concatenate_1: Concatenate

mput: | (7, 4. 4,1024)
output: | (2,8, 8, 512)

\

nput: | [(?, 8, 8, 512), (7, 8, 8, 512)]
output: (7,8, 8,1024)

!

DecoderBlockd: Sequential

concatenate_2: Concatenate

mput: | (2, 8, 8, 1024)
output: | (7,16, 16, 512)

\

mput: | [(?, 16. 16, 512). (2, 16, 16, 512)]
output: (2, 16. 16, 1024)

\

DecoderBlocks: Sequential

co . 3. Co

mput: | (2, 16, 16, 1024)
output: | (2, 32, 32, 512)

\

mput: | [(7. 32, 32, 512), (2, 32, 32, 512)]
output;, (7,32,32,1024)

concatenate_4: Concatenate

input: | (2, 32, 32, 1024)
. 64, 64, 256)

DecoderBlocké: Sequential

output:

\

put: | [(?, 64, 64, 256). (7, 64, 64, 256)]
output: (7, 64, 64, 512)

.

DecoderBlockT: Sequential

concatenate_5: Concatenate

input: (2,64, 64, 512)
output: | (2, 128, 128, 128)

N

input | [(7, 128, 128, 128), (7, 128, 128, 128)]
output: (7,128, 128, 256)

\

DecoderBlocks: Sequential

co . 6: Co

mput: | (2,128, 128, 236)
output: | (2, 256, 256, 64)

e

input: | [(2. 256, 256. 64), (7, 236, 256, 64)]

output: (2,256, 256, 128)

nput:

DecoderBlocke: Sequential

output:

™,

input: | [(7, 512. 512, 32), (%, 512, 512, 32)]
output: (2,512,512, 64)

|

concatenate_8: Concatenate

mput: (2,512, 512, 64)
output: | (7. 1024, 1024, 3)

DecoderBlockl0: Sequential

Figure B.2: Architecture of the decoder part of the SRIG generator. Inputs of the decoder
are connected to the encoder outputs from Figure B.1.

67

	Introduction
	Aims
	Contents

	Human Eye
	Vision
	Anatomy
	Retina
	Eye Examination
	Retinal Diseases

	Machine Learning
	Types of Machine Learning
	Artificial Neural Network
	Deep Learning

	Proposed Solution
	Conditional Generative Adversarial Network
	Synthetic Retinal Image Generator

	Implementation
	Technologies
	Data Preprocessing
	Conditional Generative Adversarial Network
	Source Code Structure and Usage

	Training and Testing
	Data Source
	Training
	Evaluation

	Conclusion
	Bibliography
	Contents of the Attached DVD
	Generator Architecture

