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Abstract
The aim of this theses was to analyze and improve methods used for fine-grained vehi-
cle recognition and vehicle re-identification. The proposed method can be used both for
recognition and re-identification. It was based on 3D bounding boxes, which were used to
detect the vehicle on the image and then the vehicle was normalized by unpacking into
2D. Improvement of this method was done by determining direction of the vehicle and
distinguishing between front and rear while unpacking the vehicle. This proposed method
improved the existing method based on 3D bounding boxes for recognition, reducing er-
ror up to 13 % in single sample accuracy and up to 17 % track accuracy. However, no
improvement was gained for vehicle re-identification using LFTD aggregation.

Abstrakt
Práce se zabývala analýzou a následným vylepšením metod užívaných k rozpoznávání typů
vozidel a jejich re-identifikace. Navržená metoda může být využita jak pro rozeznání, tak
pro re-identifikaci. Byla založena na používání tzv. 3D bounding boxes. Pomocí těchto
boxů docházelo k detekci vozidla na obraze. Vozidlo bylo následně normováno rozbalením
do dvojrozměrné interpretace. Tato metoda byla vylepšena určením směru vozidla a ro-
zlišováním mezi čelní a zadní stranou vozidla během rozbalení třírozměrného modelu. Před-
stavená metoda vylepšuje stávající metodu pro rozpoznávání a snižuje její chybovost až o
13 % pro jeden vzorek a o 17% pro presnost trati. Pro re-identifikaci nedošlo k zvylepšení
při použití LFTD agregovani.

Keywords
convolutional neural network, vehicle re-identification, Fine-grained vehicle recognition,3D
bounding box
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Rozšířený abstrakt
V posledních letech je snaha o vytvoření co nejinteligentnějších systémů, které by šly použít
v dopravě. V tomto ohledu jsou navrhnuté metody a pokusy o sestavení samořídících
aut. Jiné výzkumné skupiny se zabývají zlepšením dopravních sledovacích systémů pomocí
automatizace.

Pro vytvoření těchto dopravních systémů je potřeba překonat obtížné problémy, jako je
rozpoznání typů vozidel a jejich následná re-identifikace. Tato práce je rozdělena na dvě
části (tj. rozpoznávání typů vozidel a re-identifikace vozidel), které jsou adresovány pomocí
jediné metody. Vozidlo je rozpoznané do co nejpodrobnějších detailů, tj. výrobce, model,
verze a rok výroby.

Navrhovaná metoda je založena na používání takzvaných 3D bounding boxů. Tyto boxy
lze automaticky získat z videozáznamů, které jsou pořízené pomocí sledovacích kamer a
které je možné použít k detekci jednotlivých částí vozidla, tj. přední/zadní, boční a vrchní
část. Bohužel nelze rozlišit mezi přední a zadní částí vozidla. Tento problém je řešen v
této práci, pomocí zjištění směru jedoucího vozidla. Následně dochází k rozbalení těchto
boxů do jejich 2D interpretace pomocí zjištěné homografie mezi jednotlivými body. Ty jsou
následně perspektivně rozbaleny.

Tato práce se zabývá rozlišováním mezi přední a zadní části pomocí detekce směru
vozidla. Směr jde vypočítat jako průnik přímky, která je získána ze středu bounding boxu
a úběžníku fotografie s polorovinou. Přímku lze vytvořit použitím bodů, pomocí kterých lze
určit přední a zadní část. Jestliže dojde k průniku mezi zmíněnou přímkou a polorovinou,
tak je vozidlo nasměrováno ke kameře (lze vidět přední část). Pokud k tomuto průniku
nedojde, je vidět zadní část. V navrhovaném postupu nedochází k tomuto výpočtu, jelikož
oba dva datasety, které jsou používány pro ohodnocení navržené metody, obsahují pomocné
informace. V Boxcars116k datasetu, který je použit pro rozpoznávání typů, je uveden směr
vozidel. Pro re-identifikaci, kde je použit CarsreId74k, není taková informace k dispozici.
Avšak lze určit pomocí kamery, jestli jsou vozidla zobrazené ze přední části nebo ne.

Jestliže dojde ke zjištění, že vozidlo nesměřuje ke kameře, dochází k vertikálnímu zr-
cadlení jednotlivých částí. To má za následek, že vozidla jsou otočená stejným směrem,
jako kdyby by byla čelně ke kameře, a tím pádem jsou stejné části vozidla na stejném
místě. Takhle zpracované vozidlo, které má normalizované části, je použito jako vstup do
neuronových sítí. Během trénování dochází ke dvěma modifikacím vstupních obrázků pro
vytvoření větší rozdílnosti mezi trénovacími daty. V první modifikaci dochází ke změně
barvy fotografií, jelikož výstup z kamer závisí na světelných podmínkách a konkrétním nas-
tavení každé kamery. V druhé modifikaci dochází k odstranění nějaké části vozidla, jelikož
ve zpracovaném záznamu nemusí být vidět vždy celé vozidlo.

Experimenty pro rozpoznávání typů vozidla byly provedeny pomocí BoxCars116k
datasetu. Tento dataset je pro testování rozdělený na 2 části, tj. těžký a střední. V těžké
části je nutné vozidlo identifikovat až do roku vytvoření. V předchozí práci, na kterou
tato metoda navazuje, docházelo k minimálním rozdílům mezi středí a těžkou částí. Z to-
hoto důvodu je použita těžká část. Během trénování byly použity obě zmíněné modifikace
vozidel. Pro testování byly použity 4 neuronové sítě (ResNet50, VGG16, VGG19, Incep-
tionV2). Naše metoda překonala původní metodu a došlo k redukci chyby až o 17 % pro
jeden vzorek a o 13 % pro trat. Druhý pokus byl proveden s používáním pouze jednotlivých
částí vozidla a jejich kombinace. Tato část byla testovaná pouze na ResNet50. Nejhorší
výsledek byl pro použití pouze přední/zadní části. To může být způsobené 2 důvody. Za
prvé, vozidla v datasetu mají podobné přední masky z důvodu místa vytvoření datasetu.
Za druhé, během trénování může mít určité vozidlo pouze přední část a ne zadní. Toto



podporuje i fakt, že kombinace přední části s bokem měla větší přesnost než horní část s
bokem. Toto testování bylo provedeno pro možné vylepšení této metody pomocí přidání
pozornostní vrstvy jako vstup pro neuronové sítě.

Experimenty pro re-identifikaci vozidel byly použité na CarsReId74k datasetu. Použité
byly 2 neuronové sítě (ResNet50 a Inception-ResNet-v2). Ohodnocení bylo provedeno po-
mocí dvou agregačních funkcí, tj. LFTD a average. Navrhovaná metoda, při použití
LFTD, nezlepšila stávající metodu, avšak pro average s použitím modifikací obrázku došlo k
mírnému zlepšení. Toto může být způsobené kratším trénováním extractoru rysů. Výsledek
mohlo také ovlivnit zvětšení prázdného prostoru ve vstupních obrázcích v navrhované
metodě. Pro lepší porovnání by bylo vhodné najít lepší parametry metody a delší trénování.

