
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

EXTRACTION OF DECRYPTED DATA FROM SSLCONNECTION
EXTRAKCE DEŠIFROVANÉHO PROVOZU Z SSL SPOJENÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. JAKUB PASTUSZEK
AUTOR PRÁCE
SUPERVISOR Ing. MATĚJ GRÉGR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2018/2019
Master's Thesis Specification

Student: Pastuszek Jakub, Bc.
Programme: Information Technology Field of study: Computer Networks and Communication
Title: Extraction of Decrypted Data from SSL Connection
Category: Networking
Assignment:

1. Study tools used for SSL MiTM attacks - e.g. sslsplit, mitmproxy, sslsniff etc. - and select one of them
based on features and performance.

2. Design an extension for the chosen tool able to mirror decrypted SSL traffic.
3. Implement the extension for the chosen tool and integrate the extended tool to NetX router platform.
4. Test the performance of your solution and evaluate results.

Recommended literature:
Daniel Roethlisberger., SSLsplit. online, url: https://github.com/droe/sslsplit
Ivan Ristic. Bulletproof SSL and TLS. London: Feisty Duck, 2014.
Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. mitmproxy: A free and open source
interactive HTTPS proxy, 2010-, https://mitmproxy.org/ [Version 4.0].

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Grégr Matěj, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 22, 2019
Approval date: October 31, 2018

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/22185/2018/xpastu00 Strana 1 z 1

Abstract
The goal of the thesis is to develop an application able to decrypt a secure connection
and mirror decrypted data to another node for analysis. The application encourages illegal
purposes but the intended use of the resulting product is a legal interception. SSLsplit has
been selected from the set of tools for this thesis because of its features and performance.
This decision was based on tools’ benchmarking and features comparison. SSLsplit signs the
target server’s certificates on the fly using a self-signed certificate. It runs as a transparent
proxy directly on the central device in the network (router). SSLsplit performs a man-in-
the-middle attack between a client and a server without any notice from either of them. The
application sends the decrypted content of processed packets to a specific host in the network
for further processing. Integration into the netc interface has been implemented for easier
SSLsplit configuration. The application has been tested to determine its performance limits.
Performance tests of the finished solution show a significant decline of transactions per
second (TPS) when using SSLsplit in comparison to only forwarded traffic. The mirroring
feature does not significantly affect the number of TPS or restrict SSLsplit itself. The
results show that SSLsplit is capable of real operation with certain limitations.

Abstrakt
Cílem této práce je vyvinout aplikaci schopnou dešifrovat zabezpečená spojení a přeposlat
dešifrovaná data na jinou stanici v síti pro další analýzu. Daná aplikace vybízí k nelegál-
ním účelům, avšak zamýšleným použitím výsledného produktu jsou legální odposlechy.
Pro tuto práci byla z množiny nástrojů vybrána aplikace SSLsplit díky jejím vlastnostem
a výkonnosti. Toto rozhodnutí bylo na základě srovnávacích testů a porovnání vlastností.
Pomocí vlastního certifikátu SSLsplit podepisuje certifikáty cílových serverů, které jsou
vytvářené za běhu. Spuštěná aplikace běží v režimu transparentní proxy přímo na centrál-
ním prvku dané sítě (routeru). SSLsplit provádí man-in-the-middle útok mezi klientem a
serverem bez toho, aby to některá ze stran zaznamenala. Dále umožnuje dešifrovaný obsah
odeslat na předem daný uzel v síti pro jeho další zpracování. Pro možnost snažší konfigu-
race SSLsplitu byla implementována integrace do netc rozhraní. Aplikace byla otestována
za účelem zjištění jejich výkonnostních limitů. Výkonnostní testy výsledného řešení ukazují
značný pokles počtu transakcí za sekundu (TPS) při použití SSLsplit v porovnání s pouhým
přeposíláním provozu. Funkce zrcadlení významně neovlivňuje počet TPS ani neomezuje
samotný SSLsplit. Výsledky ukazují, že SSLsplit je schopen reálného provozu s určitým
omezením.

Keywords
mirror, SSL/TLS, SSL Proxy, HTTPS

Klíčová slova
zrcadlení, SSL/TLS, SSL Proxy, HTTPS

Reference
PASTUSZEK, Jakub. Extraction of Decrypted Data from SSL Connection. Brno, 2019.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Ing. Matěj Grégr, Ph.D.

Rozšířený abstrakt
Cílem této práce je vyvinout aplikaci schopnou dešifrovat SSL spojení a zrcadlit dešifrované
data na jiný uzel sítě pro další analýzu. Práce je do značné míry spojena s protokolem HTTP
sloužícím pro komunikaci s web serverem. Zabezpečení protokolu HTTP je prováděno po-
mocí TLS protokolu, který se v ISO/OSI modelu nachází v relační vrstvě. TLS používá
"handshake" pro vyjednání šifrovacích algoritmů a dalších parametrů zabezpečeného spo-
jení. Spojením protokolů HTTP a TLS vznikne protokol HTTPS. Digitální certifikáty jsou
v HTTPS používané pro ověřování identity serveru.

Obsahem práce je, mimo jiné, správa certifikátů a to jak jejich vytvoření, tak i pode-
pisování. Práce se zabývá také možnostmi revokace certifikátů a ověřováním jejich stavu a
to hlavně z důvodu zabránění takovým akcím ze strany uživatele, aby nebylo prozrazeno
použití výsledné aplikace. Vysvětlena je důležitost certifikační autority a kořenových (důvěry-
hodných) certifikátů při použití šifrovaného spojení a to jak z hlediska důvěryhodnosti,
tak integrity vyměněných zpráv. Některým položkám v rámci certifikátů je v této práci
věnovaná větší pozornost. Jednou z nich je "Common Name", který udává doménové jméno
serveru, dále "Server Name Indication" umožňující více doménových jmen na jedné IP adrese
a "Subject Alternative Name" umožňující uvést více různých doménových jmen do jednoho
certifikátu. Dalším bodem jsou proxy servery, kterých je mnoho typů, ale v této práci jsou
využity hlavně transparentní proxy servery.

Útoky Man-in-the-Middle (MitM) dovolují útočníkovi odposlouchávat komunikaci mezi
dvěma zařízeními. Jistou ochranu proti tomuto typu útoku nabízejí politiky "HTTP Strict
Transport Security" a "HTTP Public Key Pinning", které sdělují klientskému prohlížeči,
že na stránku má přistupovat pouze pomocí protokolu HTTPS a že server může použít
pouze určité certifikáty. Výsledná aplikace těmto ochranným mechanismům zabraňuje v pů-
sobení tím, že žádosti serveru na jejich využití jsou odstraněny z hlaviček HTTP odpovědi.
Nástroje umožňující provedení MitM útoku a při tom jsou schopny pracovat jako transpar-
entní proxy servery jsou hlavní náplní této práce. Některé ze zkoumaných nástrojů jsou
schopné generovat certifikáty serverů za běhu nebo blokovat žádosti o ověření platnosti
daného certifikátu. Nástroj Mitmproxy je velice schopný nástroj umožňující hlavně živé
zobrazení probíhající komunikace a případnou možnost změny její části. Nástroj SSLsplit
je více optimalizovaný na výkon a umožňuje zaznamenávat více informací do souborů než
ostatní nástroje. Velkou výhodou oproti ostatním má SSLsplit v tom, že již obsahuje imple-
mentované rozšíření pro zrcadlení provozu. Sslsniff je nástroj, který byl vytvořen zejména
pro demonstraci některých ze známých útoků a jeho vývoj dále nepokračuje. Poskytované
funkce nástrojů Mitmproxy a SSLsplit jsou skoro totožné, zatímco Sslsniff výrazně zaostává.
Porovnání nástrojů pomocí výkonnostních testů ukázalo, že SSLsplit nejméně zatěžuje pro-
cesor a při tom dosahuje nejvyšších hodnot v propustnosti, proto byl vybrán pro integraci
do netc rozhraní.

Implementace do NETX routeru, respektive do rozhraní příkazového řádku nazývaného
netc je provedena pomocí několika souborů. Popisující soubor ve formátu YAML obsahuje
různé kontexty nastavování nástroje SSLsplit a všechny možné volání funkcí pro zobrazení
nápovědy, získání a nastavení hodnot a další. Všechny nakonfigurované hodnoty jsou uk-
ládány do datové struktury DataTree a přepisovány dle potřeby. Servisní soubor obsahuje
nastavení spuštění nástroje SSLsplit, které je, více méně, řízeno proměnnými prostředí nas-
tavenými v konfiguračním souboru. Konfigurační skript je hlavním souborem a dalo by
se říct, že i tím nejdůležitějším. Obsahuje výchozí hodnoty některých parametrů, všechny
funkce pro nastavení a získání hodnoty z DataTree, funkce pro získání všech možných
vstupních hodnot a tou nejdůležitější funkcí je vytvoření konfiguračního souboru obsahu-

jící proměnné prostředí. Skript pro statistiky využívá konfigurační soubor pro nalezení
souboru obsahujícího řetězce připojení, ze kterého jsou získány veškeré statistiky. Certi-
fikáty zmíněné dříve jsou téměř nepostradatelnou součástí zabezpečeného spojení a proto
vytvoření podepsaného certifikátu pro nástroj SSLsplit je součástí této práce. Přesměrování
provozu je v případě použití transparentní proxy velice důležité. Provoz který má být zpra-
cován nástrojem SSLsplit musí být do něj určitým způsobem nasměrován.

Závěrečné výkonnostní testování prokázalo, že nástroj SSLsplit významně snižuje počet
transakcí za sekundu (TPS) v porovnání s pouhým směrováním komunikace. V případě
HTTPS komunikace je rozdíl v počtu TPS s použitím zrcadlení a bez něj téměř totožný.
Z toho plyne, že funkce zrcadlení nijak výrazně nezpomaluje zpracování procházejících
paketů. Při testování na fyzických strojích bylo zjištěno, že v případě HTTPS komunikace
je SSLsplit schopen provést cirka 4 000 TPS. Vliv zapnutí funkcionality zrcadlení na zátěž
procesoru v porovnání s vypnutou touto funkcionalitou byl změřen a stanoven na jednotky
procent. Propustnost routeru za použití a zpracování komunikace nástrojem SSLsplit je
snížena pouze v řádu procent. S ohledem na zjištěné skutečnosti je nástroj SSLsplit vhodný
pro použití na jednoho klienta nebo malou síť.

Extraction of Decrypted Data from SSL
Connection

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Ing. Matěj Grégr, Ph.D. All the relevant information sources, which
were used during the preparation of the thesis, are properly cited and included in the list
of references.

. .
Jakub Pastuszek

May 21, 2019

Acknowledgements
I would like to express my sincere gratitude to my superior Ing. Matěj Grégr, Ph.D. for his
guidance, valuable advice, patience and willingness to help. Also, I would like to thank my
family and friends for their support during the development of the thesis.

Contents

1 Introduction 3

2 Secured Transport 4
2.1 Protocols . 4

2.1.1 Hypertext Transfer Protocol . 4
2.1.2 Hypertext Transfer Protocol Secure 4
2.1.3 TLS/SSL . 5

2.2 Digital Certificate . 7
2.2.1 Structure of a Certificate . 7
2.2.2 Certificate Revocation List . 8
2.2.3 Online Certificate Status Protocol 8
2.2.4 Certificate Authority . 8
2.2.5 Self-signed Certificate . 9
2.2.6 SSL Certificate Validation Level . 10
2.2.7 Server Name Indication . 10
2.2.8 Subject Alternative Name . 10

2.3 Proxy Server . 11
2.3.1 HTTP Proxy . 12
2.3.2 SSL Proxy . 12
2.3.3 Socks Proxy . 12

2.4 Attack and Protection . 13
2.4.1 HTTP Strict Transport Security . 13
2.4.2 HTTP Public Key Pinning . 13
2.4.3 Man-in-the-Middle Attack . 13

3 Penetration Tools 15
3.1 Mitmproxy . 15
3.2 SSLsplit . 16
3.3 Sslsniff . 17
3.4 Comparison of Tools’ Features . 18
3.5 Tools’ Benchmarking . 19

3.5.1 Nginx . 19
3.5.2 Wrk . 19
3.5.3 Sar . 19
3.5.4 Testing . 20

3.6 Tools’ Evaluation . 23

4 Implementation 24

1

4.1 NETX . 24
4.1.1 Netc . 24

4.2 Configuration of Sslapp . 25
4.3 Forward and Redirect . 25
4.4 YAML – Descriptive File . 26

4.4.1 DataTree . 27
4.5 Service File . 28
4.6 Configuration Script . 29

4.6.1 Configuration File . 31
4.7 Statistics Script . 31
4.8 Certificate . 32

5 Performance Testing 34
5.1 Virtual Environment . 34

5.1.1 Testing in a Virtual Environment . 34
5.2 Physical Environment . 38

5.2.1 Testing in a Physical Environment 38

6 Conclusion 42

Bibliography 44

A CD Content 46

2

Chapter 1

Introduction

Nowadays, a secured connection is an important and inherent part of the Internet connec-
tion. Security is ensured by protocols such as SSL, its successor TLS or others. Security is
important to retain everybody’s privacy.

