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Abstract
This thesis focuses on the Internet of Things and some of the most important problems it
faces today. Among these are the overdependence on the Cloud and lack of autonomy, poor
security and privacy, complicated initialization and power consumption. The work aims to
implement a complex IoT solution that solves the discussed problems. The project is part
of a collaboration with NXP Semicondutors and will be used to showcase the company’s
technologies.

Abstrakt
Tato práce se zabývá Internetem věcí a některými z jeho nejdůležitějších problémů. Mezi ně
patří příliš velká závislost na Cloudu a chybějící autonomie, slabé zabezpečení a soukromí,
komplikovaná inicializace a spotřeba energie. Práce má za cíl implementovat komplexní
IoT systém, který řeší tyto diskutované problémy. Projekt vznikl ve spolupráci s Ąrmou
NXP Semiconductors, a bude využit k prezentaci jejich technologií.
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Chapter 1

Introduction

The Internet of Things is a phenomenon that has been quickly gaining popularity in the last
decade. As devices keep getting smarter every year, a future where everything is connected
to an automated network of cooperating sensors and actuators that make human lives more
convenient and efficient is very close. However, in order to make this concept a reality, sev-
eral important problems still need solving. In its current state, the Internet of Things
suffers from issues that can lead to dangerous security or privacy breaches, is often too
reliant on services that are out of their consumer’s control and there are too many incom-
patible technologies that create a fragmented market. The goal of this thesis is to research
some of these problems, design a solution that solves them and demonstrate the design’s
functionality with a physical model of a smart home.

This thesis builds on the knowledge and experience the author gained by working on
a bachelor’s thesis that focused on the Internet of Things and created a simple demonstra-
tion with a Thread network connected to the Microsoft Azure Cloud platform. The scope
of this thesis however, goes beyond the previous one and intends to provide a more complex
Internet of Things solution. The master’s thesis studies several problems of IoT, like its
overdependence on the Cloud and lack of autonomy, poor security and privacy, complicated
initialization and power consumption. The aim of this work is to create a system, which is
autonomous and does not rely on the Cloud for its main functionality, is properly secured
and whose communication is kept private, provides a means of both remote and local device
control through a mobile application, uses power efficient devices and offers an easy to use
initialization technique. The result will be a physical model of a smart home that presents
these solutions. The thesis is being developed under the patronage of NXP Semiconductors
and will use their technologies.

The Ąrst part of this document describes what the Internet of Things is, what tech-
nologies make it possible, what problems it faces and how current solutions try or fail to
solve them and lastly talks about the possible future of the Internet of Things. The next
chapter goes through the design goals and the design itself, the chosen technologies and
the proposed topology. The following chapter focuses on the implementation of the complex
system and the problems encountered during its development. The second to last chapter
presents the experiments carried out on the system in order to assess its functionality. Fi-
nally, the thesis is summarized and future goals and possibilities are discussed in the last
chapter.
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Chapter 2

Important Problems of IoT

This chapter offers an overview of the Internet of Things, it’s history, the technologies that
make this phenomenon possible and the problems that hold it back. It also brieĆy discusses
the future of IoT and talks about both the good and the bad that IoT might bring.

2.1 What Is the Internet of Things

Internet of Things [1, 2] is a buzzword that has been gaining a lot of popularity in the last
few years. The name was coined by Kevin Ashton1 in 1999 during a presentation for Procter
and Gamble (P&G) about linking RFID technology to the internet.

Internet of Things describes a system where items in the physical world, and sensors
within or attached to these items, are connected to the Internet via wireless and wired
Internet connections. These sensors can use different communication technologies such
as RFID2, NFC3, Wi-Fi, Bluetooth, Zigbee or Thread. The goal of this system is to
connect inanimate objects and living things, use sensors to collect and analyze data to
provide new information or improve efficiency of existing systems and to create autonomous
environments where things and beings cooperate seamlessly.

Thanks to rapidly improving technologies for low-power wireless communication, pow-
erful, yet relatively cheap, microcontrollers, machine learning and Cloud technologies, it is
possible for IoT to spread into more and more areas. Smart homes enable power savings
through more efficient use of electricity and temperature control systems and provide their
owners with increased comfort in the way of automatic lights, home control through their
phones and better security. In health care, nursing systems in hospitals can become more
advanced by equipping patients with devices that report their health or location directly
to their doctors. Industry 4.0 [3] takes advantage of IoT to upgrade automation within
factories, enable machine to machine and machine to product communication and monitor
equipment use and servicing needs. Agriculture and farming industries may utilize sensor
data to better and more effectively take care of animals and plants.

1ASHTON, Kevin. That ’Internet of Things’ Thing. RFID Journal [online]. [cit. 2019-01-11]. Retrieved
from: https://www.rfidjournal.com/articles/view?4986

2VIOLINO, Bob. What is RFID? RFID Journal. January 2005. [online]. [cit. 2019-05-17]. Retrieved
from: https://www.rfidjournal.com/articles/view?1339/

3About the Technology. NFC Forum. [online]. [cit. 2019-05-17]. Retrieved from: https://nfc-

forum.org/what-is-nfc/about-the-technology/
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2.2 Technologies Connected With IoT

The success of the Internet of Things depends on a wide range of technologies. Among
these are the hardware components like sensors and actuators or MCUs, that need to
be highly energy efficient when used for end devices or powerful enough to be able to
maintain a large IoT network or even process the data output of the network. Moreover,
the software technologies that provide the functionality and communication capabilities
to these MCUs have to also comply with these requirements, which is why so many new
low-power consuming IoT focused communication technologies and protocols have been
emerging in the last two decades. Additionally, simpliĄed IoT versions of common operating
systems, that can be used on smart gateways, are being introduced.

Furthermore, Cloud Computing gained a lot of popularity, as it provides the ability
to process and store the huge amounts of data generated by IoT networks and to provide
automation by analysing the data and manipulating the end devices without the need for
companies to maintain their own servers. Lately, however, Edge Computing has started
to become the new norm, as MCUs keep getting more powerful and can handle some of
the complexity of data processing on their own. ArtiĄcial intelligence technologies will also
play a large role in the possible mainstream adoption of IoT by the world, as it can bring
efficiency and autonomy to the IoT networks.

Another crucial area is the privacy and security of IoT networks which involves both
software, in the form of, for example, cryptographic algorithms and hardware, that can be
used to securely store the keys and secrets used to secure network access and communication.

This chapter will provide an overview of current technologies and describe the ones that
were chosen for this thesis in more detail.

Connectivity and Communication Technologies

A wide variety of connectivity technologies useful for IoT has been developed over the last
three decades. Some of the earlier ones include RFID, Bluetooth and Wi-Fi, among the more
modern are NFC, Zigbee, Thread and Bluetooth Low Energy. Zigbee and Thread are both
based on the IEEE 802.15.4 standard [4], which focuses on low-rate wireless personal area
networks with low-power devices. Bluetooth Low Energy is a new version of Bluetooth that
was also created with low energy consumption in mind.

Communication protocols with large overhead like TCP/IP are not suitable for low-
power MCUs. Due to this, more efficient IoT-focused communication protocols have been
invented, like CoAP, MQTT, AMQP or XMPP-IoT,

Zigbee Zigbee technologies are developed by the Zigbee Alliance members. They focus
on creating a standard for the Internet of Things. Zigbee 3.04 is their latest uniĄed solution
that builds on IEEE 802.15.4, Zigbee PRO and the Zigbee Cluster Library. Zigbee supports
large low-power mesh networks operating in the sub-GHz band locally and 2.4GHz globally.
Zigbee PRO supports four device types - end devices, routers that maintain the network,
coordinators that create, maintain and secure the network and gateways providing Internet
connection. The devices can support Zigbee Green Energy which is an energy harvesting
technology allowing the use of small sensors or devices without a battery or wired power

4Zigbee for Developers. Zigbee [online]. [cit. 2019-01-11]. Retrieved from: https://www.zigbee.org/

zigbee-for-developers/zigbee-3-0/
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source. Zigbee devices communicate through an application layer protocol called Dotdot5

and in collaboration with the Thread Group, Dotdot can be used with Thread devices to
integrate IPv6 connectivity to Zigbee networks.

Figure 2.1: Zigbee Architecture6

Bluetooth Bluetooth is a technology originally created in 1994 that provides wireless
data streaming between devices, like music to headphones or a mobile phone-to-car com-
munication. In 2011 Bluetooth Low Energy7 was released with focus on low-power devices
and the Internet of Things. Devices using BLE spend most of their operating time in sleep
modes, allowing low energy consumption. In 2017 BLE was extended with mesh capabilities
through the Bluetooth Mesh ProĄle speciĄcation [5].

Thread Thread8 [6] is a wireless mesh communication protocol invented and maintained
by the Thread Group. The main areas of focus for this technology are smart homes and
smart commercial buildings. It is designed to be low-power and secure and was based on
IEEE 802.15.4. Thread enables IPv6 communication to devices through 6LoWPAN [7],
an open standard adaptation layer for IPv6 packet transportation in IEEE 802.15.4 net-
works. Thread supports several device types in its networks - a border router, a router-
eligible end device, an end device and a sleepy end device.

Border router is a speciĄc type of router, which facilitates connectivity from the 802.15.4
network to networks on other physical layers, like Wi-Fi or Bluetooth. They also maintain
the 802.15.4 network and provide various services like routing for off-network operations.
A single Thread network can have several border routers. When that is the case, the network
then has no single point of failure for the connectivity outside of Thread.

5The Dotdot Story. Speak Dotdot [online]. [cit. 2019-01-11]. Retrieved from: https://

www.speakdotdot.com/dotdotstory/
6PIŠKULA, David. Internet of Things zařízení s podporou Thread a 6LoWPAN. Brno, 2017. Bachelor’s

Thesis. Brno University of Technology, Faculty of Information Technology.
7Bluetooth Vs. Bluetooth Low Energy: What’s The Difference?. Link Labs [online]. [cit. 2019-01-11].

Retrieved from: https://www.link-labs.com/blog/bluetooth-vs-bluetooth-low-energy
8What is Thread. Thread Group [online]. [cit. 2019-01-11]. Retrieved from: https://

www.threadgroup.org/What-is-Thread
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Routers take care of routing services, joining and security services for network devices
and devices that are trying to join the network. A router eligible end device can become
a router when needed or can be demoted to a regular end device. When demoted, they do
not forward messages or provide the mentioned services. The promoting and demoting of
router eligible end devices is managed by the Thread network without the need for user
interaction. These devices cannot go to sleep to save energy.

The sleepy end devices never provide any network services and need a parent router to
be able to communicate with the rest of the network. However, they spend most of their
life time asleep, thus conserving energy and ensuring that they can operate for years using
a coin-cell battery.

When at least two routers are in the network, the Thread stack forms a mesh topology.
If only one router or border router is present, the network works with a basic star topology
instead. The Thread mesh is self-healing and has no single point of failure, which means that
when one of the routers is lost, the devices that needed them automatically Ąnd a substitute
and discover alternate routes to maintain full functionality.

Figure 2.2: Thread Architecture6

The Tread stack describes three phases for joining of new devices to the network. First,
the device enters the discovery phase, during which it discovers the Thread network and
establishes contact with a router for commissioning. It does this by scanning all avail-
able channels, sending beacon requests on each and waiting for potential responses. Once
a router is discovered, the device starts communicating with it so that the commissioning
phase can begin. If the device is already commissioned, it does not need to enter the dis-
covery phase at all.

In the commissioning phase, the device either uses information provided to it by some
out-of-band method to attach to he Thread network or a commissioning session is estab-
lished between the device and some commissioning application on a smartphone, tablet
or the web. Through this session the device is provided with the necessary information
needed to attach to the network. During the commissioning phase, the device needs a cor-
rect Pre-Shared Key for the Device (PSKd) and a network Master Key to be allowed to
join.

Lasty, the device attaches itself to the network, exchanges conĄguration messages with
its parent router and is allocated a network address by the router.

6



Table 2.1: Technology comparison
Thread Zigbee 3.0 Bluetooth Low Energy

Standard IEEE 802.15.4 IEEE 802.15.4 IEEE 802.15.1

Frequency 2.4 GHz 2.4 GHz, sub-GHz 2.4 GHz

Range 20-30 m 10-20 m 200 m

Data Rate 250 Kb/s 250 Kb/s up to 2Mb/s

IPv6 Yes, 6LoWPAN No No

Max no. Devices 250 65000 Not Limited

Topology Mesh, Star Mesh, Star, Tree Mesh, Point-to-Point, Broadcast

Cloud Connectivity Border Router, Gateway Gateway Smartphone, Gateway

CoAP Constrained Application Protocol is a specialized web transfer protocol deĄned
in the RFC 7252 [8]. It was created for constrained nodes and networks, such as low-
power devices or lossy networks. CoAP provides a request/response interaction model
between application endpoints, often machine-to-machine communications, that includes
key concepts of the Web such as URIs. It can easily interface with HTTP while maintaining
specialized features like multicast support and very low overhead. Unlike HTTP though,
CoAP communicates asynchronously over UDP. IoT technologies like Thread are built on
CoAP and utilize it for network communications.

MQTT MQTT is deĄned in [9] as a client-server publish/subscribe messaging transport
protocol that is light weight, open and ideal for Machine to Machine communications and
the Internet of Things because of its small footprint. It runs over TCP/IP, communicates
through a broker application that provides one-to-many message distribution and offers
three qualities of service. These are the QoS 0: At most once, that delivers messages to
the best efforts of the operating environment, QoS 1: At least once, where messages are
assured to arrive but duplicates can occur and QoS 2: Exactly once. MQTT can be secured
through TLS with SSL CertiĄcate exchanges between the broker and subscribers/publishers
or with WebSockets.

Cloud computing

Cloud computing [10, 11] is an on-demand computing model composed of autonomous,
networked IT (hardware and/or software) resources. The main advantage of this model is
that organizations no longer need to own and maintain their own datacenters and can get
resources on-demand from the Cloud computing provider instead. These Clouds are rapidly
scalable, allow resource pooling, where several consumers use the same pool of resources.
They are also easy to use, as their providers usually offer GUI access and development
guides, and subscription based, allowing consumers to only pay to the time and resources
they need.

Cloud platforms are often divided into three categories, Sotfware as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). Infrastructure as a Ser-
vice provides consumers with access to processing, storage, networks and other resources
where the consumer can deploy and run arbitrary software. Platform as a Service al-
lows consumers to use programming languages, libraries, services and tools supported by

7



the provider to deploy onto the Cloud infrastructure. Software as a Service gives users
the use of applications running on a Cloud infrastructure.

Cloud computing is a very important part of the Internet of Things. It enables sensors
to collect very large amounts of data and store them in highly scalable databases. It
provides the means to run deep analytics on such data, use machine learning to make
IoT systems more efficient. In the previous years, the trend was to utilize the Cloud’s
computing capabilities to enhance low-power low-performance devices and run most of
the processing on Cloud platforms. However, with growing concerns about data privacy
and with improvements to microcontrollers, Edge computing is becoming the new popular
phrase. Edge computing leverages the strengths of gateways or even end devices equipped
with more powerful microcontrollers to make a lot of the computation local again, lowering
latency, improving privacy and decreasing the network’s dependence on the Cloud.

Edge Computing

In [12], Edge Computing’s advantages are listed as the option to process the massive data
generated by devices at the network edge instead of transmitting them to the centralized
Cloud. It can provide services with faster responses and greater quality and can be con-
sidered the future the Internet of Things infrastructure. They also describe the various
approaches to Edge Computing that are being implemented today.

Cloudlets, are small-scale data centers located at the edge of the internet. They aim
to improve end-to-end responsiveness between a mobile device and the Cloud. They con-
sist of resource rich computers providing powerful computing resources to nearby mobile
devices with lower latency. They can serve as a middle point between the mobile devices
and the Cloud. The paper also lists several important differences between the Cloud and
the Cloudlet. Cloudlets need to be much more agile in its provisioning, because mobile
devices connect to them dynamically due to user mobility. A virtual machine handoff
technology needs to be utilized to pass the needed services between Cloudlets as a user
moves. The mobile devices need to discover the Cloudlets, as they are small, geographi-
cally distributed data centers. Cloudlets can be for example be used for wearable cognitive
assistance. They can improve the robustness of the whole IoT system by adding a layer
between potential cyberattacks and the Cloud and encapsulating each user’s environment
in a separate virtual machine.

Mobile edge networking, on the other hand, is deĄned as a technology that provides
an IT service environment and Cloud Computing capabilities at the edge of a mobile net-
work. This can be represented by applications running as a virtual machine on a powerful
mobile edge platform. It can be used for handling video streaming services in smart cities,
augmented reality or smart vehicles. It can collect, classify and analyze IoT data streams,
manage protocols, distribution of messages and processing of analytics.

