
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

EXTRACTION OF STATIC FEATURES FROM BINARYAPPLICATIONS FOR MALWARE ANALYSIS
EXTRAKCIA STATICKÝCH RYSOV Z BINÁRNÝCH APLIKACII ZA ÚČELOMANALÝZYMALWARU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR JAKUB PRUŽINEC
AUTOR PRÁCE
SUPERVISOR Doc. Dr. Ing. DUŠAN KOLÁŘ
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2018/2019
Bachelor's Thesis Specification

Student: Pružinec Jakub
Programme: Information Technology
Title: Extraction of Static Features from Binary Applications for Malware Analysis
Category: Security
Assignment:

1. Study binary-file analysis. Focus on analysis of executable files.
2. Get acquainted with tool Fileinfo and study analyses/heuristics implemented in it.
3. Study systems developed by Avast that use output of Fileinfo for malware analysis (e.g. RetDec, Clusty).
4. Analyze which features are used in each system and evaluate limitations of the current solution.
5. Design analyses and heuristics that will provide new static features to individual systems (or improve

the existing ones) for the purpose of malware-analysis enhancement in tool Fileinfo.
6. Implement the algorithms designed in the previous step after a discussion with the supervisor and

consultant.
7. Thoroughly verify the implemented solution by creating a suite of tests, including real tests and real

malware samples.
8. Evaluate your work and discuss future development possibilities.

Recommended literature:
Sikorski, Michael, and Andrew Honig. Practical Malware Analysis: A Hands-On Guide to Dissecting
Malicious Software. San Francisco: No Starch Press, 2012. Print.
RetDec Project documentation. https://github.com/avast-tl/retdec/
Additional resources recommended by supervisor and consultant.

Requirements for the first semester:
The first five points from the assignment and part of the sixth point.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Kolář Dušan, doc. Dr. Ing.
Consultant: Milkovič Marek, Ing., Avast
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: October 24, 2018

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22056/2018/xpruzi02 Strana 1 z 1

Abstract
Forms of malware are changing and evolving on daily basis, therefore it is necessary to
continuously create, update, and improve methods for malware analysis. One of possible
approaches to fighting malware is to classify it based on certain static characteristics. This
thesis deals with design and extraction of these features from binary executables. Goal
of this work is to enrich a static feature extraction tool by extracting new features and
verifying their effectiveness in malware classification. The tool is developed in cooperation
with Avast Software, where it is used in a clustering system.

Abstrakt
Podoby škodlivého software sa deň čo deň menia a vyvíjajú. Vzniká tak nutnosť jednostaj
tvoriť, aktualizovať a zlepšovať metódy na analýzu škodlivého software. Jedným z možných
prístupov ako bojovať proti škodlivému software je klasifikovať ho na základe určitých stat-
ických charakteristík. Táto práca sa zaoberá návrhom a extrakciou týchto čŕt z binárnych
spustiteľných súborov. Cieľom tejto práce je obohatiť nástroj na extrakciu statických rysov
o extrakciu nových rysov a overenie ich účinnosti pri klasifikácii škodlivého software. Nástroj
je vyvíjaný v spolupráci so spoločnosťou Avast, kde sa používa v systéme zhlukovej analýze.

Keywords
Reverse engineering, malware, static analysis, Avast

Klíčová slova
Reverzné inžinierstvo, malware, statická analýza, Avast

Reference
PRUŽINEC, Jakub. Extraction of Static Features from Binary Applications for Malware
Analysis. Brno, 2019. Bachelor’s thesis. Brno University of Technology, Faculty of Infor-
mation Technology. Supervisor Doc. Dr. Ing. Dušan Kolář

Rozšířený abstrakt
Práca sa zaoberá statickou analýzou škodlivého software, malware. Cieľom práce je navrhnúť
rysy binárnych spustiteľných súborov použiteľných pri statickej analýze malware. Navrhnuté
rysy sú ďalej implementované v rámci nástroja FileInfo firmy Avast určeného na statickú
extrakciu rysov. Výstupy z nástroja FileInfo sú používané v spätnom prekladači RetDec
and internom zhlukovom systéme firmy Avast, ktorý sa volá Clusty.

Navrhnuté a implementované rysy sú ďalej testované sadou regresných testov s reálnymi
vzorkami malware. Rysy vhodné na zhlukovú analýzu sú integrované do nástroja Clusty a
sú taktiež testované na skutočných vzorkách škodlivého software.

Práca kladie dôraz na analýzu binárnych súborov formátu Portable Executable (PE)
platformy Windows. Mechanizmus importovania externých symbolov .NET frameworku je
analyzovaný. Tabuľka TypeRef je zrekonštruovaná a jej rysy sú produkované. Takto extra-
hovaná tabuľka poskytuje informácie o externých triedach a to ich meno, menný priestor a
pôvod. Rodičovský a synovský vsťah vnorených tried je vyjadrený odkazom jednej položky
tabuľky TypeRef na druhú. Pri rekonštrukcii sa vnorené triedy spajajú tak, že synovské
instancie položiek TypeRef obsahujú ukazateľ na otcovské instancie. Cykly v orientovanom
grafe odkazov položiek TypeRef sú detekované a rozpojené. Zrekonštruované meno syn-
ovskej položky je spojené s menami otcovských položiek. MD5 hash tabuľky TypeRef je
integrovaný do produkčnej verzie nástroja Clusty a dosahuje výnimočne dobré výsledky.
Zo vzoriek malware, ktoré sú odchytené firmou Avast v priebehu jedného mesiaca vznikajú
zhluky, ktoré obsahujú viac a 2.3 miliónov škodlivých súborov s presnosťou 99%.

Visual Basic aplikácie sú podrobené dôkladnej statickej analýze a ich metadáta sú ex-
trahované. Metadáta sú uložené v rozsiahlej hierarchii štruktúr, ktoré sú spracovávané
metodou top-down parsing. Parsovanie je robustné a dáta, ktoré boli poškodené v jednej
štruktúre, ale sú duplicitne obsiahnuté v inej štruktúre sú extrahované. Metadáta obsahujú
informácie o projekte, ako je napríklad pôvodný názov spustiteľného súboru, systémova
cesta k projektu a používané jazyky identifikované číslom LCID. Po extrakcii je číslo LCID
preložené do znakovej reprezentácie jazyka a dialektu. Použitie P-code bajtkódu namiesto
natívnych inštrukcii je detekované. Visual Basic metadáta obsahujú aj štruktúry popisu-
júce triedy definované v rámci projektu. Tieto štruktúry sa preložia do podoby takzvanej
tabuľky Objektov, kde každá položka odpovedá jednej definovanej Visual Basic triede.
Trieda obsahuje meno a názvy metód, ktoré daná trieda implementuje. Z tabuľky objektov
sa produkú kryptografické hashe. Okrem tabuľky Objektov obsahuje hierarchia metadát
aj štruktúry popisujúce externé funkcie, ktoré sa importujú v dobe behu programu. Tie
sú zase reprezentované tabuľkou External. Položky tabuľky External obsahujú názvy ex-
terných funcii a názvy modulov, z ktorých funkie pochádzajú. Po rekonštrukcii tabuľky
External su vypočítané jej kryptografické hashe. Globálne unikátne identifikátory projektu
GUID a CLSID sú extrahované a manuálne testované na perzistentnosť po opakovanom
preklade. Visual Basic aplikácia je preložená prvýkrát a jej unikátne identifikátory sú zaz-
namenané. Pri druhom preklade sa porovnajú aktuálne identifikátory so zaznamenanými.
Ak sa identifikátor nezmení, je perzistentný. Identifikátory TypeLib CLSID a COM Ob-
ject GUID sa prekladom nemenia a boli použité pri zhlukovaní. Viac ako 11.000 vzoriek
malware je rozdelených do zhlukov na základe MD5 hashu tabuľky Objektov, MD5 hashu
tabuľky External, COM Object GUID a TypeLib CLSID. Štatistiky o početnosti COM
informácii viac ako 11.000 vzoriek Visual Basic aplikacii sú produkované.

Ďalším významným okruhom, ktorým sa táto práca zaoberá sú ikony zabudované do
programov. Windows 10 dektop environment je manuálne analyzovaný, keďže voľba hlavnej
ikony, teda ikony ktorá je zobrazená na ploche, nie je deterministická. Do spustiteľného

súboru je zabudovné množstvo ikon rôznych štandardných rozmerov a bitových hĺbok
odlíšených farbou. Farba zobrazenej ikony prezrádza rozmery a bitovú hĺbku najprior-
itnejšej ikony. Táto ikona je zaznamenaná a odstránená zo súbru. Preces sa opakuje
dokým sú v súbore ikony. Takto zostrojený zoznam priorít ikon je použitý na výber hlavnej
ikony, ktorá je ďalej spracovávaná. Kryptografické hashe hlavnej ikony sú produkované.
Kvôli častnej ale nepatrnej modifikácii ikon nie sú kryptografické hashe najvhodnejšie na
zhlukovú analýzu. Z tohoto dôvodu je hlavná ikona prevedená do internej reprezentácie a
vypočíta sa jej perceptuálný hash, teda hash ktorý sa miernou zmenou dát zmení len nepa-
trne. Prevod ikony do internej reprezentácie je realizovaný pomocou parsovania popisných
štruktúr ikon, takzvaných Icon resourcov a parsovania samotných dát obrázku uložených
vo formáťe DIB. Výpočet perceptuálneho hashu zvaného average hash zahŕňa operácie s
obrázkom ako napríklad zmenšenie a prevod na čiernobielu. Ikony, ktorých average hashe
majú Hammingovu vzdialenosť menšiu ako 3 sú považované za podobné. Dataset s 11.000
vzorkami programov s ikonami je rozdelený do zhlukov na základe kryptografického MD5
hashu a perceptuálneho average hashu hlavnej ikony. Ikony sú testované na striktnú zhodu
average hashov napriek tomu, že metrika podobnosti ikon je definovaná benevolentnejšie.
Ukazuje sa, že aj v prípade testu na exaktnú zhodu perceptuálneho hashu dáva average hash
lepšie výsledky ako MD5 hash. Štatistiky o vlastnostiach ikon extrahovaných z hlavicky
DIB viac ako 50.000 vzoriek malware sú produkované.

Práca obsahuje pomocné rysy určené primárne pre analytikov. Binárne súbory sú
skenované a množstvo navrhnutých anomálii týkajúcich sa formátu PE je zaznamenaných.
Anomálie zahŕňajú porušený formát sekcii, nezvyčajné alebo duplicitné mená sekcii, známe
mená sekcii packerov, nezvyčajné lokácie vstupného bodu programu a anomálie týkajúce
sa rozsahu a prekryvu sekcii, importov, exportov a resourcov. Ďalej sa práca zaoberá de-
tekciou kompresie dát. Entropia sekcii formátov PE, ELF, Mach-O a COFF je vypočítaná
za účelom detekcie užitia packeru. Entropia dát pridaných za koniec súboru je vypočítaná
ako odhad ich informačnej hodnoty.

Neskôr je v práci popísaný spôsob získavania pomocných informácii, ktoré niektoré
prekladače vkladajú do spustiteľných súborov ako pomôcku pre užívateľov a iné služby.
Tieto informácie sú uložené v resource zvanom VersionInfo. VersionInfo je reprezentovaný
v PE súbore ako množina vnorených štruktúr TLV definovaných typom, dĺžkou a hodnotou.
Top-down parser VersionInfo dát extrahuje reťazce popisujúce produkt a zoznam jazykov
podporovaných aplikáciou. Reťazce môžu obsahovať informácie o autorských právach, názve
produktu a čase vzniku produktu. Položky v zozname podporovaných jazykov sa skladajú
z identifikátoru jazyka LCID a identifikátoru kódovania IBM CPID. Oba identifikátory sú
preložené do ich reťazcovej reprezentácie.

Napokon sa práca zaoberá extrakciou informácii o thread-local storage. Statické dáta
lokálne pre dané vlákno sú uložené v .TLS sekcii. Tieto premenné su inicializované pomo-
cou inicializačných rutín prezývaných TLS callbacks. Z adresára thread-local storage sú
extrahované adresy callbackov, rozmedzie statických dát a iné pomocné informácie.

Navrhnuté rysy sú implementované v jazyku C++. Práca popisuje objektový návrh
FileInfa ako aj novo navrhnuté objekty a algoritmy na realizáciu extrakcie uvedených rysov.
FileInfo extrahuje všetky dostupné informácie o binárnom súbore a prezentuje ich formou
čitateľného textu, alebo vo formáte JSON. Regresné testy FileInfa sú implementované v
rámci sady regresných testov firmy Avast.

Práca bola predvedená na študentskej konferencii Excel@FIT.

Extraction of Static Features from Binary Appli-
cations for Malware Analysis

Declaration
I hereby declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Doc. Dr. Ing. Dušan Kolář. The supplementary information was pro-
vided by Ing. Marek Milkovič and Ing. Jakub Křoustek, PhD. All the relevant information
sources, which were used during preparation of this thesis, are properly cited and included
in the list of references.

. .
Jakub Pružinec

May 16, 2019

Acknowledgements
I would like to express special thanks to my supervisor Doc. Dr. Ing. Dušan Kolář and
consultant Ing. Milkovič for willingness and help throughout the work. I would like to
thank Ing. Jakub Křoustek for advice and support and Ing. Petr Zemek for assistance.

