
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

RECOMMENDER SYSTEM FOR WEB ARTICLES
DOPORUČOVACÍ SYSTÉM PRO WEBOVÉ ČLÁNKY

BACHELOR’S THESIS

BAKALÁŘSKÁ PRÁCE

AUTHOR JAN KOČÍ

AUTOR PRÁCE

SUPERVISOR Ing. MARTIN FAJČÍK

VEDOUCÍ PRÁCE

BRNO 2019



Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2018/2019
Bachelor's Thesis Specification

Student: Kočí Jan
Programme: Information Technology
Title: Recommender System for Web Articles
Category: Speech and Natural Language Processing
Assignment:

1. Describe the role of recommender systems.
2. Describe the obtained dataset and compare it with publicly available datasets.
3. Explore current approaches that are appropriate for building recommender systems.
4. Choose and describe at least one suitable approach, describe how the selected approach differs from the

related work.
5. Describe your evaluation process for the chosen approach.
6. Implement the recommender system.
7. Evaluate the system.
8. If possible, do an ablation study.
9. Compare achieved results with state-of-the-art.

Recommended literature:
Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation via Convolutional
Sequence Embedding. In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining (WSDM '18). Available at: http://www.sfu.ca/~jiaxit/resources/wsdm18caser.pdf

Requirements for the first semester:
Complete items 1 to 5 of the assignment

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Fajčík Martin, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: November 6, 2018

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22020/2018/xkocij01 Strana 1 z 1



Abstract
Recommender systems for web articles are the main interest of this thesis. It explains
the most popular approaches used to build these systems, proposes a neural-network-based
architecture applying the Skip-gram inspired negative sampling method to the recommen-
dation problem, implements this architecture together with several other models, using
Singular value decomposition, collaborative filtering with Alternating Least Squares (ALS)
algorithm and a content-based approach using the Doc2Vec algorithm to create document
vectors from the obtained articles. Finally, it implements three evaluation metrics - namely
the RANK metric, Recall at k and Precision at k - and compares the models with state-
of-the-art. Apart from that it also gives a brief discussion on the role and purpose of these
systems together with the motivation of using them.

Abstrakt
Tématem této bakalářské práce jsou doporučovací systémy pro webové články. Tato práce
nejdříve uvádí nejpopulárnější metody z této oblasti a vysvětluje jejich principy, následně
navrhuje požití vlastní architektury, založené na neuronových sítích, která aplikuje metodu
Skip-gram negative sampling na problematiku doporučování. V další části pak implemen-
tuje tuto architekturu společně s několika dalšími modely, požívající algoritmus SVD, collab-
orative filtering s algoritmem ALS a také metodu Doc2Vec k vytvoření vektorové reprezen-
tace z obsahu získaných článků. Na závěr vytváří tři evaluační metriky, konkrétně metriky
RANK, Recall at k a Precision at k, a vyhodnocuje kvalitu implementovaných modelů
srovnáním výsledků s nejmodernějšími modely. Kromě toho také diskutuje o roli a smyslu
doporučovacích systémů ve společnosti a uvádí motivaci pro jejich používání.

Keywords
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orative Filtering, Matrix Factorization, Content-based filtering.
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Rozšířený abstrakt
Doporučovací systém je počítačový program, který je schopen predikovat preference uži-
vatelů k produktům daného systému. Činí tak na základě minulých, již provedených, inter-
akcí uživatelů s produkty. Tyto interakce mohou být na různých systémech reprezentovány
odlišným způsobem. Některé systémy umožňují svým uživatelům vyjádřit jejich preference
explicitně skrze udělování hodnocení, například na stupnici od 1 do 10. Existují však také
systémy, které nemají tuto možnost explicitní zpětné vazby a musí tak sami určit hodnotu
zaznamenaných interakcí. Po vypočtení preferencí je pak systém schopen sestavit sez-
nam nejlépe vyhodnocených produktů pro daného uživatele a předložit jej jako vytvořené
doporučení. Doporučovací systémy představují mocný nástroj a není proto žádným přek-
vapením, že našli uplatnění v širokém spektru aplikací.

Cílem této práce bylo vytvořit doporučovací systém pro webové články z domény devel-
opers.redhat.com. Úvodní část práce se věnuje studiu datasetů, používaných v této oblasti.
Vysvětluje jejich základní dělení, podle typu zpětné vazby, na explicitní a implicitní a uvádí
příklady konkrétních veřejně dostupných verzí. Krom toho je v této části představen také
dataset, který je předmětem této práce. Jedná se o implicitní dataset, obsahující informace
o zaznamenaných interakcí uživatelů s články již zmíněné domény, kdy interakcí je myšlena
návštěva webové stránky daného článku.

V následující kapitole jsou popsány nejpoužívanější techniky pro vytváření doporučo-
vacích systémů. Kapitola začíná studiem metod založených na obsahu, tzv. Content-based
metod, u kterých uvádí příklady algoritmů, používaných k vytvoření numerické reprezentace
textových dat. Poté zde diskutuje také o metodách založených na Collaborative Filteringu,
přístupu, který, na rozdíl od Conten-based metod, zapojuje využívání kolaborativních tech-
nik pro nalezení relevantnějších doporučení. V rámci této kategorie jsou uvedeny příklady
metod jako Singular value decomposition, využívající techniku faktorizace matic. Dále jsou
zde zmíněny výhody tzv. Hybridních modelů a nakonec je zde uvedeno několik metod,
používajících neuronové sítě. Podrobněji je zde popsána metoda Doc2Vec.

Kromě technik používaných k vytváření modelů, jsou zde také popsány metody jejich
evaluace. Konkrétněji se práce jmenuje třem evaluačním metrikám, použitých v samotné
práci k vyhodnocení kvality implementovaných modelů. Jmenovitě se jedná o metriky
RANK, Recall at k a Precision at k.

Po vysvětlení evaluačních technik následuje kapitola, představující návrh vlastní ar-
chitektury doporučovacího systému, založené na metodě Skip-gram. Tato metoda byla
původně použita v metodě Word2Vec pro vytváření vektorové reprezentace slov. Před-
stavená architektura vychází z její variace používající metodu negative samplingu.

Jejím cílem bylo aplikovat metodu negative samplingu tak, aby vytvořila vektorové
reprezentace pro uživatele a články, podobně jako to dělá v metodě Word2Vec se slovy.
Tyto reprezentace by následně měli umožnit nalezení podobností mezi uživateli a články a
tedy i sestavení výsledných doporučení.

V následující kapitole se nachází popis implementace této architektury a tří dalších
vytvořených doporučovacích systémů. Tyto systémy používají metody jako Singular value
decomposition (SVD), collaborative filtering s algoritmem Alternating Least Squares (ALS)
a Doc2Vec. Kromě implementace modelů popisuje tato kapitola také implementaci tříd
používaných pro evaluaci a optimalizaci těchto modelů. Po kapitole popisující implementaci
se na řadu dostává evaluace vytvořených modelů. Kromě výsledků jednotlivých evaluačních
metrik tato kapitola také uvádí několik experimentů, provedených s vytvořenými modely a
uzavírá práci stručným shrnutím dosažených výsledků.
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Introduction

A recommender system is a computer program that is able to predict the preference of a user
for a certain item. It can do so by looking at past behaviours of users, meaning the history
of their interactions with other items. These interactions can be represented differently
in various systems. Some systems enable users to rate items and express their preference
explicitly, e.g. in the form of a star rating on a scale from 1 to 10. Other systems may not
have the ability to allow their users to give explicit feedback and hence have to determine
the significance of interactions on their own, considering not only the preference a user gives
to a certain item, but also the confidence the system has in this information.

All things considered, these systems can create a truly powerful tool and it is no surprise
they found their way to a wide area of application. Shopping centres track recent purchases
of their customers and create customized offers for them. Internet televisions recommend
shows and movies similar to those users already watched and liked. E-shops can display
products users are more likely to buy above the others. Behind all these applications, there
is a recommender system. They help companies maximize their sales and improve user ex-
perience, enable users to find things they are interested in faster and easier. Moreover, their
relevance is still getting stronger as the internet is becoming more personalized and their
performance is still improving with collecting larger amounts of data along with higher
processing capabilities.

The main purpose of this thesis was to create a system recommending web articles
in the domain developers.redhat.com. The objective was to implement an architecture
based on a probabilistic model that had not been used for this task before and evaluate its
performance by comparing it with other models created using conventional methods.

Chapter 2 compares known dataset types and their different ways of representing feed-
back from users. It also describes the dataset, that this thesis is working with. Chapter
3 aims to explain the most popular approaches used to build recommender systems and
describe their advantages and weaknesses. Chapter 5 presents the proposed architecture,
that is based on the Skip-gram negative sampling model originally used in the Word2Vec
method to create word embeddings. The proposed architecture applies this model to the
recommendation problem. Finally, chapter 6 discusses the most important implementation
details of all created models. And chapter 7 explains the process of their evaluation, com-
pares the models with state-of-the-art and reviews the obtained results. All the created
models can be found on the enclosed DVD and also in a repository created on GitHub 1.

1GitHub repository: https://github.com/JanKoci/Recommender-systems
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Chapter 1

The Recommendation Problem

The formal definition of a recommendation problem can be described as suggested in [1]:
Let 𝐶 be the set of all users and 𝑆 the set of all items in a dataset. Let 𝑢 be the utility
function that measures the usefulness of item 𝑠 for user 𝑐. The usefulness measure can be
a real positive number and is assigned to every user-item pair. We can express this idea as
a mapping of the cartesian product of sets 𝐶 and 𝑆 to a set of values 𝑅:

𝑢 : 𝐶 × 𝑆 → 𝑅

This mapping is surjective, meaning two different elements from 𝐶 × 𝑆 can be mapped
to the same value from 𝑅. The goal of recommendation is then to find a set of items that
would maximize the utility function for a user:

∀𝑐 ∈ 𝐶 : 𝑆′
𝑐 = argmax

𝑠∈𝒮
𝑢(𝑐, 𝑠) (1.1)

Where 𝑐 is a user from the set 𝐶, 𝑠 is an item from the set 𝑆, 𝑢 is the utility function and 𝑆′
𝑐

is a set of items that maximize the utility function for user 𝑐. The utility of a user-item pair
is often represented as a rating the user gave the item. That leads us to the central problem
of recommender systems. The utility function is not defined on the whole 𝐶×𝑆 space, but
only on the items previously rated by the users. Consequently, the utility function has to
be approximated to the whole 𝐶 × 𝑆 space. The problem can be divided into two parts.
The first part is to define the utility function to measure the known user-item interactions.
The second part is to estimate the unknown interactions, usually by building a probabilistic
model on the set of known user-item interactions. Finally, when the unknown ratings are
estimated, the system can recommend items with the highest predicted ratings.

These procedures, however, are hard to define as they can differ on every system.
The measures of usefulness or importance can sometimes be application specific.
News websites give a much bigger weight to recently published articles than to something
that happened three years ago, because its users want to know, what happened lately.
Whereas users of an internet television would not mind watching a movie from the ’90s.
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Chapter 2

Datasets for Recommender
Systems

In order to be able to make recommendations, the system needs data. As it was already
mentioned in section 1, the system works with a set of users and a set of items. A typical
dataset then consists of interactions between these users and items. Such interactions,
however, can have a different meaning on every system, giving the recommender specific
feedback about the behaviour of its users. Based on the representation of this feedback,
datasets are classified into explicit feedback and implicit feedback datasets.

In the explicit feedback datasets, interactions reflect the preferences of users very
accurately. They are created as users give items a specific rating, e.g. on a scale from 1
to 10, telling the system how much they liked them. The implicit feedback datasets are
harder to deal with. In these systems, users do not explicitly rate items. Instead, the system
has to guess their preferences, given by certain clues. These clues can be for example: how
many times the user clicked on an article, how many times did the user watch a show, or
what keywords did the user search for. Similarly, as in any other machine learning system,
the amount of data, as well as its quality, is crucial. The more information the system gets,
the better it should perform.

