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Abstract
Performance testing is a critical factor in the optimisation of programs during its develop-
ment, but it is still not so well developed in comparison to functional testing. A frame-
work Perun provides full automation of performance management, thereby contributing
to the development of this area. We have introduced three non-parametric approaches to
performance data modelling: regressogram, moving average and kernel regression, which
were integrated within this framework. We try to achieve appropriate approximations of
performance data using these techniques, without the assumption of dependence between
two variables, which represents the main advantage in comparison to parametric techniques.
Further, we have proposed and implemented two methods for automatic detection of perfor-
mance changes, which works with all kinds of models within Perun. We have demonstrated
our solutions on the real project (Vim), and on the set of the experimental cases, in which
we compared proposed solutions with existing. We have achieved decreased time processing
about two-thirds and an almost triple improvement in the fitness of data modelling with
new modelling approaches. The proposed detection methods detected performance degra-
dation of three specific functions in comparison of two different versions of Vim, where was
present a known performance issue.

Abstrakt
Testovanie výkonu predstavuje kľúčový faktor pri optimalizácii programov počas ich vývoja,
avšak, v súčastnosti nie je vyvinutý na takej úrovni ako funkcionálne testovanie. Nástroj
Perun poskytuje automatickú správu výkonnosti programov, čím prispieva k vývoju tejto
oblasti. V tejto práci predstavujeme tri neparametrické prístupy modelovania výkonnost-
ných dát: regresogram, kĺzavý priemer a jadrové odhady, ktoré boli integrované v rámci
tohto nástroja. Použitím týchto techník sa snažíme dosiahnuť vhodnú aproximáciu výkon-
nostných dát bez predpokladu závislosti medzi dvoma premennými, čo predstavuje hlavnú
výhodu oproti aktuálne používaným parametrickým technikám. V rámci tohto nástroja,
sme tiež navrhli a implementovali dve metódy pre automatickú detekciu degradácie výkonu,
ktoré dokážu pracovať so všetkými druhmi modelov. Riešenie sme demonštrovali na reál-
nom projekte (Vim) a na sade experimentálnych prípadov, v ktorých sme navrhnuté rieše-
nia porovnali s už existujúcimi. Novými prístupmi modelovania sme dosiahli zvýšenú
časovú efektivitu o dve tretiny a priemerne trojnásobne lepšiu presnosť modelovania dát.
Navrhnuté metódy detekovali degradáciu výkonu troch špecifických funkcií v porovnaní
dvoch verzií programu Vim, kde bola prítomná ohlásená výkonnostná chyba.
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Rozšírený abstrakt
Výkonnostné testovanie je rozhodujúcim faktorom pri optimalizácií programov počas ich
vývoja. Cieľom tejto formy testovania je stanoviť výkonnosť systému za určitých podmienok
a identifikovať jeho kritické miesta. Testovanie výkonnosti ako súčasť vývojového cyklu,
napríklad v rámci priebežnej integrácie, však stále nie je tak dobre vyvinuté v porovnaní
s funkcionálnym testovaním. Udržiavanie optimálneho výkonu počas vývoja si vyžaduje
sledovanie viacerých, často protichodných aspektov za rýchlo meniacich sa podmienok.

Hoci existuje niekoľko kvalitných nástrojov na testovanie výkonnosti, plnú automatizá-
ciu poskytujú len niektoré. Pri správe výkonnostných profilov bez automatizácie je uží-
vateľ nútený manuálne spravovať údaje o výkone svojho programu. Manuálna manipulácia
s veľkým množstvom údajov je však náchylná na chyby a môže viesť k strate histórie
o výkonnostných zmenách. Preto by bolo vhodné nájsť systém, ktorý bude distribuovaný
a schopný spravovať výkonnostné profily s najväčšou možnou automatizáciou.

Pre správu výkonnosti rôznych verzií programov vyvinula výskumná skupina VeriFIT
nástroj Perun. Tento nástroj spravuje výkonnostné profily ktoré zodpovedajú rôznym
verziám programov a poskytuje sadu modulov vhodných na automatizáciu výkonnost-
ných regresných testov, následné spracovanie existujúcich profilov a interpretáciu výsledkov
(napr. detekciu zmien alebo vizualizáciu). V súčasnosti tento nástroj zahŕňa rôzne druhy
kolektorov, post-procesory poskytujúce výkonnostné modely získané regresnou analýzou
a niekoľko metód pre automatickú detekciu výkonnostných zmien.

Spracovanie profilov, ktoré obsahujú nazberané výkonnostné dáta, je jedným z najc-
itlivejších aspektov, ak chceme dosiahnuť presnú analýzu výkonu. Post-procesory vytvárajú
rôzne druhy predikčných modelov, ktoré následne slúžia ako vstupy pre metódy detekcie
či ďalšiu interpretáciu používateľom. V súčasnosti dostupný post-procesor implementuje
parametrický prístup nazývaný regresná analýza, ktorý však vyžaduje poznať takzvanú
nezávislú premennú. Tento prístup odhaduje hodnoty závislej premennej (napr. doba behu
funkcií) pre každú hodnotu nezávislej premennej (napr. veľkosť dátovej štruktúry), teda
skúma vzťah medzi týmito dvoma premennými. Tento predpoklad, že neznáma, analyzo-
vaná funkcia patrí do triedy funkcií závislých na parametroch, nie je však vždy splnený:
nezávislá premenná môže jednoducho chýbať alebo môže byť neznáma.

Hlavným prínosom tejto práce je rozšírenie nástroja Perun o nové komponenty, ktorých
úlohou je dosiahnutie presnejších výsledkov v automatickom procese detekcie výkonnos-
tných zmien. V tejto práci uvádzame tri nové post-procesory, ktoré implementujú tri
rôzne neparametrické techniky modelovania: regresogram, kĺzavý priemer a jadrové odhady.
Tieto techniky prinášajú nové možnosti modelovania výkonnostných dát a dopĺňajú uve-
dené nevýhody parametrických prístupov. Taktiež sme navrhli dve nové metódy detekcie,
ktoré boli vytvorené pre všetky druhy modelov, ktoré sú vytvorené postprocesormi v rámci
nástroja Perun, t.j. pre parametrické aj neparametické modely.

Riešenie sme demonštrovali na reálnom projekte (Vim) a na sade experimentálnych prí-
padov, v ktorých sme navrhnuté riešenia porovnali s už existujúcimi. Nové prístupy mode-
lovania dosiahli zvýšenú časovú efektivitu o dve tretiny a priemerne trojnásobne lepšiu pres-
nosť modelovania dát. Navrhnuté metódy detekovali degradáciu výkonu troch špecifických
funkcií v porovnaní dvoch verzií programu Vim, kde bola prítomná ohlásená výkonnostná
chyba. Výsledky, ktoré sme dosiahli sú veľmi povzbudivé a ukazujú vysoký potenciál nášho
prístupu pri automatickej detekcii výkonnostných zmien. Výsledky tejto práce boli tiež
prezentované na študentskej konferencii EXCEL@FIT’19, kde sme boli ocenení jedným z
generálnych sponzorov tejto konferencie, za výnimočnú prácu s veľkým prínosom do praxe.



New Models for Automatic Detection of
Performance Degradation

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Doc. Mgr. Adam Rogalewicz, Ph.D. The supplementary information
was provided by Ing. Tomáš Fiedor and Mgr. Bc. Hana Pluháčková. All the relevant
information sources, which were used during preparation of this thesis, are properly cited
and included in the list of references.

. . . . . . . . . . . . . . . . . . . . . . .
Šimon Stupinský

May 15, 2019

Acknowledgements
I thank my supervisors from VeriFIT performance team — Tomáš Fiedor, Hana Pluháčková,
Adam Rogalewicz, Tomáš Vojnar. I thank for the support received from Red Hat company
and H2020 ECSEL project Aquas.



Contents

1 Introduction 3

2 Perun 5
2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Collecting Performance Data . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Post-Process Performance Data . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Detection of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Performance Data Modelling 10
3.1 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Regressogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Simple Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Exponential Moving Average . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Simple Moving Median . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.1 Smoothing Parameter Selection . . . . . . . . . . . . . . . . . . . . . 16

4 Non-Parametric Post-Processors 19
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Regressogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Analysis of Requirements . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 Analysis of Selected Implementations . . . . . . . . . . . . . . . . . . 25
4.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Detection of Performance Changes 28
5.1 Integral Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Local Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Initial Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



6 Experimental Evaluation 36
6.1 Basic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Degradation Detection on Vim . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Initial Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2 Further Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Detection Method Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Conclusion 42

Bibliography 43

A Storage Medium 45

2



Chapter 1

Introduction

“Just as athletes can’t win without a sophisticated mixture of strategy, form, at-
titude, tactics, and speed, performance engineering requires a good collection of
metrics and tools to deliver the desired business results.”

– Todd DeCapua

Performance testing (and profiling) is a critical factor for the optimisation of programs
during its development. This form of non-functional testing aims to determine the perfor-
mance of a system under certain conditions and to identify its critical locations. However,
performance testing as a part of the development cycle, e.g. integrated in continuous inte-
gration, is still not so well developed compared with functional testing. Maintaining optimal
performance during the development requires tracking multiple, often conflicting, aspects
under rapidly changing conditions.

Although there exist several high-quality tools for performance testing, the full automa-
tion of the profiling resources or the subsequent comprehensive management of the created
performance is provided only by few of them. When managing performance profiles without
any automation, the user is forced to annotate and manage all performance data manually.
However, manual manipulation with a large amount of data is highly prone to error and
may lead to a loss of the exact history of tracked changes.

Hence, developers would like a system, that would be light-weight, distributed and able
to manage collected data and performance profiles as automatically as possible. To manage
the performance of program versions the research group VeriFIT developed the framework
Perun: Performance under control [11]. It manages performance profiles corresponding to
different versions of projects and offers a tool suite suitable for automation of the perfor-
mance regression tests, post-processing of existing profiles and practical interpretation of
the results (such as detection of changes or visualisation). Nowadays, this framework in-
volves different kinds of collectors, post-processors providing performance models obtained
by the regression analysis and several detection methods.

A post-processing of profiles is one of the most delicate aspects if one wants to achieve
the most accurate performance analysis. The post-processors create different kinds of pre-
diction models that can serve as inputs for change detection methods or for further user
interpretation. The currently available post-processor implements a parametric approach
called regression analysis that, however, requires to have a so called independent variable.
This approach predicts values of the dependent variable (e.g. run-time of functions) for
every value of the independent variable (e.g. the size of the underlying structure), i.e. it
explores the relationship between them.
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However, the assumption of the regression-analysis, that an unknown, analysed func-
tion belongs to the class of functions dependent on some parameters, is sometimes not
fulfilled: the independent variable can simply be missing, completely unknown or non-
existent at all. In that case, a constructed model will not be accurate and therefore it will
affect the subsequent analyse performed, e.g., by detection methods. We need to have and
an excellent model to achieve adequate results under any conditions. Hence, we propose to
shift to non-parametric modelling methods, which can potentially achieve more accurate
results and do not need any independent variable.

In this thesis, we present three new post-processors, which implement three different
non-parametric modelling techniques: regressogram, moving-average and kernel-regression.
These techniques bring new possibilities of performance modelling and complement the men-
tioned disadvantages of the parametric approaches. Further we propose two new change
detection methods, namely: Integral-Comparison and Local-Statistics. Our proposed meth-
ods were designed in general for all kind of models, that are created by individually post-
processors in framework Perun, i.e. both for non-parametric and parametric.

The proposed solutions were tested on Vim repository, with an aim to show that they
can discover known performance bugs. We tested new non-parametric models in combi-
nation with implemented detection methods, as well as compared with existing methods
within framework Perun. We achieved quite encouraging results, which have shown high
potential of our approach in automatic detection of performance changes. The results of this
thesis were also presented at students conference Excel@FIT’19, where we got the award
from the general sponsor of this conference for extraordinary work with great benefits to
the practice.

Document Structure. First and foremost, we briefly discuss the architecture of frame-
work Perun in Chapter 2, which also introduces the reader into the automatic perfor-
mance management process. Further, Chapter 3 gives some preliminaries in performance
data modelling and the involvement of non-parametric methods in this process. In Chap-
ter 4, we introduce a design and implementation details of proposed post-processors, which
are based on the selected non-parametric methods. Following this, in Chapter 5, we give
a detailed account to proposed detection methods including their algorithmic description.
Furthermore, Chapter 6 provides an experimental evaluation of the proposed detection
methods, primarily using new non-parametric models, and a comparison of these methods
with existing methods in this framework. Finally, a summary of the acquired result and
future ideas of our framework can be found in Chapter 7.
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Chapter 2

Perun

Perun (Performance Under Control) [11] is an open source light-weight Performance Ver-
sioning System, which was invented by VeriFIT research group. Perun tries to achieve
the full automation process of performance management and thereby takes care of manag-
ing performance profiles (i.e. the set of collected performance records) for a broad range
of project types. It provides the full functionality for automation of the profiling process,
maintains and stored collected data, and allows efficient processing of the results, as well
as a set of visualisation techniques. Perun serves as a wrapper over the existing version
control systems, and is primarily inspired by these particularly distributed version-control
systems (e.g. git or SVN), on whose basis are designed e.g. the CLI1 or the data storage.
The main reason for the similarity is that one of the goals of Perun is to store the infor-
mation about performance with focus on history of the project development. Each instance
of Perun is integrated into existing version-control systems, which allows one to auto-
matically maintain and manage the performance profiles for different versions of a project,
without the need for manual user involvement.