There are many tools that intercept secure connection and then reveal private informa-
tion. These tools use different methods and approaches to gather information from secure
connections, such as passive listening, extraction of interesting information like Common
Name, form inputs and others. These tools are not always used only by attackers. Valid use
cases exist, e.g., troubleshooting during application development with secured connections,
testing or legal interception. The aim of the thesis is to develop a tool capable to perform
man-in-the-middle (MitM) attack (2.4.3) and to decrypt intercepted data. The tool shall
be installed as a transparent proxy on a router. The main goal in the thesis is to capture
and mirror traffic for troubleshooting or legal compliance.

This thesis has the following structure. Chapter 2 describes important web applications’
protocols with the main representative HTTP (2.1.1) and its secured extension HTTPS
(2.1.2). There are also descriptions of TLS protocol, negotiation of security attributes
(TLS handshake) and a digital certificate.

Applications which are capable of performing MitM attack (penetration tools) are dis-
cussed in Chapter 3. Each individual tool is tested for a performance and all its features
(3.4) are considered in the selection of the best tool for the thesis. The evaluation of pen-
etration tools take into account tools’ features and the results from tools’ benchmarking.
SSLsplit is selected as the right tool for the thesis according to its features and for the most
suitable performance in benchmarks.

Chapter 4 describes all files which were created as part of the solution of the thesis. In
the chapter, the configuration file and certificate creation are described. A section about a
proper forward and redirection setting of the clients’ traffic is also present.

Results of the performance tests of SSLsplit are in Chapter 5. First tests were performed
in the virtual environment where the limits of the virtual environment were hit but the
essential overview was achieved. On physical machines was found a maximum of TPS
with relation to a number of opened TCP connections and also was measured a drop in
throughput when the tool was launched. Results from testing of the physical environment
have greater value and therefore more emphasis is placed on the accuracy of results.

Chapter 6 summarises the thesis and contains an evaluation of the performance tests.
The key part of the thesis was to implement the integration of the tool to NETX’s netc
command-line interface and the major part was to do a performance testing of the final
solution.

3

Chapter 2

Secured Transport

This chapter is about how a secure connection could be established (TLS 2.1.3), what
security mechanisms are nowadays widely used (2.2), how could anybody be at least slightly
anonymous (proxies 2.3) and what preventing policies and protections are deployed to
protect a computer on the network against attacks (2.4).

2.1 Protocols
A protocol is a convention or standard, according to which an electronic communication and
data transfer between two endpoints take place. An accurate description of the protocol
facilitates interoperability of different implementations of computer applications.

2.1.1 Hypertext Transfer Protocol

Hypertext Transfer Protocol [7] (HTTP) is an application layer protocol designated for
communication with WWW servers. It serves for transfer of hypermedia documents in
HTML, XML and other formats. The HTTP is a request-response protocol. The client
(usually internet browser) submits an HTTP request to the server in a plain text format
containing a type of document, HTTP version, domain name (Host), cookie, information
about used internet browser (User-Agent), etc. The server afterwards returns a response to
the client. The response contains completion status, information about the request (known
as headers) and also may contain requested content (known as a body).

The HTTP is called a stateless protocol because each request is executed independently,
without any knowledge of preceding requests. The standard port on the server side is 80
TCP. Status codes are an integral part of the HTTP protocol, they indicate whether a
specific HTTP request has been completed successfully. The HTTP uses Uniform Resource
Locator1 (URL) which unambiguously specify a location of some source on the server.

2.1.2 Hypertext Transfer Protocol Secure

Hypertext Transfer Protocol Secure [16] (HTTPS) is a protocol allowing secure commu-
nication over a computer network. The HTTPS is widely used HTTP (2.1.1) extension
where the HTTPS protocol is encrypted using TLS (2.1.3) or its predecessor SSL. The
protocol is therefore also often called HTTP over TLS or HTTP over SSL. The HTTPS
ensures authentication, confidentiality of transfer data and integrity. The standard port

1URL – https://tools.ietf.org/html/rfc1738

4

https://tools.ietf.org/html/rfc1738

on the server side is 443 TCP. The degree of security depends on user behaviour (a user
could bypass security alerts), protocol implementation in the client’s internet browser (e.g.
security holes, plugin vulnerabilities), the web server correctness of configuration and confi-
dentiality of certification authorities (described later in this chapter). Table 2.1 summarises
the advantages and disadvantages of using HTTPS over HTTP.

Pros Cons
Identity verification A need for certificates and their renewal
Confidentiality of transmitted data Slightly complicated web server configuration
Content integrity Greater overhead and latency

Table 2.1: HTTPS Pros and Cons (in comparison to HTTP)

Figure 2.1 shows a typical scenario when a web browser tries to connect to a web server
by insecure protocol and the server responds with a request to redirect to secure one. While
a web browser tries to connect to a secured site, firstly there has to be a TLS handshake
(2.1.3) during which the web browser, among other things, verify the web server’s certificate.
After the handshake, the connection is secured by TLS and the communication could begin.

Connects to HTTP Site on port 80

Redirect to HTTPS Site

Connects to HTTPS Site on port 443

Provides Server Certificate

Start of communicationClient

Web server
Web browser

Figure 2.1: Typical web communication – connect to an insecure site and redirect to secure

2.1.3 TLS/SSL

Transport Layer Security [3] [17, p. 1–4] (TLS) and its predecessor Secure Sockets Layer
(SSL), are security protocols designed to secure communication between a client and a
server over a computer network. Despite the fact that SSL is now considered insecure, this
term is still used for TLS2.

TLS runs below the application layer and could add security to any protocol using a reli-
able transport protocol. TLS allows a computer to communicate over the computer network
in a way which prevents eavesdropping and message forgery. There are multiple versions
of TLS vary in security levels, amount of patched vulnerabilities and more. Authentication
and privacy for endpoints are provided by cryptography. One of the protections against
known attacks on TLS, such as an attempt to use less secured TLS protocol version or
weaker ciphering algorithm, is a message ending initialisation (Finished) which contains a
hash of all messages exchanged during the initialisation phase. To protect against Man-in-
the-Middle attacks (2.4.3), the client compares the current DNS name of the server to the
name of the certificate. Secure TLS connection is composed of three phases:

2The use of ‘TLS’ or ‘SSL’ refers to both SSL (outdated and insecure) and TLS (1.0 and up) in the
generic sense, unless otherwise specified.

5

∙ endpoints’ agreement on used algorithms

∙ keys exchange based on asymmetric cryptography using certificate(s)

∙ traffic encryption using symmetric cryptography

TLS Handshake

Handshake [17, p. 26–32] is automated negotiation which goal is to set up the parameters of
a communication channel between two subjects before the start of sending relevant (useful)
data. TLS handshake is a protocol to negotiate security attributes. Both endpoints could
provide different ciphering and hashing algorithms or different data security. The goal of
the handshake is to select the most secure option supported by both subjects.

Client Server
Client Hello −→

←− Server Hello
←− Server Certificate*
←− Server Hello Done

Client Key Exchange −→
Key Generation Key Generation
Certificate Verify
Change Cipher Spec −→
Finished −→

←− ChangeCipherSpec
←− Finished

Application Data ←→ Application Data

Table 2.2: TLS handshake between the Client and the Server (*depends on cipher suite)

A typical initialisation of a TLS connection is shown in Table 2.2. The client sends a
ClientHello message specifying the highest TLS protocol version which supports, random
value and a list of suggested ciphering suites and compression methods. The server responds
with a ServerHello message specifying selected TLS protocol version, its random value, a ci-
phering suite and a compression method selected from the client’s list of suggestions. Then
the server sends its Certificate (2.2). As the next step server sends a ServerHelloDone mes-
sage to finish initialisation. The client responds a ClientKeyExchange message containing
either a PreMasterSecret or nothing (regard to a selected ciphering suite). Both subjects
could calculate a MasterSecret (described later in the section) from random values and a
PreMasterSecret. The client verifies the server’s certificate. If the certificate is not valid the
client terminates the connection. The client sends a ChangeCipherSpec record, essentially
telling the server ‘everything I tell you will be encrypted’. Finally, the client sends an en-
crypted message Finished containing a hash and a Message Authentication Code (MAC) of
previous initialisation messages. MAC is a short piece of information used to authenticate a
message. The server attempt to decrypt the client’s message and verify its hash and MAC.
If the decryption or verification fails, the handshake is considered unsuccessful and the con-
nection should be terminated. Finally, the server sends message ChangeCipherSpec and its
encrypted Finished message and the client performs analogue decryption and verification.

6

At this point is TLS handshake complete and both endpoints have a shared key by which
will be upcoming communication encrypted.

TLS Master Secret

A Master Secret [3, p. 64] is always 48 bytes. Four keys are derived from the value, two for
a client and two for a server. One of them on each machine is a MAC key and the other is
a write key. MAC keys are for the authentication and integrity within the MAC algorithm
of a selected ciphering suite. Write keys are used for symmetrical encryption.

2.2 Digital Certificate
A digital certificate, also known as a public key certificate or an identity certificate (further
referred as a certificate), is a digitally signed public cryptography key issued by Certification
Authority (2.2.4). A certificate is saved in X.509 format [1] and contains information about
the owner of the public key and an issuer of the certificate. Certificates are electronic
documents used to identify a counterparty during the creation of the secured connection
(proving the ownership of a public key). The owner of the certificate is called the subject.
The subject could obtain a certificate by applying to a certificate authority with a Certificate
signing request [12] (CSR).

2.2.1 Structure of a Certificate

Data of a certificate are expressed in Abstract Syntax Notation One3 (ASN.1). The public
key is linked to the certificate and the private key resides on a device where the certificate
is installed. This ensures that data encrypted by the public key could be decrypted only
by the paired private key and not by any other key. The main pieces of information stand
in a certificate are the following:

∙ Serial Number – used to uniquely identify the certificate within CA’s system

∙ Subject – the entity a certificate belongs to (a machine, an individual or an organ-
isation), the field always has to contain a subfield named Common Name (CN) as a
domain identifier, there are other subfields which are required for a higher certificate’s
validation level (2.2.6)

∙ Issuer – the entity that verified the information and signed the certificate

∙ Not Before – the earliest time and date on which the certificate is valid

∙ Not After – the time and date past which the certificate is no longer valid (the most
common validity is a year)

∙ Key Usage – the purpose of the public key usage

∙ Extended Key Usage – the application in which the certificate may be used

∙ Public Key Algorithm – the algorithm used to create the public key

∙ Public Key – the public key belonging to the certificate subject
3ASN.1 – https://tools.ietf.org/html/rfc3641

7

https://tools.ietf.org/html/rfc3641

∙ Signature Algorithm – the algorithm used to create the signature

∙ Signature – a digital signature of the public key created by CA (2.2.4)

2.2.2 Certificate Revocation List

Certificate revocation list (CRL) [1, p. 54–70] is a list of digital certificates that have been
revoked by the issuing CA (2.2.4) prior to their claimed ‘Not After’ date. A certificate on
this list should no longer be trusted. The certificate is the most commonly revoked on the
owner request. Revocation is done by adding the serial number of the certificate to the
CRL list.

There are two states of revocation defined in RFC 32804: Revoked – the certificate is
irrevocably revoked and Hold – the certificate is temporarily revoked. A revocation request
contains a reason for revocation according to RFC 52805.

A revocation restricts possible abuse of certificate and reason for this action are mainly:
a change of information in the certificate, private key theft or password disclosure. Re-
stricted certificate’s validity protects against overloading CRL by many requests (a certifi-
cate past ‘Not After’ is not valid).

2.2.3 Online Certificate Status Protocol

Online Certificate Status Protocol [19] (OCSP) is an internet protocol used for gathering
a list of revoked X.509 digital certificates. This protocol was created as an alternative to
CRL in order to eliminate some of its specific problems. OCSP is based on HTTP and
it is encoded in ASN.1. The server providing OCSP service is called OCSP responder.
The responder is commonly maintained by CA (2.2.4) which issued the certificate. The
main advantage over CRL is smaller requirements on bandwidth because response usually
contains less information.

OCSP Stapling

OCSP stapling [13] is known as the TLS Certificate Status Request extension. OCSP
stapling is a method for quickly and safely determining whether the certificate is valid or
not. It allows a web server to provide information on the validity of its own certificates by
piggybacking validity status to the TLS handshake (2.1.3).

