
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

GENERATING FACES WITH GENERATIVE
ADVERSARIAL NETWORKS
GENEROVÁNÍ OBLIČEJŮ S POMOCÍ GENERATIVNÍCH NEURONOVÝCH SÍTÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DANIEL KONEČNÝ
AUTOR PRÁCE

SUPERVISOR MARTIN KOLÁŘ, M.Sc.
VEDOUCÍ PRÁCE

BRNO 2020



Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Bachelor's Thesis Specification

Student: Konečný Daniel
Programme: Information Technology
Title: Generating Faces with Generative Adversarial Networks
Category: Artificial Intelligence
Assignment:

1. Seznamte se s problematikou GANů
2. Získejte vhodnou datovou sadu
3. Proveďte implementaci
4. Natrénujte několik variant modelů
5. Proveďte analýzu rozložení výsledků podmíněnou latentním rozložením

Recommended literature:

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A. and Bengio, Y., 2014. Generative adversarial nets. In Advances in neural information
processing systems (pp. 2672-2680).

Karras, T., Aila, T., Laine, S. and Lehtinen, J., 2017. Progressive growing of GANs for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Requirements for the first semester:
Body 1 až 3

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Kolář Martin, M.Sc.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: May 21, 2020

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/22319/2019/xkonec75 Page 1/1



Abstract
The goal of this thesis is generating color images of faces from randomly chosen high-
dimensional vectors with Generative Adversarial Networks. The next task is to analyze
input vectors based on the features of faces generated from those vectors. Three different
models of Generative Adversarial Network are implemented, one for generating images
of handwritten digits and other two for generating images of faces. Generated images show
credible-looking faces, but recognizable from real ones with a human eye. Single dimensions
of input vectors are analyzed with Student’s t-test. Linear Discriminant Analysis is then
used to project input vectors into subspaces where the classes of features are separable.
Analysis of generated data proves that the input vector can be specifically chosen to generate
an image of a face with requested features with probability up to 80 %. The main result
of this thesis is a model of Generative Adversarial Network for generating images of faces.
A tool for generating images of faces with chosen features is implemented too.

Abstrakt
Cílem této práce je generování barevných obrázků obličejů z náhodně určených vysokodi-
menzionálních vektorů pomocí generativních neuronových sítí. Dále se zabývá analý-
zou vstupních vektorů na základě příznaků obličejů z nich vygenerovaných. Je prove-
dena implementace generativní neuronové sítě pro generování obrázků ručně psaných čís-
lic, poté dalších dvou sítí pro generování obrázků obličejů. Vygenerované obrázky zo-
brazují věrohodně vypadající obličeje, lidské oko je však dokáže odlišit od fotek reálných
osob. Analýza jednotlivých dimenzí vektorů je provedena pomocí Studentova t-testu. Dále
jsou vstupní vektory promítnuty do podprostorů pomocí lineární diskriminační analýzy
a jsou nalezeny rozdělovací hranice mezi třídami příznaků. Analýza generovaných dat
dokazuje, že ovlivněním vstupního vektoru je možné docílit generování obrázku obličeje
s požadovanými příznaky s pravděpodobností až 80 %. Hlavním výsledkem této práce je
model generativní neuronové sítě určené pro generování obrázků obličejů. Dalším přínosem
je nástroj pro generování obrázků obličejů na základě vybraných příznaků.
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Chapter 1

Introduction

Generating artificial data has always been a very important part of the field of Artificial In-
telligence. With the increase in computational power of computers and more data available
for learning, the development of Neural Networks overall went through dramatic growth
and it affected data generation as well. Although generative models have made a lot of ad-
vances in the past 10 years, there are still many challenges that are to be completed. The
goal of this thesis is to implement several Generative Adversarial Networks for generating
image data and use these working models to further explore how generating images from
random noise works.

This thesis in chapter 2 first introduces the main principles behind Machine Learning
and Neural Networks, which are the cornerstones for many of generative models. Then it
enlightens the basics of image processing with Convolutional Neural Networks. After that,
Generative Adversarial Networks (GANs), which are the generative models used in this
thesis, are introduced and explained. A summary of image databases which can be very
useful for training of Generative Adversarial Network is given at the end of the chapter.
Their advantages and disadvantages are reviewed and three of them are chosen for imple-
mentation.

In chapter 3 are described the fundamentals of developing a GAN in Python 3 with
the use of the TensorFlow library. Multiple GANs were developed for this thesis. At first,
their common parts are explained and then their specific features are tackled one by one.
Implementation is described from the most basic GAN for generating images of handwritten
digits through a simple GAN for generating images of faces to an advanced one for images
of faces with higher resolution and more variability. Faces are very complex, they all have
some similarities but many differences too. Face should also be vertically symmetrical.
All of these aspects propose very difficult challenges for generative models but GANs are
capable of completing them.

The following chapter 4 dives deeply into the analysis of latent space. In other words,
random noise that is used as an input for a generator model in GAN is analyzed and used
for generating data with specific features. As a first task, a small dataset is manually
constructed from generated data. Then the standalone dimensions of the latent space
are analyzed with Student’s t-test. After that, the analysis of possible projections of the
latent space into a subspace with Linear Discriminant Analysis is done. Next, a model for
classifying face features is constructed. The final task of generating images of faces with
specific features is done with the help of this classifying model. Lastly, a simple tool that
allows a user to choose features and generate a face with them is introduced.
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Chapter 2

Neural Networks in image
processing

This chapter gives an introduction to Generative Adversarial Networks and it is based
on the information from Ian Goodfellow’s book Deep Learning [4]. At first, section 2.1
briefly informs about the beginnings of Artificial Intelligence and why Machine Learning
became a very important part of it. Then, section 2.2 describes why Deep Learning is
a successful approach to solving real-life problems. Neural Network as a typical example
of Deep Learning model is introduced. When it comes to image data processing, special
kind of models called Convolutional Neural Networks are used. Their basic functionality is
explained together with convolution, essential operation of these networks.

After all elementary concepts that are standing behind Neural Networks are explained,
Generative Adversarial Networks can be introduced in section 2.3. The architecture of these
networks, training procedures, and a special case of generating images is described. At the
end of the chapter in section 2.4, available image databases that could be used for training
of the network are discussed.

2.1 Machine Learning
Since the computers were created, people wondered if they can think on their own, whether
some sort of Artificial Intelligence (AI) can be created. The first tries in completing this
task were focusing mainly on the knowledge base approach. Pieces of information were
described with a formal language and logical inference rules were used to process them into
an output. Describing the information was an unwieldy process that had to been done by
human staff which was the main reason why this approach did not lead to any significant
success.

There was a need to process the raw data with a machine automatically. This is where
the term Machine Learning comes from. AI systems can acquire knowledge from raw data.
An example of a simple machine learning algorithm is linear regression. Such an algorithm
is provided with information about the data known as features and finds a correlation be-
tween them and various outcomes. However, features have to be interpreted and structured
intelligently and this is not always the case when raw data are processed.

For many tasks, it is too difficult to determine the features that have to be extracted,
for example, face detection in an image. A face can vary in many ways such as skin color,
hair, or orientation in the image. These variations cannot be described with pixel values,
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it is necessary to use a more complex solution. Representation learning is an approach
of using a machine-learning algorithm to determine the features from data automatically.
Problems that often require a team of researches and months of work can be solved with
a machine learning algorithm within a couple of hours to days.

But in many cases, it is necessary to extract features that can be very abstract. This
can be done easily by a human brain but it is harder for a machine. When a person sees
an image of another person’s head, it can face sideways and still be recognized as a face. But
when a machine sees it, the pixel representation of such face is very different. Therefore,
the task of representation learning is becoming as difficult as the original problem. In the
example mentioned, representation learning of facial features can be as hard as the face
recognition itself.

2.2 Deep Learning
Deep Learning solves the problem of feature learning differently. At first, it learns the
simple concepts in data and after that, it forms them into a more complex information.
More complicated features are described using the simple information. Comparison of
deep learning models with other machine learning approaches can be seen in Figure 2.1.
Therefore, a nested hierarchy of concepts is created. If a graph of these concepts built
upon each other is drawn, it will be deep. From this abstraction comes the name of this AI
approach – deep learning.

The typical example of deep learning model is a deep feedforward network. One of
the most simple cases is a multilayer perceptron. It consists of a visible layer that is
used as an input, several hidden layers that extract the features from data and combine
them and output layer that maps the features to specified results. Example of a simple
deep multilayer perceptron in shown in Figure 2.2. Input layer is called visible because
it contains information that are directly observable in the data. Hidden layers contain
information that is not explicitly shown in the data and they have to determine which
concepts are best to describe the relationships between observed samples. Another very
important advantage of deep learning models is their ability to improve with increasing
number of training iterations and amount of data it is provided with.

Neural Networks

Deep feedforward networks are models that let the information flow through forward to
transform it into an output. This is the reason why they are called feedforward. They
contain no feedback connections that would form a cyclic dependency. They are called
networks because they represent several functions composed into an acyclic graph. Deep
feedforward networks are also loosely inspired by neuroscience and that is where the word
neural comes from. The term Neural Network (NN) stabilized as a different name for deep
feedforward networks and it is used in the following sections and chapters.