Další práce bz mohla spočívat v přidání pozornostní vrstvy nebo zlepšené rozbalování
pomocí detekovaných klíčových bodů.
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Chapter 1

Introduction

People have been trying to create a more intelligent transportation system for the last few
years. There have been attempts in the creating of self-driving electrical cars. Others have
been trying to improve traffic surveillance systems using automation.

Automatic traffic surveillance systems deal with many non-trivial tasks. For example,
they have to be able to detect a vehicle from images and to specify its type. Fine-grained
vehicle recognition deals with this problem. The goal of recognition is identification of
the vehicle and its make, model, submodel and model year. The biggest problems for
recognition are that images from surveillance cameras have usually lower resolution and
vehicle models are more and more similar. Surveillance systems have to be capable of re-
identifying vehicle, which can be useful for tracking specific vehicle. The biggest problem
is color inaccuracy. Each camera has different color accuracy and a lightning condition of
a given scene can change during the day. Many methods for re-identification are based on
the licence plate, but it might be missing from the image.

In this thesis, we present improvements for surveillance systems by increasing accuracy
of vehicle recognition and re-identification. The first part (chapter 2) informs about ex-
isting work both on recognition and re-identification. Fine-grained object recognition and
specific vehicle recognition are described more in detail. Moreover, it is focused on datasets
used for evaluating methods for vehicle recognition. The second part of this chapter in-
forms about general object re-identification followed by person re-identification. Person
re-identification is extremely important for surveillance systems. Last two parts deal with
vehicle re-identification and datasets. The second part of this thesis (chapter 3) presents
the suggested method, that can be used for vehicle recognition and re-identification. This
method is based on 3D bounding boxes unpacking. Unpacking is modified by determining
vehicle direction.
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Chapter 2

Related work

In this chapter different approaches used in object recognition and re-identification are
introduced. Recognition is further divided into general fine-grained object recognition,
vehicle recognition and vehicle recognition datasets. Re-identification is divided into gen-
eral object re-identification, person re-identification, vehicle re-identification and vehicle
re-identification datasets. Most approaches described in this chapter are based on neu-
ral networks. However, there are examples of non cnn-based approaches used for vehicle
recognition in subsection 2.1.2.

2.1 Fine-grained Object Recognition
Fine-grained object recognition aims to distinguish various categories with very small vi-
sual differences. Example of small vehicle differences are showed in figure 2.1 Earlier meth-
ods were based on specific algorithms. Usage of Convolutional neural networks(CNN) has
gained more popularity recently not just in object recognition, visual data mapping and
many more. These approaches have usually better results then non CNN-based methods.

2.1.1 General Fine-grained Object recognition

There are many different approaches for object recognition. Lin et al. [23] created a
new architecture for fine-grained image recognition called Bilinear Convolutional Neural
networks (B-CNNs).The images were represented as a pooled outer product of features
which were derived from two CNNs. Localized feature interactions were captured in a
translationally invariant manner. Their model was tested on birds, aircraft and cars. They
also showed that bilinear features are redundat and can be reduced in size while maintaining
accuracy.

Wu et al. [55] presented a deep attention-based spatially recursive model which can be
used both for fine-grained image recognition and re-identification. This model was tested
on birds, aircraft and cars recognition and on person re-identification while maintaining
performance of state-of-the-art methods. They achieved this results by using bilinear pool-
ing and also spatial long-short term memory units (LSTMs). The attention model was
leveraged between LSTMs and bilinear outcomes for a dynamic selection.

Lai et al. [17] used a different method that combined semi supervised learning with
fine-grained learning. Images were cut into multi-scaled parts and then they were fed into
the network for fine-grained features. These cuts were assigned with dynamic weights, so
the negative impact of background information could be reduced. They also presented a

3



Figure 2.1: This figure shows examples of cars that are very similar. These similarities
can be difficult to detect for people on high resolution photos. Cameras from surveillance
systems has usually lower resolution. Image taken from [43].

voted pseudo label (VPL) which is an efficient method of semi-supervised learning. VPLS
function was to pick up non-confused labels which were verified by prediction of different
classification models. Using this combination of VPL and multi-scale recognition in deep
CNN architecture, state-of-the-art performance in dogs and birds recognition was achieved.

Sumbul et al. [49] presented a novel methodology, i.e. the unified framework to simul-
taneously learn the alignment of data from multiple sources and the classification model.
This method involved a multisource region attention network that can compute per-source
feature representations. The combination of attention scores from all sources with feature
representations was used for object classification.

Shi et al. [43] used general deep CNN and improved it in two aspects. Firstly, they
replaced top fc layer of a model with fully connected layers and then trained them with the
cascaded softmax loss. This was made to improve a hierarchical label structure of image
classes in given dataset. Secondly, they proposed a novel loss function to make model
explicitly explore that label structure and similarity regularities of image classes. They
named this function as generalize large-margin loss. This can be applied to any deep CNN
and was tested on a Stanford car, a fine-grained visual classification-aircraft and CUB-200-
2011.
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Figure 2.2: Example of a image used in vehicle recognition using the licence plate. Example
shows extracted region of interest, where the licence plate is located. Image taken from
[36].

2.1.2 Fine-grained Vehicle Recognition

The main goal of fine-grained vehicle recognition is to distinguish and recognize the exact
vehicle type that involves the car manufacturer, model, sub-model and the model year. The
recognition systems that are fully aimed at vehicles benefit from the fact that vehicles are
rigid, have unique parts (e.g. license plates) and precise graphical models and are often
published (e.g. 3D car models,CAD models).

Non CNN-Based Methods

Methods described in this section are based on different approaches than neural networks.
Mostly these methods are quite old and are not used nowadays. Moreover they are generally
not as accurate as CNN-based or they are harder to implement.

The most dominant part of the vehicle is the license plate. Because of that there are
some methods (e.g. [18, 28, 36]) that are limited to only frontal/rear images. The general
approach is to detect the license plate and extract features that are in the near area of
the license plate. Example of region of interests where features are extracted can be sen in
figure 2.2.

Other non cnn-methods are based on usage of 3D car model for vehicle recognition.
Prokaj and Medioni [37] presented a method capable of recognizing vehicles make and
model in a video clip from any viewpoint. Vehicles were classified by vehicle pose estimation
in each frame. Pose was estimated by calculating 3D motion in every frame. After that
the models from database were modified to the same pose as the vehicle in the video and
projected to the image. Features were matched and score was computed. Exemplar from
the database with the best result was identified as model of the vehicle.They evaluated
their method on 20 clips and 36 different models.