Contents

1 Introduction 3

2 Static Malware Analysis 4
2.1 Information Extraction . 4
2.2 Information Relevant to Malware Analysis 5
2.3 Reverse Engineering Tools . 6

3 PE File Format 7
3.1 Data Directories and Sections . 8
3.2 Icons . 10
3.3 VersionInfo Resource . 13
3.4 .NET . 14
3.5 Visual Basic . 15

4 Malware Analysis Tools Developed by Avast Software 18
4.1 Clusty . 18
4.2 RetDec . 18
4.3 FileInfo . 19

5 Design and Extraction of Malware Features 20
5.1 .NET Features . 20
5.2 Icon Features . 21
5.3 Visual Basic Features . 24
5.4 Detection Features . 26

6 Implementation of Extraction of Designed Malware Features 29
6.1 FileInfo Infrastructure . 29
6.2 Feature Extraction . 31
6.3 Source Codes, Compilation, and Execution 39

7 Testing and Results 40
7.1 Regression Tests . 40
7.2 Statistics . 41
7.3 Integration, Deployment and Feature Efficiency Evaluation 42

8 Conclusion 44

Bibliography 46

1

A Format of Binary Data Structures 49
A.1 Icon and IconGroup Resources . 49
A.2 .NET Values . 50
A.3 Visual Basic Structures . 50
A.4 Thread-local Storage Directory . 52

B Statistical Analysis of Malware Icons 53

2

Chapter 1

Introduction

Overall userbase of information technologies is being diversified due to a rapid and therefore
widespread adoption of information technologies and modern world digitalization. Use of
information technologies among laymen is now more common than any time before. Despite
it being a necessity, laymen often are not even remotely interested in protecting their data.
Furthermore, value of their data is constantly growing and it is in great interest of certain
people to manipulate it without permission. User’s lack of awareness and their heavy use of
information technologies are perfect conditions for spreading malicious software, malware.

The fight against malware has been around for a while now. Numerous methods to
identify and remove malware have been developed. Today, as malware grows larger than
any time before, manual analysis of every malware sample is impossible. Due to this, anti-
malware companies are developing systems for automated malware clustering and classifi-
cation as an absolute necessity to fight today’s malware. These systems detect similarities
between analyzed programs and group them together, so that whole groups can be classi-
fied as malicious. During this process various features are extracted from samples. Sample
grouping is performed based on similarity of extracted features.

Goal of this work is to design features extractable from binary applications that are
suitable for malware analysis. Special attention is paid to PE file format components
and its extensions such as Visual Basic and .NET. All features extracted in this work
are obtained statically, meaning that malware samples are not executed during extraction
process. A feature extraction tool, FileInfo, is expanded by extraction of new features.
FileInfo is used inside a complex malware clustering and classification system developed
by Avast Software. Efficiency of clustering and classification based on most promising
extracted features is tested.

Chapter 2 describes static analysis methods and tools in general. In Chapter 3, most rel-
evant parts of PE file format are described. Tools developed by Avast Software are depicted
in Chapter 4. Further, Chapter 5 contains all designed features. Implementation, testing,
and results of designed features can be found in Chapters 6 and Chapter 7. Contributions
of this work are summarized in Chapter 8.

3

Chapter 2

Static Malware Analysis

Static malware analysis is a technique of malware examination without program execution.
Its major purpose is to identify malware and estimate its behavior before performing a dy-
namic analysis. This is usually done by dissecting malware fragments and investigating
their semantics. Such fragments are various data structures, tables, machine code under-
stood as a sequence of instructions, or other components of executable files. In this work
static analysis is used to produce valuable features that can be applied in identification of
malware and therefore its classification.

2.1 Information Extraction
A parser is a software component that processes input data and produces its internal
representation. Such representation might be a parse tree or an abstract syntax tree. Input
for parsers may differ. Most of parser inputs are programming languages, texts, or binary
streams. Here, binary streams in the form of executable files are parsed. Parsers presented
here are mostly designed to be robust and to extract as much information as possible. In
the process of parsing executable files, data is extracted rather than parsed to parse trees
or abstract syntax trees.

A lot of data in executable files is optional such as debug information or compilation
relicts. Presence of this information is not needed for proper program execution, therefore
it is often stripped. Binary stripping is a process of removing information unnecessary
for execution. Debug information is valuable when inspecting and analyzing security of
binaries, especially in decompilation. Debug information of commercial off-the-shelf binaries
is often stripped for size reduction reasons. Vulnerable and malicious binaries are often
intentionally stripped to resist security analysis [17].

Moreover, it is a common practice for malware authors to corrupt binaries in a way that
they remain executable but violate their file format. Corruption is done in order to deceive
or evade static analysis tools.

File format of an executable file has to be known in order to properly parse it. These
formats are usually described in documentation. Sometimes, the file formats are propri-
etary or partially closed source. Structure of such files is unknown. This is where reverse
engineering comes into play. Reverse engineering is a process of analyzing a system to
identify its components, their meaning, and possibly their reconstruction to a higher level
abstraction form [14].

4

2.2 Information Relevant to Malware Analysis
Not all information is relevant to malware analysts. Only information that determines or
at least depicts behavior of an analyzed malware is valuable. It is no surprise that malware
authors try to remove or minimize this information as much as possible. Some of the most
popular information malware analysts look for is presented hereafter.

Strings are sequences of printable characters of a certain length. Strings can be repre-
sented in various encodings such as ASCII or UTF16 and their length can be either explicit
or implied by a terminating symbol ’\0’. String extraction tools usually scan whole files for
sequence of printable characters of a length greater than a set threshold and dump them. It
is up to the malware analyst to distinguish random garbage from valid strings. Compilers
frequently add additional string information or leave string relicts in compiled binaries. Not
only can strings provide human readable information about program behavior, they may
be used for detection of used compilers as well.

Imported symbols are used to estimate malware intentions. External libraries often
implement documented API functions, therefore their use can paint a relatively detailed
picture about malware functionality. Imports are so valuable that it is reasonable to inves-
tigate other importing mechanisms besides standard system. Framework specific importing
systems are an example of such mechanisms. Analogically, Exported symbols can help iden-
tify application a malware is targeting.

Sections divide program data (and code) into fragments based on their semantics. Sec-
tions may be named and have privileges, such as privilege for execution, reading, and
writing. Malformation of sections is a common practice among malware authors in order to
confuse analysis tools or achieve nonstandard functionality. Investigation of section names,
privileges, and ranges is done to detect practices malware authors use.

Entry point is an address pointing to where execution of a program starts from the
programmers point of view. Entry point itself is not that useful without context. Location
of entry point outside of mapped sections or in a section with write permission may be
an indication of malicious behavior. Writable and executable section is suspicious as is,
but it is almost certain that program author does not wish his/her code to be examined if
the entry point is located in such a section.

Embedded resources such as icons, bitmap images, cursors, strings, and many others are
contained within the file for it to be self sufficient. These resources, more specifically images
may be unique to applications of a certain “batch”. Applications rarely change their icons
or logos in new releases. Sometimes its reasonable to assume relation between programs
based on use of same (or similar) resources.

Debug information is additional program data provided by the compiler for debugging
tools to associate binary code fragments with parts of source codes. Debug symbols allow
analysts to gain access to information such as identifiers of variables that are otherwise
omitted during compilation. Malware programs hardly ever contain debug information,
but in case they are provided, they speed up analysis process rapidly.

Project identifiers are globally unique identifiers defining a relation between executables
and the original project. These identifiers are added by some IDE compilers such as Visual
Studio. GUIDs and CLSIDs are project identifiers defined and used by Microsoft.

5

2.3 Reverse Engineering Tools
Malware analysis often includes reverse engineering of executable code. Disassemblers and
decompilers might serve for this task.

Disassembler is a program designed to translate machine code to assembly language.
Machine code is just a sequence of binary digits, practically unreadable by a human. Be-
cause of this, translation to assembly language is an inevitable part of executable code
reverse engineering. Distinguishing code from data is an undecidable problem, thus, dis-
assemblers implement more sophisticated mechanisms to detect code sequences of binary
files of a given format. Disassemblers can be used on their own, but they often come as
a part of more complex tools. Listing 2.1 shows how a simple “Hello World!” program can
be disassembled.

(gdb) disassemble main
Dump of assembler code for function main:

0x0000000000001139 <+0>: push rbp
0x000000000000113a <+1>: mov rbp,rsp
0x000000000000113d <+4>: lea rdi,[rip+0xec0] # 0x2004
0x0000000000001144 <+11>: call 0x1030 <puts@plt>
0x0000000000001149 <+16>: mov eax,0x0
0x000000000000114e <+21>: pop rbp
0x000000000000114f <+22>: ret

End of assembler dump.

Listing 2.1: Disassembled Hello World program

Another static analysis method is decompilation. Decompilation is a process of recon-
structing the source code of binary executables. Decompilers can approximate original
source code of compiled executables despite significant information loss during compilation
process. Decompilation is achieved by parsing machine code to an intermediate language
that is further turned into higher abstraction representation based on processed context.
One such decompiler, RetDec, is described in more detail in Section 4.2. Decompilation of
the “Hello World!” program can be seen in Listing 2.2

// From module: /home/kubo/Data/tmp/main.c
// Address range: 0x1139 - 0x1150
// Line range: 4 - 8
int main(int argc, char ** argv) {

// 0x1139
puts("Hello World!");
return 0;

}

Listing 2.2: Hello World program decompiled by RetDec decompiler

6

Chapter 3

PE File Format

Microsoft Windows is the platform most targeted by malware to this day [2]. Most of
malware targeting this platform comes in form of Portable Executables. Portable Executable
is a file format of binary executables designed to run on Windows operating system.

Portable Executables come in different file types from which most notable are DLL and
EXE file types. Both types share the same file format; difference between these two is solely
a semantic one. Dynamic Link Libraries are meant to export functions or data that other
programs can use. They usually run only within the context of other programs. On the
other hand, Executables run in their own process instead of being loaded into an existing
process of another program [16].

The majority of information presented in this chapter was adopted from official Microsoft
PE documentation [1].

Figure 3.1: PE file format structure

Standard structure of the PE format is shown in Figure 3.1. Every PE consists of
an MS-DOS stub, PE header, sections, and possibly additional data appended to file. MS-
DOS stub is a valid application that runs under the historic MS-DOS operating system,
previously developed by Microsoft. The only functionality this application has is to print
This program cannot be run in DOS mode.

MS-DOS stub is followed by PE header. PE header is a structure containing data
necessary for loading the program into memory and its proper execution. It consists of

7

a PE signature, COFF file header, Optional header and Section table. PE header offers
a variety of information from which most notable is:

∙ PE signature
∙ program entry point
∙ number of sections
∙ data directories address

PE signature is a four byte sequence, "PE\0\0", identifying the PE file format. Program
entry point is an address of the first instruction to be executed. The rest of PE header
information is described hereafter.

3.1 Data Directories and Sections
Semantics of data may differ and is often diverse. Therefore, programs are divided into
logical groups: sections.

Section is a basic unit of code or data within the PE file. Sections allow the linker to
link in code more selectively. Furthermore, sections bring the option to load file data to
separate memory pages. Access privileges of these pages can be set based on semantics
of their content. Not all sections need to be present. Relevance of a certain section is
dependent on the application it is part of. Every section is defined by name, physical
address, physical size, virtual addresses, and virtual size. There is not much restriction in
section naming, however some sections have typical names like .text for a section containing
code or .rsrc for a section containing application resources. As a result of naming freedom,
malware authors, compilers and packers often violate these conventions. Due to this fact,
section names are unreliable. Physical address and size define, where a given section starts
and how large it is within a file. On the other hand, logical address, and size define section
position relative to image base address1 and the total size of section when loaded into
process memory.

As mentioned earlier, section naming is unreliable and section positions may differ. Be-
cause of this, there needs to be some other mechanism to reliably determine the position
of certain data. Data directories are present for this reason. Data directories contain infor-
mation about file structure. They determine position of tables of imported and exported
symbols, resources tables, and many others. Every data directory contains a virtual address
of a table and its virtual size. Data directories overlap with sections.

3.1.1 Resource Section

PE binaries often contain embedded resources such as fonts, menus, icons, cursors, and
many others. Location of resources is defined in a Resource data directory. Most often
they are located in Resource section, usually called .rsrc section. Resources are structured
in a multi-level sorted tree structure called resource tree. Despite this structure being able
to incorporate 231 possible levels, Windows, by convention, uses three [20]. Each level is
used to describe a resource attribute. The first node determines resource type, the second
determines name, and the third determines its language identifier. Every path from root
to leaf node defines a resource [26].

Example in Figure 3.2 demonstrates the structure of a resource tree. The first level,
Type Directory, has two entries in this example. Type directory entries define the type of

1Base address is a logical address pointing to beginning of loaded image.

8

a given resource. Such a type can be for example a cursor, icon, dialog box, string etc.
Further, these entries point to Name Directories. In this example, the name directory has
a single entry defining a resource name. Name is represented as a pointer to a sequence of
Unicode symbols and its length. For resources of types where names are irrelevant, the name
pointer is replaced by a unique number called name id. Additionally, data directory entries
point to Language Directories. Language directory entries define the language of a given
resource and points to data entry. Data entries point to raw binary data and define their
length. Format of raw data depends on resource type.