Goal of Neural Network is to approximate some function 𝑓*. In case of using a NN as
a classifier, 𝑦 = 𝑓(𝑥𝑥𝑥;ΘΘΘ) maps a vector input 𝑥𝑥𝑥 to a category 𝑦 while ΘΘΘ are the parameters
that result in a best approximation of 𝑓*. Neural Networks consist of multiple layers
connected into a chain and each of these layers can be represented by a function 𝑓 (𝑖)

where 𝑖 is the index of layer. NN with 3 layers can be then mathematically expressed as
𝑓(𝑥𝑥𝑥) = 𝑓 (3)(𝑓 (2)(𝑓 (1)(𝑥𝑥𝑥))).
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Figure 2.1: Comparison of different Artificial Intelligence approaches. Shaded boxes repre-
sent components that can learn from data.
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Figure 2.2: Architecture of a simple multilayer perceptron with an input layer, two hidden
fully connected layers and an output layer.
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Building blocks of layers are units. Each unit has a weight for each input, a bias and
an activation function at the output. Example of a simple unit can be seen in Figure 2.3.
During the feedforward process, features of data are set as inputs and fed forward through
the network. Every unit from the first hidden layer receives a value from each unit of input
layer that it is connected to. It multiplies these values by their respective weights and adds
them together. After that, the bias is added too. The result is then passed through the
activation function and fed forward to units of the following layer. Activation functions
often serve as some non-linear transformation. The feedforward computation for a single
unit is then ℎ = 𝑔(𝑤𝑤𝑤⊤𝑥𝑥𝑥+ 𝑏), where 𝑔 is an activation function, 𝑤𝑤𝑤 is a vector of weights, 𝑥𝑥𝑥 is
a vector of input values and 𝑏 is a bias. All vectors in formulas in this thesis are written
in bold.

+1

𝑥1

𝑥2

𝑥3

Σ

𝑏

𝑤1

𝑤2

𝑤3

𝜎 ℎ

Figure 2.3: Simple unit (also called neuron) of a layer of Neural Network. It has 3 inputs,
bias and a sigmoid function as an activation function.

It is important to have a function that can evaluate how good the approximation of
𝑓* by 𝑓 is. This function is called loss or cost function and it measures the performance
of NN by computing the error between the predicted values and expected values. Neural
Networks often use a measure called Cross-Entropy which computes the difference between
two probability distributions. Binary Cross-Entropy calculates the average number of bits
required to represent an event from a distribution 𝑄 by a distribution 𝑃 , where 𝑄 is the
predicted distribution (approximated) and 𝑃 is the expected distribution (original) [14].

𝐻(𝑃,𝑄) = −
∑︁
𝑥∈𝑋

𝑃 (𝑥) log2𝑄(𝑥)

The approximation of 𝑓* is called the training of the Neural Network. Parameters of
NN that provide the best approximation cannot be calculated analytically, an optimization
algorithm has to be used instead. Gradient descent is an example of iterative, gradient-based
optimizer that is trying to minimize a loss function. Probably the most used optimization
algorithm in Machine Learning, in general, is the Stochastic Gradient Descent (SGD).
It uses a small number of samples called a minibatch to compute the gradient and it
applies it to improve the performance of the NN. Gradient itself is just the direction of
the step towards an optimum, an important part of SGD is also the size of the step. This
size is called a learning rate and it can be fixed during the training. For a loss function 𝐿,
gradient descent requires computing:

∇ΘΘΘ𝐽(ΘΘΘ) =
1

𝑚

𝑚∑︁
𝑖=1

∇ΘΘΘ𝐿(𝑓(𝑥𝑥𝑥(𝑖);ΘΘΘ), 𝑦𝑦𝑦(𝑖)).

Improved versions of SGD are used as optimization algorithms. One of the disadvan-
tages of SGD is the fixed learning rate and the difficulty of setting it correctly. It has
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a significant impact on the training process. One way to improve the SGD is to use dif-
ferent learning rates for every parameter. Another way to improve it is by changing the
learning rate throughout the training process. Both of these approaches are used in the
Adam optimization algorithm that is used in this thesis. Adam algorithm uses the mean and
uncentered variance of parameters to adapt the learning rates. It is computed as follows.

𝑠𝑠𝑠 = 𝜌1𝑠𝑠𝑠 + (1 − 𝜌1)𝑔𝑔𝑔

𝑟𝑟𝑟 = 𝜌2𝑟𝑟𝑟 + (1 − 𝜌2)𝑔𝑔𝑔 ⊙ 𝑔𝑔𝑔

𝑠𝑠𝑠 =
𝑠𝑠𝑠

1 − 𝜌1

𝑟𝑟𝑟 =
𝑟𝑟𝑟

1 − 𝜌2

∆ΘΘΘ = −𝜖
𝑠𝑠𝑠√
𝑟𝑟𝑟 + 𝛿

ΘΘΘ = ΘΘΘ + ∆ΘΘΘ

Where:
𝑔𝑔𝑔 is the computed gradient,
𝜌1, 𝜌2 are exponential decay rates for moment estimates (mean and variance),
⊙ is an element-wise product,
𝑠𝑠𝑠 is an updated biased first moment estimate,
𝑟𝑟𝑟 is an updated biased second moment estimate,
𝑠𝑠𝑠 is a correct bias in the first moment,
𝑟𝑟𝑟 is a correct bias in the second moment,
𝜖 is a step size and
𝛿 is a small constant used for numerical stabilization.

The whole set of training data called a dataset is divided into minibatches to best
suit an SGD-based optimization algorithm. The size of such minibatch can be from lower
tens to higher hundreds. Minibatches should be randomly chosen from the dataset to
prevent overfitting of the model. The optimization algorithm computes the gradient from
the whole minibatch, then it computes the update of the parameters and applies it. Other
options are to use a whole dataset as a training batch but that might result in a premature
convergence and requires a lot of memory for large datasets. Another approach is to update
the parameters for every single sample but that is computationally less efficient and it might
be more difficult for the model to reach the optimum.

The computing of gradients is done by the backpropagation algorithm. The algorithm
computes the gradient of the loss function with respect to the parameters of NN. The
gradient is calculated as a derivative of a function and since layers of the networks are
composed functions, the chain rule of calculus can be used. It states that:

d𝑥

d𝑧
=

d𝑥

d𝑦

d𝑦

d𝑧
.

Which can be generalized beyond the scalar case with partial derivatives. Suppose that
𝑥𝑥𝑥 ∈ R𝑚, 𝑦𝑦𝑦 ∈ R𝑛, 𝑔 : R𝑚 → R𝑛, 𝑓 : R𝑛 → R. If 𝑦𝑦𝑦 = 𝑔(𝑥𝑥𝑥) and 𝑧 = 𝑓(𝑦𝑦𝑦), then:

𝜕𝑧

𝜕𝑥𝑖
=

∑︁
𝑗

𝜕𝑧

𝜕𝑦𝑗

𝜕𝑦𝑗
𝜕𝑥𝑖

.
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Or, written in vector notation as:

∇𝑥𝑥𝑥𝑧 =

(︂
𝜕𝑦𝑦𝑦

𝜕𝑥𝑥𝑥

)︂⊤
∇𝑦𝑦𝑦𝑧,

where 𝜕𝑦𝑦𝑦
𝜕𝑥𝑥𝑥 is the 𝑛×𝑚 Jacobian matrix of 𝑔𝑔𝑔. This is how the gradient is computed for every

layer of NN with the backpropagation algorithm.

Convolutional Neural Networks

Convolutional Neural Network (CNN) is a special kind of Neural Network that includes
at least one layer that performs a mathematical operation called convolution instead of
matrix multiplication. Specialization of these networks is data with grid-like topology, for
example, time-series data that can be thought of as 1-dimensional grid or image data that
are 2-dimensional grids of pixels. Such image data are used in this thesis as well.

In CNNs, convolution calculates a weighted sum, which means it takes a fixed number
of values, multiples them with some constant and sums them together. This operation is
done for the whole input. If the input is a 1-dimensional array, it starts at the beginning
and computes the convolution for a fixed number of values. After that, it moves further
in the 1-dimensional by some step and computes the convolution again. The result of
this operation is the weighted sums arranged in a 1-dimensional array. Figure 2.4 displays
an example of a 1-dimensional convolution.

× × ×

Σ

× × ×

Σ

× × ×

Σ

Figure 2.4: Example of 1-dimensional convolution with input size 5, kernel size 3 and step
size 1.

The input of the convolution can be multidimensional. Weights used for the weighted
sum are then arranged in a multidimensional array which is called a kernel. The output
of the convolution is referred to as a feature map and it is multidimensional as well. The
operation of convolution is often denoted with an asterisk. For a 2-dimensional case with
image 𝐼 of size 𝑚× 𝑛 and kernel 𝐾, the convolution is calculated as:

𝑆(𝑖, 𝑗) = (𝐼 *𝐾)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑚,𝑛)𝐾(𝑖−𝑚, 𝑗 − 𝑛).

Convolutional layers in comparison to normal layers in NN do not use matrix multi-
plication with weights that are trained. They perform convolution and instead of training
weights, the neural network is trying to improve kernels to produce better results. Feature
maps are then produced as an output.

The convolutional layer can be also used to perform downsampling. This can be achieved
by setting the stride size to more than 1. The layer produces fewer values for the same
input, approximately half of the values for stride size 2, third for stride of 3, and so on.
Downsampling is often accompanied by an increasing number of kernels applied in one layer.
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Each convolution performs a different filtering operation, therefore, kernels are referred to as
filters. For an example of image processing, the image’s resolution is lower but the number
of channels it is represented with is higher. Channels of the image are in this example the
feature maps produced by the convolutional layer.

An important part of the convolutional layer is how it deals with the edges of input.
When the input is not padded, the feature map on the output will have a different size than
the input (as can be seen in Figure 2.4) but it uses only valid values. Therefore, this option
is often referred to as valid. To keep the size the same, input has to be padded with zeros
(as can be seen in Figure 2.5). This option of padding is called same.

Figure 2.5: Example of 2-dimensional convolution with input size 4, kernel size 3, step
size 1, and padding size 1. Feature map has the same size as input because of the padding.