2.2.4 Certificate Authority

A certificate authority or a certification authority [17, p. 64] (CA) is an entity which issues
digital certificates (electronically signed public cryptography keys) and ensures the truthful-
ness of the information provided in the certificate. A CA could issue multiple certificates.
The list of certificates, from the root certificate to the end-user certificate, represents a
certificate chain. There are three types of certificates within the certificate chain. The
first one and the most important is the root certificate (described further) which is the
top-most certificates of a tree. The next one is the intermediate certificate which inherits
the trustworthiness of the root certificate. Intermediate certificates have the ‘Certificate
basic constraints’ field set to ‘CA’. And the last one is the end-user certificate which could

4Revocation states – https://tools.ietf.org/html/rfc3280
5Revocation reason – https://tools.ietf.org/html/rfc5280 (page 69)

8

https://tools.ietf.org/html/rfc3280
https://tools.ietf.org/html/rfc5280

be any other certificate. Figure 2.2 shows all three types of a certificate with appropriate
connections between them. Every Root certificate, as well as every Intermediate certificate,
could have more children certificates.

Root CA's name
self-sign sign

Root CA's public key

Root CA's signature
Owner's (CA's) name

sign
Owner's public key

reference
Issuer's (root CA's) name

Issuer's signature
Owner's name

Owner's public key
reference

Issuer's (CA's) name

Issuer's signature

Root Certificate

Indermediate
Certificate

End-user Certificate

self-sign signself-sign

reference

sign

sign

reference

reference

sign

reference

Figure 2.2: Example of the certificate chain

Based on the principle of transferred trust we could trust the information contained
in digital certificate assuming we trust its CA. In other words, someone who trusts the
root CA implicitly trusts all the intermediate CAs, and then by extension, all the client
certificates issued by those intermediate CAs. One of the common use of CA is to sign
certificates used in HTTPS (2.1.2), called end-user certificates. A CA is usually a company
that charges customers to issue certificates for them although some free CA exists (e.g.
Let’s Encrypt). CAs are responsible for maintaining up-to-date revocation information
(CRL 2.2.2/OCSP 2.2.3) about certificates they have issued. In the SSL system, anyone
could generate a signing key and sign a new certificate with that signature.

Root Certificate

A root certificate is a public key certificate that has to be issued by a trusted CA. A trusted
CA is an entity that has been entitled to verify that someone is effectively who claims to
be. Root certificates are self-signed (2.2.5) and are on the top of the certificate chain. A
root certificate is usually made trustworthy by some mechanism other than by signing. For
example, operating systems and web browsers ship with a set of trusted root CAs.

2.2.5 Self-signed Certificate

A self-signed certificate [17, p. 255] is a certificate with a subject that matches an issuer and
a signature that could be verified by its own public key. This type of certificate is used for
testing (we trust the counterparty, we do not have to validate its identity) or for creating
own CA (2.2.4). These certificates are not trusted by other applications and operating
systems which could lead to authentications errors.

9

2.2.6 SSL Certificate Validation Level

A validation level determines the method adopted by the Certificate Authority (2.2.4) to
confirm the identity of the certificate applicant. A certificate provider could issue three
types of certificates as follows.

Domain Validated

A Domain Validated SSL Certificate (DV certificate) only validates the domain (specified
in ‘Common Name’ described in section 2.2.1) and eventually its subdomains (specified in
‘Subject Alternative Name’ described in section 2.2.8) by proving some control over a DNS
domain.

Organisation Validated

An Organisation Validated SSL Certificate (OV certificate) validates the domain ownership,
plus the organisation information included in the certificate such a name, country, state and
city.

Extended Validation

An Extended Validation SSL Certificate (EV certificate) validates the domain ownership,
the organisation information, plus the legal existence of the organisation including manual
verification by a human. This certificate is generally identified by a green address bar in
the internet browser containing the company name.

2.2.7 Server Name Indication

A big limitation of TLS (2.1.3) is that each certificate requires its own IP address which
means that is not possible for multiple domains with independent certificates to share the
same IP address. The solution is Server Name Indication [4] [17, p. 57–58] (SNI) which lets
the client specify the remote server name. SNI is an extension field of an SSL certificate
by which the client indicates to the server which hostname is attempting to connect to.
Using this field server could select the appropriate cipher key for indicated VirtualHost.
The problem of SNI is that this field is not encrypted, so an eavesdropper could see which
site is being requested.

2.2.8 Subject Alternative Name

A Subject Alternative Name [17, p. 69] (SAN) is an extension field of an SSL certificate
which allows securing more domain names by one SSL certificate. This field is practically
a list of domain names beyond domain mentioned in a Common Name field (2.2.1). The
certificate using this extension field is called a Multi-Domain Certificate or term coined by
Microsoft the Unified Communication Certificate (UCC). If the certificate contains a SAN
extension field many devices do not take into account a CN field. Skip a CN field and
search only in SAN field – the result is that the domain mentioned in a CN field has to
be also listed in the SAN’s domain list. A certificate with a SAN field could secure more
VirtualHosts sharing one IP address. Thanks to the SAN it is not necessary to assign the
public IP address to each domain. A SAN is also very useful as a fix to www vs. no-
www problem. DV (2.2.6) SAN certificates only support subdomains of the base domain

10

in Common Name whereas OV SAN certificates allow include any Fully Qualified Domain
Name6 (FQDN).

2.3 Proxy Server
In computer networks, a proxy server is a server that acts as an intermediary between
the client and the target server. The proxy server translates client requests and forwards
them to the target server while towards the server acts as the client. The server sends
back a response and the proxy server forwards it to the client. The proxy server could be
specialised hardware or software running on a common computer.

Proxy server Server

Client 1

Client 2

Client 3

100.0.0.10

150.0.0.15

200.0.0.20

2.3.4.5

Figure 2.3: Schema of the network with the Proxy server between Clients and the Server

In this thesis are considered only proxies in a local computer network – further called
local proxy. A local proxy separates a local computer network (a.k.a. intranet) from the
internet. Local proxies could stand in the network as the security wall (similar to a firewall
[20]) and restrict clients to connect to some servers or block using some protocols. Another
benefit of using proxies in an intranet is hiding clients behind the proxy as well as NAT [8]
does. Moreover, the proxy could hide the clients’ geographical location, block cookies, etc.

There are three levels of proxies according to their anonymity:

∙ Highly anonymous proxy (level 1) – the server could not detect whether the client
is using the proxy

∙ Anonymous proxy (level 2) – the server knows the client is using a proxy but cannot
detect the client’s real IP address

∙ Transparent proxy (level 3) – the server knows that the client is using the proxy and
could also detect the client’s real IP address. Transparent proxies are an unobtrusive
way to add features and functionality to clients’ browsing. Transparent proxies are
considered transparent because the client is not aware of them. A transparent proxy
allows implementing of a proxy without configuration of clients’ devices.

6FQDN – https://tools.ietf.org/html/rfc1035

11

https://tools.ietf.org/html/rfc1035

The proxy server could be located on the client computer or between the client and the
target server. There are many different proxy types like:

∙ gateway or tunnelling proxy – does not modify the response body

∙ forward proxy – internet oriented, allows hide of the client’s IP address

∙ reverse proxy – usually internet oriented, used to protect access to the server in private
network, could do load balancing, authentication, ciphering, caching and more

Individual proxies are described further in this chapter.

2.3.1 HTTP Proxy

An HTTP proxy is specially made for HTTP (2.1.1) connections but could be used for
other protocols as well. A client’s browser sends an HTTP request to the proxy. The
proxy forwards the actual request to the server. The server only sees the proxy as the
submitter and answers the proxy as if responds to the client. The proxy receives the HTTP
response and forwards it back to the client. This process is transparent and very close to
a direct connection to the server. HTTP proxy could also forward secured communication
but could neither view nor manipulate the content. The proxy then acts as a facilitator –
blindly forwards data in both directions.

As the proxy could see the content of the message, it could change or add some data for
various purposes. The proxy could add some headers identifying the client using a proxy
like revealing the client’s real IP address. As could be seen in Figure 2.3 there are three
parties – there is not a direct connection between the client and the server. Both parties
just communicate with the proxy between them. The client often trusts the proxy to be
secure and not to disclose his identity.

2.3.2 SSL Proxy

It is possible to use SSL technology (2.1.3) between the client and the proxy server and
then also use SSL between the proxy server and the server. In this case, the encryption
and decryption occur twice, once on each ‘hop’. It is possible to use the SSL proxy in the
way the client connects unreliable to the proxy and then the proxy connects to the server
using SSL encryption. The SSL proxy controls an HTTPS and other SSL traffic. The SSL
proxy could represent the functionality of HSTS (2.4.1) so it rejects to connect by unreliable
protocol (HTTP) to the server if it knows that the server is secured. The SSL proxy could
have some list of secured domains which are already secured or at least the administrator
wants clients to connect to them securely. In most applications, the proxy server acts as
an intermediate CA (2.2.4). It is important to ensure that every device which connects to
the proxy has imported proxy’s certificate to the list of trusted CAs as the intermediate
certificate may not be trusted.

2.3.3 Socks Proxy

A socks proxy is a versatile forward proxy but it is not as common as the HTTP proxy
(2.3.1). That means it could work with various network protocol and could operate on any
port. Most of socks proxies are highly anonymous due to the fact they are not as smart
as HTTP proxy so they cannot interpret the information that is being sent and received.

12

There are two versions of socks proxies, version 4 (Socks4) which allows working with TCP
[15] protocols only, whereas version 5 (Socks5) provides extra support for IPv6, UDP [14],
DNS lookup7 and more choices for authentication.

2.4 Attack and Protection
Pervasive monitoring [6] is according to the IETF community an attack on the privacy of
Internet users and organisations. In other words, any unsolicited monitoring is an invasion
of privacy. Exist many attacks of various types and capabilities that make monitoring
feasible. There is an effort to prevent monitoring by introducing new protections and
policies, some of them are described in this section.

2.4.1 HTTP Strict Transport Security

HTTP Strict Transport Security [10] [17, p. 295–303] (HSTS) is a web security policy
mechanism that helps to protect communication between a web client and a web server
against protocol downgrade attacks and simplifies protection against connection abduction
(a.k.a. cookie hijacking). HSTS allows the web server to enforce using encrypted HTTPS
(2.1.2) connection and exclude data transfer by the untrustworthy HTTP 3protocol. Web
server conveys web client support of HSTS by adding HTTP header ‘Strict-Transport-
Security’ which defines time range during web client should approach to web server only
via a secured connection. When a web application provides HSTS Policy to a User-agent,
that agent behaves as follows. Automatically transfer all untrustworthy links which point
to the web application to be trusted, before it connects to the web server. If there is a
problem to create a trusted connection, an error message appears and the client will be
restricted to enter the web application.

2.4.2 HTTP Public Key Pinning

HTTP Public Key Pinning [5] [17, p. 307–316] (HPKP) is protection against interchange
certification authorities and server keys. In many ways, it is similar to HSTS (2.4.1) but
HPKP is more specific. An HPKP enumerates a list of specific certificates (use their
fingerprints) which could be used on the web server. A web client should not accept
another certificate. A web server sends ‘Public-Key-Pins’ header which by its value define
maximum time from last connection during which should a web client check pinned keys
against received and alternative fingerprints of keys which should be the only ones trusted
for the future connection for the domain name (order of fingerprints does not matter). An
HPKP is supported in Chrome, Firefox, Opera, but not in Internet Explorer. Chrome
deprecated this protection with Chrome 67 release.

2.4.3 Man-in-the-Middle Attack

A Man-in-the-Middle attack [17, p. 18–22] (MitM) allows the attacker to eavesdrop on the
communication between two targets, e.g., the client and the server. The basic idea is to
pretend to be the server for the client and pretend to be the client for the server. The
attacker tries to mask his presence and making it as if there is no other party involved
in the communication. The goal of this attack is to read, insert or modify data within a

7DNS lookup – https://tools.ietf.org/html/rfc1034

13

https://tools.ietf.org/html/rfc1034

communication. Typical MitM attack has to go through two phases, the first is to make a
redirect of the communication and the second is to decrypt and re-encrypt the data. There
are several types of redirecting methods like IP spoofing, DNS spoofing and others. In
the case of decryption, there are also many possible techniques like SSL Hijacking, SSL
Stripping (described further), various SSL vulnerabilities, etc.

MitM connection

Attacker

Server
Victim Original connection

Figure 2.4: Schema of a Man-in-the-Middle attack

Critical for this scenario is that the client (the victim) is not aware of the attacker
intercepting the communication. Schema of a MitM attack could be seen in Figure 2.4
where the victim wants to connect to the server (or was connected) and after a successful
attack is connected to the server via the attacker’s machine and the attacker could intercept
a communication. The tricky part for a successful MitM attack on a secured connection is
that a CA (2.2.4) system is designed to prevent exactly this type of attack, by allowing a
trusted third party to cryptographically sign a server’s certificate to verify that it is legit. In
the case of bi-directional authentication, it is almost impossible to perform a MitM attack
because you have to import generated CA certificate to both the client and the server.