This thesis extends the Perun framework by few individual components. The resulting
components, presented in this work, were integrated into Perun (the integration of some
components, however, is not yet fully merged into Perun’s master branch). The following
sections will briefly introduce the architecture and the interface of Perun. This Chapter
is based on [17, 9, 18] and Perun documentation [11].

2.1 Architecture
As shown in Figure 2.1, the internal architecture of Perun can be logically divided into
the following components — data, logic, viewers and checkers.

Data. This unit contains the modules that defines format of performance profiles, and
wrappers over the existing version control systems supported in this framework (currently
only git). Each of the listed components works with a profile, and therefore profile is
a primary data unit in this framework.

Logic. Logic unit includes creating and management of individual profiles and contains
two principal types of components. First of them, called collectors, performs the collection
of the data and subsequently creates of profiles from these collected data. The second one

1Command Line Interface
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processes profiles for further interpretation (visualisation and detection) and therefore are
called post-processors. The Chapter 4 proposes these new post-processors implementing
non-parametric methods that are part of this work and have been integrated into Perun.

PERUN

VIEWERS

CHECKERS

VCS

LOGIC DATA

GIT SVN...
GENERATES

COLLECTORS

POSTPROCESSES

POSTPROCESS

IS VISUALIZED

IS COMPARED

IN

PROFILE

MEMORY

TIME

COMPLEXITY

TRACE

KERNEL REG.

REGRESSOGRAM

MOVING AVG.

...

GUI CLI FLAME
GRAPH ... SCATTER

PLOT 
HEAP  
MAP

LINEAR 
REG. 

BEST 
MODEL 
ORDER 

INTEGRAL 
METHOD ... POLYNOM 

REG. 
LOCAL 
STATS 

Hooks

Figure 2.1: Perun architecture; its logical, data, visualisation and checkers components,
including their respective modules. The arrows indicate the mutual communication between
the individual modules. The scope and results of this thesis are marker coloured — new
modules in orange and modified modules in yellow.

Viewers. It is partly independent component which primary objective is to provide
the different interpretations of data to a user, especially the visual one. A user can choose
from the supported various visualisation techniques (see Figure 2.1), which gives him a bet-
ter interpretation of the data, compared to raw data. Next, it contains a wrapper for
the graphical and command-line interface. In Chapter 4, we will introduce how to visualise
non-parametric models that are relevant in the context of this work.

Checkers. The last component includes detection methods, which compare the profiles
pair and reports possible changes in performance. A checker component provides different
kinds of detection methods, which depend on the individual section of the profiles (raw
data, parametric models, non-parametric models). The input of these methods are two
profiles and its output is the report about detected changes. Chapter 5 describes novel
detection methods primarily for non-parametric models.
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Figure 2.2: The profiling data collected by trace collector on Vim binary, in particular
the function vim_regexec and its measured values at individual calls. The amount values
represents the time consumption of this function during the program execution.

2.2 Collecting Performance Data
The collectors (see Figure 2.1) collects the performance data usually from the binary or
other executable of the current project. Most of the collectors collect the data based
on the lightweight instrumentation of the profiled program. Perun currently offers four
collectors (trace, time, memory and complexity), that are independent and focus on tracing
of the different aspects in the programs [8]:

1. Trace Collector focuses on run-times of functions (C or C++ language) that are
executed during the collection. It realise the profiling data collection by injecting
probes at specified code locations (such as functions entries and exits). The Figure 2.2
shows the profiling data collected by this collector.

2. Memory Collector collects the allocation specification in C or C++ functions, type
of allocations, or target addresses of allocations. An example of interpretation may
be the consumption of allocated memory (Y -variable) depending on the allocation
order (X -variable) at manipulation with this structure.

3. Time Collector is a wrapper over the time utility. It collects overall running times
of arbitrary commands from the profiled program.

4. Complexity Collector collects running times C/C++ functions along with the size
of the structures they were executed on. For example, it can capture the dependency
of time consumption (Y -variable) depending on estimate of the size of the structure
(X -variable).

7



2.3 Post-Process Performance Data
The post-processors process the performance data obtained in the collection phase. As
shown in the Figure 2.2, raw performance data do not have usually significant value without
further processing. Post-processors e.g. create different kinds of models by the transforma-
tion of these data and thereby provides data suitable for difference analysis, degradation
detection and manual interpretation. Perun currently supports the following selected post-
processors:

1. The Clusterizer implements a simple heuristics that classifies the collected data
into clusters according to the similarity of its values. It provides two simple strategies
to cluster the data: by sort order of values or by sliding window. Both strategies
allow one to derive and estimate the so-called independent variable that is needed to
find the regression data model. It is therefore especially useful in conjunction with
regression analysis post-processor.

2. Regression Analysis post-processor implements the statistical parametric tech-
niques to determine the relationship between a dependent (Y) and independent (X)
variables. The result of this analysis is the set of the mathematical functions 𝑦 =
𝛽1𝑓(𝑥) + 𝛽0 that describe the behaviour of code functions in the analysed program
(e.g. the dependency of consumed memory to the size of a data structure).

𝛽0 =

∑︀
𝑦𝑖 − 𝛽1

∑︀
𝑓(𝑥𝑖)

𝑛
(2.1)

𝛽1 =
𝑛
∑︀
𝑓(𝑥𝑖)𝑦𝑖 −

∑︀
𝑓(𝑥𝑖)

∑︀
𝑦𝑖

𝑛
∑︀

(𝑓(𝑥𝑖))2 − (
∑︀
𝑓(𝑥𝑖))2

(2.2)

This post-processor currently supports the selected types of regression models: con-
stant, linear, logarithmic, exponential, power and quadratic. All models, except
quadratic, have two coefficients and therefore they use the general Formula 2.1.
Formula 2.2 represents the computation of coefficient for the quadratic model, that
requires more coefficients than remaining models. The regression analysis will be
described in more details in Section 3.1.

Post-processors can be used in conjunction to obtain appropriate models for method
for detecting performance changes from any collected data. We assume that the dependent
variable (Y) represents the run-time of a function for the following example. First, we
use a clusterizer to estimate the values of independent variable for each measured resource
resulting into relevant classified clusters. Subsequently, a regression-analysis post-processor
estimates these resources with the regression performance model, which predict the values
of run-time for a different amount of clusters. Note that for such estimation, we need some
independent variable (X), such as the size of the input data or actual values of function
parameters, hence we use the clusterizer to get some estimate.

It is due to the reason that a regression-analysis post-processor performs the analysis
based on parametric techniques. These techniques assume the normal distribution of data,
so its density will have a bell-shaped curve, and the parameters such as mean and variance
are known. However, the distribution of the data is not known always in our case of
performance modelling, and therefore the non-parametric estimates may be appropriate.
These estimates do not need to know the parameters and coefficients that characterise
the data to its properly estimate. Chapter 4 discusses the possibilities of post-processing
of profiles by non-parametric techniques in more detail.
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2.4 Detection of Changes
As shown in Figure 2.3, the last step in one of the chains automation process of performance
management is the detection of changes. Current detection methods perform the difference
analysis between the models created in post-process phase by individual post-processors
and subsequently detect potential changes. The input of detection is a pair of profiles, from
which are obtained relevant models for analysis. The first profile (so-called target profile)
represents the newly released version of the project. The second profile (so-called baseline
profile) represents the stable version of the project against we will compare the target
profile. The baseline usually serves as an expectation how the program should perform.
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... 
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-        SLList_insert(&list, i);
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...
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Figure 2.3: Overview of the automatic detection method of performance changes over
the project repository. This thesis focuses mainly on post-processing methods and detection
of changes [11].

All detection methods returns the structure DegradationInfo with information about
detected changes. This structure contains the following members:

1. Result member contains the type of potential performance changes, which can be
one of the follows: Degradation, Maybe Degradation, No Change, Maybe Optimisation
and Optimisation. The type depends on the particular detection methods and its
thresholds.

2. Error Rate denotes how significant a change has occurred in the target profile in
comparison to the baseline profile, what represents the value of absolute error (𝜀𝑟𝑒𝑙)
or relative error (𝜀𝑎𝑏𝑠).

3. Confidence can help to decide whether the changes are worthy of fixing and if
the change is real or spurious. This member contains the pair, that includes con-
fidence type and confidence value, where the type can be represented for example as
the coefficient of determination R2 .

4. Severity of the changes is reported by detection methods, that analyse the regression
models created by regression-analysis post-processor. The specific kind of the regres-
sion model (quadratic, logarithmic, etc.) that is represented by members From and
To in this structure.

These crucial aspects, provided for each detected change, help achieve a high ratio
of performance fixes. However, all detection methods depend on the models created by
individual post-processors, and therefore the fitness of the model affects the final result. In
the Chapter 5 we will introduce the new detection methods, that can work with all types
of models created by individual post-processors.
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Chapter 3

Performance Data Modelling

In this chapter, we introduce the area of the performance data modelling and its related the-
ory. First, we discuss the basic concepts of statistical techniques for performance modelling,
including the comparison of two main approaches: parametric and non-parametric. Then,
we describe three non-parametric modelling methods — regressogram, moving average and
kernel regression.

3.1 Smoothing
Smoothing is a statistical technique to modelling real functions based on observed or col-
lected data. The goal is to find the estimate (appropriate approximation) of the unknown
function to filter out random fluctuations and to provide a better understanding of the data
structure. The estimates can determine any type of functions, for example, the functions
that describe the behaviour of the data: density, distribution function and regression func-
tion, that we use in the field of the performance modelling.

The raw performance data contains pairs consisting of values from a set of independent
variables X (such as workload size) and values from a set of dependent variables Y (such
as function time consumption). If we want to interpret these data, we need to find appro-
priate function describing the relation between these variables. The solution of this task is
the fitness of the appropriate curve (regression curve) to collected data-set of points from
certain program runs. We assume the standard regression model, which can be formalised
as:

𝑌𝑖 = 𝑚(𝑥𝑖) + 𝜖𝑖, 𝑖 = 1, . . . , 𝑛, (3.1)

where m is unknown regression function, xi , 𝑖 = 1, . . . , 𝑛, are the data-set points and {𝜖i} is
the set of measurement errors. We assume that these noise1 (i.e. the measurement error)
is independent and identically distributed (iid), centred, with variance 𝜎2:

𝜖𝑖
iid∼ 𝑁(0, 1), 𝑖 = 1, . . . , 𝑛. (3.2)

There exist two possible ways how to characterise the task of finding the unknown
function: parametrically or non-parametrically. Parametric estimates assume that the un-
known function belongs to a class of functions that depend on parameters and its primary
objective is to find these parameters. The purely parametric approach does not always

1Noise in smoothing area is unexplained variability within a data sample.
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meet the needs of flexibility, but still, it is useful and retains its benefits, such as trustwor-
thy results with skewed and non-normal distributions or when the groups have different
amounts of variability. The example of a parametric estimate of regression function can be
the regression curve reflecting the linear dependency of a run-time depending on the size of
the underlying structure. On the contrary, non-parametric estimates do not assume that
an unknown function has the prescribed shape, only assume smoothness of the estimated
function (i.e. sufficient number of continuous derivatives). The non-parametric approach is
related to increasing data processing requirements, whether in terms of file size, a variety
of data, or other aspects.

In spite of data processing development, both approaches preserve their advantages and
are orthogonal to each other. Sometimes it is advisable first to use non-parametric methods
and then use a parametric method for the final estimate. In [9], we proposed a method that
use parametric estimates to automatically detect performance degradations. However, it
is highly dependent on finding and measuring a suitable independent variable. We believe
that non-parametric modelling could be a better solution.