The main advantage of CNN is that it can capture the context of pixel values, it does
not only process independent values without any connection between them. Another big
advantage is its low memory requirements in comparison to how advanced results it pro-
duces. In normal NN, weight is only applied to a single value and then never used again in
the feedforward process. But the CNN uses weights in a kernel multiple times when apply-
ing it to different values of the layer input, for example to pixels of an image. This reduces
the number of parameters needed for training while not affecting the runtime. Another
important advantage is equivariance. When explained on an example for image processing,
it means that when the convolutional layer detects edge in some part of an image, the same
detection can be done in other parts of the image and both results will be the same.

2.3 Generative Adversarial Networks
Generative Adversarial Network (GAN) is a deep generative model. Its main goal is not
classifying samples, as it was with previously mentioned models, but generating new sam-
ples. It is constructed from 2 specific models, one is used for generating new samples,
therefore, it is called a generator. The other one is called discriminator and its task is
evaluating the probability of the provided sample not being generated from the generator.
Architecture of a GAN can be seen in Figure 2.6. This creates a scenario where the two
models are competing against each other and improving while doing so. The generator is
trying to produce samples that are as close to real data as possible, so the discriminator
cannot distinguish them.

In this thesis, both of the models that are representing GAN are Neural Networks.
There are multiple reasons to use those. As it is mentioned in section 2.2, Neural Networks
perform very well when it comes to samples whose features cannot be easily described.
The feedforward process allows for a simple generating process and the backpropagation
algorithm lets the network trained very efficiently. GANs in this thesis are using random
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Figure 2.6: The architecture of Generative Adversarial Network where the generator pro-
duces images and the discriminator classifies them.

noise as input for the generator. The goal of the generator is then to learn how to map the
latent space from which the random noise comes to real data.

The generator can be described as function 𝐺(𝑧𝑧𝑧;ΘΘΘ𝐺), where 𝑧𝑧𝑧 is the random noise on
the input and ΘΘΘ𝐺 are parameters of the NN. The output of the generator is sample 𝑥𝑥𝑥. The
discriminator is represented by function 𝐷(𝑥𝑥𝑥;ΘΘΘ𝐷), where 𝑥𝑥𝑥 is a sample on the input and ΘΘΘ𝐷

are parameters of the NN [5]. The output of the discriminator is a single scalar, probability
of the sample being real and not generated by the generator. The discriminator is trained
to assign a correct label to both real and generated samples, that means maximizing of
log𝐷(𝑥𝑥𝑥). The generator is simultaneously trained to minimize log(1 − 𝐷(𝐺(𝑧𝑧𝑧)). The
training can be described as two-player minimax game with value function 𝑉 (𝐷,𝐺), where
E𝑥∼𝑃 [𝑓(𝑥)] is the expectation of 𝑓(𝑥) with respect to 𝑃 (𝑥).

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥𝑥𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥𝑥𝑥)[log𝐷(𝑥𝑥𝑥)] + E𝑧𝑧𝑧∼𝑝𝑧(𝑧𝑧𝑧)[log(1 −𝐷(𝐺(𝑧𝑧𝑧))]

It is very important to carefully select the architecture of both models and their hyper-
parameters, otherwise the training of GAN can be unstable. It is essential to use dropout
in the network architectures. Units should be stochastically dropped while computing the
gradient for the generator to produce good results. GANs do not memorize the training
dataset, they produce samples that were not part of the dataset neither they were close to
training samples [5].

One option to train a GAN is described in this paragraph. The procedure can be divided
into two parts, training of discriminator and training of generator. The discriminator is
trained individually on a batch of samples, half of the batch is real training samples and
the other half is generated samples. Samples are labeled to distinguish real from generated
ones. The generator is trained in the whole GAN model but the discriminator’s weights are
not updated during this part of the training. On the input of the generator is a batch of
random values. Samples are generated from the random values in the batch and evaluated
by the discriminator. Error then backpropagates through the discriminator and updates
the weights of the generator.

Generative Adversarial Networks for generating images

Generating of image data is a task that can be very useful in real-life applications, therefore,
it is a field worth exploring with Generative Adversarial Networks. Convolutional Neural

10



Networks are used in most of the image classifying tasks and they produce good results
when used in GANs too. A specific approach for designing of discriminator and generator
model was used in this thesis and it is described in the following paragraphs.

Discriminator consists of multiple 2-dimensional convolutional layers that always reduce
the resolution of the image to half while increasing the number of channels image is repre-
sented with. The generator is a mirrored version of the discriminator. It uses 2-dimensional
transpose convolutional layers that double the resolution of an image while lowering the
number of channels, as is shown in Figure 2.7. This architecture of both networks ensures
that main features are learned as well as features representing small details [8].
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Figure 2.7: Feedforward process with data in generator with transpose convolution that
gradually increases the image’s resolution while lowering the number of image’s represen-
tations.

Transpose convolution is computed almost the same way as a normal convolution. The
difference is that it first adds a zero padding to the image [3]. In case of doubling the
resolution by using the stride size 2, zeros are added to the edges as well as between all
the pixels. Edges may not be padded evenly if an image of exactly twice as high resolution
should be produced. Then a normal convolution with stride 1 and given kernel is performed
and a feature map with higher resolution is produced. Figure 2.8 provides an example of
a transposed convolution.

2.4 Image databases
Image classification is an often implemented task in practice but also for educational pur-
poses. For that reason, there are many databases of labeled images available online for
anyone to use. Generative Adversarial Networks can be trained on any images and do not
even require the images to be labeled. The only requirement is an equal resolution of all
images and preferably also some common features between all images. A database can
contain photographs of animals, or photographs of vehicles for example, but not both of
these categories.
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Figure 2.8: Transposed convolution used to double the size of image input. Input of size 3
is padded with zeros on the edges as well as between the pixels. The edges have to be
padded unevenly. Input is then convolved with a kernel of size 3 with stride size 1, and the
size of the feature map will be 6. Notice that the stride size of this convolution is 1 but in
the settings of the transposed convolution would be the stride size 2.

Handwritten digits

Modified National Institute of Standards and Technology (MNIST) database is one of the
most commonly used databases for educational purposes in image processing [11]. It con-
tains images of handwritten digits from 0 to 9 that are scaled and cropped to have a similar
size and be positioned in the middle of the image as can be seen in Figure 2.9. No prepro-
cessing of images has to be done beforehand. Images have a resolution of 28×28 pixels and
are grayscale, which means only one value represents every pixel. In most cases, this value
is an unsigned integer in the range between 0 and 255. Each image is labeled with the value
of its digits, which gives 10 classes in total. The whole database contains 70000 samples
from which 60000 are meant for training and 10000 for testing of the trained model.

Figure 2.9: Examples of different digits from the MNIST digit database.

MNIST database is an ideal choice when starting the implementation of image process-
ing neural network. Low resolution and only one channel of each image make the task
as easy as possible. The training time is short and the neural network can be constructed
from a relatively small number of layers (under ten). Therefore, it is not necessary to use
a lot of computational power. Another advantage is the small size of images, they can be
loaded into memory and used at the same time without reloading. Images of the same
digit can be different because they are all handwritten. This is shown in Figure 2.10. Such
variety presents a difficult enough challenge for the neural network.
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Figure 2.10: Examples of identical digits from the MNIST digit database. Even the same
digits can be written in different ways.

Labeled Faces in the Wild

Labeled Faces in the Wild (LFW) is a public database of color images of faces collected
from the web [7]. The database contains 13233 photos of 5749 people with 1680 out of
them on two or more photos. Each image is labeled with the name of the person on it. The
resolution of original images is 250× 250 pixels and each pixel is represented by 3 channels
(red, green, and blue). Examples from the LFW database can be seen in Figure 2.11.

Figure 2.11: Examples from LFW database.

Faces are located in the center of the picture and can point also partially sideways, not
only to the front. Peoples’ faces can be covered with headwear or glasses. As the database’s
name suggests, images have a large variety of backgrounds behind the photographed people.
All of these properties make the task of image processing more challenging but also closer
to real-life problems.

LFW database is good for research and education but should not be used for commercial
purposes. The reason is not so high variability of the people in the images. There are very
few children, no babies, almost no people over 80 years old, and a relatively small amount
of women. Also, many ethnicities are represented in a small portion or not at all. The size
of the database is also not big enough for strong statistical conclusions about subgroups.

Faces from the LFW database can be used as a next step in developing an image
processing neural network. However, they should not be used as a training database for
the finalized network because of the reasons mentioned.

Flickr-Faces-HQ

Flickr-Faces-HQ (FFHQ) is a database of high-quality images of faces created as a bench-
mark for Generative Adversarial Networks [9]. Images were extracted from photographs
uploaded to service Flickr and then aligned, cropped and saved as png files. Only images
with licenses for free use for non-commercial purposes were used for this database. The
size of the database is 70000 images with a resolution of 1024 × 1024 pixels. Creators of

13



this database offer also thumbnails of each image with a resolution of 128 × 128 pixels and
original images from which the faces where extracted.

FFHQ database contains photographs of people with a wide variety of ages, ethnicity,
and image background. Also, people wearing different kinds of headwear and glasses are
included as shown in Figure 2.12. Faces are photographed from different angles and in dif-
ferent light conditions. These properties make the database ideal for the training of image
processing neural networks.

Figure 2.12: Examples from FFHQ database.

Other databases of faces

CelebFaces Attributes (CelebA) database contains 202599 photographs of celebrities [12].
Each image has 40 binary attribute annotations, such as the person’s facial expression and
shape of the face, whether the person is wearing glasses, hat or other accessories, and other
features of a face. It contains a large variety of poses and backgrounds of images.