There are several types of attacks. One of them is a method called ARP spoofing.
The attacker is from the network point of view a client connected to this network (does
not matter if wired or wireless). After connection, the attacker could use mentioned ARP
spoofing attack, which in case of a successful attack deceive the victim that the attacker is
a new gateway and every packet which goes outside of the network is sent to the attacker.
In that state, the attacker could see all the victim’s communication. Fortunately, these
days we have a secure connection which is established directly between two communicating
endpoints and thus the attacker could see only encrypted data.

SSL Stripping

SSL stripping [17, p. 125–126] (or HTTPS stripping) is a type of MitM attack. The attack
is used to circumvent the security enforced by SSL certificates on HTTPS website. It is a
technique that downgrades a connection from secure HTTPS to insecure HTTP. Against
this circumvention exists already mentioned technique HSTS. HTTPS stripping attacks rely
on the fact that most users begin their browsing on an insecure site (HTTP) and then are
redirected to a secure one (HTTPS).

14

Chapter 3

Penetration Tools

This chapter contains a few tools which are capable of Man-in-the-Middle attack. The aim
of the chapter is to select the tool which is suitable fro the thesis. It means that the tool has
to be performant and has small system requirements. In the chapter, there are compared
tools’ features and benchmarking test were performed to be able to select the tool which
will be subsequently integrated into netc command-line interface.

Using a tool as an HTTP proxy is the simplest and the most reliable way to intercept
traffic. The client connects directly to the proxy and makes a standard HTTP request,
then the proxy connects to the server and forwards the request on.

With respect to the current CA system, it is very hard to attempt a successful MitM
attack these days. An application providing a successful MitM attack has to become a
trusted CA. As the self-signed certificate is not in the client’s list of trusted CAs. The
application has to ensure proper manual registration of the certificate to the list. The best
idea is a tool that generates interception certificates on the fly1.

Some applications (including web browsers) employ HPKP to prevent MitM attacks.
It means that a generated certificate will not be accepted by these applications. For an
attacker, it is recommended to let pass through such traffic instead of interrupting the
connection. There is an option for applications to log TLS Master Secrets so that external
applications could decrypt TLS. One of them is, for example, Wireshark2 in version 1.6 and
higher.

3.1 Mitmproxy
Mitmproxy [2] is a free and open source HTTPS proxy. The development started at the
beginning of 2010 and the last released version is 4.0 as of January 2019. There are over
250 contributors led by seven major developers. This tool is coded in Python and has very
good documentation.

Mitmproxy has many features, therefore, it is complex. It could be used as a transparent
proxy but there are options to use it as an HTTP or SOCKS proxy as well. Additionally,
there is a simple Python scripting interface.

The tool is divided into three smaller tools. The main tool is named Mitmproxy and
it is an interactive MitM proxy for HTTP and HTTPS with console interface which allows
pausing, inspecting, editing, replaying or dropping flows. Mitmproxy keeps all flows in

1‘on the fly’ – being changed while the process that the change affects is ongoing
2Wireshark – https://www.wireshark.org/

15

https://www.wireshark.org/

memory. The second tool is the command-line version of Mitmproxy called Mitmdump.
Mitmdump provides tcpdump-like functionality to let user view, record and programmati-
cally transform HTTP traffic. The last tool is a web-based user interface named Mitmweb
which allows interactive examination and modification of HTTP traffic. Mitmweb, as well
as Mitmproxy, keeps all flows in memory.

Mitmproxy has a feature to replay intercepted communication. Communication could
be saved to a file for later use. There is a way to modify a communication by a script and
eventually replay it. Mitmproxy also starts a web server with a special domain ‘mitm.it’
where a client could download a CA certificate (2.2.4) with setup instructions for a specific
device which a client is using. If a client does not import the CA certificate he will see
an SSL certificate warning every time he visits a new SSL domain. The following example
shows mitmdump running in transparent mode:

mitmdump -v -p 10443 --mode transparent --showhost --set
→˓ save_stream_file="connection.log"

Meaning of parameters used in the command is as follows:

-v more verbose output
-p number listen port
--mode transparent mode of operation
--showhost string shows host header instead of IP address
--set save_stream_file=path connection log file

3.2 SSLsplit
SSLsplit [18] is an open source tool for MitM attacks against TLS encrypted network
connections. The development started in 2009 and the actual version is 0.5.4 as of October
2018. There are over 20 contributors led by two major developers. SSLsplit depends on
the OpenSSL3 library. SSLsplit is written in ANSI C and works as a transparent proxy.
It cannot act as an HTTP or SOCKS proxies. The tool terminates a TLS connection and
initiates a new TLS connection to the original server while logging all data transmitted.

SSLsplit supports plain TCP, TLS, HTTP and HTTPS connections over both IPv4 and
IPv6 addresses. SSLsplit also supports SNI and dynamic upgrade from plain TCP to TLS,
called AutoSSL. Depending on the version of OpenSSL, SSLsplit supports SSL 3.0, TLS 1.0,
TLS 1.1 and TLS 1.2. TLS 1.3 is not yet supported as developers of SSLsplit extended the
tool by an extension capable of mirroring traffic in October 2019.

SSLsplit generates and signs forged certificates on the fly, based on the original server
certificate. It is also possible to use existing certificates of which the private key is available.
SSLsplit implements several features which help to stay undetected: deny OCSP requests
and modify headers to prevent switching to HTTP/2 or WebSockets. For HTTP and
HTTPS connections, SSLsplit mangles headers to avoid server-instructed HSTS and prevent
HPKP response headers. Intercepted connections could be saved into log files which include
‘connection log’ and ‘content log’ files as well as Pcap files4 and mirroring traffic to a network

3OpenSSL – https://www.openssl.org/
4Pcap file – https://en.wikipedia.org/wiki/Pcap

16

https://www.openssl.org/
https://en.wikipedia.org/wiki/Pcap

interface. Additionally, certificates, Master Secrets and local process information could be
logged as well. The following example shows SSLsplit running with all possible log files and
HTTPS proxy:

sslsplit -Z -P -d -s NULL:RC4:AES128:-DHE -l connection.log -L
→˓ content.log -M master-key.log -c ca.pem https 0.0.0.0 10443

Used parameters in the command:

-Z disable TLS compression on all connections
-P let pass-through TLS connection if it cannot be split
-d run in daemon mode (in the background)
-s string use given cipher suite
-l path log one-line summary per connection to a file
-L path log full data to a file
-M path log Master Secrets to a file
-c path CA certificate file

Master Secrets (2.1.3) log file is in SSLKEYLOGFILE format5. CA certificate signs
forged certificates. Proxy defines which type of connection will be intercepted: "https",
on which address SSLsplit will listen: "0.0.0.0" (all possible local addresses) and what
port will have assigned: "10443".

3.3 Sslsniff
Sslsniff [11] is a tool to perform a MitM attack which could only intercept HTTP and
HTTPS connections. The development was done from 2008 to 2011 and since that time
there were only a few forks but no further extension has been done. There was only one
major developer. Sslsniff could run in two distinguished modes. In authority mode, Sslsniff
acts as if it is a CA and dynamically generates certificates on the fly for whatever server.
In targeted mode, Sslsniff is given a directory full of certificates and is used for targeted
MitM attack against domains those certificates are in the directory.

The main goal of this tool was to demonstrate and exploit the vulnerability to a ‘Basic-
Constraints’ certificate’s extension and later for demonstration Null-prefix attack6. Sslsniff
could be configured to deny OCSP requests from clients in order to stay undetected. More-
over, Sslsniff implements several attacks on some older versions of Firefox auto-updates.
Parameters used in the following example of use are described further. The following ex-
ample shows Sslsniff running in authority mode:

During the configuration and compilation, there were problems which had to be fixed
by changing linked libraries and rewriting part of the source code. From a perspective,
this tool is not appropriate for further development as it has no community created and its
development stagnates.

sslsniff -a -s 10443 -w content.log -c ca.pem

5SSL key log – https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
6Null-prefix attack – https://moxie.org/papers/null-prefix-attacks.pdf

17

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://moxie.org/papers/null-prefix-attacks.pdf

The parameters used in the command are as follows:

-a authority mode and generation certificates on the fly
-s number listen port
-w path content log file
-c path CA certificate file

3.4 Comparison of Tools’ Features
The main advantage of SSLsplit is the capability of mirroring intercepted traffic and cre-
ating Pcap file output. Mitmproxy is great for live analyses and optional modification or
replaying a communication and inserting new messages into traffic. While all tools support
IPv4, Sslsniff lags behind the others in support of IPv6. All relevant features are depicted
in Table 3.1. Logging Master Secrets is a way how to decrypt saved traffic in a Pcap
file. Whereas SSLsplit has a built-in feature to log Pcap files, Mitmproxy does not have
the feature and another application has to be used to save traffic to a Pcap file. HPKP
preventing, HSTS overcoming and OCSP blocking enhance the tool’s ability to successful
traffic interception. Mitmproxy’s feature to ignore explicit hosts is great when a connection
to a certain host should not be split nor intercepted. All compared tools have a feature to
log the content of the traffic going through. The table does not contain a complete list of
tools’ features but only features relevant to this thesis.

Mitmproxy SSLsplit Sslsniff
IPv4 X X X
IPv6 X X
CA certificate X X X
SSL stripping X X X
HSTS overcoming X X
HPKP preventing X X
OCSP blocking X X X
Ignore explicit hosts X
Mirror traffic X
Pcap output X
Master Secrets logging X X
Content logging X X X

Table 3.1: Comparison of provided features of individual tools

Sslsniff neither supports Master Secrets logging nor Pcap logging and regard the fact
that the development stagnates the tool is not the right candidate to be selected for further
development in this thesis. Both Mitmproxy and SSLsplit perform the same kind of MitM
(2.4.3) attack on TLS (2.1.3). Mitmproxy is more powerful and has more features than
SSLsplit, whereas SSLsplit has a more dedicated purpose, it is simpler and faster. SSLsplit
has being developed in ANSI C which is a structured programming language mainly used
for hardware related application development like Network Drivers or Operating Systems,
whereas Mitmproxy has been written and developed in Python which is a general-purpose

18

programming language mainly used for Machine Learning, Natural language processing,
etc. Python is robust and slower than ANSI C – in the target application is essential
to provide fast operations to handle traffic on high-speed links. Regard to tools’ features
SSLsplit seems to be the best candidate for the development of the extension in this thesis.

3.5 Tools’ Benchmarking
Benchmarking is used to measure the performance of a tool and then compare to others.
Various benchmarking metrics exist but for network applications the most interesting are,
e.g., a number of transactions per second, memory usage and CPU load during a test.

3.5.1 Nginx

Nginx7 is an HTTP and reverse proxy server. It is free and open-source software. In this
testing, Nginx is used solely as an HTTP server providing files of various sizes. Nginx
is focused on high performance and small memory requirements. The main goal is fast
delivery of static pages and to distributing the load to other servers according to a priority.
Nginx has configurable cache so that recurrent requests could be served very fast. There is
an option to set up a limit of connections per IP address to mitigate Denial of Service [9]
(DoS) attacks.

3.5.2 Wrk

Wrk8 is an HTTP benchmarking tool. A capability of Wrk is to generate significant load
while running on a single multi-core CPU. Multiple connections are handled by a single
thread. Wrk distributes the total number of connections evenly among the threads. It is
useful for testing a number of connections per time period – requests per second (RPS). The
tool could be also used for testing a secured connections’ RPS, a number of transactions
per second TPS or the server throughput and latency. Wrk prints statistics about the
measured minimum, maximum, average and median values at the end of its run. Wrk could
be extended by LuaJIT script, using the extension there is an option to script benchmark
tests. Wrk has the following parameters which are used in tests:

-c number number of connections to create
-d number duration of the traffic generation
-t number number of threads used

3.5.3 Sar

Sar9 (stands for System Activity Report) is a command-line utility to write selected cu-
mulative activity counters in the operating system. The utility could report data on the
fly every second. In the following tests sar is used with only one parameter, namely "1"
stands for grabbing machines statistics every second. Sar is used in these tests to capture
CPU load on the machine where one of the tools is running.