Datasets can be stored e.g. in a CSV file, where each row represents one interaction,
that consists of unique user and item identifiers and a numeric value, that describes the
interaction e.g. a rating.

2.1 Explicit Feedback Datasets
Explicit feedback datasets reflect the preferences of users very accurately, as users explicitly
tell the system, how much they like certain items, usually by giving them a rating. They
further enable the existence of negative feedback. That means they allow their users not
only to express what items they like but also what items they dislike. Hence the interactions
between users and items that the system is interested in are created every time a rating is
given. These interactions are often stored in a so-called interaction matrix, in which every
row represents a unique user and every column a unique item.
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Seven The Shining Pretty Woman

Julia 2.5 5.0
Jack 5.0 1.5
Brad 5.0

Table 2.1: Simple example of an interaction matrix. It contains users in rows and items, or
movies in this particular example, in columns. Values in this matrix represent the rating
users gave the movies. That means user Brad rated the movie Seven with 5 stars etc.
Empty fields indicate users have not rated the movie yet.

The interaction matrix, as can be seen in table 2.1, can be very sparse. That means
it contains a lot of zero values, where no interaction has occurred. These fields contain
a special value, one that does not appear in the rating scale, usually a zero. In most
datasets, this sparsity can reach over 90%, meaning 90% of the values are zeros. Therefore
these matrices are often stored in a memory efficient data structure, where only the non-
zero values are stored, together with their position in the original matrix. Then, assuming
the sparsity is 90%, instead of having one matrix of size 100𝐾 × 100𝐾, we have 3 matrices
of size 1𝐾 × 1. The first matrix contains all non-zero values and the other two matrices
contain indexes of rows and columns in the original matrix.

One example of existing public explicit feedback datasets could be the Movielens 1

dataset. In this dataset users rate movies by giving them a certain number of stars, from
half a star being the worst rating, to 5 stars being the best. This dataset is available in
several forms varying in size from 100K interactions up to 20M, as shown in table 2.2.

Size Number of users Number of movies Sparsity Released
20M 138 000 27 000 99.5% 10/2016
10M 72 000 10 000 98.6% 1/2009
1M 6 000 4 000 95.8% 2/2003

100K 600 9 000 98.1% 9/2018

Table 2.2: This table gives a brief review of available Movielens data sets and their content.

Some systems use a different approach, where ratings are given to items in form of thumbs
up or down. This type of binary rating tells the system only whether the user does or does
not like the item. It tells nothing about the quantity, how much they like it. This type
of ratings is used in platforms by companies like Netflix, Inc. or YouTube, LLC. Some of
them converted to this design from using star ratings, as it appeared to be more beneficial.

One of them is referred to as per-user bias. Users often interpret the rating scale
differently. A 3-star rating could indicate a greater preference for a user whose average
given rating is, as supposed, 2.5 stars. However, if a user only gives big ratings around 4
or 5 stars, his 3-star rating would be interpreted as not so significant. One other problem
that Netflix ran into, was that users tended to give old movies a big rating, not because they
personally liked it, but because they are generally considered to be good. This resulted in
recommending rather an old movie than something new that the user would much rather
watch.

1Dataset was retrieved from https://grouplens.org/datasets/movielens/
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2.2 Implicit Feedback Datasets
The explicit feedback is clearly very convenient for the system and results in more accurate
recommendations. However, this kind of feedback is not always available. Some appli-
cations simply do not have the ability to allow their users to rate every single item they
interact with. Like shopping centres, that track the purchases of their customers. Most
of them would probably not really enjoy rating how satisfied they were with the butter they
bought yesterday. This is when the implicit feedback comes in useful.

The implicit feedback is not obtained directly from users, but by observing their be-
haviour and interactions with items. The interactions here, instead of explicit ratings, are
the actions of users, like visiting a webpage or buying a product. The numeric value repre-
senting an interaction can then be e.g. how many times did a user visit a certain webpage,
how much time did he spend on it etc. It is important to identify the unique features
of implicit feedback compared to the explicit, as mentioned in paper [8]:

1. There is no negative feedback. In explicit datasets, users could give an item a low rat-
ing to tell the system, they do not like it. Implicit feedback does not have this ability.
By observing the behaviour of users, the system can only assume, what items they
probably like. Also, it cannot assume that not interacting with an item is an indication
of not liking it. The user may not even know this item exists.

2. The feedback is very noisy. That means, there is a lot of misinformation. Sometimes
users may click on an article by mistake, or may not like it at all after reading it.

3. In explicit datasets, the numeric value of interaction represents preference. As stated
in the previous point, implicit datasets are very noisy. Therefore an interaction be-
tween a user and an item cannot directly imply he prefers the item, it only tells
the system that he might like it. And so rather than preference, here the numeric
value of interaction represents confidence. The more a user interacts with a certain
item, the more confident the system is about his preference for this item.

Authors of paper [8] suggest a new method for working with this confidence. Let 𝑟𝑢𝑖 be the
numeric value of interaction between a user 𝑢 and an item 𝑖. This value can represent e.g.
how many times the user visited this page or how much time did he spend on it. Then,
the authors introduce a new variable 𝑝𝑢𝑖, that is a binary representation of the 𝑟𝑢𝑖 value:

𝑝𝑢𝑖 =

{︃
1, 𝑟𝑢𝑖 > 0

0, 𝑟𝑢𝑖 = 0
(2.1)

The 𝑝𝑢𝑖 value indicates, that the user could have a preference for this item. More important,
however, is how confident the system is about this preference. The confidence value is closely
associated with the 𝑟𝑢𝑖 value. As the 𝑟𝑢𝑖 value grows, the system has a stronger indication
that the user indeed likes the item and the confidence value increases. The confidence, that
the system has in the interaction between a user 𝑢 and an item 𝑖, can be computed using
the following formula as suggested in paper [8]:

𝑐𝑢𝑖 = 1 + 𝛼𝑟𝑢𝑖 (2.2)

Where 𝛼 > 0 is a constant that controls the rate of increase. Another potential formula for
confidence, used when the range of 𝑟𝑢𝑖 values is wide, uses logarithm:

𝑐𝑢𝑖 = 1 + 𝛼 log(1 + 𝑟𝑢𝑖/𝜖) (2.3)
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Where 𝛼 > 0 and 𝜖 > 0 are both parameters of the model. This method is especially
useful to eliminate the big values of 𝑟𝑢𝑖, which could be caused by an accident. If the
system measured the time spent on a webpage, an extremely big 𝑟𝑢𝑖 value could occur, for
example, when a user left his computer to go to the toilet.

Implicit datasets are definitely harder to deal with. They contain much less useful
information, are harder to obtain and the systems are harder to evaluate. Despite all the
difficulties, they are used very frequently across the internet, as for some systems it is not
possible to allow users to rate their items. In some cases it is not even likeable. Users
simply do not want to waste their time giving any feedback. Therefore they still keep their
relevance and are also the topic of this thesis.
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Figure 2.1: This figure visualizes the graphs of the linear 2.2 and the logarithmic 2.3
confidence functions. The linear confidence, colored in orange, used 𝛼 = 2. The logarithmic,
colored in blue, used 𝛼 = 120 and 𝜖 = 0.1.

Example of an existing publicly available dataset using implicit feedback could be
the Last.fm 2 dataset. Last.fm 3 is an online music service and this dataset was used
to create music recommendations. It consists of tuples in format <userId,itemId,plays>
where userId is a unique user identifier, itemId is a song identifier and plays is the total
number of times this user listened to the song.

2https://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-360K.html
3https://www.last.fm/
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2.3 Our Dataset
The recommender system, that is in the main interest of this thesis, is working with web-
pages from the developers.redhat.com domain. These webpages contain articles, blog
posts and videos not only about the products of the Red Hat, Inc. company but also
about several topics across the industry of information technologies.

The dataset consists of records about visits to these webpages. An interaction between
a user and a page is therefore just a visit to this webpage. This makes the dataset purely
implicit as the system only knows what pages have its users visited but has no idea about
what pages they actually liked. There is, however, a numeric value associated with every
interaction. A value that embodies an essence of preference and thus helps the system
to better understand and evaluate the data. This value is the time that a user spent on
a webpage during his visit.

Apart from that, every interaction has to carry an identifier of the user and the webpage
that was involved in it. Identification of the involved webpage is simply performed by its
URL. The identification of a user is done using not one but two values, the visitor_id and
the user_id. An overall structure of one record (all the values or variables of one record)
is as follows:

∙ visitor_id: This value identifies the cookies that were used in the interaction.

∙ user_id: Unique identifier assigned to logged in users.

∙ page_url: URL of the involved webpage.

∙ time: The time in seconds that the user spent on this webpage.

Not all interactions in the domain are produced by logged users. In those cases, the user_id
is simply not known and the system has to use only the cookies to identify the source of
this action. An example of one record in the dataset can be seen in table 2.3.

user_id 75296503
visitor_id 123456_987654
page_url https://developers.redhat.com/blog/2018/08/29/intro-to-podman
time 156

Table 2.3: Example of one record in the dataset. This record represents an interaction
between a user and a webpage in the form of a visit to this webpage.

Our dataset, consisting of records of these interactions collected over 6 months (from
September 2018 to February 2019), includes a total of 265123 interactions. As it was
already mentioned, not all the interactions in the dataset were created by logged users.
In fact, only about 29% of them know the exact user_id involved. The rest of them only
know the visitor_id representing the cookies of a browser.

That means if the system worked only with interactions of logged users, it would be
able to use only 76369 interactions from the original 265123. On the other hand, it would
be tricky to use only the visitor_id to recognize the user, as cookies identify the browser
rather than the users themselves. They can also change over time or be deleted. Or even
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worse, 2 different people using the same computer would be identified as one user. All of
those problems resulted in creating a mechanism called UserMappings. This mechanism
strives to combine both user_id and visitor_id to create a unique user identifier. By that,
it creates the advantage of being able to connect interactions, where only the visitor_id
is known, to the actual user, once he is logged in and creates new interactions with his
user_id. More details on this topic can be found in section 6.

Metadata

A good step to further improving the performance of a recommender could be including
an additional piece of information about the items of the system. That means besides the
user-item interactions, the system would also have some metadata describing the nature of
its users and items. Assigning every item with a description or tags creates a sort of profile
that helps to classify it. Similarly, a profile for users helps to find other similar users and
consequently helps to recommend new items.

User profiles are often created by users themselves and often contain demographic infor-
mation like age, gender or nationality. Sometimes they let their users to directly determine
their preferences e.g. what music genres or what bands they listen to. Item profiles, on the
other hand, are created by the system and describe the nature and characteristics of their
content. In the Movielens dataset, movies are assigned with genres like Western, War,
Thriller, Sci-Fi, Romance etc. This information comes in hand, especially when working
with content-based recommenders, that use it to compute similarities between items. In our
case, the system can work with the following metadata:

key value

page_url https://developers.redhat.com/blog/2019/02/26/...
title Creating and deploying a Java 8 runtime container image

tags [buildah, container, docker, java, java 8,
kubernetes, microprofile, openjdk, openshift]

description
a java runtime environment should be able to run compiled source code,
whereas a development kit, for example, openjdk, would include all
the libraries/binaries to compile and run the source code ...

Table 2.4: An example of article metadata.

The metadata of each item consist of its URL, that also serves as a unique identifier,
the title of the article, a list of tags that create a basic form of categorization and were
assigned to it by a human and a short description, being the first paragraph of its textual
content.
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Chapter 3

Approaches to building
Recommender Systems

This chapter offers an overview of the most popular methods, used to build recommenders.
Section 3.1 starts by describing the principles of content-based approaches. Section 3.2
moves on to collaborative filtering methods. Section 3.3 leaves a couple of words about
hybrid models and finally, section 3.4 describes several methods using deep learning.