Lin et al. [24] proposed to jointly optimize 3D active shape model fitting and fine-grained
classification by providing more information (i.e., viewpoint and precise part locations).
They evaluated their method on their own dataset FG3DCar achieving better results then
other existing methods. They also created analyses about dependence between 3D models
and fine-grained classification performance.

Stark et al. [48] used the deformable part model which utilized part detectors to encode
category-specific information. They also showed usage of fine-grained category prediction
to get information about depth from a single image. They also created a new dataset called
car-types on which they evaluated their method. This is a small dataset containing 2k
images of 14 different categories.
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Figure 2.3: LEFT: Steps in the construction of a 3D car model. The vehicle in the figure
is 2011 Honda Civic Sedan. The upper part consists of images used to generate the visual
hull. In the middle part is shown the visual hull and on the bottom part are shown 3D
space curves projected onto the visual hull. Image taken from [40].
RIGHT: Vehicle mask segmentation based on phase congruency map gradient treshold.
Image taken from [38].

Hsiao et al. [40] created a new approach for recognizing a car from a single image
from an arbitrary view. Their models consisted of 3D space curves which were obtained by
back-projecting image curves onto visual hulls and then used three-view curve matching as
shown in figure 2.3. Using chamfer matching of these curves on visual hull of the vehicle
that is automatically generated. Images of vehicles have to have clean background and
shots must be taken in regular intervals. They also presented two methods to obtain pose
of a car which is necessary to the initial 3D curve matching.

Kraus et al. [16] lifted two state-of-the-art 2D object representation into 3D on the level
of both a local feature appearance and a location. They used 3D CAD models for training
geometry classifiers. They also used 3D patch sampling and rectification for improving
results of methods based on 2D representation. They tested it on their BMW-10 dataset
and also on existing datasets. In both cases it gained significant improvements over existing
methods.

CNN-Based Methods

These methods are based on usage of neural networks to determine vehicle car make model
etc. Psyllos et al. [38] used a relatively simple image processing technique for licence plate
recognition, a vehicle mask and logo image detection. Vehicle mask was segmented based on
congurency map gradient threshold. This can be seen in Figure 2.3 They used a probabilistic
neural network as a classifier as it is suitable for a real-time application caused by speed of
this method. They also used a hierarchical database of images containing smaller databases
for each manufacturer. They tested this method on custom data and maintained accuracy
around 85 %.

Yu et al. [59] presented a different scheme called Feature Fusion based Car Model
Classification Net (FF-CMNET) based on the principle that frontal images of the car can
be partitioned into uppers and lowers. These parts exhibit distinct feature distributions,
but they are still correlated to allow a feature fusion. These sub-networks were called
UpNet and DownNet. The fusion of features at the output of these nets was two-step in
Fusion-Net.
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Figure 2.4: Examples of surveillance-nature data used in Compcars dataset which have
large appearance variations caused by different lightning, weather and traffic conditions.
Image taken from [58].

This method was tested on the CompCars dataset [58] and it outperformed state-of-the-
art methods.Examples of images from CompCars dataset,which is mostlz used for evaluating
methods can be seen in figure 2.4.

Biglari et al. [2] proposed the cascaded part-based system that used a latent support
vector for automatically finding the discriminative parts. At the same time, it also learnt
a part-based model for each category. A new training procedure, a novel greedy parts
localization and a multi-class data mining algorithms were also employed. Experiments
were made on their own data and also on CompCars where it achieved average accuracy of
95.55%.

Rachmadi et al. [39] used a different method to modify CNN to get a better performance.
They removed the last layer of existing CNN classifier and attached the hierarchical spatial
pyramid pooling. This pooling consisted of 2 independent pyramids that pooled features
from two different layers of CNN. In their experiment they modified Alex-Net and ResNet50
and used Boxcars dataset. This method showed overall better accuracy.

Tian et al. [53] used an iterative discrimination CNN based on selective
multi-convolutional region feature extraction. Features, which can be divided into global
or local features, were extracted from the original image with a higher activation response
value. Both global and local features were used to localize pivotal features. Pivotal features
were concatenated into a fully-connected fusion layer to predict the vehicle category. This
method gained 96.2% accuracy on CompCars and a little less on Stanford Cars-196 datasets.

Zhang et al. [62] used a lightweight CNN with combined learning strategy. Firstly,
the lightweight CNN for only fine-grained vehicle recognition was designed. Secondly, a
combined learning strategy including pre-training, fine-tuning training and transfer training
was created. The main purpose of this was to optimize parameters of the lightweight CNN.
The main advantage of their approach was to maintain accuracy of existing methods while
reducing complexity of the network.

Ma et al. [30] proposed the channel max pooling scheme with a new layer inserted
between fully connected layers and the convolutional layers. This scheme divided the feature
maps into several sub-groups to reduce the number of parameters via reducing the number
of channels in the CNN.

7



Experiments were created using Stanford Cars-196 and the Compcars dataset confirming
that this approach gained a slight improvement to existing methods while significantly
reducing the number of model parameters.

Fang et al. [9] dealt with recognizing problems by locating discriminative parts. Parts
were selected by localizing the most significant appearance variation according to the large-
scale training set. They also proposed a method based on feature maps taken from the
CNN. In their method both global and local features were extracted from the original
image. This method was evaluated on CompCars and the best accuracy was 98.29%.

Summary of Methods

The methods mentioned above usually have significant limitations. Images captured by
traffic cameras are often small or they can have different viewpoints, so methods based on
Front/rear parts of the vehicle cannot be used in many cases. Other methods based on 3D
information of vehicles can be hard to collect for a large-scale surveillance system, especially
for new models that will be released in the future. These new cars might not have a public
3D model or a number of models would be too enormous to be used. Our proposed method
does not have such limitations, because it works on the 3D bounding boxes that can be
created from video surveillance data [8, 7, 46].

2.1.3 Datasets for Fine-Grained Vehicle Recognition

There are some existing datasets (e.g. [41, 31]) that are used for vehicle detection and other
tasks. Unfortunately, these datasets cannot be used for fine-grained vehicle recognition,
because of a lack of annotation for the precise vehicle’s make and model.

For CNN training and for future deployment of real-world traffic surveillance applica-
tions, it is best to find as many samples or classes as possible. That is why some datasets
(e.g., [16, 20, 25]) that are used for the fine-grained recognition are not very practical for
training.

Yang et al. [58] presented the large CompCars dataset containing images from web-
nature and surveillance-nature. This dataset contains over 136k images capturing entire
cars and over 27k images just car parts. These images are from 163 different car makes
with 1716 car models. These images were taken from different viewpoints. The surveillance-
nature data contained 50k images captured from the front view.

Sochor et al. [46] created another large dataset Boxcars116k containing images from
various viewpoints all taken by numerous surveillance cameras placed on various locations
around Brno, Czech Republic. See figure 2.5. In this dataset there were 116k images. Each
vehicle was captured in multiple images to have more visual information.