7Nginx – https://www.nginx.com/
8Wrk – https://github.com/wg/wrk
9sar – https://linux.die.net/man/1/sar

19

https://www.nginx.com/
https://github.com/wg/wrk
https://linux.die.net/man/1/sar

3.5.4 Testing

Tests of tools described in this chapter are necessary to be able to select the right tool for
this thesis. The right tool has to be performant and its requirement on CPU has to be
small. To achieve relevant results it is necessary to disable Nginx’s caching procedure and
Nginx’s DoS attacks mitigation. During the tests were not used all provided features of
Wrk (3.5.2) because tested was a performance of individual tools, not server’s. Testing was
inspired by ‘NGINX Plus Sizing Guide’10 for performance tests of Nginx Reverse Proxy
server.

In order to properly test tools described in this chapter, both ends have to be configured
well. One end machine has to be configured as a web server which response on HTTP
requests. The other end machine has to be configured as a client where the benchmarking
tool is present.

Topology

All tests were done using three separate machines connected together with 10 GE links.
As could be seen in Figure 3.1, there is a machine with a transparent proxy (2.3) in the
middle which is operated by one of the tools described in sections 3.1, 3.2 and 3.3. To
generate traffic from the client machine, Wrk (3.5.2) was used. All traffic was directed to
the transparent proxy. A tool operating the transparent proxy intercepted and forwarded
the traffic to the server.

Client ServerTransparent proxy

192.168.1.3

192.168.1.1

192.168.2.2

192.168.2.1

Figure 3.1: Topology used for tools’ benchmark testing

Environment

Testing was performed on VMware virtual machines. All machines had the same hardware
parameters, namely CPU Intel Xeon E5-2660 @ 2.20 GHz, 4 GB RAM and a standard
HDD. Installed OS was NetXOS 7 with kernel Linux 3.10.0 and architecture x86-64. Con-
nections between machines were 10 GE.

Nginx – Server Configuration

Properly configured web server is needed in order to have meaningful tests results. Ng-
inx 1.15.8 was installed on the server. The server is set to listen on two TCP ports. The
first port is 80 (HTTP) and the second is 443 (HTTPS). Next, it is necessary to set up
paths to the private key and certificate. There are two more necessary pieces of information
which have to be set in order to HTTPS work properly. The first one is a list of available

10https://www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/

20

https://www.nginx.com/blog/nginx-plus-sizing-guide-how-we-tested/

SSL protocols and the second one is a set of SSL ciphers. Every mentioned setting has
been configured in file ‘/etc/nginx/conf.d/default.conf’. Compression is also disabled on
the server.

To assure the intended traffic will pass through, the following command has been exe-
cuted two times, each time with a different value of a variable <port>. The variable values
are the same as TCP ports which were set in the Nginx configuration file, namely 80 and
443.

iptables -A INPUT -p tcp --dport <port> -m conntrack --ctstate
→˓ NEW,ESTABLISHED -j ACCEPT

Performance Metrics

The following metrics were measured:

∙ TLS transactions per second (TPS) – measures the tool’s ability to process new
TLS connections (file sent as a response has zero size)

∙ Speed of re-encryption – measures the tool’s ability to fast re-encrypt traffic,
evaluated was one large file of size 1 GB sent as a response

Running Tests

There had to be some files to test on the server. To create a file of one-kilobyte size filled
with all zeros the following command was used.

dd if=/dev/zero of=1kb.bin bs=1KB count=1

A private key has been created on the server together with a public key which becomes
a part of the server certificate. Generating these keys and certificate was done by following
commands. The first command generates a private 2048 bit RSA key. The second command
ensures the creation of a public key and a certificate with serial number 666 and expiration
one year.

openssl genrsa -out localhost-nginx.key 2048
openssl req -new -x509 -days 365 -key localhost-nginx.key -out
→˓ localhost-nginx.crt -set_serial 666

Wrk was used to generate all traffic from the client’s machine. To measure requests per
second (RPS) the following script was run:

./wrk -t 1 -c 50 -d 30s http://192.168.2.2/1kb.bin

To measure TLS transactions per second (TPS) the following script was run:

./wrk -t 1 -c 50 -d 30s -H ’Connection: close’
→˓ https://192.168.2.2/0kb.bin

To measure CPU load and how fast a tool could re-encrypt traffic (measured time
specifies how fast was the file downloaded) the following script was run:

21

curl -k http://192.168.2.2/1gb.bin > /dev/nul

Results

Figure 3.2 depicts the relationship between CPU load and time during the sixty seconds long
TPS test. From the figure could be read that SSLsplit has slightly lesser CPU requirements
than Mitmproxy, whereas the third tool Sslsniff crashed every time during this test with
Segmentation fault error. This test runs three times and results were averaged. Results in
Table 3.2 are from the same TPS test case as is Figure 3.2.

Figure 3.2: TPS graph of relation between CPU load and time

Mitmproxy SSLsplit
Latency [ms] 960 45.6
Requests/s [-] 31.6 373
Transfer/s [kB] 7.5 88.7

Table 3.2: Average latency, RPS and transfer per second while measuring TPS

Figure 3.3 depicts the relationship between a CPU load and time during re-encryption
test. A scale of time is in percent in order to be able to directly compare the progress
of the download in different tools. On the lines, there could be seen points. Each point
shows a sample captured one second after a preceding sample and thus in the figure could
be seen only ten points for SSLsplit and eighteen points for Mitmproxy (corresponding to
Table 3.3). The figure shows that the progress of the CPU load during downloading in
SSLsplit is relatively even for the whole time, whereas in the case of sslsniff it is straight
in the first half and it has a small peak in the second half. Sslsniff has for the whole time
a bit higher CPU load but in comparison to Mitmproxy in download time (according to
Table 3.3) sslsniff is better. Table 3.3 shows the times required to download the whole
1 GB file using different tools. The best results have SSLsplit using which the download
was almost two times quicker than by using Mitmproxy.

22

Figure 3.3: Re-encryption graph of relation between CPU load and time (rescaled)

Mitmproxy SSLsplit Sslsniff
Download time [s] 18 10 14

Table 3.3: Time of downloading a 1 GB file

3.6 Tools’ Evaluation
All relevant features and tests were taken into account to evaluate the most suitable candi-
date to further implementation of integration (described in Chapter 4) into netc. Regard
to available features mentioned in section 3.4 Mitmproxy and SSLsplit are advisable tools.
Sslsniff due to its restricted amount of features, no support for IPv6 and stagnant devel-
opment is not suitable at all. The thesis is aimed to HTTPS traffic so the feature SSL
stripping is essential to be part of the selected tool. In this case, all tools have the feature
to split SSL traffic so according to this criterion, no decision could be made.

SSLsplit has the feature which mirror traffic to another machine in the network. Instead
of mirroring, or simultaneously with it, SSLsplit could log traffic to a Pcap file and log each
connection per one line into a file. This feature is great for automatically analysing the file
for further utilisation of the data.

Mitmproxy has the ability to modify, remove and create traffic and is more user-friendly
thanks to its web-based interface. The fact that Python is interpreted language is great
for some applications but not for applications which require high performance and high
throughput like network applications usually do.

From the performed tools’ benchmarking could be deduced that SSLsplit is a great
candidate to be selected. From Table 3.2 and Figure 3.2, there is clearly visible dominance
of SSLsplit in both lower CPU load, number of TPS and latency. Table 3.3 shows a huge
difference in the speed of re-encryption on behalf of SSLsplit.

The results of the section show that the selected tool is SSLsplit which has all needed
and advisable features. SSLsplit is written in fast, compiled ANSI C and its development
is still in progress.

23

Chapter 4

Implementation

This chapter is about the implementation of SSLsplit extension and its integration to netc.
Several files had to be created for the integration. The integration was done in order to
SSLsplit could be configurable via united netc interface which is almost exclusively used
on the NETX platform instead of the standard command-line interface. Firstly the NETX
platform and its netc command line interface are described. Then follows a description of
a describing YAML file and description of data structure DataTree. A service file with its
all settings followed by configuration and statistics scripts written in Perl1 programming
language with a short description of a configuration file are all described in this chapter. In
the next section of this chapter is described the creation of the CA certificate. The chapter
is finished by necessary Linux forwarding and redirecting.

4.1 NETX
NETX Smart Router2 series is an open-source routing platform. NETX was developed in
cooperation with Brno University of Technology to provide high-performance routing with
the capability of forwarding tens of gigabits per second. A machine running NETX could be
managed via RESTful API or through command-line interface named netc. The operating
system is based on GNU/Linux.

4.1.1 Netc

Netc3 is a command line interface for NETX (4.1) products. Netc runs as a configuration
shell, similarly to Cisco, Juniper or Mikrotik. Netc allows configuring a Linux-based sys-
tem in the same way as network devices. Netc is written in script language Perl, also is
modular and thus easily extensible and uses two types of configurations. One of them is
running configuration which is actually loaded and used by netc and the other is startup
configuration which is saved in a file and used upon a boot or a restart.

Various configuration contexts are used for some commands within netc. The current
running or startup configuration could be displayed using the ‘show’ command. The com-
mand ‘show this’ could be used within any configuration context to show only the relevant
part of the running configuration. To display a list of available commands or to provide

1Perl – https://www.perl.org/
2NETX – https://netx.as/
3Netc documentation – http://docs.netx.as/

24

https://www.perl.org/
https://netx.as/
http://docs.netx.as/

help to partially entered command a question mark ‘?’ could be used. To complete itemised
command ‘TAB’ key could be used. Examples are present later in this chapter.

4.2 Configuration of Sslapp
Sslapp is a netc context which contains all possible configurations of SSLsplit. This section
contains several possible configurations of sslapp. In the following code is shown an example
configuration of sslapp in netc:

netx# sslapp
netx(sslapp)# ca-cert /home/user/sslapp/ca.pem
netx(sslapp)# cipher ECDH-ECDSA-RC4-SHA
netx(sslapp)# log connection /var/log/sslapp/connection.log
netx(sslapp)# mirror eth0 192.168.100.10
netx(sslapp)# proxy
netx(sslapp-proxy)# https ipv4 0.0.0.0 10443
netx(sslapp)# sslapp enable

SSLsplit’s mirroring feature has to know on which interface will be the traffic mirrored.
SSLsplit sends the mirrored packets with their original IP addresses. In the mirror con-
figuration, there has to be also an IP address in order to SSLsplit could find destinations’
link-local address where the mirrored packets will be sent.

For example, the second row of the code above cause calling ‘xcfg-netc-sslapp set-cacert
/home/user/sslapp/ca.pem’. The first part of the command defines a script file which will
process the rest of the command (parameters). The rest of the command contains action
and its parameter – in this case, a path to a CA certificate file.

A request to an HTTPS server usually targets port 443, but the code above causes
SSLsplit to listen on port 10443. Traffic redirection (described later in this chapter) is
required to redirect such request to the port where SSLsplit is listening.

4.3 Forward and Redirect
In order to be ensured a proper function of the transparent proxy (2.3) on the machine
where SSLsplit (3.2) runs, there have to be correctly set forwarding and redirection. Linux
offers many tools for taking care of redirection. In this case, iptables4 was chosen. Iptables
is a utility that allows a root user to configure a table for IPv4 provided by the Linux kernel
firewall and the chains and rules it stores.

The first thing that has to be done is to enable both IPv4 and IPv6 forwarding. The first
line of the following commands executed under root user cause enabling of IPv4 packets
forwarding. The second one is for IPv6. If the "sysctl -w" part is removed and the
remainders of the commands are added to the end of the file “/etc/sysctl.conf”, then that
new configuration will survive a reboot.

sysctl -w net.ipv4.ip_forward=1
sysctl -w net.ipv6.conf.all.forwarding=1

4iptables – https://www.netfilter.org/projects/iptables/index.html

25

https://www.netfilter.org/projects/iptables/index.html

Setting up the routing directly via iptables is in case of using netc (4.1.1) not necessary.
By using netc commands which are very similar to iptables commands is routing setup even
easier with context switching and autocomplete netc options. In the netc is sufficient to
write the following command and all traffic from <addr>/<mask> network targeting to port
number 443 and using TCP protocol will be forwarded to port 10443. In this case, there
is only listed a command for HTTPS (2.1.2) traffic, command for HTTP (2.1.1) would be
analogical with port number 80 and would be forwarded, for example, to port 1008. In the
command are used variables closed in ‘angle brackets’ and in Table 4.1, there are listed all
possible values of the variables which could be used in the command.

<IP-proto> firewall table nat chain PREROUTING action REDIRECT src
→˓ <addr>/<mask> proto tcp dport 443 in <interface> to-port 10443

IP-proto addr mask interface
‘ipv4’ IPv4 address IPv4 mask

machines’ interface
‘ipv6’ IPv6 address IPv6 prefix-length

Table 4.1: Possible values of variables in netc firewall command

4.4 YAML – Descriptive File
YAML5 is a human-readable data serialisation language. Created file within this thesis is
named according to netc guidance as ‘sslapp.yml’ because extends netc with commands for
configuration context ‘sslapp’. This file is within ‘netc.d’ directory containing all YAML
descriptive files.