Figure 3.2: Resource tree

3.1.2 Thread-local Storage Section

Parallel execution concept introduces two major abstractions — processes and threads. Pro-
cess level parallelism is achieved by maintaining process resources such as address spaces
or opened file descriptors, separate. Scheduler, prevalently implemented in operating sys-
tem kernel, manages execution contexts of processes. The scheduler periodically switches
between currently executed and inactive processes, given that the processes cannot run
simultaneously.

Thread level parallelism is a similar concept, except that threads are executed within
processes and thus share most of their resources. Creation of threads is significantly more
efficient than creation of processes, because only thread-local data and stacks are copied
instead of the whole address space. Stacks are copied due to the necessity of storing return
addresses during function calls and preventing interference of local variables.

Memory local to threads can be allocated in two ways in Windows. Dynamic alloca-
tion is done by invoking kernel with API calls, such as TlsAlloc, TlsFree, TlsSetValue, and
TlsGetValue. Static allocation can be achieved by declaring static thread-local variable:
__declspec (thread) int myTlsVal = myTlsInit();. As for regular static data, static

9

variables declared thread-local are contained in file, more specifically within .tls section
referenced by Thread-Local Storage directory. Non-constant initialization of TLS variables
(myTlsInit) is executed before a jump to declared entry point. As a consequence, mal-
ware sometimes implements its malicious behavior in one of thread-local data initialization
routines called TLS callbacks. Intuitive investigation of entry point is useless in this case.
What is more, many debuggers set breakpoints on entry point, therefore TLS callbacks may
infect host machine before analyst has a chance to intervene.

Figure 3.3: IDA Pro recognizes TLS callbacks as potential entry point

3.2 Icons
Malware authors often produce malware with icons to attract their victims. From 50.000
malware samples analyzed in this work almost 25.000 had an icon embedded as can be
seen in Table 7.1. Icons, among other resources, are embedded directly in PE binaries in
the Resource section. Extraction of icons is a lengthy and rigorous process.

To grasp the concept of icon embedding one has to see a bigger picture. Information
presented here is only a small excerpt depicting the process. Whole topic is later discussed
in more detail.

Embedding starts with creation of icons. Icons are stored in ICO file format. What
is rather unconventional, is that a single ICO file can contain multiple icons. The icons
themselves are stored in DIB image format. When embedding ICO files into a PE file,
a group for each ICO file is created. These groups contain icons originating from same ICO
file.

3.2.1 ICO File Format

ICO file format is an icon image file format developed by Microsoft. Single ICO file can
contain multiple icons. Motivation for doing so is that icons can be properly scaled when
having them in multiple versions in different dimension and color depths.

ICO file format is similar to the way PE files store their icons. The icon file begins with
an icon directory followed by icon directory entries consecutively. Icon directory specifies
the number of icon directory entries. Icon directory entries contain various icon properties
such as dimensions, color depth, and offset of icon data within the file. The icons themselves
can be either in DIB or PNG format [19].

3.2.2 Icon and IconGroup Resources

During compilation, icons in ICO files are spread across icon resources. These resources
are grouped by IconGroup resources based on their file origin. IconGroups and Icons are
separate entries in the resource tree and they are of different resource types.

10

IconGroup resources consist of icon group directory immediately followed by icon group
entries. Icon group directory counts its entries. Entries themselves are referencing Icon
resources, thus, making a relation between icons.

Format of IconGroup resources can be seen in Table A.1. Icon width and icon height
are icon dimensions ranging from 0 through 255, where 0 is understood as value 256.

Bit count and planes describe color depth of icons. Color depth can be extracted from
DIB header (described in later section) so both, bit count and planes are neglected. DIB
header is described in Table A.2. Color count is supposed to be the number of colors in
icons. Its value is expressed by the following formula:

𝑐𝑜𝑙𝐶𝑛𝑡 = 1 ≪ (𝑏𝑖𝑡𝐶𝑜𝑢𝑛𝑡+ 𝑝𝑙𝑎𝑛𝑒𝑠)

However, it is common practice to violate this formula and set the value to zero. Doing so
can confuse Windows desktop environment and cause it to render suboptimal icon.

Icon name identifiers are used to reference icon resources. Name pointers contained
within a name directory of icon resources do not point to a string as is showin in Figure
3.2. The pointers are rather used as a so called name IDs. Icon name identifier in an icon
group entry matches with name ID of referenced icon resource. Example 3.4 demonstrates
how icon resources can be grouped.

Figure 3.4: Grouped icon resources

3.2.3 DIB File Format

Since PNG format is very rarely used for icons, the only relevant format for analysis is
DIB as shown in Table 7.1. Device Independent Bitmap is a raster image file format. It
is very similar to a regular bitmap. In fact, the only significant difference between them is
that DIB lacks bitmap header [3]. When loaded into memory, a bitmap becomes DIB. DIB
format consists of three parts: BITMAPINFOHEADER structure, color palette, and pixel
array.

BITMAPINFOHEADER structure, sometimes referred to as DIB header, contains in-
formation about image dimensions, color depth, compression methods, image size, and size
of color palette. Currently supported color depths are 1, 4, 8, 16, 24, and 32 bits per pixel.

11

Figure 3.5: DIB format

Color palette is an array of four-byte RGBA32 pixels. Color palettes are primarily used
to save memory. Single pixel for every color used in an image is stored once in the palette.
All image pixels are replaced by indices to the palette. Color palette colors are formed by
three color channel bytes2 followed by a single byte alpha value. Size of color palette can
be either 0 or 2𝑛, where 𝑛 is the color depth of an image. Use of a color palette can be seen
in an example in Figure 3.6.

Figure 3.6: DIB icon example

Eventually, a pixel array is one dimensional array of pixels or color palette indices. Size
of image rows is padded up to multiples of four bytes. Rows are stored in the pixel array
consecutively. Size of a padded row can be expressed by the following formula:

𝑟𝑜𝑤𝑠𝑖𝑧𝑒 =

⌊︂
𝑏𝑝𝑝 · 𝑤𝑖𝑑𝑡ℎ+ 31

32

⌋︂
· 4

Size of pixels or indices is determined by color depth. Pixels with 1, 4, 8, or 16 bpp
color depth are represented as color palette indices. Size of these indices is 1, 4, 8, or 16
bits. A pixel with 24 bpp color depth is represented as three color channel values3. Finally,

2Order of color channels is: blue, green, and red.
3Order of color channels is the same as in color palette

12

pixels with 32 bpp color depth are represented as three color channel values followed by
an alpha value.

Example in Figure 3.6 demonstrates how an icon can be stored as a 4 bpp DIB. In this
example, there is a 3x3 icon. Size of this color palette is 24 = 16 pixels. Each pixel in
a color palette is of 4 byte size. The color palette is followed by a pixel array. There are
three rows in the pixel array and all of them are three pixels wide. Pixels themselves are
represented as 4 bit color palette indices. Note that not every entry of a color palette needs
to be referenced. Every row is padded to 4 byte alignment. In this case the size of padding
in bits is:

𝑝 = 𝑟𝑜𝑤𝑠𝑖𝑧𝑒− 𝑏𝑝𝑝 · 𝑤𝑖𝑑𝑡ℎ

=

⌊︂
𝑏𝑝𝑝 · 𝑤𝑖𝑑𝑡ℎ+ 31

32

⌋︂
· 4 · 8− 𝑏𝑝𝑝 · 𝑤𝑖𝑑𝑡ℎ

= 20

3.3 VersionInfo Resource
Compilers often add supplementary data unnecessary for proper execution of applications.
Such information can be obtained from VersionInfo resources. Auxiliary VersionInfo re-
sources are meant to provide additional product information for application users or other
services.

These resources may contain various information, most notably a list of supported lan-
guages, and VersionInfo strings. According to Microsoft guidelines, the strings should spec-
ify CompanyName, ProductVersion, LegalCopyright, OriginalFilename, and other product
related information [5]. Such information can be observed in application properties window
as shown in Figure 3.7.

Figure 3.7: VersionInfo presented in application properties

Unfortunately, extraction of this information is not straightforward and requires parsing
of multiple nested structures. Most of them are in type-length-value (TLV) format and
contain string structure type identification encoded in UTF-16. The value member of
the structures is either a single instance or an array of other TLV structures, further referred
to as children. Hierarchy of VersionInfo structures is depicted in Figure 3.8.

VS_VERSIONINFO is the main structure and its children are an array of either one or
zero StringFileInfo and one or zero VarFileInfo structures. Child of VarFileInfo structure
is a structure called Var. Finally, child of Var structure is a list of supported languages
represented as pairs of language code identifiers and IBM code page numbers. Language
code identifier, abbreviated as LCID, is a standardized 16 bit value used for identification

13

of world languages and dialects [8]. IBM code page identifiers define string encoding, such
as UTF-8, UTF-16, and others [4]. Children of StringFileInfo structures are of StringTable
type. Identification string of StringTable is replaced with a string representation of the IBM
code page identifier. This code page identifier defines encoding of its children. Children
of StringFileInfo structures are String structures. Strings are TLV structures as well and
they contain a key-value pair. Their identification string member is to be interpreted as
the key and value member is the actual string value. In example in Figure 3.7 “Original
filename”-“firefox.exe” and other key-value pairs can be observed.

Figure 3.8: VersionInfo hierarchy

3.4 .NET
.NET framework is a popular framework developed by Microsoft in 2000. Programs written
in .NET framework are compiled into a Common Intermediate Language. CIL is then stored
in assemblies. Assemblies can be understood as chunks of code interpreted by a virtual
machine called Common Language Runtime. Compiled .NET programs, CLIs stored in
assemblies, come as a part of PE executables. Class imports are discussed in this section
primarily.

3.4.1 Streams and MetaData Tables

A stream is a “section” which contains a specific kind of data. This data is referenced by so
called MetaData Tables. The tables implement a multitude of .NET functionality such as
defining, importing, and exporting .NET classes. There are several default streams present
in .NET binaries.

#Strings stream is an array of ASCII strings terminated by a null byte. The strings
in this stream are referenced by MetaData Tables. #US stream is an array of Unicode
strings. The name stands for User Strings, and these strings are referenced directly by code

14

instructions. #Blob stream encodes .NET classes, methods, and their parameters. #GUID
stream contains 128 bits long globally unique project identifiers called GUIDs. #∼ stream
contains the MetaData Tables [25].

3.4.2 TypeRef Table

.NET framework is known for its reusable code libraries. Classes are compiled into libraries
that are later imported by different programs. Knowing what classes are imported can
heavily speed up analysis, since they can hint at malware intentions.

Imported classes are referenced by TypeRef Table entries, TypeRefs. TypeRef is defined
by the name of an imported class, its namespace, and its origin.

Names and namespaces of imported classes are present in the form of a TypeName and
TypeNamespace indices. These indices point to string stream. String stream is a set of
null-terminated strings ordered consecutively.

Source is a bit more tricky as TypeRefs can originate from different sources. Sources are
stored in the form of a ResolutionScope index. Two least significant bits of ResolutionScope
indices are called tags. Rest of the bits form an index to a table determined by the tag
described in Table A.3.

If a TypeRef originates in an external module, then a row in ModuleRef Table is refer-
enced by the ResolutionScope index. Each row in a ModuleRef Table represents a reference
to an external module. If an import is present in the current assembly then a row in Module
Table is referenced. Module Table is a single row table representing the current assembly.
For imports originating in external assemblies, the ResolutionScope index is referencing
a row in AssemblyRef Table. For nested classes, the ResolutionScope index is pointing
to a TypeRef Table. Descendant TypeRefs reference parent TypeRefs, thus, making a
hierarchy of nested classes [25].

3.5 Visual Basic
In this section, a fraction of Visual Basic metadata present in PE files is presented. Further,
use of this information for malware analysis is discussed. Most of the information presented
hereafter has been adopted or derived from the work of Alex Ionescu [20].

Visual Basic is an event-driven object based programming language developed by Mi-
crosoft corporation back in 1991. Visual Basic was created for beginners to learn program-
ming basics. Visual Basic has various language features, from which the most notable are
basic support for object-oriented programming and pre-implemented GUI components. De-
spite claims that Visual Basic programs “benefit from security” [7], today they are almost
exclusively created by malware authors.

From a malware analyst’s perspective, programs written in Visual Basic contain tons
of useful information usable for malware classification. Aside from regular metadata ex-
tractable from PE executables, Visual Basic programs contain additional metadata and
compilation relicts. A peek into Visual Basic internals is needed for extraction of this
metadata. Unfortunately, the Visual Basic file format is officially undocumented however
it was partially reversed by reverse engineers throughout the years.

15

3.5.1 Visual Basic Execution

Visual Basic programs can be compiled to native code or so called P-Code. Native code,
as the name suggests, runs natively on the processor. Contrary, P-Code is an intermediate
language interpreted by MSVBVMxx.DLL virtual machine [28]. Execution of a Visual Basic
program starts with a call to ThunRTMain function as shown in Figure 3.9. This function
takes a single parameter: pointer to a start of hierarchically structured metadata beginning
with VB Header.

Figure 3.9: Visual Basic executable entry point

In this work, some metadata regarding execution are extracted. Neither deep inspection
of native code, nor P-Code is done.

