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Abstract
The goal of this bachelor thesis is to compute and visualize lunar module’s optimal descent
trajectory. An application for the visualization of the descent trajectory and lunar module’s
position from dataset was developed with the use of a 3D engine Godot. The measured co-
ordinates were acquired through digitization of graphs from the NASA published Apollo 11
flight plan. Subsequently the optimal trajectory was computed and compared with the
measured historical data from Apollo 11 Lunar landing. Using the designed application it
is possible to interactively visualize the differences between optimal descent trajectories.

Abstrakt
Cílem této bakalářské práce je vypočítat a vizualizovat optimální sestupovou trajektorii
lunárního modulu. Pro tento účel byla s pomocí 3D enginu Godot vytvořena aplikace,
která vizualizuje sestupovou trajektorii a polohu lunárního modulu z datové sady. Naměřené
souřadnice byly získány digitalizací grafů z letového plánu mise Apollo 11, který publikovala
NASA. Následně byla vypočtena optimální trajektorie a tato porovnána s naměřenými
historickými daty z přistání na Měsíci mise Apollo 11. S vytvořenou aplikací je možné
interaktivně vizualizovat rozdíly mezi optimálními sestupovými trajektoriemi.
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Rozšířený abstrakt
Cílem této bakalářské práce je provést výpočet optimální trajektorie přistání lunárního
modulu na Měsíci a vizualizovat sestupový manévr v 3D prostředí.

Téma simulace a optimalizace sestupových trajektorií je v současné době aktuální -
NASA plánuje návrat lidské posádky na povrch Měsíce před rokem 2020 [26]. V praxi se
optimální trajektorie simuluje především z důvodu minimalizace spotřeby paliva vesmírné
lodě, což je důležitý faktor ovlivňující cenu vesmírní mise.

V první části práce byla nastudována historie mise Apollo 11, z níž se v práci vychází.
Z dostupných zdrojů byly získány technické parametry jednotlivých částí lunárního modulu
a fyzikální parametry astronomických objektů.

Pro výpočet optimální trajektorie bylo nutné definovat fyzikální model sestupu lunárního
modulu. Pohyb modulu byl zúžen z prostorového pohybu do abstrakce se třemi stup-
němi volnosti, protože se v něm odehrává podstatná část přistávacího manévru. Taktéž
to umožňuje zjednodušení výpočtů. Dále byly na základě Newtonovy klasické mechaniky
odvozené potřebné pohybové rovnice.

Optimální trajektorie byla modelována jako problém optimálního řízení. To znamená,
že trajektorie může být měněna v čase pomocí řídícího parametru. V našem připadě je
tento parametr tah motoru lunárního modulu. Jako užitková funkce byla vybrána finální
hmotnost lunárního modulu, kterou se snažíme maximalizovat. Problém byl implementován
v softwarovém nástroji Bocop [34]. Výsledky optimalizace splnily omezující požadavky a
zbývajíci hmotnost paliva při hladkém přistání zůstala výrazně nad limitem.

Druhá část práce spočívala v implementaci aplikace pro vizualizaci přistávacího manévru.
Pro tento účel byl použit 3D engine Godot [13]. Ve výsledné aplikaci si uživatel po zvolení
vstupního souboru může přehrát animaci sestupové trajektorie lunárního modulu, pozas-
tavit ji, nebo přetočit dozadu. Zobrazují se v reálnem čase parametry letu jako je výška,
vzdálenost od místa přistání a úhly sklonu lunárního modulu. Je též možné měnit úhel
kamery, případně se podívat na přistání z pohledu kokpitu.

Vstupem aplikace je datová sada, která obsahuje souřadnice polohy a úhel sklonu
lunárního modulu. Datová sada byla vytvořena digitalizací grafů z plánů mise Apollo 11.
Souřadnice jsou v aplikaci modifikovány tak, aby zohlědňovaly zakřivení povrchu Měsíce.
Kromě datové sady z reálné mise byl vytvořen dataset z výstupních dat optimalizačního
problému. Obě trajektorie byly na závěr porovnány.
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𝛼 Inertial angular acceleration

𝑟 Object acceleration in two-body problem
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𝐼𝑥 Inertial frame 𝑥 axis
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Chapter 1

Introduction

Landing a man on the surface of the Moon is without a doubt one of the greatest achieve-
ments of human civilization. In July we will be celebrating 50th anniversary of the first
Moon Landing. Nowadays Moon is also an important target for the future space missions.
NASA would like to land astronauts on its surface in the late 2020s [26].

A common part of planning a space mission is to create a simulator where whole range of
boundary conditions can be tested. The mission is less error-prone with analyzing simulator
data where various parameters of flight can be optimized. One of the most important
parameters is the trajectory design. The trajectory must meet selected mission objectives
while considering spacecraft limitations. The guidance algorithms are implemented based
on the designed trajectory. They are created with the objective of minimizing the fuel
consumption, because the fuel weight is a major part of spacecraft mass and thus mission
cost.

The first part of this document is primarily focused on establishing theoretical basis
needed for the computation of an optimal descent trajectory, while second part discuses an
implementation details of visualization application. The last part focuses on the evaluation
of achieved results. In the second chapter reader can learn about the history of Lunar
landing in Apollo 11 mission. The technical parameters of the lunar module and other
spacecrafts are provided here. The third chapter is dedicated to the explanation of the
descent trajectory physics along with the equations of motion necessary for its computa-
tion. Moving to the fourth chapter all the previous knowledge is used for the computation
of optimal descent trajectory for Lunar Module. The trajectory has been computed using
software for solving optimal control problems Bocop. The math needed for solving opti-
mization problems is introduced in this chapter. Next, the application for visualization
of descent trajectories was developed with use of 3D engine Godot. The implementation
details are discussed in Chapter 5. The evaluation of created trajectories and discussion of
possible improvements form the content of Chapter 6.
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Chapter 2

History of Lunar Landing in
project Apollo

The aim of this chapter is to get the reader acquainted with the history of project Apollo
and to provide a knowledge base about the vehicles and spacecraft used in the Apollo 11
mission. The technical specifications of the Lunar Module, which are then used in the later
chapters are provided, along with description of actual flight.

2.1 Project Apollo
The Apollo space program originated during the Eisenhower administration in 1960, as a
successor to project Mercury, which put the first Americans in space. It was carried out
by the National Aeronautics and Space Administration (NASA). The Apollo’s initial plan
was to build a spacecraft which would carry three astronauts on Earth orbit. Previous
spacecraft could carry only one. In the space race enthusiasm this goal was quickly ex-
panded and possible missions of Apollo included carrying crews to a space station, flights
around the Moon and even manned lunar landings. The NASA manager Abe Silverstein
named the Apollo program after the Greek god of light, music and the sun, because he felt

”Apollo riding his chariot across the Sun was appropriate to the grand scale of the proposed
program“ [17].

On May 25, 1961, president Kennedy proposed a vision of landing men on the Moon
before end of the decade. Thus the race for the Moon began. This courageous goal required
the largest commitment of resources ever made by any nation in peacetime. At its peak,
the Apollo program employed 400 000 people and over 20 000 industrial companies and
universities participated [1]. The cost of the program was enormous - $25 billion, which
translates to today’s $112 billion when counting with inflation [11].