The YAML structure is simple but powerful. On the beginning of the file is a short
part of use cases. The breakdown is mostly self-explanatory and the whole file is divided
into individual sections. Each section contains element NODE which describes the actual
item in the configuration tree. Within NODE string there could be a parameterized part
which is defined in netc as interface, IPv4 or IPv6 address, string and other. Another
very useful element is DESCR serving as a describing text within the file to know what
the item is about and also is listed beside item name while a user let netc display a list of
available commands (a.k.a. autocomplete). The following example shows context switching
and printed help within netc:

netx# sslapp
netx(sslapp)# proxy
netx(sslapp-proxy)# https ?

ipv4 - set ipv4
ipv6 - set ipv6

Netc is able to switch the configuration context as described in section 4.1.1. For that
option, there are defined two elements. The first one is named SUBCONTEXT containing
only a boolean value which specifies whether the item has subcontext or not. The second
is PROMPT which defines the exact form of how the CLI prompt will look like. Not so

5YAML – https://yaml.org/

26

https://yaml.org/

much important element is ORDER which indicates in what order will be the item listed
within ‘show config’ extract. The following example shows a part of the descriptive file,
more accurately the proxy item containing subcontext:

NODE: ’sslapp/proxy’
DESCR: ’configure Proxy specification’
PROMPT: ’%h(sslapp-proxy)’
SUBCONTEXT: ’1’

Get and set elements are more interesting in terms of functionality. All the following
elements are optional. The SET contains a command or a script with optional parameters
which sets a certain item. The opposite of a previous element is an element named UNSET
which contains a command or a script with optional parameters but as the name suggests
it unsets the item. Other elements are used to get some information from the item. An
element GET gets the configured value of the item or in case of subcontext gets whether
the subcontext is already set or not. Very similar to GET is an element GETALL which
returns all possible values which could be set. Result of GETALL is listed while is inserted
question mark ‘?’ after the actual command. The element COND contains command or
script returning a boolean value which determines whether the item will be present in the
printed help. The possibility of using the script within elements is shown in the following
example where SET use two out of three variables as parameters and the leftover parameter
is a literal as well as all parameters in the GET element:

NODE: ’sslapp/proxy/https/ipv4/%IP4/%NUM’
SET: ’xcfg-netc-sslapp set-proxy-https %1 %2’
GET: ’xcfg-netc-sslapp get-proxy-https port’

An element SHOW is the last very common element within ‘sslapp’. SHOW is used for
showing actual configuration. The main difference between GET and SHOW is that the
first mentioned gets information from a configuration file and primary target of the extract
is running configuration, the later gets information from the DataTree.

NODE: ’sslapp/proxy/https/’
SHOW: ’xcfg-netc-sslapp show-proxy-https’

4.4.1 DataTree

DataTree is netc package which let the developer create tree hierarchies. The building
blocks of these structures are Node objects. The package allows logically divide the whole
application data into separated structures. For saving sslapp data, DataTree structure
called ‘sslapp’ is created. An example of using DataTree is shown below. A new node
named ‘sslapp’ is created. A string containing path is stored into the ‘cacert’ subnode,
then the existence of ‘cacert’ subnode is tested and if it exists a message containing a path
to CA certificate is printed.

my $DT = NetC::DataTree->new(’sslapp’);
$DT->Set(’cacert’, $path);
if ($DT->Exists(’cacert’)) {

27

printf "%s: %s\n", "cacert path", $DT->GetLast(’cacert’);
}

DataTree is also used in the statistics module which is described further in this chapter.
The package also provides methods for creating new nodes, getting a subtree, setting and
getting list values and other. Every node has no restriction on a number of children. Each
leaf node contains only two values, one of them is lastly set value and the other is previously
set value. Both values contain timestamp when were set.

4.5 Service File
The service file named ‘sslsplit.service’ is used for initiating SSLsplit process and is placed
in ‘systemd’ directory. Most Linux distributions use systemd6 as a system and service
manager and NETX is not an exception.

Network service is the service’s only dependency. SSLsplit service has to start after
the network is set (there is no suitable use of the tool without a network). A path to an
environmental file is defined in the service file. The file contains all parameters configured
by a user and necessary to start the tool. There is also defined a path to a PID file which
ensures only one instance of the application is running. If another SSLsplit application
would start via the service than existing PID file containing process ID would stop initiating
a new process.

PIDFile=/var/run/sslapp.pid

While SSLsplit application starts, the process forks and the parent exits. For that
reason, the service is a ‘forking’ type. Another property provides information to the service
manager about all successful exit codes of the application. Without that information, every
termination of SSLsplit via signal would look like the application failure. In the snippet
below, there is shown part of the service file containing successful exit codes.

SuccessExitStatus=1 SIGTERM SIGQUIT SIGHUP SIGINT

The command to run the SSLsplit application contains environmental variables defined
in the environmental file and some important parameters. Two necessary parameters to run
SSLsplit as a service are "-d" which runs the application as a daemon (in the background)
and a parameter "-p" with a path to the PID file. Another useful parameter is "-P" that
let pass through traffic which cannot be split and the last preset parameter is "-Z" that
disables SSL compression and therefore saves CPU time. The following command is a part
of the service file and is executed when the service starts:

/usr/bin/sslsplit -Z -P -d -p /var/run/sslapp.pid $CIPHER $CA_CERT
→˓ $OTHER $LOG $MIRROR $PROXY

6systemd – https://www.freedesktop.org/wiki/Software/systemd/

28

https://www.freedesktop.org/wiki/Software/systemd/

4.6 Configuration Script
Perl script file named ‘xcfg-netc-sslapp’ is placed in ‘bin’ directory and contains configu-
ration functions. Default values used during sslapp configuration in netc are saved in the
file. A substantial part of the script is formed by action commands. An action is sent to
the script as the first parameter and indicates which action will be performed. Actions are
divided into logically separated sections which are based on elements in the descriptive file.
There are sections starting with the string ‘set’, ‘unset’, ‘get’, ‘getall’ and ‘show’ which are
used for the action as the name suggests for each individual element. These sections are
described further in this section. There are also two special sections named ‘config’ and
‘start’, former one builds the configuration and exits, the other builds the configuration and
starts SSLsplit service. Default values saved in the configuration script are the following.

my $DEFAULT_CIPHER = ’NULL:RC4:AES128:-DHE’;
my $DEFAULT_PROXY = ’https 0.0.0.0 10443’;
my $DEFAULT_LOG_DIR = ’/var/log/sslapp’;
my $DEFAULT_LOG_CONNECTION = ’/var/log/sslapp/connection.log’;
my $DEFAULT_CACERT = ’/etc/netc/sslapp/ca.pem’;

The most of ‘set’ actions only save parameters to the DataTree. The action ‘set-cacert’
firstly verify if the parameter contains an absolute or relative path and save the absolute
path to the DataTree. The absolute path is created by concatenating default absolute path
(according to context) with a given relative path. The same principle is used while setting
log files. Setting a proxy type is a bit different. Within a proxy setting, there are two
parameters, IPv4 or IPv6 address and port number. Due to those specific parameters, a
validation has to be done. For check of IP address is used regular expressions for both IPv4
and IPv6 addresses. The port number is checked for positive numbers ending at 65535
because the value is stored in a 16-bit TCP field. All ‘unset’ actions only remove the value
from the DataTree. In the following snippet, there is a part of a function to set a log type
with a path. The snippet ensures enabling logging within sslapp if any other log was not
set.

if logging was never used - enable it
if (!$DT->Exists(’log’)) {

$DT->Set(’log’, 1);
}

All ‘get’ actions using the same function which reads data from the configuration file and
returns the right value. The function reads the configuration file and looks for a specified
environment variable.

Actions starting on ‘getall’ using system commands to get all possible values which could
be set within the element. The cipher element prints all possible Cipher suites7. Element
mirror prints all possible interfaces which could be chosen as an outgoing interface. Further,
there are commands to print all possible IPv4 addresses including address 0.0.0.0 which
stands for all possible addresses (SSLsplit receive traffic on the specified port regardless

7OpenSSL cipher suites – https://www.openssl.org/docs/man1.0.2/apps/ciphers.html

29

https://www.openssl.org/docs/man1.0.2/apps/ciphers.html

incoming interface) and all possible IPv6 addresses. The following system call returns all
used IPv4 addresses which are used as ‘getall’ result.

system("ip -o address show | awk ’{if (\$3 == \"inet\") print \$4}’ |
→˓ sed -e ’s;/[[:digit:]]\\{1,3\\}\$;;’");

Actions ‘show’ are very similar to actions ‘unset’ in their simplicity. In the case of a
CA, certificate or cipher element is first checked if the value is in the DataTree and if not,
the default value is printed. The setting of a log is shown gradually, firstly is printed if
logging is enabled or not and then individual types one by one. The only log type which
has a default value is a connection type. The proxy setting is printed similar to log with
only one exception, it is necessary to determine if any proxy type is set. If no proxy type
is set and even if the whole proxy is unset, the default proxy setting is printed. Proxy type
is printed as a list with each pair of IP address and the port number on the separated line.
The action ‘show-all’ calls all possible ‘show’ commands and thus print all ‘show’ sections.
In the snippet below there is a part of the ‘show-proxy-type’ function which contains get
subnode ‘type’ of the element ‘proxy’ and then if there are any values print first a name
of the type and in a foreach cycle, each iteration gets port number and prints both IP
address and port number values. With regard to the type of IP address, a different output
is displayed.

my @values = $DT->Keys(’proxy’, $type);

if (@values) {
printf "%s:\n", $type;

foreach my $address (@values) {
my $port = $DT->GetLast(’proxy’, $type, $address);

if (index($address, ’:’) != -1) {
printf "%4s[%s]:%s\n", "", $address, $port;

} else {
printf "%4s%s:%s\n", "", $address, $port;

}
}

}

When the action ‘start’ is performed the first step is to build the configuration file.
At first, the proxy variable is set. If the proxy element is unset the default value is used.
The same situation occurs when the proxy element is set but none proxy type is set. If
any proxy type is within the DataTree, all values are concatenated into the proxy variable.
Proxy types ‘tcp’ and ‘ssl’ are similar to ‘http’ and ‘https’ except they do not modify
HTTP (2.1.1) headers. At second, the log variable is set. The situation is very similar
to the proxy element. All log types with their parameters are concatenated into the log
variable. If the connection log is not set and even if the log is disabled the default value
for connection log is used. Connection logging is always active due to statistics (more
description in section 4.7). Cipher and CA certificate elements are put in their variables.

30

For both elements exist default values which are used when none value is set in the DataTree.
Other variable contains all other SSLsplit (3.2) parameters which are set through netc. For
example, there could be a URL to the CRL (2.2.2) server. The last variable mirror is filled
with a preconfigured outgoing interface and target IPv4 address.

After the configuration file is successfully build, check whether the application is running
is performed. If the SSLsplit is not running, the system starts the service. Then the script
waits for one second and checks whether the application successfully started and run. In
case of any failure, an error message is printed. Check whether the service is running is
performed by executing the following system call.

system("systemctl | grep sslsplit.service | grep running &>/dev/null")

4.6.1 Configuration File

The configuration file ‘sslapp.conf’ has a predetermined location in ‘/etc/netc/sslapp/’ di-
rectory. This file consists of six environmental variables. Variable PROXY contains all
settings regarding proxy. For a successful start of SSLsplit process have to be set at least
one proxy type with IP address and port number. There could be more proxies separated
by space. Each proxy has to have a type, IPv4 or IPv6 address and port number. Another
variable LOG contains all types of log options. There have to be a parameter "-l" with
a path to a file, which is source file for statistics, within the LOG variable. Mandatory
parameters "-c" with a path to the certificate and "-s" with ciphering suite are included
in variables CA_CERT and CIPHER, respectively. Variables OTHER and MIRROR are
not necessary. These variables only add extra features to SSLsplit process. The parameter
"-O" denies all OCSP requests (2.2.3) within OTHER variable whereas variable MIRROR
contains parameters "-I" and "-T" to determine where traffic is mirrored. Example of a
configuration file is depicted below.

config file created by netc
PROXY = "https 0.0.0.0 10443"
LOG = "-l /var/www/sslapp/connection.log"
CA_CERT = "-c /etc/netc/sslapp/ca.pem"
CIPHER = "-s NULL:RC4:AES128:-DHE"
OTHER = "-O "
MIRROR = "-I ve3 -T 192.168.2.2"

4.7 Statistics Script
Perl script file ‘statsd-sslapp’ containing functions to get statistics from SSLsplit. The
file is placed in ‘stats.d’ directory. The script execution interval is set to sixty seconds in
a statistics configuration file within netc. As a result of the setting could be shown all
SSLsplit statistics per minute.