3.5.2 Visual Basic Metadata

In this section, Visual Basic metadata hierarchy is presented. Most relevant metadata
structures are later described in more detail. Addresses mentioned in the following text are
virtual. Offsets described throughout this section are relative to the beginning of a structure
they are a part of. Note that only an excerpt of Visual Basic format is presented here. More
information regarding Visual Basic file format can be found in work of Alex Ionescu [20]
and Andrea Geddon [15].

Visual Basic executables contain information about objects, imported functions, and
much more. Figure 3.10 depicts a Visual Basic metadata hierarchy. Structures referenced
by addresses are linked with arrows. Relevant structures are highlighted.

Figure 3.10: Visual Basic metadata structures

16

VB Header is referenced by the first parameter of ThunRTMain function. It references
Project Info Header and COM Register Data. Further, VB Header contains information
about project, language, “real” entry point, and other data. Format of VB header can be
found in Table A.4.

Project Info is referenced by VB Header and references External Table and Object Table.
It contains information code, project path, imports, and others. Its format is shown in Table
A.5. If native code address member is zero, P-Code executable is implied. Otherwise native
code is implied.

External Table is referenced by Project Info. Names of imported functions are stored
here. There are two types of Visual Basic imported functions, internal and external. Inter-
nals are present in the virtual machine module and Externals are imported from external
modules. External Table is an array of entries containing import type and address. If
an entry is of External type than this address points to an External Entry Data struc-
ture. External Entry Data contains address of name of imported module and function [15].
External functions are imported dynamically during runtime, so it is not surprising that
malware authors encrypt function names to prevent static analysis. These names are de-
crypted during execution. Table A.6 describes format of External Table.

Object Table is referenced by Project Info and references Public Object Descriptors. It
contains information about project, language, object count, and more. Format of Object
Table is presented in Table A.7.

Public Object Descriptors are referenced by Object Table. POD is an array of structures,
each describing an object. Objects are described by their name and names of their methods.
To retrieve method names, an address of method names array from POD entry is read first.
Method names array is an array of addresses. When iterating over this array, invalid
or zero addresses are skipped. Valid addresses point to null-terminated ASCII method
names. Method names are not needed for proper execution of a Visual Basic program. As
a consequence, malware authors often patch method names with zeros. Format of Public
Object Descriptors can be seen in Table A.8.

The COM Register Data structure contains information used if the image file is ActiveX
and contains valuable data such as TypeLib information. COM Registed Data is referenced
by VB Header and in case a valid COM object needs to be registered, it references a COM
Register Info structure described in Table A.10. Format of COM Register Data is to be
seen in Table A.9

17

Chapter 4

Malware Analysis Tools Developed
by Avast Software

Avast is one of the most known anti-malware companies worldwide. Avast has multiple
products providing security solutions for various platforms. In this section, some of these
products related to malware classification and decompilation are described.

4.1 Clusty
Clusty is a clustering system designed for malware clustering and classification. Malware
clustering is a process of dividing a set of executable samples into disjoint subsets called
clusters. Clusters group together samples that are logically related. The main challenge
of clustering lies in recognising which samples are related. Samples are clustered based on
anexact match or similarity of their features.

Given that samples are grouped in clusters, one can analyze a single executable sample
from certain cluster, determine its maliciousness and therefore classify the whole cluster as
malware of a certain type. Clustering technology drastically speeds up malware detection
process, because it reduces the number of samples to be analyzed to a smaller number of
clusters. Today, as malware grows large, using clustering technologies is inevitable.

Clustering process consists of three main phases. First, samples are analyzed and fea-
tures are extracted. For this task, Clusty uses FileInfo, a tool later described in Section 4.3.
Second, samples are divided into clusters based on similarity of their features. These fea-
tures do not necessary have to be the same for every cluster and can be prioritized. Third,
extraction of cluster attributes is done. Clusters are described by their most significant
characteristics. Having this information helps to quickly estimate the nature of samples
present in a given cluster [23].

4.2 RetDec
RetDec is a decompilation tool used for partial reconstruction of source code of executables
from their machine code. RetDec produces intermediate language that can be further
abstracted into a C or Python like language [24]. RetDec does not target specific platform
or operating system. Currently supported architectures are x86, x64, ARM, MIPS, and
others. Supported file formats are PE, ELF, COFF, Mach-O, and others. Figure 2.2 shows
a program decompiled by RetDec. For preprocessing of executables, FileInfo tool is used.

18

4.3 FileInfo
FileInfo is designed to dump numerous statically extracted features from various executable
file formats. FileInfo is a part of the RetDec decompilation tool and clustering system
Clusty. It can also be used as an early step during manual malware analysis.

The whole feature extraction process goes as follows: First, an input file is parsed
into internal representation. This functionality is implemented in the FileFormat library,
the library FileInfo is built on. Further, the parsed data is processed. This includes various
statistical methods, of which some are described in later chapters. Finally, the relevant
data is extracted and presented as uniform output.

Currently supported input file formats are ELF, PE, Mach-O, COFF, and others. Sup-
ported output formats are JSON and human readable format called plain format. Some of
features that contemporary version of FileInfo is capable to extract are:

∙ Architecture information
∙ Various section information
∙ Imported and exported symbols
∙ Information about resources
∙ Relocation, certificate, dynamic, and symbol tables
∙ .NET information

and much more. Despite a complex variety of supported extractable features, these are
not sufficient in some situations. Malware comes in all shapes and forms so FileInfo has to
be continuously developed to detect previously undetected malware features. The following
chapter is dedicated to design of such features.

Listing 4.1 shows an excerpt of information FileInfo is capable to extract.

Input file : ../3e7126c600eb3d73c9b470aa98f2a416
CRC32 : 30226ccd
MD5 : 3e7126c600eb3d73c9b470aa98f2a416
File format : PE
File class : 32-bit
File type : Executable file
Architecture : x86
Endianness : Little endian
Image base address : 0x400000
Entry point address : 0x4010c4

Detected tool : Visual Basic (6) (compiler), linker libraries heuristic
Detected tool : Microsoft Linker (6.0) (linker), combined heuristic
Detected tool : Microsoft Visual Basic (5.0) (compiler),

40 from 40 significant nibbles (100%)
Detected tool : Microsoft Visual Basic (5.0 - 6.0) (compiler),

24 from 24 significant nibbles (100%)

Timestamp : 2010-09-12 13:05:04
Declared number of sections : 3
Checksum : 399895

Listing 4.1: FileInfo output

19

Chapter 5

Design and Extraction of Malware
Features

Features, as stated earlier, are of different nature. In this work, features are designed for
multiple purposes: identification and classification of malware, decompilation assistance,
and manual analysis. When designing features, availability, reliability, suitability for mal-
ware classification, and other aspects are taken into account. Designed features from various
fields are described in the following sections.

5.1 .NET Features
FileInfo extracts some .NET features. For example, the support for .NET classes recon-
struction has already been implemented by Marek Milkovič [23]. However, it is lacking any
support for extraction of imported classes. In this section, TypeRef Table reconstruction
is discussed. Further, a method of TypeRef Table hash creation is described.

5.1.1 TypeRef Table Reconstruction

The TypeRef Table contains rows of TypeRefs, each describing a single imported class.
TypeRefs are defined by three attributes, by their name, namespace, and their source.
The source can originate in an external module, current assembly, external assembly, or
in another TypeRef. The goal here is to reconstruct the TypeRef Table so each imported
class would have a string representation of its name and namespace. Additionally, a string
representation of source is present for imported classes originating in external assembly.

TypeRef originating in another TypeRef implies a nested class. TypeRefs of descendant
classes reference TypeRefs of their parents. These TypeRefs are linked after reconstruction
of the table. Loops are detected and eliminated during the linking process. The whole
process is depicted in Figure 5.1.

5.1.2 TypeRef Table Hashes

Exact match of two TypeRef Tables is implied by the exact match of their cryptographic
hashes. Hashes are computed from concatenated string representation of table rows. Proper
construction of hashed data is needed due to possible malformation of TypeRef Table. Two
aspects have to be taken into account. First, the construction must cope with some TypeRef
data missing. Second, maximization of uniqueness of hashes has to be considered. For this

20

Figure 5.1: TypeRef Table reconstruction

reason, hashed data is constructed from raw TypeRef records rather than reconstructed and
linked ones. Furthermore, sources of any type are stringified. Source string is appended
with type-unique suffix to distinguish source types. TypeRef attributes are separated with
non-colliding delimiter. Listing 5.1 shows an example where omitting a source type would
result in producing same cryptographic hashes. SHA256 and MD5 hashes are computed.
TypeRef Table hashes are suitable for malware classification, because TypeRef data is
contained within a section with certain access privileges. These privileges are checked at
runtime and in case of modification the assembly will not start [25].

AssemblyRef Table:
0 AmbiguousName
1 ...

TypeRef Table A:
0 Name0 NameSpace0 assemblyRefTab[0]
1 AmbiguousName NameSpace1 assemblyRef[1]

TypeRef Table B:
0 Name0 NameSpace0 typeRefTab[1]
1 AmbiguousName NameSpace1 assemblyRef[1]

Listing 5.1: TypeRef hashes ambiguity

5.2 Icon Features
Among malware, icons are used to deceive or attract their victims. People tend to trust
executables with icons, especially if they are familiar to them. Malware authors often
update or modify their software but leave the icons. Multiple problems complicate hashing
of icons. First, if several icons are present, one that the user might see needs to be identified.

21

Second, malware authors often slightly modify icons to prevent them from being classified
based on exact match of their cryptographic hashes as seen in Figure 5.2.

This section is dedicated to extraction and hashing of icons. Suitability for classifica-
tion based on icon similarity is discussed. Further, constraints of presented methods are
mentioned.

Figure 5.2: Application icon modified with noise to alter its cryptographic hash

5.2.1 Icon Parser

Icons in ICO file format are compiled into Icon and IconGroup resources. These resources
are then stored in a resource tree. Every Icon resource points to an icon data stored in DIB
format. The goal here is to parse an icon that will be displayed in desktop environment,
further referred to as the main icon.

To achieve this, all icons are parsed and grouped based on their IconGroups. First, all
resources in the resource tree are parsed and unrelated resources are filtered out. Second,
all icons are grouped. Grouping algorithm is as follows: Entries of every stored IconGroup
are searched for match of entry nameID and nameID of stored Icons. The matched icon is
linked and its properties are set.

Data entry of a main icon resource is accessed after the icon has been chosen. Finally,
data of the main icon is parsed. Proper icon parser should support all color depth formats
of DIB.

Choice of main icon has not been discussed yet. Unfortunately, main icon cannot be
determined precisely. This is due to fact that Windows desktop environment chooses an icon
to render based on a curent DPI setting [6]. The best shot is to choose a commonly used
DPI and investigate choice of rendered icon. Creation of icon priority list was made as
follows: First, an executable with multiple distinguishable icons was created. These icons
had different dimensions and color depths. Rendered icon, the most prioritized, is observed
and then removed. This process is repeated until there are no icons left. Complete list of
icon priorities can be found in Figure 5.3. Icon with lowest priority number is considered to
be the most prioritized. Icons not present in the list are considered to have lower priority
than those that are. This list was created on a 96 DPI Windows 10 system. The main icon
is the most prioritized icon in most prioritized IconGroup. Most prioritized IconGroup is
one with the lowest nameID value.

Obviously, using this method for determining main icon can produce wrong results. An-
other limitation is that the created priority list does not take color count into consideration.
Color count is a member in icon group directory entry present in Figure 3.4. Violating its
format can cause Windows to chose a suboptimal icon, thus resulting in an incorrect choice
of main icon [12].

22

Priority Dimensions Color Depth (bpp)
0 32× 32 32

1 24× 24 32

2 48× 48 32

3 32× 32 8

4 16× 16 32

5 64× 64 32

6 24× 24 8

7 48× 48 8

8 16× 16 8

9 64× 64 8

10 96× 96 32

11 96× 96 8

12 128× 128 32

13 128× 128 8

14 256× 256 32

15 256× 256 8

Figure 5.3: Icon priority list

5.2.2 Icon Hashes

When main icon is extracted, its hashes are produced. SHA256 and MD5 hashes are pro-
duced from raw main icon resource data. Cryptographic hashes are suitable for clustering
of executables based on an exact match of their icons. However, they are practically un-
usable when estimating icon similarity. Slight modification of an icon results in complete
change of its cryptographic hashes. Icons of malware samples are often modified with noise
to prevent testing for exact match. Such noise can be seen in Figure 5.2.

This limitation can be overcome by using perceptual hashes. Perceptual hashes, contrary
to cryptographic hashes, are designed to represent images in a way that slight modification
of the image results only in slight change of its perceptual hash. One such hash is so a called
AverageHash. AverageHash behaves like a low pass filter effectively filtering out details.

Example 5.4 demonstrates the principle of AverageHash computation. Image is first
resized to 8×8 and converted to greyscale and subsequently to black and white. Every row
is a sequence of eight black or white pixels and therefore can be represented as a byte. Eight
rows form an 8 byte AverageHash [22]. AverageHash is surprisingly effective considering its
computational efficiency.

Figure 5.4: AverageHash computation

Similarity of icons is determined by Hamming distance of their average hashes. Icons
are considered similar if Hamming distance of their perceptual hashes is smaller than given
threshold. Threshold with a value of 3 has been experimentally proved to be suitable.