The prime mission objective of Apollo 11 was to: ”Perform a manned lunar landing
and return“. The famous crew of three - Neil A. Armstrong (Commander), Michael Collins
(Command Module Pilot) and Edwin ”Buzz“ E. Aldrin Jr. (Lunar Module Pilot) begun
their mission on July 16, 1969 from NASA’s Kennedy Space Center Launch Complex 39-A.
A description of this outstanding journey follows. Apollo 11 Press Kit [24] and Apollo 11
Mission Report [25] were used as a frame of reference.
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2.2 Apollo 11 spacecraft
The Apollo 11 had a three part spacecraft. It consisted of the Command Module
Columbia, Service Module and Lunar Module Eagle. Figure 2.1 shows the launch
configuration of the spacecraft along with the carrier rocket Saturn V (technical specifi-
cations are provided in Table A.3). The technical drawing was retrieved from the NASA
archive [33].

Figure 2.1: Apollo spacecraft launch configuration [33]

Command Module

The Command Module (CM) provided the living space for the astronauts. It was the only
part to return to Earth. The conical design was chosen to protect the astronauts from the
heat during reentering the Earth atmosphere. A special material was developed to burn
away during reentry and dissipate the extremely high temperatures caused by friction. The
CM was divided into 3 compartments. The part in the nose of the cone held parachutes and
docking mechanism. Second part was situated around the base and contained propellant
tanks, reaction control engines and electrical wiring/plumbing. There were 12 reaction
control thrusters, with thrust of 420 N each. The crew compartment provided three couches
for astronauts, controls, displays, navigational and other systems. In the center above the
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couches there was a large access hatch. It provided a re-boarding capability at the end of
the mission. Figure 2.2 shows detailed description of individual systems of the Command
Module. Figure 2.2 was retrieved from [20].
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Figure 2.2: Command Module technical drawing [20]

Service Module

The aluminum panels composed the exterior of a cylindrical Service Module (SM). At
the back of the SM was mounted a re-startable 9.1 𝑘𝑁 engine and a cone shaped engine
nozzle.The attitude control was provided by four 450 𝑁 reaction control thrusters spaced 90
degrees around the SM. Propellant tanks and electrical power system were situated in six
radially divided sections around the central cylinder. Figure 2.3 shows technical drawing
of the Service Module [23].
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Figure 2.3: Service Module technical drawing [23]
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Lunar Module

The Lunar Module (LM) was a two-stage vehicle composed of an descent and ascent stage.
At descent to the lunar surface both stages operated as one compact unit. On the return
trip back to the Lunar orbit, the ascent stage acted as a single spacecraft for rendezvous
and docking with the Command and Service Module (CSM).

The descent stage was an octagonal prism with four landing legs fitted with round
footpads which held the vehicle 1.5 𝑚 above surface. One of the legs had a small ladder
used by the astronauts for descending down to the Lunar surface. The descent stage
contained a landing rocket, propellant tanks and storage space for the lunar experiments
equipment. It also served as launching platform for the ascent stage and was left behind
on the Moon.

The ascent stage of an irregular shape was mounted on top of the LM’s descent stage.
It housed the astronauts in a small 6.65 𝑚3 compartment, which operated as a base for the
lunar operations. On top, there was a docking hatch for connecting to the CSM. The LM’s
ascent stage also contained all necessary telecommunication equipment. On the bottom,
there was a fixed, constant thrust engine. There were no seats for the astronauts - they
were standing. Another important component was the Apollo’s guidance computer which
operated on a frequency of 2.048 MHz and provided guidance, navigation and control of
the spacecraft [37].

Table 2.1 shows the Lunar Module’s technical specifications retrieved from [18]. Tables
2.2 and 2.3 describe the descent and ascent stage propulsion system. Technical specifications
of the propulsion systems were taken from [19].

Table 2.1: Lunar Module’s technical specifications

Height (legs extended) 6.985 𝑚

Width (diagonally across extended landing gear) 9.449 𝑚

Weight (with crew and propellant) 15 103 𝑘𝑔

Weight (dry) 4479 𝑘𝑔

Propellant weight (ascent stage) 2376 𝑘𝑔

Propellant weight (descent stage) 8248 𝑘𝑔

Table 2.2: Lunar Module’s descent propulsion system specifications

Manufacturer TRW
Propellant 𝑁2𝑂4/Aerozine 50
Maximum thrust (vacuum) 45.04 𝑘𝑁

Specific impulse 3050 𝑚𝑠−1

Throttle between 10% and 60% of full thrust

Table 2.3: Lunar Module’s ascent propulsion system specifications

Manufacturer Bell Aircraft / Rocketdyne
Propellant 𝑁2𝑂4/Aerozine 50
Constant thrust (vacuum) 16 𝑘𝑁
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LM attitude description

The Lunar Module is free to rotate in three dimensions. As displayed in Figure 2.4, yaw is
rotation angle about Z axis, pitch angle is rotation about Y axis and roll angle is rotation
about X axis, all according to right hand rule. Axes have their origin at the center of gravity
of the lunar module [41].

X axis

Z axis

Y axis

C.G.

Figure 2.4: LM’s yaw, pitch, roll axes

Figure 2.5 shows a 3D model of the Lunar Module, which was used in this work. It was
retrieved from [32].

Figure 2.5: Render of Lunar Module 3D model
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2.3 Apollo 11 mission profile
Launch and translunar injection

The Saturn V launch vehicle set the astronauts to the three day voyage to the Moon. First,
it entered the Earth’s orbit at an altitude of 183.2 𝑘𝑚. One and half orbits later the third
stage of the rocket restarted and autopilot pushed Apollo 11 into the translunar trajectory
(translunar injection). Figure 2.6 shows the separation of the first Saturn V stage. The
translunar injection is displayed on Figure 2.7 retrieved from [24].

Figure 2.6: Staging of Saturn V [24] Figure 2.7: Translunar injection [24]

Translunar flight and lunar orbit insertion

After a complete checkout of vehicle readiness the command/service module separated from
the Saturn V rocket, turned around and docked with lunar module. Docking maneuvers
were performed in a speed of approximately 11.2 × 103 𝑚𝑠−1. The separated stage of the
Saturn V rocket was directed into a ”slingshot“ trajectory to miss the Moon and go into
the solar orbit. Apollo spacecraft with lunar module docked on top of it and continued to
its destination - Moon.

Four trajectory correction maneuvers were made during translunar flight. Primary
reason for these maneuvers was to establish the horizon altitude for optical marks in the
navigation computer. The digital autopilot was used to keep the spacecraft in positive roll
rate of 0.3 𝑑𝑒𝑔.𝑠−1 to stabilize its thermals due to the solar heating. It allowed the crew to
sleep without fear of encountering unacceptable thermal conditions.

After the service module propulsion maneuver, the spacecraft was inserted into a 111.12
𝑘𝑚 by 314.84 𝑘𝑚 elliptical lunar orbit which was adjusted to 100 𝑘𝑚 by 122.23 𝑘𝑚 after
two revolutions. The ellipticity of this orbit was supposed to disappear slowly, because of
lunar gravitational field irregularities and put the spacecraft into circular orbit. However
the ellipticity decay was less than excepted and lunar rendezvous maneuver solution differed
from preflight estimates. Figure 2.8 shows the transposition maneuver and Figure 2.9 the
Lunar orbit insertion taken from [24].

Figure 2.8: Transposition maneuver [24] Figure 2.9: Lunar orbit insertion [24]
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Descent preparations and undocking

Planned routines before powered descent went smoothly and were done approximately 30-
40 minutes early. These included suiting, transfer of Commander (Armstrong) and LM
Pilot (Aldrin) to the lunar module and power-up of computer to perform calculations for
aligning the command and lunar modules before the signal lost on the lunar far side.
After activation of all systems and pressurization of lunar module cabin, command and
service modules maneuvered both spacecrafts to undocking attitude and final check before
undocking was accomplished. Lunar module then undocked from the CSM and begun
powered descent phase. Figure 2.10 displays separation of the Lunar Module from the
Command and Service Module taken from [24].