Summary of Datasets

Most of datasets mentioned in this chapter has at least one limitation. They are not either
as precisely annotated as it is needed to be or they do not have many different classes to be
fully tested. Very popular is CompCars dataset, however, it does not contain information
about 3D bounding boxes. BoxCars116k is the most suitable dataset for our proposed
method, because it has information about bounding boxes, it is not limited to front/rear
images and it is big enough to be used for testing surveillance systems.
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Figure 2.5: Examples of images used in boxcars116k dataset. Image taken from [46].

2.2 Object Re-identification
Object re-identification aims to identify a specific object across multiple camera views
in different angles and places. This is a fundamental task for modern surveillance sys-
tems. Mostly it is used to determine two different groups. Many modern approaches deal
with re-identification of people (chapter 2.2.2) and other approaches deal with vehicle re-
identification (chapter 2.2.3). Prior mentioned two groups are usually necessary to track in
surveillance systems. It is almost impossible for human to track the specific person or the
car in huge surveillance systems.

2.2.1 General Object Re-identification

There are several approaches to object re-identification, which can be used for different
objects. Ayedi et al. [1] created the multi-scale covariance image descriptor and also the
quadtree based scheme. It was used to describe any object of interest such as a person, a
group of people, vehicles etc. They evaluated their method only on person-reidentification
using the VIPer dataset showing that multi-scale approach outperforms the already existing
mono-scale.

Tahir et al. [52] proposed the approach that generates camera-invariant object matching
scores. They were based on score variations in multiple camera pairs. This pair was
presented with two parametric distribution models. They tested this method on person
re-identification and gain improvement on two publicly available datasets.

Noor et al. [35] presented a novel aggregation scheme where subspaces were captured
on the position of key points. Grassmannian distance metric was used to discriminate the
aggregated information. They demonstrated that their scheme captured information com-
plementary to the Fisher Vector aggregation. A significant improvement to the matching
performance was shown in comparison to existing methods. Examples of different objects
and their differences that were used to evalueate their method can be found in figure 2.6.

Špaňhel et al. [47] proposed a method based on aggregation of features in the temporal
domain because there are usually multiple observations of the same object. Weighting
different elements by different weights of the feature vectors was used for the aggregation.
It was trained in an end-to-end manner using the Siamense network. It was tested on
vehicle and person re-identification and it outperformed already existing methods for a
feature extraction.
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Figure 2.6: Examples of different shots of same object with various differences. These
images are taken from various datasets which are used for object re-identification. Image
taken from [35]

2.2.2 Person Re-identification

In recent years attention to person re-identification (Re-ID) has increased due to its useful-
ness in surveillance applications. This problem is not trivial, because of person pose changes,
occlusion or illumination variations and low resolution of images produced by surveillance
systems. Various Datasets are used to evaluate these methods. Some examples of datasets
and images taken from them can be seen in figure 2.7 Approaches used for person Re-ID
can be mostly divided into two groups. First group deals with this problem by extract-
ing features. Zhao et al. [64] created a method based on unsupervised salience learning.
They extracted distinctive features without requiring identity labels while training. They
firstly applied adjacency constrained patch matching in order to build dense correspondence
between image pairs. This effectively handles misalignment which is caused by pose and
viewpoint variations. Secondly, they learnt human salience and incorporated it in patch
matching. They tested their approach on the VIPer and the ETHZ dataset.

Li et al. [19] introduced the algorithm to hierarchically cluster image sequences. Repre-
sentative data samples were used to learn a feature subspace so Fisher criterion was max-
imized. Both clustering and subspace learning process were iteratively applied to obtain
discriminative features. Then a learning step was applied to bridge appearance difference
between cameras. They evaluated this method on three datasets and outperformed exist-
ing methods. Lin et al. [21] proposed the consistent-aware deep learning approach. The
aim of their work was to obtain maximal correct matches for a camera network. They
exploited inter-camera and intra-camera cosistent-aware information in both training and
testing phases. They also created algorithm based on a gradient descent to obtain glob-
ally optimal matching. The method was evaluated on multiple datasets showing significant
improvements.

The other approach is by learning the distance using the projections of data items from
different cameras. Ni et al. [34] created the relative distance metric leaning algorithm. It
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Figure 2.7: Examples of pedestrian images from different datasets used for person Re-ID
(a), Market-1501 dataset (b), CUHK03 dataset (c), and CUHK01 dataset (d). Image taken
from [22].

was based on projection vectors learning and clustering centralization. It improved per-
formance and efficiency of methods while reducing a storage space and a computation
complexity. A conjugate gradient method was also used in the projection vector learning.
They evaluated their method on multiple datasets and shown improvement over existing
methods. Ding et al. [5] presented the scalable distance drive feature learning framework.
This framework was based on a deep neural network and was trained using a set of triplets.
The also developed a triplet generation scheme making the computational load dependent
on the number of original images instead of triplets. This helped with dealing with cubically
growing number of triplets. Lin et al. [22] proposed usage of reinforcement learning based
on recurrent neural network. The aim of this method was to simulate a local co-attention
matching. For image pair, model selected an optimal sequence of co-attention regions.
Experiments on three different datasets showed state-of-the-art performance mainly in ro-
bustness to occlusion cases.

Kansal et al. [14] proposed the Re-ID network called Hdrnet. This network consisted
of an encoder and a multi-resolution decoder, which could learn embedding invariant to all
problems mentioned above. They also proposed a new hybrid sampling strategy to boost
effectiveness of the training loss function.

Navaneet et al. [33] dealt with Re-ID from a video. They proposed a change to the loss
function, termed rank loss, to achieve a better performance and robustness of a system.
Chen et al. [4] dealt with video-based Re-ID differently by using a joint attentive spatial-
temporal feature aggregation network (JAFN). They introduced two different mechanisms
to feature aggregation.

Wu et al. [54] addressed the view discrepancy by optimizing the cross-entropy view
confusion by empowering the network with a similarity discriminator to promote highly
discriminant features in positive and negative pairs.

2.2.3 Vehicle Re-identification

There are various ways to re-identificate a vehicle. One of the first approaches in a vehicle
Re-ID was by licence plate recognition. However, this approach has huge disadvantages as
the licence plate can be completely missing from the image or it can be unrecognizable due
to car speed or low image quality.
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Bulan et al. [3] presented a new automatic licence plate recognition workflow with
novel methods for segmentation and annotation. They also improved plate localization and
automation for a failure. They firstly localize a licence plate region in a two-stage approach.
This was done by extracting set of candidates and then filtering them using a CNN classifier.
Images that failed were classified to identify reason of failure.They evaluated it on custom
data from US under realistic conditions.

Gou et al. [11] created a method based on character-specific extremal regions and
hybrid discriminative restricted Boltzmann machines. The licence plate was detected by
top-hat transformation and various validations. After a successful detection character-
specific extremal regions were extracted and then the pattern classifier was applied to
recognize characters. Their method is robust to illumination and weather changes.