3.1 Content-based Models
One of the first approaches used to build recommenders were content-based methods. These
methods use specific measures to compute similarities between items or users. Then, based
on those computed similarities, they are able to make recommendations. Content-based
methods are often classified as either item-oriented or user-oriented:

∙ item-oriented - compute similarities between items, recommend most similar items to
those users already liked

∙ user-oriented - compute similarities between users, recommend items liked by similar
users.

To make such similarity measures possible, the system has to give all items or users a uni-
form way of representation. As mentioned in section 2.3, representation of users can reflect
their preferences but also information like their age or gender. It can be either learned
by the system, as it observes their interactions, or set directly by the users. The represen-
tation of items is often constructed directly from their content. Web articles, for example,
can be represented as n-dimensional vectors created using various natural language pro-
cessing techniques.

More formally, as suggested in paper [1], let 𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑠) be the representation of article 𝑠.
One of the techniques used to create it is the term frequency/inverse document frequency
(TF-IDF) measure. This measure is used to calculate keyword weights in a document.
The term frequency of word 𝑖 in article 𝑗 is defined as:

𝑇𝐹𝑖,𝑗 =
𝑓𝑖,𝑗

𝑚𝑎𝑥𝑧𝑓𝑧,𝑗
(3.1)

Where 𝑓𝑖,𝑗 is the number of times word 𝑖 occurred in article 𝑗, and 𝑚𝑎𝑥𝑧𝑓𝑧,𝑗 is the maximum
number of occurrences of a word in article 𝑗. This measure, however, has a small flaw.
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It gives big values to words commonly used in the language. These words do not have any
importance in defining the articles, because they do not describe their content. Therefore
the inverse document frequency (IDF) measure is added. The inverse document frequency
for word 𝑖 is defined as:

𝐼𝐷𝐹𝑖 = log

(︂
𝑁

𝑛𝑖

)︂
(3.2)

Where 𝑁 is the number of all articles in the dataset, and 𝑛𝑖 is the number of articles in
which the word 𝑖 appeared. If a word appears in every article, its 𝐼𝐷𝐹 value is 0. Such
a word does not represent any special feature and therefore cannot be used to describe an
article. On the other hand, if a word is used only in a few articles, its significance is bigger
and so is its 𝐼𝐷𝐹 value. The final weight of the word 𝑖 in article 𝑗 is then computed as:

𝑤𝑖,𝑗 = 𝑇𝐹𝑖,𝑗 × 𝐼𝐷𝐹𝑖 (3.3)

And the content of article 𝑠 is represented as a vector of these weights:

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑠) = (𝑤1𝑠, ..., 𝑤𝑘𝑠)

Finally, the similarity of two articles 𝑐 and 𝑠, is computed from their content vectors, using
some scoring heuristic, such as the cosine similarity:

𝑠𝑖𝑚(𝑐, 𝑠) = cos(𝑤⃗𝑐, 𝑤⃗𝑠) =
𝑤⃗𝑐𝑤⃗𝑠

||𝑤⃗𝑐|| ||𝑤⃗𝑠||
(3.4)

Where 𝑤⃗𝑐 is the content vector of article 𝑐 and 𝑤⃗𝑠 is the content vector of article 𝑠. The ||𝑤⃗𝑐||
term stands for the Euclidean 𝐿2 norm of vector 𝑤⃗𝑐. The similarity is given by the cosine
of the angle between the two vectors. This equation originates in the scalar projection of
two Euclidean vectors, visualized in figure 3.1.

Figure 3.1: Scalar projection of vector 𝐴 in the direction of vector 𝐵.

Having vectors 𝑎 and 𝑏, the scalar projection of vector 𝑎 in the direction of vector 𝑏 is
given by:

𝑎𝑏 = ||⃗𝑎|| 𝑐𝑜𝑠(Θ) (3.5)

Where Θ is the angle between the two vectors. The dot product of the two vectors can be
thus characterized geometrically as:
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𝑎⃗ · 𝑏⃗ = ||⃗𝑏|| 𝑎𝑏 (3.6)
𝑎⃗ · 𝑏⃗ = ||⃗𝑏|| ||⃗𝑎|| 𝑐𝑜𝑠(Θ) (3.7)

When this equation is solved for the 𝑐𝑜𝑠(Θ) term, it becomes the cosine similarity equation.
Another example of creating item profiles could be using some document embedding

method such as Doc2Vec, introduced in 2014 by Le and Mikolov in paper [13], or a sentence
embedding method called InferSent [3]. These methods use complex NLP approaches to
create vector representations of text-based data in a joint n-dimensional space, in which
similar items are placed close to each other. The recommendation task would then consist
only of finding the most similar vectors, that is the ones being closest to a certain vector,
which could be easily done by taking the dot product of the two vectors.

One problem that these models encounter is recommending items to new users when
no user-profiles are available. Another problem can be in the recommendations themselves.
The system may keep recommending articles from the same area, or about the same topic
all over again, just because they are similar. This may cause a problem sometimes called
the information bubble. Users would not be recommended any new topics or genres
outside the space of their own bubble, rendering the system useless in terms of discovering
new interests.

3.2 Collaborative Filtering
A more recent approach to recommendations is presented by collaborative filtering mod-
els. Content-based models use specific techniques to recommend the most similar items.
However, this strategy can cause the system to isolate its users, preventing them from
discovering new topics and interests.

Collaborative models try to overcome this problem by incorporating collaborative infor-
mation into the recommendations. When these models compute preferences, they do not
look only at interactions of one user. They look at the interactions of other users as well.
For example, as mentioned in article [5], if user 1 liked articles A, B, C, D, E and user 2
liked articles A, B, D, E but not C, the collaborative model would look at both users and
see this connection. Then, user 2 would be recommended article C, even if the article was
not similar to those he already liked. These models rely only on observed behaviour, thus
there is no need to create user or item profiles as it was in content-based models.

3.2.1 Neighbourhood Models

Neighbourhood models represent one of the most common approaches to collaborative fil-
tering. They use a strategy similar to content-based (CB) models and are also classified
as user, or item-oriented. Unlike CB models though, they do not only recommend the
most similar items. They predict the rating of an item, based on its most similar items,
also known as neighbours, and then recommend those with the highest predicted ratings.
The prediction can be done by performing a weighted arithmetic mean over the ratings of
the most similar items, with the weights being the measured similarities. Then, as suggested
in paper [8], for user 𝑢 and item 𝑖 the predicted rating 𝑟𝑢𝑖 is given by:

𝑟𝑢𝑖 =

∑︀
𝑗∈𝑆𝑘

(𝑖,𝑢)
(𝑠𝑖𝑗𝑟𝑢𝑗)∑︀

𝑗∈𝑆𝑘
(𝑖,𝑢)

(𝑠𝑖𝑗)
(3.8)
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Where 𝑆𝑘
(𝑖,𝑢) is the set of 𝑘 most similar items to item 𝑖 that were rated by user 𝑢, and 𝑠𝑖𝑗 is

the computed similarity between items 𝑖 and 𝑗. Similarly, the rating could also be computed
as a weighted average of ratings, most similar users gave this item. The Neighbourhood
models are suitable mainly for explicit feedback datasets, as their ratings are still on the
same scale. Whereas with implicit feedback the system often works with frequencies that
have different scales, depending on the application.

3.2.2 Latent Factor Models

Latent factor models represent a different approach to collaborative filtering. These models
assign all users and items with n-dimensional vectors and try to discover latent features,
that explain the observed interactions, in them. These latent features represent hidden
attributes that describe the properties and characteristics of users and items.

For web articles, these attributes could be e.g. how much does an article resemble
a certain topic, where each dimension of its vector would be the weight of one topic, how
recent the article is etc. The vector of a user then represents the importance that the user
gives to these attributes. If the user really likes articles about machine learning, then the
value representing this attribute will be bigger. These latent attributes, however, are only
hypothetical. We do not know what attributes the dimensions of vectors represent. That is
why they are called latent or hidden. They are learned by the system. Examples of these
models include LDA and SVD.

Latent factor models are often implemented using the matrix factorization method.
This method gained its popularity because of its simplicity and the ability to operate with
different types of input data, of both explicit and implicit datasets. The first step of this
method is to put the input into a matrix, with one dimension representing users and the
other representing items. The corresponding fields then represent the values of interactions
between users and items, e.g. a rating a user gave to an item.

3

0 1 2 3

0

1

...

u-1

users

items

4

2.5

... ... ... i-1

Figure 3.2: Example of an interaction matrix with explicit feedback. Values in the matrix
represent the ratings users gave certain items. [5]
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As told in article [9], these methods map both users and items to a joint latent fac-
tor space of dimensionality 𝑛, such that user-item interactions are modelled as the inner
product in that space. That means the model creates two matrices. The first that con-
tains n-dimensional vector for every user and the second that contains vectors of the same
dimensionality for all items. Then the system infers these vectors so that when it takes
the inner product of a user and an item, it gets the corresponding interaction value from
the original matrix. Therefore the multiplication of the two matrices is an approximation
of the original matrix, as visualized in figure 3.3

R

u

i

≈

X

y

n

× n

Figure 3.3: 𝑅 is the interaction matrix, 𝑋 contains n-dimensional vectors of users, 𝑦 con-
tains vectors of items, 𝑢 is the number of users and 𝑖 the number of items in the dataset.
Multiplication of 𝑋 and 𝑦 is an approximation of the original matrix 𝑅. [5]

This process can be also explained as compressing the sparse matrix R into much lower
n-dimensional space. In this space, every user and every item is represented as a vector of
latent factors, with each dimension being the significance of one factor. The rating 𝑟𝑢𝑖 user
𝑢 gave item 𝑖 is then calculated as the inner product of their vectors:

𝑟𝑢𝑖 = 𝑥𝑇𝑢 𝑦𝑖 (3.9)

Where 𝑥𝑢 is the vector of user 𝑢 and 𝑦𝑖 the vector of item 𝑖. More precisely, this is an
approximation of the actual rating. To find the correct representation of these vectors, the
system defines a loss function 𝐿:

𝐿 =
∑︁
𝑢,𝑖

(𝑟𝑢𝑖 − 𝑥𝑇𝑢 𝑦𝑖)
2 (3.10)

Where 𝑟𝑢𝑖 is the actual rating. To train the model and find the vectors, the system has to
minimize this loss function. It is a common practice to add an L2 regularization term to
prevent overfitting. Then the loss to minimize is defined as:

𝐿 =
∑︁

known 𝑟𝑢𝑖

(𝑟𝑢𝑖 − 𝑥𝑇𝑢 𝑦𝑖)
2 + 𝜆(||𝑥𝑢||2 + ||𝑦𝑖||2) (3.11)

Where 𝜆 is a regularization constant, that is one of the hyperparameters of the model.
This loss is usually computed only on known observations. These equations, however, only
apply to explicit feedback, where the 𝑟𝑢𝑖 values are on a fixed scale. To be able to use matrix
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factorization techniques on implicit feedback, some changes need to be made, on these
equations. As it was already stated in section 2.2, models, that work with implicit feedback,
define new variables to describe interactions. In our case, the numerical value of interaction
between user 𝑢 and article 𝑖, 𝑟𝑢𝑖, is the time this user spent on the article’s webpage.
The numeric value is then interpreted by two variables. The first one 𝑝𝑢𝑖, symbolises
preference and is a binary representation of the 𝑟𝑢𝑖 value, as outlined in 2.1. The second 𝑐𝑢𝑖
indicates the level of confidence, the system has about the preference of user 𝑢 toward item
𝑖. The confidence can be computed as proposed in 2.2, or 2.3. Accordingly, the loss function
of matrix factorization is computed, using these new variables, as proposed in paper [8]:

𝐿 =
∑︁
𝑢,𝑖

𝑐𝑢𝑖(𝑝𝑢𝑖 − 𝑥𝑇𝑢 𝑦𝑖)
2 + 𝜆(||𝑥𝑢||2 + ||𝑦𝑖||2) (3.12)

Where 𝜆(||𝑥𝑢||2 + ||𝑦𝑖||2) is the regularization term, preventing overfitting, 𝜆 is a data-
dependent hyperparameter, learned by cross-validation. Opposed to explicit feedback, the
loss function received several changes. First, the preference computed as the inner product
of user 𝑢 and article 𝑖 now refers to 𝑝𝑢𝑖 instead of 𝑟𝑢𝑖. Second, optimization should account
for all 𝑢, 𝑖 pairs, rather than only those of known interactions.