Powered descent and landing

Powered descent started at altitude of 15.34 𝑘𝑚 about 481.52 𝑘𝑚 from landing site - Sea of
tranquility. We can divide it into three major phases: breaking phase, approach or visibility
phase and final landing phase. Three separated computer programs, one for each phase were
used. They were designed to execute desired trajectory and satisfy various constraints such
as position, velocity and acceleration. There was also the manual landing phase program -
to enable pilot a manual control of lunar module.

The breaking phase was initiated in a facedown attitude as it enabled crew to make
time marks on selected landmarks. At altitude of about 13.99 𝑘𝑚 the faceup maneuver was
executed after passing Maskelyne W crater. Acquisition of radar followed. The computer
alarm occurred due to large difference between computed and radar altitude, but differences
converged within 30 seconds.

Lunar module descended to altitude of 2.17 𝑘𝑚 and switched to final approach phase
program. At 1.52 𝑘𝑚, the Commander switched to attitude-hold to check manual control
in anticipation of the final descent. After pitch-over maneuver (pitch angle down to 0
degrees) systems indicated that the approach path was leading into large crater. To avoid
it, Armstrong switched to manual controls and increased the pitch angle to extend range.
This dangerous maneuver caused approximately 335.28 meters down range from the initial
aim point, but the Eagle has landed. Figure 2.11 shows the Lunar Landing illustration
taken from [24].

Figure 2.10: Separation of the LM from the
CSM [24] Figure 2.11: Landing on the Moon [24]
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Lunar ascent and rendezvous

After touchdown the astronauts first prepared the lunar module for ascent. Armstrong was
the first man to step onto the lunar surface, followed by Aldrin about 40 minutes later.
During their almost 3 hours stay they conducted several experiments - measured meteoroid
impacts and installed reflector which mirrored laser beams back on Earth.

The descent part of the Lunar Module served as launching pad for the ascent part.
Rendezvous radar helped with tracking the command module. The ascent phase started
with 10 second long vertical rise. Pitch-over maneuver provided the correct attitude to place
the spacecraft in 18.52 𝑘𝑚 by 83.34 𝑘𝑚 orbit to establish initial conditions for rendezvous.
Lunar module then performed four other maneuvers which brought it to command module
for docking. Figure 2.12 shows rendezvous and docking maneuvers [24].

Transearth injection and recovery

After 12 hour rest, the transearth maneuver was initiated on time and spacecraft followed
the same roll procedure as in translunar flight. Figure 2.13 shows the transearth insertion
[24]. The course was adjusted several times, but the journey back home was not problematic.
Apollo 11 entered the Earth’s atmosphere at 195 hours five minutes after launch at speed
of approximately 11× 103 𝑚𝑠−1. The touchdown point was about 1926 𝑘𝑚 from Honolulu,
Hawaii. Recovery after the touchdown is displayed in Figure 2.14.

Figure 2.12: Rendezvous and docking [24] Figure 2.13: Transearth insertion [24]

Figure 2.14: Recovery of the Command Module [24]
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Chapter 3

Descent trajectory physics

This chapter describes the physics necessary to compute an optimal descent trajectory
of a Lunar Module. Coordinate systems are explained along with motion equations and
rotational kinematics. Apollo 11 Lunar Module (LM) will be used as reference vehicle,
because it allows us to compare computed and real descent trajectories.

The Moon has no atmosphere and is assumed to be spherical. As mentioned in MIT
thesis [10], its rotation can be neglected, because the extra fuel expenditure would be at
maximum 0.3% of the total fuel usage.

3.1 Position of Lunar Module in coordinate system
The first step to define a descent trajectory physics for a lunar lander is to place the
vehicle into coordinate system. This allows us to uniquely determine its position. For the
trajectory computation we can reduce the Lunar Module into a point mass. Two major
coordinate systems are used in this thesis - Polar and Cartesian. For the computation of the
optimal descent trajectory the polar coordinate system has been chosen, because it provides
mathematical simplifications in motion equations. In 3D application for the trajectory
visualization the Cartesian system is used. Since the motion of the Lunar Module is mainly
within one plane, we can work in 2D coordinate system during the optimal trajectory
computation.

Polar coordinate system

In Polar coordinate system, a point 𝑀 is represented by an ordered pair of numbers (𝑟, 𝜃),
where 𝑟 is distance of point M from coordinate origin 0 and 𝜃 is an angle between positive
part of 𝑥 axis and join of coordinate origin 0 and point 𝑀 , 𝑟 ∈ [0,∞] and 𝜃 ∈ [0, 2𝜋].
The polar coordinates can be converted to Cartesian coordinates [𝑥, 𝑦] by using 𝑠𝑖𝑛 and
𝑐𝑜𝑠 [16]:

𝑥 = 𝑟. cos 𝜃 (3.1)
𝑦 = 𝑟. sin 𝜃 (3.2)
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Figure 3.1: Polar coordinate system

Cartesian coordinate system

The Cartesian coordinate system is defined by two mutually perpendicular lines. They are
called coordinate axes. Each of the coordinate axes has an orientation and a unit length.
The orientation of the axis defines its positive and negative half with the coordinate origin
(0, 0) in the point of the axes intersection.

The point 𝑀 is represented by an ordered pair of numbers (𝑥, 𝑦). We determine the
values of the 𝑥 and 𝑦 coordinate by drawing a line through the 𝑀 which is perpendicular
to the 𝑥 and 𝑦 axis respectively. The position of the intersection with the axis is then
interpreted as a value of the coordinate.
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Figure 3.2: Cartesian coordinate system
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Position the of Lunar Module in polar coordinate system

The position of LM is constrained within inertial frame1, which is defined by axes 𝐼𝑥 and 𝐼𝑦.
They originate in point 𝐹 which symbolizes the center of Moon’s gravity. Moon equatorial
radius 𝑅𝑒𝑞 is defined in Table A.2. The LM’s position is then defined by polar coordinates
𝑟 and 𝜃. Next an engine thrust vector 𝑢𝑇 is defined along with the thrust direction angle
𝜓𝑟. 𝜓𝑟 is defined from the radius vector 𝑟 to the engine thrust vector 𝑢𝑇 [10].

F

r

Moon

θ

ψr

Req

uT

Iy

Ix

Figure 3.3: Lunar Module position in polar coordinate system

Additionally to the fixed inertial frame, the rotating frame 𝐹 = (𝐿𝑀, �̂�, �̂�) is defined.
It will be used for derivation of velocity and acceleration components for the Equations of
Motion (EOM). Frame axis 𝑗 is perpendicular to the frame axis 𝑖, which is parallel to the
Lunar Module radial coordinate 𝑟.

1Inertial frame is a frame of reference in which a body with zero net force acting upon it is not acceler-
ating - it is at rest or is moving at constant speed in a straight line.
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3.2 Physics of Lunar landing problem
The physics is modeled with use of Newtonian classical mechanics. In order to create the
equations of motion, the Newton’s laws will be needed. Three Newton’s laws of motion are
[6]:

First Law

Every object continues in its state of rest or of uniform motion in a straight line unless it
is compelled to change that state by forces impressed upon it.

The first law requires the identification of inertial system (see Figure 3.3) where the motion
is defined.

Second Law

The rate of change of momentum is proportional to the force impressed and is in the same
direction as that force. It can be expressed as:

𝐹 =
𝑑𝑝

𝑑𝑡
(3.3)

where 𝐹 is the resultant of the forces acting on the object and 𝑝 = 𝑚�⃗� is object’s momentum.
For an object which mass 𝑚 changes over time, the equation of motion is defined as:

𝐹 = 𝑚�⃗�+ �̇��⃗� (3.4)

where �⃗� is object’s acceleration.