Statistics script works as well as the configuration script with the DataTree. The script
opens configuration file for reading and finds within LOG environmental variable a param-
eter "-l" which is followed by a path to the log file. The file for logging information about
connections is always available even when a user did not configure it – it is set by default in

31

that case. Statistics are saved into ‘sslapp’ node which is contained within the pre-created
node ‘stats’.

my $DT = NetC::DataTree->new(’stats’, ’sslapp’);

When the name of the log file is known, it is split into two parts. The first part contains
the name of the file without extension and the second contains only the file extension. The
next step is to get PID of SSLsplit process. When the script got all information, the log
file could be renamed to a file with the name composed of a timestamp in between two
previously mentioned parts (further called stats file). This act ensures that any other log
could not be added to the log file. Immediately after renaming a signal (SIGUSR1) is sent
to SSLsplit process which causes reopening log file and the process continues on logging.
When the signal is sent, the script continues to parse the stats file. In the snippet below
there could be seen renaming of connection log file followed by sending the signal to SSLsplit
process. Before those actions, a date is obtained in a specific format which is used as a
name for a new statistics file.

my $datestring = strftime "%Y-%m-%d-%H-%M-%S", localtime;

rename $LOG_file, $LOG_file_name.’-’.$datestring.$LOG_file_ext;
kill ’SIGUSR1’, $PID_SSLsplit;

Statistics are gathered for all types of connection within SSLsplit, namely HTTP,
HTTPS, SSL, TCP, AutoSSL and all other communications as ‘pass-through’. Statistics for
these types count the number of connections carried through SSLsplit process. Other statis-
tics are gathered only for HTTP (2.1.1) and HTTPS (2.1.2). This other type of statistics
includes counting volumes of communication passing through SSLsplit process.

When all lines of stats file are parsed the next step is to save these data to the DataTree.
The first action is to get the last value by type of communication, then add value from
current stats file and save back to the DataTree. If the value is not present in the DataTree
the initial value is zero and value from current stats file is added and saved.

4.8 Certificate
In order to successfully use SSLsplit (3.2) as an SSL (2.1.3) connection terminating and
recreating tool, there is a need to create a private key. Next is needed to create a SS certifi-
cate (2.2.5) from the private key which is essential for smooth running SSLsplit application.
SSLsplit creates any server’s certificate which the client wants to connect to. Then the cre-
ated certificate is signed by own CA certificate (2.2.4). By the command on the first line
of the following snippet is generated 2048 bit RSA key. The other line cause creating the
SS certificate from the key with attributes validity and serial code. Validity is restricted to
one year from now and serial code of the certificate is set to 666. By the command on the
last line is created PEM8 format file which contains the concatenated certificate and the
key files.

8PEM file format – https://tools.ietf.org/html/rfc1421

32

https://tools.ietf.org/html/rfc1421

openssl genrsa -out ca_cert.key 2048
openssl req -new -x509 -days 365 -key ca_cert.key -out ca_cert.crt
→˓ -set_serial 666

cat ca_cert.crt ca_cert.key > ca_cert.pem

For comfortable creation of the certificate is created a bash script which could be exe-
cuted as is or could accept a parameter which determines the key, certificate and PEM file
names. The script facilitates the creation of the certificate by its preset values submitted as
parameters to openssl. Only the name of files is configurable from outside as a parameter.
The script uses similar commands as are shown above. Name of the script is ‘create-cert.sh’.
It is recommended to change the certificate information (described in section 2.2) in the
script as needed. In the script could be changed also the size of RSA private key, number of
days of validity and general information about certificate subject and issuer. The path to
the target destination of the files is created and the non-existence of the key file is verified.

Executing the script or the commands generate files of three types. The first generated
file is ‘ca_cert.key’ which contains private key in Base649 encoding. Another file encoded
in Base64 is ‘ca_cert.crt’ which contains a single certificate. The last generated file is
‘ca_cert.pem’ containing the key concatenated with the certificate. The file is encoded in
improved Base64 encoding called PEM format.

9Base64 – https://cs.wikipedia.org/wiki/Base64

33

https://cs.wikipedia.org/wiki/Base64

Chapter 5

Performance Testing

Performance test is such a type of tests where the server is loaded with plenty of requests
for a period of time and try to achieve maximum utilisation of resources on the server side.
It is not about finding software bugs or defects. Many types of performance tests exist but
only Load testing is used in the thesis. Load testing measures system performance as the
workload increases. There are several tools and scripts focused on performing performance
tests from single-use scripts to very complex applications.

This chapter describes how SSLsplit was tested, which additional tools and applications
were used and the results of measurements. Tests were performed firstly in the virtual
environment (5.1) to basically test SSLsplit and its capabilities and subsequently on physical
machines (5.2) to utilise all available resources.

5.1 Virtual Environment
Virtualization is useful, for example, for testing some new features or settings before buying
new technologies, modelling new planned topology and much more. Virtualization has many
advantages like the easier implementation of new servers, effortless backups and migrations
and so on. Like all roads, the virtualization has its pitfalls. The disadvantage, paradoxically,
results from advantages. In a situation where are more servers and applications consolidated
on one physical hardware and this hardware fails, successive breakdown means immediate
failure the entire infrastructure.

A virtual environment is ideal for developing. It is able to remotely shut down, reboot
and add network interfaces. Virtualization in this thesis is used mainly for easier develop-
ment and testing without the need for time-consuming cabling and customising new servers
(which would be unnecessary reserved for one use only).

5.1.1 Testing in a Virtual Environment

Testing was done using three separate machines connected together with 10 Gb links. The
topology and whole testing process are almost the same as in the tools’ performance testing
section (3.5.4). The only difference is that there have to be one more computer acts as a
receiver of mirrored packets. As could be seen in Figure 5.1, there is a machine with the
transparent proxy in the middle which is operated by SSLsplit application. Wrk (described
in section 3.5.2) was used to generate traffic from the client machine. All traffic was directed
to the server IP address more accurately to Nginx server running on the server. The traffic
went through the transparent proxy where SSLsplit processes it and sent to the server. In

34

case of testing with the mirroring feature, the target of the traffic was the server. There
was also tested plain HTTP and HTTPS transfers without using SSLsplit application. The
test was performed in a way that SSLsplit application was terminated and the machine in
the centre acts as a normal router. VMware was used as a virtualization technology with
its server virtualization platform named vSphere.

Client ServerTransparent proxy / Router

192.168.1.3

192.168.1.1

192.168.2.2

192.168.2.1

Figure 5.1: The topology used for performance testing in a virtual environment

Results

Figure 5.2: HTTP – Transactions per second

Figure 5.2 shows a number of transactions per second (TPS) while using HTTP queries in
relation to a number of TCP connections. TPS of HTTP queries without using SSLsplit
is much higher than with using SSLsplit regardless of using mirroring. SSLsplit process
each HTTP query and parse it to get individual information to log into a file. The number
of TPS while using only forwarded HTTP queries in comparison to HTTP queries passing
through SSLsplit is four times larger. There is a trend depicting the number of queries
which is spoiled by testing in a virtual environment as a decrease of TPS while increasing
the connection number. The same decrease would occur with using SSLsplit while increasing
the number of connections for the reason was selected an appropriate number of connections.

35

Figure 5.3: HTTPS – Transactions per second

Figure 5.3 shows a similar comparison as in Figure 5.2 with a difference in the used
protocol as HTTPS was used in this case. Curves which depict SSLsplit with and without
mirror are almost equal – they overlap each other in the figure. In the figure, there could
be seen the same trend as is in Figure 5.2, however, no rapid decrease has appeared but
the line showing measured HTTPS without using SSLsplit is mostly straight starting at
ten TCP connections. There is a significant difference between sending HTTPS requests
using SSLsplit and without it. The difference is quantified as multiple of five and is caused
presumably by terminating the connection and creating the new connection to the originally
intended server.

Figure 5.4 depicts CPU load while HTTP protocol used eighty opened TCP connec-
tions. Measurement was performed in a thirty-second long interval and due to measurement
inaccuracy at the beginning and end, the result was shortened by five seconds on each side.
In the figure, there could be seen a high CPU load while using SSLsplit in comparison to
communication without the SSLsplit. There is nearly five times higher CPU load which is
caused by SSLsplit parsing mechanisms mentioned in this chapter.

36

Figure 5.4: HTTP – 80 TCP connections

A similar comparison as in Figure 5.4 is shown in Figure 5.5 with a difference in the
protocol used. HTTPS was used in this case. In the figure, there could be observed almost
the same CPU load in the case of test with SSLsplit and without it. There is almost
none difference in comparison of SSLsplit with active traffic mirroring and with disabled
mirroring feature. The main areas of the thesis are an evaluation of results of an HTTPS
traffic passing through SSLsplit and measurement of CPU load difference during traffic
being mirrored and without that feature.

Figure 5.5: HTTPS – 30 TCP connections

37

Evaluation

The main goal of testing in a virtual environment was a comparison of SSLsplit (3.2) with
and without enabled traffic mirroring feature depending on the number of connections.
Looking at the figures, it could be said that the effect of turning on SSLsplit’s traffic
mirroring feature is not significantly reducing the number of TPS nor increasing CPU load.
SSLsplit is quite restrictive compared to traffic that is not processed by SSLsplit due to the
processing of each connection.

5.2 Physical Environment
A physical environment has some advantages over a virtual. Physical server has its ded-
icated hardware and only it uses all resources. Testing on physical machines has to be
performed in order to have applicable and relevant results. Performance testing is nec-
essary to understand the limitations of the tool being tested and to find out the tool’s
maximum possible utilisation. As was written in the introduction of the chapter, Load
testing was performed.

5.2.1 Testing in a Physical Environment

The physical topology is almost identical to virtual topology (5.1). There could be seen
three machines with the only difference in the addressing scheme in Figure 5.6. Different
machines with different hardware components are used compared to the virtual environ-
ment. Figure 5.6 shows the router acting as the transparent proxy which is operated by
SSLsplit application, client machine which runs benchmark tests and server machine where
runs Nginx.

Client
ServerTransparent proxy / Router

192.168.5.5

192.168.5.4

192.168.15.3

192.168.15.4

Figure 5.6: The topology used for performance testing in a physical environment

All machines had the same x86-64 architecture and other configuration listed in Ta-
ble 5.1. Connections between machines were 10 GE. Benchmark tool Wrk (described in
section 3.5.2) predominantly run on the client machine and taskset command and wget tool
were also used for testing.

OS Kernel RAM CPU Disc
Client CentOS 7 Linux 3.10.0 8 GB i3-4160 @ 3.80GHz SSD
Router NetXOS 7.6.1810 Linux 3.10.0 16 GB D-1537 @ 4.00GHz SSD
Server NetXOS 7.5.1804 Linux 4.20.10 16 GB D-1587 @ 4.00GHz SSD

Table 5.1: Software and hardware configuration of the machines

38

Linux Tuning

To be able to achieve higher TPS with using SSLsplit the ‘File Descriptor Limit’ on the
router have to be set to value at least 4,096. Very important is to enlarge a range of ports
used for outgoing TCP connections because the tool needs open many new outgoing TCP
connections (in tests the range was set from 10,000 to 64,999). Another advice is to lower
time before TCP/IP can release a closed connection and reuse its resources (during tests
the value was set to 5). All mentioned values could be set via ‘sysctl’ command.

Running Tests

Description of parameters of Wrk tool is in section 3.5.2. The parameter "-t" set to value
"4" starts the Wrk on four threads. The following command was used to test transactions
per second (TPS):

./wrk -t 4 -c 250 -d 30s -H ’Connection: close’
→˓ https://192.168.15.3/0kb.bin

The following code was used to generate a high load on the link to measure throughput.
A for-loop is there in order to set a correct CPU affinity in taskset command. A loop is
executed four times – for each CPU core once. Within each iteration is executed a command
"taskset" with a parameter "-c" set to loop variable value. The command taskset assigns
the selected CPU core to the process. Wget tool is for retrieving files using HTTP, HTTPS,
FTP and FTPS. The tool does not support parallelization. Taskset assigns one process
to CPU core so each core runs one wget process for maximum utilisation. Wget has many
parameters but in this case, only two was used. The first one is the URL of the target file
and the second is a parameter "-O" with ‘path’ which sets the path where the downloaded
file will be saved. At the very end, there have to be a character "&" which causes the start
of the command in the background.

for t in ‘seq 0 3‘; do
taskset -c $t wget https://192.168.15.3/10gb.bin -O /dev/null &

done

A number of received bytes saved in the file are a great source for verifying throughput.
A bash script was used to get a number of received bytes for a ten-second interval. The
script on the beginning read the value from the following file, then waits for ten seconds
and read the value again. Difference between the values is ten times higher than needed
in order to eliminate deviations and measurement errors. The resulting number has to be
divided by ten to get throughput per second. The script run on the client’s machine and
received bytes was evaluated. The file resides on the following path containing an actual
number of received bytes by the interface named ‘enp1s0f0’ on which the measurement was
performed.