Finally, Fog Computing aims to distribute resources and services along the continuum
from the Cloud to things, using more powerful end nodes where possible and small Clouds at
the edge. It can enable interoperability in IoT, 5G, virtual reality and other applications.
It creates a hierarchical network of Fogs that can communicate among each other and
with the Cloud. Each Fog can collect and process data on its own or pass them along
the hierarchy as needed.

8



Operating System

With the emergence of devices like the Raspberry Pi and with an increasing number of
powerful low-energy microcontrollers on the market, OS providers began developing simpler
or less resource intensive versions of their systems that can be used for IoT devices. Among
these are Ubuntu Core, Windows 10 IoT and Android Things. These operating systems
share some attributes important for IoT devices - they are built to be highly secure, allow
over-the-air updates and promise fast development. Furthermore, Windows 10 IoT can
be easily integrated with Microsoft’s Cloud platform, Azure while Android Things can
similarly integrate with Google Cloud.

Developers then have a choice between running these OS on powerful end devices and
having them connect directly to the Cloud or to use a gateway that runs the OS and
communicates with the Cloud on behalf of the end devices.

Android Things Android Things is an operating system made by Google and originally
inteded for Internet of Things devices. It is based on Project Brillo, which was another
operating system from Google and while both share the same core, Brillo was focused on
C++ development, while Android Things supports a subset of the Android SDK. Android
Things extends the core Android framework9 and offers developers the ability to develop
using the Android SDK and Android Studio, natively access hardware through the Android
framework, integrate additional peripherals through Peripheral I/O APIs and use the An-
droid Things Console to push over-the-air feature and security updates. It is supported on
several development kits10, including the NXP Pico i.MX7D and Raspberry Pi 3 Model B.

Figure 2.3: Android Things Platform Architecture11

Hardware

The devices used for IoT can be generally divided into two categories - low-power devices
with smaller computation power but better energy savings, that use technologies like Zigbee

9Overview. Android Developers. [online]. [cit. 2019-02-05]. Retrieved from: https://

developer.android.com/things/get-started
10Supported Hardware. Android Developers. [online]. [cit. 2019-02-05]. Retrieved from: https://

developer.android.com/things/hardware/
11Android Things Platform Architecture. Android Developers. [online]. [cit. 2019-02-05]. Retrieved from:

https://developer.android.com/things/images/platform-architecture.png

9



or Thread, and more powerful devices with IoT operatings systems like the Windows 10
IoT or Android Things, and usually connect to the Internet directly.

Several companies focus on creating low-power microcontrollers suitable for IoT devel-
opment. Among these are Texas Instruments with their CC2650 wireless MCU capable
of communicating over Bluetooth Low Energy, Zigbee and 6LoWPAN. STMicroelectron-
ics offer the STM32WB55xx series of multiprotocol devices that can communicate over
Bluetooth Low Energy and IEEE 802.15.4 based protocols as well. NXP Semiconductors
make the ultra-low-power KW41Z devices likewise using Bluetooth Low Energy and IEEE
802.15.4 connectivity.

Development boards and small computers like the Raspberry Pi, Qualcomm Drag-
onBoard or NXP Pico are powerful enough to fully utilize the aforementioned operating
systems and can therefore act as powerful but more energy consuming end devices or net-
work gateways, connecting the low-power networks to the Internet.

Cryptography

The basic concepts of cryptography, as described by [13], are privacy/conĄdentiality, au-
thentication, integrity, non-repudiation and key exchange. Privacy ensures that only the in-
tended receiver can read the data of the message, authentication is the proces of proving
one’s identity, integrity is for making sure the transmitted message is not tampered with,
non-repudiation is a mechanism of checking that the sender really sent the message and
key exchange is a method of sharing cryptographic keys between the sender and the re-
ceiver. The paper classiĄes cryptographic algorithms into three categories, the Secret Key
Cryptography, Public Key Cryptography and Hash Functions.

Secret Key Cryptography uses a single key for both encryption and decryption of mes-
sages. The sender takes a plaintext message, encrypts it with the secret key and sends it as
ciphertext to the receiver. The receiver then uses the same key to decrypt the ciphertext
back to readable plaintext. Since both sides use the same key, this method is also called
Symmetric Encryption. The method works either in the mode of stream ciphers or block
ciphers. Stream ciphers operate on single bits, bytes or computer words at a time and
utilize a feedback mechanism to ensure the key is constantly changing. Block ciphers, on
the other hand, operate on blocks of data using the same key every time. In general, stream
cipher encrypted plaintext will encrypt to a different ciphertext every time whereas a block
cipher plaintext will always encrypt to the exact same ciphertext.

Public Key Cryptography depends on mathematical functions called one-way functions,
which are easy to compute but whose inverse functions are difficult to compute. The scheme
employs two keys that are mathematically related but one cannot be used to easily deter-
mine the other. One of the keys can be used to encrypt plaintext and the other to decrypt
the resulting ciphertext and it does not matter with key is applied Ąrst. Since the sender
and receiver use a different key each, the approach is called Asymmetrical Encryption. One
of the most commonly used Public Key algorithms is the RSA algorithm, which can be
used for key exchange, digital signatures or encryption of small blocks of data.

Hash Functions, or otherwise called message digests and one-way encryption are algo-
rithms that do not use any keys. Instead, they use a Ąxed-length hash value computed upon
the plaintext that makes it so that it is not possible to recover the contents nor the length
of the original plaintext. They are often used to encrypt passwords, for digital Ąnger-
printing or to ensure the integrity of a computer Ąle. Since they are one-way encryption
algorithms, the ciphertext cannot be decrypted. Commonly used Hash algorithms today
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inlcude the Message Digest (MD) algorithms which are a series of byte oriented algorithms
that produce a 128-bit hash value from an arbitrary-length message and the Secure Hash
Algoritms (SHA).

The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are protocols
that ensure secure transactions over communication protocols like HTTP. SSL uses RSA
certiĄcates for authentication and the initial handshake, after which both communicat-
ing endpoints agree upon an encryption scheme. After the SSL was found to be breakable,
the TLS protocol became the new popular protocol. It extends and is backwards compatible
with SSL, supports additional cryptographic schemes and is used for HTTPS communica-
tion. The communication between a client and a server is initiated after a TLS protocol
handshake which has three phases. First, an unencrypted key exchange is performed. Af-
terwards, all communication is encrypted, starting with the second phase of the handshake,
where the server sends the server parameters, which specify additional handshake parame-
ters. Lastly, the server and optionally the client are authenticated, keys are conĄrmed and
the integrity of the handshake is assured.

2.3 The Evolution of Autonomous Systems

One of the biggest selling points of the Internet of Things are autonomous systems that
control whole networks of devices based either on their own decisions through machine
learning or on preprogrammed rules, in order to bring efficiency and larger quality of life
everywhere, from factories and industrial plants to agriculture, cities, houses and more.
The original approach to this concept was to completely integrate the Internet of Things
with Cloud Computing and leave most of the processing of the data generated by IoT
networks to the Cloud. In [14] and [15], the researchers focused on the difficulties of
implementing advanced features like data processing on computationally weak devices and
analyzed the trends and technologies used back then. They introduced a new paradigm
that they called CloudIoT, which would merge the Cloud and IoT to enhance them both.
With their proposal, the Cloud would bring better storage resources to IoT, as the huge
amounts of unstructured or semi-structured data produced by IoT devices could be stored
in the virtually limitless Cloud servers. Additionally, it would bring much larger and more
scalable computational resources and allow the processing of the data, which was not very
feasible to do on-site. Lastly, the Cloud would serve as a sort of communication hub, where
all the devices and applications could connect and talk to each other. The papers also
suggest the possible applications of the CloudIoT, for example in health care, smart cities
or smart homes. At the end, they also brieĆy mention Fog Computing, which is a subset
of Edge Computing, showing how quickly IoT keeps evolving and changing.

The trend to integrate these two areas was also evident from the was the Cloud platform
providers advertised their solutions and what their suggested ways of using them were.
Google Cloud, for example, used to recommend sending all data to their MQTT broker and
use their Cloud-based services to analyze and process the data and respond to the devices
with new commands, as can be seen in Ągure 2.4.
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Figure 2.4: Old Cloud IoT Core approach12

However, this approach brings large latency to communication both between the de-
vices and between the data processing algorithm and the devices it controls. Furthermore,
the whole system is then completely dependent on an internet connection and the connec-
tion to the utilized Cloud platform, which makes it vulnerable and potentially dangerous.

As an example, a smart home that uses thermostats to control the heating and cooling
of air inside and performs data processing purely in the Cloud can, in the best case scenario,
stop heating and cooling entirely without an internet connection and in the worst case might
get stuck in one of these operations and endanger the lives of its inhabitants.

In order to Ąnd a solution to these issues the research and development of IoT have
shifted towards a new paradigm, the Edge Computing. There are many studies and pa-
pers that focus on Edge Computing, among them [16], where the author compares both
Cloud computing with Edge Computing, talks about the history of Edge Computing and
explains why the decentralized ideology of Edge Computing is gaining popularity. Some of
the most important advantages they mention are highly responsive Cloud services provided
by Cloudlets, better enforcement of privacy and the masking of Cloud outages by keeping
the system functional even without a Cloud connection. In [17], the team of researchers
present the problems of Cloud Computing solutions like the high communication latency
and the substantial stress put on network links to the Cloud by all the data generated by
IoT devices. They introduce Edge Computing and its usefulness in several different areas
of technologies, including the Internet of Things and lastly they describe their experimental
evaluation of mobile gaming with the use of Edge Computing.

The problems of Cloud-dependence have also been mentioned in various media outlets,
like the Medium13 that published an article exploring the large disadvantages of systems
completely reliant on the internet and Cloud for their functionality and offering a list of
steps that could be taken in order to get rid of the overdependence on Cloud. Similarly,

12CHAKRABORTY, Indranil. Announcing Cloud IoT Core public beta. Google Cloud Platform. Septem-
ber 2017. [online]. [cit. 2019-02-05]. Retrieved from: https://storage.googleapis.com/gweb-Cloudblog-

publish/original_images/Cloud2BIoT2BFinal2BV6s64u.GIF
13BURNS, Patrick. Why The Internet of Things and the Cloud Should Break Up. Medium [online].

[cit. 2019-01-12]. Retrieved from: https://medium.com/@patburns/why-the-internet-of-things-and-

the-Cloud-should-break-up-8aa6ec563a81
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networkworld14 has an article talking about how Edge Computing is critical for the evolution
of IoT and about the important improvements Edge Computing can bring to IoT.

Finally, the change in philosophy can also be noticed in the way the guides from Cloud
platform providers have changed in the last two years. Contrary to the previous mentality of
pushing everything to the Cloud, as previously mentioned and shown in Ągure 2.4, nowadays
they offer various types of Edge Computing platforms that can be used on-site on powerful
enough devices and that can take care of the network-to-Cloud connection and data and
information exchange. Even Cloud IoT Core’s documentation has been altered, as can be
seen in Ągure 2.5.

Figure 2.5: New Cloud IoT Core approach15

Google now proposes to use an Edge Device with their Cloud IoT Edge services in order
to perform real time analysis and machine learning while using the Cloud to store data,
retrain machine learning models and provide online analytics in the form of data graphs.

2.4 Current Autonomous Solutions and Their Problems

As mentioned previously, the original Cloud Computing solutions have many issues and
nowadays even the providers of Cloud platforms are changing their suggestions for IoT
networks, like Google with their Cloud IoT Edge or Amazon and their Amazon IoT Edge.

Among home automation solutions, there have been several failing products on the mar-
ket. Revolv16 was a smart home hub with the purpose of controlling a wide range of different
gadgets via a smartphone app. However, the hub was completely reliant on the developer
company’s Cloud-based service. Revolv was eventually bought by Nest and subsequently,
the Cloud service was shut down, rendering all Revolv hubs inoperational. Another product

14TALLURI, Raj. Why edge computing is critical for the IoT. Network World [online]. [cit. 2019-01-
12]. Retrieved from: https://www.networkworld.com/article/3234708/internet-of-things/why-edge-

computing-is-critical-for-the-iot.html
15Cloud IoT Core. Google Cloud Platform. [online]. [cit. 2019-02-05]. Retrieved from: https://

Cloud.google.com/iot-core/images/benefits-diagram.png
16FINLEY, Klint. Nest’s Hub Shutdown Proves You’re Crazy to Buy into the Internet of Things.

Wired [online]. [cit. 2019-01-14]. Retrieved from: https://www.wired.com/2016/04/nests-hub-shutdown-

proves-youre-crazy-buy-internet-things/
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with a similar fate was Emberlight17, a smart light socket designed to work with ordinary
light bulbs. Its aim was to enable a mobile application to control regular light bulbs instead
of having to buy specialized and expensive ones. The issue was that all controls were done
though a Cloud service which was, again, shut down.

Another examples are home controlled through smart assistants like Alexa in Ama-
zon’s Echo or Google Assistant in Google Home. These products use voice recognition
in the Cloud in order to understand commands and communicate with humans. Older
versions did not support offline speech recognition which could result in complete loss of
control over smart homes that relied on them. One experience with this critical fault was
described in an article by Mashable18, where the author could not control their Alexa device
which resulted in them not being able to even turn on the lights in the house.

The idea of Edge Computing was explored in [18] with the goal of implementing a smart
e-Health gateway to bring the Internet of Things to healthcare. The paper focuses on
inventing a system architecture that would allow for a secure network with local storage,
data Ąltering and analytics. The result of their work was UT-GATE, a functional gateway
with a WebSocket server providing local servicing while communicating with a remote Cloud
platform to receive improved processing rules gained through deeper analytics.

Another study concerning this area was described in [19]. This team of researchers tried
to tackle the issues by proposing a hierarchical fog computing architecture that is Ćexible,
scalable and brings computing resources close to end devices. The architecture consists of
a network of computationally powerful fog nodes that can each connect to a Cloud server to
offload their work if needed. The resulting design can substantially reduce traffic loads in
networks and the communication delay that can be a problem in purely Cloud Computing
based systems.

There are also products on the market already that offer partial or even full functionality
to connected networks even without an internet connection. The latest Amazon Echo Plus,
for example, allows limited usage of their voice controlled home control hub offline. Phillips
Hue Bridge is another example, as it only needs an internet connection for remote control
but locally can work completely offline, as explained in an article by howtogeek19. Hubitat20

is a home automation platform, that was built with offline functionality in mind. Despite
the ability to use an internet connection for updates and Cloud communication, it does not
need the internet connection for any of its major functions. This makes the whole system
more secure, private and removes latency.

2.5 Security and Privacy

When IoT became popular, many manufacturers focused on performance and usability of
IoT devices and ignored security measures and encryption mechanisms, leaving their devices

17PAUL, Fredric. What happens when an IoT implementation goes bad?. Network World [online]. [cit.
2019-01-14]. Retrieved from: https://www.networkworld.com/article/3238004/internet-of-things/

what-happens-when-an-iot-implementation-goes-bad.html
18WONG, Raymond. TFW your internet goes down and takes your smart home with it. Mashable

[online]. [cit. 2019-04-13]. Retrieved from: https://mashable.com/2016/07/05/smart-home-useless-

internet-down/?europe=true#B2SqpRDVRkqa
19LLOYD, Craig. What Happens If My Philips Hue Lights Go Offline?. How-To Geek [online]. [cit. 2019-

01-14]. Retrieved from: https://www.howtogeek.com/293341/what-happens-if-my-philips-hue-lights-

go-offline/
20Home Automation Features. Hubitat [online]. [cit. 2019-01-14]. Retrieved from: https://hubitat.com/

pages/home-automation-features
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vulnerable. A Forbes report predicts more than 80 billion smart devices to be connected
to the Internet by 2025. Such a huge amount of potentially insecure devices would be very
dangerous not only to their owners, but to the Internet and the whole world.

There have already been many cases proving the scale of this issue, from a casino being
hacked into through their Ąsh tank21, to cardiac devices that hackers could misuse to cause
incorrect pacing or shocks, a connected vehicle vulnerable to being taken over and allowing
hackers to shut down the car’s engine or cut the breaks22, to a massive DDoS attack
through Mirai botnets23 [20] that infected tens of millions of IoT devices and left much of
the Internet inaccessible on the U.S. east coast.

Apart from taking control over vulnerable devices, hackers can also listen to their com-
munications and steal or misuse their data. This can lead to privacy issues like smart
cameras being used to remotely spy on homes or important personal information being
leaked, like medical records or time periods when a house or a building is often empty and
easier to break into.

Due to the importance of these issues, the world’s governments and research teams have
been focusing on Ąguring out proper precautions and safety and security principles to battle
the increasing risk an unsecured IoT presents. In Japan for example, in order to strengthen
the security of their country before the 2020 Summer Olympic Games, the government has
been testing and breaking into hundreds of millions of devices like routers and web cameras
by using their default passwords which users often leave unchanged. They plan to compile
a list of potentially compromised devices and report them to the authorities.24

In a paper [21] published at an international conference in 2012, a group of Chinese
researchers examined and reviewed the state of security in the Internet of Things and
proposed the most important challenges that still needed to be overcome. They divided
IoT into four layers described in Ągure 2.6.