Third Law

To every action there is always opposed an equal reaction.
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Law of Universal Gravitation

Newton also formulated the law of Universal Gravitation by stating, that two bodies, the
masses of which are 𝑀 and 𝑚, respectively, attract one another along the line joining them
with a force proportional to the product of their masses and inversely proportional to the
square of the distance between them [6]:

𝐹 = 𝐺
𝑀𝑚

𝑟2
(3.5)

where G is the Universal Gravitational Constant and it equals to 6.673×10−11 𝑚3𝑘𝑔−1𝑠−2.

Equations of motion

The Moon landing is a two-body problem. Two bodies are represented by the Moon and
the Lunar Module respectively. These bodies interact with each other within the rules of
Newton’s laws. The equations of motion can be derived from those interactions.

In system of two bodies with masses 𝑚1 and 𝑚2 where 𝑚1 > 𝑚2 we can define the position
of 𝑚2 relative to 𝑚1 as [6]:

�⃗� = 𝑅2 −𝑅1 (3.6)

where 𝑅1 and 𝑅2 describe the position of masses 𝑚1 and 𝑚2 respectively.

When derived, one can obtain object velocity and its acceleration:

˙⃗𝑟 =
˙⃗
𝑅2 −

˙⃗
𝑅1 (3.7)

¨⃗𝑟 =
¨⃗
𝑅2 −

¨⃗
𝑅1 (3.8)

With use of Newton’s Law of Universal Gravitation, the force acting on each mass is used
to describe its motion:

𝑚1
¨⃗
𝑅1 = 𝐺

𝑚1𝑚2

𝑟3
�⃗� (3.9)

𝑚2
¨⃗
𝑅2 = −𝐺𝑚1𝑚2

𝑟3
�⃗� (3.10)

After subtracting the second equation from first, the relative motion can be defined as:

¨⃗𝑟 = −𝐺𝑚1 +𝑚2

𝑟3
�⃗� (3.11)

Since mass of the Moon is larger than mass of lunar module by several orders of magnitude
(𝑚1 = 𝑀 and 𝑚2 = 𝑚, with 𝑀 ≫ 𝑚), the equation of relative motion can be simplified to
[6]:

¨⃗𝑟 = −𝜇
3

𝑟
�⃗� (3.12)

where 𝜇 = 𝐺𝑀 is gravitational parameter (see Table A.2).

In rotating frame (Figure 3.4), we can define the velocity and acceleration components:

�̂� = cos 𝜃𝐼𝑥 + sin 𝜃𝐼𝑦 (3.13)
�̂� = − sin 𝜃𝐼𝑥 + cos 𝜃𝐼𝑦 (3.14)
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When derivation in time is performed we get:
˙̂𝑖 = 𝜃�̂� (3.15)
˙̂𝑗 = −𝜃�̂� (3.16)

The velocity vector now can be expressed as:

�⃗� = 𝑣𝑟 �̂�+ 𝑣𝜃 �̂� (3.17)

where 𝑣𝑟 is radial velocity and 𝑣𝜃 tangential velocity. After derivation of the position vector,
the radial and tangential velocity can be defined as [6]:

𝑣𝑟 = �̇� (3.18)
𝑣𝜃 = 𝑟𝜃 (3.19)

According to [6], when there are other forces acting on the spacecraft - such as thrust of
the engine, the vector equation of motion can be expressed as:

¨⃗𝑟 = − 𝜇

𝑟3
�⃗� + 𝑎𝑇 (3.20)

where 𝑎𝑇 is acceleration of the engine. This vector can be split in radial and tangential
components:

𝑎𝑟 = 𝑟 − 𝑟𝜃2 = − 𝜇

𝑟2
+ 𝑎𝑇 cos𝜓𝑟 (3.21)

𝑎𝜃 = 𝑟𝜃 + 2�̇�𝜃 = 𝑎𝑇 sin𝜓𝑟 (3.22)

where 𝜓𝑟 is an angle of engine thrust defined in Chapter 3.1.

The acceleration vector can be expressed as [10]:

𝑎𝑇 =
𝑇𝑚𝑎𝑥𝑘

𝑚
(3.23)

where 𝑇𝑚𝑎𝑥 is engine’s maximal thrust defined in Table 2.2 and 𝑘 ∈ [0, 1] is the throttle
command, which is used to regulate the engine power.

Because:

𝑣𝑟 = �̇� ⇒ 𝑣𝑟 = 𝑟 (3.24)
𝑣𝜃 = 𝑟𝜃 ⇒ 𝑣𝜃 = �̇�𝜃 + 𝑟𝜃 (3.25)

the equations of motion can be derived as [6]:

�̇� = 𝑣𝑟 (3.26)

𝜃 =
𝑣𝜃
𝑟

(3.27)

𝑣𝑟 =
𝑣2𝜃
𝑟

− 𝜇

𝑟2
+
𝑇𝑚𝑎𝑥𝑘

𝑚
cos𝜓𝑟 (3.28)

𝑣𝜃 = −𝑣𝑟𝑣𝜃
𝑟

+
𝑇𝑚𝑎𝑥𝑘

𝑚
sin𝜓𝑟 (3.29)

𝜓𝑟 = 𝜔 − 𝜃 (3.30)
�̇� = 𝛼 (3.31)

21



where 𝜔 is the inertial angular velocity and 𝛼 an inertial angular acceleration, which can
be regulated.

The flow of the lunar module’s mass in time can be derived as [10]:

�̇� = −𝑇𝑚𝑎𝑥𝑘

𝑉𝑒𝑥
(3.32)

where 𝑉𝑒𝑥 is the lunar module engine specific impulse defined in Table 2.2.
With equations of the motion derived, we can proceed to the computation of the optimal

descent trajectory, which is content of the next chapter.
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Chapter 4

Optimal descent trajectory
computation

The content of this chapter is focused on computation of optimal descent trajectory. First
the mathematical theory behind optimization problems is explained. Following is an intro-
duction to the used optimization software. Finally, the definition and implementation of
discussed problem is described and the results are presented.

4.1 Optimization problem theory
Optimization is the act of achieving the best possible result under given circumstances.
The best can vary. For example when we are using optimization in finance we may want
to maximize the profit. On the other hand, in trajectory optimization problems we are
usually trying to minimize the fuel consumption. This effort can be expressed as a function
of certain parameter variables. Hence, optimization is the process of finding the conditions
that give the maximum or the minimum value of a function.

If point 𝑥* corresponds to the minimum value of a function 𝑓(𝑥), the same point cor-
responds to the maximum value of the function −𝑓(𝑥). We can thus take the optimization
as minimization [3].

General definition of optimization problem

According to [3], an optimization problem can be stated as follows:
Find

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) (4.1)

which minimizes
𝑓(𝑥) (4.2)

subject to the constraints
𝑔𝑗(𝑥) ≤ 0 (4.3)

for 𝑗 = 1, . . . ,𝑚, and
𝑙𝑗(𝑥) = 0 (4.4)

for 𝑗 = 1, . . . , 𝑝.
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Objective function 𝑓(𝑥) is to be minimized over the n-variable vector of parameters 𝑥,
𝑔𝑗(𝑥) are the inequality constraints and 𝑙𝑗(𝑥) are the equality constraints. The number of
variables 𝑛 and the number of constraints 𝑝 + 𝑚 need not be related. If 𝑝 + 𝑚 = 0 the
problem is called an unconstrained optimization problem.