Minimization of the loss function is performed using an optimization algorithm. As dis-
cussed in [9], explicit feedback models widely use the stochastic gradient descent. Moreover,
implicit models often use the alternating least squares (ALS) algorithm. This algorithm
alternates between optimizing user-factors 𝑥𝑢 and item-factors 𝑦𝑖. Each step it fixes one of
these factors and optimizes the other. When all user factors 𝑥𝑢 are fixed, it optimizes all
item-factors 𝑦𝑖, by solving a least-squares problem, and vice versa.

Singular Value Decomposition

Another example of matrix factorization is the singular value decomposition (SVD)
method. As a generalization of eigenvalue decomposition, it is capable of performing a fac-
torization of a real or complex non-square matrix, decomposing into three different matrices
consisting of eigenvectors and eigenvalues.

This method is of a similar manner as principal component analysis (PCA). In fact, it is
equivalent to performing PCA on the covariance matrix of the dataset. A covariance matrix
is a square matrix that contains variance and covariance values between the factors of the
dataset. PCA is used to find the components of the data that have the biggest variance, as
shown in figure 3.4.

SVD performs a factorization of a matrix into three matrices. Given an 𝑚 × 𝑛 matrix
𝑀 , the SVD of 𝑀 would be in the form of:

𝑀 = 𝑈Σ𝑉 T

Where the created matrices are:

∙ 𝑈 : Eigenvectors of 𝑀𝑀T.

∙ Σ: A diagonal square matrix, containing so-called singular values of matrix M. These
are the square roots of eigenvalues of both 𝑀𝑀T and 𝑀T𝑀 .

∙ 𝑉 : Eigenvectors of 𝑀T𝑀 .
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In our case, 𝑀 is the interaction matrix. After performing SVD, matrix 𝑈 represents
latent features of users, 𝑉 represents features of items and 𝑆 is a diagonal matrix giving
the relative significance of these factors. The user-item interactions are once again modelled
as the inner product of a user vector from matrix 𝑈 and an item vector from matrix 𝑉 :

𝑟𝑢𝑖 = 𝑈𝑢 · 𝑉𝑖

SVD is mainly used for dimensionality reduction tasks. The generated matrix Σ is actually
a diagonal matrix with eigenvalues, that express the variance or significance in correspond-
ing dimensions. Dimensions with small eigenvalues can thus be excluded as they carry a
negligible amount of information. In recommendation tasks, however, the goal is not to re-
duce dimensionality. The intention is to fill in the missing values of the sparse matrix, which
basically means predict the missing interactions. The usage of SVD for recommendation
can be found in [19].

Figure 3.4: Principal component analysis of a Gaussian distribution. The vec-
tors shown, are the eigenvectors with the biggest eigenvalues. Their eigenvalues
are placed in the first and the second position in the diagonal covariance ma-
trix. The vectors are pointing to the two directions with the biggest variances.
Taken from: https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg.

Cold-start problem

The cold-start problem is a term used to define a state in the system where very few records
of user-item interactions are present. It also occurs when a new user, that has not created
any interactions yet, comes to the system. And similarly when new items come to the
system and with no users interacting with them. The performance of collaborative models
in such an environment is very poor. It is possible, however, to boost the model with
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some other technique that is more proficient in these situations. A traditional content-
based model, for example, is able to find similarities without the need of having known any
actual interactions, using metadata in user or item profiles. This strategy of combining two
methods results in so-called Hybrid models.

3.3 Hybrid Models
Hybrid models strive to combine the strengths of both content-based (CB) and collab-
orative filtering (CF) methods. The main reason for their existence is to eliminate the
cold-start problem and at the same time preserve the good performance of collaborative
models. An example of a hybrid model is described in paper [11] by Maciej Kula. The main
objectives of hybrid models can be summed as:

∙ In cold-start and low-density scenarios, they profit from CB techniques, therefore
items can be recommended using the computed similarities between their profiles.

∙ When the interaction matrix is dense, they incorporate collaborative information and
boost the performance of the model, using CF techniques.

3.4 Deep Learning Models
Deep learning represents a special segment of non-linear probabilistic models that use arti-
ficial neural networks. These models use multiple layers of computational units to extract
high-level features from data. Due to the huge momentum in deep learning research over
the past few years, these methods found their way into various spheres of the industry and
recommender systems are not an exception.

Some of the earlier architectures introduced the usage of Restricted Boltzmann Machines
for collaborative filtering [20]. The usage of deep learning in content-based methods followed
soon after, as it is often used to learn vector representations based on the content of objects.
Whether it is images or textual data that the network is learning to represent, the task of
recommenders remains the same: find the most similar items. As this thesis works with web
articles, it is reasonable to focus mainly on textual based data. Several Natural Language
Processing (NLP) architectures strive to create text embeddings, such as Doc2vec [13] or
Infersent [3]. Finding the similarities of items can be then simply completed by taking the
dot product of their vectors.

Another architecture, described in [21], uses convolutional neural networks to predict the
future behaviour of users based on the sequence of their past interactions. It models each
user by embedding this sequence of recent items into a matrix representing an “image”.
Then, similarly to image processing, it uses convolutional filters to learn the sequential
patterns as local features of the image. Such recommendations, however, are very temporary
and case specific. The predictions are relevant only at that exact moment in one particular
sequence and hence cannot be used in later times.

A similar approach is held by so-called Session-based recommender systems, that also
operate only with a sequence of the most recent interactions created in one single session.
This session can be for example an internet session, meaning all the interactions made
during one visit of a certain domain. One such architecture [7], uses recurrent neural
networks (RNNs) with slight modifications to traditional RNNs, such as a ranking loss
function designed for this problem. More on this topic can be found in [22].
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A different but not less popular approach uses a combination of jointly trained wide
linear model and a deep neural network. This Wide&Deep learning model was introduced
in [2] and similarly in [6], [14].

Another group of methods tries to go beyond the limitations of using linear models for
the task of collaborative filtering (CF). Instead, these methods propose to use non-linear
probabilistic models, such as deep autoencoders [10] or variational autoencoders [15], to
overcome these limitations and improve the performance of CF techniques.

Doc2Vec

Doc2Vec is a method used to generate numerical representations of documents, that preserve
the semantic characteristics of their content. Such representations could be then used for
several tasks including web search, spam filtering etc. The architecture of this model is
actually very similar to the Word2Vec model. In fact, it uses nearly the same algorithms
to which it adds a new vector called ParagraphID. The ParagraphID, also called paragraph
vector, represents one particular document. They are placed in a separate matrix and are
learned during the training on predicting words from the text of their document.

The Word2Vec method distinguishes between two versions of the model, each using a
slightly different approach to create the word vectors. The first one is called the Skip-gram
model. In this version the word vectors are trained by predicting the context of a given
target word. The other version, called Continuous bag of words (CBOW), goes the other
way around. It takes the context words, either concatenates them, or finds their average,
and learns to predict the target word. The Doc2Vec model modifies these two methods of
Word2Vec, by adding the paragraph vector. A more detailed description of the Skip-gram
model can be found in section 5.

Paragraph Matrix D W W W
Paragraph

id
the cat sat

W

on

Average/Concatenate

Classifier

Figure 3.5: PV-DM algorithm of Doc2Vec. [13]

The version based on CBOW is called Distributed memory (PV-DM). In fact, it only
adds the paragraph vector to the context vectors, whose sum, or average, is used for pre-
dicting the target word. The other version, called Distributed bag of words (DBOW), is a
modification of Skip-gram. Here the paragraph vector is used to predict the context words
from a randomly sampled window in the corresponding document.
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Figure 3.6: PV-DBOW algorithm of Doc2Vec. [13]

As the publication of Doc2Vec dates back to the year 2014, it is clear that it no longer
is a state-of-the-art method for most of the NLP tasks. The reason why it was chosen for
this thesis, lies mainly in its simplicity and familiarity. It could be appropriate to try a
newer approach in future work. Such as a recently published sentence embedding method
called Infersent, described in paper [3].
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Chapter 4

Evaluation metrics

All the evaluation metrics, used in this thesis, are implemented within the Evaluator
class, specified in section 6.1. All of these metrics are based on techniques that have been
previously applied to the problem of evaluating recommender systems and hence should
provide a valuable reference to the effectiveness of those models. The particular metrics
that were used are the RANK evaluation, Recall at k and Precision at k. Each of them
treating the problem in a slightly different way. Following is a more detailed description of
each of these techniques.

4.1 RANK
This technique is based on the original RANK metric proposed in paper [8]. It was designed
with the intention of evaluating effectively recommenders working with implicit feedback.
Therefore it is considered to be one of the most suitable approaches for this task.

The original paper requires the system to provide all users with an ordered list con-
taining their recommended items, with these items being sorted in descending order by the
computed score of preference. That means, that items situated at the beginning of the
list are predicted to be the most suitable, and items at the end of the list are the least
suitable for that particular user. The paper then denotes a new variable called 𝑟𝑎𝑛𝑘𝑢𝑖.
This variable expresses the percentile ranking of the position of item 𝑖 within the ordered
list of recommended items for user 𝑢.

Where the item that lies at the first position in the list, meaning it was predicted to
be the most suitable for this user, has the 𝑟𝑎𝑛𝑘𝑢𝑖 value assigned to 0%, whereas an item
at the very end of the list, as the least suitable one, has a 𝑟𝑎𝑛𝑘𝑢𝑖 value of 100%. Then,
with the 𝑟𝑎𝑛𝑘𝑢𝑖 defined, the value expressing the quality of the created recommendations
is computed as:

𝑅𝐴𝑁𝐾 =

∑︀
𝑢,𝑖 𝑟𝑢𝑖 · 𝑟𝑎𝑛𝑘𝑢𝑖∑︀

𝑢,𝑖 𝑟𝑢𝑖
(4.1)

Where 𝑟𝑢𝑖 is the numeric value of the interaction between user u and item i. In this case, 𝑟𝑢𝑖
is the time user u spent on the webpage of article i. A good-working recommender system
should place items with big 𝑟𝑢𝑖 values close to the top in the list of recommendations. In
fact, the bigger the 𝑟𝑢𝑖 value, the higher the position should be and hence the lower the
corresponding 𝑟𝑎𝑛𝑘𝑢𝑖 value. The range of possible values of this metric is 0-100%. The lower
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the RANK the better the system is. If the RANK value is >= 50% the system is no better
than a system with uniform distribution. [8]

4.2 Precision at k
This metric represents a commonly used approach in the area of evaluating recommender
systems. However, it is known to be more suitable to systems working with explicit feed-
back, where users have the ability to express both their positive and negative preference.
To clearly understand the process of this metric, it is important to know the distinction
between recommended and relevant items. Recommended items are simply those that were
predicted by the system to be the most suitable for a certain user. In terms of the precision
at k, the measure looks at the top k recommended items. The definition of relevant items
can differ from one system to another. In a system that works with explicit ratings on a
scale of 0-5, relevant items could be those that were given a rating of at least 3.5. In terms
of an implicit dataset, relevant items for a user are usually all those he interacted with.