3.2 Regressogram
We introduce the regressogram [1, 16, 5] method, also called the binning approach, that is
the simplest non-parametric estimator of a regression function. A regressogram is an esti-
mator of the regression function that is constant by piece-wise, which can be thought of as
approximating the data by a step function. This estimator is analogous to histograms for
density estimation. We cover the observation space of X variable by disjoint buckets, and
the estimated value of regressogram in a bucket is the mean of the Y -values for the X -values
inside that bucket. For simplicity, we assume that the covariates 𝑋𝑖 are from a distribution
0 ≤ 𝑋 ≤ 1. Similar to the histogram, we choose 𝑘 as the number of buckets. Then we
divide interval [0,1] into 𝑘 buckets:

𝐵1 = [0, ℎ], 𝐵2 = [ℎ, 2ℎ], . . . , 𝐵𝑘 = [(𝑘 − 1)ℎ, 𝑘ℎ]. (3.3)

Let 𝑛𝑗 denote the number of observations in bucket 𝐵𝑗 . In other word 𝑛𝑗 =
∑︀

𝑖 𝐼(𝑋𝑖 ∈ 𝐵𝑗)
where:

𝐼(𝑋𝑖 ∈ 𝐵𝑗) =

{︃
1, 𝑖𝑓 𝑋𝑖 ∈ 𝐵𝑗

0, 𝑖𝑓 𝑋𝑖 /∈ 𝐵𝑗
(3.4)

Then, we define estimate 𝑌𝑗 as a mean of 𝑌𝑖 values in 𝐵𝑗 :

𝑌𝑗 =
1

𝑛𝑗

∑︁
𝑋𝑖∈𝐵𝑗

𝑌𝑖. (3.5)

Finally, we define model �̂�(𝑥) = 𝑌𝑗 for all 𝑥 ∈ 𝐵𝑗 :

�̂�(𝑥) =
𝑘∑︁

𝑗=1

𝑌𝑗𝐼(𝑥 ∈ 𝐵𝑗) (3.6)

The fitness of estimation of regressogram model depends primarily on the number of
buckets into which we divide the interval with X-coordinates. There are simple plug-in
methods to determine the optimal number of buckets, that have been designed primarily
for density estimation with histogram and give good starting points for a number of buckets.
Among the most used rules to choose bucket size belongs to Sturge’s Rule [19], other alter-
nate rules includes for example Scott’s Rule [14], that will be introduce in Paragraph 3.4.1.
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Sturge’s Rule It is a widely used rule to choose bucket size, that works best for contin-
uous data that is normally distributed and symmetrical. This rule should give the regres-
sogram that represents the data well when the estimated data is not skewed. Its formula
is follows: 𝐾 = 1 + 3.322 log𝑁 , where the K is number of buckets and N is the number of
observations in the data-set.

3.3 Moving Average
The moving average, also called rolling average or moving mean, is a widely used statistical
estimator in technical analysis, that helps to smooth the effects of anomalies (such as out-
liers2) within data. The moving average methods belong to the group of delayed indicators
of technical analysis, that analyse the sub-intervals of the same length. The basic idea is to
create of average from the individual sub-intervals with Y -values continuously run through
points on X -axis. Its primary objectives include smoothing out short-term fluctuations and
highlight longer-term trends or cycles.

Any moving average method performs the analysis using a fixed width of the data
window. The width of this window, so-called the averaging period, represents the length of
an interval over which the moving average is computed. It is a crucial aspect of performing
the analysis successfully. A narrow width removes the noise less effectively and leads to
the identification of many false turning points3. On the contrary, a wide window width
improves noise removal but increases the delay time in recognising the turning points.

There are two types of moving average — Centred Moving Average and Right-Aligned
Moving Average — referring to the data window. The averaging data window consists of
a centre and two halves at Centred (two-sided) Moving Average. If we denote by n the width
of this window, then halves will have width k such that n = 2k + 1 . The computation of
the value of Centred Moving Average for a point 𝑋𝑖 is given by:

𝑀𝐴𝑐
𝑖 (𝑛) =

𝑋𝑖−𝑘 + · · ·+𝑋𝑖 + · · ·+𝑋𝑖+𝑘

𝑛
=

1

𝑛

𝑘∑︁
𝑗=−𝑘

𝑋𝑡+𝑗 . (3.7)

It is used to identify turning points in the trend of past data. A Right-Aligned Moving
Average is a lagged modification of the Centred Moving Average, and therefore it has
the same smoothing properties. Generally, the value of this average at i 𝑡ℎ position equals
the value of Centred Moving Average at position i − k , where k denotes the half-width of
the averaging window. Formally, this means the following identity:

𝑀𝐴𝑟
𝑖 (𝑛) =𝑀𝐴𝑐

𝑖−𝑘(𝑛), (3.8)

where 𝑀𝐴𝑟
𝑖 (𝑛) is value of Right-Aligned Moving Average computed as:

𝑀𝐴𝑟
𝑖 (𝑛) =

𝑋𝑖 +𝑋𝑖−1 + · · ·+𝑋𝑖−𝑛+1

𝑛
=

1

𝑛

𝑛−1∑︁
𝑗=0

𝑋𝑖−𝑗 . (3.9)

In next subsections we introduce two basic and commonly used moving averages: the Sim-
ple Moving Average (SMA), which is the average of 𝑌 -values over a defined number of sub-
intervals, and the Exponential Moving Average (EMA), which gives greater weight to more
recent points. Finally, we briefly introduce a Simple Moving Median (SMM), a modified
version of SMA.

2Outliers are observation points that are distant from most other observations.
3The turning points change the direction in the data pattern.
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3.3.1 Simple Moving Average

The Simple Moving Average (SMA) computes the arithmetic average of the previous 𝑛 data
points, or more frequently is the average taken from an equal number of data on either side
of central value. The SMA with narrow window width is more volatile, but its output
is closer to the source data. On the contrary, the wider the width of the window is,
the smoother the resulting estimate. In summary, it means that the smoothing effect of
this approach increases as the window width widen. The main limitation of this method is
that with significant changes in the value in a window, the prediction of the model may not
adapt well. These facts are the primary reasons why this method is recommended only for
estimation with narrow window width and for data-sets that includes a horizontal pattern4.

It is an unweighted moving average, so each data point has the same weight 𝜔𝑖 = 1
(𝜓𝑖 =

1
𝑛). For the sake of completeness, we repeat how this method is computed:

𝑆𝑀𝐴𝑖(𝑛) =
1

𝑛

𝑛−1∑︁
𝑗=0

𝑋𝑖−𝑗 , (3.10)

which represents the same relation that was introduced in the Formula 3.9, where the 𝑆𝑀𝐴𝑖

is estimation for point 𝑋𝑖, 𝑋𝑗 is a current Y -value in the point X and n is the count of
the values includes in the computation. When we use only past data points to computation,
then it is advantageous in several application of this approach.

3.3.2 Exponential Moving Average

The Exponential Moving Average (EMA) as a type of weighted moving average method
that applies weighting factors which decrease exponentially in the distance from currently
estimated point. So, weights applied to data points do not have a linear character as in
the case of SMA but instead they have an exponential character. The values close to
the currently estimated point have the most influence on this point, and therefore these
values have a higher weight than more distant points, whose weight exponentially decreases
with increasing distance. EMA is computed as:

𝐸𝑀𝐴𝑖(𝜆, 𝑛) =
𝑋𝑖 + 𝜆𝑋𝑖−1 + 𝜆2𝑋𝑖−2 + · · ·+ 𝜆𝑛−1𝑋𝑖−𝑛+1

1 + 𝜆+ 𝜆2 + · · ·+ 𝜆𝑛−1
=

∑︀𝑛−1
𝑗=0 𝜆

𝑗𝑋𝑖−𝑗∑︀𝑛−1
𝑗=0 𝜆

𝑗
, (3.11)

where

∙ Xi is the value of i 𝑡ℎ point from data-set,

∙ n is the number of total points includes in window,

∙ 0 < 𝜆 ≤ 1 is a constant that determines the weight of a point.

We call 𝜆 the decay factor, which expresses the extent to which more distant points
affects the final estimate. When 𝜆 < 1 , the EMA assigns higher weights to the most recent
points. By varying this value, one can adjust the weighting to give a higher or lesser weight
to the most recent data points according to current requirements of the final estimate.
The properties of the EMA are as follows:

lim
𝜆→1

𝐸𝑀𝐴𝑖(𝜆, 𝑛) = 𝑆𝑀𝐴𝑖(𝑛), lim
𝜆→0

𝐸𝑀𝐴𝑖(𝜆, 𝑛) = 𝑋𝑖 (3.12)

4In the horizontal pattern, data values fluctuate around their constant mean.
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So, when 𝜆 approaches one, the value of EMA converges to the value of corresponding
SMA. When 𝜆 approaches zero, then the value of EMA becomes the last data point [22].

The significant difference between EMA and SMA is the sensitivity for the variations
in the data used in its computation. More specifically, the SMA assigns equal weights to
all points, while the EMA assigns higher weights to nearest points. Both approaches are
similar because they are using in the technical analysis used to smooth out fluctuations.
The primary advantage of EMA is that is more reactive to the latest variations in data
points, which makes it a more preferred approach than SMA.

3.3.3 Simple Moving Median

The Simple Moving Median (SMM) is similar to the SMA method, except that instead
of computation of average values, it computes the median from the values in the window.
A median is conceptually similar to an average but, the advantages of SMM is that it is
not affected by outliers and therefore it is more robust estimator than SMA. The normal
distribution of the fluctuations in the trend in data statistically ensures that the MA is
an optimal estimator for recovering the underlying trend in estimated data-set of points.

However, the significant deviations from the trend do not have a high probability of
occurrence in the normal distribution, and therefore they have a disproportionately large
effect on the trend estimate. The SMM can be statistically optimal when the fluctuations are
instead assumed to be Laplace distributed5. It tolerates significant changes in data better
than SMA because the Laplace distribution places a higher probability on extraordinary
points than does the normal distribution. When the SMM is central, the smoothing is
identical to the median filter, which is known from image signal processing.

3.4 Kernel Regression
The Kernel Regression is a non-parametric technique that estimates the conditional expec-
tation of a random variable. It builds on the primary idea of smoothing, which assumes
the follows assertion: when the m is a smooth function, then the observations in points
Xi (close to a point X ) contains the information about the value m in the point X . It
is, therefore, appropriate to use the local averages of data points close to the point X to
obtain the estimate m(x ). So basically it finds a non-parametric relation between a pair of
random variables X and Y . Generally, the kernel estimates of the regression function m in
point X are defined as follows:

�̂�(𝑥, ℎ) =
𝑛∑︁

𝑖=1

𝑊𝑖(𝑥, ℎ)𝑌𝑖, (3.13)

where function 𝑊𝑖, 𝑓𝑜𝑟 𝑖 = 1, 2, . . . , 𝑛, are called weights independent on Y , but dependent
on positive number h, that is called smoothing parameter. The type of W depends on kernel
function K . All kinds of kernel estimates depend on this kernel function, and therefore we
introduce its definition and properties:

Definition 3.4.1 Let v , k be a non-negative integers, 0 ≤ 𝑣 < 𝑘, K is the kernel of k series
with the class of all these functions denoted as Svk , if K satisfies the following properties:

5Laplace distribution, also called the double exponential distribution, is the distribution of differences
between two independent variates with identical exponential distributions.
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1. K meets the Lipschitz Condition6 on the interval [−1, 1], i.e. |K (x )−K (y)| ≤ 𝐿|x−y |
for ∀x , y ∈ [−1, 1],L > 0,

2. The support(K ) = [−1, 1], i.e. K = 0 within the interval [−1, 1],

3. K meets the momentous conditions:∫︁ 1

−1
𝑥𝑗𝐾(𝑥)𝑑𝑥 =

{︃
0 0 ≤ 𝑗 < 𝑘, 𝑗 ̸= 𝑣,
(−1)𝑣𝑣! 𝑗 = 𝑣

(3.14)

and
∫︀ 1
−1 x

kK (x )dx ̸= 0, these value marks 𝛽𝑘(𝐾).

(a) 𝐾(𝑋) = 3
4 (1−𝑋

2) (b) 𝐾(𝑋) = 15
16 (1−𝑋

2)
2 (c) 𝐾(𝑋) = − 15

4 𝑋(1−𝑋2)

Figure 3.1: The examples of kernels on the interval [−1 , 1 ]: (a) Epanechnikov, (b) Quartic
and (c) kernel from class 𝑆13.