Objective function

If the objective function 𝑓(𝑥) is convex, its local minimum is also the global minimum. If the
function is nonconvex, finding a local minimum does not imply finding a global minimum.
This concept is displayed in Figure 4.1. The problem of optimal descent trajectory is
nonconvex [10].

x0

global minimum

x
*

convex nonconvex

global minimum

local minimum

x0 x
*

ff

Figure 4.1: Global and local minimum

Finding a minimum

For a single variable function we can find a local minimum by applying the first and second
derivation of a function [12]:
Let 𝑓 : 𝐷 ⊆ R𝑛 → R. A local minimum of a function 𝑓 is a point 𝑎 ∈ 𝐷 such that
𝑓(𝑥) ≥ 𝑓(𝑎) for 𝑥 near 𝑎. The point 𝑎 then must be a critical point of 𝑓 , which means that
𝑓 ′(𝑐) = 0. To ensure that the point 𝑎 is a local minimum we can use Second Derivative
Test, which states that if 𝑎 is a critical point of 𝑓 and 𝑓 ′′(𝑎) > 0, then 𝑎 is a local minimum.

According to [12], this test can be generalized to the multivariable case as follows:
First we form the Hessian, which is the matrix of second partial derivatives at 𝑎. If 𝑓 is a
function of 𝑛 variables, then the Hessian is an 𝑛×𝑛 matrix. The entry in row 𝑖 and column
𝑗 of 𝐻 is defined by:

𝐻𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑎) (4.5)

The Second Derivatives Test now can be used. If 𝑎 is a critical point of 𝑓 and the Hessian
𝐻 is positive definite, then 𝑎 is a local minimum. To determine if the matrix 𝐻 is positive
definite, we can apply number of statements, including that the determinate of 𝐻 is positive.
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Optimal control problem

Problem of optimal descent trajectory falls into the subset of optimization problems called
optimal control problems. These problems involve a controlled dynamical system. A con-
trolled dynamical system is a dynamical system in which the trajectory can be altered
continuously in time by choosing a control parameter 𝑢(𝑡) continuously in time [9].

As stated in [9], a controlled dynamical system is usually governed by differential equa-
tion of the form:

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑡 > 0 (4.6)
𝑥(0) = 𝑥0 ∈ R (4.7)

By choosing the value of 𝑢(𝑡), the state trajectory 𝑥(𝑡) can be controlled. In case of optimal
descent trajectory, 𝑢(𝑡) is a control function of a lunar module engine thrust. We are trying
to find a thrust history to minimize the objective (cost) function 𝐽 . Function 𝑐 is the cost
function and 𝑡𝑓 is the final time [9]:

𝐽(𝑢) :=

∫︁ 𝑡𝑓

0
𝑐(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 (4.8)

Methods for solving optimal control problems

We can try to solve an optimal control problem analytically, but this may be difficult or
even impossible. In practice, the numerical methods are used instead. These methods can
be divided into two main categories: direct and indirect methods.

The indirect methods provide more precise results, but user have to derive and construct
various equations for necessary and sufficient conditions, which may be again very difficult.

Direct methods start from an initial guess of the state and control variables and search
in the feasible region for a minimum of cost function [4]. It is much easier to guess an initial
state and control variables, thus direct methods are usually chosen.

Midpoint method

The used optimization software computes using a direct method approach. User can choose
between a variety of different methods. In optimization software it was observed, that
Midpoint method provides the best results within reasonable computation time.

Midpoint method is based on Euler method. It is one-step, which means we are using
information from a single previous step. We are trying to solve a differential equation [8]:

𝑦′(𝑥) = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (4.9)

To compute 𝑦𝑖+1 we use the following formulas:

𝑘1 = 𝑓(𝑥𝑖, 𝑦𝑖) (4.10)

𝑘2 = 𝑓(𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
ℎ𝑘1) (4.11)

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑘2 (4.12)

for 𝑖 = 0, . . . , 𝑛− 1. ℎ is step size.
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Geometrically, we first find point 𝑃 which lies on the line with slope 𝑓(𝑥𝑖, 𝑦𝑖) and its 𝑥
coordinate is 𝑥𝑖 + ℎ

2 . Then the approximate value of the function in 𝑥𝑖+1 lies on the line
with slope field in point 𝑃 . This principle is displayed in Figure 4.2 retrieved from [8].

Figure 4.2: One step of midpoint method [8]

4.2 Implementation of optimal descent trajectory
In this section the optimization software is described along with own implementation of
optimal descent trajectory problem.

Bocop

An open-source toolbox for solving optimal control problems - Bocop [34] was chosen for
implementation of optimal descent trajectory problem. The optimal control problem is
approximated by a finite dimensional optimization problem (NLP) using a time discretiza-
tion. The NLP problem is solved by software IPOPT [40], using sparse exact derivatives
computed by ADOL-C [36].

Optimal control problem in Bocop can be defined as [5]:

(𝑃 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Min 𝐽(𝑡0, 𝑦(𝑡0), 𝑡𝑓 , 𝑦(𝑡𝑓 ), 𝜋) Objective
�̇�(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝜋) Dynamics
Φ𝑙 ≤ Φ(𝑡0, 𝑦(𝑡0), 𝑡𝑓 , 𝑦(𝑡𝑓 ), 𝜋) ≤ Φ𝑢 Boundary Conditions
𝑦𝑙 ≤ 𝑦 ≤ 𝑦𝑢, 𝑢𝑙 ≤ 𝑢 ≤ 𝑢𝑢, 𝑧𝑙 ≤ 𝑧 ≤ 𝑧𝑢, 𝜋𝑙 ≤ 𝜋 ≤ 𝜋𝑢 Bounds
𝑔𝑙 ≤ 𝑔(𝑡, 𝑢(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝜋) ≤ 𝑔𝑢 Path Constraints

with 𝑦(·) the state variables, 𝑢(·) the control, 𝑧(·) the optional algebraic variables and 𝜋
the optional variables to be optimized. 𝑡0 is starting time and 𝑡𝑓 corresponds to the final
time.
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Bocop code structure

The problem is saved in its own directory containing a number of files:

∙ 4 functions in C/C++, which corresponds to 𝐽, 𝑓,Φ, 𝑔:
criterion, dynamics, boundarycond and pathcond.

∙ 3 definition files in plain text:
problem.def for general definition of the problem
problem.bounds for the bounds (no bounds, lower and/or upper bound, equality)
problem.constants for optional constant values for the problem.

Program pipeline is presented in Figure 4.3 which is based on a diagram retrieved from [5].
Input files are first processed, Bocop performs a time discretization to build an objective
and constraints functions. These along with a starting point are the input of IPOPT
optimization tool. Derivations of objective and constraints functions are computed by
ADOL-C. The results are saved in output files and presented to user in program’s GUI.

BOCOP

INPUT FILES OUTPUT FILES

GUI

STARTING

POINT

OBJECTIVE AND

CONSTRAINTS

FUNCTIONS

TIME

DISCRETIZATION

DERIVATION

IN ADOL-C

OPTIMIZATION

IN IPOPT

Figure 4.3: Bocop pipeline [5]
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Bocop GUI

Bocop provides an intuitive GUI written in Qt framework. It is organized in 4 main modules:
Problem Definition module allows user to define an optimal control problem by providing

dimensions and names for variables, constants, functions for the objective, dynamics and
constraints. User can also choose computation algorithm - Euler, Midpoint, Runge Kutta
and others.

In Starting Point module the starting point values are set. They can be constant, linear
or splines.

Optimization module serves as settings panel for IPOPT. Different options can be set
including maximum number of iterations, output file name and single or batch optimization
among other things.

Finally in Visualization module user can read and display the contents of the solution file
generated after optimization. It includes graphs of state and control variables, constraints
and other functions in time.

Figure 4.4 shows a screen-shot of the Bocop’s main window, captured on the author’s
computer.

