BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

MULTI-FACTOR AUTHENTICATION IN WEB APPLI-
CATIONS USING PAM

VIAC-FAKTOROVA AUTENTIZACIA VO WEBOVYCH APLIKACIACH POMOCOU PAM

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR MARIAN KAPISINSKY
AUTOR PRACE
SUPERVISOR RNDr. MAREK RYCHLY, Ph.D.

VEDOUCI PRACE

BRNO 2020



Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2019/2020

Bachelor's Thesis Specification ||||||||HL|!HL|||||||||

Student: Kapisinsky Marian
Programme: Information Technology

Title: Multi-Factor Authentication in Web Applications Using PAM
Category:  Security
Assignment:

1. Study Pluggable Authentication Modules (PAM), focus on multi-factor authentication
setups. Configure the multi-factor authentication for a common service (e.g., sshd) and
analyse results. Study HTTP, focus on its state-less nature.

2. Investigate the possibility of using the full PAM stack in web applications, including multi-
step conversations.

3. After agreement with the supervisor, develop a solution which would allow the use of the
PAM conversation over the web. Create a prototype web application/setup to
demonstrate the usage of the solution using FreeOTP.

4. Provide the documentation of the project, evaluate the results and discuss future work.

Recommended literature:

e Andrew G. Morgan, Thorsten Kukuk. The Linux-PAM System Administrators'

Guide [online]. Version 1.1.2, 2010.
[http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html]

e Jan Humpolik. Webova aplikace vyuzivajici vicefaktorovou autentizaci [online]. Brno:
Vysoké uceni technické v Brné. Fakulta elektrotechniky a komunikaénich technologii.
2013. [http://hdl.handle.net/11012/20728]

e Liliana F. B. Soares, Diogo A. B. Fernandes, Mario M. Freire, Pedro R. M. Inacio. Secure
user authentication in cloud computing management interfaces. IEEE 32nd International
Performance Computing and Communications Conference (IPCCC), San Diego, CA,
2013. [https://doi.org/10.1109/PCCC.2013.6742763]

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rychly Marek, RNDr., Ph.D.

Head of Department:  Kol&f Du$an, doc. Dr. Ing.

Beginning of work: November 1, 2019

Submission deadline: May 28, 2020

Approval date: October 16, 2019

Bachelor's Thesis Specification/22370/2019/xkapis00 Strana 1z 1



Abstract

The aim of this thesis is to implement multi-factor authentication using PAM for web appli-
cations. The thesis describes authentication and its modern trends, the related technologies
and their incompatibility, as well as the state of authentication in web applications using
PAM before the solution, the solution itself, and its integration to an example application.
The thesis also provides relevant examples and guides.

Abstrakt

Cielom tejto prace je implementacia viacfaktorovej autentizacie vo webovych aplikaciach
pomocou PAM. Prica popisuje autentizaciu a jej moderné trendy, suvisiace technologie
a ich nekompatibilitu, ako aj stav autentizacie vo webovych aplikdciach pouzitim PAM
pred riesenim, samotné riesenie a jeho integraciu do vzorovej aplikacie. Praca poskytuje aj
prislusné priklady a névody.

Keywords

web, application, security, multi-factor authentication, HTTP, WebSocket, HTML form,
JavaScript, Node.js, N-API, addon, PAM

Klacové slova
web, aplikdcia, bezpecnost, viacfaktorova autentizacia, HTTP, WebSocket, HTML for-
muldr, JavaScript, Node.js, N-API, addon, PAM

Reference

KAPISINSKY, Maridn. Multi-Factor Authentication in Web Applications Using PADM.
Brno, 2020. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor RNDr. Marek Rychly, Ph.D.



Rozsireny abstrakt

Tato praca sa zaobera viacfaktorovou autentizaciou vo webovych aplikidcidch pomocou
PAM. Préca popisuje bezpec¢nostni technolégiu pouzivani v UNIX/UNIX-like opera¢nych
systémoch pre overovanie (autentizaciu) uzivatelov — PAM a jej vyhody. Priklad konfig-
urdcie PAM pre SSHD ukazuje, aké moznosti tato technolégia poskytuje pre viacfaktorové
overovanie. Dalej, praca opisuje proces autentizacie pomocou PAM na trovni volani funkcif
PAM-API. Najdolezitejsim poznatkom je, ze pri kazdom vytvoreni novej PAM transakcie
sa taktiez vytvori novy proces v tabulke procesov operacného systému, ktory drzi stav tejto
transakcie. Praca tiez popisuje implementéciu modulu uréeného na testovanie a demonstra-
ciu réznych konfiguracii a samotného riesenia, praca poskytuje.