There is also a large number of databases that have a wide variety of images sorted into
classes. For the training of GANs, only one class can be used at a time. Some of these
databases are described in the following paragraphs.

ImageNet is an image database that is organized into classes according to the WordNet1

hierarchy [1]. It contains about 14 million images from 100000 classes that are supposed to
serve for research and educational purposes.

LSUN database contains around one million images of all kinds [17]. They are labeled
for each of 10 scene categories and 20 object categories. It uses a crowdsourcing platform
for labeling the images and therefore can grow in size.

The CIFAR-10 and CIFAR-100 are databases with a large variety of images sorted into
10 and 100 classes respectively [10]. They both contain 60000 color images with a resolution
of 32×32 pixels. Images in this database are subsets of the 80 million tiny images database
[16].

1WordNet R○is a large lexical database of English, more information at https://wordnet.princeton.edu/
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Chapter 3

Implementation of Generative
Adversarial Network

All the Generative Adversarial Networks (GANs) mentioned in this thesis are implemented
in Python 3 with TensorFlow 2 library through Keras API, NumPy library for advanced
mathematical operations, and other libraries for specific smaller tasks. TensorFlow is
a deep learning Python library and it provides users with an easy way to design, train,
and evaluate neural networks. Very important is also an option to predict with the neural
network, which is also the case for generating data with GAN. Using Keras API on top of
the TensorFlow library makes the building of neural networks more intuitive.

The code for every GAN usually consists of several similar parts. Common properties of
each part are described in section 3.1. In the following sections are mentioned differences for
each specific one. The first implemented GAN in this thesis generates images of handwritten
digits and it is described in section 3.2. In the next section 3.3, are explained the differences
in implementation of a GAN for images of faces from the LFW database. Finally, section 3.4
informs about the details of implementing GAN for high-quality images of faces from the
FFHQ database.

3.1 Common segments of every Generative Adversarial Net-
work

Training of every GAN has to start with the loading of the training data. In most cases,
the data has to be also preprocessed in some way. Generator in GAN uses a random noise
as an input, therefore, it is necessary to have a function that generates the random noise
in a format that is accepted by the generator. The architecture of both discriminator and
generator has also some common properties which are described in this section. They are
always somehow connected into the whole GAN, in this thesis, it is done with another
model. After the models are defined, they can be trained. It is necessary to monitor the
training and evaluate the results to achieve the best possible generated images. When the
training is finished, the generator can be used for generating new data.

Loading of training images

At first, images have to be loaded into memory and in many cases also preprocessed. The
preparation of images can consist of changing the resolution and cropping the image that
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leads to the resolution being easily factorized to small prime numbers, which is very useful
for GANs. The number of channels of an image can also be altered (for example converting
a color image to grayscale). Training data, in this case, an image database, are usually
referred to as a dataset.

Neural networks process inputs with weights with small values [4], therefore, it is a good
practice to represent channel of each pixel by a value between 0 and 1, otherwise the weights
can increase to large numbers and make the network unstable and unable to generalize well.
In many cases, conversion of input values must be done because of pixels being represented
by unsigned integer values from 0 to 255.

Generating points in latent space

Points from latent space are necessary for GANs because they are used as an input for the
generator. The dimensionality of latent space can vary from lower tens to higher hundreds.
A certain power of number 2 is usually used as the number of dimensions. This point stores
all the information about the generated result. The generator from trained GAN is used as
a tool that deterministically generates the result from this point.

In this thesis, the latent vectors correspond to a random point on an 𝑛-dimensional
hypersphere, where 𝑛 is the dimensionality of the latent space. That means that squared
values in all dimensions of one latent vector have to sum up to a chosen constant which
is the hypersphere’s radius squared. The radius of the hypersphere is set to 1 in this
thesis. Muller’s algorithm is used to produce uniform random values with this property
[13]. The random point on a hypersphere is computed with the following formulas, where
𝑑 is a dimension index, 𝑛 is the dimensionality of the latent space, and 𝑌𝑑 is the computed
coordinate in dimension 𝑑.

𝑆 =
𝑛∑︁

𝑑=0

𝑋2
𝑑 , where 𝑋𝑑 ∼ 𝒩 (0, 1)

𝑌𝑑 =
𝑋𝑑√
𝑆

Building the model of discriminator

The discriminator is a sequential model, which means its layers are saved in a linear stack.
Input is an image and output is a value between 0 and 1 representing the probability that
the image is real.

Very important layers in the model are 2-dimensional convolutional layers (Conv2D).
The operation of convolution applies a filter to an image to obtain its feature map. Each
feature map stores some information about the image. Filter used for obtaining each of all
feature maps is the trained parameter of the convolutional layer. After the first convolution
image is no longer represented with channels of image’s resolution but with feature maps.
These feature maps are then handled in the following layers.

Convolutional layers in discriminator decrease image’s (and feature maps’) resolution
to half by using the stride of 2 and “same” padding. Kernel size can vary in different cases
but the size of 3 is used in many cases [8]. The number of filters is usually a power of 2
in the range between 32 and 512. The more convolutions are applied the higher number of
filters is used. That way more feature maps are obtained to represent the image.
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The convolutional layer is followed by a layer with a leaky version of a Rectified Linear
Unit (LeakyReLU) as an activation function.

𝑓(𝑥) =

{︃
𝑥 if 𝑥 ≥ 0

𝛼𝑥 if 𝑥 < 0

This function is easy to compute because it consists of two linear parts but it can still
learn complex structures in data because of its nonlinearity. These two properties make
LeakyReLU a good activation function for deep neural networks. The steepness of the
function for 𝑥 < 0 can be set. An example of LeakyReLU can be seen in Figure 3.1.

𝑥

𝑓(𝑥)

1

2

1 2

−2 −1

0

Figure 3.1: An example of Leaky Rectified Linear Unit.

After that is applied a layer that drops out a certain number of nodes. This layer is
called Dropout and its drop out rate are set by a value between 0 and 1. It prevents the
network from overfitting to the training samples.

The combination of the Conv2D layer, LeakyReLU activation function, and Dropout
layer repeats multiple times. In the end, the image is transformed into a 1-dimensional list
using the Flatten layer. This layer has no trainable weights, it is only used as a preparation
for the following Dense layer. Dense means that it uses connections of all nodes between
layers, in other words, it is fully connected. In this case, it connects all nodes from the
Flatten layer to one node representing the probability of the input image being real. This
value is normalized by the sigmoid activation function to values between 0 and 1. The
shape of the sigmoid function is shown in Figure 3.2.

𝑓(𝑥) =
1

1 + 𝑒−𝑥

𝑥

𝑓(𝑥)

−3 −2 −1 0 1 2 3

1

1
2

Figure 3.2: Sigmoid function.

The optimization algorithm used when training discriminator is Adam. This algorithm
updates every weight with its own learning rate. Learning rates also adapt during the
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training by using the first and second moments of the gradient. Thanks to these advantages
it is widely recommended to be used in Deep Neural Networks. For GANs in this thesis,
the learning rate is set to 0.0002 and exponential decay rate for the first moment (mean)
estimates to 0.5.

The loss function that is being minimized is the Cross-Entropy. Likelihood of image
being real (belonging to class 1) or not (belonging to class 0) is a binary classification
problem. Cross-Entropy is advised to be used for this type of problem.

Building the model of generator

The generator is also a sequential model and in most cases, it consists of multiple transpose
convolution layers that are used to increase the resolution of the image. It is basically
a mirrored version of the discriminator. Input is a point from latent space and output is
a generated image.

Generator first makes many low-resolution representations of the desired image. The
dense layer can be used to connect the input array of random numbers with the low-
resolution representations of that image. LeakyReLU is applied as the following layer to
improve the generalization of the model. After that, it is necessary to reshape the array
to three dimensions – two for the image itself and one for all of the image representations.
Reshape layers can be used for this purpose.

Two-dimensional transposed convolutional layers (Conv2DTranspose) are then applied
to increase the resolution of the image. The transpose convolution is described in section 2.3.
The input image can be thought of as a feature map and trained weights are actually filters
of the transpose convolution. Doubling of resolution of an image is achieved by setting
the stride to 2 and padding to “same”. The more transpose convolutions are used, the
fewer filters are usually used, which means the number of image’s representations is lower.
The Conv2DTranspose layer is often followed by a LeakyReLU layer for generalization
improvement.

When the desired resolution of the image is obtained, one convolutional layer (Conv2D)
can be used to convert all the representations of an image to channels (one channel for
grayscale images or three channels for color images). The number of filters is the number
of channels in the final image, the stride is set to 1 and padding to “same” to keep the
resolution of the image unchanged. The size of the kernel can vary in different situations.
The sigmoid activation function is then applied to keep the pixel values between 0 and 1.

Connecting discriminator and generator together into one model

Generative Adversarial Network itself is represented by a sequential model as well. It con-
sists of discriminator and generator by themselves. The discriminator is not trained in this
model, only the generator’s weights are updated according to the discriminator’s perfor-
mance on generated images. That means that after discriminator evaluates the probability
of provided images being real, backpropagation goes through the discriminator and then
generator but only updates the weights in the generator. Training optimization is done
with the Adam algorithm, the learning rate is set to 0.0002 and exponential decay rate for
the first moment (mean) estimates to 0.5. Binary Cross-Entropy is used as a loss function.
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Training of Generative Adversarial Network

The training consists of a certain number of epochs (hundreds or thousands). Epoch is
an iteration over the whole dataset of images. In each epoch, there is training done with
images grouped into batches. The size of one batch can be in the lower hundreds. It is
usually some power of two because these sizes can use hardware resources more efficiently [4].
The number of these batches used to train the GAN in one epoch is the number of available
images for training divided by the size of the batch.