Figure 4.4: Main window of Bocop
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Optimal descent trajectory problem

The objective of this optimization is to perform a soft landing of a lunar module, while
minimizing the fuel usage. Soft landing means, that the lunar module’s final pitch and
radial velocity should be close to 0 𝑑𝑒𝑔 (legs down) and 0 𝑚𝑠−1 respectively to avoid any
potential damage.

Definition of the problem

The state vector is defined by equations of motion described in Chapter 3.2:

𝑥(𝑡) = [𝑟(𝑡), 𝜃(𝑡), 𝑣𝑟(𝑡), 𝑣𝜃(𝑡), 𝜓
𝑟(𝑡), 𝜔(𝑡),𝑚(𝑡)] (4.13)

The control vector is composed of engine throttle command 𝑘 and angular acceleration
command 𝛼:

𝑢(𝑡) = [𝑘(𝑡), 𝛼(𝑡)] (4.14)

The objective function is based on final mass of the lunar module:

𝐽𝑚𝑖𝑛 = −𝑚(𝑡𝑓 ) (4.15)

The constants have been chosen from Tables A.2 and 2.1. 𝑇𝑚𝑎𝑥 and 𝑉𝑒𝑥 are the Lunar
Module engine maximum thrust limit and engine exhaust velocity respectively. 𝑅𝑒𝑞 is the
Moon equatorial radius and 𝜇 its gravitational parameter. Values are in SI units. The
equations of motion operate with radians. All degrees were therefore converted to radians.
Table 4.1 shows the constants used in the optimal descent trajectory problem.

Table 4.1: Constants used in the optimal descent trajectory problem

𝑇𝑚𝑎𝑥 45 040 𝑁

𝑉𝑒𝑥 3050 𝑚𝑠−1

𝑅𝑒𝑞 1.7381 × 106 𝑚

𝜇 4.902800066 × 1012 𝑚3𝑠−2

Table 4.2 shows the bounds for state and control variables.

Table 4.2: Boundaries for state and control variables

Variable Lower Bound Upper Bound
𝑟(𝑡) 1 738 100 𝑚 1 753 340 𝑚

𝜃(𝑡) 0 𝑑𝑒𝑔 180 𝑑𝑒𝑔

𝑣𝑟(𝑡) - 0 𝑚𝑠−1

𝑣𝜃(𝑡) 0 𝑚𝑠−1 -
𝜓𝑟(𝑡) −90 𝑑𝑒𝑔 0 𝑑𝑒𝑔

𝜔(𝑡) −10 𝑑𝑒𝑔 𝑠−1 10 𝑑𝑒𝑔 𝑠−1

𝑚(𝑡) 6855 𝑘𝑔 15 103 𝑘𝑔

𝑘(𝑡) 0 1

𝛼(𝑡) −0.5 𝑑𝑒𝑔 𝑠−2 0.5 𝑑𝑒𝑔 𝑠−2

The limits on angular acceleration command and angular velocity were set according to [10]
to limit the rotational motion of LM to the reasonable levels. 𝑟 represents magnitude of

29



the radius vector. Since it originates in the center of Moon gravity, zero altitude is equal to
Moon’s equatorial radius and represents the lower bound. Upper bound is then computed
as Moon’s radius + starting altitude of 15.24 𝑘𝑚. Central angle 𝜃 is limited to 180 𝑑𝑒𝑔.
Radial velocity of lunar module is upper limited to 0 𝑚𝑠−1, because LM should perform
descent. Analogically the lower bound for tangential velocity is set to 0 𝑚𝑠−1 to ensure the
forward movement. Bounds of 𝜓𝑟 angle represent the LM pitch of [−90, 0] 𝑑𝑒𝑔. Mass of
the vehicle without the propellant was computed to be 6855 𝑘𝑔 and it represents the lower
bound for the LM’s mass 𝑚. Throttle command is set within the interval [0, 1] where 1
represents full throttle and 0 the engine turned off.

Finally, the initial and final conditions have to be constructed:

Initial conditions

𝑟0 = 1 753 340 𝑚 (4.16)
𝑣𝜃0 = 1630 𝑚𝑠−1 (4.17)
𝜓𝑟
𝑜 = −90 𝑑𝑒𝑔 (4.18)

𝑚0 = 15 103 𝑘𝑔 (4.19)

Powered descent starts in altitude of 15.24 𝑘𝑚 with tangential velocity 1630 𝑚𝑠−1. Pitch
angle of lunar module is set to −90 𝑑𝑒𝑔 and its initial mass is at its maximum value 15 103
𝑘𝑔 (counting with crew of three astronauts as in Apollo 11 mission).

Final conditions

𝑟𝑡𝑓 = 1 738 100 𝑚 (4.20)
𝑣𝜃𝑡𝑓 = 0 𝑚𝑠−1 (4.21)

0 ≤ 𝑣𝑟𝑡𝑓 ≤ 0.5 𝑚𝑠−1 (4.22)
−0.5 ≤ 𝜓𝑟

𝑡𝑓 ≤ 0.5 𝑑𝑒𝑔 (4.23)

The lunar module should land on the ground, with zero tangential velocity. Final radial
velocity constraints are relaxed, because problem didn’t converged when equality constraint
was set. Same applies to the final thrust angle - interval between −0.5 𝑑𝑒𝑔 and 0.5 𝑑𝑒𝑔 is
reasonable if near vertical landing is desired. LM was constructed to remain stable in even
greater pitch angle [10].
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Results of the optimization

Results of the optimization are presented below. As seen on graphs, the lunar module
smoothly descends from the initial altitude of 15.34 𝑘𝑚 while performing a pitch maneuver
to reach the vertical position. Throttle command is kept on maximum while the lunar
lander performs a soft landing with the final radial velocity of 0 𝑚𝑠−1 and pitch at 0 𝑑𝑒𝑔.
We can observe, that the vehicle mass is well above the minimal value upon landing, thus
the optimization can be considered successful.

Figure 4.5 shows the optimal descent trajectory altitude in time. In Figure 4.6 we can
observe the central angle of the lunar module in time. Figure 4.7 shows the LM’s radial
velocity. At its maximum it reaches −60 𝑚𝑠−1. Tangential velocity is displayed in Figure
4.8. Figure 4.9 shows the LM’s pitch angle in time. Lunar module gradually reaches the
pitch angle of −60 𝑑𝑒𝑔 and then changes its attitude to almost 0 𝑑𝑒𝑔. Figure 4.10 shows
the LM’s mass in time. In Figure 4.11 we can see the throttle command of the LM’s engine
in time. It is kept on the maximum up until the end of the landing maneuver.

× 10
3

Figure 4.5: Optimal descent trajectory alti-
tude in time

Figure 4.6: Optimal descent trajectory cen-
tral angle in time

Figure 4.7: Optimal descent trajectory radial
velocity in time

Figure 4.8: Optimal descent trajectory tan-
gential velocity in time

31



Figure 4.9: Optimal descent trajectory, lunar
module pitch angle in time

× 10
3

Figure 4.10: Optimal descent trajectory, lu-
nar module mass in time

Figure 4.11: Optimal descent trajectory, lunar module throttle command in time
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Chapter 5

Design and implementation of
visualization environment for
descent maneuver interpretation

In this chapter the process of implementation of 3D application for visualization of lunar
module descent trajectory is described. Reader can learn about tools and methods used
for creating this application. The process of creating input dataset containing trajectory
coordinates is also explained.

5.1 Application implementation
The idea of this application is to provide the user with an intuitive graphic way to visualize
a descent trajectory from the dataset of coordinates. These coordinates were obtained from
the computed optimal trajectory (see Chapter 4) and also from the real mission data of
Apollo 11 mission [25]. Creation of the input dataset is explained in detail in the next
section.