21WEI, Wang. Casino Gets Hacked Through Its Internet-Connected Fish Tank Thermometer. The Hacker

News [online]. [cit. 2019-01-12]. Retrieved from: https://thehackernews.com/2018/04/iot-hacking-

thermometer.html
22From Connected Cars, Healthcare to Uranium Enrichment Facilities, 5 IoT Security Hacking Instances

to Take Note of!. Embitel [online]. [cit. 2019-01-12]. Retrieved from: https://www.embitel.com/blog/

embedded-blog/security-challenges-faced-by-iot-based-industries
23FRUHLINGER, Josh. The Mirai botnet explained. CSO [online]. [cit. 2019-01-12]. Re-

trieved from: https://www.csoonline.com/article/3258748/security/the-mirai-botnet-explained-

how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html
24THUBRON, Rob. Japan’s government will start hacking its citizens’ IoT devices next month. Techspot.

January 2019. [online]. [cit. 2019-04-18]. Retrieved from: https://www.techspot.com/news/78456-japan-

government-start-hacking-citizens-iot-devices-next.html
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Figure 2.6: Security Architecture [21]

The nodes in the perceptual layers have limited computing power and storage but at
the same time need to support authentication to prevent illegal access. In the network
layer, man-in-the-middle attacks are a danger and DDoS attack prevention is also necessary.
The support layer has to be protected from malicious information and should use stronger
system security technologies and anti-virus programs. For the application layer, the security
needs depend on the type of application but mostly concern data privacy and access control.
The paper also brieĆy talks about some of the available encryption and cryptographic
methods and algorithms and Ąnally summarizes some common challenges for the security
of IoT. Among these are cryptogrpahic key management and security laws and regulations.

Another paper [22] that studied the current status and open issues of security and pri-
vacy in IoT in 2014 highlights how there might be over thirty billion connected things in
the world by 2020 but warns about the absence of solid security in place. It summarizes
the overall vision and technologies of IoT and identiĄes some of the attacker models and
threats and security challenges. Finally it summarizes the state-of-the-art of 2014 IoT.
Among the attacker models and threats they mention are the intruder model, which can
intercept all transmitted messages within a network, the denial-of-service attacks that at-
tempt to make machines or even whole networks unavailable, physical attacks performed
through physical tampering with devices and attacks on privacy, like eavesdropping, traffic
analysis and data mining.

The Internet of Things is spreading into the industry and is giving birth to the lat-
est potential industrial revolution. Industrial IoT is often being called the Industry 4.0.
The security in this area of IoT was explored in [23]. The paper goes through several
cyber attacks targetted towards industrial control systems, like the Slammer worm which
infected a U.S.A. nuclear power plant, a virus that infected the control system of a major
transportation network in the U.S.A. and Stuxnet which was used to make centrifuges at
an Iranian nuclear facility to fail. The paper then talks about the difficulty of adapting
existing information security concepts for the cyberphysical production systems (CPPS).
For example, CPPS cannot be temporarily disabled and restarded like typical IT systems,
have strict real-time requirements and constrained computational, memory and energy re-

16



sources. Finally, the work surveys existing literature and research regarding these issues
and offers an overview of necessary future research directions.

A more recent review of IoT’s security from 2017 [24] shows that while all the IoT
connected technologies are evolving, there are still too many security issues even Ąve years
after the paper cited in previous paragraphs. This survey paper explores the IoT security
and privacy issues, presents the most relevant limitations of IoT devices and their solutions,
discusses the classiĄcation of existing IoT attacks, examines IoT authentication and access
control schemes and architectures proposed in recent literature and analyzes the security
issues in all four of the layers from Ągure 2.6. Among the device limitations they list short
battery life of IoT devices and lightweight computation capabilities, due to which conven-
tional cryptography cannot work on IoT systems. The paper concludes with the opinion
that the safety of IoT is dependant on the technologies, protocols and security mechanism
implemented by manufacturers and in speciĄc cases the resulting devices could be vulner-
able to certain types of attacks. They suggest that there is an urgent need of developing
a general security policy and standards for IoT products.

There are also mechanisms that can be used to ensure that when the software on a device
or the cryptographic keys are compromised, there is still a way to recover the affected
devices. Among them are the Over-The-Air (OTA) updates and automatic cryptographic
key rotation. OTA updates are software updates that can be conĄgured and sent to devices
over the internet without the need for user interaction. As mentioned in some articles25 26,
OTA will be critical for IoT, as either not updating the devices at all or having users
update them manually poses security risks and gives harmful parties the chance to overtake
a device forever or intercept the physical medium which is used to transport the updated
software and tamper with it before it reaches its intended users. Android Things supports
OTA through Google’s console27 which can be similarly used for all Android devices.

The cryptographic key rotation has a very similar goal of OTA. When a device’s key is
stolen, if the device is set up to automatically discards its current keys and register new ones
in some time period, then then attacker can only access the network through the device for
the length of this period. This is why Google Cloud IoT Core and other Cloud platforms
support switching of keys or even using several at a time to smooth out the rotation and
keep access outages at the minimum28.

2.6 Device Initialization

Initialization is an important part or the lifetime of a device. I needs to be performed
when connecting it to a network for the Ąrst time or after a factory reset was triggered on
the device. There are several layers to initialization. First, the device needs to use some
initial values and state which can either be pre-programmed or conĄgured dynamically
through some kind of communication. Next, the device needs to establish a connection to

25LEE, Jeffrey. Over-The-Air Firmware: The Critical Driver of IoT Success. Hackernoon. Dec,
2017. [online]. [cit. 2019-03-05]. Retrieved from: https://hackernoon.com/over-the-air-firmware-

the-critical-driver-of-iot-success-f4604bd0b881
26GONZÁLEZ, Ana Rosa.The Importance Of OTA Updates For IoT Devices. barbaraiot. Jan, 2019.

[online]. [cit. 2019-03-05]. Retrieved from: https://barbaraiot.com/articles/importance-ota-updates-

iot-devices/
27Push an update for an Android Things product. Android Developers [online]. [cit. 2019-03-05]. Re-

trieved from: https://developer.android.com/things/console/update
28Device security. Google Cloud [online]. [cit. 2019-03-05]. Retrieved from: https://Cloud.google.com/

iot/docs/concepts/device-security#key_rotation
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whatever network it is connecting into and resources for the device need to be allocated and
prepared in the rest of the system, which in the case of this thesis would be the gateway
and the Cloud.

Among the most commonly used technologies for this purpose today are, for example,
QR codes, RFID tags and NFC tags29. QR codes are two-dimensional codes that can be
printed on a sticker and later scanned by a mobile application or some other kind of reader.
It is a very simple and low-cost one-way communication solution. RFID is a technology
using electromagnetic Ąelds instead of image scanning and its effective range can be from
a few centimeters to a kilometer. RFID can also be used as a one-way communication only.
NFC evolved from RFID and is designed to only work at close range to improve security.
Unlike RFID and QR codes, NFC supports information exchange between devices.

The research in this area is looking into even more ways to perform efficient initial-
ization. One such concept, called BlinkComm, involves visible light communication [25].
The paper talks about the issues of initialization schemes used in today’s products. In some
cases, the task requires very complicated procedures or even a cable connection which is
not very user friendly, especially with the large amounts of devices that are supposed to be
part of the Internet of Things in the near future. They also discuss the security of different
initialization methods and talk about several vulnerabilities in systems, which, for exam-
ple, use preinstalled secret keys for their initialization phase, which is dangerous, because
compromising one such device can endanger the whole network. The goal of the research
was to present a solution that offers simple and secure initial conĄgurations of IoT devices
without the need to use any specialized hardware. They evaluate related solutions and cal-
culate the theoretical capacity of the visible light communication channel and implement
coding techniques that achieve more that three times faster speeds than the competition
with minimal hardware requirements, such as one LED and one photodiode.

The same researchers who wrote the paper mentioned in the previous paragraph contin-
ued their visible light-based initialization research and invented two new multichannel key
deployment schemes called LISA and LISAT [26], that make use of a light source device,
like a smartphone, tablet or a multi-touch screen to securely interface with resource con-
strained devices. LISA stands for Light based Initialization and SMS based Authentication,
LISAT for Light based Initialization and SMS based Authentication involving Trusted third
party. The difference between them is that with LISAT, a user can initiate two wireless
devices, one in their vicinity and the other in a geographically remote location, using their
smartphone as a Trusted Third Party. The protocols use the visible light generated by,
for example, a smartphone’s screen to communicate information from the smartphone to
the device that is being initialized and the device responds to the smartphone through
encrypted sms messages. In LISAT the smartphone communicates with the remote device
over SMS as well. The researchers claim that, while the protocols were implemented to
use SMS, they can be adopted to support other technologies, such as LoRaWAN, Sigfox,
NB-IoT or even BLE, Wi-Fi and NFC. The protocols were implemented on a commercially
available platform and tested by 34 users who provided feedback the researchers plan to
use to improve their future versions of the protocol.

29What are the differences between QR Code/RFID/NFC?. Medium [online]. [cit. 2019-01-13]. Re-
trieved from: https://medium.com/ucot/what-are-the-differences-between-qr-code-rfid-nfc-ucot-

at-the-cutting-edge-of-nb-iot-communications-693769926dee
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2.7 Power Consumption

Devices in the Internet of Things can generally be divided into two categories, when it comes
to power consumption. There are the gateways and other computationally powerful units
that consume to much energy to be sustained by batteries and thus require a constant power
source and the more efficient and less computationally powerful end devices, which need
to be wireless but at the same time have to last for months or even years without getting
recharged. Therefore, there have been many studies and several different approaches [27,
28, 29] to how such end devices might be powered and how they can be made as energy
efficient as possible while still providing the required services of IoT.

To make devices energy efficient, new communication standards and protocols have
been invented, like the IEEE 802.15.4 and 6LoWPAN. Devices that communicate through
technologies based on such standards and protocols conserve energy by transmitting limited
amounts of data, decreasing the overhead of packets as much as possible, using a small
transfer rate at small distances and lower bandwidth. They generally operate in peer-to-
peer, mesh or star topologies.

Another important way of conserving energy is by using various sleep modes that turn off
hardware components, so that the device draws energy only when necessary. The KW41Z
MCU sold by NXP Semiconductors [27] for example, has four main STOP modes, which
range from a stopped CPU with all I/O, logic and memory states retained and certain
asynchronous mode peripherals operating to a powered down CPU with only I/O and
a small register Ąle retained and very few asynchronous mode peripherals operating, while
the remainder of the MCU is powered down. The four main modes are Normal Stop,
Very-Low Power Stop, Low-Leakage Stop and Very-Low-Leakage Stop.

By making devices energy efficient, it became possible to also focus on different strategies
when it comes to powering them. One of these is energy harvesting [28], which harnesses
energy from the environment or other energy sources and converts it to electrical energy.
Some techniques can convert solar energy, while others use wind or mechanical energy, like
when a mechanical stress is applied to piezo-electric materials or when a rotating arm is con-
nected to a generator. Even humans themselves can serve as the power source through body
movements, blood pressure, Ąnger motion and other means. According to the cited paper,
energy harvesting can be divided into two architectures - the Harvest-Use or the Harvest-
Store-Use. The Harvest-Use based devices are powered directly by the harvesting system
and can operate only while some form of energy is being converted. The Harvest-Store-Use
devices can conserve the harvested energy and use it later. The paper discusses various
aspects of energy harvesting systems, presents the basics of energy harvesting and exist-
ing nodes that use this technology and offer insights into the opportunities and potential
applications of energy harvesting.

Wireless energy harvesting for IoT devices is explored in [29]. They call this approach
the Wireless Energy Harvesting IoT or WEH-IoT systems. WEH-enabled sensor devices
consist of an antenna, a transceiver, a WEH unit, a power management unit (PMU), a sen-
sor/processor unit and optionally a battery. For energy harvesting, the two essential ones
are the WEH-unit, which harvests RF energy and PMU that controls the device and man-
ages energy consumption. The article also explores the enabling technologies. They classify
energy sources into two categories, the dedicated sources, which are RF sources deployed
to provide predictable energy supply to devices and ambient sources, among which are
broadcast radios, TVs, Wi-Fi access points and others. Finally, they present and evaluate
possible implementations of this system.
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There are products on the market already that use different energy harvesting schemes.
Among them are the Williot tags30, which use Bluetooth and harvest ambient RF energy
from cellular, Bluetooth, Wi-Fi and other 2.4GHz connectivity technologies, even Zigbee
and Thread. These tags connect to Williot’s Cloud service to provide secure authentication
and sensor processing. Another energy harvesting IoT technology is the Zigbee Green
Power31, which allows battery-less Zigbee PRO devices by harvesting energy from light
switches, piezo-electric elements and dynamo or electro-mechanic converters.

2.8 The Future of IoT

While the future of the Internet of Things might seem bright, Cisco estimates 50 billion
connected devices by 2020 [30] and IDC predicts 80 billion devices by 202532, there are
still many concerns they need to be solved. As microcontrollers get more energy efficient,
machine learning becomes more advanced, communication protocols and connectivity tech-
nologies get more uniĄed and standardized, IoT will quickly expand and most likely become
an important part of every day life. However, while this future promises greater comfort
and better lives, there is also the danger of large scale hacks and attacks on vulnerable
and poorly secured devices and networks. If these dangers aren’t solved in the near future,
IoT can open the doors to a lot of harm, from privacy issues in people’s homes, to health
concerns with connected medical equipment and extremely large DDoS attacks endangering
the whole Internet.

In its current state, the Internet of Things is far from ready to be adopted and incor-
porated into the lives of billions of people. However, as can be seen in the articles and
publications cited in previous paragraphs, the research of its problems and the search for
valid solutions is very intensive. Even MCU and device manufacturers33 34 are now realizing
the mistakes of the last few years and are working on solutions to all of the aforementioned
issues, especially edge computing and security of IoT networks.

It seems like the next few years will be crucial in convincing humanity that IoT will
make the world a better, safer and more comfortable place to live in instead of a fully
controlled environment that takes away their choice and is in danger of being overtaken
and misused by harmful parties on a daily basis. After all, living in a house that saves
energy, takes care of its inhabitant’s needs and makes their lives more convenient in various
ways is an attractive prospect but living in a house that is remotely controlled by someone
who means to harm its inhabitants sounds more like a terrifying nightmare.

30HAZELRIGG, Jessie. FAQ. Williot [online]. [cit. 2019-05-01]. Retrieved from: https://

support.wiliot.com/hc/en-us/articles/360021588534-FAQ
31The Green Power feature of Zigbee PRO allows battery-less devices to securely join Zigbee PRO net-

works, making it the most eco-friendly way to power a range of Zigbee products. Zigbee Alliance [online].
[cit. 2019-05-01]. Retrieved from: https://www.zigbee.org/zigbee-for-developers/greenpower/

32KANELLOS, Michael. 152,000 Smart Devices Every Minute In 2025: IDC Outlines The Future
of Smart Things. Forbes [online]. [cit. 2019-01-13]. Retrieved from: https://www.forbes.com/sites/

michaelkanellos/2016/03/03/152000-smart-devices-every-minute-in-2025-idc-outlines-the-
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Chapter 3

Design

The goal of this thesis is to research existing literature and solutions and, based on the gath-
ered knowledge, to create a functioning demo representing a smart home that solves the prob-
lems mentioned in the previous chapters. The thesis is made in collaboration with NXP
Semiconductors and will therefore use NXP’s technologies described below. The Ąnal prod-
uct will consist of a model of a house with several battery powered wireless end devices
and a gateway. The house will be connected to the Cloud for long term telemetry storage
and remote control purposes. The design will aim to provide users with an easy means of
device initialization, secure communication both locally and over the Internet, automation
at the edge performed by the gateway and a mobile application allowing users to display
data from the sensors and control the entire house remotely.

The individual devices and technologies were all chosen by NXP Semiconductors in
order to show a complete solution made possible through their products. For this purpose,
all software used for the end devices will be built on available NXP SDK bundles. However,
the software for the gateway, the Cloud and the mobile application will have to be designed
from scratch.

All hardware will be supplied by NXP, including any additional custom designs needed
for the thesis’ purposes. The model of the house will also be created in-house and all
Ąnancial responsibilities regarding end device peripherals and Google Cloud services will
be taken care of by NXP.

Since the hardware chosen for the gateway supports Android Things and can be used to
promote the development of this operating system and because Android Things is made by
Google, the solutions presented in the bachelor’s thesis which this thesis is partially based
on, that used Microsoft Azure, can no longer be applied here. Additionally, the bachelor’s
thesis’ design was simpler. It consisted of fewer devices, used HTTP to send all data to
the Cloud, didn’t provide automation, security and easy initialization and did all data
processing in the Cloud. This means that most of the practical solutions presented in
the bachelor’s thesis could not be repurposed here.