Kluwak et al. [15] presented an approach for recognizing the licence plate from video.
They focused on eliminating errors caused by poorly or covered visible licence plates. It is
based on a combination of single frame licence plate recognition with object tracking meth-
ods. They tested it on five video sequences from surveillance cameras in different weather
and lightning conditions and showed a significant improvement over existing methods.

Feature Representation

Other often used approach is by feature representation. Feature representation can be
divided into two classes. The first class deals with hand-crafted representations. Herout et
al. [60] presented a method based on a 3D bounding box from a video. Linear regressors
were used to re-identify the vehicle, color histograms and histograms of oriented gradients.
Features were used separately in order to get the best accuracy while maintaining as short
computation time as possible. With this method they were able to fluently re-identify 12
vehicles per second.

Feris et al. [10] created the end-to-end system for vehicle retrieval based on attributes
taken from video surveillance cameras. A feature pool containing many different feature
descriptors was used. In their work they used time, date, color, direction and speed of the
vehicle to re-identify. Their system was robust for crowded scenes and for environmental
changes. The other method used a deep learning feature representation. They evaluated
this method on real surveillance data.

Lie et al. [26] proposed the Deep Relative Distance Learning method. Two-branch deep
CNN was exploited to project raw vehicle images into an Euclidean space. Distance could be
there directly used to measure the similar arbitrary of two vehicles. They used CompCars
and also a custom dataset called VehicleId to evaluate their method. Experiments showed
that their approach outperformed sever state-of-the-art methods.

Shen et al. [42] created a two-stage framework that included complex spatio-temporal
information. It was used for more effective regularizing results. A candidate visual-spatio-
temporal path was generated from a pair of images with corresponding spatio-temporal
information. The Chain Markov Random Fields model was used for generation. After that
the Siamense-CNN+Path- LSTM model took that path to generate a similarity score. They
used the VeRi-776 dataset and their method outperformed state-of-the-art methods.

Yan et al. [56] exploited multi-grain ranking constrains by two different methods. The
first approach generalized the conventional pairwise ranking by considering binary relations
to multiple relations. The second used permutation of a multi-grain list and it optimized
the ranking using the likelihood loss function. Both of this approaches were implemented
with multi-attribute classification in a multi-task deep learning framework. They created
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Figure 2.8: Example of Detecting features on VehicleId dataset. These are the results of
single shot detection with focal loss and single shot detection with lower layer respectively.
This image is taken and method proposed in [65].

datasets VD1 and VD2 to evaluate this method and for comparison with other methods
the VehicleID dataset was used.

Zhang et al. [63] improved the triplet-wise training in two ways. They augmented a
stronger constraint namely classification-oriented loss with the original triplet loss. Rel-
ative similarities between images in a tripled were ensured by the triplet stream. The
classification stream is to strengthen the constraint from information of vehicle ID. They
also created a new triplet sampling method. It was based on pairwise images and aimed
to eliminate a misleading problem of triplet loss. It was tested on the VehicleID dataset
showing improvements over existing methods.

Zhu et al. [68] designed quadruple directional deep learning networks to extract quadru-
ple directional deep learning features of vehicle images. These networks had very similar
overall architecture but they differed in a directional feature pooling level (e.g. horizontal
average, vertical average, diagonal, etc.) to compress the basic feature maps into hori-
zontal. These maps were then spatially normalized and concatenated together. VeRi and
VehicleId datasets were used to show that these methods outperformed multiple state-of-
the-art methods.

Other Methods

Zhao et al. [65] used the Single-shot detection as a baseline model for detecting attributes.
They added more proposals from low-level to increase accuracy of a small object and also
employed the focal loss improving the mean average precision. Example of all detected
attributes for specific vehicle can be seen on figure 2.8.

Zhou et al. [66] combined CNN with LSTM to model transformations across different
viewpoints of vehicles. They also presented in [67] the Viewpoint-aware Attentive Multi-
view Inference model. This model extracted the single-view feature for each input image
aiming to transform these features into a global multiview so it could be better optimized.

Lou et al. [29] proposed the end-to-end embedding adversarial learning network capable
of generating samples localized in the embedding space.
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Figure 2.9: Examples of images in the PKU-VD dataset. Images on the left side are part
of the VD1 dataset and on the right side are from VD2. Images of the same vehicle are
shown in each row. Image taken from [56].

In their learning scheme, hard negative samples automatically generated in the specified
embedding space could improve the capability of the network.

Guo et al. [12] created the Two-level attention network that was supervised by Multi-
grain Ranking loss to learn an efficient feature embedding.

The attention network was created by a hard part-level attention and a softy pixel
attention combination. This network could learn a feature space where both intra-class
compactness and inter-class discrimination were well guaranteed.

Summary of Methods

As described there are plenty of methods to re-identify a vehicle. Approaches using vehicle’s
licence plates have huge limitations. The mostly used approach is by a feature representa-
tion or by modifying neural networks. In our method we propose a similar method as is used
in vehicle recognition based on 3D bounding box and direction of a car. Both attributes
can be detected without the necessity of different external hardware.

2.2.4 Datasets for Vehicle Re-identification

Liu et al. [27] published the large dataset VeRi-776 for vehicle re-identification. This
dataset contained over 40k bounding boxes made from 619 vehicles that were captured
by 20 cameras. Each vehicle was captured by 2 18 cameras. These cameras were in
different viewpoints, illuminations and resolution. The dataset also included important
vehicle information such as type, color or bounding box.

Yan et al. [56] created the PKU-VD dataset. This dataset consisted of 2 smaller
datasets which were both well-annotated and high-quality named VD1 and VD2. VD1
consists of images from high resolution traffic cameras while images for VD2 were obtained
from surveillance videos. Examples of images are showed on figure 2.9. If both datasets
are combined together there would be nearly 2 million images from over 2 thousand vehicle
models. Due to privacy protection cars in this dataset did not have readable licence plates.
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Figure 2.10: Examples of images in the CarsReId74k dataset. The left side anotated with
a blue color is query, a green color is used in positive samples and a red color in negative.
Negative samples are sorted from hard to easy (left to right). Image taken from [47].

Identity number, vehicle model and color and even made year were used to determine
the identity of a car. To maintain consistency all images that belonged to the same vehicle
ID were annotated with a same color and a vehicle model. To address color issues in
different lightning situations 11 common colors were annotated.

Liu et al. [26] created the VehicleID dataset where images were taken from a frontal or
rear viewpoint above the road. This dataset contained over 221k images of 26267 vehicles
captured by non-overlapping surveillance cameras. That means, there were over 8 images of
one vehicle in average. The dataset was split into two similar-sized parts for model training
and testing.