Godot Engine

The application was created using open source (MIT license) 3D engine Godot [13]. It is
cross-platform, which means you can deploy your application to any major operating system
as well as to mobile and web (HTML5). Throughout the development, its documentation
was extensively used [14]. A brief explanation of the engine work-flow follows, along with
description of own implementation.

Two main building blocks of Godot Engine are nodes and scenes. A node always has
the following attributes [14]:

∙ It has a name.

∙ It has editable properties

∙ It can receive a callback to process every frame.

∙ It can be extended (to have more functions).

∙ It can be added to another node as a child.
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A scene is composed of a group of nodes. Running an application means running a
scene. This allows for creation of different program views.

Application composition

Application is composed of two scenes - menu and main scene. A simple menu allows the user
to load a dataset of coordinates. File dialog is presented and after selecting the dataset file,
the program switches to the main scene and animation of descent trajectory starts playing.
Figure 5.1 shows the application’s main menu.

Figure 5.1: Screenshot of the application menu

For the main scene, various assets have been downloaded or created. This includes the
Lunar Module model [32] and Apollo 11 landing site model [7]. The Moon was created as
a sphere mesh with seamless surface texture [2] applied to it. Space skybox generator [35]
was used for the environment creation. It generates a panorama texture which is wrapped
around the entire scene for visualization of space beyond the 3D geometry.

In the main view there are several control elements. User can play or pause descent
animation, change its speed and also play it backwards. Camera distance and angle can be
changed either by mouse scroll wheel or by clicking on cockpit button to view the descent
from the astronaut’s perspective. The real-time flight data are displayed in the left corner.
These include yaw, pitch and roll angles, distance of LM from landing site and its altitude.
The trajectory itself is displayed as a curve. Figure 5.2 shows the main view of application.
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Figure 5.2: Screenshot of application main view

Implementation details

Descent trajectory is created with help of the Path and the PathFollow nodes. The Path-
Follow node takes its parent node - Path and returns the coordinates of a point within
it, given a distance from the first vertex [14]. The lunar module movement can then be
animated by setting the offset of PathFollow node. It also performs a cubic interpolation,
so the movement is smoothed.

The Path node serves as container for Curve3D node. Curve3D describes a Bézier curve
in 3D space[14]. Modified coordinates from the input dataset are points of the curve.

The modification of dataset points is necessary, because of the curvature of the Moon
mesh. The method of Ray-casting is used to exactly determine the 𝑌 axis value in 3D
space.

Next the Bézier curve segments have to be created. Godot defines a point of Bézier
curve as:

𝐾 = [𝑝𝑜𝑠, 𝑖𝑛, 𝑜𝑢𝑡] (5.1)
where 𝑝𝑜𝑠 is position of the point in 3D space. 𝑖𝑛 and 𝑜𝑢𝑡 are control points of the
curve. All parameters are stored in Vector3 data structure which is composed of (𝑥, 𝑦, 𝑧)
coordinates. Control point position is defined locally from the 𝑝𝑜𝑠 vector. In order to
create curve segments, the coordinates of control points have to be computed. Method was
implemented for this purpose. It is based on the article about creation of smooth Bézier
spline through prescribed points [28].

The cubic Bézier curve is defined as [28]:

𝐵(𝑡) = (1 − 𝑡)3𝑃0 + 3(1 − 𝑡)2𝑡𝑃1 + 3(1 − 𝑡)𝑡2𝑃2 + 𝑡3𝑃3, 𝑡 ∈ [0, 1] (5.2)

where 𝑃0, 𝑃3 are knot points and 𝑃1, 𝑃2 are control points.

First derivative of cubic is expressed as [28]:

𝐵′(𝑡) = −3(1 − 𝑡)2𝑃0 + 3(3𝑡2 − 4𝑡+ 1)𝑃1 + 3(2𝑡− 3𝑡2)𝑃2 + 3𝑡2𝑃3 (5.3)
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Second derivative is equal to [28]:

𝐵′′(𝑡) = 6(1 − 𝑡)𝑃0 + 3(6𝑡− 4)𝑃1 + 3(2 − 6𝑡)𝑃2 + 6𝑡𝑃3 (5.4)

To make a sequence of individual Bézier curves to be a spline, the control points have to
be calculated so that the spline curve has two continuous derivatives at knot points [28].
Continuous derivative means, that the derived function is continuous in the same interval
as the original function.

From these assumptions we can build several conditions. The first derivative continuity
condition states [28]:

𝐵′
𝑖−1(1) = 𝐵′

𝑖(0) ⇔ (5.5)
𝑃1𝑖 + 𝑃2𝑖−1 = 2𝑃𝑖− 1; . . . (𝑖 = 2, .., 𝑛) (5.6)

where 𝑖 is 𝑖th knot point, 𝑖 = 1, . . . , 𝑛.
The second derivative continuity condition can be expressed as [28]:

𝐵′′
𝑖−1(1) = 𝐵′′

𝑖 (0) ⇔ (5.7)
𝑃1𝑖−1 + 2𝑃1𝑖 = 𝑃2𝑖 + 2𝑃2𝑖−1; . . . (𝑖 = 2, .., 𝑛) (5.8)

Next the conditions for ends of intervals have to be constructed [28]:

𝐵′′
1 (0) = 0 ⇔ 2𝑃11 − 𝑃21 = 𝑃0 (5.9)

𝐵′′
𝑛(1) = 0 ⇔ 2𝑃2𝑛 − 𝑃1𝑛 = 𝑃𝑛 (5.10)

From this system of condition equations, the individual control points of curve segments
can be computed. Figure 5.3 shows a Bézier curve representation.

in

out

out

in

K1 K2

K3

Figure 5.3: Bézier curve representation

Curve3D class cannot store additional information about lunar module pitch. For the
purpose of setting the module’s pitch at given point another method was implemented. It
computes the current point on the trajectory curve by finding the shortest distance between
the lunar module and points of the curve. The corresponding pitch is then set from the
input dataset.
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5.2 Creation of the input dataset
The coordinates for visualization application were created from two sources. First, the
real Apollo 11 descent trajectory was reconstructed from the mission report graphs [25].
Second, data from the optimization were used to create the coordinates of optimal descent
trajectory. Description of creating the input datasets follows.

Apollo 11 descent trajectory dataset

Since the graphs of descent trajectory in Apollo mission report were available only in
the form of images, it was necessary to perform their digitization. For this purpose, the
WebPlotDigitizer [29] tool was used. It is an open source web application built in HTML5,
which allows to extract exact numerical data from various types of graph images.

It uses several algorithms for the data extraction. The X Step with Interpolation algo-
rithm has been chosen. As mentioned in user manual [30], it can identify data points at
regular intervals on the 𝑋 axis, that fall between 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 and 𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥 respectively.
The important feature of this algorithm is that the data points are spaced at an interval
∆𝑋 units apart. This provides the user a better control of the final dataset. Algorithm
interpolates over missing data using cubic splines, which makes it suitable even for curves
consisting only of data points.

First the graph axes have to be manually calibrated. This allows for program to correctly
map the image pixels to the corresponding data values. Next, the user selects data points on
the image. Several tools like Box, Pen and Erase are available to mark the region containing
the required data. After this selection, the data extraction algorithm can be run. After the
computation, user is presented with dataset of (𝑥, 𝑦) values.

Figure 5.4 shows the automatically identified points of the Apollo 11 descent trajectory
graph.