From an academic perspective, the research itself is of the utmost importance. However,
most of the knowledge gained by this research can also be applied in writing application
notes for NXP to supply their customers with in order to offer suggestions and advice on
how they could develop their own Internet of Things systems also using NXP’s technologies.
And since a practical demonstration of what a student learned through their thesis is also
important, NXP’s and the university’s goals go hand in hand.
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This chapter will be separated into several sections corresponding to the different areas
the thesis is trying to solve. Each section will propose a suitable design that will be used
for the implementation.

3.1 Design Goals

The overall goal of the design was to create a complex system that solves many of the issues
discussed in previous chapters and provides users with a functional and extensible IoT
solution. It was important that no specialized hardware or internet services were required
other than what is necessary for the chosen technologies.

Several main goals were set for the design of the autonomous system. It was important
that it provides automation through a simple and easy to understand but at the same time
effective and extensible protocol. While being as independent of the Cloud as possible, it
was also necessary that it takes advantage of the Cloud’s beneĄts like remote communica-
tion and long term data storage. To achieve smooth operation of such a system even when
a connection loss occurs, it was also essential for the system to be able to automatically
reconnect to the Cloud and resynchronize all of the device state information in a determin-
istic way that ensures that, as long as the Cloud connection is functional, both the Cloud
and the gateway’s data are up to date and consistent.

The main requirements for the Cloud were the means of both-way communication be-
tween the Cloud and the gateway and the Cloud and the mobile application, a way to
process and store incoming data if needed, to have a way of maintaining device states and
to enable the mobile application with remote device and gateway control. I was also impor-
tant to have a way of remotely manipulating the utilized Cloud services through the mobile
application without the need to use the online console.

For the sake of making the whole system secure and able to protect data privacy, a few
goals were set for separate parts of the topology. There are four main connection routes
that needed to be protected - the Thread communication, local communication between
the gateway and the mobile application, the remote communication between the gate-
way and the Cloud and the remote communication between the mobile application and
the Cloud.

The goals for the mobile application included a way of displaying current device states,
latest reported telemetry, providing device control and a means of adding new automation
conditions, an authentication method to connect to the Cloud and the gateway, remote
communication with the Cloud and local communication with the gateway and device
initialization capabilities both in the way of letting the gateway know about the new device
and creating the needed resources in the Cloud.

There were three goals for device initialization. The Ąrst goal concerns connecting new
devices to the Thread network. The next goal was to design a way of initiating device states
and all the needed resources like MQTT clients and cryptographic keys at the gateway.
The last goal was to create all needed resources in the Cloud and to store the MQTT client
public keys so that the gateway can use its clients to securely connect to Cloud IoT Core.

Apart from being made by NXP, the end devices also needed to support the IEEE
802.15.4 communication technology or more speciĄcally, Thread. They had to allow low
power consumption and include an easily extensible SDK. Furthermore, several different
sensors and actuators were needed to create the model of the smart home. The goal was to
support a temperature sensor, a humidity sensor, a PIR sensor, a ventilator, an RGB LED
light or matrix, a button and a buzzer.
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Proposed Topology

The proposed topology for the whole demo includes a small network of end devices acting as
a smart home, a single gateway that processes their data and takes care of both automation
of the network and of connectivity to the Cloud. Google Cloud will receive and store data
from the gateway and enable an Android based mobile application to connect to the system
from anywhere in the world. The mobile application will be able to control the network,
initiate devices and display their data and information.

Google Cloud

Thread Smart
Home

Gateway

User

Figure 3.1: Proposed topology

3.2 Autonomy

In order to fulĄll the goals set for the autonomy of the system, the design was inspired
by the Edge Computing paradigm. All of the data processing and the computation of all
device automation is therefore performed at the edge of the network. To make that work,
an automation scheme was devised, which uses adjustable conditions stored inside device
states in the gateway’s permanent storage and based on them analyses all incoming data
before passing it to the Cloud. Thanks to this approach the gateway is able to successfully
keep controlling the network as needed even if the connection to the Cloud is severed.

Another aspect that needed to be looked into was a mechanism that would prevent
important data from being lost. The created mechanism is based on message buffering
and was designed with customizability in mind, in order to give users control over their
data. It was necessary to provide not only short term solutions for networks with frequent
disconnections but also to take care of prolonged disconnected states in cases where data
history is of great signiĄcance and the local storage is insufficiently large. The gateway
handles these cases by reducing the amount of stored data through several different schemes
that can be chosen separately for each device.

Lastly, to eliminate the inconvenience of not being able to manually control devices
while disconnected from the Cloud, offline communication with a nearby mobile phone was
developed as well. For this purpose, the gateway makes use of its WiFi and Bluetooth
capabilities to communicate with and receive commands from similarly enabled mobile
phones. The result of this design choice is that the only cases where internet connection is
absolutely necessary are the initialization of the gateway itself and the adding and removing
of devices to and from the network.

To incorporate remote control, remote storage and pave the way for possible extensions
to the design, the gateway application was envisioned with Cloud connectivity from the get
go. This was approached by analyzing available Cloud platforms and making sure the design
is as portable between them as possible. That’s why the standard MQTT protocol was
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chosen for gateway-to-Cloud communication and why the gateway does not use any Cloud
platform-speciĄc APIs.

Remote Commands
Device Management
Data History

Device Automation

Data Storage
State Reports

Local Commands

Device Automation

Data Buffering

Figure 3.2: Functionality while connected and disconnected

In order to maintain an autonomous network, this thesis will focus on a few key elements
- buffers, reconnection, data and device state consistency, a deterministic communication
Ćow and offline data processing.

Reconnection Since the system will consist of a Thread network on one side of a gateway
and an MQTT connection to the Cloud on the other, there are two separate connection
types that need to be maintained. On the Thread side, when a known end device loses
connection, it can simply try to reconnect back and when successful, send any initializing
information required, like the last conĄguration state of the device.

The gateway to Cloud connection will have to be more complicated than that. The gate-
way has to maintain an MQTT client for every end device. Any data that comes from an end
device and needs to be sent to the Cloud is published through these clients and any con-
Ąguration or state change requests from the Cloud are subscribed to by the clients. When
one of the clients loses connection, the way it reconnects has to be deterministic in order
to keep all states and data consistent.

There are two main ways a client can disconnect - either by being closed from the Cloud
side or by the gateway losing connection to the Internet. In both cases, the Ąrst action
before attempting reconnection is checking if the device represented by the client is still
alive by sending it a CoAP request. The result of this check is stored in the device’s state
before the reconnection process begins and the MQTT client is reconnected regardless of
the result.

If the connection was closed from the Cloud side but the gateway is still connected to
the Internet, the MQTT client’s credentials are refreshed and it attempts to connect to
the Cloud’s MQTT broker again. If successful, it can then resubscribe to it’s conĄguration
channel as well. After establishing the connection and subscription, the client sends its
device’s latest state to the Cloud, thus preserving consistency. Should the client fail to
reconnect however, it will stay offline until its device either needs to send new data to
the Cloud or a state change has to be reported. When that happens, another reconnection
will be attempted, if the gateway is connected to the Internet, and the process will be
the same as it was immediately after the disconnection.

If the reason was an Internet connection loss, the client will neither attempt to reconnect
right after the disconnection, nor when a new message needs to be sent to the Cloud.
Instead, the gateway waits for its Internet connection to resume and when that happens,
it goes through all of the known MQTT clients, reconnects them, applies any conĄguration
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requests from the Cloud and synchronizes device states with the Cloud, sends any buffered
data and then resumes regular operation.

With this design, all reconnection handling is deterministic and will not cause any
inconsistencies between the Cloud and the gateway’s data.

MQTT Client
Disconnection

CoAP Alive
Check

Internet
Connection

Check

Refresh
Credentials

and Reconnect
Reconnection
Status Check

Resubscribe to
Configuration Requests,
Empty Buffers, Report

State, Resume
Operation

Stay
Disconnected

OK FAILED

OK

OFF

New Message but
Client Disconnected

Internet
Reconnected

Figure 3.3: Reconnection Ćow

Data buffering Even though most data processing will be done at the edge, some devices,
like telemetry sensors, still need their measurements to be stored in the Cloud for further
analysis. All of the data can be published to the Cloud through the device’s MQTT client,
but in the event of disconnection, the data can either be discarded or buffered and resent
at a later time.

This thesis proposes three main types and one subtype of buffers that could be used for
such purposes. The simplest is of type HOLD. Once full, this buffer will stop accepting any
new data and will simply keep the data it has gathered so far. Another type is FIFO, which,
when Ąlled, will start acting as a FIFO pipe that discards the oldest message and accepts
the newest one. The third type is DYNAMIC. Once DYNAMIC buffers are Ąlled up, they
will Ąrst clear up space by only keeping messages with a speciĄed time interval between
them. After this initial reduction, the buffer will only accept messages that maintain this
time interval spacing. After Ąlling up for the second and every next time, the time interval
will be increased by a speciĄed amount of time and the process will repeat itself. The last
buffer type is VARIANT. VARIANT is a subtype of all HOLD, FIFO and DYNAMIC.
When used, the buffer will only store data with telemetry values that are larger or smaller,
by a speciĄed amount, than the last stored value. Once a VARIANT buffer is full, it will
either keep or start removing messages based on its main type.

In order to keep data consistency between the gateway and the Cloud, buffers need to be
checked and cleared out every time an MQTT client connects to the Cloud. Once the client
connects, it goes into a syncing state, during which it publishes all buffered data before it
starts publishing any new incoming data from the Thread network. This way everything
will be sent in the correct order, keeping consistency.

Communication flow The communication Ćow will be mostly dictated by the CoAP
and MQTT communcation protocols. After establishing connection of a new device into
the network, its main function can be initiated by a CoAP POST command. Similarly,
whenever a new conĄguration request is either received from the Cloud or generated by some
data processing rule at the gateway, a CoAP POST command will be sent to the affected
device. The end devices themselves will also use CoAP POST messages during initialization
and when reporting their data, if there is data that needs to be periodically reported, like

25



telemetry sensor data. The gateway might also use CoAP GET requests during device
initialization and when checking if a device is alive.

Communication between the gateway and the Cloud will all be done via a Cloud based
MQTT broker. The gateway will publish telemetry data and state changes resulting from
conĄguration requests and data processing. The broker will then pass on the messages
to the rest of the Cloud system for further processing or storage. ConĄguration requests
generated from the Cloud, or through the Cloud by a mobile application, will be subscribed
to by the gateway. When a gateway receives a new conĄguration request, it will have to
check its time stamp to make sure states are changed consistently and afterwards can
perform any operations that are required. Additionally, every connected MQTT client
must publish periodic heartbeat messages to the broker.

Offline data processing For the offline data processing, a rule based system was de-
vised. This system will use JSON strings encoded into messages sent and received through
the MQTT broker. There will be three types of JSON strings - a data string, a state string
and a conĄguration string.

The data strings will be very simple - they will contain the ID of the device that measured
the data, the time stamp of when the data was received at the gateway and the value of
the data.

The state strings will contain information about their device, like its ID, its type, what
conĄgurable states the device has, when the last conĄguration request for this device was
received, whether it uses a buffer and what type the buffer is, whether it’s alive or dead
and what data processing rules are assigned to it.

The conĄguration strings will be requests received from the Cloud and will contain
the time stamp of the request, the type of request and the requested actions. One of these
types will be the data processing rules.

Every device will be able to have a set of data processing rules. Each rule will consist
of a list of affected devices, a control condition and an action. The conditions will deĄne
circumstances under which the incoming data will cause the actions to be taken. For
example, one such condition might be a value limit for a temperature sensor. The actions
will then be conĄguration requests that, if the condition is met, will change the states of
the devices included in the list. Even the device itself that reported the new data could be
included in the list.

3.3 Security

The Thread stack comes with several security mechanisms that are handled automatically.
The Commissioning White Paper [31] describes them in a basic overview. The funda-
mental security employed by the Thread networks is based on an elliptic curve variant of
J-PAKE [32]. J-PAKE is a password-authenticated key exchange and essentially uses an el-
liptic curve Diffie-Hellmann for key agreement and Schnorr [33] signatures to authenticate
two nodes and create a shared secret between them based on the passphrase. Additionally,
DTLS is in development, which is a version of TLS suitable for UDP networks. Thread is
also protected with a network-wide key used at the MAC layer, which protects the 802.15.4
data frames. It serves as a basic form of security used to prevent eavesdropping. However,
since it is network-shared, compromising a single device also compromises the whole net-
work, which is why it typically is not used as the main security feature of Thread networks.
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Lastly, new joiners need to authenticate through a commissioner in a controlled manner to
allow the DTLS handshake authentication protocol to be performed.

In the case of the local communication between the gateway and mobile applications,
a scheme using cryptographic keys for authentication and encryption was devised. The gate-
way and the mobile applications each maintain their own public-private key pair. The gate-
way shares its public key with every connected mobile phone and the phones share their
keys with the gateway. Both the owned private and public key pair and the shared pub-
lic keys are then permanently stored in a secured storage. The keys then can be used to
authenticate both sides and to encrypt any messages sent between them which means that
only registered phones can control the gateway locally and any messages that get listened
to by malicious parties are kept private.

Since the MQTT protocol was chosen for the communication between the gateway
and the Cloud, their messages can be secured and kept private through a very similar
mechanism. The Google Cloud IoT core requires authentication through cryptographic keys
and stores a public key for each connected client. The MQTT communication additionally
uses the TLS 1.2 protocol to keep the communication private and secure.

In order to also maintain a secure access of the mobile application to the Cloud, a slightly
different approach was taken with the use of Google Firebase. Firebase offers user authen-
tication through e-mail accounts and an Android API that can be used to for logging in
and out of the system. By using this service and API, the security and privacy is taken
care of by Google’s own algorithms.

Furthermore, Google Cloud keeps special API service keys that can be used to protect
access to the individual services inside the platform. Thanks to these, even the communi-
cation within the platform is secure and kept private to the speciĄc project that contains
the used services.

3.4 Cloud Processing

Google Cloud offers Cloud IoT Core for the purposes of either HTTP or MQTT device
communication. Since the initial stages of this thesis, Cloud IoT Core has undergone several
changes and has evolved into a more Ćexible solution. It can maintain a history of state
changes and conĄguration requests, pass incoming data into other services through Cloud
Pub/Sub, send one-time commands, keep track of each connected device with a separate
MQTT client and can even use a client for the gateway itself. It can also be controlled
through HTTP commands, that can be used to create or upload resources into the service,
create and remove device clients or get information about the clients.

For the purpose of data processing, several different services can be used. Among
those are Cloud Functions and Cloud DataĆow. While DataĆow offers an easier-to-use and
potentially more efficient way of controlling the Ćow of and processing data, it is also far
more expensive than Cloud Functions. Cloud Functions on the other hand require manual
writing of code but can be used at little to no charge for a project the size of this thesis.
Moreover, since the developer is in complete control over the code, the Functions can also
offer more Ćexibility.

Google Cloud can facilitate data storage through several services that all serve slighty
different purposes. The requirements for this project were the means to have the data
accessible through some remote API, the ability to store large amounts of data and for
the storage to be free or very cheap. Among the major choices of storage services Google
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offers are Bigtable1, BigQuery2 and Firestore. Bigtable is a fast and powerful fully managed
NoSQL database. It offers seemless scaling and replication of hundreds of petabytes of data
with millions of operations per second. It can integrate with other services like Cloud
DataĆow or tools like Hadoop and is the very database that powers a lot of Google’s most
popular services like Gmail, Maps or Search. BigQuery is a serverless, highly scalable
and cost-effective data warehouse. It supports SQL queries and thus provides powerful
analytic tools. BigQuery can also be directly connected to Google’s DataStudio, which
is an online data visualization tool. Firestore is an evolution of Cloud Datastore. It is
another NoSQL database that is organized into collections of documents, integrates with
Firebase, is very cost effective and supports efficient and Ćexible queries. While Bigtable
would be unnecessarily powerful and expensive for this project, BigQuery and Firestore
both satisfy the needs of the thesis with different pros and cons. However, Firestore can be
integrated with Firebase which was chosen for user authentication and management and
Google offers an Android API for Firestore access which is why Firestore was the Ąnal
choice for the storage.

Firebase Functions are an extension of Cloud Functions and offer authenticated HTTP
callbacks that can be called through an Android API. This allows the mobile application to
communicate with the Cloud in a secure and private way while also protecting the Cloud
and the network from unauthorized user access. The functions otherwise work the same as
Cloud Functions and can be used to manipulate and talk to other Cloud services.

3.5 Mobile Application and Operating System

The application design was divided into several sections. The Ąrst one is the main overview
of all connected devices, their latest reported telemetry or most important feature, like
the current color of an RGB LED light. It also includes buttons to easily turn the devices
on or off and a button add a new device to the network. Next is the detail section, which
offers a detailed look at a single device with all of the state information and controls
available for it. Another section is the visualization section for telemetric devices that
displays a graph of past data reports. The next section is the overview of device groups
that the application can keep to make creating conditions more user-friendly. An overview
of currently used conditions is among the sections as well. Both the group and condition
overviews also allow adding new groups and conditions to the system. The last section is
the gateway control section, which allows to send commands to the gateway like adding
a new user or initiating the gateway.