This metric looks at the top k created recommendations to find out how many of them
are actually relevant to the user. The relevant items that are used for evaluation are only
those occurring in interactions from the test set. Meaning those that the system was not
trained on and therefore does not know they are actually relevant. The precision metric
can be formally defined as:

precision =
𝑆𝑢

𝑘 ∩𝑅𝑢
𝑡

𝑘
(4.2)

Where 𝑆𝑢
𝑘 is a list of top 𝑘 recommended items for user 𝑢, k is the number of retrieved

recommendations and 𝑅𝑢
𝑡 are the relevant items from the test set, for user 𝑢. Unlike in

the RANK evaluation metric, here the bigger the precision, the better the system is. The
range of its values is from 0 to 1. That means, when multiplied by 100, it represents the
percentage of relevant items among the top k recommendations.

4.3 Recall at k
This metric is very similar to the above-described precision metric. As it was already
mentioned, the precision at k metric and precision metrics, in general, are not very suitable
for recommender systems that are designed to work with implicit feedback. Recall metrics,
however, try to overcome this obstacle. The recall at k metric modifies the precision, by
dividing the number of relevant items among the recommended, not by k, but by the number
of all relevant items for user u.

recall =
𝑆𝑢

𝑘 ∩𝑅𝑢
𝑡

|𝑅𝑢
𝑡|

(4.3)

Where 𝑆𝑢
𝑘 is the list of top 𝑘 recommendations, 𝑅𝑢

𝑡 are the relevant items for user 𝑢 in
the test set and |𝑅𝑢

𝑡| is the number of them. This metric actually expresses the percentage
of all relevant items in the top k recommendations.
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Chapter 5

Proposed Method

The intention of this chapter is to describe the proposed architecture, that was developed
as one of the models implemented in this thesis. The objective was to implement an
architecture based on a probabilistic model that had not been used for this task before
and to prove that it can compete with the conventional methods using traditional machine
learning algorithms. Hence for these arguments, the SkipGramRecommender is proposed
as a neural network recommendation system based on the Skip-gram model, presented in
the Word2Vec paper [17] and used in the model itself.

input projection output

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Figure 5.1: Word2Vec Skip-gram model learns to predict the context words of a given target
word. Here, 𝑤(𝑡) is the target word on position 𝑡 in the corpus text, 𝑤(𝑡+1) is the context
word one place ahead of the target word, 𝑤(𝑡−1) is the context word one place behind the
target etc. [17]

The Word2Vec is a technique consisting of a shallow, two-layer neural network, that is
used to create vector representations of words also known as word embeddings. The goal of
such representations is to allow the system to be able to see semantic relations among those
words. By assigning vectors to words it projects them into a joint multidimensional space
where words, that share common contexts in the corpus text, are positioned close to each
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other. The vectors are being learned as the system is trying to predict words that lie in the
context of a given target word. One of the methods, used for this task, is implemented by
the Skip-gram model.

In the connection to the Skip-gram model, a popular analogy of a sliding window is
often used. This analogy explains the process as if a window of size n, is sliding over
the words as they lie in the corpus text one after another, to create an input for the
network. Each time, one word from this window is chosen to be the target word. The
other words from the window are then the context words. The algorithm then learns to
correctly predict the context words, given the target word, that means to assign those words
with bigger probabilities that they lie in the close surrounding of the target word. It does
so by maximizing the dot product of surrounding word representations with target word
representations. Hence for words with similar context end up being positioned close to each
other in the resulting space.

the quick brown fox jumps over the …

the quick brown fox jumps over the ...

the quick brown fox jumps over the ...

the quick brown fox jumps over the ...

target: the

context: quick, brown

target: quick

context: the, brown, fox

target: brown

context: the, quick, fox, jumps

target: fox

context: quick, brown, jumps over

Source text Created samples

Figure 5.2: This figure shows how training input for the Skip-gram model is created. It uses
the analogy of a sliding window of size 2, meaning it takes two words to the left and two
words to the right of the target word. The system then learns to predict the context words
given a target word. [16]

The goal of the Skip-gram method is to find such representations of words, that are
useful for predicting the surrounding context words given a target word. Hence for the
objective is to maximize the average log probability:

1

𝑇

𝑇∑︁
𝑡=1

∑︁
−𝑐<=𝑗<=𝑐; 𝑗 ̸=0

𝑙𝑜𝑔 𝑝(𝑤𝑡+𝑗 |𝑤𝑡) (5.1)

Where 𝑐 is the size of the training context or the context window, given a target word 𝑤𝑡,
and 𝑇 is the number of training words. However, if the model would have to predict all
the probabilities for all the words in the corpus, it would take a great number of resources.
Therefore a more computationally-efficient modification was created. This new algorithm
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is called negative sampling. In this modification, the prediction is not done on all but
only on a few randomly chosen negative samples along with the words from the context.
A negative sample stands for a word that does not belong to the context of the given
target word. The algorithm then learns to predict the negative samples to be less probable
and place them further in the vector space. Authors of paper [18] proposed the following
expression, that replaces the 𝑙𝑜𝑔 𝑝(𝑤𝑡+𝑗 |𝑤𝑡) term in the original 5.1 objective of Skip-gram:

𝑙𝑜𝑔 𝜎(𝑣′𝑤0

𝑇
𝑣𝑤𝐼 ) +

𝑘∑︁
𝑖=1

E𝑤𝑖∼𝑃𝑛(𝑤)

[︁
𝑙𝑜𝑔 𝜎(−𝑣′𝑤𝑖

𝑇
𝑣𝑤𝐼 )

]︁
(5.2)

Where 𝑣′𝑤0 is an output vector of a context word 𝑤0, 𝑣𝑤𝐼 is a vector of a target word
𝑤𝐼 , 𝑘 is the number of negative samples and P represents a noise distribution. As already
mentioned this method is used to create word embeddings. Now it is time to look at the
analogies with the recommendation problem that this thesis is dealing with. In our case,
the system is not dealing with words, but with users and items. However, the task can
still be interpreted in a similar manner, that is: place similar items and users close to each
other. Looking at the equation 5.2, the target word can be replaced with a target item.
The words from the context window are the users that actually interacted with this item
and the negative samples are users that did not. By adjusting the original equation given
these analogies, it can be rewritten as:

𝑙𝑜𝑔 𝜎(𝑣𝑢
𝑇 𝑣𝐼) +

𝑘∑︁
𝑖=1

[︁
𝑙𝑜𝑔 𝜎(−𝑣𝑖

𝑇 𝑣𝐼)
]︁

(5.3)

Where 𝑣𝑢 is the context vector representing user 𝑢 that interacted with item 𝐼, 𝑣𝐼 is the
vector of the target item 𝐼, 𝑣𝑖 is the negative sample, meaning a user that did not interact
with item I, and 𝑘 is the number of used negative samples.

By applying this loss function to the recommendation problem the model should, as a
result, construct a vector space that incorporates the proximity of common contexts, just
like it does with words in the original Word2Vec model.

The Architecture
The overall architecture itself contains a few tweaks and enhancements. It does not start
off by representing items and users as random vectors. It uses the obtained metadata,
mentioned in 2.3, that describe the content of our items. The construction of an item
vector consists of two parts.

First of all, it uses the tags presented in section 2.3. These tags consist of keywords that
were assigned to articles to describe their content and provide a basic form of categorization.
Every item was assigned a number of tags. The system takes the most frequently used ones
and creates randomly initialized embeddings for them. Every item is then represented as
a sum of its tag embeddings, or zeros if none of its tags is known. This is the first part of
the construction.

The second part of it consists of document vectors. The document vectors represent
the actual content of items as they are created using models like the already mentioned
Doc2Vec, that is further discussed in 3.4. The document vector of an item is created from
its title and description. These two parts are concatenated together to create the final
item_vector representation. The whole process is depicted in figure 5.3.
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Figure 5.3: This figure shows the construction of item vectors. The blue dots represent tag
embeddings, the orange dots represent a document vector. To construct an item vector,
that can be sent into the network, the system takes all embeddings of its tags and sums
them into one. Then the system takes the precomputed document vector of this item and
concatenates it to the sum. The concatenated vector can then be fed into the network.

After the construction of item vectors, they are fed into the shallow, two-layer neural
network to create the item embeddings. Looking at the equation 5.3 one can see that except
for the item vectors, it is working with user vectors as well. They are constructed directly
from items. Every user vector is created as a sum of item vectors that this user actually
interacted with.

Following that, the user vector is also fed into the network and the user embedding is
created. When all the required parts are ready, the loss function can be computed. As the
model evaluates the loss it backpropagates the computed gradients to learn the best weights
for its two layers and also the tag embeddings. The document vectors, representing the
second part of the concatenated item vector, are fixed and hence the backpropagation does
not change their values.

When the model is trained, the prediction is simply done by generating the correspond-
ing item and user embeddings and performing the dot product of them. To generate the
embeddings, the system simply creates both the required item and user vectors and feeds
them into the network. To recommend a user with top n items, that are most suitable for
him, the system takes the dot product of his embedding with the whole matrix of precom-
puted item embeddings and returns a list of n sorted items, in descending order according
to the results of the dot product.
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Figure 5.4: This figure shows the construction of a user vector. A user vector is simply the
sum of those item vectors, that this user interacted with. This sum can then be directly
fed into the network.

Another considerable thought about our architecture is directed to using negative sam-
ples. This technique can be efficient when dealing with words, but it can be tricky with
recommendations. The problem lies in the proposed negativity. In recommenders, it is
not wise to assume that not interacting with an item is a sign of disliking it. In spite of
these inconveniences, the negative sampling remained in this thesis so it could be found
out, whether it is capable of performing in the recommendation task.
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Chapter 6

Implementation

This chapter aspires to give a comprehensive description of the work completed in the course
of this thesis, including the implementation of four recommendation models, evaluation
and optimization tools etc. All the models were constructed with respect to the Object-
oriented programming paradigm and implemented in Python version 3.6. Several python
data science libraries were also used throughout this work, such as numpy, scipy, etc. 1

Section 6.1 offers a general overview of the most important classes and describes their
usage. Section 6.3 provides a more detailed description of the SVD recommender model.
Section 6.4 focuses on a traditional collaborative filtering based model created using the
ALS algorithm. Section 6.5 takes a look at a purely content-based approach implemented
with the Doc2Vec method and finally, in section 6.6 is the description of the SkipGram
recommender. Besides the implementation details, these sections also mention the problems
that appeared and had to be solved.

6.1 Class structure
All the models within the scope of this thesis were implemented using the Object-oriented
programming paradigm. To ensure the system a common way of manipulation with all
classes, an abstract recommender class, called RecommenderAbstract was created. This
abstract class defines an application programming interface (API) and all the other recom-
menders have to inherit from it. That means they have to implement all the methods and
properties declared within its API. This allows the system to handle all the recommenders
in the same way, without having to know what particular recommender it is dealing with.

This section offers a brief overview of the created classes and the models they imple-
ment. First, it discusses the RecommenderAbstract class, that creates an API for other
recommendation models. After that, it takes a look at the Evaluator class, used for eval-
uating the models and finally the Optimizer class, that finds the optimal hyperparameters
of the implemented recommenders. Figure 6.1 shows a diagram of the created classes and
their relationships.

1a list of all the used libraries can be found in requirements.txt file
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+ recommend
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Doc2Vec
recommender

SkipGram
recommender

Figure 6.1: Class diagram showing the hierarchy of the created models.

RecommenderAbstract

An abstract class that all the other recommender models have to inherit from. It defines
the following properties:

∙ url_2_id: A dictionary mapping URLs of pages to model specific unique identifiers,
used for indexing within the model.