Spaňhel et al. [47] created a new CarsReId74k dataset containing almost 74k images of
a vehicle track from 66 cameras. Examples can be found on figure 2.10. These tracks were
precisely annotated using licence plates and were also manually verified to eliminate errors.
This dataset contained information about 3D bounding box created using method which
was described by [8]. The dataset was not suitable for methods based on licence plates,
because it contained images from non zoomed-in cameras where licence plates are almost
unreadable.

Summary of Datasets

There are various datasets, which can be used for vehicle re-identification as described
above. In VehicleID and PKU-VDs datasets images are taken from frontal/rear viewpoints.
As our proposed method is not limited to viewpoints, these are not suitable. The Veri-776
dataset is too small to be used for testing surveillance systems. CarsReId74k does not have
these limitations as there are enough different vehicles and does not limit to front/rear
viewpoints. It also has information about bounding boxes which are utilized in our proposed
method.
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Chapter 3

Proposed Methodology

In this chapter, a change made to vehicle recognition and re-identification is presented.
The method is very similar for both of these challenging tasks. The only difference is
implementation in detection of the vehicle direction in the picture. The goal of this part is
to fully inform about changes that were made in both fine-grained vehicle recognition and
re-identification that increased accuracy of both methods.

3.1 3D Bounding Boxes
This method, that will be used both for classification and re-identification was based on
the work proposed by Sochor et al. [46] utilizing 3D bounding boxes. These boxes can be
obtained by traffic surveillance cameras. 2D bounding box, vehicle contour, directions to
vanishing points and different versions of 3D bouding boxes are showed on figure 3.1. These
are used for estimation of 3D bouding boxes that was metntion in work [46]. 3D bounding
boxes allow us to determine individual parts of the vehicle, such as roof, side and rear (or
front) viewpoint. In this method we distinguished between the front and rear part of the
vehicle by determining direction of the car.

3.2 Direction of a Vehicle
Vanishing points can be used to determine the direction of a car. As mentioned in [46]
the exact location of a vanishing point is not necessary while estimating 3D bounding
boxes. The same rule applies to direction determination of the vehicle, because we calculate
whether the line from center of the bounding box to the vanishing point intersect a plane
that is created from points used in 3D bounding box for creation of the front part. If there
is an intersection the car towards the camera that means we can see front of the vehicle. If
there is no intersection, we can see rear side of the vehicle.

For fine-grained vehicle recognition, we did not have to calculate directions of the vehicle
using this method thanks to data provided in BoxCars116k dataset 4.1.1. This dataset con-
tains information about the camera and simultaneously vehicle positioning which explains
whether vehicles in photos taken by this camera face towards camera or not. However,
some of the cameras that were used for obtaining of this data are positioned in a big an-
gle, therefore accuracy of this value was tested. After few testing images, this value and
bounding boxes were corrected, so we used this value for determining the direction of a
vehicle.
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Figure 3.1: Example of automatically obtained 3D bounding box used for fine-grained vehi-
cle classification. Top left: vehicle with 2D bounding box annotation, top right: estimated
contour, bottom left: estimated directions to vanishing points, bottom right: 3D bounding
box automatically obtained from surveillance video (green) and estimated 3D bounding box
Image taken from [46]

Direction of vehicle for re-identification is implemented a bit differently. CarsReId74k
dataset does not contain any information about direction of the cars. However, Photos
from this dataset can be divided into front-facing and rear-facing cameras. Each image has
information for which camera was it taken from. Then we can determine if we can see fron
or rear of the car only by that value.

Image Normalization

The normalization was done using unpacking the image into a plane. The unpacking is done
by retrieving homography between points and then the parts of the image are perspectivly
wrapped. The plane consist of rectified versions of front (F), rear (R), top (T) and side
(S). This rectified versions are then formed into matrix.This Matrix can be seen in equation
3.1.

𝑈 =

(︂
0 𝑇 0
𝐹 𝑆 𝑅

)︂
(3.1)

Difference is made in this matrix in determining front or rear part of the vehicle by direction.
As there can be only front or rear part of the vehicle, when is missing, it is filled with 0 as
are corners of this matrix.

The top corners of this submatrix are filled with zeros. The next part is determined by
direction of the vehicle, as there can by only front or rear part of the vehicle. If vehicle is
facing towards the camera (front mask is showed in the image), nothing is changed from
previous work (Sochor et al. [46]).
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Figure 3.2: Examples of images that are used as an input to the neural network Top Vehicles
face towards the camera Bot Direction of vehicles are against the camera. Vehicles on these
photos are vertically flipped to be as much corresponding as possible with images facing
towards the camera.

Figure 3.3: Examples of data augmentation techniques used while training data. On the
left side is the original image and other images are examples of different versions of aug-
mentation. Top of the are images modified by Color and on bottom ImageDrop. (Taken
from [46])

However, if vehicle is not facing towards the camera, each part of the vehicle (i.e., top,
side and rear) is vertically flipped and filled on corresponding parts on the matrix. Using
this, same part of the vehicle will be on the exact place in both cases. This can be seen in
figure 3.2.

This is the version of the vehicle, which is used as an input to the neural network. The
biggest advantages of normalization to the 2D is that there are localized parts of the vehicle.
Other advantage is that position of the vehicle is normalized and all of this can be done
without the usage of other algorithms or Deformable Parts Model (DPM).
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3.3 Additional Training Data Augmentation
To create bigger diversity of the training data additional data augmentation was proposed.

The first one called ImageDrop deals with possibility that some parts of the car would
not be available all the time. This is inspired by work of Zeiler and Fergus [61]. in this work
they evaluated what infualce will it cause, if a part of the input image will be covered on the
probability of the ground truth class. In our modification, we take a random rectange in the
image and fill it with random noise. This will effectibely drop any important information
that was in this part of the image.

The second one called Color deals with the color inaccuracy caused be different lightning
situation or color settings of each camera this causes that in fine-grained vehicle recognition
color is irrelevant so to increase color variability between shots of cars in training samples,
random alternation of the color of the images was proposed. The alternation is done in
the HSV color space by adding random values to each pixel of the image. The value is the
same for one picture and each HSV channel is proccessed separately.

Examples of both used augmentations can be found on Fig. 3.3.
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Chapter 4

Experiments

4.1 Vehicle Recognition

4.1.1 Dataset

To train and validate presented method, Boxcars116k dataset was used. As mentioned in
section 3, presented method is not limited to front/rear images. This method is based on
3D bounding boxes which are also included in this dataset.

Images in this dataset were taken from surveillance cameras. The aim of this dataset is
to help to test methods aimed at traffic surveillance applications. Images appearing in this
dataset can be from front or rear side. In some occasions it is hard to automatically detect
directions of the car.

Statistics

There are over 116k different images captured by 137 different cameras with a large variation
of viewpoints. In this pictures there are over 27k vehicles of 45 different makes. That means
there are 693 fine-grained classes. Eeach class differ in make & model & submodel & year the
car was manufactured. For each image datataset includes important information necessary
for this method. Each photo has information about which camera took the photo. From
that we can get values of car directions and it also has information about 3D bounding box
that is necessary for unpacking vehicle.