Praca dalej popisuje autentiziciu vo webovych aplikaciach a jej moderné trendy. Pévodné
jednofaktorové autentizacné mechanizmy vyzadujice meno a heslo, sa pri ¢oraz pocetnejsich
hrozbach na Internete ukézali ako nedostacujtice a bolo nutné vyvinit novsie mechanizmy
pre bezpecnost na webe, konkrétne viacfaktorovi autentizdciu. Praca taktiez popisuje fak-
tory, ktoré existuju — uzivatel nieco vie, nieco md, nieco je alebo niekde je. NajpouzivanejSou
kombinéciu faktorov na webe je heslo a jednorazové heslo (OTP), konkrétne ¢asovo zavislé
jednorazové heslo (TOTP), ktoré si uzivatel generuje lokdlne pomocou mobilnej aplikicie,
napr. FreeOTP alebo Google Authenticator. Praca taktiez popisuje problémy s aplikaciami
tretich stran a odporicania pre silu hesla, resp. ¢o by mali aplikacie pozadovat od uzivatelov
pri tvorbe hesla.

Délezitou ¢astou pre pochopenie rieSeného problému je pochopenie zakladnej webovej tech-
nolégie HTTP a jej zdkladného spdsobu autentizacie uzivatelov. Ten spdsob ma vsSak
niekolko nevyhod, pre ktoré uz vo vécsine modernych aplikicii nie je pouzivany. Miesto
neho sa zacala pouzivat autentizacia pouzitim formuldrov, pomocou ktorych sa od uzivatela
ziskaju potrebné informécie (faktory) pre samotnu autentizéciu.

Praca dalej predstavuje uz existujice riesenia autentizicie vo webovych aplikacidch pomo-
cou PAM. Tieto rieSenia s vSak jednofaktorové. Avsak, jedno z nich umoznuje rozsirenie
na viacfaktorovii autentizaciu. Toto riesenie vyuziva JavaScriptové prostredie pre vyvoj
serverovych aplikacii — Node.js, jeho kniznicu, ktorda implementuje WebSocket protokol
a addon, node-linux-pam, implementujici PAM pre Node.js napisany v jazyku C.

Po vysvetleni nekompatibility technolégii HTTP a PAM, praca poskytuje riesenie daného
problému a jeho popis. RieSenie sa sklada z 3 casti — addon node-auth-pam, WebSocket
server a klient. Addon node-auth-pam je addon implementujici PAM pre Node.js. AvsSak,
na rozdiel od uz spominaného addonu, node-auth-pam podporuje viacfaktorovi autentiza-
ciu. Poskytuje Styri funkcie — authenticate(), setResponse(), kill() a cleanUp().
Server tieto funkcie nésledne spravne vyuziva a tym zabezpecuje komunikiciu medzi klien-
tom a PAM. Klient zobrazuje spravy PAMu a nésledne odosiela uzivatelove odpovede
na dané spravy, resp., na tie ktoré odpoved vyzaduju. Praca tak isto poskytuje poskytuje
sposob integracie tohoto riesenia do ITubovolnej webovej aplikicie a priklad takej aplikacie.
Praca poskytuje aj prislusné priklady a navody.



Multi-Factor Authentication in Web Applications
Using PAM

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of RNDr. Marek Rychly, Ph.D. The supplementary information was
provided by Jan Pazdziora, Ph.D. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this thesis.

Marian Kapisinsky
May 26, 2020

Acknowledgements

I would like to thank my supervision RNDr. Marek Rychly, Ph.D. for support, feedback
and guidance mainly in the formal aspect throughout the writing of my thesis. 1 would
also like to thank my consultant Jan Pazdziora, Ph.D. for support, feedback and guidance
mainly in the technical and language aspect throughout the writing of my thesis.



Contents

Introduction

1

Pluggable Authentication Modules

1.1 PAM Framework . . . . . . . . . . . ... ..
1.2 Configuring Multi-factor Authentication for SSHD . . . .. ... ... ...
1.3 PAM-API --Essential Structures and Functions . . . ... .. ... ... ..
1.4 Authentication in PAM-Aware Applications . . . . . . . ... ... .....
1.5 Example Authentication Module . . .. ... ... ... ... ........
1.6 Advantages of Using PAM . . . . . . . . . . . ... ... ... .. .. ...

Authentication in Web Applications

2.1 Authentication . . . . . . . . . . ..
2.2 Third-Party Applications . . . . . . . . . . . . ... ...
2.3 Password Strength . . . . . . .. ..

Authentication Using Only HTTP

3.1 Hypertext Transfer Protocol . . . . . . . . . ... ... ... .. .......
3.1.1 HTTP Messages . . . . . v v v v v v vttt et
3.1.2 Session Management and Cookies . . . . . . ... ... ... .....

3.2 Basic Authentication . . . . . . . . ...
3.2.1 Disadvantages. . . . . . . . ...
3.2.2 Example Configuration in Apache . . . . ... ... ... ......

3.3 Form-based Authentication . . . . ... ... .. ... ... ... ... ..

Current State of Authentication in Web Applications Using PAM

4.1 Existing Solutions . . . . ... ..o

4.2 Example Configuration in Apache . . . . . . ... ... ... ... .....

4.3 PAM Authentication Using WebSockets . . . . . ... ... ... ... ...
4.3.1 Node.js . . . . o o e
4.3.2 Example with node-linux-pam . . .. ... ... ... ... . ....