23

First step of AverageHash computation is image resizing. In this work, two resizing
algorithms have been tested. Box sampling algorithm turned out to be more suitable than
bilinear interpolation algorithm. This is because bilinear interpolation does not take all
image pixels into consideration. This is unacceptable when working with small images such
as icons.

5.3 Visual Basic Features
Visual Basic executables are rich in metadata. These contain information about project,
code, some unique identifiers, objects, imports, COM information, and much more. In
addition, duplicity of some data can be made use of. In this section, Visual Basic features,
their extraction, their suitability for malware classification, and reliability is discussed.

5.3.1 Metadata Parser

To get as much information about a Visual Basic executable as possible, all relevant meta-
data structures are parsed first. Visual Basic metadata parser must be robust, meaning
it is able to cope with malformed data. Some metadata can be extracted from multiple
sources. If some of the data is corrupted, the parser should attempt to extract it from its
valid duplicity. The parser implements a top-down approach. Top level structure of Visual
Basic metadata hierarchy is parsed first. Further, structures that are referenced by already
parsed ones are processed and so on.

5.3.2 Project Metadata Features

Visual Basic programs are mostly created as Visual Studio1 projects, sometimes called
solutions.

Malware authors often produce multiple versions of the same malware. In many cases,
all of these versions come as products of the same project. This comes particularly handy
when classifying malware based on its project source. On the other hand, this information
is not necessary for proper execution of a Visual Basic program. Hence it is not a big
surprise that malware authors remove or modify it to mislead analysts. Complete list of
extracted features regarding project info can be found in Table 5.5. These features originate
in various structures of Visual Basic metadata. Unique project identifiers are present in
COM related structures and are described in Section 5.3.5.

5.3.3 External Table Features

External Table contains information about imported functions. Each row determines an im-
ported module and a function name. Format of External Table is described in Section 3.5.2.
The goal here is to reconstruct this table in a way that it can be further processed and
presented.

Classification of malware based on its imports is a common practice. Import Tables
of Visual Basic executables provide insufficient amount of data needed for classification.
This is because external functions are imported through External Tables instead of Import
Tables. Therefore, Visual Basic executables are classified based on External Tables rather
than Import Tables. On the other hand, these functions are imported at runtime. Due

1Visual Studio is a widely spread integrated development environment created by Microsoft

24

Feature Origin
project name VB Header, Object Table, COM Register Data
project exe name VB Header
project description VB Header, COM Register Data
project path Project Info
project help file name VB Header, COM Register Data
primary language DLL name VB Header
secondary language DLL name VB Header
primary language DLL LCID VB Header
secondary language DLL LCID VB Header
project primary LCID COM Register Data
project secondary LCID COM Register Data

Figure 5.5: Visual Basic project features

to this, External Tables of malware sometimes contain encrypted function names that are
decrypted during execution.

After reconstructing the External Table, its cryptographic hashes are computed. String
representation of each row is concatenated consecutively. Row attributes are delimited with
a non-colliding delimiter. SHA256 and MD5 hashes of the resulting string are produced.
Such hashes are used for classification of malware based on an exact match of their External
Tables.

5.3.4 Object Table Features

Object Table in combination with Public Object Descriptors contain information about
object and method names.

When parsing Public Object Descriptors, one has to have on their mind that the de-
clared number of methods in Public Object Descriptor is generally significantly greater than
the number of valid method name addresses in method names array. As a consequence,
null addresses must be skipped. Reconstruction goes as follows: First, Public Object De-
scriptors address and number of objects are read from the Object Table. Then Object
Descriptors, an array of consecutive structures, are iterated over. Afterwards, object name
and method name arrays are read from the current descriptor. Method name array points
to a sequence of addresses. These addresses point to ASCII strings, method names.

Exact match of two Object Tables is indicated by an exact match of their cryptographic
hashes. The Object Table is turned into a continuous string by concatenating string rep-
resentation of objects. Object names are followed by method names separated with a
non-colliding delimiter. SH256 and MD5 hashes are produced.

Object Tables, among other information, contain GUIDs identifying them. GUIDs are
globally unique and bound to projects and therefore serve as valuable features as they
are. Unfortunately, analysis showed that Object Table GUIDs are generated during every
compilation and thus are not suitable for classification.

5.3.5 COM Information

Malware authors sometimes prefer ActiveX COM objects over regular executables as can be
seen in Table 7.2. COM objects contain duplicate data such as project name and LCID, but

25

most importantly they contain numerous CLSID (project unique GUIDs). Multiple Visual
Basic applications were compiled and analyzed to confirm that Object CLSID present in
the COM Register Info structure is project unique and does not change with recompilation.
TypeLib CLSID present in COM Register Data is project unique and nonvolatile as well,
but only in case of a valid COM object.

5.3.6 P-Code Recognition

Visual Basic executables come in two forms, native and P-Code. Native executables run
natively on the processor. Contrary, P-Code is an intermediate language interpreted by
the Visual Basic virtual machine. As already stated, this work does not aim for deep code
inspection, but having information about the nature of code is valuable. P-Code is indicated
by a zero value of native code address member in Project Info structure described in Figure
A.5. In any other case native code is implied.

5.4 Detection Features
Features introduced in this section are designed to provide additional information about
analyzed samples. This includes detection of irregularities, auxiliary information added by
compilers, statistical information about data, and extraction of information necessary for
further processing.

5.4.1 PE Anomalies

Complex specification of PE file format defines value domains of numerous structure fields,
but only a subset of them is used prevalently among legitimate software. Besides use of
the unusual values, malformations are considered anomalies as well. Compilers sometimes
violate PE file format despite the fact that its documentation is publicly available.

Format violation is however mostly a result of manual binary instrumentation. Malware
authors frequently modify compiled executables in order to hide their malicious behavior
and to avoid detection. Major problem of such modifications is that an executable with
obsolete, missing, or malformed content can often be loaded by Windows loader. This is be-
cause numerous values defined in the file format specification are not checked by the loader.

Frequent occurrence of anomalies in executable can serve as a strong indication of
malicious intentions. Katja Hahn has implemented a scanner for numerous PE anomalies
as a part of her master thesis [16]. Moreover, she provided statistics on distribution of
anomalies among malicious and legitimate software. The statistics were made out of 100.000
malware and 50.000 goodware samples. Subset of anomalies that are prevalent in malware
and rarely occur in goodware were adopted. The subset of anomalies is listed in Table 5.1.
Further, usual section name list of Hahn for anomaly 7 has been replaced with more general
list from Hexacorn blog [18].

Some anomalies were newly designed as a part of this work. List of novel anomalies can
be found in Table 5.2

List of usual packer section names for anomaly 6 has been adopted from the mentioned
Hexacorn blog as well.

26

i Anomaly MW freq GW freq
1 Section marked uninitialized but contains data 12.9% 0.13%
2 Physical range of sections overlaps 26.9% 1.3%
3 Entry point in last section 5.1% 0.1%
4 SizeOfRawData in SectionTable is zero 46.6% 5.8%
5 Entry point located in writable section 26.1% 3.1%
6 Unusual section name 51% 14%
7 Unusual section characteristics 42.7% 21.1%
8 Imports/Exports/Resources stretched over sections 14.5% 0.5%
9 SizeOfHeader not multiple of FileAlignment in OptHeader 15.9% 2.5%

Table 5.1: Adopted subset of Hahn’s anomaly list

i Anomaly
1 Duplicate section names
2 Entry point outside mapped sections
3 Entry point inside non-executable section
4 Section size over 100MB
5 Resource size over 100MB
6 Usual packer section name

Table 5.2: Newly designed anomaly list

5.4.2 VersionInfo Extraction

Compilers often add auxiliary information about the product to executable files. Such in-
formation can be obtained from VersionInfo resource. This data includes a list of supported
languages and project properties stored as key-value string pairs. Resources are described
in Section 3.1 and VersionInfo resource itself is discussed in more detail in Section 3.3.

VersionInfo data is extracted as follows: VersionInfo resources are separated during
parsing of ResourceTree. Further, the set of obtained VersionInfo resources is processed.
The resources contain a hierarchy of type-length-value (TLV) nested structures. These
structures are parsed by a a top-down parser. VersionInfo structures share the same header
format. Only the length of the structure is read from the header, rest of the fields is
neglected. Type of structures can mostly be deduced from parsing context, as almost all
structures contain children of a known type. If the type cannot be deduced, the type
identifying string is read. Otherwise the type string is used as validation rather than
identification.

The problem is that the number of children contained within the structures is not
declared anywhere. Structure length is the only indication of possible number of children
of the structure. For this reason, the parser processes children consecutively. Optimistic
consumption of parsed bytes cannot exceed boundaries determined by structure length
declared in the header structure.

List of supported languages is extracted from the Var structure. Child of var structure
is an array of 32 bit language identification values. The lower word of the value is a 16
bits long LCID and the higher word of the value is an IBM code page identifier. Both the
LCID and IBM code page identifier are translated to their string representation as defined
by LCID table (see [8]) and IBM code page identifiers table (see [4]).

27

Key-value string pairs are obtained from String structures. Type identifying string of
String structure is the key and its child is the value. These pairs can depict the origin of
a file, the time it was created, and much more. Complete list of usual pairs can be found
in VersionInfo string guide lines (see [5]).

VersionInfo resource is not used for anything besides providing additional information
about applications. Their presence in the file is optional and they do not influence execution
of programs. This is why malware authors corrupt or omit them completely. The analyst
should not rely on information obtained from them.

5.4.3 Thread-local Storage Preprocessing

Malware authors sometimes implement malicious functionality in one of the thread-local
storage callbacks as described in Section 3.1.2. Thus special attention should be paid
to them. Addresses of the callbacks can be statically extracted from the executable file.
Thread-local storage directory contains a reference to null-terminated array of callback
addresses called Address of Callbacks. These addresses are particularly useful during de-
compilation process. One of major problems in decompilation is the inability to precisely
distinguish data from code. Addresses of callbacks are therefore used to mark byte sequence
as code for decompilation. Further, thread-local storage directory contains Raw Data Start
and Raw Data End determining bounds of thread-local data used for decompilation as well.

5.4.4 Entropy

One of commonly used methods of avoiding static analysis that malware authors use is
to pack their program. A packed binary contains compressed data and code that are
decompressed during runtime by decompression routines. This is particularly inconvenient,
because extraction of static features becomes very hard or practically impossible. One
of possible approaches to statically extract data from packed binaries is to unpack them
before proceeding with static analysis. Unpacking is unreliable and often lossy process and
requires knowledge of the decompression algorithm. Given that decompression of a packed
binary is not possible, detection of packed status of data is still valuable. Packer usage
can be a strong indication of malicious intentions. For this reason, entropy of sections and
overlay is computed.

Entropy of set of probabilities is defined by Shannon’s formula:

𝐻 = −
𝑛∑︁

𝑖=1

𝑝𝑖 log 𝑝𝑖

The entropy is multiplied by 8, because of the fact that most tools for malware analysis
express entropy as a number in [0, 8] rather than in [0, 1] interval.

High data entropy indicates significant data diversity and often implies compression.
Thus it is used for detection of packed data. On the contrary, low data entropy indicates
data similarity and can be used to detect blank data sections.

28

Chapter 6

Implementation of Extraction of
Designed Malware Features

This chapter is dedicated to implementation details of features designed in previous chap-
ters. Infrastructure of FileInfo, program design of each feature, and general development
information are discussed in this chapter.

6.1 FileInfo Infrastructure
FileInfo is described in Section 4.3. Its design and structure is discussed hereafter. FileInfo
is written in C++ and follows ISO C++14 standard. All designed features are implemented
in ISO C++14 for this reason as well.

FileInfo is part of the RetDec decompiler described in Section 4.2. FileInfo shares some
code with other RetDec subprojects, but the code is not relevant for this work and will be
further neglected as FileInfo was self sufficient.

Figure 6.1 shows the most relevant parts of directory tree of RetDec source code. Ar-
chitecture of FileInfo can be divided into two separate layers - extraction and presentation
layer. Extraction layer consists of binary file format parsers, extractors, and postprocessors.
This layer is implemented in FileFormatl library and third party libraries. Presentation
layer wraps the extraction layer and prints extracted information.

FileInfo is implemented in the presentation layer and it is an abstraction of FileFor-
matl library. Everything presented by FileInfo executable is received from the FileFormatl
library. FileInfo targets multiple file formats - PE, ELF, Mach-O, COFF, and Intel HEX.
Information extracted from these formats is represented uniformly. Some structures, how-
ever, are format specific. A class diagram of FileInfo architecture can be seen in Figure 6.2.

This work primarily focuses on PE file format, which is parsed by PeLib. PeLib is a third
party open source C++ library with the purpose to ease access to and modification of PE
files. PeLib implements a multitude of classes which represent all important PE header and
directory structures and which provide the necessary functions to read, modify, and write
these structures. [27]. A subset of PeLib functionality is used by FileFormatl library.