Training & Test Splits

BoxCars116k dataset was split into a training and a testing part by randomly selected
cameras for training. From these cameras all tracks are used while training and the rest are
used for testing. Because of this approach the classification algorithms are tested on images
of vehicles which are from previously unseen cameras. This also means that some vehicles
that appeared in a training phase are tested from a different viewpoint. Testing part is
divided into two splits. The first one is called medium and in this case it is necessary to
recognize a precise type and also all vehicles of the same subtype are present in the same
class. The other is called hard and in this case nothing is omitted so the precise type must
be recognized including the model year. The hard split contains 107 fine-grained classes
with over 11k tracks. That means more than 51k images are used for training. For testing
there are nearly 40k images of 11k tracks. More detailed results can be found on table 4.1
where are showed detailed statistics for each split and also overall statistics of this dataset.
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hard medium
classes 107 79
train+val cameras 81 81
test cameras 56 56
training tracks 11 653 12 084
training samples 51 691 54 653
validation tracks 637 611
validation samples 2 763 2 802
test tracks 11 125 11 456
test samples 39 159 40 842

tracks 27 496
samples 116 286
cameras 137
make 45
make model 341
make model submodel 421
make model submodel year 693

Table 4.1: Detailed statistic of the Boxcars dataset. Left: Detailed statistics of training
split. Right: Overall statistics of the Boxcars dataset.

4.1.2 Experiments

We tested our proposed methodology on the Boxcars116k dataset. Proposed changes were
evaluated and performance using different nets were compared. Classification accuracy was
compared with existing work to determine usefulness of proposed change. This method was
tested following neural networks:

∙ ResNet50 [13]

∙ VGG16, VGG19 [44]

∙ InceptionV3 [51]

Images taken from BoxCars116k dataset were resized to 224 x 224 to be used as an input
to these nets.

NVIDIA RTX 2070 was used for training and testing all networks. We used the same
batch size, the same initial learning rate and learning rate decay and the same hyperpa-
rameters for every net. Initial learning rate was set to 0.01, weight decay was 5 · 10−4.

Standard data augmentation as horizontal flip and randomly moving bounding box,
which were presented in [44] were also used while testing.

The accuracy improvement was evaluated for each net in the classification error reduc-
tion and also in percentage points. Sochor in their methodology [46], which was also tested
on Boxcars116k dataset, showed that the results were almost identical for the medium and
the hard split. That is why our method was mainly tested on the hard split. As shown
in table 4.3, this method showed promising results as it has nearly 85% accuracy across 3
tested CNN. The only exception is InceptionV3.

There were experiments of usage only parts of the cars while unpacking vehicle. There
were attempts on only front, side, top/rear parts. and also combination front/rear part
with side and top with side. This was tested only on ResNet50 CNN and as showed on
the second part of table 4.3. Using only parts did not improve accuracy of any method.
Parts were re-sized to fill the whole matrix, with exception of front/rear where there was
each time only half of the matrix filled. As data shows using only front or rear part of the
vehicle gain worst accuracy. This is probably caused by the nature of data in given dataset
and more importantly, car which was trained on front part can have rear part in testing
phase. This supports the fact that combination of front with side was more accurate than
usage of top with side.
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Net Error Reduction

Single Sample Track Acc
ResNet50 13,25/2,1% 13,03/4,53%
VGG16 8,51/6,73% 5,41/7,07%
VGG19 8,39/11,47% 7.54/17,45%
InceptionV3 — /10,44% — /14,04%

Table 4.2: This table shows error reduction between proposed method and results taken
from [46]/[45]. Our modification outperformed an original approach in each net. Error
was reduced up to 13,25 % on a single sample using ResNet50. Track accuracy error was
reduced up to 17.45 %, that was gained on VGG19.

net Accuracy[%] time[ms]
Single sample acc Track acc processing time

Resnet50 84.62 91.99 3.7
VGG16 85.17 92.65 3.4
VGG19 85.26 92.76 3.8
Inceptionv3 83.44 91.37 2.6
Front/rear 54.83 61.64 3.7
Side 80.55 89.73 3.8
Top 58.13 72.15 3.9
Front/rear+side 83.82 91.23 4.0
top+side 80.80 89.59 3.7
ResNet50 Sochor 82.27/84.29 90.79/91.61 — /5.8
VGG16 Sochor 83.79/84.10 92.23/92.09 — /5.4
VGG19 Sochor 83.91/83.35 92.17/91.23 — /5.4
InceptionV3 Sochor — / 81.51 — /89.96 — /6.1

Table 4.3: Summary of accuracy of modifying images depending on the direction of vehicle.
It was tested on hard split BoxCars116k dataset with image modification using 3D bounding
boxes that are included in dataset. Top part of this table shows result of presented method
where input was whole vehicle. Middle part shows result where input was only part of the
vehicle. These results were gained on ResNet50. Last part informs about results taken
from [46]/[45]
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Figure 4.1: Recording setup for aquision CarsReId74k dataset.Data was recorede on two
bridges using multiple cameras as is showed in the picture on left side. Some of the images
are taken from one bridge as shows image on the right side. There was one camera zoomed
in to detect licence plate. That was used for constructiong the ground truth labeling. Image
taken from [47])

Comparison With Other Methods

The proposed method is based on the method presented by Sochor et al. [46]. They
presented Boxcars116k dataset in this work. Results in the last part of table 4.3 are as
results taken from paper [46] / results taken from GitHub [45]. These are same methods
but differ in implementation. Values are taken from hard split with image modifiers on.
Unfortunately, there were no results for IncpetionV3 in their paper so values can be taken
only from Github. As is showed in this table, our modification of the method outperformed
theirs in every net. Error calculation between this proposed method and results taken from
their paper/website can be found in 4.2. It gained up to 13,25 % error reduction on single
sample using ResNet50 and up to 17.45 % reduction on track accuracy on VGG19.

4.2 Vehicle Re-identification

4.2.1 Dataset

For training and testing CarsReId74k dataset was used. There are more datasets that can
be used as mantioned in section 2.2.4, but others failed to succed in condition needed for this
method.Firstly, different identities (different licence plates) must be presented. Secondly,
there should not be limited to front/rear images and finally, it should be big enough to be
tested for surveillance systems. This dataset was presented by Špaňhel et al. [47].

Photos were taken by 4 cameras on bridge above highway and four cameras on another
bridge as showed on 4.1. One camera was zoomed in to read the licence plate of vehicles.
Licence plates from zoomed video were detected using ACF detector [6] and vehicle were
recognized by [69]. Vehicles were manually verified to eliminate any errors.