First comes the training of standalone discriminator. It is provided with a batch con-
sisting of real and generated images and its task is to determine which one is real and which
one is generated. This training of discriminator is done using the train_on_batch function
from Keras API that updates the weights of the discriminator.

After that, the generator is trained in the whole GAN model. It provides the discrim-
inator with a new batch of generated images. The discriminator determines whether the
images are real or generated and then the backpropagation is used to update the generator
weights. Once again, the train_on_batch function from Keras API is used for this task.

Both discriminator and generator are evaluated after each epoch. The discriminator is
evaluated by recognizing real images, the generator is evaluated by discriminator’s ability
to recognize its generated images. Information about training loss of both models is printed
after training on each batch.

Evaluation of results and monitoring of training

There is no objective way to automatically evaluate generated images, the human eye has
to decide about their quality. There is still the option of reviewing generated images with
the discriminator but it depends on how good the discriminator is in recognizing real and
generated images from each other. Discriminator can be tested the same way by providing
it with real images and expecting to evaluate them all as real. This evaluation can be done
with evaluate function from Keras API.

It is very important to monitor the process of training to know if the model is mak-
ing progress. This can be done by following the scalar training loss that is returned by
train_on_batch function from Keras API during the training. After a few epochs of
training, these values should be balanced. If, for example, training loss of discriminator
approaches 0 and training loss of generator increases above 10 and further, the model
is probably not improving. Its design or training process should be changed to improve
performance.

Generating new images from Generative Adversarial Network

New images are generated from the trained generator model (not the whole GAN). For this
reason, it is necessary to save the whole generator model or its weights after the training.
If only weights are saved, the exact same generator model has to be defined before loading
the weights and generating new images. When the model is loaded, it has to be provided
with a point from latent space and then a new image can be generated with the predict
function from Keras API.
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3.2 Generating images of handwritten digits
It is very useful to start implementing GAN for simpler images than photographs of faces.
One of the very basic image databases is the Modified National Institute of Standard and
Technology (MNIST) handwritten digit database. The resolution of these images is 28×28
pixels. Every image is also labeled with the number that the handwritten digit represents.
Further information about the MNIST database can be found in section 2.4.

Loading and preparing images

MNIST digit database can be obtained from the TensorFlow library via Keras API using
the load_data function. The dataset comes in two lists (train and test images) with shape
(number of images, 28, 28) together with the labels in two additional lists. There is no
need for labels when training a GAN, the learning process is unsupervised. Only images
for training are needed, testing and training is done simultaneously using newly generated
images and the training images. Therefore the sets of 60000 training images and 10000
images can be merged into one and used.

Each pixel is represented with an unsigned integer value from 0 to 255. As mentioned
in section 3.1, it is better practice to convert the values to floats and normalize them to
range between 0 and 1. It is also necessary to update the number of dimensions to have
the grayscale channel as an additional dimension. The shape of the training dataset is now
(70000, 28, 28, 1) – the grayscale value of each pixel is in its list.

The size of the digits from the MNIST database is 28 × 28 pixels. Prime factors of
number 28 are 2 and 7. And if the image is grown gradually, that means that at a certain
point there has to a big step to make the image 7 times larger in pixel size. This big step
is represented by many trainable weights in a layer of the generator. If a neural network
has too many weights in one layer, the training can be time consuming and unstable.

To optimize this process, every image can be changed to a size of 32× 32 pixels by just
adding 2 pixels with 0 values on each side. This will not affect any of the results because
each digit image already has 0 values on the sides. Resizing of images just by adding zeros
is a very fast process that will not affect the training speed almost at all. Number 32 has
only one prime factor and that is number 2. Therefore the image can be grown from 4 × 4
pixels up to 32 × 32 pixels just by small steps of making it 2 times larger. The generator
neural network will have more layers but it will be able to generate more precise images
and the training will be faster. The shape of the final training dataset will be (70000, 32,
32, 1).

Architecture of Generative Adversarial Network

This GAN uses latent space with 64 dimensions. The architecture of the discriminator
model can be seen in Table 3.1 and the generator model in Table 3.2.
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Layer Settings Shape Parameters
Input (32, 32, 1) 0

Conv2D
Filter count: 32
Kernel size: (1, 1)
Stride size: (1, 1) (32, 32, 32)

64

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 32
Kernel size: (3, 3)
Stride size: (2, 2) (16, 16, 32)

9 248

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (8, 8, 64)

18 496

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (4, 4, 64)

36 928

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0
Flatten (1024) 0

Dense Units: 1
Activation: Sigmoid (1) 1 025

Total trainable parameters 65 761

Table 3.1: GAN for handwritten digits – layers of discriminator model.
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Layer Settings Shape Parameters
Input (64) 0
Dense Units: 1024 (1024) 66 560
LeakyReLU Alpha: 0.2 0
Reshape (4, 4, 64) 0

Conv2DTranspose
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (8, 8, 64) 36 928

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 32
Kernel size: (3, 3)
Stride size: (2, 2) (16, 16, 32) 18 464

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 32
Kernel size: (3, 3)
Stride size: (2, 2) (32, 32, 32) 9 248

LeakyReLU Alpha: 0.2 0

Conv2D

Filter count: 1
Kernel size: (1, 1)
Stride size: (1, 1)
Activation: Sigmoid

(32, 32, 1) 33

Total trainable parameters 131 233

Table 3.2: GAN for handwritten digits – layers of generator model.
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Training of Generative Adversarial Network

The batch size chosen for training is 256. When training the discriminator, half of the
batch are real images and the other half are generated images. The real images are chosen
randomly from the dataset instead of dividing the dataset into batches prior to training.
Because of using the stochastic gradient descent for training, it is better to shuffle the
dataset before training, and by choosing random images for each batch, shuffling is done
automatically. Both approaches are correct but the random selection is a simpler solution.
When training the generator in the GAN model, the whole batch consists of generated
images. The model of the generator is saved after each epoch with method save from
the TensorFlow library. The whole model with weights can be then loaded and used for
generating images.

Results of training

The GAN learns basic patterns of digits after few epochs but it takes about 100 epochs
to regularly produce digits from random inputs. Figure 3.3 presents the training progress
of GAN for the same input. After 1000 epochs most of the generated images are almost
unrecognizable from real images as shown in Figure 3.4. See Figure A.1 for a larger set of
results.

Figure 3.3: Handwritten digits generated from the same point in latent space and by the
same generator. The only thing that changes is the number of epochs the generator was
trained for. Indices of generator’s epochs are 10, 50, 100, and 1000.

Figure 3.4: Handwritten digits from generator trained for 1000 epochs.

3.3 Generating faces using Labeled Faces in the Wild database
Labeled Faces in the Wild (LFW) database is a collection of photographs of famous actors,
politicians, sportsmen and other people. Each photograph is cropped and scaled down to
a resolution of 62 × 47 pixels (as seen in Figure 3.5) and labeled with an identifier of the
person in it. Samples are available in grayscale and RGB color format. Further information
about LFW database can be found in section 2.4.
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Figure 3.5: Examples of LFW database images obtained from scikit-learn library. They
are cropped and scaled down to 62 × 47 pixels.

Transition from handwritten digits to faces

GAN described in the previous section can also be used to generate faces. The only thing
that needs to be done is cropping and scaling down of loaded grayscale LFW images. The
first task is to crop the images to 47×47 pixels and then resize them to 32×32 pixels. Then
the images are ready to be used with GAN used previously to generate handwritten digits.
After 1000 epochs of training, it seems that the GAN is working well and the transition
to new GAN can continue (examples in Figure 3.6). A larger set of results can be found
in Figure A.2.

Figure 3.6: Generated images from GAN trained on grayscale cropped LFW database.

GAN can now be adjusted to the real resolution of images in the LFW dataset. The
only problem is that resolution 62×47 pixels cannot be factored to small primes, therefore,
it is better to change the resolution to 64×48 pixels. After adjusting the discriminator and
generator to this resolution, GAN can be tested again. As it is shown in Figure 3.7, 1000
epochs are enough to see that it can generate credible images of faces. More images can be
seen in Figure A.3.

Figure 3.7: Generated images from GAN trained on grayscale LFW database.

The last step in this transition is replacing the grayscale channel with RGB channels
and generating color images. Loading of grayscale images has to be changed to loading color
images and discriminator and generator also have to be changed. The input of the discrim-
inator is no longer set to 1 channel but 3 channels and output of generator are 3 channels
instead of 1. These are the only changes that are needed. Details of implementation are
described in the following paragraphs and results are shown at the end of the section.

Loading and preparing images

Images from the LFW dataset can be obtained with fetch_lfw_people function from
sklearn.datasets module of scikit-learn library. By default grayscale images are
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fetched but by setting the color argument to True color images are fetched. After that,
it is useful to resize the images to the resolution of 64 × 48 pixels. This can be done by
duplicating the first and last row and first column of all images. It will barely affect the
quality of the images. Pixel value can also be normalized from unsigned integer values
between 0 and 255 to float values between 0 and 1. The shape of the training dataset will
be (13233, 64, 48, 3).

These operations take some time (approximately 85 s) and to have them done whenever
training has to be done can be too time-consuming. A better practice is to save the
already prepared images and load them before training. Images loaded and prepared to
ndarray from NumPy library. The library offers the option to save the ndarray to a file
in non-compressed (npy file) or compressed (npz file) form. The a non-compressed form is
loaded faster (0.5 s) but takes up more space (930 MB). The compressed one loads a few
seconds slower (3.8 s) but is significantly smaller (156 MB). Therefore it is better to use
the compressed form in this case. After images are once loaded, prepared, and saved they
can be loaded and used again within a few seconds.