FileFormatl library supports more advanced reconstruction of data structures than
PeLib. What is more, FileFormat provides abstractions of previously mentioned file for-
mats. The formats themselves are represented by FileFormat::FileFormat class. This
complex class provides information common for all binary file formats, such as information

29

.
include/retdec/fileformat

file_format
elf
pe

types
dotnet_types
resource_table
visual_basic

src
fileformat

file_format
elf
pe

types
dotnet_types
resource_table
visual_basic

fileinfo
file_information/file_information_types

resource_table
*

file_presentation

Figure 6.1: RetDec directory tree

about entry point, overlay, or imported functions. Format specific information is accesible
via derived classes, such as FileFormat::PeFormat class.

Every presentable FileFormatl class is wrapped by a FileInfo wrapping class. These
wrapping classes are contained withing a singleton class called FileInformation. This
class is presented by so called presentators. FileInfo supports two presentators — plain and
JSON. Plain presentator outputs information in human readable form. JSON presentator
is designed to output information in JSON format to be easily processed by other programs,
most notably the clustering system Clusty.

30

Figure 6.2: FileInfo infrastructure

6.2 Feature Extraction
Implementation of features designed in Chapter 5 is described in this section. Algorithms for
feature extraction are implemented as a part of FileFormatl library and features themselves
are accesible via FileInfo wrappers. Description of implementation of FileInfo wrappers is
omitted since the implementation is trivial.

6.2.1 TypeRef Table Features

TypeRef Table described in Section 3.4.2 implements a class importing system of .NET
framework. TypeRef, a single row of TypeRef Table, contains a name, namespace, and
origin indices. Name and namespace indices point directly to #Strings stream. Origin index
points to a table, type of which is determined by the index tag. It can either be Module,
ModuleRef, AssemblyRef, or TypeRef Table. TypeRef originating in another TypeRef
implies nested classes. If the origin index references an AssemblyRef Table then the TypeRef
originates in an external assembly described by indexed record in the AssemblyRef Table.

Reconstruction of a TypeRef Table was already partially implemented by Marek Milkovič
as a part of his thesis [23]. Reconstructed TypeRefs, which are implemented in DotnetClass
class provided no information beside a set of indices. This reconstruction is innovated with
extraction of string representation of a name and namespace referenced by first two in-
dices. Name of an external assembly is obtained in case of AssemblyRef Table entry being
referenced by an TypeRef origin index. TypeRefs originating in another TypeRef (nested
classes) are linked, meaning that instances of DotnetClass contain a pointer to another
(parent) instance. Set of mutually referenced TypeRefs are modeled with a directed graph.
Depth First Search algorithm is used for detection of cycles in the directed graph of Type-
Refs. This is necessary to ensure that the linking process is finite and will not result in
crashing FileInfo. TypeRefs that are already processed are stored in a vector of processed
nodes. TypeRefs being currently processed are pushed onto a stack. If a TypeRef references
an already processed TypeRef or a TypeRef in the stack of currently processed TypeRefs
then the edge is ignored and link to parent is omitted.

All of the three novel DotnetClass attributes are presented. A name of TypeRef is
concatenated with a name of its parent and the parent name is concatenated with its
parent’s name and so on. If the parent’s name is missing then it is replaced with a string
representation of its TypeRef Table index. A namespace is presented as is. Origin is
presented just in case of a referenced table being an AssemblyRef Table.

31

Listing 6.1 shows how reconstructed TypeRef Table can look.

"typeRefTable" : {
"md5" : "5742603226df6e720f055413ba924c2c",
"types" : [... , {

"index" : "3",
"libraryName" : "System.Runtime",
"name" : "DebuggingModes.DebuggableAttribute",
"nameSpace" : "System.Diagnostics" }, ...] }

Listing 6.1: JSON presentation of TypeRef Table

TypeRef Table hashes are computed from unlinked tables to maximize their unique-
ness. Hashed data is constructed from a name, namespace, and origin separated with
non-colliding delimiter from all TypeRefs as follows: If a name or a namespace of a Type-
Ref is available in string representation then it is concatenated to hashed data. Origin is
represented as a name of referenced table entry postfixed with an abbreviation of table
type. For example, origin of TypeRef referencing an AssemblyRef Table entry could be
"NameOfAssemblyRef" + "AR". This representation of origin is concatenated to referenced
data.

Types of origin tables (or their abbreviations) need to be taken into consideration be-
cause omitting them may potentially result in production of same hashes for different Type-
Ref Tables. This could happen in case of a TypeRef referencing an AssemblyRef entry or
another TypeRef Table entry and the entries having the same name.

6.2.2 Icon Features

Icons are stored in Icon resources grouped by IconGroup resources as described in Sec-
tion 3.2 and Section 5.2. First step to producing cryptographic and perceptual hashes of
the main icon is parsing of ResourceTree described in Section 3.1.1. FileInfo already parses
ResourceTree into ResourceTable class as vector of Resource class instances but no further
processing is done. Parsing of ResourceTree is modified to separate Icons and IconGroups
from other resources.

Resource class contains just a nameID, typeID, langID, and a reference to raw resource
data. Raw data of IconGroups is parsed first. Number of icons within a group and properties
of the icons are read from the IconGroup data (see Figure 3.4). Separated Icon resources
are then scanned for a match of their nameID and nameID declared in one of the icon
properties read from an IconGroup data. If the nameIDs match, then the Icon resource is
linked with the IconGroup. Properties of linked Icon resources are set to those that were
read from raw IconGroup data.

Group with nameID equal to zero (the most prioritized) is searched for the main icon.
The main icon is the most prioritized icon in the priority list shown in Figure 5.3. An ar-
ray of Standard Template Library (STL) template type std::pair entries represent such
a priority list. The first member of std::pair entries contains both dimensions of icon.
A single numerical value is sufficient to reflect both icon dimensions, because only icons
of same dimensions are taken into considetarion by the priority list. The second mem-
ber is color depth of an icon. Selection of the main icon is done by a standard function
std::max_element where the default comparison function is replaced with iconCompare
function. The iconCompare function simply checks whether the widths of icons are equal

32

to their heights and then it iterates over the priority list. First match in the priority list
determines which compared icon is more prioritized.

Raw data of the main icon is parsed in order to compute its AverageHash. BitmapImage
class is newly designed to represent a two dimensional image with 32 bpp color depth.
Icons of 1, 4, 8, 16, 24, and 32 bit color depths are parsed and represented by this class.
The BitmapImage implementes numerious image operations necessary for AverageHash
computation, namely downscaling, greyscale conversion, and black and white conversion.

Its worth mentioning that the resizing method of the class was implemented twice with
different downscaling algorithms - box sampling and bilinear interpolation. Bilinear in-
terpolation downscaling takes only a small subset of image pixels into consideration and is
therefore unacceptable when working with such small images as icons, because the informa-
tion loss may significantly affect hashing results. For this reason, the version with bilinear
interpolation algorithm was neglected.

Cryptographic hashes are produced from raw Icon resource data and AverageHash is
produced from BitmapImage representation of the main icon. Computed icon hashes can
be observed in Listing 6.2.

Figure 6.3: Icon class diagram

Resource table

Number of resources: 111
Icon CRC32 : c6009c34
Icon MD5 : 8b6fdb44e0b3e55bf9bc8ffda1800b79
Icon SHA256 : 4d8b8a948b29bf38cd8f186e75b58ed5-

017ed11aac7ebeb453752181b58f3bea
Icon AvgHash : b7478387b4ffaeff

Listing 6.2: PLAIN presentation of icon perceptual and cryptographic hashes

6.2.3 Visual Basic Features

Visual Basic discussed in Section 3.5 and Section 5.3 is rich in metadata represented as
a hierarchy of various structures. A pointer to the beginning of this hierarchy is passed as

33

the first parameter to ThunRTMain function. Because of this, if the first instruction at
entry point of a Visual Basic executable is push <addr> then the address is extracted and
metadata hierarchy parsing process begins.

PeFormat class was enriched by Visual Basic metadata parser implemented as a set of
separate parsing methods. Overall approach of metadata parsing is as follows: an instance of
VisualBasicInfo class is created as a container for all extractable Visual Basic information.
For every simple metadata structure there is a C++ structure representation. There is
a lot information stored as strings in the hierarchy, therefore two string reading methods
for ASCII and Unicode are implemented. FileInfo does not support presentation of wide
characters, therefore all unprintable characters are converted to a string representation of
their hex codes. Reading of strings is limited to a certain length, since reading an invalid
nonterminated string could result in pointless copying of large memory chunks. Further,
every address and offset defined within a parsed structure is converted to a file data offset.
A method for parsing a referenced object is called only in case the address conversion
has been successful. All information extracted during parsing of structures is immediately
stored in a VisualBasicInformation container.

There are two more complex structures that need extra attention. Object Table is
represented as a vector of VisualBasicObject class instances and External Table is repre-
sented as a vector of VisualBasicExtern class instances. Both of the vectors are contained
within VisualBasicInformation. Object Table cryptographic hashes are produced from
object names separated with a delimiter followed by method names separated with another
delimiter. External Table cryptographic hashes are produced from delimited module names
and API names of Externals. Class diagram of Visual Basic related classes can be seen in
Figure 6.4.

Figure 6.4: Visual Basic class diagram

34

Based on extracted Visual Basic features presented in Listing 6.3 one can assume that
a Swedish malware author with a messy desktop targets Facebook accounts.

Visual Basic Information

Is P-Code : Yes
Project secondary LCID : Swedish - Sweden
Project path : C:\Users\Admin\Desktop_old\Blackshades project\

Blackshades NET\server\server.vbp

Visual Basic Object table

MD5 : e0180b0247d3919726ac83645bacefdc
GUID : 6506AE50-051B-3840-A9E0-E9923E7243DF

0. object name: frmMain
method name: C_Mutex
method name: BROWSER_FB_OnQuit
method name: FACEBOOK_START

Visual basic extern table

MD5 : fee82cb91720ee737a165c044609d03c

i apiName moduleName

24 FtpCreateDirectoryA WinInet.dll

Listing 6.3: PLAIN presentation of small fraction of Visual Basic features

6.2.4 PE Anomalies

Anomalies are described in Section 5.4.1. An anomaly is considered to be either a violation
of file format or some unusual characteristic. They are not necessarily bound to any specific
format, however, the PE file format is the most relevant to this work. An anomaly container
is implemented to be contained within the base class FileFormat rather than in the derived
format specific class PeFormat. This design leaves the possibility of extending FileInfo with
other format speicific anomalies open.

The anomalies are represented as a vector of std::pair<std::string, std::string>.
The first member of each pair is an anomaly abbreviation. The abbreviations are meant to
be used by a classifier and are easily processed, but they provide relatively little information.
The second member is a description of a given anomaly. The description is longer and more
informative, because it is meant to be read by humans.

Pe anomaly scanner is implemented via a set of scanning methods of the PeFormat class.
During processing of PE files, the anomaly scanner scanForAnomalies is called. This

35

method sequentially calls scanning methods for subset of individual structures contained
within PeFormat:

∙ Section table
∙ Resource table
∙ Import table
∙ Export table
∙ Optional header

Every anomaly present in Table 5.1 and Table 5.2 is implemented in one of the following
scanners:

∙ scanForSectionAnomalies
∙ scanForResourceAnomalies
∙ scanForImportAnomalies
∙ scanForExportAnomalies
∙ scanForOptHeaderAnomalies

Listing 6.4 shows how detected anomalies are presented.

Anomaly table

Number of anomalies: 5

i abbreviation description

0 epInLastSec Entry point in last section
1 epInWritableSec Entry point in writable section
2 unusualSecName Unusual section name: UPX0
3 packedSecName Packer section name: UPX0
4 uninitSecHasData Section UPX0 is marked uninitialized but contains data

Listing 6.4: PLAIN presentation of detected anomalies

6.2.5 VersionInfo Data

As described in Section 3.3 and Section 5.4.2, VersionInfo resources contain auxiliary data
that compilers add to provide additional information about compiled applications. Ver-
sionInfo consists of multitude of nested type-length-value (TLV) structures. Type of these
structures is identified by a UTF16 type identification string contained within them. This
string is redundant if the type can be deduced from parsing context. Most valuable Ver-
sionInfo data is a list of supported languages obtainable from children of Var structures
and a list of key-value strings present in String structures.

The VersionInfo resources are separated during parsing of the ResourceTree. Each
VersionInfo resource is processed by a top-down parser. Because of the fact that first
few members of VersionInfo structures are similar, a uniform header is parsed from every
processed structure. Only the length of a structure is read from the header, other header
values are neglected. The type of the structure is either deduced or the type identification
string is converted to ASCII and then compared with strings from a domain of possible
types.

36

LCIDs and IBM Code Page Identifiers are extracted from identification values of sup-
ported languages. IBM Code Page Identifiers and LCIDs are converted to string represen-
tation by translation functions afterwards. Both translation functions use the translated
value as keys to hash tables. If no entry with a given key exists then "unknown" string is
returned, otherwise the string value corresponding to the key is returned. Both identifier
strings are stored in a vector of string pairs contained within a ResourceTable class.

If the processed structure is a String then its type identifying string is interpreted as
a key and its child is interpreted as a value. The key and the value are converted from
UTF16 to ASCII representation. If there is no ASCII representation of a UTF16 character
then the character is replaced with a string representation of its hex code prefixed with
"\x". The strings are stored in a vector of string pairs present in the ResourceTable class
as well.

A list of extracted VersionInfo strings and supported languages can be observed in
Listing 6.5.