∙ id_2_url: Dictionary mapping model specific IDs back to URLs.

∙ uid_2_id: Dictionary mapping user identifiers used in the dataset, to model specific
unique IDs.

∙ id_2_uid: Dictionary mapping model specific IDs back to user identifiers used in the
dataset.

Alongside with the above properties, the class also defines a couple of methods, that the
inherited classes have to implement:

∙ train(*parameters): The method used to invoke training of the model. The number
of parameters is variable and model specific. These are usually the hyperparameters,
such as the number of epochs, learning rate etc.

∙ predict(uid, url): This method can be called to predict the score for a user,
specified by the uid parameter, and an item, specified by its url. The returned score
is an indicator of how suitable is this item for the specified user.

∙ recommend(uid, n): Returns an ordered list of top n recommendations for a user,
specified by his user ID (uid).
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Evaluator

The Evaluator class was created with the intention of having a simple and fast way of
evaluating the recommender models. Hence for, it was constructed to work with the Ab-
stractRecommender class. To create the Evaluator, an already trained recommender model
has to be passed to the initialization method. From then the evaluator works with this ex-
act model. Consequently, the model can be evaluated by simply calling one of the methods
implemented in the Evaluator class. The class implements the following methods:

∙ rank_evaluation(test_set): Evaluates the model on the given test_set using the
RANK metric. The test_set parameter has to be a pandas DataFrame object and
can be created using a function called train_test_df.

∙ recall_at_k(test_set, k): Evaluates the model on the given test set using the
recall at k metric. This metric looks at how many of the items from the test set occur
in the top k created recommendations.

∙ precision_at_evaluation(test_set, k): Evaluates the model using the precision
at k metric. This metric looks at how many of the items from the test set occur in
the top k created recommendations.

∙ mse(test_set): Evaluates the model by computing the mean square error between
the computed scores and the actual values of interactions. This metric only makes
sense for the SVD and ALS models, as they create an interaction matrix.

More on the topic of evaluation, together with the description of the above-mentioned
evaluation metrics, can be found in section 7.

Optimizer

The Optimizer class is used for tuning the models by finding the optimal hyperparameters.
It does so, for it repeatedly trains the model and evaluates it using the Evaluator class.
The optimal parameters are those that achieve the best results during evaluation.

The number of parameters, together with their exact purpose, is model specific. There-
fore the Optimizer class is designed to work with the abstract recommender class, which
allows it to create a uniform way of usage, no matter the specific model it is optimizing.
Once again the model to be optimized is passed as a parameter to the initialization method,
together with a list of parameters and a search space.

The list of parameters has to contain the exact names of parameters defined in the
train method of the model in concern. The last parameter defines a search space for each
one of the parameters in the list. A search space can be defined simply as a range of values,
or as a probabilistic distribution from which the values are going to be sampled.

After the optimizer has been initialized, everything is ready for the optimization itself to
start. The most straightforward method for optimization is a simple grid search. Here the
model is simply evaluated with all the possible combinations of the parameter values. That,
however, makes it very time consuming and therefore rather impractical. An improvement
to this problem comes with random search approaches, that sample the values randomly
from the given parameter space. These approaches are faster than grid search however do
not offer the same guarantee of finding the optimum. Other popular methods use techniques
like decision trees and various Bayesian approaches. The optimizer class offers the following
methods:
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∙ optimize_forest: This method uses the forest_minimize function - from the skopt
library - to optimize the model. This function implements a decision tree regression
search, that sequentially evaluates the model at the next best point.

∙ optimize_hyperopt: This method uses the Hyperopt library, that applies Bayesian
approaches for finding the optimal parameters. This particular method works with
the Tree of Parzen Estimators (TPE) algorithm, that attempts to approximate the
performance of hyperparameters, based on already completed measurements. This
algorithm seemed to serve better for our models as it reached the optimum in fewer
steps.

Both of these methods require the following parameters:

∙ train: The dataset on which the model will be trained.

∙ test: The dataset used for evaluation.

∙ metric: Defines the evaluation technique that will be used in the Evaluator class. The
default value is set to ‘rank’, meaning the RANK evaluation technique. Other options
are ’recall’ and ’precision’.

6.2 User Mappings
The mechanism strives to combine both user_id and visitor_id to create a unique user
identifier. Here, when processing interactions, the system works as follows:

∙ In an interaction with no user_id, the user is represented only with the visitor_id.

∙ In an interaction with both visitor_id and user_id, the user is represented with
the user_id and the system remembers that the visitor_id was used together with
it.

Applying these two approaches brings the system numerous advantages:

1. It is able to connect interactions, where only the visitor_id is known, to the actual
user, once he is logged in and creates new interactions with his user_id.

2. It can represent users both by their visitor_id or their user_id individually but
also link them together. That means when a user created some interactions with his
user_id and than logged out but still had the same visitor_id, the system is able
to identify him.

3. It handles cases where one user_id is used with more visitor_ids. These cases
occur when people use multiple browsers or multiple computers. The class stores a
list with all visitor_ids that were used together with the user_id.

4. It handles cases where one visitor_id is used with more than one user_id. In these
cases, multiple users logged in on the same computer. Here interactions, where only
the visitor_id is known, cannot be used on their own because the system is not able
to distinguish what user should it assign them to.
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By applying this class to identify the users the dataset remained much bigger than when
only the user_id was used. From the original 265123 interactions, only 655 were lost,
because the system was not able to identify the users. That means about 99.75% of the
dataset has remained. Compared to the 29% of user_ids it is a big improvement. The re-
sults of comparing those two approaches are shown in table 6.1.

original dataset user_id UserMappings
num of interactions 265 123 76 369 (29%) 264 468 (99.75%)
num of users - 36 412 175 794
num of pages 2187 1642 1996
average pages per user - 1.9 1.4
average users per page - 41 123
sparsity - 99.87% 99.92%
interactions per day 1473 424 1469

Table 6.1: The first column shows the original dataset, the second shows the dataset
when only user_id is used to identify users and the last shows the results of applying
the UserMappings method. When using only the user_ids only 29% of the dataset re-
mained, whereas when using user mappings this number reaches to 99.75%. The number
of users, average pages per user and average users per page in the original dataset cannot
be computed.

The results of the above comparison show us some advantages of both approaches,
to name a few:

∙ Applying user mappings preserves significantly more from the original dataset.

∙ With using only user_ids the sparsity of the resulting dataset is lower.

∙ User_ids result in bigger average number of pages per user.

The conclusion of the comparison is that when only user_ids are used the resulting dataset
is denser and hence the dataset should be more valuable for the recommendation problem.
On the other hand, applying user mappings preserves much more data. In fact, the cause
of user mappings having a lower average of pages per user is that the dataset contains more
users that have only one interaction. Such users are not very useful to the recommender
system.

In fact, about 79% of users, created with UserMappings, visited only one webpage.
These users produced nearly 55% of all interactions in the dataset. In the user_id dataset
the numbers are lower with only 66% of users having just 1 unique interaction, and for-
mulating 33% of the dataset. The number of unique interactions per user is critical to the
performance of the recommender. It is natural that as the number grows the number of
users decreases exponentially, as shown in figure 6.2.
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Figure 6.2: This graph shows the number of users according to the number of unique
webpages they visited. It shows, for example, that nearly 7000 users visited exactly 3
pages, nearly 3000 users visited exactly 4 unique pages etc.
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(b) UserMappings

Figure 6.3: Comparison of user_id and UserMappings datasets. The graphs show the
number of users according to the number of unique webpages that they visited.

Both UserMappings and user_id approaches generate a nearly identical shape of the
decrease. It is worth noting though, that UserMappings generate much bigger numbers. As
already mentioned it contains more users who have only one unique interaction. However,
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it also contains more users that have a significant number of interactions, users that have
big informational value to the system.

With UserMappings, the dataset contains 1535 more users, who have at least 5 unique
interactions, than the user_ids dataset and 198 more users with 10 and more interactions.
These users have an important role for the recommender and getting rid of them would be
a significant loss. A side by side comparison of dataset sizes changing with the minimum
number of interactions per user is visualized in figure 6.4.
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Figure 6.4: A side by side comparison of dataset sizes according to the minimum number
of interactions per user. The first two columns, for example, show the dataset sizes with
having only users that interacted at least with 2 (x-axis) different pages etc.

The system may even work only with users with 5 or more interactions and in those
cases, the size of the dataset would be crucial. Moreover, the number of unique users per
page is also much bigger with UserMappings, as shown in figure 6.5.

All these factors suggested that the mechanism of UserMappings should be more bene-
ficial for the system and led to the decision of using them instead of the original user_ids.
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Figure 6.5: A comparison of page visits. The x-axis shows the number of unique visits on
a page, the y-axis shows the number of pages. With UserMappings, for example, around
350 pages were visited only by 2-5 unique users etc.

6.3 SVD recommender
The first model to discuss is the SVDModel class. This approach is based on singular value
decomposition, a technique already described in 3.2.2. To remind of its application, it first
creates a matrix of user-item interactions. To do so, it uses the make_sparse method.

Creating the interaction matrix

To construct a sparse matrix of user-item interactions a function called make_sparse was
created. This function creates an object of class IncrementalSparseMatrix (ISM), that
is able to hold the interactions in essential data types as lists and dictionaries. The
make_sparse function then iterates over the rows of the dataset, each time adding one
interaction to the ISM object, using the add(row, col, data) method. The row and col
parameters determine the row and column in the matrix, that actually represent a partic-
ular user and item. The data parameter is the numeric value of the interaction, being the
time spent on the webpage of an article.

After all the interactions have been added, the ISM object can create the sparse matrix from
its interactions, by calling a method called to_coo. This method returns a sparse_coo ob-
ject, defined in scipy.sparse module. The final values in the sparse_coo matrix, however,
are not going to be the time passed to the add method. They are computed from the time
values using one of the implemented metrics, transforming the time into confidence levels,
as described in section 2.2. The to_coo method of the ISM class enables to choose the used
metric, by specifying it in the metric parameter. This parameter can receive the following
values:

∙ log: Applies equation 2.3 to compute the confidence from the numeric value of each
interaction, being the time.

∙ lin: Computes the confidence using equation 2.2.
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∙ bin: Here the numeric value of an interaction is simply binarized. That means the
resulting sparse_coo matrix will only consist of zeros and ones, indicating whether
the particular interaction occurred or not.

After the creation of the sparse_coo matrix, it is passed to the svd function from the
numpy.linalg module. This function performs the decomposition and returns the three
created matrices 𝑈 , 𝑆, 𝑉 . Where 𝑈 represents the latent features of users, 𝑉 represents
features of items and 𝑆 is a diagonal matrix giving the relative significance of these factors.

At that moment the model is ready to start creating recommendations. The prediction
of preference is simply done by taking the dot product of corresponding vectors from 𝑈 and
𝑉 . Put into practice, the interaction of user 𝑢 and item 𝑖 would be computed as:

𝑟𝑢𝑖 = 𝑈𝑢𝑉𝑖 (6.1)

To recommend user 𝑢 the top 𝑛 items, the model simply multiplies the 𝑈𝑢 vector with the
whole 𝑉 matrix, sorts the values in descending order and returns the first 𝑛 items.

6.4 ALS recommender
The next model to describe is the ImplicitALS class. This model is an example of a
traditional collaborative filtering technique on an implicit dataset, using matrix factoriza-
tion. Matrix factorization techniques were already presented in section 3.2. Similarly to
the model using SVD, first of all, the interaction matrix has to be constructed. Several
experiments with varying confidence values were performed and are summed up in detail
in section 7.