It was also important to allow automated refreshing of data but to also have an option
to do it manually and limit data consumption. Therefore two background tasks were also
design to take care of both Cloud and gateway communication.

Android was selected for the mobile application. Android is currently the most popular
mobile operating system and NXP provides SDK Bundles for NFC communication with
their NFC tags. Android can also easily interface with Google Cloud and can communicate
with Android Things over Bluetooth and Wi-Fi through Android speciĄc APIs.

Android Things was chosen as the operating system for the physical demo. It provides
the strengths of Android development and was designed with security and scalability in

1Cloud Bigtable. Google Cloud [online]. [cit. 2019-04-21]. Retrieved from: https://Cloud.google.com/

bigtable/
2Cloud BigQuery. Google Cloud [online]. [cit. 2019-04-21]. Retrieved from: https://Cloud.google.com/

bigquery/
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mind. While there are some issues with missing drivers that complicate development,
overall it is a suitable operating system.

3.6 Device Initialization

The Thread stack supports two ways of commissioning a new device to allow it to join
the network [31]. These are the external and the native commissioning. When using
an external commissioner, the commissioner cannot directly connect to the Thread network
and thus has to communicate with it through a border router. It Ąrst needs to register with
one of the network’s border routers to ensure that only one commissioner is present in
the network. After establishing the connection through Commissioner Credentials and
a DTLS handshake, the commissioner can start adding devices. In the case of native
commissioning, the commissioner can be a part of the Thread network and can register
itself in the network through a commissioner router. The Thread Group offers an open
source mobile application that can be used for Thread commissioning through BLE or NFC
communication. However, adding BLE/Thread cooperation would be outside the scope of
this thesis’ design goals and NFC requires additional hardware. Additionally, as described
later in this document, there were issues with USBNET drivers in Android Things which
could further complicate the border router communication. Instead, a different solution
was designed by using the already secure communication between the mobile application
and the gateway, QR codes and adding of device credentials through UART communication
between the gateway and the border router dongle.

After allowing the device to connect to the Thread network, the gateway creates a public-
private cryptographic key pair, pass the public key to the mobile application and start cre-
ating the device state and MQTT client resources. After the device connects and the state
for it is created, the gateway then waits for an incoming conĄrmation of device initializa-
tion from the Cloud through a dummy MQTT client and then connects the device’s MQTT
client. After all that is complete, the device has been initialized at the gateway.

When initiating a device, the mobile application Ąrst needs to be used to let the gateway
know that a new device is being connected and then has to wait for the device’s public key
that will be sent from the gateway. Once the public key is received, the application can
pass the key and device information to the Cloud, where all the needed resources in Cloud
IoT Core will be created so that the gateway’s MQTT clients can connect. Once the Cloud
is done initializing the resources, it sends a conĄrmation message to the gateway over
the dummy client.

When deleting a device, a similar approach is taken, however instead of the gateway
waiting for the Cloud’s conĄrmation, the Cloud waits for the gateway to let it know that all
device information was removed successfully. First, the mobile application sends a remote
request over the Cloud to the gateway to delete a speciĄc device, then the gateway clears
all known records of the device includíng the buffers, keys and the MQTT client and then it
sends a conĄrmation message over the dummy client to the Cloud. After this conĄrmation
is received, it triggers a function that clears all the records of the device in the Cloud as
well, including the data stored in Firestore.
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3.7 Hardware

The requirements for hardware were a little more speciĄc then the other parts of the thesis.
As mentioned in previous paragraphs, the goal was to use NXP’s technologies for the end
devices and the gateway.

End devices As it satisĄed all the requirements, NXP’s KW41Z microcontroller was
chosen for the end devices and a dongle that provides Thread connectivity to the network’s
gateway. NXP offers free SDK bundles for the KW41Z that include demo applications and
documentation for devices using Thread, Zigbee 3.0 and Bluetooth Low Energy. The dongle
will be a standard USB-KW41Z dongle sold by NXP, the end devices will consist of custom
modules integrating sensors or actuators and rechargable batteries.

Figure 3.4: NXP’s USB KW41Z Dongle3

Figure 3.5: Kinetis R÷ W Series KW41Z MCUs Block Diagram4

3USB-KW41Z. NXP [online]. [cit. 2019-01-14]. Retrieved from: https://www.nxp.com/assets/images/

en/dev-board-image/USB-KW41Z-GS-BOARD.JPG
4KW41Z: Kinetis R÷ KW41Z-2.4 GHz Dual Mode: Bluetooth R÷ Low Energy and 802.15.4 Wireless Radio

Microcontroller (MCU) based on Arm R÷ Cortex R÷-M0+ Core. NXP [online]. [cit. 2019-01-14]. Retrieved
from: https://www.nxp.com/assets/images/en/block-diagrams/KINETIS-KW41Z-BD.jpg
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Gateway The platform for the gateway had to be sufficiently powerful in order to be able
to run an operating system and handle all the necessary computation and data processing.
Therefore, the NXP Pico i.MX7D was chosen for the gateway implementation. It can
connect to the Internet both through a Wi-Fi module and an Ethernet port, has a Bluetooth
module and is powerful enough to be a suitable gateway device. It is also one of the support
development boards for the Android Things operating sytem.

Figure 3.6: NXP Pico i.MX7D5

Power Consumption

From the available deep sleep modes [34] for the KW41Z MCU, the Low Leakage Stop 3
(LLS3) mode was chosen. It is a state retention power mode, in which most peripherals
are in state retention, cannot operate and their clocks are stopped but several low power
timers can still be used. A low leakage wake up is used to wake the sleeping MCU up. All
SRAM contents, the Register File, I/O and oscillator states are retained as well.

The power efficiency was focused mainly on the temperature, humidity and PIR sensor
devices. The buzzer device cannot go to sleep while it’s buzzing, but does enter the sleep
cycles while idle, and the button never sleeps at all. The LED devices were based on
the FRDM-KW41Z development kits instead of having custom modules built for them and
are used as Router Eligible End Devices and powered directly through a USB cable instead
of the battery used for the other device types, which means they never go to sleep either.

5NXP Pico i.MX7D Board. Android Developer [online]. [cit. 2019-01-14]. Retrieved from: https:

//developer.android.com/things/images/nxp-pico7-board.png
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Chapter 4

Implementation

4.1 End Devices

The software for the end devices was based on the C-based NXP SDK for KW41Z and
developed in the IAR Embedded Workbench. Originally, the Thread wireless end device
example was used, later the Thread wireless low power end device. The SDK provides
a very complex but extensible application and takes care of all the underlying Thread
communication, hardware access and control and offers a simple example of how an end
device could work. It includes various conĄguration Ąles that were edited so that the devices
behave the way this thesis needed them to, like setting the unique device passwords and
MAC extended addresses, making the polling interval for incoming messages as well as
the sleep length be 3000 ms long, changing the default network ID, channel mask, turning
various features on or off etc.

Several CoAP callbacks, processing functions and a device conĄguration Ąle were created
for the functionalities of the device types. The device conĄguration Ąle includes the choices
of which type the device is, what its ID is and what its conĄgurable states are. The device ID
must be based on the MAC address of the device, for example, when a device is assigned
a MAC address of 0x146E0A0000000001, its ID must be the string 146E0A0000000001.
This is because of the initiation protocol that will be described later in this document.
The CoAP callbacks and their related functions can be sorted into the categories described
in the following paragraphs.

Temperature (Temp), Humidity (Hum) and PIR Sensors These three sensor
types share the same scheme of functions with the difference between them being the way
of reading the desired value and formatting it into a CoAP message. Each type has
a APP_Report[Type] function, that is used to start the automated reporting cycle. It calls
APP_SendDelayed[Type]Handle handler, which Ąrst calls the APP_Send[Type]Handle im-
mediately and then starts a loop with the conĄgured reporting period that calls
APP_Send[Type]Handle repeatedly until StopReport[Type] is called. The handlers are re-
quired, so that the actual processing functions are not called directly through function calls
and their requests can be inserted into a message queue used by the SDK, which takes care
of the calls instead. The APP_Send[Type]Handle simply places the APP_Send[Type]Cb
callback into the message queue. When APP_Send[Type]Cb is called, it reads the cur-
rent sensor value, compares it to the value that had been read the last time this callback
was called and if the values differ or if the maximum amount of time between reports
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has passed, is calls the Ąnal APP_SendCoap[Type] function, which takes care of sending
the value through a CoAP message to the gateway. Additionally, CoAP callbacks for each
type are registered, so that a CoAP GET request for the desired type can be received and
responded to, however, it was decided not to use this feature in the Ąnal implementation.

RGB For the RGB type, a CoAP callback is registered that reacts to bot GET and POST
requests. It responds to GET requests with the current RGB state. The POST request
messages are used to change the current color of the available LED.

Buzzer The buzzer also uses the handlers described in the paragraph with the tempera-
ture, humidity and pir sensors. These handlers are called from the function
APP_BuzzerControl, which is used to either start or stop the periodic calls to
the Buzz_toggle function, through the handlers, which toggles the value in the buzzer’s
input pin between one and zero, which causes the buzzer to make noise.

Button When the button is pressed, the APP_CoapButtonPressed function is triggered,
which sends a CoAP message to the gateway telling it that the button was pressed.

ID There are two functions connected to the device ID. The Ąrst one is called Announ-
ceID and is always called when the device connects to a Thread network. It announces
the device’s ID to the gateway. The second one is a CoAP callback APP_CoAPGetIDCb,
which can be called with a GET request to get the device’s ID.

Type, Alive and Configurable States Three simple CoAP callbacks take care of re-
sponding with either the device’s type, conĄgurable states or just a conĄrmation message
saying that the device is alive and works Ąne.

OnOff An OnOff CoAP callback is also registered and it calls functions that either start
or stop the device’s main function, like reporting telemetry or buzzing.

Update Interval The CoAP callback for the interval can be used for both GET messages,
to get the currently conĄgured report interval value and for POST messages to set a new
one.

Furthermore, certain changes were required to be made to the pin conĄgurations so that
they reĆect the wiring of the sensors and actuators. Most of the pins on the module are
also turned off for the whole lifetime of the device. Depending on the device’s type, some
pins are only turned off while the device is asleep. The same goes for the ADC, which is
only initialized if the device uses a temperature or humidity sensor and then is deinitialized
every time the device goes to sleep.
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Figure 4.1: Custom devices - Button, Buzzer, PIR Sensor, Humidity Sensor, Temperature
Sensor

4.2 Gateway

The gateway application was developed for Android in the Android version of Java. The An-
droid Studio IDE was used for development.

Device states, buffers and conditions

The gateway maintains device states for all the connected devices in the network. These
states are permanently stored on the gateway as well as uploaded to the Cloud. The states
are stored in the form of JSON strings, which provide a human-readable and easily exten-
sible format that can be parsed by many different libraries in commonly used programming
languages.

The states contain several items: the device ID, device alias, device type, different
conĄgurables, syncing, life, initialized, buffer and controls. The device ID is a static unique
identiĄer preprogrammed into the device. The alias is a name for the device assigned by
users through the mobile application. The device type is also static and preprogrammed
into the device and speciĄes the capabilities of the device. The syncing state is used for
synchronization purposes, life contains information on whether the device is responsive or
not and initialized is used during the device initialization to prevent uninitialized devices
from being connected to the Cloud.

Among the available conĄgurables are onoff, which in most cases turns the device on or
off, except for the garage type, which uses it to open and close the door. Others include
interval, which sets the report interval for telemetry devices and rgb that sets the rgb value
of an rgb led device.

The conĄgurable states are dependent on the device itself and its capabilities. Tem-
perature, humidity and PIR devices use the interval and onoff. The ventilator, buzzer and
garage use only onoff, button has no conĄgurable states at all and RGB has rgb and onoff.

The buffers can either be initialized to speciĄc values and modes or use the preconĄgured
default ones. Additionally, these conĄgurations can later be changed through corresponding
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methods. The values include the maximum number of messages, the length of the spacing
interval required for the messages, the value by which the spacing interval gets incremented
when the buffer is Ąlled and the variance threshold value. As described in earlier chapters,
the buffers operate in 3 main modes, HOLD, FIFO and DYNAMIC with one submode,
VARIANT.

When storing a new message, the application Ąrst checks if the buffer is full or not. If
not, then depending on the buffer’s mode, it stores the message at the end of the buffer or
simply drops it. When space is available, in the HOLD and FIFO modes, the message is
always stored. In the DYNAMIC mode, if the buffer is completely empty, the message is
always stored, otherwise the timestamps of the last stored message and of the new message
are compared and if the difference is at least as long as the speciĄed spacing interval, the new
message is stored, otherwise it is discarded. For the VARIANT submode, if the buffer is
being Ąlled for the Ąrst time, the messages are stored normally according to the main modes.
However, if the buffer was full at least once already, the values of the last stored message
and the new message are compared Ąrst, and if the difference between them is at least as
large as the variance threshold, then the application proceeds according to the main modes.

If the buffer was full when the new message was requested to be added, the application
behaves differently. In the HOLD mode, the new message is discarded. In the FIFO
mode, the oldest message is discarded and the new one is stored. In the DYNAMIC mode,
the spacing interval is incremented by the conĄgured increment value and the application
goes through the whole buffer, starting from the oldest message, and discards messages so
that the buffer complies with the new spacing interval again. It repeats this process until
at least one message was discarded, then stores the new message at the end, if the spacing
interval allows. In the VARIANT submode, the application examines the buffer from
the oldest messages to the newest and keeps only the messages that are different from both
their direct neighbors inside the buffer by at least the speciĄed variance value. Afterwards,
the application proceeds with the main mode again.

Device Management (CoAP Clients)

For the purposes of receiving messages, a CoAP server with several resources was created
at the gateway, one for each supported device type that reports data and one for initializa-
tion. For sending messages, the gateway holds one CoAP client for each resource, one for
the MQTT request processor and one for the offline communication request processor.

The CoAP resources are the following: ID, Temperature, Humidity, PIR and Button.
Each resource, except ID, is based on a similar algorithm and is separated into two stages.
The Ąrst stage accepts the CoAP message, checks whether the device’s MQTT client has
an up-to-date authorization token and refreshes it if needed, marks the sending device as
alive (and if it was dead, reports this change to the Cloud) and starts the second stage. In
the case of the ID resource, the gateway tries to load the devices stored state and if that
fails, starts a communication chain with the device to gather all the needed information and
create a new state record. If there was a state stored from a previous session, the device is
conĄgured to the loaded values.

For all the resources other than ID, the second stage focuses on processing the received
data according to all control conditions conĄgured for the sending device. Each device type
supports different condition types, which is why resources have differences in the second
stage. Conditions of incompatible types are ignored. The Temperature and Humidity
resources support the limit control type, which checks whether the reported temperature
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is above, below or equal to a desired value. The Button type supports the button control
type which can operate in three different modes - an onoff mode, which turns the device
affected either on or off, based on the condition’s conĄguration, a toggle mode that turns
off active devices and turns on inactive devices and an rgb mode, which sets the color of
a RGB device to the conĄgured value. Finally, the PIR type supports the detect control
type, which can work in three modes as well. These are the security, regular and combined
modes. The security mode generates a conĄgured alert action when movement is detected.
The regular mode generates separate conĄgured actions for when an activity is detected
and when not and the combined mode can do both, depending on whether the reporting
device is in the secured or unsecured state.

After deciding the required actions, the function cycles through all the target devices of
the condition and sends them the needed conĄgurations in CoAP messages. Any changes
to the device states are then reported to the Cloud through MQTT messages.

Cloud Communication (MQTT Clients)

Cloud IoT Core is a Cloud-based MQTT broker provided by Google. The gateway maintains
an MQTT client for every device in the network and one additional dummy client for special
Cloud messages and connects them all to Cloud IoT Core. The connected clients post their
telemetry to the event topic and state changes to the state topic. The dummy client
uses the event topic to send its special messages as well. All clients except the dummy
subscribe to the conĄg topic, the dummy subscribes to the command topic. The conĄg
topic’s messages are retained in the Cloud and whenever a client connects to Cloud IoT
Core and subscribes to conĄg, it receives the last stored conĄg message. The command
topic does not retain any messages.

A callback for connection changes and incoming messages is registered for every con-
nected MQTT client. When a client loses its connection to the Cloud, the gateway Ąrst
checks if the client’s device is still alive through a CoAP message and if it doesn’t receive
a response, marks the device as dead by setting the appropriate value in the device’s state.
Next, the client checks the gateway’s internet connection. If the gateway is still connected,
the client tries to reconnect to the Cloud regardless of whether its device is alive or dead.
Once successfully reconnected, the client sends its current state to the Cloud. If the gateway
is offline or if the reconnection failed, no further actions are taken.