/sys/class/net/enp1s0f0/statistics/rx_bytes

On the server, there have to be created a ten-gigabyte file in order to have large enough
file to test throughput on a 10 GE link. To create a file of ten-gigabyte size filled with all
zeroes was used the following command.

39

dd if=/dev/zero of=10gb.bin bs=1GB count=10

Results

Figure 5.7 shows a number of transactions per second (TPS) during HTTPS communication
between the client and the server in relation to a number of connections. Achieved TPS is
slightly above 16,000 according to this measurement. Wrk was used to generate requests
and subsequent evaluation of TPS. According to preliminary tests results, a maximum of
350 open TCP connections was selected. The difference between communication processed
by SSLsplit and only forwarded communication is quite striking. In the case of 40 TCP
connections, the number of TPS while using SSLsplit is sixteen times lower. The difference
between SSLsplit with enabled mirroring feature and SSLsplit without that feature is very
small. The first measured number of TCP connections was ten and the second one was
forty. The curve showing a number of TPS in case of using only forwarded traffic (without
SSLsplit) shows a big step between these two measurements. Continued growth would
occur if there were no system limitations which hold the maximum of TPS on value about
16,000.

Figure 5.7: HTTPS – Transactions per second

Figure 5.8 shows the CPU load over time in HTTPS communication. Measurement
was performed in a thirty-second long interval and due to measurement inaccuracy at the
beginning and end, the result was shortened by five seconds on each side. This shortening
does not have any effect on results. Wrk generated traffic uses 160 TCP connections and
CPU load was almost the same all the time. The difference in CPU load between SSLsplit
with and without enabled mirroring feature is about seven percent. In the case of forwarded
only traffic, CPU load is so small because the router does not have to ‘send’ traffic to a
user-space.

In Table 5.2, there are only two values which depict throughput in the network. The
higher value is for communication without any processing on the router – traffic is only
forwarded to the server. And the other one is for a state when communication is on

40

Figure 5.8: HTTPS – 160 TCP connections

‘forwarded’ SSLsplit
Throughput [Mbps] 9,934.91 9,795.84

Table 5.2: Comparison of throughput only forwarded and processed by SSLsplit

the router processed by SSLsplit. Those two values could be compared and the drop in
throughput could be evaluated. In this case, the decrease is 1.4 %.

Evaluation

Tests of HTTP communication were not successful on physical machines. SSLsplit from
time to time crashed during high load and the reason was not found nor fixed.

The main goal of the Load testing on physical machines was to find limitations and
a maximum number of TPS of SSLsplit (3.2) with and without enabled traffic mirroring
feature. From the results depicted by figures could be said that the effect of turning on
SSLsplit’s traffic mirroring feature is not significantly reducing the number of TPS nor
increasing CPU load. Getting higher numbers of TPS was restricted by CPU. On the
other hand, SSLsplit performed very well in the throughput test. When SSLsplit began
processing traffic, the drop in throughput was only less than two percent.

41

Chapter 6

Conclusion

The main goal of the thesis is to implement an application, which is capable to mirror
decrypted traffic to another node within a network. The node has to be known prior to
launch the tool in order to ensure proper traffic mirroring.

Chapter 2 contains a description of some protocols, digital certificates, proxies and some
network attacks and protection against them. Firstly there is described an insecure protocol
HTTP (2.1.1) and then a protocol HTTPS (2.1.2) which is secured by the transport layer
protocol TLS (2.1.3). Next in the chapter is described a digital certificate (further only
certificate) with its structure (2.2.1). There are also sections about certificate revocations,
certificate validation level (2.2.6), self-signed certificate (2.2.5), a certification authority
(2.2.4) with an explanation of root certificate, certificate chain and extension fields of a
certificate. Another big section is proxy (2.3) which contains a description of the individual
proxy types with a focus on HTTP proxy (2.3.1), SSL proxy (2.3.2) and Socks proxy
(2.3.3). The last section of the chapter covers attacks and protections against them (2.4).
As a representative of the attacks, there is described Man-in-the-Middle (MitM) attack
(2.4.3) and one of its type named SSL stripping. In the chapter, there are also described
two representatives of protection against MitM attack.

In Chapter 3 are compared and described tests of penetration tools which are capable
of MitM attack. The chapter also contains examples of use and a basic description of each
individual tool. One of the main parts of the chapter is a comparison of tools’ features
(3.4) which describes the advantages and disadvantages of tools and provides a summary
Table 3.1. The second main part is the tools’ benchmarking (3.5) in a virtual environment.
As a benchmarking tool on the client’s machine was used Wrk (3.5.2), on the server’s
machine run Nginx (3.5.1) web server and for measuring CPU load was used sar (3.5.3). In
the transaction per second test was found that tool Sslsniff (3.3) crashes during the test and
from Figure 3.2 was read that SSLsplit (3.2) has lesser CPU requirements than Mitmproxy
(3.1). In the speed of re-encryption test, the best results were achieved by SSLsplit using
which was the download fastest (Table 3.3). According to the features’ comparison, the
language used to develop and performed benchmark was selected SSLsplit. SSLsplit has all
needed and advisable features. It is written in fast, compiled ANSI C and its development
still continues.

Description of all created files and procedures is in Chapter 4. In the chapter, there
is described integration of the tool to the NETX (4.1) router to be fully operable within
NETX’s netc (4.1.1) interface. Firstly, there is presented NETX platform with its command
line interface called netc followed by a description of YAML – descriptive file (4.4) defining
a new configuration context within netc. In the descriptive file section, there are shown

42

fragments of the file with explanations. There are also described all important parts of
the file including the DataTree (4.4.1) structure. Created service file (4.5) with explained
certain parts and commands together with the configuration script (4.6) are present in the
chapter. In the service file section is described the need for PID file and explicit specification
of exit statuses. The configuration script section contains all essential default values which
are part of the script. There are also described some extraordinary fragments of code and
all functions listed in the descriptive file. The configuration file (4.6.1) generated by a
configuration script with an example content of the file as well as the statistics script (4.7)
taking care of generating statistics from connection log file are included in the chapter. The
statistics script section contains the need for renaming and sending a signal to SSLsplit
process in order to properly handle the connection log file. The chapter also includes
script and commands for creation of a certificate (4.8) using OpenSSL and a description of
created files including their encoding. The last section of the chapter is devoted to Linux
forwarding a redirecting (4.3). There is written the need for enabling a forwarding and a
proper redirection by using iptables utility.

All necessary performance testing is summarised in Chapter 5. Tests in a virtual envi-
ronment showed a decrease in transactions per second (TPS) while using SSLsplit which is
caused by the fact that SSLsplit processes each packet and thus it is much slower. Results
from testing on physical machines showed a similar decrease in TPS but in higher values.
Highly appreciated is a fact that the mirroring feature does not significantly slow down or
restrict SSLsplit itself. The whole testing proved SSLsplit to be useful and usable for one
client or a small network.

43

Bibliography

[1] Cooper, D.; Santesson, S.; Farrell, S.; et al.: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC 5280. RFC Editor.
May 2008. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc5280.txt

[2] Cortesi, A.; Hils, M.; Kriechbaumer, T.; et al.: mitmproxy: A free and open source
interactive HTTPS proxy. 2010–. [Accessed 2019-05-08].
Retrieved from: https://mitmproxy.org/

[3] Dierks, T.; Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246. RFC Editor. August 2008. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc5246.txt

[4] Eastlake, D.: Transport Layer Security (TLS) Extensions: Extension Definitions.
RFC 6066. RFC Editor. January 2011. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc6066.txt

[5] Evans, C.; Palmer, C.; Sleevi, R.: Public Key Pinning Extension for HTTP. RFC
7469. RFC Editor. April 2015. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc7469.txt

[6] Farrell, S.; Tschofenig, H.: Pervasive Monitoring Is an Attack. BCP 188. RFC Editor.
May 2014. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc7258.txt

[7] Fielding, R. T.; Gettys, J.; Mogul, J. C.; et al.: Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616. RFC Editor. June 1999. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc2616.txt

[8] Francis, P.: Network Address Translation (NAT). ACM SIGCOMM Computer
Communication Review. vol. 45, no. 2. 2015: pp. 50–50. ISSN 0146-4833.

[9] Handley, M.; and, E. R.: Internet Denial-of-Service Considerations. RFC 4732. RFC
Editor. December 2006. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc4732.txt

[10] Hodges, J.; Jackson, C.; Barth, A.: HTTP Strict Transport Security (HSTS). RFC
6797. RFC Editor. November 2012. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc6797.txt

[11] Marlinspike, M.: SSLsniff. 2008–2011. [Accessed 2019-05-08].
Retrieved from: https://moxie.org/software/sslsniff/

44

http://www.rfc-editor.org/rfc/rfc5280.txt
https://mitmproxy.org/
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc6066.txt
http://www.rfc-editor.org/rfc/rfc7469.txt
http://www.rfc-editor.org/rfc/rfc7258.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc4732.txt
http://www.rfc-editor.org/rfc/rfc6797.txt
https://moxie.org/software/sslsniff/

[12] Nystrom, M.; Kaliski, B.: PKCS #10: Certification Request Syntax Specification
Version 1.7. RFC 2986. RFC Editor. November 2000. [Accessed 2019-05-01].
Retrieved from: https://www.rfc-editor.org/rfc/rfc2986.txt

[13] Pettersen, Y.: The Transport Layer Security (TLS) Multiple Certificate Status
Request Extension. RFC 6961. RFC Editor. June 2013. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc6961.txt

[14] Postel, J.: User Datagram Protocol. STD 6. RFC Editor. August 1980. [Accessed
2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc768.txt

[15] Postel, J.: Transmission Control Protocol. STD 7. RFC Editor. September 1981.
[Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc793.txt

[16] Rescorla, E.: HTTP Over TLS. RFC 2818. RFC Editor. May 2000. [Accessed
2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc2818.txt

[17] Ristic, I.: Bulletproof SSL and TLS. London: Feisty Duck. 2014. ISBN
978–1907117046.

[18] Roethlisberger, D.: SSLsplit. 2009–. [Accessed 2019-05-08].
Retrieved from: https://www.roe.ch/SSLsplit

[19] Santesson, S.; Myers, M.; Ankney, R.; et al.: X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP. RFC 6960. RFC Editor.
June 2013. [Accessed 2019-05-01].
Retrieved from: http://www.rfc-editor.org/rfc/rfc6960.txt

[20] Weber, W.: Firewall basics. In 4th International Conference on Telecommunications
in Modern Satellite, Cable and Broadcasting Services. TELSIKS’99 (Cat.
No.99EX365), vol. 1. IEEE Publishing. 1999. ISBN 0-7803-5768-X. pp. 300–305.

45

https://www.rfc-editor.org/rfc/rfc2986.txt
http://www.rfc-editor.org/rfc/rfc6961.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
https://www.roe.ch/SSLsplit
http://www.rfc-editor.org/rfc/rfc6960.txt

Appendix A

CD Content

The thesis contains a CD with the following content:

∙ src/ – source codes

– create-cert.sh – script to create self-signed certificate
– sslapp.yml – describing file to add new entry to netc
– sslsplit.service – file for initiating SSLsplit application
– statsd-sslapp – script to get statistics from SSLsplit
– xcfg-netc-sslapp – script file with configuration functions

∙ data/ – data from tests

∙ latex-src/ – source files of the thesis in latex

∙ thesis.pdf – the thesis in pdf format

46

	Introduction
	Secured Transport
	Protocols
	Hypertext Transfer Protocol
	Hypertext Transfer Protocol Secure
	TLS/SSL

	Digital Certificate
	Structure of a Certificate
	Certificate Revocation List
	Online Certificate Status Protocol
	Certificate Authority
	Self-signed Certificate
	SSL Certificate Validation Level
	Server Name Indication
	Subject Alternative Name

	Proxy Server
	HTTP Proxy
	SSL Proxy
	Socks Proxy

	Attack and Protection
	HTTP Strict Transport Security
	HTTP Public Key Pinning
	Man-in-the-Middle Attack

	Penetration Tools
	Mitmproxy
	SSLsplit
	Sslsniff
	Comparison of Tools' Features
	Tools' Benchmarking
	Nginx
	Wrk
	Sar
	Testing

	Tools' Evaluation

	Implementation
	NETX
	Netc

	Configuration of Sslapp
	Forward and Redirect
	YAML – Descriptive File
	DataTree

	Service File
	Configuration Script
	Configuration File

	Statistics Script
	Certificate

	Performance Testing
	Virtual Environment
	Testing in a Virtual Environment

	Physical Environment
	Testing in a Physical Environment

	Conclusion
	Bibliography
	CD Content