There are many types of kernel estimates of the regression function, which are asymp-
totically equivalent7 and therefore their selection is not essential from this point of view.
We can list, e.g., the Nadaraya-Watson estimator as the most useful one, or exists some
alternative kernel estimators, such as Priestley and Chao or Gasser and Muller. We will
describe the Nadaraya-Watson estimator and its construction, and also we will illustrate
the influence of the smoothing parameter h on the quality of the resulting estimate. We
can define K ∈ S0k , where k is the even number and let Kh(·) = 1

ℎK ( ·
ℎ). For given point

X , h < X < 1 − h are the weights of Nadaraya-Watson estimate given by the formula:

𝑊𝑖(𝑋,ℎ) =
𝐾ℎ(𝑋 −𝑋𝑖)∑︀𝑛
𝑗=1𝐾ℎ(𝑋 −𝑋𝑗)

,

𝑛∑︁
𝑗=1

𝑊𝑗(𝑋,ℎ) = 1. (3.15)

Note that a kernel estimate is not defined for
∑︀𝑛

𝑖=1Kh(X −Xi) = 0, therefore, in
the case of 0

0 , we put �̂�𝑁𝑊 (𝑋,ℎ) = 0, where �̂�𝑁𝑊 represent defined type of kernel estimate.
When we limit to the estimations of the function m only in the points Xi , i = 1 , . . . ,n,
then for h → 0 is apply:

�̂�𝑁𝑊 (𝑋𝑖, ℎ)→
𝐾(0)𝑌𝑖
𝐾(0)

= 𝑌𝑖. (3.16)

6https://www.encyclopediaofmath.org/index.php/Lipschitz_condition
7Two kernel estimates 𝐾1 and 𝐾2 are asymptotically equivalent if limit lim𝑥→∞

𝑘1(𝑥)
𝑘2(𝑥)

exists and is equal
to 1.
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This means that with a narrow width of smoothing window the estimate reproduces the data.
On the contrary, the wide width of the smoothing window leads to overlying, and so to
an average of the data. Formally said, for h →∞ is apply:

�̂�𝑁𝑊 (𝑋𝑖, ℎ)→
∑︀𝑛

𝑗=1𝐾(0)𝑌𝑗∑︀𝑛
𝑗=1𝐾(0)

=
𝐾(0)

∑︀𝑛
𝑗=1 𝑌𝑗

𝑛𝐾(0)
=

1

𝑛

𝑛∑︁
𝑗=1

𝑌𝑗 . (3.17)

The Graph 3.2 illustrates the construction of the estimates in the point X0 , that is com-
posed of the five observations (𝑋1, 𝑌1), . . . , (𝑋5, 𝑌5), that are represents by black crosses.
The red parabola represents the Epanechnikov kernel Kh and the blue circles views the val-
ues of weights Wi =

Kh (X0−X1 )∑︀5
𝑖=1 𝐾ℎ(𝑋−𝑋𝑖)

= 0 for i = 1, . . . , 5. The resulting estimate of the re-
gression function m̂ in the point X0 is represents as the blue cross.

1

0.5

1.5

x0-h x0+hx0x1 x2 x3 x4 x5
0

Figure 3.2: Illustration of Nadaraya-Watson kernel estimate in the point X0 with use of
Epanechnikov Kernel, that is shown in the Figure 3.1a.

Generally, the kernel regression performs the most suitable estimates of the regression
functions, and therefore it is used frequently in technical analysis. The most critical factor
is the right choice of smoothing window width (smoothing parameter h), and therefore
we will discuss it in the following sections. It should be noted, that the final decision on
the estimated curve is partially subjective, as the asymptotically optimised kernel estimates
contain quite a large amount of the noise. Definitions and formulae in this section are mostly
inspired by books and online references, which can be found in [6, 21].

3.4.1 Smoothing Parameter Selection

Choosing the right value of smoothing parameter is most critical factor of Kernel Regression.
The selection of the width of the smoothing window significantly affects the fitness of
the resulting estimate — the wide window width leads to overlay (so to average data), and
a narrow window width to underlay. We will describe a selection of bandwidth selectors in
the context of this work. Definitions and Formulae in the following subsections are mostly
inspired by [12].
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Cross-Validation. The earliest, fully automatic and consistent bandwidth selectors were
those based on cross-validation. This idea is probably the simplest and most widely for esti-
mating prediction error8. This method directly estimates the expected out-of-sample error,
also called average generalisation error, when the function m̂(x ) is applied to an independent
test sample from the joint distribution of X and Y . There are multiple ways to perform

TEST TRAINING TRAINING

TRAINING TEST TRAINING

TRAINING TRAINING TEST

Sample 1 Sample 2 Sample N

1. Iteration

N. Iteration

2. Iteration

Figure 3.3: Leave-One-Out Cross-Validation on data-set with N samples.

this approach, such as K-Fold Cross-Validation or Exhaustive Cross-Validation, but in-
stead, we focus on Least-Squares Cross-Validation (LSCV) with Leave-One-Out estimator
(see Figure 3.3), that is based on minimising:

𝐿𝑆𝐶𝑉 (ℎ) = 𝑛−1
𝑛∑︁

𝑖=1

(𝑌𝑖 − 𝑔−𝑖(𝑋𝑖))
2, (3.18)

where ĝ−i(Xi) is the estimator of 𝑚(𝑋𝑖) formed by leaving out the i 𝑡ℎ observation when
generating the prediction for observation i :

𝑔−𝑖(𝑋𝑖, ℎ) =
𝑛∑︁

𝑙=1
𝑙 ̸=𝑖

𝑊𝑙(𝑋𝑖, ℎ)𝑌𝑙, 𝑖 = 1, . . . , 𝑛. (3.19)

Akaike Information Criterion. AIC-based method of Hurvich et al. [3] is based on
minimising a modified Akaike Information Criterion (AIC). It is a statistical technique
based on in-sample fit to estimate the probability of a model to estimate the processed
data-set. The model that minimises AIC the best in comparison with other models is chosen
as a final model for the resulting estimate. So, this approach is based on the minimisation
of the criterion:

𝐴𝐼𝐶𝐶 = ln �̂�2 +
1 + 𝑡𝑟(𝐻)

𝑛

1− 𝑡𝑟(𝐻)+2
𝑛

, (3.20)

where

�̂�2 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑔(𝑋𝑖))
2 =

𝑌 ′(𝐼 −𝐻)′(𝐼 −𝐻)𝑌

𝑛
(3.21)

8The prediction error is the failure of estimated points in comparison to its expected value.
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where 𝑔(𝑋𝑖) represents a non-parametric estimator and H represents the matrix of kernel
weights about the size 𝑛× 𝑛 (i.e. the weighting function) with its (i , j )𝑡ℎ element given by
Hij =

Kh (Xi ,Xj )∑︀n
l=1 Kh (Xi ,Xl )

, where Kh(·) is a generalized product kernel. Both described methods
(LSCV and AIC) are asymptotically equivalent, which means that the kernel estimates with
a window width computed using these methods achieve approximately the same fitness.

Scott’s Rule of Thumb. It is a high-speed computation for determining the smoothing
bandwidth for kernel regression. Initially, this rule was designed for density estimation but
it is usable for kernel regression too. Typically it produces a wider bandwidth and therefore
it is useful to estimate a gradual trend, 𝑏𝑤 = 1.059*𝑎 *𝑛−

1
5 , where 𝐴 = min(𝜎(𝑥), 𝐼𝑄𝑅(𝑥)

1.349 ),
where 𝜎(𝑥) represents the Standard Deviation and IQR represents the Interquartile Range9.

Silverman’s Rule of Thumb. This rule belongs to the most popular methods which
use the rule of thumb. Since this rule was originally designed for density estimation, it uses
the normal density as a prior for approximating. For the necessary estimation of the 𝜎(𝑥)
it proposes a robust version of making use of the Interquartile Range. If the true density is
uni-modal, fairly symmetric and does not have fat tails, it works fine. Its formula is follows:
𝑏𝑤 = 0.9 * 𝑎 * 𝑛−

1
5 , where A is the same as above.

9The IQR is a measure of variability, based on dividing a data set into quartiles.
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Chapter 4

Non-Parametric Post-Processors

This chapter introduces the design and implementation of the post-processors implements
the non-parametric modelling techniques (regressogram, moving-average and kernel-regres-
sion) as introduced in Sections 3.2, 3.3 and 3.4. Each of these post-processors was designed
as an independent component with its own interface within the Perun framework. Their
main task is to process the raw performance data (obtained by collectors introduced in
Section 2.2) for further interpretation, mainly for detection methods or visualisers. In
the next sections, we discuss the individual post-processors, their possibilities and benefits
for the process of automatic detection of performance changes or manual interpretation.

4.1 Requirements
We begin with requirements on the resulting post-processors, which must be taken into
mind at design and implementation. However, not all requirements can be met without
reservations, primarily because of the trade-off between speed and accuracy (i.e. the best
fitness of the resulting estimate). The requirements are based on discussions with Perun
collaborators.

1. Flexibility. The post-processor should provide as many options as possible to set
the different values of parameters to perform estimate by the user.

2. Automation. The average user does not know the appropriate values for parameters,
and therefore the post-processor should also perform the analysis that can achieve
the acceptable results without the manual user involvement. The default values of
significant parameters should be set to achieve the acceptable fitting estimates.

3. Independence. The goal is to minimise dependencies of post-processors on third-
parties packages or other possible dependencies. More specifically, the minimal pro-
liferation of new dependencies is needed within the framework Perun.

4. Efficiency. The post-processor should perform the estimation effectively so that
the overall run-time of Perun batch jobs is not significantly prolonged. At the same
time, the efficiency should not be achieved on great expenses on the fitness of estimate,
which strongly affects the results of the next phases of the whole process of automatic
detection.
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4.2 Regressogram
In this section, we will describe first non-parametric post-processor that implements the sta-
tistical modelling technique called regressogram. This approach follows the simple mod-
elling idea that was described in Section 3.2. The following sections describe how this
post-processor implements this idea and how it is beneficial and innovating in our frame-
work.

Analysis. The implementation of regressogram method is intuitive, yet there are sev-
eral ways how it can be implemented. We will first explore the available options. Multi-
ple third-party packages provide built-in methods to implement regressogram: in partic-
ular numpy.digitize, numpy.histogram or scipy.stats.binned_statistic. However,
the first two packages require additional manipulation with processed data-set or do not
provide a broad range of options in comparison to the last package, which has the expected
functionality and therefore was selected from these available methods.

Figure 4.1: The example of the models created on the raw performance data collected
by trace collector on Vim binary: model shown in cyan represents the regressogram model,
and model shown in yellow the best regression model created by regression-analysis post-
processor. The regressogram model was created with default value of parameters: the count
of buckets was determined by Doane’s method and in each bucket we computed the aver-
age of values. This figure was created by extended scatter module from view unit (see
Figure 2.1), specifically was used the method render_step from methods module of regres-
sogram post-processor. On the x-axis is the call number in the collect record (call order),
and on the y-axis is the run-time (in microseconds) of function in the specific call (amount).

scipy.stats.binned_statistic1. This method, from the SciPy (Science Python) [4]
package, performs the computation of the binning approach (regressogram) for a given
data-set (see Listing 1). This method allows the computation of the different aggregation

1https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.stats.binned_statistic.html
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function (such as mean, median, sum, etc.) from the values within each bucket. Besides,
it allows one to define custom aggregation function to compute the resulting values within
buckets, which shows the possibility of the natural expansion of this post-processor.

Implementation. The implementation of this post-processor is composed of the two
primary modules: run and methods. The first module run covers its main functionality and
implements the interface within Perun. The output of this module is the modified profile
with the results of analysis performed by this post-processor, i.e. regressogram models.
The module methods is a public interface of implemented non-parametric technique, i.e.
regressogram. It contains the method for computation of the specific regressogram models
and implements helper methods used for their manipulation (e.g. to render these models
such as in the Figure 4.1).

from scipy import stats

x = [1, 2, 3, 4, 5, 6]
y = [1, 1, 1, 1, 1, 1]

>>> stats.binned_statistic(x, y, statistic=’mean’, bins=3)
BinnedStatisticResult(

statistic=array([1, 2, 3]),
bin_edges=array([1, 2.667, 4.334, 6]),
binnumber=array([1, 1, 2, 2, 3, 3])

)

Listing 1: The demonstrations of calculation of regressogram model from samples x and
y . In the resulting structure BinnedStatisticResult we can see the statistics, that
contains the computed values of the model, i.e. the means of each bin. Another important
item is bin_edges, that contains the values for rendering this model.

4.3 Moving Average
This section describes the design and implementation of the post-processors that imple-
ments moving-average methods. This post-processor implements the three methods of this
approach: Simple Moving Average (SMA), Exponential Moving Average (EMA) and Simple
Moving Median (SMM) as the simple modification of these two methods. The theoretical
background of all these methods was introduce in Section 3.3.

4.3.1 Analysis

The moving averages methods are included in many packages. Table 4.1 shows the com-
parison of methods, which we considered from the different aspect, such as dependency, ad-
justability and performance. From these methods, the best results in the run-time achieved
the method MA from Ta-Lib package. However, this is an problematic package, because
during installation there may occur multiple issues that are reported on the project repos-
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itory2. Choosing this package would then contradict the requirements of flexibility and
potentially cause issues in Perun’s continuous integration system.

Table 4.1: The table shows the run-times of the individual tested modules, that contains
methods for computing the SMA. The methods cumsum, convolve and fftconvolve (in
table fft) are from the NumPy (Numerical Python) package, methods Series.rolling and
rolling_mean (in table rolling) are from the Pandas package, and Ta-Lib is the Technical
Analysis Library, that contains a method called MA. We tested these on the array containing
1 000 000 samples, and the width of the window was set to 100 . The measured metrics
(mean, max and min) were calculated on the 50 repeats of the calculations of all methods.
The green colour represents the best run-times in comparison to the remaining methods,
and the red colour represents the slowest run-times. The chosen method is highlighted with
the yellow colour.

cumsum talib fft convolve pd.Series pd.rolling
mean 0.00816s 0.00408s 0.09467s 0.03339s 0.03031s 0.03004s
max 0.03334s 0.06364s 0.17439s 0.05521s 0.12372s 0.04364s
min 0.00715s 0.00265s 0.08243s 0.03131s 0.02574s 0.02631s

The adjustability of different options is one of the significant factors, that influenced
our selection. The options such as window-type (such as hamming, triangular or boxcar),
minimal count of samples in the window or variability of centre, i.e. whether the window is
right-aligned or not, are the critical aspects in performing the analysis and in the fitness of
its resulting models. The second fastest method (cumsum) does not contain any of the listed
options, as it requires the additional steps (e.g. calculation of aggregation function within
windows) after the calculation of cumulative sum3 by original method. After considering
all critical factors, we decided to choose rolling method from Series class of Pandas
package. This method achieved the average values of run-time in all measured aspects and
provides the multiple options to calculate rolling window. The Series class also allows
calculating of EMA and SMM, which concludes our requirements for this post-processor.