Architecture of Generative Adversarial Network

The latent space in this GAN has 128 dimensions. The architecture of the discriminator
model can be seen in Table 3.3 and the generator model in Table 3.4.

Training of Generative Adversarial Network

Training, monitoring, and evaluation of results is done the same way as with the GAN for
handwritten digits in the previous section.

Results of training

Basic patterns of a face can be seen in generated images after just a few epochs of training,
but it takes a few hundred epochs to generate faces of better quality. Learned patterns can
change during the training (for example skin color but even gender) as seen in Figure 3.8.
After 5000 epochs of training, generated faces look credible (examples shown in Figure 3.9).
See Figure A.4 for a larger set of results.

Figure 3.8: Faces generated from the same point in latent space and by the same generator
for the LFW dataset. The only thing that changes is the number of epochs the generator
was trained for. Indices of generator’s epochs are 10, 50, 100, 1000, and 5000.
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Layer Settings Shape Parameters
Input (64, 48, 3) 0

Conv2D
Filter count: 32
Kernel size: (3, 3)
Stride size: (1, 1) (64, 48, 32)

128

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (32, 24, 64)

18 496

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (16, 12, 64)

36 928

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 128
Kernel size: (3, 3)
Stride size: (2, 2) (8, 6, 128)

73 856

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 128
Kernel size: (3, 3)
Stride size: (2, 2) (4, 3, 128)

147 584

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0
Flatten (1536) 0
Dropout Rate: 0.4 0

Dense Units: 1
Activation: Sigmoid (1) 1 537

Total trainable parameters 278 529

Table 3.3: GAN trained on the LFW dataset – layers of discriminator model.
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Layer Settings Shape Parameters
Input (100) 0
Dense Units: 1536 (1536) 198 144
LeakyReLU Alpha: 0.2 0
Reshape (4, 3, 128) 0

Conv2DTranspose
Filter count: 128
Kernel size: (3, 3)
Stride size: (2, 2) (8, 6, 128) 147 584

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (16, 12, 64) 73 792

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (32, 24, 64) 36 928

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 32
Kernel size: (3, 3)
Stride size: (2, 2) (64, 48, 32) 18 464

LeakyReLU Alpha: 0.2 0

Conv2D

Filter count: 3
Kernel size: (1, 1)
Stride size: (1, 1)
Activation: Sigmoid

(64, 48, 3) 99

Total trainable parameters 475 011

Table 3.4: GAN trained on the LFW dataset – layers of generator model.
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Figure 3.9: Random generated faces from the generator trained on faces from the LFW
dataset.

3.4 Generating faces using Flickr-Faces-HQ database
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of photographs of faces created
as a benchmark for Generative Adversarial Networks [9]. Images were extracted from
photographs uploaded to service Flickr and then aligned, cropped and saved as png files.
Dataset consists of 70000 color images with a resolution of 1024 × 1024 pixels with a large
variety of age, ethnicity, background, and accessories as glasses and hats. Images with
a lower resolution of 128 × 128 pixels were used in this thesis. More information about the
FFHQ database is provided in section 2.4.

Loading and preparing images

Images can be downloaded either manually or with a script prepared by the dataset cre-
ators1. The whole dataset is too large to be held in the memory during the training (it
takes up over 60 GB of space), it has to be divided into parts and each part has to be
loaded during every epoch. Therefore, it is necessary to guarantee the shortest possible
time for loading by preprocessing of the images. They have to be loaded from png files to
NumPy ndarray and then saved to npy files. The non-compressed version of saved NumPy
ndarray loads faster, the only downside is that it requires more disk space but that is not
very important in this case. Each npy file contains 1400 images, which means the dataset
is saved into 50 of these files.

Architecture of Generative Adversarial Network

The dimensionality of the latent space used in this GAN is 256. The architecture of the
discriminator model can be seen in Table 3.5 and the generator model in Table 3.6.

Training of Generative Adversarial Network

The size of the training batch is set to 256. At the beginning of each epoch, the first part of
the dataset is loaded. For the training of the discriminator, 128 samples from the dataset
are used together with 128 generated samples to form a batch. Then another batch is
formed the same way and this continues until the part of the dataset has been completely
used. If there is only a lower number of samples available in the dataset, more generated

1FFHQ dataset is available at https://github.com/NVlabs/ffhq-dataset
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Layer Settings Shape Parameters
Input (128, 128, 3) 0

Conv2D
Filter count: 32
Kernel size: (1, 1)
Stride size: (1, 1) (128, 128, 32)

128

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (64, 64, 64)

18 496

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 128
Kernel size: (3, 3)
Stride size: (2, 2) (32, 32, 128)

73 856

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 128
Kernel size: (3, 3)
Stride size: (2, 2) (16, 16, 128)

147 584

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 256
Kernel size: (3, 3)
Stride size: (2, 2) (8, 8, 256)

295 168

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0

Conv2D
Filter count: 256
Kernel size: (3, 3)
Stride size: (2, 2) (4, 4, 256)

590 080

LeakyReLU Alpha: 0.2 0
Dropout Rate: 0.4 0
Flatten (4096) 0
Dropout Rate: 0.4 0

Dense Units: 1
Activation: Sigmoid (1) 4 097

Total trainable parameters 1 129 409

Table 3.5: GAN trained on the FFHQ dataset – layers of discriminator model.
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Layer Settings Shape Parameters
Input (256) 0
Dense Units: 4096 (4096) 1 052 672
LeakyReLU Alpha: 0.2 0
Reshape (4, 4, 256) 0

Conv2DTranspose
Filter count: 256
Kernel size: (3, 3)
Stride size: (2, 2) (8, 8, 256) 590 080

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 128
Kernel size: (3, 3)
Stride size: (2, 2) (16, 16, 128) 295 040

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 128
Kernel size: (3, 3)
Stride size: (2, 2) (32, 32, 128) 147 584

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 64
Kernel size: (3, 3)
Stride size: (2, 2) (64, 64, 64) 73 792

LeakyReLU Alpha: 0.2 0

Conv2DTranspose
Filter count: 32
Kernel size: (3, 3)
Stride size: (2, 2) (128, 128, 32) 18 464

LeakyReLU Alpha: 0.2 0

Conv2D

Filter count: 3
Kernel size: (1, 1)
Stride size: (1, 1)
Activation: Sigmoid

(128, 128, 3) 99

Total trainable parameters 2 177 731

Table 3.6: GAN trained on the FFHQ dataset – layers of generator model.

30



images are used to have the batch size fixed. A new part of the dataset is loaded instead
of the previous one afterward and the training continues. This procedure repeats for each
epoch. The generator model is trained on a batch consisting of 256 generated images.

Training of this GAN takes a long time and therefore it is necessary to somehow check-
point the training. One option of checkpointing is saving weights of models and loading
them to continue with training. Saving of states of models can also be used for comparison
of models’ improvements during the training. This GAN saves weights of the discrimina-
tor, the generator, and also the whole GAN model after each epoch. When the training is
launched again, the weights are loaded and it can continue from where it last stopped.

Results of training

The first patterns of faces can be seen after just a few epochs but it takes a few hundreds of
epochs to generate a good image of faces. The progress of training can be seen in Figure 3.10.
After 700 epochs of training, generated faces are starting to look credible (examples shown
in Figure 3.11). See Figure A.5 for a larger set of results.

Figure 3.10: Faces generated from the same point in latent space and by the same generator
trained on the FFHQ dataset. The only thing that changes is the number of epochs the
generator was trained for. Indices of generator’s epochs are 10, 50, 100, and 700.

Figure 3.11: Random generated faces with GAN trained for 700 epochs on the FFHQ
dataset.
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Possibilities for improvement

The achieved results are not the best possible ones that the GANs can produce. Several
practices can provide better results but they were not implemented because they are beyond
the scope of this thesis. This subsection is a summary of these practices and methods.

One of the most important factors in deep learning overall is the computational power
and time available for the training. With more resources, better results can be always
achieved. In practice, that means that images with higher resolution could be used for
training and generated images would then also have higher resolution. If the GAN is
trained for a longer time, produced images are also more trustworthy.

GANs can be also trained with a different methodology that focuses on a progressive
growing of both discriminator and generator simultaneously [8]. GAN is first trained on im-
ages with a small resolution of 4 × 4, then another layer is added to process 8 × 8 images
and the training continues. This approach is repeated until the final resolution of images is
achieved. All of the parameters of both models are trained during the process. The train-
ing process is more stable because the GAN learns the large-scale structure of the image
distribution and then gradually learns the finer details. It also reduces the training time
because the training iterations at lower resolutions are faster.

Another way to improve the GAN is by adding a minibatch standard deviation layer
to the end of a discriminator [8]. This approach increases variation in the results. Im-
provements can be also achieved by using He’s initializer for normalizing weights during
the training. It replaces an adaptive Stochastic Gradient Descent method such as Adam.
The dynamic range of all weights is the same and therefore, their learning speed is equal.
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Chapter 4

Latent space analysis for
generating faces with specific
features

The process of generating an image from a latent point is deterministic, the generator model
always generates the same image when provided with the same latent point. From this fact
arises a question of whether a specific feature of a face is located in some part of latent
space. If this is true, a position of a latent point implies specific features of a face generated
from this latent point. Therefore, the following hypothesis is formed. “It is possible to
generate images with specific characteristics.”

Before the analysis can be done, it is necessary to obtain features of a face and a latent
point used to generate that face. These two pieces of information then can be used to
analyze the latent space. This process is discussed in section 4.1. The analysis is divided
into two parts, first the dimensions of latent space are analyzed separately in section 4.2,
then in section 4.3, the whole latent space is analyzed by projecting it into a subspace
with the Linear Discriminant Analysis. Finally, a tool for generating images of faces with
requested features is introduced in section 4.4.