"versionInfo" : {
"languages" : [

{ "codePage" : "utf-16", "lcid" : "German - Germany" },
{ "codePage" : "utf-16", "lcid" : "Unspecified" }],

"strings" : [
{ "name" : "CompanyName", "value" : "obama" },
{ "name" : "ProductName", "value" : "Projekt1" },
{ "name" : "InternalName", "value" : "my_st0re_loader_____" }, ...]}

Listing 6.5: JSON presentation of VersionInfo languages and strings

6.2.6 Thread-local Storage

Static data local to threads are stored within a .tls section described in Section 3.1.2.
Thread-local initialization routines, often called callbacks, are called before entry point ex-
ecution, therefore malware sometimes implements its malicious behavior in one of the call-
backs. Among other information, addresses of callbacks are statically obtainable from TLS
directory.

TLS directory is parsed in the PeLib library, however PeLib truncates the upper 32 bits
from the 64 bit TLS related values. The library is modified so it would parse 64 bit values in
case of a 64 bit PE executable. Parsed data is processed by loadTlsInformation method of
PeFormat class. This method stores parsed data in TLS container class TlsInfo. Further, it
converts the AddressOfCallbacks to a file offset and reads all addresses from the referenced
null terminated array. The addresses of callbacks are stored in a vector contained within
the TlsInfo class.

37

Listing 6.6 demonstrates how extracted thread-local storage directory information is
presented.

"tlsInfo" : {
"callbacks" : ["0x401060"],
"callbacksAddress" : "0x408044",
"characteristics" : "00000000000000000000000000000000",
"indexAddress" : "0x40803c",
"rawDataEndAddress" : "0",
"rawDataStartAddress" : "0",
"sizeOfZeroFill" : "0" }

Listing 6.6: JSON presentation of thread-local storage information

6.2.7 Entropy Computation

Malware authors often pack their programs to prevent them from being statically analyzed.
High section entropy, as described in Section 5.4.4, can serve as an indication of packed
data. Low section entropy suggests that the section is blank. Besides the sections, the file
overlay is sometimes compressed to obfuscate its content as well.

General entropy calculation is done from raw data by the computeDataEntropy function.
This function returns the entropy normalized to interval [0, 8].

Sections are not unique to PE file format. In fact most of binary executable formats
support the concept of sections. Because of this, sections are uniformly represented by
the FileSection class. The FileSection class is used only as a container and entropy
calculation is done for each format separately. Parsing of ELF, MACH-O, COFF, and PE
sections is already implemented. Therefore, the parsers are modified to compute the section
entropy right away. Entropy of sections is computed by one of the following functions:

∙ ElfDetector::getSections
∙ PeWrapper::getFileSection
∙ MachODetector::getSections
∙ CoffDetector::getSections

Overlay is uniformly represented as sequence of bytes in FileFormat class, therefore
the overlay entropy is computed by a single function for all supported file formats.

Section entropies are shown in Listing 6.7.

Section table

i name flags offset fsize ... entropy
--
0 UPX0 uxrw 0x00400 0
1 UPX1 ixrw 0x00400 0x17600 7.993
2 UPX2 irw 0x17a00 0x00200 1.293

Listing 6.7: PLAIN presentation of section and overlay entropies

38

6.3 Source Codes, Compilation, and Execution
Throughout this work multiple source code files were either modified or written from scratch.
Most of the work has been implemented in FileInfo source code, which is a part of RetDec
source code. The source code of RetDec is publicly available in the official GitHub repos-
itory [9]. The repository was forked during development. After every completed task, the
source code of the fork was merged with the official repository.

Source code of FileInfo regression tests is part of RetDec regression tests source code
publicly available in another official GitHub repository [10]. Again, the repository was
forked and merged after the working tests for each task were completed.

Portability of RetDec compilation is achieved by using CMake. CMake is a cross-
platform tool for controlling software compilation process. It generates Makefiles later used
by the make tool to build the actual applications. The building process is described in more
detail in the RetDec GitHub repository.

FileInfo can be executed with numerous command line parameters. A small excerpt of
the parameters can be seen in Table 6.1.

Abbrv Full param Description
-h --help Display help
-v --verbose Print more information
-p --plain Print output as plain text
-j --json Print output as JSON
-X --explanatory Print explanatory notes

Table 6.1: FileInfo parameters

Besides the mentioned source codes, two python scripts for statistical analysis of mal-
ware were written from scratch. Results of the analysis is discussed in the following chapter.

39

Chapter 7

Testing and Results

As with any other commercial software, FileInfo had to be properly tested before going
to production. This chapter discusses testing methodology used during development of
FileInfo. Further, statistical discoveries of malware and overall results of the work are
presented.

7.1 Regression Tests
Numerous regression tests cases are designed to prevent modification of FileInfo source codes
and addition of new features to affect FileInfo’s behavior regarding previously implemented
features. Every single novel feature is tested with a set of test cases implemented in Python3
programming language. These tests are then run by RetDec regression tests framework
available at official GitHub repository [11].

Listing 7.1 depicts how tests are implemented.

class TestTypeRefHashDefault(Test):
settings = TestSettings(

tool=’fileinfo’,
input=’typeref_hash_default’,
args=’--verbose --json’

)

def test_correctly_computes_typeref_hash(self):
assert self.fileinfo.succeeded

self.assertEqual(self.fileinfo.output[’dotnetInfo’][’typeRefTable’]
[’crc32’], ’bb390cc9’)

self.assertEqual(self.fileinfo.output[’dotnetInfo’][’typeRefTable’]
[’md5’], ’93b7f964c87a94b07d1f6171f0b7d7c1’)

Listing 7.1: Regression test case implementation

40

7.2 Statistics
Design of some features presented in this work was conditioned on their prevalence in mal-
ware. More specifically, format (DIB vs PNG), compression status, dimensions, and other
properties of malware icons needed to be known before implementing of icon features. For
this reason, a Python tool for statistical analysis of malware icons was designed. Produced
statistical results can be observed in Table 7.1. The table shows frequency of property
values among all analyzed malware samples and frequency among malware that contained
an DIB icon in percentage.

Property Value All MW freq DIB icon MW freq
icon present true 49.71% -
icon present false 50.28% -
icon format DIB 49.35% 100.00%
width/height 32 38.19% 77.39%
width/height 48 6.98% 14.14%
width/height 16 2.76% 5.58%
width/height 64 0.41% 0.84%
width/height 47 0.4% 0.81%
color depth 32 24.86% 50.78%
color depth 4 11.18% 22.65%
color depth 8 7.84% 15.93%
color depth 24 4.94% 10.01%
compression none 49.35% 100.00%

Table 7.1: Icon statistics among malware

Dataset for the analysis was constructed from 50.000 random PE malware samples
obtained from VirusTotal1 database with VirusTotal intelligence downloader tool as follows:

$ python2.7 vt_intelligence_downloader.py -n 5
’type:peexe avast:infected nod32:infected kaspersky:infected’

Exact results of icon analysis is can be found in Appendix B.
Another tool was implemented to gather information about COM Visual Basic applica-

tions. The results are to be found in Table 7.2

Property Value DIB icon MW freq
COM Info structure present true 11.64%

Table 7.2: COM Visual Basic statistics among malware

Filtering of applications based on use of Visual Basic is not supported in VirusTotal
intelligence downloader, therefore a dataset for COM Visual Basic applications was con-
structed from proprietary malware collection of Avast company. A random sample was
taken from each of 11.000 malware clusters where Visual Basic was the detected language.

1VirusTotal is a website service aggregating many antivirus products and providing an enormous malware
dataset

41

7.3 Integration, Deployment and Feature Efficiency Evalua-
tion

As stated earlier, FileInfo is used by an internal clustering system Clusty at Avast. Clusty
divides real world malware into clusters based on features extracted by FileInfo. Statistics
presented here are: size of clusters, detection rate (by Avast), classification as malware,
potentially unwanted product, clean and unknown classes (also by Avast), and number of
features found in each clustered sample.

TypeRef features are now used in production release of Clusty. Table 7.3 shows clusters
of malware captured in one month period clustered solely by TypeRef Table MD5 hash.
The clusters are massive and false positive rates are nearly negligible. TypeRef hash is
a valuable feature as some of clustered samples barely share any other features.

Samples Detection MW PUP UNKNW CLEAN Shared
2.3M 99% 97% 0% 2% 1% 3
66K 100% 0% 98% 1% 1% 6
43K 1% 1% 0% 70% 29% 2

Table 7.3: TypeRef Table MD5 hash clusters (production release)

Icon MD5 hash is used in production release of Clusty as well. Table 7.4 shows samples
clustered based on icon MD5 hash.

Samples Detection MW PUP UNKNW CLEAN Shared
23K 100% 99% 0% 1% 0% 3
21K 100% 99% 0% 1% 0% 2
8K 100% 99% 0% 1% 0% 2

Table 7.4: Icon MD5 hash clusters (production release)

Dataset of 11.000 PE malware samples with icons from 20 clusters were reclustered
based on Icon MD5 and Icon AverageHash as shown in Table 7.5 and Table 7.6. Integration
of Icon AverageHash into Clusty is problematic, therefore icons are tested for exact match
of average hashes rather than the similarity metric designed in Section 5.2.2. Despite this,
AverageHash is more generalizing and overall effective.

Samples Detection MW PUP UNKNW CLEAN Shared
951 100% 100% 0% 0% 0% 4
933 100% 100% 0% 0% 0% 4

Table 7.5: Icon MD5 hash clusters

Samples Detection MW PUP UNKNW CLEAN Shared
1171 100% 100% 0% 0% 0% 4
933 100% 100% 0% 0% 0% 4

Table 7.6: Icon AverageHash clusters

Dataset of 10.000 Visual Basic malware samples was constructed from 2.000 clusters.
Clusters created based on Object Table MD5 hash can be seen in Table 7.7 and External

42

Table MD5 clusters are in Table 7.8. Object and External Tables are unreliable as previously
stated, thus some clusters are constructed incorrectly.

Samples Detection MW PUP UNKNW CLEAN Shared
200 53% 53% 0% 13% 34% 2
95 73% 71% 1% 8% 20% 2
81 100% 100% 0% 0% 0% 15
80 100% 100% 0% 0% 0% 7

Table 7.7: Visual Basic Object Table clusters

Samples Detection MW PUP UNKNW CLEAN Shared
248 100% 95% 5% 0% 0% 2
81 100% 100% 0% 0% 0% 15
80 100% 100% 0% 0% 0% 7
57 69% 64% 0% 10% 26% 2

Table 7.8: Visual Basic External Table clusters

The same Visual Basic samples were clustered based on most promising Visual Basic
CLSIDs. TypeLib CLSID clusters are shown in Table 7.9 and COM Object CLSID clusters
are presented in Table 7.10.

Samples Detection MW PUP UNKNW CLEAN Shared
81 100% 100% 0% 0% 0% 15
80 100% 100% 0% 0% 0% 7
40 100% 100% 0% 0% 0% 15

Table 7.9: Visual Basic External Table clusters

Samples Detection MW PUP UNKNW CLEAN Shared
30 100% 97% 0% 3% 0% 9
10 100% 100% 0% 0% 0% 11

Table 7.10: Visual Basic External Table clusters

Innovated version of FileInfo is now being integrated into production version of Clusty.
Further, it is planned to be integrated in newly designed internal systems of Avast company.

43

Chapter 8

Conclusion

This work focuses on static analysis of malicious binary executable software. The PE binary
executable format is discussed in more detail. Goals declared in the first chapter are fulfilled.
A multitude of features is designed, implemented, and tested on real world malware. The
most promising features are tested by Avast clustering system as an extension of the original
thesis assignment.

The symbol importing system of .NET binaries was analyzed, TypeRef Table recon-
structed, and its features were produced. Clustering based on TypeRef MD5 hash turned
out to be extremely effective. Binary files captured by Avast company within the span of a
month were divided into clusters of over 2.3 million samples with 99% accuracy.

Visual Basic applications were dissected and their metadata including project and lan-
guage related information extracted. Object Table and External Table were reconstructed
and their features produced. As an addition to the original thesis assignment, statistics
about COM data obtained from 11.000 analyzed Visual Basic malware samples were pro-
duced. Visual Basic GUIDs and CLSIDs and their persistence after recompilation was
analyzed as another addition to the original thesis assignment. Over 11.000 malware sam-
ples were clustered based on Object Table MD5 hash, External Table MD5 hash, COM
Object CLSID, and TypeLib CLSID.

Windows 10 desktop environment was analyzed for its choice of the main icon based on
dimensions and color depths. As an addition to the original thesis assignment, a statistical
analysis of icon properties of over 50.000 malware samples was done. An icon priority list
was constructed and the main icon extracted. Cryptographic and perceptual hashes of the
main icon were produced. Dataset of 11.000 malware samples with icons was clustered
based on MD5 and AverageHash. AverageHash showed better results despite the fact that
it is compared for exact match.

A PE anomaly scanner was implemented, section and overlay entropy computed, thread-
local storage information extracted, and project related strings and language identifiers were
obtained.

All features are implemented in feature extraction tool FileInfo. The innovated version
of FileInfo is now a part of the internal Avast clustering system, an open source decompiler
RetDec and it is used as a general purpose malware analysis tool.