4.3.2 Implementation

The moving average post-processor is composed of two modules: run and methods. The first
module implements the commands and options for Command Line Interface. This post-
processor implements three different types of moving average methods that were designed
as three separate commands with the same names as the methods: SMA, SMM and EMA.
The interface was designed concerning the requirements of this post-processor and therefore
is composed of common options for each command, the individual commands and specific
individual options for these commands. The interface is easy to expand with the new
moving average methods or the new options for all these methods concerning the changes
in the entire Perun framework.

The module methods implements the computational logic of the whole post-processing
phase. The following methods perform the computation of individual moving average meth-
ods itself: pandas.DataFrame.rolling for SMA and SMM, and pandas.DataFrame.ewm
for EMA. Figure 4.2 shows the example models created by this post-processor, where we

2https://github.com/mrjbq7/ta-lib
3A cumulative sum is a sequence of partial sums of a given sequence.
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can see all these moving-average methods. The most critical aspect of this computation is
the choice of window width. We have proposed a heuristic (see Algorithm 1), which esti-
mates the window width iteratively (unless the model achieves the desired fitness). This
heuristic is used by default, when the window width is not specified implicitly by user, so
one can obtain models that adequately fit given data-set without broader knowledge about
the actual data.

Method iterative_computation(x , y)
𝑅2 = 0.0
� = max(1, (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) * 𝜉𝐼𝐿)
while 𝑅2 < 𝑅2

𝑚𝑖𝑛 and Δ� do
ℳ, 𝑅2 = MovingAverage(y, �)
Δ� = � - ComputeWindowChange(�, 𝑅2)
� = ComputeWindowChange(�, 𝑅2)

return ℳ, 𝑅2, �

Algorithm 1: The heuristic for the computation of moving average models iteratively.
The value of the coefficient of determination 𝑅2 represents the fitness of the model.
The value of window width (�) is set to a certain percentage of the total length of the x-
interval (denoted as 𝜉𝐼𝐿). When this value is less than 1, then a width of the window
is set to 1. Subsequently, the iteration is repeated, unless the value of the coefficient
of determination is not high enough and unless the window width varies. Each cycle
calculates the new moving average model with the current value of window width and
adjusts the new value of window width for the next iteration. The change of this value
depends on the current window width and coefficient of determination.

However, the computation of the EMA does not use the known window width, but
instead it uses the specific decay parameter, which has the role of smoothing factor. This
factor 𝜆 (0 < 𝜆 ≤ 1) (also called the smoothing constant) is essentially a weight applied to
the points in closest surroundings. EMA is also sometimes specified using the span, centre
of mass or half-life parameters, then the 𝜆 parameter is related to them as:

𝜆 =

{︃ 2
𝑠+1 , 𝑓𝑜𝑟 span 𝑠 ≥ 1
1

1+𝑐 , 𝑓𝑜𝑟 centre of mass 𝑐 ≥ 0

1− exp
log 0.5

ℎ , 𝑓𝑜𝑟 half-lifeℎ > 0

(4.1)

The span corresponds to what is commonly called an N-point EWMA, the center of mass
(com) has a more physical interpretation and can be thought of in terms of span: 𝑐𝑜𝑚 =
(𝑠𝑝𝑎𝑛− 1)/2, and half-life is the length of the interval for the exponential weight to reduce
to one half. The validation for these parameters was implemented in the module methods.py
and subsequently is passed to the computational method pandas.DataFrame.ewm, which
uses them to perform the analysis [7].
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Figure 4.2: The example of moving average models that were created by the moving-
average post-processor and the best regression model created by regression-analysis post-
processor. The data-set for the analysis was collected by the trace collector on the Vim
binary. It was performed with the window width equal to 20 at all types of moving average
methods (SMA, SMM and EMA), and the count of the minimal samples in the window was
set to 1 , to achieve better rendering. The viewer unit of the Perun generated the scatter
plot. Specifically, it uses the method to render non-parametric models, that was imple-
mented with these post-processors. Though the difference in the SMA and EMA seems
apparent (almost 0.1 difference in 𝑅2), either one cannot be said to be better than one
other. The SMA is usually more appropriate for a longer movement at the overall interval,
which confirms his best coefficient of determination 𝑅2 in this estimate. The SMM has
reached the mean value in comparison to SMA and EMA because it is susceptible to rare
points (outliers), which have not been present in this data-set. As we can see, all three
approaches of moving-average have achieved better estimate (higher value of the coefficient
of determination 𝑅2) in comparison to regression quadratic model, as the representative of
the best regression models.

4.4 Kernel Regression
The last post-processor implements the kernel regression methods, which (in theory) was
introduced in Section 3.4. This chapter introduces the analysis of existing solutions that
are available in the different statistics packages and lists their advantages concerning our
requirements. Subsequently, we will introduce how the chosen implementations were inte-
grated within Perun.
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4.4.1 Analysis of Requirements

We had set two requirements that should be met to achieve a successful analysis.

Kernel. The kernel is a weighting function, which significantly affects the resulting es-
timate because its centre is placed right over each data point. Since it is necessary to
process various data distributions, it is appropriate to support different types of kernels.
It is advised to choose kernels that are continuous on the whole definition domain, so
then the estimated regression function inherits the smoothness of the kernel. For example,
the Gaussian kernel is less steep, and hence the resulting kernel model reflects the higher
number of neighbourhood points, which weight decreases from the centre of the kernel. On
the other hand, the Tricube and Epanechnikov kernels put more emphasis on the currently
estimated point, and therefore they reflect the smaller number of neighbourhood points,
which have bigger weights.

Bandwidth. The value of bandwidth (i.e. smoothing window width or smoothing pa-
rameter) significantly affects the smoothness or roughness of the kernel estimate, because
it controls how wide the probability mass is spread around the currently estimated point.
The ignorance of data distribution bears the danger of under-smoothing or over-smoothing.
It is therefore important to provide users with the different methods that automatically
select the suitable bandwidth, such as simple (Scott’s Rule of Thumb) or advanced (Cross-
Validation) selection rules.

4.4.2 Analysis of Selected Implementations

Kernel-based methods are most popular non-parametric estimators, and there are many
existing implementations of these techniques. Almost every package that provides statistical
techniques contain some variations of kernel regression methods. From them we selected
packages that meet our generic requirements on the post-processor (see Section 4.1) and
requirements presented in the section above. In the end, we selected these suitable packages
and implemented them all in our post-processors. Table 4.2 shows the comparison of
the selected packages with individually available options to perform the kernel regression.
In the following, we will introduce the individual packages (specifically their methods) that
this post-processors uses to perform the kernel regression.

StatsModels (Statistics in Python) ([15]). This module provides classes and meth-
ods to performs different statistical techniques, in particular it provides non-parametric
kernel regression class KernelReg from the module nonparametric.kernel_regression.
This class provide a Nadaraya-Watson kernel regression (see Equation 3.15), also known as
the local-constant type of regression. Moreover, it provides two different methods for au-
tomatic bandwidth selection: Least-Squares Cross-Validation (see Section 3.4.1) and AIC
Hurvich bandwidth estimation (see Section 3.4.1), which meets our requirement about ad-
vanced selection rules. These automatic bandwidth selectors provide an efficient bandwidth
estimation performed by EstimatorSettings object from the nonparametric.kernel_den-
sity module. This object allows one to specify the several properties that relate to how
kernel bandwidth is estimated. Besides these advanced methods, StatsModels provides
Scott’s (see Section 3.4.1), and Silverman’s (see Section 3.4.1) Rules for a simple estimate
of the kernel bandwidth.
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PyQt-Fit ([13]). This package provides both parametric and non-parametric regression
techniques, e.g. kernel density estimation or linear regression methods. We can use the class
NonParamRegression from the pyqt_fit.nonparam_regression module, that performs
kernel-based non-parametric regression. The primary advantage of this class is that one
can choose different types of kernels, that are provided by module pyqt_fit.kernels
which meets our first requirement from Section 4.4.2. In addition to kernels available in
this module, it is possible to implement a custom kernel type according to a prescribed
class template. A NonParamRegression class performs a Nadaraya-Watson (see Equa-
tion 3.15) regression on the data using a selected kernel, but it also implements another non-
parametric regressions using kernel methods (such as Local-Polynomial or Local-Linear)
from the pyqt_fit.npr_methods module. The simplest way to specify kernel bandwidth
is by user but often it is appropriate to use a pre-defined method. This package provides
the Scott’s (see Section 3.4.1), and Silverman’s (see Section 3.4.1) Rules, which compute
the bandwidth of the kernel automatically. At last, it provides an option to define own
method to compute optimal kernel bandwidth.

Scikit-learn (Machine Learning in Python) ([10]). This package provides simple
and efficient tools for data mining and data analysis. We can use the model-selection unit
of this package, specifically its module named metrics, that contains method pairwise_ker-
nels. This method computes the kernel between arrays X and optional array Y, where
the kernel is represented as Gaussian kernel4. We use two base classes from this pack-
age and we have derived our own class from them, that will be describe in next Sections:
BaseEstimator a class for all estimators and RegressorMixin as base class for all regression
estimators.

StatsModels PyQt-Fit Scikit-learn
Nadaraya-Watson 4 4 4

Local-Linear 4 4 8

Cross-Validation 4 8 4

AIC-Hurvich 4 8 8

Scott/Silverman 4 4 8

Kernel Types 8 4 8

Table 4.2: The comparison of the selected packages to perform the kernel regression.
The rows show the individually beneficial options in kernel regression and cells denotes
their presence in the selected packages. We focus on the primary properties of kernel
estimation, such as the kernel bandwidth (smoothing parameter) or the kernel type.

4.4.3 Implementation

The implementation of this post-processor was again divided into two main modules: run
and methods. The run module implements the interface in Perun and the second module
contains the primary computation logic of this post-processor. The interface consists of
three different modes of kernel-regression: estimator-settings, kernel-smoothing and kernel-
ridge. These modes do not differ in the resulting kernel estimate, but they differ in the com-
putation of the estimate. The purpose of these modes is to provide flexibility in construct-
ing the kernel estimate. Moreover, the user has the option to choose from available kernel
types, kernel smoothing methods and automatic selectors for optimal kernel bandwidth.

4The Gaussian kernel is the physical equivalent of the mathematical point.
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Figure 4.3 shows the examples of kernel models, which was created by estimator-settings
and kernel-smoothing modes.

The kernel-smoothing mode uses the implementation of PyQt-Fit and the estimator-
settings mode uses the method from StatsModels package. This mode provides a few
types of kernels, concretely Gaussian, Tricube, Epanechnikov and two kernels of the higher
order, Gaussian and Epanechnikov of fourth order. As have been mentioned in the sec-
tion above, both modes provide the Nadaraya-Watson kernel regression, and both provide
the different options to an effective estimate of kernel bandwidth.

The last mode of this post-processor, named Kernel-Ridge, is partly built on the meth-
ods and classes from the Scikit-learn package, extended with our heuristics. The class
KernelRidge implements the Nadaraya-Watson regression with the support of automatic
kernel bandwidth selection. This automatic selection is performed by leave-one-out cross-
validation (see Section 3.4.1), where we selected the specific value of kernel bandwidth from
the given range, based on the minimising Mean-Squared-Error. The value of kernel band-
width has a different meaning in this regression as usually. We compute the Gaussian kernel
on the given data-set according to the formula of rbf_kernel: 𝐾(𝑥, 𝑦) = exp (−𝛾|𝑥− 𝑦|2),
for each pair of points (x, y) from the given data-set, where the 𝛾 represents the kernel
bandwidth.