4.1 Manual labeling of generated images
Generated images sometimes do not offer good enough quality for automatic labeling of
requested features, therefore, a manual approach was chosen in this thesis. In the beginning,
a latent point is generated and saved in a CSV format1. After that, a face is generated
from this latent point and displayed on the screen and also saved. The user then fills in
a simple questionnaire about the face’s features. After completing it, features are saved in
a JSON format2. It contains one main JSON object with separate features as shown here.

{
"glasses": "no",
"hair_color": "brown"

}
1CSV – Comma-Separated Values, more information in RFC 4180 at https://tools.ietf.org/html/

rfc4180
2JSON – JavaScript Object Notation, more information in STD 90 at https://tools.ietf.org/html/

std90
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During the labeling of images, the user can also label an image as not valid, when the
observed feature is hard to recognize. Images that are not valid are not used later for the
latent space analysis. The generator is not perfect, it can create faces that are far from
being real. The ability to label them as not valid makes the results of latent space analysis
more precise.

Two features were chosen for observing. The first one is the presence of glasses on
a person’s face. The main reason for choosing this feature as the first one that is observed
is that it has only two classes, a person either has or does not have glasses. The second
observed feature is the color of a person’s hair. This feature was chosen as one that can be
separated into more than 2 classes, exactly 4 were chosen: blond, brown, black, and gray.
Both of these features are very easy to recognize in an image when the classification is done.
Other features that could be observed are for example gender, skin color, or direction the
head is facing, but all of these are harder to manually classify. Observing of the features
was done separately.

For this thesis, 500 faces were added information about having or not having glasses.
Another 500 faces were then labeled with the hair color. This amount of images is suf-
ficient for the analysis with the used methods. Examples of the labeled faces are shown
in Figure A.6.

Before the analysis, latent points are loaded into NumPy ndarray and feature classes are
converted from strings to integers. The conversion is done with a Label Encoder3 model
from the scikit-learn library [15]. This model is also saved for later use when generating
new faces with specific features.

4.2 Analysis of separate dimensions of latent points
This section deals with the following hypothesis. “It is possible to use a single dimension of
a latent point to separate classes of a single feature of the generated face.” For experimental
purposes, the presence of glasses on a person’s face was chosen as an observed feature. This
feature contains two classes and therefore Student’s t-test can be used to analyze dimensions
in a latent space.

Student’s t-test is a statistical hypothesis test that determines whether two samples are
expected to come from the same population [6]. It compares the means of the samples and
outputs the difference between them.

Initial assumptions about data

There are 3 initial conditions of Student’s t-test that have to be met. The first one is that
the samples have to be independent. Since the latent points are obtained as random values
from Standard Normal Distribution without any connection to each other, this condition
is fulfilled.

The second condition is that samples come from Normal Distribution. As mentioned in
the previous paragraph, latent points are generated from Standard Normal Distribution but
it is also possible to compare the samples with this distribution if there are any differences.
For this, stats.normaltest function from the SciPy library was used. The test outputs
a 2-sided chi-squared probability (p-value) that can be compared with a significance level
𝛼. If the p-value is lower than 𝛼, for that dimension the data might not be distributed

3More information about Label Encoder in the library’s API at https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.LabelEncoder.html
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normally. Significance level 𝛼 was set to 0.01. After this test was done, 7 dimensions
were indicated as not coming from Normal Distribution (dimensions number 13, 42, 206 for
samples without glasses and dimensions number 58, 86, 94, 99 for samples with glasses).
This violation of normality is not big enough for samples not to be considered as normal.

The third condition is equality of variance of samples, which can be calculated with
Levene test from SciPy library4. This test computes the p-value for each dimension and
if it is smaller than 𝛼, the variance in that dimension is not equal for the two classes.
After doing this test for all dimensions, 3 of them were found as having different variances
(dimensions number 164, 171, 220). This violation is considered insignificant, therefore, the
variance equality condition is also fulfilled.

Calculation of Student’s t-test

After all initial conditions are met, the Student’s t-test can be done. Latent points and
classes of all samples are loaded into two DataFrames structures of pandas library according
to their class.

The first task is to form the Null and Alternate Hypothesis, in this example, the Two-
Tailed test was chosen. Null Hypothesis 𝐻0 expects the difference between the means of
classes to be equal to a value 𝑐. In this case, the expected difference 𝑐 is equal to 0. Alternate
Hypothesis 𝐻1 then expects the classes to have a different mean. The task of a Student’s
t-test is to determine whether the Null Hypothesis holds [6].

𝐻0 : 𝜇1 − 𝜇2 = 𝑐

𝐻1 : 𝜇1 − 𝜇2 ̸= 𝑐

𝑐 = 0

Next step is to calculate the t-statistic for the data by the formula following this para-
graph. 𝑀1 and 𝑀2 are means of the data, 𝑛1 and 𝑛2 are counts of samples of classes and
𝑆2 is the weighted average of standard deviations 𝑆2

1 a 𝑆2
2 .

𝑡 =
𝑀1 −𝑀2

𝑆
√︁

1
𝑛1

+ 1
𝑛2

𝑆2 =
(𝑛1 − 1)𝑆2

1 + (𝑛2 − 1)𝑆2
2

𝑛1 + 𝑛2 − 2

After that, a critical region is computed using the significance level 𝛼, which is a proba-
bility of Null Hypothesis being rejected despite it being true. The critical region is calculated
using the following formula.

𝑊 = (−∞;−𝑡1−𝛼/2(𝑛1 + 𝑛2 − 2)⟩ ∪ ⟨𝑡1−𝛼/2(𝑛1 + 𝑛2 − 2);∞)

If test criterium 𝑡 belongs to the critical region, the Null Hypothesis is rejected on the
significance level 𝛼 and Alternate Hypothesis holds.

Dimensions, for which the Null Hypothesis gets rejected, affect the given feature (glasses
presence). After doing the calculation, dimensions for which the Null Hypothesis got re-
jected are: 20, 25, 30, 46, 70, 110, 143, 144, 148, 156, 160, 171, 206, 212, 216, 230, 237, 248,

4Details of the Levene test can be found at https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.levene.html
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250. Data can be further examined using histograms of the sample distribution. At first
sight, classes are not separable even in these dimensions. Representative examples are
shown in Figure 4.1, others look very similar.
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Figure 4.1: Distribution of samples with values from dimensions number 148 and 237.

Results of Student’s t-test

It is clear that some dimensions of a latent space have a larger impact on the feature than
the others but no single one of them can be used to determine a feature. Therefore, the
proposed hypothesis is rejected. However, a combination of certain dimensions could be
used for the latent space analysis. This approach is discussed in the following section.

4.3 Linear Discriminant Analysis for latent space projection
If one single dimension cannot be used to separate the features, a linear combination of
multiple dimensions might be better for this task. In this thesis, a technique called Linear
Discriminant Analysis (LDA) is discussed. It projects data to a lower-dimensional space
where the class-separability is better [2]. The hypothesis proposed in this section is as
follows. “Latent space can be projected to a subspace in a way that makes the classes of
features of a face generated from a point in that latent space separable.”

Input data for this analysis are 256-dimensional vectors representing a single point in
a 256-dimensional latent space. The calculation is focusing on data with the feature of
glasses presence on a person’s face, which means a feature with 2 classes. LDA assumes
normally distributed data, statistically independent features (in this case, features are the
dimensions of latent space), and identical covariance matrices for every class. The fulfillment
of these assumptions is explained in section 4.2.

Calculation of Linear Discriminant Analysis

The first step of LDA is calculating of 256-dimensional mean vectors 𝑚𝑚𝑚𝑖 for each of the
classes 𝑖. This vector contains, as the name suggests, the mean value of the samples in all
of their 256 dimensions. 𝐷𝑖 is a set of all samples 𝑥𝑥𝑥 in class 𝑖 and its cardinality is 𝑛𝑖.
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𝑚𝑚𝑚𝑖 =

⎡⎢⎢⎢⎢⎢⎣
𝜇𝑖1

𝜇𝑖2
...

𝜇𝑖255

𝜇𝑖256

⎤⎥⎥⎥⎥⎥⎦ , with 𝑖 = 0, 1 𝑚𝑚𝑚𝑖 =
1

𝑛𝑖

𝑛𝑖∑︁
𝑥𝑥𝑥∈𝐷𝑖

𝑥𝑥𝑥

In the next step, 256× 256-dimensional within-class and between-class scatter matrices
are computed. These matrices are used to make estimates of covariance matrices. The
within-class scatter matrix 𝑆𝑊 is computed by the following formula, where 𝑐 is the number
of classes. Indexing of classes starts at 0, therefore, 𝑐− 1 is used in the formulas.

𝑆𝑊 =

𝑐−1∑︁
𝑖=0

𝑆𝑖, where 𝑆𝑖 =

𝑛∑︁
𝑥𝑥𝑥∈𝐷𝑖

(𝑥𝑥𝑥−𝑚𝑚𝑚𝑖) (𝑥𝑥𝑥−𝑚𝑚𝑚𝑖)
⊤

And between-class scatter matrix 𝑆𝐵 is computed by the following formula, where 𝑚𝑚𝑚 is the
overall mean of data and 𝑁𝑖 is the cardinality of a sample set of the respective class.