Then the interaction matrix is passed to AlternatingLeastSquare function from the
implicit.als library created by Ben Frederickson [4]. The models in this library are
written in Cython and even can fit the data on a GPU. That makes them very attractive
to use as they are really fast and efficient. This method performs the factorization of
the interaction matrix, decomposing it into two separate matrices, which when multiplied
together result in an approximation of the original matrix. For finding the right values
in these matrices and hence for actually training the model, the Alternating least squares
(ALS) algorithm is used. The implicit.als module implements the exact ALS model
defined in paper [8].

After the training, the retrieved matrices are stored in two attributes of the ImplicitALS
class. The user_factors attribute stores the matrix representing vectors of users and the
item_factors attribute holds the matrix of item vectors. The prediction, as well as the
recommendation, is done the exact same way as in the SVD model. That is, by simply
taking the dot product of the corresponding vectors. This technique represents one of the
most common techniques used for the task of recommendations. It also showed to perform
very well in our case.

6.5 Doc2Vec recommender
The next model to discuss is implemented in Doc2VecModel class. This model is an example
of a content-based recommender, where the recommendations are based only on the content
of its items. In this particular case, the items are web articles and their content is therefore
textual. It is stored in a JSON file together with the rest of the obtained additional infor-
mation. To create representations that are capable of modelling similarities, the Doc2Vec
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model was used. In particular its implementation in the gensim library. This approach not
only enables the model to learn document vectors during the training, but it also makes it
possible to infer vectors of new unseen documents after the model has been already trained.
It does so by creating a paragraph vector for the new document and training this paragraph
vector until convergence while the already trained word vectors are fixed.

To be able to pass the obtained textual content data, that contain the title and the
first paragraph of an article, to the Doc2Vec model, it has to be first pre-processed. The
gensim library limits the doc2vec model to work with objects of TaggedDocument class.
Objects of this class contain a list that holds the text of one document split by words,
while preserving their order, and a number identifying the corresponding document. In the
concern of providing an easy and fast way of pre-processing the data, the Doc2VecInput
class was created. First, the JSON file, that contains all the obtained metadata, has to
be loaded into a dictionary. Then this dictionary is simply passed to the Doc2VecInput
class, that creates TaggedDocument objects for all items and stores them into a list being
the appropriate input to the actual doc2vec model.

The created input is then passed to an object of the Doc2VecModel class, together with
the data set containing the user-item interactions. This class implements a wrapper of the
original Doc2Vec model from the gensim library. Once the object is constructed, it can
either train the model only on the given input documents or use an already pre-trained
model, containing 300-dimensional vectors, trained using the DBOW model on English
Wikipedia pages, to only infer the vectors for the input documents. To actually train the
model, the train method is used. To retrieve the pre-trained model and only infer the
given documents into vectors, the load_pretrained method should be used.

After that, the created vectors are stored in the doc_vectors property. At that point,
it is possible to use these vectors to compute similarities between items. To perform the
actual recommendation though, the model first has to create vectors for its users.

Creating user vectors

All users are described by the items they interacted with. The representation of users
is hence created directly using their item vectors, that have already been pre-trained.
There are several ways of transforming the item vectors to create a representation for
a user. The Doc2VecModel class implements the following two methods, each taking a
slightly different path.

∙ create_user_vectors_log(alpha, epsilon): In this method, users are represented
as a weighted arithmetic mean of their item vectors. The weights are actually the
confidence values computed applying the logarithmic confidence metric 2.3. That
also explains the necessity of the alpha and epsilon parameters, as they are needed
for computing the confidence in this metric.

∙ create_user_vectors_bin(): As opposed to the first-mentioned method, here users
are represented only as a sum of their item vectors. Therefore this method does not
require any additional parameters.

In the beginning, these methods were constructed using two for cycles, iterating over all
users and all their items. This approach pretty obviously turned out to be very slow. Hence
for it was later on optimized to use matrix factorization in numpy. When the sparse matrix,
containing confidence values, is multiplied by the matrix of document vectors, the resulting
matrix will contain the desired user vectors.
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Figure 6.6: Shows the creation of user vectors, by multiplying the sparse interaction matrix
with the matrix containing document vectors. Here, 𝑢 is the number of users, 𝑖 is the
number of items and 𝑑 is the dimensionality of document vectors.

After computing the user vectors, the model is ready to start recommending. The pro-
cess of creating both predictions and recommendations once again consists only of taking
the dot product of corresponding user and item vectors.

6.6 Skip-gram recommender
The last model that will be explained is the Skip-gram recommender, that implements the
already discussed approach, based on the skip-gram negative sampling model, described
in section 5. It is implemented in SkipGramModel and SkipGramRecommender classes and
uses an open source deep learning platform called pytorch. This library defines a way
of constructing a neural network, by inheriting from its nn.module class. The neural
network architecture itself is implemented within the SkipGramModel class, that inherits
from the nn.module. It first creates and initializes all the needed parameters, it stores the
document vectors, that are passed to the model already pre-trained and are fixed during
the training, initializes embeddings for tags that, on the other hand, are going to be learned
during the training and creates two linear layers with one rectified linear unit (ReLU) and
nn.LogSigmoid class for applying element-wise logarithm of the sigmoid function.

All classes that inherit from the nn.module have to override the forward function, that
represents a single step of the computation. This function is repeatedly called during the
training process, each time returning the computed loss. The SkipGramModel class defines
the forward function as:

∙ forward(item_batch, context_batch, neg_batch)

Where item_batch contains a list of batch_size item identifiers. The context_batch is a
list of batch_size users that each interacted with the corresponding item from item_batch.
However, this list does not contain user IDs. Users are created from items they have
interacted with. Therefore, instead of an ID, users are represented as lists of item IDs and
the context_batch is a list of lists containing item IDs. Similarly the neg_batch contains
a list of negative samples for each item in the item_batch. A negative sample of an item is
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actually a user that has not interacted with it. The user is once again represented as a list
of its item IDs.

The forward function first constructs item and user vectors from the passed batches,
using their tag embeddings and document vectors. Then it sends these vectors into the
network to create item and user embeddings. Finally, these embeddings are used to compute
the loss value, defined by function 5.1 and 5.2. The transformation of an item vector into
an embedding is visualized in figure 6.7.

Linear Relu Linear
Item vector embedding

Figure 6.7: Shows the creation of item embeddings. The item vector, consisting of its
tag embeddings concatenated with its document vector, is sent to the neural network that
consists of two linear layers with one rectified linear unit (ReLU).

The SkipGramRecommender class is used to create an actual recommender system from
the neural network architecture implemented in the SkipGramModel. That means it inherits
from the RecommenderAbstract class and implements all the required methods. The most
important of which is the train method.

In this method, the actual training of the network is performed. First, it needs to
prepare all the needed components for the execution of the training, like the SkipGramModel,
a data pipeline for generating the batches and an optimizer object from the torch.optim
module. The Adam optimizer was used in this case. After all the preparation is completed
the training can start. The train method is provided with a parameter that defines the
number of epochs. In each epoch, a new batch generator is created. Then this generator is
iterated, each time generating a new batch, that is passed to the forward method of the
network. This method processes the given batch and returns the computed loss. After that
the model calculates the gradients and backpropagates them to adjust all its parameters,
being weights of its linear layers and the tag embeddings.

After iterating over all epochs the training process is finished and the recommender is
ready to perform.
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Chapter 7

Evaluation

This section provides insights into the process of evaluating the implemented recommenders.
Evaluation of recommender systems - and in particular recommender systems working with
implicit feedback - is by itself, a very challenging problem. It is important to realize, that
these datasets do not provide a reliable source of feedback regarding which items users do
not like, as not interacting with an item should not be interpreted as not liking it. Also, it
is important to note that our system does not have the ability to track reactions of users to
their created recommendations, as it is commonly implemented in production. Therefore
the system can only be evaluated offline, by splitting the dataset into two separate parts,
one used to train the model and the other to evaluate its performance by looking at the
computed ranking of the actual interactions that the model was not trained on.

Refer to chapter 4 that explained the theory behind the three evaluation metrics used in
this thesis. First, section 7.1 starts by reviewing the performed experiments, briefly touches
the topic of the ablation study and describes the evaluation set-up together with the process
of splitting the original dataset into two separate sets for training and evaluation. Finally,
section 7.2 reveals the results of all three evaluation metrics applied to the implemented
recommenders and closes with a discussion on their effectiveness and usefulness.

7.1 Performed experiments
This section offers a brief summary of the experiments that were performed with the rec-
ommendation models. All models were trained and evaluated on two separate datasets,
that were created using the train_test_df function. The minimal number of interactions
for a user, to be included in the test set, was set to 6. By that, the system evaluates the
models only on users that interacted with at least 3 different pages.

Creating the test set

Two separate datasets were used for training and evaluating the recommenders. A function
called train_test_df was created to provide a convenient way of splitting the original
dataset into a training set and a test set. It is worth considering a couple of things before
creating a test set for a recommender system.

First, the system can only deal with existing users and items it is aware of and hence
contains a vector representation for them. That means that the set of users and the set
of items, in the training and test datasets, have to equal. Second, it is only reasonable
to evaluate on users that have at least a certain number of interactions, as users with
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only one interaction do not provide enough data to receive any valuable recommendations.
The train_test_df is defined as follows:

∙ train_test_df(df, min_interactions): this function splits the original dataset,
being the df parameter, and returns the created training and test datasets. The
min_interactions parameter defines the minimum required number of unique inter-
actions for a user to be included in the test set. Two interactions of a user are unique
if they were created with two different items. If a user has more interactions than
that, they are split in half. The first half goes to the training dataset and the second
half to the test dataset.

This function split the original dataset into a training set containing 250 661 interactions
and a test set with 13 807 interactions. The test set was used to find optimal hyperpa-
rameters of the models during optimization. After finding the optimal hyperparameters all
models were evaluated again, this time using a validation set. As described in section 2.3,
the original dataset used in this thesis consists of records collected over six months (from
September 2018 to February 2019). The validation set contains interactions created in the
two following months (March and April 2019). It includes a total of 17 658 interactions,
7363 unique user Ids and 1143 page URLs.

The first experiment was based on trying different confidence values in the interaction
matrix. As already mentioned, the confidence can be computed using metrics 2.2 or 2.3.
The first metric only scales the numeric value of interaction, by its hyperparameter alpha.
Therefore it is going to be referred to as the lin confidence. The second metric uses loga-
rithm and adds another hyperparameter, called epsilon. This one is going to be referred to
as the log confidence. Besides the lin and log confidence, the models were also evaluated
with binary confidence, where the interaction matrix only consists of zeros and ones, de-
pending on whether the interaction between a particular user and item actually occurred.
The comparison of the performed evaluations with different confidence values can be found
in table 7.1.

Recommender RANK Recall@k Precision@k
SVD 50.73 0.0106 0.0048
ALS 13.84 0.1835 0.0771B

in

Doc2Vec 27.72 0.0967 0.0432
SVD 48.12 0.0106 0.0048
ALS 12.12 0.2728 0.1187Li

n

Doc2Vec 29.85 0.0870 0.0339
SVD 49.46 0.0123 0.0036
ALS 10.34 0.2813 0.1218Lo

g

Doc2Vec 26.63 0.1179 0.0431

Table 7.1: Comparison of evaluation results with different metrics for computing confidence.
The models were evaluated with binary, linear and logarithmic confidences. The values
shown are the results of the evaluation on the test set using the found optimal parameters.

It is clear that the logarithmic confidence outperformed the other two in all cases, except
for the SVD model, where the linear confidence worked slightly better.
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Another experiment is dealing with Doc2Vec recommender. This recommender offers
two methods of creating the document vectors. The first one simply trains the doc2vec
gensim model locally, using only the given items. The second method loads an already
pre-trained model, obtained from GitHub [12], and then infers the vectors for the given
documents. This model contains 300-dimensional vectors that were trained on English
Wikipedia pages. Bellow is a table comparing the results of these two approaches.