When a new MQTT message arrives, it is Ąrst acknowledged and then processed. Since
the messages are used to change device states, except with the dummy client, they are
ignored when a device’s state is uninitialized. Otherwise, the client checks the message’s
conĄguration timestamp and discards all messages that are older than the last conĄguration
performed for the device. Next, the client devices what to based on the conĄguration’s
type. Eleven types are supported. The types used for device control interval, onoff and
rgb for direct controls of the end devices, opmode and secure for different operational
modes for the PIR sensors, controls to manipulate the control conditions of the device,
buffer to change its buffer settings, alias to set the device’s display name, button_press to
allow the mobile application to virtually press the connected buttons. The types used for
the dummy communication are add for adding new devices and remove for removing them.

When a direct control message is received, the client tries sending a CoAP conĄguration
message to its device. If the change is acknowledged, it is marked in the device’s state at
the gateway. The opmode, secure, controls, buffer and alias only cause state changes at
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the gateway but do not generate any CoAP messages. All state changes resulting from
these conĄguration messages are reported to the Cloud.

Connection management

Apart from the connection callbacks registered for each MQTT client, there are two more
ways the gateway manages connections. While the gateway is online, a background thread
is active that periodically tries to reconnect all disconnected MQTT clients. Furthermore,
an internet connection callback that catches all connection state changes is also registered.
When the connection is lost, the background reconnection thread is stopped. When the con-
nection is regained, all MQTT clients are reconnected, all data buffers are emptied, the last
conĄgurations are received from the Cloud, all current states are reported and the back-
ground reconnection thread is reactivated.

Offline Communication

The offline communication can be divided into three sections - user management. gate-
way management and device management. The user management is important to keep
the system secure and private whereas the device management enables the whole system to
remain functional even when offline. The gateway management allows the user to initiate
the gateway.

When the gateway has no registered users, anyone can send their credentials and register
their phone. This Ąrst registration is neither secure nor encrypted, the gateway simply saves
the phone’s public key and user ID and replies with its own public key. All subsequent
communication is both secure and encrypted by using these keys. When a new phone
wants to register but the gateway already has at least one user, the registration is rejected
and has to be performed through one of the already registered user’s phones instead.

When a message is received, the gateway checks if it is encrypted and if not, rejects it
by replying with UNAUTHORIZED. Afterwards, the message’s signature is examined and
if wrong, it’s rejected as well. There are three message types used for user management
- these allow to add a user, remove a user and request a list of currently registered users.
Device management offers two types - the offline message, which is then processed just like
an MQTT message would be, and the update request, which is replied to with all current
device states. The gateway management can be used to conĄgure the Google Cloud project
ID on the gateway and to start the gateway’s main functionality.

4.3 Google Cloud

Various services in the Google Cloud were used to ingest, process and store data and device
states and to pass this information along to the mobile application and to allow remote
commands sent from the mobile application over the Cloud. Among these services are
Cloud IoT Core, Storage, Cloud Functions, Pub/Sub and Firestore. Additionally, Firebase
was used for user authentication and login and to allow some of the Cloud Functions to be
called from the mobile application.

A device registry for each supported device type plus a registry for the dummy device are
maintained in Cloud IoT Core. When a new device is added, it is added to its respective
registry. The structure of Cloud IoT Core is similar to a Ąle system, as can be seen in
the Ągure 4.2.
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Figure 4.2: IoT Core Structure

Firestore stores collections of documents and can be structured by chaining them as
collection > document > collection > document and so on. Using this feature, Firestore
keeps a collection for humidity and a collection for temperature. Inside each collection is
a document that holds collections of devices and these collections hold individual reported
values and timestamps inside documents.

Figure 4.3: Firestore Structure

Firebase authentication allows adding and removing of users through the Firebase con-
sole and setting the supported sign-in methods, like a Google account, an e-mail, a mo-
bile phone number or various other accounts. The methods chosen for this project were
the Google account and e-mail accounts.

Several node.js functions were created for the purposes of processing the incoming data
to the Cloud, communicating with the mobile application and manipulating of Cloud re-
sources.

There are three telemetry trigger functions, one for temperature, one for humidity and
one for PIR data. All three of them receive the incoming data and store it into a bucket
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in Cloud Storage as the last telemetry receieved from the particular device. Moreover,
telemetry and humidity values are stored in Firestore documents.

Another trigger function that is called when a message arrives at Cloud IoT Core is
the dummy trigger. This function receives the ID of a removed device as conĄrmation that
all data about this device had been deleted at the gateway. Upon receiving the conĄrmation,
the function takes care of removing all allocated resources in Cloud IoT Core and Cloud
Storage and documents from Firestore for the particular device.

Finally, four HTTP Firebase functions were created as well. These can be called from
the mobile application, if the user is authenticated and has access to the Cloud project.
The functions are for adding and removing of devices, changing a device’s conĄguration
and getting a device’s current state and last reported telemetry. All four functions start
with loading the service key that is used to authenticate communication between services
in Google Cloud. Afterwards, the key is used to generate an access token that can be used
in signed JSON Web Token messages. Next the JSON message is constructed, the token is
included and the message is sent over HTTP to Cloud IoT Core.

Adding devices is performed by sending a message with the device ID and its RSA public
key to the /devices topic of the desired registry. If the device already exists, the function
tries to instead update the existing device with the newly received RSA public key by
sending the same message again to the ?updateMask=credentials topic of the speciĄc de-
vice. After setting up the IoT Core resources is Ąnished, the function sends a command to
the dummy device, which is passed to the gateway’s dummy MQTT client, to let the gate-
way know, that the added device’s MQTT client is free to connect to the Cloud.

The function of removing devices does not actually take care of the removals, as that
is handled by the dummy trigger described in an earlier paragraph. Instead, it relays
the request for a device removal through the dummy device to the gateway in the form of
a device command.

To change a devices conĄguration remotely, the setConĄg function can be called and
it will relay the conĄguration request to the device by sending the message to its :modi-
fyCloudToDeviceConĄg topic. The gateway will then receive this message on the device’s
MQTT client.

Getting current states and last reported telemetry is done by sending a few HTTP
GET request to Cloud IoT Core. The Ąrst request is used to get a list of all available
registries, then the devices inside the registries. The list of devices is compared to the list of
known devices included by the requesting mobile application and if the application included
a device ID that does not exist in the Cloud anymore, the function lets the application
know in its response. Next, the function gets the current state and optionally last reported
telemetry for each device, checks if it should report any changes and then sends a response
to the mobile application.

4.4 Mobile Application

Like the gateway application, the mobile application was developed for Android in the An-
droid version of Java. Likewise, the Android Studio IDE was used for development. The ap-
plication requires its user to be signed into an email or gmail account registered in the as-
sociated Firebase project. As described in the design chapter, the application was divided
into several sections. These are represented by several activities.
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Navigation Menu

The navigation menu shows the currently signed-in user, has a button to switch between
offline and online device control, buttons to navigate between the activities for managing
devices, groups and conditions, the gateway control activity and buttons to sign in and sing
out.

When offline control is turned on, the application looks for available gateways and offers
a list of them for the user to choose from. After one is clicked, the phone connects to it
and all communication becomes offline.

Figure 4.4: Navigation Menu

Home Activity (Manage Devices)

The home activity serves as a basic overview of all connected devices with the most essential
device controls made available through buttons. The individual devices are represented
by cards set inside a recycler view, which is a scrollable container. Each card displays
the device’s alias, its latest reported telemetry or current color in the case of telemetry
and RGB devices respectively and a button to switch the device on or off. In the case of
the button device type, the on off button is instead used for virtual button presses. By
touching the current color the user also opens a color picket dialog that can be used to
change the color. If a device’s MQTT client becomes unresponsive, the card changes into
an orange color. If the device becomes dead, it turns red. Furthermore the activity features
a toolbar with a button to open the navigation menu, the refresh button and the settings
button for making the Cloud data updates automated or manual. Lastly, a Ćoating button
for adding new devices is present at the bottom of the activity.
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Figure 4.5: Devices Overview

When adding a new device, the user is Ąrst asked to choose the device’s alias and then
a QR reader activity is started using the ZXing barcode reader API. After a QR code is
scanned, the application searches for nearby gateways and displays a list of the ones it
found. After the user chooses the desired gateway, the application sends the device’s ID
and PSKd to the gateway and waits for a response. When it receives a response with
the device’s public key, it sends the device’s ID, type and public key to Google Cloud to
register the device in Cloud IoT Core.

Figure 4.6: Example of a Device QR Code

Detail Activities

Touching one of the device cards in the home activity navigates the user to a detail activity
for that device. This activity is different based on the type of the chosen device. The buzzer,
button and ventilator have a simpliĄed version, which only contains a large button for
turning them on or off or triggering a virtual button press, the last conĄguration timestamp
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and information about whether the device is alive or dead. The humidity and temperature
devices display the latest reported telemetry, latest telemetry and conĄguration timestamp,
whether the device is alive or dead, the conĄgured measurement interval, a button for
switching the device on or off and a button that navigates to a graph activity. The PIR
details activity showcases a button that turns the security functionality on or off. It also
shows the last report, the timestamps, life, measurement interval, a button for switching
between the security, regular and combined modes and a button to switch the device on or
off. The RGB details activity shows the current color and allows to change it through a color
picker, the last conĄguration timestamp, life and on/off button. Additionally, all the detail
activities include a toolbar with a navigation button that takes the user back to the home
activity, a refresh button and a settings button for renaming and removing devices, changing
measure interval settings and changing notiĄcation settings. The notiĄcations, when turned
on, can be set up for the telemetry and PIR devices to alert a user when the reported value
exceeds a threshold.

Figure 4.7: Telemetry Detail Activities
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Figure 4.8: Other Detail Activities

Graph Activity

The graph activity displays a graph of the last 50 reports. It was built with the GraphView
API, which allows scrolling and zooming into the graph and is simple to use and conĄgure
to achieve a desired look. The activity also includes a toolbar with a refresh button and
a back navigation button to return to the details activity.

Figure 4.9: Graph Activity

Groups Activity (Manage Groups)

The application allows creating of groups of devices as a quality of life feature. When a group
is chosen for a condition, the application inserts the individual devices into the condition’s
list of affected devices. When displaying which group was chosen for a condition, the ap-

43



plication actually looks through the known groups and checks if a device belongs to any of
them or not. Thanks to this, the groups are local to the mobile phone they were created at
and have no effect on other user’s applications, which means that each user can create their
own personal groups. The group can be given a name and the user chooses which devices
it includes from a list of available devices.

The activity shows a list of existing groups in the form of cards with the group’s name
and buttons to delete and edit the group. A Ćoating button for adding new groups and
a toolbar that provides access to the navigation menu are also included.

Figure 4.10: Groups Activity

Conditions Activity (Manage Conditions)

The activity contains a list of existing conditions. The condition cards show the condition’s
name, owned and buttons to delete and edit the condition. A Ćoating button for adding
new conditions and a toolbar that provides access to the navigation menu, manual refresh
button and automated refresh options are also included.

When adding a new condition, a dialog is presented to the user. The conditions need
to be assigned a name and an owner. The owner can be chosen from a drop down list of all
known devices. There are three condition types, the limit, detector and button type. When
the limit type is chosen, the user can also choose the limit value. Three command types
are also included, they can be RGB, switch or toggle. RGB allows to change the device’s
LED color.

When the limit condition type was chosen, there are three color conĄgurations to choose
- the color for when the reported values are below the limit, equal to the limit and above
the limit. When the detector type was chosen, the color conĄgurations are for the alert when
a secured PIR detects movement, activity when an unsecured PIR detects movement and
idle for when no movement was detected. Finally, the button condition type simply sends
a command to change the device’s LED to the speciĄed single color when the owner button
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is pressed. The switch command type options are chosen the same way as the RGB options.
Instead of color howver, the user chooses whether the command should turn the device on
or off. The toggle option simply causes to turn off an active device and turn on an inactive
one.

Lastly, the user can choose which devices are affected by the condition. For this purpose,
the devices can either be chosen directly from a list of devices or through a list of device
groups. In the list of groups, when a no device from a group was chosen, the group’s card
is grey colored. When at least one was chosen, it turns blue and when all the devices inside
a group were chosen, it turns green.

Figure 4.11: Conditions Overview
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Figure 4.12: Condition Creation

Gateway Control Activity

The gateway control activity offers seven buttons in total, one of them used to exit the ac-
tivity and the rest for controlling the gateway. All communication between a registered user
and the gateway is signed and encrypted through RSA key pairs and JWT token messages
to ensure secure and private communication. When connecting to a gateway for the Ąrst
time or after resetting their credentials, the user can only use the set up access functionality.
When this button is pressed, the application initializes a new key pair and asks the user
to choose a user name. Afterwards, it attempts to send the username and the generated
public key to the gateway in an unsecured and unencrypted message. If the gateway had
no users registered at the time, it accepts the new registration. Otherwise, it replies with
its own public key and a message telling the application that it tried an unauthorized ac-
cess, as described in the gateway implementation section. If the registration was rejected,
the mobile application instead generates a QR code from the user name and the public key
and displays it on the mobile phones screen.

If the user is already registered at the gateway, they can use the remaining functions,
which include initializing the gateway, adding a user, removing a user, removing all devices
and resetting their own credentials. When adding a user, the application turns on a QR
scanner that can be used to scan the QR code generated on the phone that needs to be
added. When scanned, the information is signed and encrypted and sent to the gateway.
When removing a user, the application sends a request for the list of currently registered
users to the gateway. After decrypting the response and verifying its signature, the appli-
cation presents this list to the user. The user can they choose whom they want to remove
and the request to do so is sent to the gateway. Removing all devices is more of a debug
functionality than a feature that would be included in a production application. The pre-
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ferred way of removing devices is individually through the detail activities, but in the case
of a failure or if the Cloud is reset or some other way of inconsistency happens, this func-
tionality can be used to remove all known devices and their data at the gateway. However,
it does not generate any requests at the Cloud, which means that the Cloud will have to
be cleaned up manually. A user can choose to reset their credentials at any time. This
will cause their public key to be removed at the gateway and for the mobile application to
remove its existing public-private key pair and the gateway’s public key.

Figure 4.13: Gateway Control Activity
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Figure 4.14: Adding a New User

Communication With the Cloud and the Gateway

The application uses JSON strings to communicate with both the Cloud platform and
the gateway. During online communication with the Cloud, these JSONs are sent inside
HTTP messages through the Ąrebase functions API. When offline, they are Ąrst inserted
into a singed and encrypted JWT object which is then sent as a message to the gateway
through the Nearby Connections API.

4.5 Design Flow and the Problems Encountered During De-
velopment

The initial intention of the project was to use an already existing demonstration system
and connect it to the Cloud. However, this plan quickly changed into a far more complex
set of goals ranging from the local Thread side to the remote Cloud part and everything in
between.

It was decided from the start that Android Things, Google Cloud, Thread, KW41Z
and the Pico i.MX7D would be used as the technologies for this thesis. The development
of the system therefore began with Ąguring out a way of connecting the Pico board to
Thread. Typically this would not be a problem, as demonstrated in the Bachelor’s thesis6

which connected a Raspberry Pi board to Thread by using the KW41Z dongle. However,
in the previous thesis, the operating system used on the Raspberry Pi was Ubuntu MATE
which supports a lot more drivers than the AT and allows the option of installing new driver
modules. Android Things does not allow this at all and unlike typical UNIX based OS’,
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it does not support the USBNET1 drivers which are required for the dongle to be used as
an ethernet-over-usb adapter that can connect a computer to a network. At Ąrst the plan
was to try and Ąnd a method of enabling the drivers in the OS2. Since Android Things also
does not support many of the commonly used functions of the UNIX terminal, the Busy-
Box3 application was used to try to extend it but after adding the driver modules was
determined impossible, another solution had to be found. The NXP SDK for the KW41Z
dongle comes with a software package called Host SDK, which among other things allows
controlling a Thread border router though UART commands and passing dataframes be-
tween the dongle and the host computer over a TUN/TAP tunnel. However, this SDK
is only implemented in C and Python, while Android Things only supports the Android
version of Java. Thankfully, Google provides a Native Development Kit4 (NDK), which
can be used to compile C or C++ based applications to use most commonly as libraries for
Android applications but also, though not recommended, can be utilized to compile the C
or C++ source code into an executable that can be run on Android. After slightly adjusting
the C-implemented Host SDK, it was possible to cross-compile the source code by using
the NDK, the Ubuntu OS and a custom CMAKE Ąle, into the executable Ąle that takes
care of relaying data between the dongle and the Pico board over UART. The problem with
this solution is that it requires console access to the Pico, as the software has to be run
before the main application on the Pico is started. A better solution would be to imple-
ment a custom driver using the LoWPAN Androd Things API5, however that was beyond
the scope of this thesis and the API became available over six months after the development
of this project started.