𝑆𝐵 =
𝑐−1∑︁
𝑖=0

𝑁𝑖(𝑚𝑚𝑚𝑖 −𝑚𝑚𝑚)(𝑚𝑚𝑚𝑖 −𝑚𝑚𝑚)⊤

In the following step, linear discriminants are computed by solving the generalized eigen-
value problem for matrix 𝑆−1

𝑊 𝑆𝐵. The computed eigenvectors and eigenvalues are important
information about the distortion of a linear transformation. Eigenvectors are basically the
direction of distortion and their length is 1. Eigenvalues describe the magnitude of this dis-
tortion, they scale the eigenvectors. When performing the LDA, eigenvectors are forming
the axes of a new subspace and eigenvalues are giving information about how important
are respective eigenvectors for the separation of classes.

For LDA, the number of linear discriminants 𝑑 is at most 𝑐− 1, in other words, one less
than the number of classes. That means that for the glasses presence feature, latent space
can be only projected to 1-dimensional space when using the LDA (𝑑 = 1). The eigenvalues
can be sorted in decreasing order to determine the number of chosen linear discriminants
𝑑. Respective eigenvectors of chosen eigenvalues are forming the eigenvector matrix 𝑊𝑊𝑊 , in
this case, it is 256 × 1-dimensional. Matrix 𝑊𝑊𝑊 is used to transform 𝑛 × 256-dimensional
data 𝑋𝑋𝑋 to 𝑛× 1-dimensional data 𝑌𝑌𝑌 .

𝑌𝑌𝑌 = 𝑋𝑋𝑋 ×𝑊𝑊𝑊

Implementation of Linear Discriminant Analysis

Python’s library scikit-learn already has an implementation of LDA, therefore, it is not
necessary to implement it manually [15]. The implemented LDA model5 will perform the op-
erations faster and it is also easier to use. But the main reason for using the scikit-learn
LDA model is that it can also serve as a classifier. The model can be saved into a file for
later use with the joblib library. Function dump saves it to a file and function load takes
care of loading the model when it is used later6.

5More information about scikit-learn LDA model in library’s API at https://scikit-learn.org/stable/
modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html

6Official website of joblib library with further details at https://joblib.readthedocs.io/en/latest/
persistence.html
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The main parameter when initializing the model is a number of components, this is the
dimensionality of a subspace the data are projected into. Then the model is trained using
the fit method provided with the original data (latent points) and their labels (classes).
Method transform does the projecting of data into a subspace. In Figure 4.2 can be seen
the transformed samples of latent points labeled with the feature of glasses presence. It is
clear that the classes can be separated and therefore the initial hypothesis, whether the
samples can be projected to a subspace where the classes are separable, is accepted for
a feature with 2 classes.

Without glasses
With glasses

Figure 4.2: 500 samples of faces labeled with glasses presence transformed from
256-dimensional space to 1-dimensional space using LDA.

LDA model can also be used to transform and classify multi-class samples such as faces
labeled with hair color. 4 different classes were chosen for this feature: blond, brown, black,
and gray hair. The number of components for the model is set to a maximum value of 3,
one lower than the number of classes. Figure 4.3 displays the transformed samples. LDA
managed to project the samples into such subspace where the classes are separable and
therefore the initial hypothesis holds for multi-class samples.

Black
Blond
Brown
Gray

Figure 4.3: 500 samples of faces labeled with hair color projected from 256-dimensional
space to 3-dimensional space using LDA.

4.4 Generating faces with specific features
The simplest approach to generating faces with specific features is to generate a large
number of latent points (for example 1000) and use the classifier to determine whether
the generated face will have the asked features. The first latent point that meets these
requirements is used to generate a face. If 1000 generated latent points are not enough,
1000 more are generated and the classifying continues. The latent point has to satisfy all
of the conditions for requested features, only then it is accepted.

Classification of features from the latent point can be done by multiple methods of
the LDA model, for example, predict, predict_proba, or decision_function. LDA
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classifier for glasses presence was tested on 100 unseen images that were manually labeled
and its success rate was 75 % when using the predict method. To ensure that generated
latent point belongs to a face with requested features, a classifying method that offers more
information than just hard decisions might be used.

Method predict_proba gives information about the probability of the sample belonging
to each of the classes. The latent point can be then accepted for generating a requested
face only in the case where the probability of requested features is multiple times bigger
than the probability of other classes of those features. In this thesis the multiplier for latent
point acceptance is 108. For example, the probability of a face with glasses has to be 108

higher than the probability of face without glasses, only then is the latent point accepted.
This increases the probability of generating the requested face.

An experiment was done to test how the multiplier affects the probability of the re-
quested feature being part of the face. The glasses presence was chosen as a requested
feature. For each of the multipliers, 100 images were generated and manually labeled. Re-
sults are only approximate but as can be seen in Table 4.1 higher multiplier can positively
affect the generator success rate. In the original dataset of 500 labeled faces, 21 % of them
were with glasses.

Multiplier 1 100 104 106 108

Probability 45 % 53 % 62 % 71 % 84 %

Table 4.1: Comparison of how the multiplier affects the probability of generating face in the
requested class. The multiplier is used to make the difference between the requested class
and other classes bigger by multiplying the probability of other classes before comparing
with the requested class probability.

The main hypothesis of this chapter is as follows. “It is possible to generate images with
specific characteristics.” Face with requested features can be generated with probability
approximately 80 % and therefore the hypothesis is credible. Generated images of faces
with various features can be seen in Figure A.7.

Further improvement could be achieved by using the LDA only for projecting of the
samples to a subspace and then using another model, such as Support Vector Machine,
for classification. Another way of improving the latent space analysis would be to use
Quadratic Discriminant Analysis (QDA) instead of Linear Discriminant Analysis. Classes
are not always easily linearly separable and by introducing a non-linearity to the process,
results could improve.
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Chapter 5

Conclusion

This thesis had two main goals. The first goal was to design and develop a Generative
Adversarial Network (GAN) that is able to generate credible images of faces. And the
second goal was to develop a tool that provides an option to generate faces with specific
features without any changes to the GAN itself. Both of these goals were completed.

In order to obtain the knowledge necessary to understand how GANs work, different
fields of Machine Learning had to be studied. Basic knowledge about Neural Networks and
especially Convolutional ones is fundamental to complete this task. Generative Adversarial
Networks were then thoroughly studied. Available image databases were reviewed and three
were chosen for the implementation.

Three models of GANs were successfully implemented. The first one can generate images
of handwritten digits in grayscale. The second one was gradually implemented as a variation
of the previous GAN and it is able to generate low-resolution color images of faces. Last
GAN was focused on higher resolution color images with a large variance in the look of
faces and backgrounds and it is capable of generating 128 × 128-pixel color images with
real-looking faces.

Latent space that represents a source for generator inputs was analyzed with two meth-
ods. A small dataset of faces labeled with information about glasses and hair color was used
for the analysis. At first, Student’s t-test was used to determine that no single dimension of
latent space can be used to separate classes of a feature. Next, Linear Discriminant Anal-
ysis was computed to project the latent space to a subspace where the classes of features
were separable. This accomplishment leads to the possibility of providing the generator
with specific input to generate face with requested features with probability approximately
80 %. A simple tool that allows a user to set features and generate a face with them is
implemented.

The quality of generated images could be improved by using advanced techniques
in GAN design as progressive growing or minibatch standard deviation. As it is very com-
mon for Neural Networks, better results could be also achieved with more computational
power and longer training process.

Latent space analysis could be improved by an automatic feature recognition to expand
the number of possible requested features and to achieve higher precision in the latent space
analysis. A non-linear method as Quadratic Discriminant Analysis could be used for the
projection into a subspace and an advanced classifier, such as Support Vector Machine,
could be used after this projection.
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Appendix A

Generated images

This appendix shows images generated from Generative Adversarial Networks (GANs) de-
scribed in this thesis. All examples are fair random draws, they are not cherry-picked.

Generated handwritten digits
Images generated from GAN trained on the Modified National Institute of Standards and
Technology (MNIST) digit database. The resolution of generated images is 32 × 32 pixels.

Figure A.1: Handwritten digits from the generator trained for 1000 epochs.
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Generated faces from Labeled Faces in the Wild database
Images generated from GAN trained on Labeled Faces in the Wild (LFW) database. Images
are separated into 3 figures that display the transition from GAN used for handwritten
digits. Figure A.2 shows images generated by the same GAN, just trained on the LFW
database. Figure A.3 displays images with the resolution of the LFW database but still
grayscale. And finally, Figure A.4 presents images matching the original LFW database.

Figure A.2: Grayscale cropped faces from the generator trained for 1000 epochs on the
LFW database.

Figure A.3: Grayscale faces from the generator trained for 1000 epochs on the LFW
database.
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Figure A.4: Color faces from the generator trained for 5000 epochs on the LFW database.

Generated faces from Flickr-Faces-HQ database
Images generated from GAN trained on Flickr-Faces-HQ (FFHQ) database. Figure A.5
shows randomly generated faces without any labels. Manually labeled faces can be seen
in Figure A.6. Faces generated with features requested by the user are in Figure A.7.
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Figure A.5: Random faces from the generator trained for 700 epochs on the FFHQ database.
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(a) Faces with glasses.

(b) Faces without glasses.

(c) Faces with black hair.

(d) Faces with brown hair.

(e) Faces with gray hair.

(f) Faces with blond hair.

Figure A.6: Manually labeled faces from the generator trained for 700 epochs on the FFHQ
database.
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(a) Faces that should have glasses.

(b) Faces that should have black hair.

(c) Faces that should have brown hair.

(d) Faces that should have gray hair.

(e) Faces that should have blond hair.

(f) Faces that should have glasses and black hair.

(g) Faces that should have glasses and brown hair.

Figure A.7: Faces generated with requested features from the generator trained for 700
epochs on the FFHQ database. The procedure used to generate face with a specific feature
only increases the probability of the feature presence, it does not guarantee a precise result.
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