Figure 4.3: The figure shows two kernel models, that were created by this post-processor,
specifically using estimator-settings and kernel-smoothing modes, and the best para-
metric model created by regression-analysis post-processor. The first model (shown in pur-
ple) has the kernel bandwidth estimated by Estimator-Settings object with the default
values of its parameters. The second model (shown in cyan) was created with Nadaraya-
Watson kernel regression method, where was used the Epanechnikov kernel and the band-
width was determined with Scott’s Rule of Thumb. As shown the graph legend, the kernel
regression achieved a more fitting estimates with a markedly higher value of the coefficient
of determination 𝑅2 compared to the best parametric model (power model shown in yel-
low). This graph was again generated by Perun view unit, which used the implemented
method to render the kernel models.
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Chapter 5

Detection of Performance Changes

This chapter introduces a design and implementation of methods for automatic detection of
performance changes, mainly focused on models introduced in Chapter 4. Perun uses these
detection methods as the last step in the whole process of performance detection preceded
by collection and modelling of the performance data. We introduce two new implemented
detection methods: Integral Comparison and Local Statistics. Initially, these methods were
designed primarily for non-parametric models, however, they support all kinds of models
in the Perun. Section 2.4 introduced the general description of the automatic detection
of performance changes. We repeat, that the input of detection methods are two profiles
(baseline and target) and the output is represented by Degradation Info structure (see
Section 2.4 for more details).

The final phase in the evaluation of the performance changes is the classification of
computed change indicators. The performance change indicators are metrics, statistics, or
other values that can indicate that some change in performance could happen (e.g. aver-
age of model). The individual detection methods compute their own change indicators in
a specific way according to their particular strategies. We can then compute the relative or
absolute error from these indicators of baseline and target models. As shown in Figure 5.1,
these errors then decide whether the performance changes will be detected or not, therefore
the comparison of the individual errors and thresholds has a crucial role. Algorithm 2 shows
the generic principle of comparing the errors. This algorithm takes the values of errors and
thresholds, that are participating in comparison, as own parameters.

−𝜉𝜃 𝜉𝜃−𝜉Δ 𝜉Δ0

𝜀−𝜀

No Change
Maybe
Degradation

Maybe
Optimisation DegradationOptimisation

Figure 5.1: The illustration of classification the values of computed error 𝜀 by Algorithm 2.
This algorithm compares these errors with given thresholds 𝜉𝜃, 𝜉Δ and based on the shown
intervals determines whether change occurred or not.
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Method ClassifyChange(𝜀, 𝜉𝜃, 𝜉Δ)
if |𝜀| ≤ 𝜉𝜃 then

Δ = ←→𝑛𝑜𝑐ℎ𝑔

else if |𝜀| ≤ 𝜉Δ then
Δ = ↗𝑚𝑎𝑦𝑜𝑝𝑡 if 𝜀 < 0 else ↘𝑚𝑎𝑦𝑑𝑒𝑔

else
Δ = ↗𝑜𝑝𝑡 if 𝜀 < 0 else ↘𝑑𝑒𝑔

end
yield Δ

Algorithm 2: The generic algorithm used to classify arbitrary computed errors 𝜀 (such
as the relative error 𝜀𝑟𝑒𝑙) for detection of performance changes. The comparison of input
parameters is the basis and according for determining the resulting performance change
Δ. The threshold 𝜉𝜃 represents the acceptable interval to detect NoChange (←→𝑛𝑜𝑐ℎ𝑔) and
range between this threshold and threshold 𝜉Δ represents detection of uncertain types:
MaybeOptimization (↗𝑚𝑎𝑦𝑜𝑝𝑡) or MaybeDegradation (↘𝑚𝑎𝑦𝑑𝑒𝑔).

5.1 Integral Comparison
The first heuristic is based on the assumption that the areas under the curves that rep-
resent the individual models in graphs, should be approximately equal when no change
has occurred. The main idea of this approach is to compute the definite integral under
the given curves of baseline and target models. We designed this method for all kinds of
models, i.e. both for the regression models created by Regression-Analysis post-processor
(see 2.3) and for the models, that we described in the previous Chapter 4. By its complex-
ity, the method brings an entirely new approach in the automatic detection of performance
changes with the potential to more precise results.

5.1.1 Example

We will first illustrate the integral method on short example.

Integration of Parametric Models. The Regression-Analysis post-processor creates
models that are represented by the set of coefficients (see Formulae 2.1 and 2.2). Therefore,
we can compute the integral of these models from the function of one variable and these
coefficients represent this function. For example, we can demonstrate the integral compu-
tation for the regression model, that is represented by function y = x 2 along the interval
[0 , 10 ]:

𝐼 =

∫︁ 10

0
𝑥2𝑑𝑥. (5.1)

We use the integrate1 module from the SciPy [4] package, that contains several functions
to approximate definite integrals and numerically solve the differential equations. In par-
ticular, we use the quad method from this module to compute a definite integral of these
models.

Integration of Non-Parametric Models The non-parametric post-processors create
models that are represented by a set of samples (values of the model). Therefore, we need to

1https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
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use methods that compute a numerical approximation of integral from the set of samples.
We decided to use the Simpson’s Rule [2], that is a numerical method for computation
such integral defined on the interval [xstart , xend ]. This interval is usually broken into 𝑁
equal-sized sub-intervals. However, the non-parametric models are given by the fixed set
of samples, and therefore the 𝑁 is equal to the length of this set. The values of the model
within interval [xstart , xend ] we denote as 𝑥𝑖, for 𝑖 = 0, . . . , 𝑁 . When we suppose, that this
model approximates the function 𝑓(𝑥), then the numerical computation of integral using
Simpson’s Rule looks as following:∫︁ 𝑥𝑒𝑛𝑑

𝑥𝑠𝑡𝑎𝑟𝑡

𝑓(𝑥)𝑑𝑥 ≈ 𝑥𝑒𝑛𝑑 − 𝑥𝑠𝑡𝑎𝑟𝑡
3𝑁

(𝑥0 + 4𝑥1 + 2𝑥2 + 4𝑥3 + 2𝑥4 + · · ·+ 4𝑥𝑁−1 + 𝑥𝑁 ) (5.2)

Now, we let the function 𝑓(𝑥), for example, as 𝑦 = 𝑥2 defined on the interval [0, 10] and
we will demonstrate this numerical computation of integral. We assume the model with
the highest coefficient of determination (𝑅2 = 1), and therefore its values (𝑥𝑖) approximating
function 𝑓(𝑥) are equal to the set: (02, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102). The numerical
computation of integral from this set of values using Simpson’s Rule will be the following:

10− 0

3 * 10

[︃
02+4(12)+2(22)+4(32)+2(42)+4(52)+2(62)+4(72)+2(82)+4(92)+102

]︃
(5.3)

The result of this calculation is equal to 1000
3 , which right approximates the analytical

result. We use the method simps from the sub-package scipy.integrate to compute
the approximation of a definite integral of non-parametric models.

5.1.2 Detection Algorithm

The analysis is performed for each non-parametric model and for the best parametric model
(models with the highest coefficient of determination 𝑅2) from the given pair of profiles.
Algorithm 3 shows the basic principle of running detection methods on a pair of pro-
files: baseline and target. This algorithm obtains models ℳ𝑏 and ℳ𝑡 from profiles 𝒫𝑏
and 𝒫𝑡, and passed it to the DetectionMethod, in this case, to the IntegralComparison
method. Subsequently, this method computes definite integral for both obtained models
defined on the interval [𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑒𝑛𝑑]. For Equation 5.4 we suppose, that models (both para-
metric and non-parametric) approximate the function 𝑓𝑏 for baseline profile, respectively
𝑓𝑡 for target profile. From these computed integrals we calculate the relative error 𝜀 that
is passed to Algorithm 2:

𝜀 =

∫︀ 𝑥𝑒𝑛𝑑

𝑥𝑠𝑡𝑎𝑟𝑡
𝑓𝑡𝑑𝑥−

∫︀ 𝑥𝑒𝑛𝑑

𝑥𝑠𝑡𝑎𝑟𝑡
𝑓𝑏𝑑𝑥∫︀ 𝑥𝑒𝑛𝑑

𝑥𝑠𝑡𝑎𝑟𝑡
𝑓𝑏𝑑𝑥

(5.4)

Algorithm 2 evaluates this computed value of relative error in comparison to given thresh-
olds. The precise value of thresholds 𝜉𝜃 and 𝜉Δ has been established based on experiments
and requirements of users, specifically for this method. This method returns as the output
the members of the structure DegradationInfo. A Result member contains the individ-
ual type of change, that is determined by Algorithm 2 (e.g. NoChange, Optimisation or
MaybeDegradation). As an Error Rate, it returns the computed value of relative error 𝜀
from Equation 5.4. A Confidence member contains the coefficient of determination 𝑅2 as
a confidence type and the minimum value of this coefficient from compared models as
a confidence rate.
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Method run_detection_for(𝒫𝑏, 𝒫𝑡)
foreach ℳ𝑏, ℳ𝑡 ∈ 𝒫𝑏, 𝒫𝑡 do

Δ = DetectionMethod(ℳ𝑏, ℳ𝑡)
𝜗 = 𝜃

if ∃ 𝛽0, 𝛽1 ∈ ℳ𝑏 then
𝜗 = (ℳ𝑏 → 𝜗, ℳ𝑡 → 𝜗)

yield DegradationInfo(
uid = Δ→ uid ,
𝑅2 = minΔ→ 𝑅2

𝑏 ,Δ→ 𝑅2
𝑡 ,

𝜀 = Δ→ 𝜀,
𝜗

)
end

Algorithm 3: The general principle of detection performance changes. The input is
a pair of profiles (baseline 𝒫𝑏 and target 𝒫𝑏) each containing different kinds of modelsℳ𝑏

andℳ𝑡. Subsequently, the specific detection method performs a particular analysis (e.g.
integral computation) between two compatible models from each profile (i.e. collected in
same way and corresponding to same unique identifier and interval). The result Δ includes
the unique identifier 𝑢𝑖𝑑, the kind of parametric model 𝜗, the coefficient of determination
𝑅2 and the error rate 𝜀. The coefficients 𝛽0 and 𝛽1 models parametric models in form of
𝑦 = 𝛽1𝑓(𝑥) + 𝛽0.

We will mention that an alternative approach would be to compute the integral
∫︀ 𝑥𝑠𝑡𝑎𝑟𝑡

𝑥𝑒𝑛𝑑
𝑓𝑡−

𝑓𝑏 𝑑𝑥 and analyse the results. This approach will be part of our future work in the frame
of improvement the results of this method.

5.2 Local Statistics
When executing the performance detection from given models, it can sometimes be ap-
propriate to divide the data-set into more distinct intervals. We decided to implement
another method that adapts this idea because the partial results can provide the user with
more precise locations when the changes occur. The second proposed method implements
interval-based performance detection. The input of the detection method are two profiles
(baseline 𝒫𝑏 and target 𝒫𝑡). The method supports all kinds of models (both parametric
and non-parametric).

5.2.1 Initial Algorithm

Again, we perform the analysis on each non-parametric model and the best parametric
model for every unique location in both profiles. The input of this analysis are modelsℳ𝑏

and ℳ𝑡 which are obtained by Algorithm 3 from pair of profiles: baseline 𝒫𝑏 and target
𝒫𝑡. First, the analysis obtains the required set of values from the individual models (values
of the model), and the interval on which is this model defined [𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑒𝑛𝑑]. In the case
of parametric models, we compute the values of the model directly from their formulae
(respectively its coefficients). The non-parametric models are defined directly by this set of
model values. The analysis also checks if the intervals, on which are both models ℳ𝑏 and

31



ℳ𝑡 defined, are of the same length. In the case of an unequal length of compared intervals,
we adjust both intervals to the length of the shorter one.

Figure 5.2: The figure shows the demonstration of regressogram unification between two
compared profiles. The baseline model is shown in yellow colour, and as displays the legend,
it contains 25 buckets. The target model (shown in red dashed model) was initially created
with 35 buckets and therefore is not suitable for comparison with the baseline model. A cyan
model represents the target model, after the unification with the baseline model, that will
be involved in the difference analysis.

This rule of adjustment is applied with an exception of the model created by the regres-
sogram post-processor. Since the remaining models approximates each collected value from
the interval [𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑒𝑛𝑑], they depend only on the length of this interval. On the other
hand, the regressogram models depend on the number of buckets, and therefore, the com-
parison of two models which were created with the different buckets count does not make
sense. When regressogram models do not the same count of buckets, we perform their
unification, i.e. the target model is adapted to the baseline model (see Figure 5.2). More
specifically, that means the original interval of target model ℳ𝑡 is divided into the new
number of buckets according to the number of buckets in baseline model ℳ𝑏, and thereby
we obtain the models with the same number of buckets. We detect the performance changes
from these unified buckets, comparing the individual buckets that belong to each other.