This work primarily focuses on PE file format, however malware targets various plat-
forms such as Linux, MacOS, or Android. Future work should involve extraction of more
format specific features and an in depth analysis of overlay data to estimate its content.

The work was presented and demonstrated at a student’s conference Excel@FIT.

44

45

Bibliography

[1] Microsoft: Microsoft Portable Executable and Common Object File Format
Specification. Retreived from
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format.
accessed: 2019-05-13.

[2] AV-TEST: Malware statistics 2018. Retreived from
https://www.av-test.org/en/statistics/malware/. 2018. accessed: 2019-05-13.

[3] Microsoft: BITMAPINFO structure. Retreived from https://docs.microsoft.com/
en-us/windows/desktop/api/wingdi/ns-wingdi-tagbitmapinfo. 2018. accessed:
2019-05-13.

[4] Microsoft: Code Page Identifiers. Retreived from https:
//docs.microsoft.com/en-us/windows/desktop/Intl/code-page-identifiers.
2018. accessed: 2019-05-13.

[5] Microsoft: String structure. Retreived from
https://docs.microsoft.com/en-us/windows/desktop/menurc/string-str. 2018.
accessed: 2019-05-13.

[6] Microsoft: UX guide - Icons. Retreived from
https://docs.microsoft.com/en-us/windows/desktop/uxguide/vis-icons. 2018.
accessed: 2019-05-13.

[7] Microsoft: Visual Basic Guide. Retreived from
https://docs.microsoft.com/en-us/dotnet/visual-basic/. 2018. accessed:
2019-05-13.

[8] Microsoft: Windows Language Code Identifier (LCID) Reference. Retreived from
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-lcid/
70feba9f-294e-491e-b6eb-56532684c37f. 2019. accessed: 2019-05-13.

[9] Avast: RetDec: A retargetable machine-code decompiler based on LLVM. Retreived
from https://github.com/avast/retdec. 2019. accessed: 2019-05-13.

[10] Avast: RetDec Regression Tests. Retreived from
https://github.com/avast/retdec-regression-tests. 2019. accessed:
2019-05-13.

[11] Avast: RetDec Regression Tests Framework. Retreived from
https://github.com/avast/retdec-regression-tests-framework. 2019. accessed:
2019-05-13.

46

https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format
https://www.av-test.org/en/statistics/malware/
https://docs.microsoft.com/en-us/windows/desktop/api/wingdi/ns-wingdi-tagbitmapinfo
https://docs.microsoft.com/en-us/windows/desktop/api/wingdi/ns-wingdi-tagbitmapinfo
https://docs.microsoft.com/en-us/windows/desktop/Intl/code-page-identifiers
https://docs.microsoft.com/en-us/windows/desktop/Intl/code-page-identifiers
https://docs.microsoft.com/en-us/windows/desktop/menurc/string-str
https://docs.microsoft.com/en-us/windows/desktop/uxguide/vis-icons
https://docs.microsoft.com/en-us/dotnet/visual-basic/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-lcid/70feba9f-294e-491e-b6eb-56532684c37f
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-lcid/70feba9f-294e-491e-b6eb-56532684c37f
https://github.com/avast/retdec
https://github.com/avast/retdec-regression-tests
https://github.com/avast/retdec-regression-tests-framework

[12] Chen, R.: The evolution of the ICO file format. Retreived from
https://blogs.msdn.microsoft.com/oldnewthing/20101018-00/?p=12513/. 2010.
accessed: 2019-05-13.

[13] Chen, R.: The format of icon resources. Retreived from
https://blogs.msdn.microsoft.com/oldnewthing/20120720-00/?p=7083. 2012.
accessed: 2019-05-13.

[14] Chikofsky, E. J.; Cross, J. H.: Reverse engineering and design recovery: A taxonomy.
IEEE software. vol. 7, no. 1. 1990: pp. 13–17.

[15] Geddon, A.: Visual Basic reversed - A decompiling approach. Retreived from
http://sandsprite.com/vb-reversing/files/VISUAL%20BASIC%20REVERSED.pdf.
accessed: 2019-05-13.

[16] Hahn, K.: Robust static analysis of portable executable malware. Mater Thesis,
HTWK Leipzig. 2014.

[17] He, J.; Ivanov, P.; Tsankov, P.; et al.: Debin: Predicting Debug Information in
Stripped Binaries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM. 2018. pp. 1667–1680.

[18] Hexacorn: PE Section names. Retreived from
http://www.hexacorn.com/blog/2016/12/15/pe-section-names-re-visited/.
2016. accessed: 2019-05-13.

[19] Hornick, J.: Microsoft: Icons. Retreived from
https://msdn.microsoft.com/en-us/library/ms997538.aspx. 1995. accessed:
2019-05-13.

[20] Ionescu, A.: Visual Basic Image Internal Structure Format. Retreived from
http://sandsprite.com/vb-reversing/files/Alex_Ionescu_vb_structures.pdf.
2004. accessed: 2019-05-13.

[21] James Dickson Murray, W. V.: O’Reilly: Encyclopedia of Graphics File Formats.
Retreived from https://www.fileformat.info/format/bmp/egff.htm. 1996.
accessed: 2019-05-13.

[22] Krawetz, N.: Looks Like It. Retreived from http:
//www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html.
2011. accessed: 2019-05-13.

[23] Milkovič, M.: Systém pro detekci vzorů v binárních souborech. Brno University of
Technology. 2017.

[24] Peter Matula, M. M.: RetDec - An Open-Source Machine-Code Decompiler.
Retreived from
https://retdec.com/static/publications/retdec-slides-recon-2018.pdf.
2018. accessed: 2019-05-13.

[25] Pistelli, D.: The .NET File Format. Retreived from
https://www.ntcore.com/files/dotnetformat.htm. 2005. accessed: 2019-05-13.

47

https://blogs.msdn.microsoft.com/oldnewthing/20101018-00/?p=12513/
https://blogs.msdn.microsoft.com/oldnewthing/20120720-00/?p=7083
http://sandsprite.com/vb-reversing/files/VISUAL%20BASIC%20REVERSED.pdf
http://www.hexacorn.com/blog/2016/12/15/pe-section-names-re-visited/
https://msdn.microsoft.com/en-us/library/ms997538.aspx
http://sandsprite.com/vb-reversing/files/Alex_Ionescu_vb_structures.pdf
https://www.fileformat.info/format/bmp/egff.htm
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
https://retdec.com/static/publications/retdec-slides-recon-2018.pdf
https://www.ntcore.com/files/dotnetformat.htm

[26] Plachy, J.: Portable executable file format. Retreived from
http://skynet.ie/~caolan/pub/winresdump/winresdump/doc/pefile.html. 1997.
accessed: 2019-05-13.

[27] Porst, S.: PeLib: An open-source C++ library to modify PE files. Retreived from
http://www.pelib.com/index.php. 2005. accessed: 2019-05-13.

[28] Silver, M.: VB P-code Information. Retreived from http://sandsprite.com/vb-
reversing/files/VB%20P-code%20Information%20by%20Mr%20Silver.html.
accessed: 2019-05-13.

48

http://skynet.ie/~caolan/pub/winresdump/winresdump/doc/pefile.html
http://www.pelib.com/index.php
http://sandsprite.com/vb-reversing/files/VB%20P-code%20Information%20by%20Mr%20Silver.html
http://sandsprite.com/vb-reversing/files/VB%20P-code%20Information%20by%20Mr%20Silver.html

Appendix A

Format of Binary Data Structures

Multitude of structures are mentioned in this work. Excerpt of the most relevant ones are
presented here. All of the structures were adopted from cited sources.

A.1 Icon and IconGroup Resources

Offset Size Icon Group Directory [12]
0x0 0x2 reserved (must be 0)
0x2 0x2 type (must be 1)
0x4 0x2 number of entries
0x6 * entries array

Offset Size Icon Group Entry [12] [13]
0x0 0x1 icon width
0x1 0x1 icon height
0x2 0x1 color count
0x3 0x1 reserved (must be 0)
0x4 0x2 planes
0x6 0x2 bit count
0x8 0x4 size of icon in bytes
0xC 0x2 icon name identifier

Table A.1: IconGroup resource structure

49

Offset Size BITMAPINFOHEADER [21]
0x0 4 header size (40 bytes)
0x4 4 pixel width (signed)
0x8 4 pixel height (signed)
0xC 2 number of color planes (must be 1)
0xE 2 color depth; bits per pixel
0x10 4 compression method
0x14 4 image size in bytes (optionaly set)
0x18 4 horizontal resolution
0x1C 4 vertical resolution
0x20 4 color palette size (0 or 2𝑛)
0x24 4 number of colors used (ignored)

Table A.2: BITMAPINFOHEADER structure format

A.2 .NET Values

Value ResolutionScope Tags [25]
0x0 Module Table
0x1 ModuleRef Table
0x2 AssemblyRef Table
0x3 TypeRef Table

Table A.3: ResolutionScope Tags

A.3 Visual Basic Structures

Offset Size VB Header [20]
0x0 0x4 signature (”VB5!“)
0x6 0xE language DLL
0x14 0xE backup language DLL
0x24 0x4 primary LCID
0x28 0x4 backup LCID
0x2C 0x4 sub main code address (VB entry point)
0x30 0x4 Project Info structure address
0x54 0x4 COM Register Data structure address
0x58 0x4 offset to string containing EXE filename
0x5C 0x4 offset to string containing project’s description
0x60 0x4 offset to string containing name of the Help file
0x64 0x4 offset to string containing project’s name

Table A.4: VB Header structure format

50

Offset Size Project Info [20]
0x4 0x4 object Table address
0x20 0x4 native code address
0x24 0x210 project path in unicode
0x234 0x4 external Table address
0x238 0x4 number of externals (imports)

Table A.5: Project Info structure format

Offset Size External Table entry [15]
0x0 0x4 Import type (0x6 internal, 0x7 external)
0x4 0x4 Inside Import Data address/External Entry Data Address

Offset Size External Entry Data [15]
0x0 0x4 External module name address
0x0 0x4 External function name address

Table A.6: External Table structure format

Offset Size Object Table [20]
0x18 0x16 Object table GUID
0x2A 0x2 number of objects
0x30 0x4 Public Object Descriptors address
0x40 0x4 project name address
0x44 0x4 LCID
0x48 0x4 backup LCID

Table A.7: Object Table structure format

Offset Size Public Object Descriptors [20]
0x18 0x4 Object name address
0x1C 0x4 Number of methods
0x20 0x4 Method names array address

Table A.8: Public Object Descriptors structure format

Offset Size COM Register Data [20]
0x0 0x4 Offset to COM Register Info
0x4 0x4 Offset to project name
0x10 0x10 CLSID of TypeLib
0x20 0x4 LCID of TypeLib

Table A.9: COM Register Data structure format

Offset Size COM Register Info [20]
0x4 0x4 Offset to object name
0x14 0x10 CLSID of object
0x39 0x2 object type

Table A.10: COM Register Info structure format

51

A.4 Thread-local Storage Directory

Offset Size TLS directory [1]
0x0 0x4 Start address of TLS template
0x4 0x4 End address of TLS template
0xC 0x4 Address of TLS callbacks
0x14 0x4 Characteristics

Table A.11: TLS directory structure format

52

Appendix B

Statistical Analysis of Malware
Icons

In Table B.1, there are results of statistical analysis done on 50.000 random PE VirusTotal
malware samples. Table. The frequency of property values among all analyzed malware
samples is represented by the number of samples containing the value. Presented properties
are those of DIB header (BITMAPINFOHEADER) A.2. Values with minor prevalence were
removed.

Property Value All MW freq Property Value All MW freq
no icon: - 25144 compression: 0 24675
not BMP: - 259

bitmapSize:
0 7604

nonstand. dim.: - 399 4224 3414
size: 40 24675 640 3058

width/height:
32 19095 4096 2063
48 3489 3072 1722
16 1378 1152 1403
64 207 1024 862
47 199 9600 774
128 83 512 653
24 80 192 606
256 35

horizontalRes:
0 23722

40 23 2835 485
96 13

verticalRes:
0 23722

58 10 2835 485

planes:
1 24674

colorsUsed:
0 21220

0 1 256 2340

bitCount:
32 12431 16 1111
4 5590

colorImportant:
0 23633

8 3930 256 954
24 2470 16 85
1 250
16 3
0 1

Table B.1: Complete icon statistics among malware

53

	Introduction
	Static Malware Analysis
	Information Extraction
	Information Relevant to Malware Analysis
	Reverse Engineering Tools

	PE File Format
	Data Directories and Sections
	Icons
	VersionInfo Resource
	.NET
	Visual Basic

	Malware Analysis Tools Developed by Avast Software
	Clusty
	RetDec
	FileInfo

	Design and Extraction of Malware Features
	.NET Features
	Icon Features
	Visual Basic Features
	Detection Features

	Implementation of Extraction of Designed Malware Features
	FileInfo Infrastructure
	Feature Extraction
	Source Codes, Compilation, and Execution

	Testing and Results
	Regression Tests
	Statistics
	Integration, Deployment and Feature Efficiency Evaluation

	Conclusion
	Bibliography
	Format of Binary Data Structures
	Icon and IconGroup Resources
	.NET Values
	Visual Basic Structures
	Thread-local Storage Directory

	Statistical Analysis of Malware Icons