Model RANK Recall@k Precision@k
Doc2Vec WIKI 35.69 0.0248 0.0121
Doc2Vec local 26.63 0.1179 0.0431

Table 7.2: Doc2Vec model evaluations, the first model contains 300-dimensional document
vectors, trained on pages from English Wikipedia. The second model was locally trained
only on the obtained metadata. All models used k=10. The values shown are the results
of the evaluation of the test set using the found optimal parameters. [12]

The locally trained model outperformed the pre-trained significantly. This model, how-
ever, created only 13-dimensional vectors for its documents. That, compared to the 300-
dimensional vectors in the pre-trained model is a very low dimensionality. The cause of the
low dimensionality could be the small amount of data the model was trained on. Concretely
2262 pages, each containing around 5 sentences in its description. That is very little data
to train an NLP model for general use. It could be, though, enough for the recommenda-
tion task on this small scale. The obtained results are in favour of this approach, but it
is unclear whether it would really be able to work effectively in production. The inference
of new articles, for example, could be a problem. A possible solution would be to use a
pre-trained high-dimensional model, like the one that was used here, and train its word
vectors additionally on our articles.

As discussed in section 5, the proposed SkipGram recommender used the document
vectors created by the Doc2Vec recommender. In particular, it used the 300-dimensional
inferred vectors from the pre-trained model. As part of the ablation study, these two
methods are compared in table 7.3.

Recommender RANK Recall@k Precision@k
Doc2Vec (WIKI) 35.69 0.0248 0.0121
SkipGram 38.78 0.0069 0.0031

Table 7.3: Comparison of the SkipGram recommender with the Doc2Vec recommender using
pre-trained word vectors. All models used k=10. The values shown are the results of the
evaluation of the test set using the found optimal parameters.

The SkipGram recommender is actually built upon the vectors retrieved from the
Doc2Vec recommender. As further discussed in section 7.2, the SkipGram recommender
brought no improvement over using only the document vectors.
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7.2 Evaluation results
This section reveals the results obtained by applying the above-described evaluation metrics
on the implemented recommendation models. It also tries to understand those results and
explain the occasional shortcomings of the models. And finally compares the obtained
results with other state-of-the-art recommenders.

First of all, it is important to mention all the problems that were encountered during
the evaluation. In particular, the biggest problem came with the proposed SkipGramRec-
ommender. It learned to minimize the loss function by projecting all user and item vectors
into the same vector. That resulted in creating the same embeddings for all items and users
and also the same recommendations for all users. This is obviously a serious problem that
disables the system from performing its function.

Several solutions were tried to fix this problem. Trying to use different hyperparameters
was one of them. A possible solution could be in increasing the number of negative samples
per one positive, as the model should try to project those vectors further and not into
one identical vector. This idea, however, turned out not to help the model enough. Other
solution that was tried, was bringing a sense of randomness into the process of creating
training batches for the model. The idea behind this was to make the batches be different
after every epoch. Shuffling their order did not help, nor did random sampling of the
batches that would be actually used.

A final solution, that helped to overcome the overfitting, lied in increasing the number
of dimensions. Instead of locally trained twenty-dimensional document vectors, the pre-
trained 300-dimensional were used. The number of hidden and output dimensions was
increased as well, together with the dimensionality of tag embeddings. After that, the model
was no longer overfitting that easily. However, the obtained recommendations were not very
useful. In fact, the evaluation metrics found no improvement over the Doc2VecModel, that
uses only document vectors.

There are several possible causes for this problem. One of them could be, that the
dataset is simply not suitable for this kind of architecture. Maybe the 265 123 interactions
are not enough to train the network. Maybe the 2187 items are not enough, maybe the
dataset is just not diverse enough, meaning most users interacted with nearly the same set
of items and therefore were modelled similarly. All these mentioned reasons, however, are
only speculations. The actual cause and also the solution remained unsolved.

All models were evaluated using the RANK, Recall and Precision metrics, to compare
their performance. The comparison of the evaluation results obtained after optimizing the
models using the test set and the results of evaluating the models with the found optimal
parameters, this time using the validation set, can be seen in tables 7.4 and 7.5.

Recommender RANK Recall@k Precision@k
SVD 48.12 0.0123 0.0036
ALS 10.36 0.2813 0.1218
Doc2Vec (local) 26.63 0.1179 0.0431
Doc2Vec (WIKI) 35.69 0.0248 0.0121
SkipGram 37.55 0.0112 0.0052

Table 7.4: Summary of evaluation results. Recall and Precision metrics were evaluated
using k=10. The values shown are the results of the evaluation of the test set using the
found optimal parameters.
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Recommender RANK Recall@k Precision@k
SVD 49.67 0.0028 0.0028
ALS 12.97 0.1738 0.0417
Doc2Vec (local) 28.61 0.1346 0.0230
Doc2Vec (WIKI) 31.98 0.1450 0.0203
SkipGram 38.15 0.0103 0.0037

Table 7.5: Summary of evaluation results. Recall and Precision metrics were evaluated
using k=10. The values shown are the results of the evaluation of the validation set using
the found optimal parameters.

As the table suggests, the best performing model turned out to be the traditional
collaborative filtering ALS algorithm. This model outperformed all the other models in all
three evaluation metrics, for it returned the lowest RANK value and the highest precision
and recall. The RANK value of 10.36% and 12.97% is a decent result. In paper [8] an
implicit ALS model was also evaluated using the RANK metric and its value reached to
8.35%. Keeping in mind that their model worked with a denser dataset, a value of around
10% is comparable. The performance of the SVD model, on the other hand, was rather
disappointing. Even though it is the most simple model of all, it was expected to perform
better. The RANK value of around 50% suggests this model creates recommendations that
are no better than if they were created randomly. The cause of its bad results could be
the big sparsity of the dataset reaching 99.9 %. Another possibility is that the evaluation
metric is not effectively mirroring the capabilities of the algorithm. SVD is more suitable
to be used with explicit feedback ratings. In that case, it could be evaluated using different
metrics. For example, the mean-square error (MSE) that computes the average squared
difference between the actual ratings, given by users, and the predicted ones. In our case,
however, the system is not working with explicit ratings.

Both Doc2Vec models performed significantly worse than ALS. However, the RANK
value of 26.63% and 28.61% on the validation set is not a disappointing result, considering
that this model works only with similarities of items computed from their content. The pre-
trained model obtained better results on the validation set than on the test set and got
very close to the results of the locally trained model. It seemed that its 300-dimensional
vectors indeed created a more informative representation than the locally trained vectors.

The Skip-gram recommender was not very successful. Even though it outperformed the
SVD model, its results are much worse than those of the Doc2Vec model that uses only the
document vectors. The Skip-gram recommender is actually based on Doc2Vec, therefore it
was expected to boost its performance rather than perform even worse.
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Conclusion

One of the main objectives of this thesis was to discuss the most popular approaches, that
are commonly used to create recommender systems. The discussion started with Content-
based models. The TF-IDF method was explained as one of the techniques associated with
these models. Following was a detailed explanation of collaborative filtering methods, with
the focus in models working with implicit feedback datasets.

Apart from the traditional machine learning methods, several deep learning approaches
were mentioned as well. After the theoretical part, the aim shifted to implementing an
actual recommendation model. The proposed architecture was based on the Skip-gram
negative sampling model, used in the Word2Vec model to create embeddings for words.
The proposed model was supposed to create vector representations for users and items,
reflecting their context similarities just like it did in the Word2Vec model. Despite all the
effort, the proposed architecture did not perform as expected and was not found suitable
in this particular case. Nevertheless, it still remains open to further development.

In total, four different recommenders were implemented. These models use traditional
machine learning algorithms as well as deep learning approaches. Since the implementation
was designed to fulfil the OOP paradigm, the evaluation and optimization tasks were made
straightforward as all models could be handled in the same way, using a common interface.
All models were evaluated using three different metrics. This enabled the models to compare
with each other. Some of the implemented models were found to be comparable with state-
of-the-art solutions. The other, less successful models, proposed several ideas to improve
their performance in future work.

This thesis remains open to further development. One of the objectives of future work
could be improving the Skip-gram recommender. Several solutions were proposed. One
of them suggests using different, a more diverse, dataset. Also, the Doc2Vec model, used
to create the document vectors, could be replaced by a more recent method, such as the
proposed InferSent model [3]. It is proposed to use a pre-trained model that could, in
addition, retrain the word vectors locally on our items.

Another feature left for future work is online evaluation. In this popular approach, the
system creates recommendations for its users and then tracks their reactions. It examines
their newly created interactions in search of the recommended items. If they are among the
interactions, it also looks at the numeric values such as how much time the user spent on
the webpage. This approach creates a very effective mean of evaluating the performance
and quality of recommendations. It can be also used to compare several models running
simultaneously, each creating recommendations for a group of users.

All things considered, recommender systems create a powerful tool that can affect the
behaviour of users across several industries and it is expected that their presence is going
to be stronger and their role more significant.
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Appendix A

Created Visualizations

This section of the included appendix contains several figures visualizing the user and item
vectors produced by the implemented recommenders. All visualizations were made using
the TensorFlow Embedding Projector 1, an online tool for visualizing high-dimensional data.
All files needed to perform these visualizations are prepared in the data/visualization
folder and therefore can be used once again with the embedding projector to inspect the
created vectors and further experiment with them.

Figure A.1: Visualization of the tag embeddings learned by SkipGramRecommender. During
its training, the model is learning not only the weights of its hidden layer but also its tag
embeddings. This figure shows tags that were positioned close to the tag gcc in the created
space. The correctness of the visualized embeddings could be questioned, however, it is safe
to say that at least the gcc and c++ tags make sense to be positioned close to each other.

1Available at: https://projector.tensorflow.org/
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Figure A.2: Visualization of the matrix U created by the SVD recommender. Matrix U
consists of vectors representing the latent features of users. The figure shows several small
clusters emerging across the original space.

Figure A.3: Visualization of user vectors created by the ALS recommender. Opposed to
figure A.2, here the emerging clusters are denser and less frequent.
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Figure A.4: Detailed image of matrix U from figure A.2. It shows a user, identified by
id=766 and a list of items he interacted with, also represented by their integer ids. On the
right side, it shows the nearest users to user 766, represented by lists of their items. Items
34, 123, 124 and several others can be found in most of the lists, which means that the
model managed to correctly place similar users close to each other.

Figure A.5: Similarly, as in figure A.4, this figure shows the most similar users of a user
vector created by the ALS recommender. Again it is clear that in this particular case the
model managed to correctly place users with similar items close to each other.
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Figure A.6: The locally trained 13-dimensional document vectors, created by the Doc2Vec
recommender.

Figure A.7: Document vectors created using the pre-trained 300-dimensional model by the
Doc2Vec recommender.
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Figure A.8: Finding the nearest items with the locally trained Doc2Vec recommender A.6.
The tokens value contains the title of each article.

Figure A.9: Finding the nearest items using the pre-trained Doc2Vec recommender. This
figure shows the same item as figure A.8. The comparison is in favour of the pre-trained
model as it appears to show more relevant items.
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Appendix B

Contents of the enclosed DVD

The DVD enclosed as part of this thesis consists of the following tree structure:

/
data

json ... Directory with articles metadata
processed ... Directory with the processed dataset
visualizing ... Directory containing user and item vectors saved

for visualizations

src ... Contains all models and other source files
svd_model.py
als_model.py
doc2vec_class.py
doc2vec_model.py
skipgram_model.py
evaluation.py
optimization.py
optimal_parameters.py

src_doc ... Directory containing all source files of the
latex documentation

doc ... Contains this pdf file

thesis.pdf

README.md
requirements.txt ... File containing all required libraries
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