5.2.2 Detection Algorithm

A computational logic of this method analyse the individual sub-intervals of the given mod-
els: baselineℳ𝑏 and targetℳ𝑡, which are defined on the interval [𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑒𝑛𝑑]. We divide
this interval [𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑒𝑛𝑑] into 𝑘 several sub-intervals, where 𝑘 represents the predetermined
number of these sub-intervals. We also have the predetermined minimum number of model
values within each sub-interval, with except the last one. Now, we denote the ℎ as the length

32



of each sub-interval, and then we can define the sub-intervals:

𝐼0 = [𝑥𝑠𝑡𝑎𝑟𝑡, ℎ], 𝐼1 = [ℎ, 2ℎ], . . . , 𝐼𝑘 = [(𝑘 − 1)ℎ, 𝑥𝑒𝑛𝑑]. (5.5)

Let 𝑛𝑗 denote the number of model values in interval 𝐼𝑗 , and 𝑦𝑖 denote the values of
the model for 𝑖 = 𝑥𝑠𝑡𝑎𝑟𝑡, . . . , 𝑥𝑒𝑛𝑑. In other word 𝑛𝑗 =

∑︀
𝑖 𝐼(𝑥𝑖 ∈ 𝐼𝑗) where:

𝐼(𝑥𝑖 ∈ 𝐼𝑗) =

{︃
1, 𝑖𝑓 𝑥𝑖 ∈ 𝐼𝑗
0, 𝑖𝑓 𝑥𝑖 /∈ 𝐼𝑗

(5.6)

Then, we define 𝑌𝑗 as a statistical metric computed from 𝑦𝑖 model values in 𝐼𝑗 . For example,
we demonstrate the computation of sum:

𝑌𝑗 =
∑︁
𝑥𝑖∈𝐼𝑗

𝑦𝑖. (5.7)

Finally, we define the 𝑚𝑗 = 𝑌𝑗 for all sub-intervals 𝐼𝑗 :

𝑚𝑗 = 𝑌𝑗𝐼(𝑥 ∈ 𝐵𝑗), 𝑓𝑜𝑟 𝑗 = 0, . . . , 𝑘. (5.8)

In the same way, we could also defined the remaining metric, that are computed for all
sub-intervals 𝐼𝑗 : integral

∫︀
, average 𝑋, median �̃�, maximum max, minimum min, sum∑︀

, first (𝑃1) and second (𝑃2) percentile. We decided to choose these statistical metrics as
appropriate indicators of various changes. At the same time, this set of metrics is easily
extensible, since it only needs to implement a statistic method that will accept a 2-D array
of values as input.

𝑥𝑠𝑡𝑎𝑟𝑡 𝑥𝑒𝑛𝑑ℎ 2ℎ

I0 I1 I2∫︀ ∫︀ ∫︀
𝑋 𝑋 𝑋

�̃� �̃� �̃�
∑︀ ∑︀ ∑︀
min max min minmax max
𝑃1 𝑃1𝑃2 𝑃2 𝑃2𝑃1

Figure 5.3: The illustration of the computation of the set of statistical metrics within
individual sub-intervals (𝐼0, 𝐼1, 𝐼2).

The final phase follows after the computation of the set of statistical metrics for both
baseline and target profiles. We analyse all computed statistical metrics within the indi-
vidual sub-intervals 𝐼𝑗 . First, we compute the relative error against baseline model, which
represents the change indicator in this method:

𝜀𝑗 =
𝑚𝑡𝑗 −𝑚𝑏𝑗

𝑚𝑏𝑗

𝑓𝑜𝑟 𝑗 = 0, . . . , 𝑘, (5.9)

where 𝑚𝑏 contains the results of one computed statistical metrics (e.g. sum) for all sub-
intervals 𝐼𝑗 from baseline model, respectively 𝑚𝑡 from the target model. Then, we use
Algorithm 2 to evaluate the values of relative error 𝜀 within the individual sub-intervals. We
report the performance changes on individual sub-intervals if at least half of the computed
statistical metrics are evaluated as changed on relevant sub-interval. Simultaneously, we
compute an average relative error for all sub-intervals and report the overall change on
the whole interval if its value is higher than the predetermined threshold.
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5.2.3 Implementation

This method was implemented using the NumPy (Numerical Python) package and its mod-
ules. Thanks to an efficient manipulation with NumPy arrays and applying mathematical
operators on these arrays, we receive a several times faster calculation in comparison to
usage of loops and lists [20].

at utf_iscomposing:
0.42x Maybe Degradation (with confidence r_square = 0.72)

<0.0, 12782.97> 1.69x; <12790.71, 19178.32> -2.24x;
<25581.42, 31969.03> 2.26x; <31976.77, 32000.0> -0.75x;

Listing 2: The example of the output generated by the Local Statistics detection
method. It shows the detected change in utf_iscomposing function with 0.42𝑥 Degrada-
tion in comparison to the baseline profile. The two last lines in the listings show the member
Partial Integrals, that shows the detected change in the individual sub-intervals with
its error rates.

This method adds a new member to the Degradation Info structure, namely Partial
Integrals. It provides the information about the detected changes at concrete sub-
intervals. The user then receives information about the sub-intervals affected by the change,
as well as the error rate of this change.

5.2.4 Example

We will show a brief example of the computational logic of this method. Let the count of
observations (call order) in collector record be equal to 10. Further, let the baseline and
target sets with model values as follows:

∙ baseline model 𝑚𝑏: [5, 4, 8, 3, 7, 6, 1, 5, 4, 3],

∙ target model 𝑚𝑡: [7, 9, 4, 5, 7, 5, 3, 8, 5, 1]

These sets of model values with the interval of call order (i.e. 𝑥𝑝𝑡𝑠 equal to [0, 1, 2, 3, 4, 5, 6, 7,-
8, 9]), represent the inputs of the method, that divides this interval and computes the rel-
evant statistical metrics. In this example, we set the minimum number of points within
sub-interval to 2 and divide the initial interval into 5 sub-intervals, i.e. let the 𝑖 = 4. Sub-
sequently, we compute the selected metrics for each sub-interval for both models (baseline
and target).

In the next phase, we compute the relative error from adjacent values in the Table 5.2
for each computed metric. As shown in Table 5.3, in the interval [0, 1] the relative error for
minimum 𝑌𝑖 is calculated as:

𝜀0 =
𝑌𝑏0 − 𝑌𝑡0
𝑌𝑏0

=
7.0− 4.0

4.0
(5.10)

Algorithm 2 then evaluates the value of relative error and determines the resulting changes.
Threshold 𝜉𝜃 determines the interval (<0, 𝜉𝜃>) for No Change type. Threshold 𝜉Δ defines
the interval (<𝜉𝜃, 𝜉Δ>) where the change is detected as uncertain: Maybe Degradation or
Maybe Optimisation. In this example, we set 𝜉𝜃 to 0 .33 and 𝜉Δ to 0 .66 . We compute
the change score (ΔScore) for each sub-interval from all computed statistical metrics, that
determines the resulting changes. The individual types of changes increase or decrease
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this score, as follows: Degradation: ΔScore + 1 , Maybe Degradation: ΔScore + 0 .5 ,
Optimisation: ΔScore − 1 and Maybe Optimisation: ΔScore − 0 .5 . We use this score
to determinate whether the change has occurred or not.

Table 5.1: The table shows the created sub-intervals and the respective values of both
models at these sub-intervals.

i = 0 1 2 3 4
𝑥𝑝𝑡𝑠 [0, 1] [2, 3] [4, 5] [6, 7] [8, 9]
𝑚𝑏 [5, 4] [8, 3] [7, 6] [1, 5] [4, 3]
𝑚𝑡 [7, 9] [4, 5] [7, 5] [3, 8] [15, 1]

Table 5.2: The table shows the computed metrics on the individual sub-intervals for both
compared models. The table rows represent the relevant sub-interval according to the value
of x-coordinates according to Table 5.1. The table columns represent the computed metrics
within each sub-interval for both compared models (baseline (𝑚𝑏) and target (𝑚𝑡)).∫︀

/ X̄ / X̃ min max
∑︀

P1 P2

b t b t b t b t b t b t
[0, 1] 4.5 8.0 4.0 7.0 5.0 9.0 9.0 16.0 4.3 7.5 14.8 8.5
[2, 3] 5.5 4.5 3.0 4.0 8.0 5.0 11.0 9.0 4.3 4.3 6.3 4.8
[4, 5] 6.5 6.0 6.0 5.0 7.0 7.0 13.0 12.0 6.3 5.5 6.8 6.5
[6, 7] 3.0 5.5 1.0 3.0 5.0 8.0 6.0 11.0 2.0 4.3 4.0 6.8
[8, 9] 3.5 3.0 3.0 1.0 4.0 5.0 7.0 6.0 3.3 2.0 3.8 4.0

Table 5.3: The table shows the computed values of relative error, change score and result-
ing change within each interval. The colour cells indicate the detected change type within
the sub-intervals for the relevant metric.∫︀

/ X̄ / X̃ min max
∑︀

P1 P2 Score Result
[0, 1] 0.78 0.75 0.80 0.88 0.76 0.78 8 Degradation
[2, 3] -0.18 0.34 -0.38 -0.18 0.00 -0.29 0 No Change
[4, 5] -0.08 -0.17 0.00 -0.08 -0.12 -0.03 0 No Change
[6, 7] 0.83 2.00 0.60 0.83 1.13 0.69 7.5 Degradation
[8, 9] -0.14 -0.67 0.25 -0.14 -0.38 0.07 -1.5 No Change
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Chapter 6

Experimental Evaluation

In this chapter, we will experimentally evaluate our proposed detection methods using non-
parametric models. We will also compare the fitness of new models with models created
by existing regression-analysis post-processor. At last, we will compare the run-times of
individual post-processors and detection methods over the different test cases.

6.1 Basic Evaluation
We tested novel post-processors on the set of artificial examples consisting of profiles with
selected worst-case complexities. For these programs the regression-analysis post-processor
will find the following best model: constant, linear, logarithmic, exponential, power and
quadratic. These tests aim at verifying the correct functionality of new post-processors
compared to an existing post-processor. As shown in Table 6.1, for all tests the implemented
post-processors have achieved almost the same accuracy of estimate as to the regression-
analysis post-processor. The processing time in these examples was negligible (in the range
from 0 .02s to 0 .10s). In these examples we used the regressogram model with 10 buckets,
moving average model with window width equal to 300, and kernel regression model that
used the Epanechnikov kernel (see Figure 3.1a) and Scott’s rule (see Section 3.4.1) to
determine optimal kernel bandwidth.

Table 6.1: The comparison of fitness of models created by all available Perun’s post-
processors on the set of artificial examples. The table rows represent individual examples
that have the stated algorithmic complexity (e.g. constant 𝒪(𝑐), logarithmic 𝒪(𝑛 log 𝑛),
etc.) and columns represents the fitness of best models of individual post-processor. The fit-
ness of models is expressed by the value of the coefficient of determination 𝑅2.

reg-analysis regressogram moving-avg kernel-reg
constant 1.000 1.000 1.000 1.000
linear 0.999 0.989 0.993 0.996
logarithmic 0.999 0.821 0.802 0.843
exponential 0.999 0.981 0.977 0.987
power 0.972 0.989 0.991 0.995
quadratic 0.999 0.987 0.989 0.994
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In the next experiment, we compared the accuracy of estimates created by post-pro-
cessors and their processing time on more complex profiles, that we collected on Vim bi-
nary with different collecting configurations. We evaluated our solutions on two profiles,
which includes 25 different collected functions. The first profile (#1) contains records with
the number of samples in the range from 3 to 3 290 469 samples (773 711 on average) and
second profile (#2) in the range from 2 to 186 886 samples (42 038.55 on average). As
shown in Table 6.2, the new non-parametric post-processors achieved better fitness in com-
parison to models created by original regression analysis post-processor. Kernel-regression
post-processor had the slowest post-processing times, however, it achieved the best fitness
of the resulting models. For this example, we used the following configurations of post-
processors: the regressogram model with Doane’s method to determine optimal bucket
counts; the simple moving average model with window width equal to 4; and kernel regres-
sion model with kernel-ridge mode, where the 𝛾 parameter was set to 1

𝑛 , where 𝑛 represents
the count of the samples.

Table 6.2: The comparison of post-processing times 𝑡[𝑠] and coefficient of determination
𝑅2 between the available post-processors within Perun. The coefficient of determination
was computed as the average value of these models, which were present in the tested profiles.
Highlighted cells represent the extremes in both compared metrics.

reg-analysis regressogram moving-avg kernel-reg
𝑅2 t[s] 𝑅2 t[s] 𝑅2 t[s] 𝑅2 t[s]

#1 0.192 122.90 0.117 45.60 0.551 71.78 0.786 126.68
#2 0.222 11.01 0.415 3.86 0.572 5.28 0.775 76.71

6.2 Degradation Detection on Vim
We evaluated our detection methods on repository Vim, which contains known reported per-
formance issue. We tried to detect known issue, that was reported in version v7.4.2293 and
resolved in v8.0.01901. In addition to the detection of this issue, we compared two follow-
ing version and checked our assumption, that they had no significant changes. This known
issue caused the performance degradation of specific functions because it used the type
garray_t instead of hashtab_t to collect tags. Since the tags are stored in a garray_t
structure, Vim has to perform a linear search of all existing tags every time a new tag
is added. Using a hash table (structure hashtab_t) drastically improves the speed and
resolves this performance issue.