Approximate range to landing point, m

Radar

aquisitionHigh gate
Crater Maskelyne W

15.24 × 103  m

  

2.19 × 103  m

481.52 × 103  m

Figure 5.4: Visual output from WebPlotDigitizer application containing one part of the
Apollo 11 descent trajectory graph

Several graphs were processed in this manner, including the graph of lunar module pitch
in time. This allows for better visualization of descent maneuver.

In the final step of input dataset creation, the individual outputs of digitization applica-
tion have been merged together and file containing the range from the landing point,
altitude and pitch angle of the lunar module was created. The input file contains indi-
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vidual values in CSV format, meaning that each value is separated by a comma. Figure 5.5
shows the final digitized trajectory of Apollo 11.
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landing point

descent starting point

Figure 5.5: Digitized of Apollo 11 descent trajectory, altitude vs. distance from the landing
site

Optimal trajectory dataset

Optimization software output provided numerical data which could be easily used to create
trajectory dataset. In simple text files user can find discretized time units and corresponding
variable values. A spreadsheet was created to collect this data and to create necessary
graphs.

In order to create the optimal trajectory dataset, the distance from landing site in each
time point had to be calculated. For this purpose the following formula was used:

∆𝑑 = ∆𝜃(𝑅𝑒𝑞 + 𝑎𝑙𝑡) (5.11)

where ∆𝑑 represents a travelled distance increment, ∆𝜃 an angular increment, 𝑅𝑒𝑞 is
the Moon equatorial radius and 𝑎𝑙𝑡 is lunar module altitude in current time point. Total
travelled distance can be computed as sum of travelled distance increments.

It should be noted, that distance from the landing site is only an approximation. The
error can be caused by various elements, including a round off error of the angular increment.
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landing point

descent starting point

Figure 5.6: Optimal descent trajectory altitude vs. distance from the landing site

The pitch data was processed in the same manner. Figure 5.6 shows the optimal descent
trajectory altitude according to the distance from the landing site. In Figure 5.7 we can
see the optimal descent trajectory pitch according to the distance from the landing site.

×
-1

× 10
3

descent starting point

landing point

Figure 5.7: Optimal trajectory pitch vs. distance from the landing site
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Chapter 6

Evaluation of achieved results

In this chapter the results of the final trajectories are evaluated and potential further
improvements of both optimization task and visualization application are suggested.

Comparison of descent trajectories

As seen in Figure 6.1, total travel distance of the optimal trajectory is approximately 61 𝑘𝑚
shorter then the total travel distance of the Apollo 11. The throttle of the lunar module
engine is kept on the maximum until the end of the landing maneuver. LM reaches a
considerable radial velocity of −60 𝑚𝑠−1 and is thus able to reach the landing site quicker
than in the real Apollo 11 mission. The computed optimal trajectory reached its initial
goal to perform a soft landing while minimizing the fuel consumption. Propellant mass of
6528.63 𝑘𝑔 was burned during descent. That leaves the lunar module with 1719.37 𝑘𝑔 of
the remaining fuel.

The real Apollo 11 descent started with the engine turned on. Throttle was reduced
after approximately 386 𝑠 after ignition. The lunar module reached the high gate altitude
of about 2 𝑘𝑚 at descent rate of approximately 38 𝑚𝑠−1. Just before landing, the Apollo
guidance computer indicated that the approach path was leading into a large crater. Manual
intervention was necessary to extend range and avoid the crater. This maneuver guided
the lunar module 335 𝑚 from the initial landing point. Vertical velocity upon landing was
1.7 𝑚𝑠−1. 316.6 𝑘𝑔 of usable propellant remained at landing [25], significantly less than
estimated, mainly due to the crash avoidance maneuver.

Further improvements

The optimization of descent trajectory could be done in 3D space instead of one plane
of motion. This would allow for the more realistic simulation of the descent maneuver.
Another potential improvement would be to add different constraints for different altitudes
and thus more accurately simulate individual phases of descent maneuver. This is not
possible in the current version of optimization software.

The graphics of the application would benefit from the precise topological terrain of the
lunar surface. The topological data from the Lunar Reconnaissance Orbiter Camera are
available [31], but since the current version of Godot Engine does not support a displacement
mapping technique, it was not possible to implement without modifying the source code.
Currently this would be both very difficult and out of scope of this thesis. Another possible
improvement of the visualization application is to implement full six degrees of freedom
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movement of the lunar module. This was not implemented in the current version because the
available data was only in one plane of the motion. In the future version of the application,
the proper physical model of the lunar module could be implemented. This would allow for
more realistic animation and additional parameters of the flight could be simulated.

Apollo 11 trajectory Optimal trajectory

landing point

descent starting point

× 10
3

× 10
3

Figure 6.1: Comparison of Apollo 11 and optimal descent trajectories
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Chapter 7

Conclusion

The goal of this thesis was to perform a computation of optimal descent trajectory of lunar
module and visualize it in 3D environment. First step to achieve this goal was to research
the history of Apollo 11 mission. For this purpose various literature was read including
Apollo 11 mission report [25]. All necessary historical data was extracted, including tra-
jectory description and lunar module technical parameters. With this knowledge it was
possible to approach the optimization problem. It was crucial to place the lunar module
into coordinate system and derive the equations of motion. Next the optimization theory
was researched and optimal descent trajectory was modeled as optimal control problem.
The author got acquainted with optimization software Bocop and implemented this prob-
lem within its environment. In order to visualize the descent maneuver the 3D engine Godot
was chosen. Application logic was implemented. This includes designing the input format
for the application, parsing the input dataset and creating an interactive 3D animation.
The input dataset was created by digitization of various graphs from Apollo 11 mission and
by converting the optimization data. Finally, the optimal and real descent trajectory were
compared.

Further work may include generation of the Moon topology from satellite data in order
to enhance the visual quality of the presentation. Additionally the computation of optimal
trajectory could be extended to the 3D space. This would enable creation of more realistic
simulation system. Another possible future work could be done on implementation of
realistic physical model in 3D engine.
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Appendix A

Astronomical objects and
spacecrafts in Apollo 11 mission

The Earth

Figure A.1: The Earth [21]

Table A.1: The Earth’s physical characteristics [38]

Equatorial radius 6378.137 𝑘𝑚

Mass 5.9723 × 1024 𝑘𝑔

Surface gravity 9.798 𝑚𝑠−2

Escape velocity 11.186 𝑘𝑚𝑠−1

Gravitational
parameter

3.986004418 × 1014 𝑚3𝑠−2

The Moon

Figure A.2: The Moon [27]

Table A.2: The Moon’s physical characteristics [39]

Equatorial radius 1738.1 𝑘𝑚

Mass 0.07346 × 1024 𝑘𝑔

Surface gravity 1.62 𝑚𝑠−2

Escape velocity 2.38 𝑘𝑚𝑠−1

Gravitational
parameter

4.902800066 × 1012 𝑚3𝑠−2
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Saturn V rocket

Figure A.3: The model of the Saturn
V rocket[15]

Table A.3: Saturn V technical specifications [22]

Function Apollo lunar program
launcher

Stages 3
Height 110.6 𝑚

Diameter 10.1 𝑚

Mass 2 970 000 𝑘𝑔

Payload to translunar
injection

48 600 𝑘𝑔

1st stage thrust 35 100 𝑘𝑁 at sea level
2nd stage thrust 5141 𝑘𝑁 in vacuum
3rd stage thrust 1033.1 𝑘𝑁 in vacuum
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Appendix B

Content of the included CD

∙ /xfiloj01-BP.pdf - electronic version of the thesis

∙ /doc.zip - compressed source files of the thesis

∙ /bocop/ - directory containing the source files of the optimization problem

∙ /src/ - directory containing the source files of the implemented application

∙ /bin/ - directory containing the executable files of the implemented application

∙ /video.mp4 - sample video of the implemented application
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