Statistics

Dataset is divided into 3 parts (i.e., training, testing, validation). There are over 3 million
images of about 17k unique vehicles. More detailed statistics can be found in table 4.4.
These were taken from 66 different cameras. The dataset contains almost 74k images of
vehicle tracks. All of them have precise identity annotation which was acquired using license
plates.
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training test validation total
cameras 30 30 6 66
unique vehicles 7,658 9,678 1,100 17,681
tracks 32,163 36,535 5,278 73,976
images 1,469,494 1,467,680 305,539 3,242,713
positive pairs 125,086 129,774 22,376 277,236
negative pairs 1,149 1,459 881 1283

Table 4.4: Statistics of CarsReId74k dataset. The sum of unique vehicles is higher than
the total number of unique vehicles. This is caused by a small number of vehicles which
appear in all sets.

For each vehicle, there were constructed 3D bounding boxes. Sochor [46] showed that
they are beneficial for fine-grained recognition and in this method they are used for re-
identification.Also for each vehicle, its specific line was assigned. In the end matching
of vehicles from zoomed images to non-zoomed was made and all vehicles that did not
match were omitted. Most of vehicles from non-zoomed-in cameras have unreadable licence
plate, so this datasest is not souitable for methods based on licence-plates due to maintain
anonymity of the vehicles.

4.2.2 Experiments

This proposed method was tested on the CarsReId74k dataset, as this dataset is not limited
to front/rear viewpoints and there is information about 3D bounding box for each vehicle
shot. This method was tested on ResNet50 [13] and Inception-ResNet-v2 [50]. Images are
resized to 331 x 331. yielding feature vectors. Their length is 1536 for Inception-ResNet-v2
and 2048 for ResNet50. This is used for each input image. Same image modifiers are used
as in 4.1. For evaluation proposed method on dataset, mAP and hit at rank were used
as metrics. Others mostly report hit rates at rank 1, 5, 10 and 20.

The feature extractor was fine-tuned with Adam optimizer, learning rate 0.0001 batch
size 16. Each network was learned for 50 epochs. Standard augmentation techniques (shift-
ing of the bounding box and random flip) were also applied. There are several techniques
that can be applied to feature aggregation in temporal domain such as standard average
pooling of feature method, RNN [32], Neural Aggregation Network [57] etc. In this evalu-
ation, Learning Features in Temporal Domain, which was presented by Špaňhel et al. [47]
will be used as it outperformed in their work other aggregation methods.

For average pooling final features were 1536 dimentional, while fro LFTD it was 128.
Training of LFTD method was done by Adam optimizer with learning rate 1e-4.4 and
margin 2.

Results can be found in 4.5 and Cumulative Matching Curve is shown in figure 4.2, pro-
posed method gained better results for Inception-ResNet-v2 than for ResNet50. Networks
weere tested with LFTD_WE and avg aggregation methods. Unpacking with direction
was used for all tests. Results where image modifiers were used are noted as -IM. In that
table there are results for Incpetion-ResNet-v2 -original. These results were taken from
[47]. However, they did not report results for ResNet50. Proposed Method gained Hit@20
93.0 % for LFTD_WE using Inception-ResNet-v2 for feature vector length 128. ResNet50
gained Hit@20 91.3 %. These results were gain with using image modifiers.
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Figure 4.2: Cumulative matching curve for different methods. Results are taken using
Incpetion-ResNet-v2 on CarsReId74k dataset. Proposed method is named DIR as direction.
Reported results are with Image modifiers (IM) and without image modifiers. Results for
comparation (dotted) were taken from [47]. For LFTD method, 128 dimentional feature
vector was used.

4.2.3 Comparison with original method

The best way to compare presented method is with method created by Špaňhel et al.
[47]. This method is based on theirs as it also use 3D bounding boxes with same feature
aggregation method. The difference between these methods is in unpacking bounding box.
In their approach, they do not differ between front/rear part of the vehicle. As showed
in table 4.5 their method slightly outperformed ours for LFTD aggregation, however when
using image modifiers and average aggregation, proposed method outperformed theirs. This
might be caused mainly by two reasons. They trained feature extractor with smaller batch
size (4) for higher number of epochs (300) and LFTD aggregation method choose which
parts of the image will be used. Vehicles modified by proposed method has more empty
spaces as there is different in positioning between front and rear part of vehicle.
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Hit@Rank

Net Aggregation mAP 1 5 10 20
ResNet50 -IM avg 0.618 53.6 71.0 77.2 82.9
Inception-ResNet-v2 -IM avg 0.678 59.5 77.5 83.2 87.8

ResNet50 avg 0.558 47.1 65.5 72.2 78.5
Inception-ResNet-v2 avg 0.593 51.2 68.4 74.5 80.2

ResNet50 IM LFTD_WE 0.728 64.9 82.3 87.4 91.3
Inception-ResNet-v2 IM - LFTD_WE 0.745 66.2 84.8 89.6 93.0

ResNet50 LFTD_WE 0.694 61.0 79.2 84.8 89.4
Inception-ResNet-v2 LFTD_WE 0.679 59.0 78.5 84.5 89.3

Inception-ResNet-v2 -orginal avg 0.652 58.4 72.8 78.0 83.1
Inception-ResNet-v2 -orginal LFTD_WE

Inception-ResNet-v2 -orginal -IM avg 0.672 61.2 73.8 78.7 83.5
Inception-ResNet-v2 -orginal -IM LFTD_WE 0.779 71.3 85.8 89.9 93.1

Table 4.5: Summary Results for vehicle re-identification. Results for net with original was
taken from [47]. leanght of feature vector for LFTD_WE aggregation was 128. Results
shows proposed method on two networks with Image Modifiers or without Image modifiers
with avg aggregation or LFTD_WE aggregation.
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Chapter 5

Conclusion

The aim of this thesis is to present a new method that can be used for both fine-grained ve-
hicle recognition and vehicle re-identification. The proposed method is based on unpacking
3D bounding boxes into 2D pane where vehicles are normalized. The change to unpacking
is presented using direction of the vehicle to determine if there is a front or rear part of the
vehicle.

The proposed method outperformed the original method reducing error up to 14 % on
single sample accuracy and up to 17,45 % on track accuracy. There is also showed that
using only parts for vehicle recognition did not increase accuracy on given method. Using
only front/rear part gained lowest accuracy. This might be caused by data nature of used
datasets or that some vehicles were captured only by front/back while training as using
side with front/rear gained higher accuracy than using top with side. Improvements for
fine-grained vehicle recognition can be done by adding attention layer to neural networks
or by appending car mask as an input to the neural networks.

For vehicle re-identification proposed method did not gain any improvements over exist-
ing method for LFTD aggregation. However, it improved for avg aggregation when image
modifiers were used. This can be cause be lower number of training epochs and higher
batch size. Finding optimal parameters could improve performance of this method. An-
other reason why it happened could be caused by smaller vehicle-sub-parts as there are
more parts of the images filled with zeroes due to front/rear separation.
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