Collection Strategy. We used a trace collector as the described issue affects only spe-
cific functions. This collector allows one to measure run-times of functions that are executed
during the run and subsequently to detect the changes between them. As the first step,
we have to collect (generate) the tags (taglist) using Ctags2 utility (e.g. ctags -R /usr/in-
clude/). For the reproduction of the described issue we need to run Vim with the following
configuration:

1https://github.com/vim/vim/commit/810f9c361c83afb36b9f1cdadca2b93f1201d039
2http://ctags.sourceforge.net/
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#!/bin/bash
perun collect --cmd="./src/vim" --args="-u NONE"

--workload="--cmd ’echo len(taglist("a"))’ --cmd q" trace

Listing 3: The complete Perun’s command to collect the profiles by trace collector
with a specifically described strategy for Vim binary ./src/vim: an argument -u with
value NONE ignores vim configure files (.vimrc); the command echo len(taglist(“a”)),
which finds all tags containing the letter “a”; and at the end the command :q to terminate
the Vim editor.

6.2.1 Initial Experiments

Collecting Phase. We first ran this configuration without further specifications of traced
functions, i.e. we collected run-times of each called function. But we found out that running
the Vim with this configuration is complex and calls a 377 traced functions resulting into
a large number of collect records. The generation of this profile lasted more than 2 hours,
and the resulting profile had the size of 214 MiB. Such extensive profiles are difficult to
process, and therefore we needed some level of abstraction if we wanted to collect reasonable
amount of data. Therefore, we used the trace collector with the sampling, where we set
the global sampling of calling each function, so we would monitor every 𝑛𝑡ℎ calling only. For
this example, we set the value of global-sampling to 500 (tracing each 500𝑡ℎ call), and
the resulting profile was collected in 419.75 seconds with the size of 22 MiB for the version
v7.4.2293, and 2.3 MiB for v8.0.0190.

Evaluation. From these collected profiles we subsequently create a performance mod-
els, by our post-processors, and then we used detection methods to determine possible
changes. We tested each type of non-parametric models — regressogram (RG), moving av-
erage (MA) and kernel regression (KR) — and two new detection methods: Integral Com-
parison (IC) and Local Statistics (LC). Recall that we want to detect known issue between
versions v7.4.2293 and v8.0.0190 and compare two following versions (v8.0.0190 and
v8.1.0000) that there is no significant performance change. Therefore we chose the ver-
sion v8.0.0190 as the baseline profile and remaining versions as target profiles in these
comparisons. In the first experiment (v8.0.0190 - v7.4.2293) we compared 333 common
functions from both profiles and in the second case (v8.0.0190 - v8.1.0000) we compared
in summary 388 functions.

As shown in Table 6.3, in the second case we detected only minimal count of functions
in which change has occurred. Most of the changes were reported using the regressogram
model, which confirms our assertion that it is an over-estimating method in some situations.
The results of the comparison between versions v8.0.0190 - v8.1.0000 show that the dif-
ference between these two versions should be stable. On the contrary, the first comparison
(that contains the version where we expected performance degradation) includes on average
7% more functions with the detected change. This average increase of detected changes
confirms the suspicion of performance issue because its value approximately corresponds to
the impact of this issue on specific measured functions.
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Table 6.3: The results of our first experiments of detecting degradations in Vim. Each cell
shows how many functions were reported as degradations (-) or optimisations (+). We use
(?) to signify that some change was detected, but was not drastic enough to be reported.
Colour of cells reflects our expectations: green denotes meeting our expectations and red
its failing.

v8.0 - v7.4 v8.0. - v8.1
Model - + ? - + ?

IC
RG 18% (60) 17% (56) 13% (43) 11% (36) 8% (26) 13% (43)
MA 5% (16) 3% (10) 0% (2) 0% (2) 1% (4) 0% (0)
KR 6% (20) 2% (6) 0% (1) 0% (3) 1% (4) 0% (1)

LC
RG 11% (36) 8% (26) 13% (43) 6% (20) 3% (10) 6% (21)
MA 13% (43) 8% (27) 11% (35) 6% (20) 3% (10) 6% (21)
KR 12% (40) 6% (21) 11% (36) 6% (20) 3% (12) 7% (24)

6.2.2 Further Experiments

Collect Phase. However, the initial experiments were not focused on the specific func-
tions, and therefore we decide to continue in the detection of the mentioned issue in Vim.
In the following experiments, we aimed to focus on functions, that are directly involved in
the issue. We analysed this issue and we located the function that performs the main logic
of the command which we are executing (echo len(taglist(“a”))). This function is located
in the module tag.c and is called find_tags3. We collected the set of functions, which
we will analyse, from the call-graph of this main function. We obtained this call-graph
using a cflow4 tool. Subsequently, we made an intersection of this set of functions with
the functions, which were present in the profile with actually collected records. We further
selected out these functions, which were called at least three times during the whole run.
The resulting set of functions contains the 25 specific functions (without specification was
their count 333 or 388). The new collecting data by trace collector for this set lasted
475.48 seconds, and the collected profile had a size 217.57 MiB. The size of this profile
is almost equal to the first collected profile (214 MiB), what it is due to the fact that in
this case, we did not use sampling. When we tried using the specific sampling according
to the number of calls of each function, then the resulting profile was generated in 87.34
seconds and had a size 13.23 MiB. However, the subsequent detection of the performance
changes was distorted by the number of samples, and the processing time did not increase
significantly compared to the profile without sampling (since we analysed 25 functions).

Evaluation. We post-processed collected profiles (without and with samples) with all
available post-processors. We tested each type of non-parametric models (as in Section 6.2.1)
and also models created by regression-analysis post-processor (RA). Subsequently, we use
the available methods to detection potential performance changes from created models. In
this evaluation we present detection methods presented in this thesis: Integral Comparison
(IC) and Local Statistics (LC); and Average Amount Threshold (AAT).

Since the results of analysis by individual detection methods do not have unified for-
mat, and the structure Degradation Info includes different members, these results cannot
directly compared in these experiments. Therefore, we manually analysed the results of all

3https://github.com/vim/vim/blob/master/src/tag.c#L1546
4https://www.gnu.org/software/cflow/
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detection methods which compared the profiles collected from the Vim versions v8.0.0190
and v7.4.2293. Most of the detection methods detected the performance changes at func-
tions listed in Table 6.4. In the remaining 22 functions they detected no changes, or
eventually in some cases insignificant changes with a small value of error rate.

Table 6.4: The results of comparison of collected profiles on the specific set of the functions
of Vim. We show the detected error rates in the individual functions using implemented
detection methods IC and LC. These methods performed detection on all post-processing
models (RG, MA, KR and RA). Colour of cells reflects the extremes of confidence rate,
in this experiment 𝑅2 showed in parenthesis, between the models. The last column shows
the results of comparison by Average Amount Threshold (AAT) method, that works with
raw performance data, i.e. with the collected run-times of these functions.

RG MA KR RA Raw
IC 1.00× (0.10) 1.00× (0.52) 1.00× (0.92) 1.00× (1.00) 0.88×ga_grow LC 0.23× (0.08) 1.18× (0.55) 0.55× (0.78) 0.86× (1.00)
IC 1.00× (0.08) 0.71× (0.46) 0.70× (0.96) 0.66× (0.15) 0.47×ga_init2 LC 0.16× (0.06) 0.11× (0.62) 0.26× (0.28) 0.60× (0.12)
IC 0.26× (0.15) 0.46× (0.45) 0.13× (0.88) 0.61× (0.07) 0.34×ga_clear LC 0.28× (0.10) 0.27× (0.45) 0.54× (0.93) 0.12× (1.00)

In the Table 6.4, the values of error rates are represented by the relative error that is
computed in a specific way by the individual detection methods. It indicates the rate of
the change of target model in comparison to the baseline model. For example, an error
rate equal to 1× can represent the degradation from 100𝑚𝑠 in the baseline profile to 200𝑚𝑠
in the target, however, this would only apply in the case of run-times comparison. Our
detection methods (IC and LC) works with the models, from which compute the individual
change indicators (such as integral or other statistical metrics), i.e. the error rate can
represent the change of areas under models (integral) and so on.

As shown in Table 6.4, all functions name starting with prefix ga_ are working with
the structure garray_t. This structure caused performance issue in vim v7.4.2293 un-
til its replacement with structure hastab_t to collect tags in version v8.0.0190. The
average error rates in these functions and their confidence detection rates, expressed by
the coefficient of determination 𝑅2, which were detected from the non-parametric mod-
els are the following: ga_grow: 0.85×, (0.62), ga_init2: 0.53×, (0.34) and ga_clear:
0.34×, (0.52). Table 6.4 shows that these results derived from the non-parametric models
are almost the same to results, that were created from the raw performance data by AAT
method, i.e. outour results were not affected by the fitness of the models or inaccuracy
of the detection methods. We assume that detected results are related to mentioned issue
because after the replacement of problem structure has improved the performance of these
functions in Vim.

6.3 Detection Method Evaluation
In this thesis, we presented two new detection methods, namely: Integral Comparison
and Local Statistics. We compared these methods with the existing methods, which are
already implemented within Perun. Most of these methods were described in detail in [17].
These methods, however, work only with regression models or raw resource data, and
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therefore we will not compare their functionality but we will compare only processing time
on the different data-sets. The first profile (#1) includes 25 different functions, where
the average count of samples in one function is equal to 768 358. The second profile (#2)
includes a greater number of functions, but with the fewer samples per each function (3 188
on average).

Table 6.5: The comparison of processing times (in seconds) of individual detection meth-
ods on different collected profiles. We compare all implemented methods within the Perun
framework: Average Amount Threshold (AAT), Best Model Order Equality (BMOE), Lin-
ear Regression (LREG), Polynomial Regression (PREG), Fast-Check (FCH) and two new
implemented detection methods Integral Comparison (INT) and Local Statistics (LOC).

AAT BMOE LREG PREG FCH INT LOC
#1 512.63s 0.10s 77.47s 0.12s 75.05s 0.62s 1.80s
#2 10.94s 0.05s 7.86s 0.08s 6.98s 0.15s 0.68s

As shown in Table 6.5, the processing times of our new methods (INT and LOC) are
stable and both achieve good times under any conditions, while other methods (AAT,
LREG or FCH) have fluctuating processing times depending on the number of compared
functions or samples. This is due to the fact, that these methods work with a full profile,
while our new methods work only with regression models.

The Average Amount Threshold (AAT) method groups all of the collected resources
to the unique identifier (e.g. function name) and then computes the averages of resource
amounts. The Best Model Order Equality (BMOE) chooses the best parametric model (i.e.
the one with highest coefficient of determination 𝑅2) from both compared profiles (baseline
and target) and compare it lexicographically (e.g. the linear model is lexicographically
smaller than quadratic model). The Fast Check (FCH) method is based on the subtrac-
tion of best parametric models and subsequently interleaving these data by newer models of
regression-analysis post-processor. The Linear Regression (LREG) method analyse the co-
efficients of linear regression models, respectively the coefficients of their subtraction. The
last method, namely Polynomial Regression (PREG), uses polynomial regression to quan-
tify the rate of the change, i.e. it represents the change in the form of 𝑛𝑡ℎ degree polynomial
function.

Final Evaluation. Our experiments show that implemented post-processors can inter-
leave the data more adequately and faster in comparison to existing post-processor of re-
gression analysis in many cases. Implemented detection methods detected the performance
degradation between two versions of Vim at three specific functions, which works with
the structure that caused a known issue. These methods were successful in comparing
the detection methods, where they achieved one of the best processing times, without any
dependency on the input data-set or specific models.
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Chapter 7

Conclusion

In the thesis, we have presented the post-processors for performance data modelling which
are based on the non-parametric techniques: regressogram, moving-average and kernel
regression. Further, we have proposed two methods for automatic detection of performance
changes, mainly focused on the non-parametric models. We have implemented these post-
processors and detection methods as the components of the Perun framework. Our post-
processors achieved three times faster post-processing time and almost triple improvement
in the fitness of the models in comparison to the existing post-processor within the Perun.
Moreover, we have evaluated our solutions on the different versions of Vim, which contains
a known performance issue. We have detected the performance degradation of three specific
functions, which are related to this issue. The results of this thesis were also presented at
students conference Excel@FIT’19, where we got the award from the general sponsor of
this conference for extraordinary work with great benefits to the practice.

Our future work will focus on increasing the accuracy and efficiency of our approach for
the automatic detection of performance changes. We will focus on improving the perfor-
mance data collector, as well as the new types of collectors with an option to measure several
metrics and support for different programming languages (such as Java). Further, we will
want to improve the performance of post-processors for faster processing of collected pro-
files, and mainly we will want to bring new solutions to post-processing performance data.
New solutions should extend the range of input data distribution that can be adequately
approximated to achieve more accurate performance detection. Also, we want to focus on
the precision of pinpointing the actual problem source to prepare the solution that could
be effectively used in a broad range of projects. Finally, we plan to evaluate our solution
on the existing projects (we target on Ruby) and potentially detect real performance bugs.
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Appendix A

Storage Medium

/perun/* — source code of Perun from date May 15, 2019

/README.txt — useful information about the storage medium content

/text/* — source code of this thesis

/xstupi00.pdf — final version of this thesis
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