Furthermore, a few other issues, although not as impactful, also had to be dealt with.
The OS had to be reinstalled a few times when it became impossible to either connect to
any Wi-Fi endpoint at all or when it was only possible to connect to the Ąrst one used
after installation. One of the USB-C cables used to connect the board to the development
notebook also stopped working fully at some point. This resulted in a problem where even
though it was possible to program the board with the gateway application, the reinstallation
of the whole OS kept failing with unknown errors. After a few failed installations, the board
could not even boot up and had to be reĆashed with a default OS image through specialized
software. The issue was resolved by randomly trying a new USB-C cable.

At one point, the nCoAP library used for CoAP communication was rebased and became
unavailable through Gradle. This caused the whole gateway code to become uncompilable
and had to be solved by temporarily including the library from a custom location until its
owners resolved the issues with accessibility.

The next part was connecting the Pico the Google Cloud. At the time, Cloud IoT Core
was in an early open beta phase and so over the whole development of this thesis, it has
changed quite a lot. Originally it only allowed conĄguration messages that are retained and

1BROWNELL, David. The GNU/Linux ŤusbnetŞ Driver Framework. Linux-USB. September 2015.
[online]. [cit. 2019-02-05]. Retrieved from: http://www.linux-usb.org/usbnet/

2PISKULA, David. How do I enable the ethernet over USB drivers on Android Things?. StackOver-

flow. August 2017. [online]. [cit. 2019-02-05]. Retrieved from: https://stackoverflow.com/questions/

45671128/how-do-i-enable-the-ethernet-over-usb-drivers-on-android-things
3ANDERSEN, Erik. BusyBox: The Swiss Army Knife of Embedded Linux. BusyBox. [online]. [cit.

2019-05-05]. Retrieved from: https://busybox.net/
4Android NDK. Android Developers. [online]. [cit. 2019-02-05]. Retrieved from: https://

developer.android.com/ndk
5LoWPAN. Android Developers. [online]. [cit. 2019-02-05]. Retrieved from: https://

developer.android.com/things/sdk/apis/lowpan
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resent every time an MQTT client connects, while later an option of command messages
that are only delivered once was added. The documentation and API for the service was also
much simpler. Instead of relying on Google’s custom API, the MQTT communication was
implemented through the use of a popular Java library PAHO MQTT. This way, the Cloud
platform can even be changed if needed and the system is not dependent on Google Cloud
speciĄcally. Additionally, the API for Node.js that can be used to communicate with IoT
Core over HTTP did not exist at the time, so the messages that are sent from Cloud
Functions had to be created using available HTTP libraries as well.

When choosing which services to use inside Google Cloud, Cloud DataĆow was recom-
mended by Google as a data processing service that is powerful and easy to use. However,
while testing this service, it consumed several euros from the free credit provided by Google
within a few days of having a single sensor sending data to the Cloud every Ąve minutes.
Due to this, the service was deemed unĄt for a project of this size and instead all data
processing functions were written manually in Cloud Funtions.

When the essential CoAP and MQTT communication was ready and it was possible to
store data generated by the Thread network in the Cloud, the thesis was presented as part
of a project in a subject about Intelligent Sensors. Back then, the BigQuery service was
used to store data and visualization was performed online in DataStudio.

For simplicity’s sake, all data processing was initially performed in a simpliĄed way in
the Cloud, As expected, this brought a latency of up to several seconds between the data
report and the action that was triggered by it. Eventually, development of the edge pro-
cessing began which brought dramatic improvements to system responsibility and latency.
The automatic reconnection and buffers were developed alongside the automation. There
were several issues with the PAHO implementation of the MQTT clients, for example,
the buffers the library provides were not very Ćexible or adjustable at all and sometimes
when connecting or reconnecting clients the process failed. This required more thorough
and redundant connectivity checks.

While working on making the devices into low-power sleepy end devices the initial dif-
Ącult part was getting oriented in the extensive SDK. Even though the work was mostly
centered around correctly setting pins and initializing or deinitializing clocks and peripher-
als, it was required to debug the application and step through the assembly code to learn
the details of when certain processes happen. However, debugging a sleepy end device was
problematic because when the device goes to sleep, it stops responding to the connected
debugger who then thinks the device disconnected. This was partially avoided by setting
special debug values in the conĄguration Ąles of the IAR IDE that was used for develop-
ment. Part of the need to debug was caused by some functions in the SDK having a hidden
implementation which sometimes complicates development. During the work, a bug was
discovered, when the devices would randomly stop going to sleep properly. At Ąrst it was
not apparent whether this bug was caused by the SDK or by the additional code created
for this thesis, so further ASM debugging was needed, as well as various observational
tests. Finally, it was discovered through Wireshark that the devices would sometimes enter
a so-called fast polling mode, which is generally used for joining the network, during which
the devices poll for incoming messages by sending a hello message every 100 ms, instead
of the 3000 or more that were conĄgured. This fact was conĄrmed through debugging and
watching the states of the registers that control the conĄgurations of sleep modes. Not
only did this prevent the devices from properly using the desired sleep mode, it also caused
the whole network to be Ćooded with at least 10 messages per second by every affected
device. This bug was reported and quickly Ąxed by the development team at NXP.
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The biggest issues encountered while developing the mobile application were connected
with inexperience with Android development and various compatibility issues for different
Android versions or even libraries. For example, in order to be able to use Ąrebase au-
thentication API, several libraries could not be included in their most up to date versions
because the API requires speciĄc versions and will not work with the latest ones. Origi-
nally, the online based visualization tool DataStudio was intended to be used for the mobile
application to offer a customizable data report that is accessible both online and through
the smartphone, however, the embedding feature of the serviece is imperfect and has is-
sues with authentication, which results in the graph often not being accessible. The only
solution that worked was to make the graph public, which was not desirable. The Ąnal
implementation present in the mobile application solved these issues through Firebase and
by drawing the graph offline on the smartphone itself. One more issue concerning user
registration at Firebase also needed solving. Firebase has no way of requiring administra-
tor conĄrmation or automatically blocking registrations of new users, which means that
anyone could connect their account to the Cloud project. To prevent this, a function that
is triggered every time someone tries to register was put in Google Cloud. This function
disables the newly registered user so that he cannot access the project.

It was planned to include a ventilator as an end device in the smart home model,
however, one of the ventilator device’s oscillators was broken and the device did not work at
all. As the amount modules made for the project was limited and the device was assembled
at the end of April, there was not enough time to resolve this issue before Ąnishing.

The last and most major problem encountered near the very end of development was
the cancellation of Android Things development for IoT. The initial Android Things de-
veloper preview was released in December 20166 and was meant to provide a solution to
the poor state of IoT security and to enable Android developers to make smart devices for
IoT. The developer preview was released with turn key solutions for Intel Edison, NXP
Pico, and Raspberry Pi 3. Over the next year and a half, six more developer previews were
released. In May 2018, the Android Things 1.0 release was introduced7 with four hardware
modules certiĄed for production based on the available platfroms NXP i.MX8M, Qual-
comm SDA212, Qualcomm SDA624 and MediaTek MT8516. In the end however, Google
posted a Ąnal update on Android Things in February 20198 where they announced that
they would stop developing Android Things for IoT and would instead refocus on speakers
and smart displays. This fast paced process, which took barely nine months to go from
release 1.0 to development cancellation points to another unfortunately common problem
with IoT, which are short-lived products and sudden cancellations without warning. Since
development on this thesis began before the release 1.0 and the gateway software is built
for Android Things, it was too late to switch to a different operating system after the Ąnal
announcement.

6PIEKARSKI, Wayne. Announcing updates to Google’s Internet of Things platform: Android
Things and Weave. Google Developers Blog. December 2018. [online]. [cit. 2019-02-05].
Retrieved from: https://developers.googleblog.com/2016/12/announcing-googles-new-internet-of-

things-platform-with-weave-and-android-things.html
7SMITH, Dave. Say Hello to Android Things 1.0. Android Developers Blog. May 2018. [online].

[cit. 2019-02-05]. Retrieved from: https://android-developers.googleblog.com/2018/05/say-hello-

to-android-things-10.html
8SMITH, Dave. An Update on Android Things. Android Developers Blog. February 2019. [online].

[cit. 2019-02-05]. Retrieved from: https://android-developers.googleblog.com/2019/02/an-update-

on-android-things.html
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4.6 Project Installation

A Windows PowerShell script was created, which uses gCloud commands available in
the Google Cloud SDK to manipulate the Cloud project, for the sake of making the instal-
lation of the whole system as simple as possible. To use the script, a user Ąrst needs to
create a Google Cloud account and project, add a billing account to it, link the project with
Firebase, set up a sign in method and add desired users, create an empty Firestore instance,
add the mobile application to the Ąrebase project and generate a google-services.json Ąle
for it. Lastly, the json Ąle needs to be put into the mobile application’s source code’s app
directory. None of these steps can be automated and therefore must be performed manually.
After all of them are complete however, the user can run the script.

The script Ąrst asks to choose the preferred Cloud region between europe-west1 and us-
central1. Next, it checks whether NPM is present on the computer and if not, asks the user
to install it. Afterwards, the script downloads the Google Cloud SDK and installs it.
Subsequently, it runs the gCloud initialization, which is interactive and will ask the user for
some more information. Finally, it starts creating all the required resources in the desired
project. First, Cloud IoT Core registries are created, then the Cloud and Firebase Functions
are deployed along with additional conĄguration Ąles and lastly the Firestore rules are set
up. The script also inserts information about the chosen region into the source code of
the mobile application.
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Chapter 5

Experiments

A set of experiments was performed to conĄrm correct behavior and functionality of the im-
plemented system. The tests performed can be separated into four categories based on
the issues that were explored in this thesis.

5.1 Autonomy

The experiments carried out for assessing the autonomy of the system involved running
the network with connected functionality, disconnecting it and Ąnally having it reconnect
automatically. Furthermore, the behavior of the conditions along with the correct assign-
ment of groups was examined. Lastly, a comparison of latency was made between sending
conĄguration requests to the devices over the Cloud and over Nearby Connections.

Connected Functionality

The Ąrst experiment was done with a fully connected network of seven end devices. Among
them were a humidity sensor, a temperature sensor, a PIR sensor, a buzzer, a button
and two RGB LED devices. All three sensors had their measurement interval set to 3000
ms. Most of the devices, except for the RGB LEDs, were used as the custom modules
created for this thesis. The RGB LED devices were implemented on FRDM KW41Z de-
velopment boards. Four conditions and one group were set up. The conditions included
a limit condition on the temperature sensor that would turn one of the RGB LEDs red
when the temperature rose above 24.0

∘C, two PIR detector conditions and a button press
condition. One of the PIR detectors would turn the second RGB LED red when a movement
was detected while the sensor was in the secured mode, blue while it was in the normal
mode and green while it was not detecting any movement. The other detector would turn
on the buzzer when movement was detected while in the secured mode. The button press
condition was set to turn off the buzzer and the RGB LED affected by the PIR detector
conditions. Both devices were placed inside a group, which was used by the button press
condition. Additionally, a notiĄcation was conĄgured for the humidity reports, which would
alert the user when humidity reached over 38%.
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Figure 5.1: Model of the Smart Home

When left alone, the network behaved as expected, reacting to the changes of temper-
ature in the room, storing temperature and humidity data in the Cloud and monitoring
movement in front of the PIR sensor. In order to get controlled results, several manual
and observational tests were performed on the sensors. First, the temperature measured by
the temperature sensor was raised artiĄcially by either breathing on or holding the sensor
between two Ąngers. This caused a faster spike in temperature and thus could be used to
quickly determine whether the temperature condition works properly. As was expected,
by holding the sensor and pushing the temperature above the limit, the gateway processed
the incoming data and changed the desired RGB LED to red. After leaving the sensor
alone for a short while and allowing it to cool down again, the temperature dropped back
bellow the limit and the gateway changed the LED’s color to green.

Figure 5.2: NotiĄcation

The PIR sensor could be inĆuenced in a similar fashion by waving a hand in front of it.
The affected RGB LED remained green for as long as no movement was detected. While
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the PIR sensor was set to the unsecured mode, waving a hand in front of it would cause
the LED’s color to be changed to blue. After stopping the wave and moving the hand away,
the color would go back to green again. However, while using the secured mode instead,
waving the hand caused the LED to turn red and the buzzer to start making a noise. As
designed, even after stopping the movement, the buzzing did not stop and the LED stayed
red.

Pressing the button when the buzzer was silent did not have any effect on the buzzer.
The RGB LED was turned off regardless of what color it was set to at the time, but if it
was already turned off, pressing the button did not affect it either. The alarm represented
by the red LED and active buzzer was turned off by pressing the button.

Figure 5.3: PIR and Temperature Sensor Condition Settings
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Figure 5.4: Button Condition Settings

Apart from controlling the devices through the conditions it was also possible to change
their values through the mobile application. As this was an experiment focused on the con-
nected functionality, the commands for the devices were all sent over the Cloud. It was
possible to remove all of the conditions and make the network static, as well as to change
every device’s settings like the measurement interval or the color of the LED and to turn
their main functionalities on or off.

Lastly, some of the devices were manually turned off using their power switches. The gate-
way noticed this either when a conĄguration change was necessary for the device, regardless
of whether it was generated by a user or a condition or when the device’s MQTT client’s
credentials needed to be refreshed. After noticing it, the gateway marked the device as
dead and reported this state to the Cloud, which in turn could be used to retrieve that
information in the mobile application as well. Once these states were downloaded to the ap-
plication, the corresponding devices were marked red in the main overview. Furthermore,
the detail activities of these devices also displayed to the user that the devices were dead
and unresponsive.
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Figure 5.5: Dead Devices

Disconnected Functionality

The next portion of tests consisted of controlling the devices while either the mobile appli-
cation or the gateway or both were offline. First, only the gateway was disconnected from
the internet. Once the gateway noticed this, it started discarding state updates and buffer-
ing humidity and telemetry reports. However, the condition that had been set up before
the disconnection were still functional exactly as described in the previous experiment.

As the mobile application was still connected to the internet, it was able to contact
the Cloud and send new conĄguration requests and get the latest state updates. How-
ever, the Cloud eventually noticed that the MQTT clients are unresponsive, because their
heartbeats stopped being sent, and let the application know in state update responses.
When this information was received by the application, it marked the devices as orange in
the main overview. Furthermore, the conĄguration requests were stored in Cloud IoT Core
at each corresponding device but could not be propagated all the way to the gateway.
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Figure 5.6: Unresponsive MQTT Clients

After disconnecting the mobile application as well, it could not receive any more updates
or send new requests to the Cloud. However, it was possible to switch to the offline mode,
locate the gateway and communicate with it directly. By doing so, hitting the refresh
button could actually provide up to date state information and even properly represent all
the changes that were performed automatically after the gateway had disconnected. Even
so, the temperature and humidity values could not be updated and the application was only
able to show the last values it retrieved from the Cloud, which is the expected behavior.

All of the available offline functionality also worked while either the gateway or the smart
phone or both were connected to the internet. When the gateway was connected, it was
able to report the offline requested changes to the Cloud without any issues.

It was impossible to add or remove any devices to and form the network while either of
them were offline. However, this is the expected behavior as well.

During the gateway’s offline operation, humidity and temperature reports were buffered
according the their buffer settings. The buffer for humidity was set to variant dynamic, with
the variance threshold of 1.0, maximum messages limit of 30, 0 seconds between messages
and 30 second increment for the seconds between messages. The buffer for temperature
was set to variant FIFO, with the variance threshold of 1.0 and maximum messages limit
of 10.
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Figure 5.7: Humidity Data Buffering

Figure 5.8: Variance Spacing

Figure 5.9: Time Spacing
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Automatic Reconnection

Once the gateway’s connection to the internet was reestablished, it quickly began going
through all connected devices, including the dummy, and reconnecting them. It marked
all devices with the syncing state and reported the current states to the Cloud. Then it
went through the humidity and temperature buffers and reported all the stored data as
well. When new reports came from the devices during this time, they were not reported
immediately, but the application waited until the buffers were completely empty and sent
the new data to the Cloud afterwards. The gateway also received the latest requested remote
conĄguration from Cloud IoT Core as well, but only used them if they were newer than
the last change performed either automatically through a condition or manually through
offline controls. After the synchronization was over, the states were reported again, this
time marked with syncing set to false and regular operation of the gateway was resumed.

Figure 5.10: Resynchronization

Apart from the internet loss caused disconnections, the MQTT clients also periodically
closed due to their credentials expiring. The application then had to refresh the creden-
tials from the device’s private key and reconnect, after which it received the latest stored
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conĄguration requests as well. This mostly happened so fast that no telemetry had to be
buffered during the process.

Latency Comparison

A simple test to compare the latency difference between local and remote communication
was performer. It was done on one of the RGB LED devices and the travel times were
measured by counting the seconds between submitting the request and the LED changing
its color. As the LED devices were router eligible devices, they did not enter any sleep
cycles and could react to CoAP messages instanlty. Additional latency of up to the length
of the polling interval would be added for the low power end devices.

Five measurements were performer for both communication types. In the case of local
communication, the changes were reĆected more or less instantly, taking less than a second.
The remote communication however, ranged from 6 to 8 s. The average time it took from
remotely submitting the command to the LED changing its color was 7.2 s.

5.2 Security

The experiments testing the security were divided into four parts. One was to test the mo-
bile application’s access to the Cloud, another to test its access to the gateway, the third
one to test the gateway’s access to the Cloud and the last one to test the device’s access to
the network.

Two smart phones were required to test the access to the gateway. One of them was
set as the Ąrst registered device and could be used to manage the gateway, while the other
was not registered and was used to skip the registration to get to the management screen
without having its QR scanned and public key registered beforehand. While the user with
this smart phone was able to see and use the buttons that send the gateway control messages,
the gateway always replied with the Unauthorized response. This unregistered smart phone
could not be used to alter the gateway’s settings or add or remove any devices or even to get
the current states or send conĄguration requests through the local communication channel.
After resetting the keys of this smart phone and actually scanning the QR code to register
it at the gateway, both phones could be used to control the gateway and the network locally.

When trying to use the application without signing in, the application kept popping up
a window requiring the user to choose their account. This could be skipped and ignored
to a certain extent but trying to alter the device conĄgurations or retrieve the latest state
updates resulted in rejections from the Cloud.

When an MQTT client’s public key was removed from the Cloud IoT Core through
the Google Cloud console, the client cold no longer communicate with or reconnect to
the broker. The gateway kept trying to reconnect it anyway, Ąrst right after it disconnected
for the Cloud and then through the automated reconnection thread but it never succeeded
until the public key was put back into IoT Core.

5.3 Initialization

The initialization experiments comprised of initializing the Cloud project and installing
applications, initializing the gateway and adding and removing devices and observing if
the correct allocations and deletions were performed both in the Cloud and on the gateway.
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When the prerequisites for running the initialization script were correctly set up,
the script was able to initiate both Google Cloud and Firebase and alter the project ID and
region values for the gateway application and copy the service_key generated by the Cloud
for the mobile application to the application’s source code folder. Afterwards, both appli-
cations could be safely installed to their corresponding devices.

After the gateway was turned on for the very Ąrst time, it remained in an uninitialized
state, without starting the CoAP server endpoints and without connecting any MQTT
clients. By using an authorized smart phone to trigger the initialization process, the gateway
generated a key pair for the dummy device and sent the public key to the mobile application,
which in turn put it in the Cloud, where the dummy device was created in IoT Core. After
that was done, the mobile application told the gateway to start its functions and the gateway
began creating the CoAP endpoints and connected the dummy MQTT client.

When a device was turned on without its QR code being scanned Ąrst, it kept trying to
connect to the network to no avail. However, as soon as it was added as an expected joiner
by the gateway, the device connected and started announcing its ID. Scanning the device’s
QR code with an authorized smart phone correctly passed all the needed information to
the gateway, which in turn created the correct key pair and added the device as an expected
joiner to the network. It then responded to the smart phone with the device’s public key,
which the mobile application delivered to the Cloud. Inside the Cloud all the required
resources were properly set up and the gateway was informed through the dummy client
that the device can connect to the Cloud.

When using a signed in smart phone, it was possible to send the command to remove
a device to the Cloud. When the command was generated while the gateway was offline,
it had no effect, as the request did not, by design, get retained at IoT Core. Sending it to
an online gateway however, caused all of the information the gateway had about the device
to be removed. Subsequently, the gateway sent a message through the dummy client letting
the Cloud know that it can safely remove all resources previously allocated for the device.

5.4 Power Consumption

Power consumption measurements were performed for the temperature sensor with different
lengths of sleep and measurement periods. The Keysight N6705C DC Power Analyzer was
used to measure the consumption and export the results into the graphs presented in this
section.
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Figure 5.11: Consumption Measurement Set Up

Three measurements were performed in total, each for Ąve minutes but with different
settings. The deep sleep duration for the devices was set to 3000 ms in all three measure-
ments. In the Ąrst measurement, the measurement interval of the sensor was set to 3000
ms and the polling interval to 1000 ms. The results showed a maximum consumption of
25.585 mA, a total average of 179.513 µA and the average consumption while asleep was
approximately 80 µA.

Figure 5.12: First Measurement

In the second measurement, the measurement interval was set to 30000 ms and the polling
interval to 10000 ms. This time the results had a maximum consumption of 25.996 mA,
a total average of 98.735 µA and the average consumption while asleep was approximately
80 µA.
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Figure 5.13: Second Measurement

In the last measurement, the measurement interval was set to 30000 ms and the polling
interval to 9000 ms. The Ąnal measured results had a maximum consumption of 25.665 mA,
a total average of 63.24 µA and the average consumption while asleep was approximately
50 µA.

Figure 5.14: Third Measurement

The reason for the large difference between the last two measurements and between
the average consumption in deep sleep between the Ąrst two and the last one was the settings
for the polling interval. When the interval was set to 1000 ms, it woke the device twice over
the duration of the 3000 ms long deep sleep. When the interval was set to 10000 ms instead,
the intervals could not properly overlap, as 10 is not divisible by 3. In the last measurements
however, the intervals completely overlapped, which led to a dramatic improvement in
consumption.

The batteries used for the devices have a capacity of 1500 mAh, which means that with
the settings of the third measurement, the temperature sensor device could last for up to
23719 hours, or 988 days before needing to recharge. The trade-off for this longevity is
response latency, as the device can take up to 9 seconds to notice a new message. The pre-
dicted time can be greatly impacted by the device having to reconnect, especially if the bor-
der router is unresponsive and the end device remains in a reconnection cycle.
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Chapter 6

Conclusion

This goal of this thesis was to research the current state of the Internet of Things, assess
its problems and describe the state of the art solutions and based on this research to then
design and implement a complex IoT solution that Ąxes several of the problems under
the patronage of NXP Semiconductors. The design had to be autonomous, independent of
the Cloud while utilizing its advantages, secure, energy efficient, extensible and needed to
include a mobile application that could be used to control it both remotely and locally and
display the states and reported data of the devices in the network. The intended result was
a model of a smart home based on NXP’s Thread communication protocol and the KW41Z
and i.MX7D MCUs. All of the above goals were successfully accomplished, implemented
and tested in the solution presented in this work.

The Ąnal product includes several types of devices, among which are both sensors and
actuators. The devices were built for low power consumption and utilize sleep modes which
let them operate for very long periods of time without recharging. The automation of
the network is performed through a simple and easily extensible but Ćexible and effective
scheme and all major data processing is done on the gateway at the edge of the network.
Thanks to this, the system is autonomous and independent of the Cloud and remains
functional even when it loses its internet connection. Furthermore, all communication is
secured and kept private through various cryptographic schemes. The mobile application
provides a user friendly interface for interaction with the network and an initiation scheme
which automatically allocates all the needed resources in the Cloud. The Cloud is used
for long term data storage and authenticated remote communication between the gateway
and the mobile application. The autonomous automation part of this thesis was submitted
to and featured at the Excel@FIT 2019 conference together with the model of the smart
home.

In the future this project can be extended with more complex device types and new
automation conditions. Further technologies could also be added, like an over-the-air up-
dating scheme which would allow security patches and an automated key-pair rotation to
further improve security or other initialization techniques that use Bluetooth or NFC to
connect to the border router of gateway. Moreover, the Cloud’s rich computational capabil-
ities could also be utilized for machine learning and the resulting models could be included
in the automation scheme on the gateway. Finally, communication protocol coexistence be-
tween Thread and other technologies could also be explored, as there are already standards
like DotDot that focus on this goal.

65



Bibliography

[1] An Introduction to the Internet of Things (IoT). Lopez Research LLC, November
2013, [Online; visited 2019.01.11.].
URL https://www.cisco.com/c/dam/en_us/solutions/trends/iot/

introduction_to_IoT_november.pdf

[2] Vermesan, O.; Friess, P.: Internet of things: converging technologies for smart
environments and integrated ecosystems. Aalborg, Denmark: River Publishers, 2013,
ISBN 978-879-2982-735.

[3] Ballantyne, B.: INDUSTRY 4.0. London, UK: World Market Intelligence, December
2016, 34-36,38,40-41 pp.
URL https://search.proquest.com/docview/1850307322

[4] IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-2015 (Revision
of IEEE Std 802.15.4-2011), April 2016: pp. 1Ű709,
doi:10.1109/IEEESTD.2016.7460875.

[5] Bluetooth Mesh ProĄle SpeciĄcation 1.0. Bluetooth SIG, July 2017, [Online; visited
2019.01.11.].
URL
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=429633

[6] Thread Stack Fundamentals. Thread Group, July 2015, [Online; visited 2019.04.30.].
URL https://www.threadgroup.org/Portals/0/documents/support/

ThreadOverview_633_2.pdf

[7] Olsson, J.: 6LoWPAN demystified. Dalas, Texas, USA: Texas Instruments
Incorporated, October 2014.
URL http://www.ti.com/lit/wp/swry013/swry013.pdf

[8] Shelby, Z.; Hartke, K.; Bormann, C.: The Constrained Application Protocol (CoAP).
Internet Engineering Task Force (IETF), June 2014, iSSN: 2070-1721.

[9] MQTT Version 3.1.1. OASIS, October 2014, [Online; visited 2019.01.11.].
URL http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

[10] Hassan, Q. F.: Demystifying Cloud Computing. CrossTalk: The Journal of Defense
Software Engineering, 2011, [Online; visited 2019.01.11.].
URL http://static1.1.sqspcdn.com/static/f/702523/10181434/1294788395300/

201101-Hassan.pdf?token=KuQ711b4oxK2IWlsogkRvalQSfc%3D

66



[11] Mell, P.; Grance, T.: The NIST Definition of Cloud Computing. Gaithersburg, MD,
USA: NIST National Institute of Standards and Technology, September 2011,
[Online; visited 2019.01.11.].
URL http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

[12] Ai, Y.; Peng, M.; Zhang, K.: Edge computing technologies for Internet of Things: a
primer. Digital Communications and Networks, vol. 4, no. 2, 2018: pp. 77 Ű 86, ISSN
2352-8648, doi:https://doi.org/10.1016/j.dcan.2017.07.001.
URL http://www.sciencedirect.com/science/article/pii/S2352864817301335

[13] Kessler, G. C.: An overview of cryptography. the Handbook on Local Area Networks,
Auerbach, 1998, revision from 2019.04.11. [Online; visited 2019.04.28.].
URL https://www.garykessler.net/library/crypto.html

[14] Babu, S. M.; Lakshmi, A. J.; Rao, B. T.: A study on cloud based Internet of Things:
CloudIoT. In 2015 Global Conference on Communication Technologies (GCCT),
April 2015, pp. 60Ű65, doi:10.1109/GCCT.2015.7342624.

[15] Botta, A.; de Donato, W.; Persico, V.; et al.: On the Integration of Cloud Computing
and Internet of Things. In 2014 International Conference on Future Internet of
Things and Cloud, Aug 2014, pp. 23Ű30, doi:10.1109/FiCloud.2014.14.

[16] Satyanarayanan, M.: The Emergence of Edge Computing. IEEE Computer Society,
January 2017, [Online; visited 2019.01.11.].
URL
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7807196&tag=1

[17] Premsankar, G.; Di Francesco, M.; Taleb, T.: Edge Computing for the Internet of
Things: A Case Study. IEEE Internet of Things Journal, vol. 5, no. 2, April 2018:
pp. 1275Ű1284, ISSN 2327-4662, doi:10.1109/JIOT.2018.2805263.

[18] Rahmani, A.-M.; Thanigaivelan, N. K.; Gia, T. N.; et al.: Smart e-Health Gateway:
Bringing intelligence to Internet-of-Things based ubiquitous healthcare systems. In
2015 12th Annual IEEE Consumer Communications and Networking Conference
(CCNC), IEEE, 2015, ISBN 9781479963904, ISSN 2331-9852, pp. 826Ű834.

[19] Sun, X.; Ansari, N.: EdgeIoT: Mobile Edge Computing for the Internet of Things.
IEEE Communications Magazine, vol. 54, no. 12, 2016: pp. 22Ű29, ISSN 0163-6804.

[20] Lindqvist, U.; Neumann, P. G.: Inside Risks The Future of the Internet of Things.
San Francisco, CA, USA: Communications of the ACM, February 2017,
doi:10.1145/3029589.
URL http://www.csl.sri.com/users/neumann/cacm240.pdf

[21] Suo, H.; Wan, J.; Zou, C.; et al.: Security in the Internet of Things: A Review. In
2012 International Conference on Computer Science and Electronics Engineering,
vol. 3, March 2012, pp. 648Ű651, doi:10.1109/ICCSEE.2012.373.

[22] Abomhara, M.; Køien, G. M.: Security and privacy in the Internet of Things: Current
status and open issues. In 2014 International Conference on Privacy and Security in
Mobile Systems (PRISMS), May 2014, pp. 1Ű8, doi:10.1109/PRISMS.2014.6970594.

67



[23] Sadeghi, A.; Wachsmann, C.; Waidner, M.: Security and privacy challenges in
industrial Internet of Things. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), June 2015, ISSN 0738-100X, pp. 1Ű6,
doi:10.1145/2744769.2747942.

[24] Yang, Y.; Wu, L.; Yin, G.; et al.: A Survey on Security and Privacy Issues in
Internet-of-Things. IEEE Internet of Things Journal, vol. 4, no. 5, Oct 2017: pp.
1250Ű1258, ISSN 2327-4662, doi:10.1109/JIOT.2017.2694844.

[25] Perković, T.; Kovacevic, T.; Cagalj, M.: BlinkComm: Initialization of IoT Devices
Using Visible Light Communication. Wireless Communications and Mobile
Computing, vol. 2018, 06 2018: pp. 1Ű16, doi:10.1155/2018/8523078.

[26] Perković, T.; Čagalj, M.; Kovačević, T.: LISA: Visible light based initialization and
SMS based authentication of constrained IoT devices. Future Generation Computer
Systems, vol. 97, 2019: pp. 105 Ű 118, ISSN 0167-739X,
doi:https://doi.org/10.1016/j.future.2019.02.052.
URL http://www.sciencedirect.com/science/article/pii/S0167739X18321083

[27] MKW41Z/31Z/21Z Reference Manual. NXP Semiconductors, October 2016, [Online;
visited 2019.02.05.].
URL
https://www.nxp.com/files-static/32bit/doc/ref_manual/MKW41Z512RM.pdf

[28] Sudevalayam, S.; Kulkarni, P.: Energy Harvesting Sensor Nodes: Survey and
Implications. IEEE Communications Surveys Tutorials, vol. 13, no. 3, Third 2011:
pp. 443Ű461, ISSN 1553-877X, doi:10.1109/SURV.2011.060710.00094.

[29] Kamalinejad, P.; Mahapatra, C.; Sheng, Z.; et al.: Wireless energy harvesting for the
Internet of Things. IEEE Communications Magazine, vol. 53, no. 6, June 2015: pp.
102Ű108, ISSN 0163-6804, doi:10.1109/MCOM.2015.7120024.

[30] Evans, D.: The Internet of Things, How the Next Evolution of the Internet Is
Changing Everything. Cisco IBSG, April 2011, [Online; visited 2019.01.13.].
URL https:

//www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[31] Thread Commissioning. Thread Group, July 2015, [Online; visited 2019.02.05.].
URL https://www.threadgroup.org/Portals/0/documents/support/

CommissioningWhitePaper_658_2.pdf

[32] F. Hao, E.: J-PAKE: Password-Authenticated Key Exchange by Juggling. Internet
Engineering Task Force (IETF), September 2017, iSSN: 2070-1721.

[33] F. Hao, E.: Schnorr Non-interactive Zero-Knowledge Proof. Internet Engineering
Task Force (IETF), September 2017, iSSN: 2070-1721.

[34] Power Management for Kinetis MCUs. NXP Semiconductors, April 2015, [Online;
visited 2019.02.05.].
URL https://www.nxp.com/docs/en/application-note/AN4503.pdf

68


	Introduction
	Important Problems of IoT
	What Is the Internet of Things
	Technologies Connected With IoT
	The Evolution of Autonomous Systems
	Current Autonomous Solutions and Their Problems
	Security and Privacy
	Device Initialization
	Power Consumption
	The Future of IoT

	Design
	Design Goals
	Autonomy
	Security
	Cloud Processing
	Mobile Application and Operating System
	Device Initialization
	Hardware

	Implementation
	End Devices
	Gateway
	Google Cloud
	Mobile Application
	Design Flow and the Problems Encountered During Development
	Project Installation

	Experiments
	Autonomy
	Security
	Initialization
	Power Consumption

	Conclusion
	Bibliography