4.4 Adding More Factors . . . . . . . . . ...

Multi-Factor Authentication in Web Applications Using PAM

5.1 HTTP and PAM Incompatibility . . . . . .. .. ... ... ... .. ....

5.2 The Basis of the Solution . . . . . . ... ... ... ... . ... .....

5.3 PAM Authentication Addon for Node.js . . . . . . .. ... ... .. ...,
5.3.1 Test Application . . . . . . . .. ...

5.4 The WebSocket Server . . . . . . . . ... .

16
16
16
17
18
20
20
21

24
24
25
26
27
27
30



5.5 The WebSocket Client . . . . . . .. .. ... ...
5.6 Integration to a Web Application . . . . . . . .. ... ... L.
5.6.1 Example Web Application . . . . . . . ... ... ...

6 Conclusion
6.1 Future Work . . . . . . . e

Bibliography
A How to setup SSSD
B How to set up Google Authenticator

C CD Content

46
46

47

50

51

52



Introduction

With the increasingly advanced development of web technologies, there is also an increasing
amount of threats on the Internet. Therefore, the demand for security in web applications
is also rising. Single-factor authentication has rendered outdated, so new authentication
mechanisms had to be developed. The main mechanism that is now becoming more and
more popular, because of its higher security factor is multi-factor authentication. There
already is a good number of its implementations, but there is yet no implementation using
the Pluggable Authentication Modules for web applications. However, PAM and HTTP and
inherently not compatible, so the use of newer technologies is necessary, namely WebSockets.

The chapter 1 describes Pluggable Authentication Modules framework, demonstrates a multi-
factor setup for Secure Shell Daemon, describes the requirements for applications that use
PAM, describes how authentication using PAM works, shows a simple PAM authentication
module implementation, and describes the advantages of using PAM.

The chapter 2 describes authentication in web applications, authentication factors, au-
thentication issues with the third-party applications, and recommendations for password
strength, or what should web applications require from users when creating a password.

The chapter 3 describes the relevant basics of the Hypertext Transfer Protocol, basic au-
thentication and its disadvantages, and provides an example setup using the Apache web
server, and finally the form-based authentication.

The chapter 4 describes several already existing solutions for authentication in web ap-
plications using PAM, provides relevant example configurations, describes the WebSocket
protocol and Node.js, and provides an example setup, and finally describes the incompati-
bility issue of the existing solutions and multi-factor authentication.

The chapter 5 describes the HT'TP and PAM incompatibility, the basis of the solution,
the node-auth-pam addon, the server-side of the solution, the client-side of the solution,
the integration to a web application, and an example application.

The appendix A provides a guide for configuring the SSSD service.
The appendix B provides a guide for configuring Google Authenticator.
The appendix C describes the content of the attached CD.

This thesis uses Fedora 31 for all examples, the implementation, and its demonstration.



Chapter 1

Pluggable Authentication Modules

This chapter takes a look at the Pluggable Authentication Modules framework and its con-
figuration in section 1.1, demonstrates a multi-factor authentication setup for SSHD in sec-
tion 1.2, describes the requirements for applications that use PAM and the authentication
process in section 1.4, shows a simple authentication module implementation in section 1.5,
and the advantages of using PAM in section 1.6.

1.1 PAM Framework

Pluggable Authentication Modules (PAM) is a common framework (depicted in Figure 1.1),
that allows choosing how applications authenticate users. It is a suite of shared libraries,
located in /1ib/security or /1ib64/security, called PAM modules, written in C. It can
be configured to either perform single-factor authentication or use more complex authenti-
cation mechanisms — multi-factor authentication, for a wide variety of applications. These
applications (also known as “PAM-aware” applications) are written to be compatible with
PAM, in C/C++. It is typically used by many UNIX/UNIX-like operating systems (e.g.
Linux, FreeBSD and Solaris) for user authentication (OS-level security) [4].

PAM Configuration

The PAM configuration is located in a single central file at /etc/pam.conf or in multiple
smaller files named after the application (service) they relate to in /etc/pam.d/. It is
a stack (also known as the “PAM stack”) of actions that must be evaluated for the user
to be given service. Each action is defined on a single line in a single configuration file for
an application in the following format:

module-type control-flag module-path module-arguments

Module types

e auth - an action related to user authentication and/or granting credentials, such as
group memberships



User PAM-API

PAM Configuration in
/etc/pam.conf or
/etc/pam.d/

4| Linux-PAM Interface
Library

PAM-Aware Application [«

Authentication

Account

Y

Password

Session

PAM Modules in
/lib/security or
/1ib64/security

Figure 1.1: PAM Framework

account - an action related to non-authentication based account management
password - an action related to updating users passwords

session - an action related to session management or other tasks that need to be done
before/after the user can be given service

Control flags

The

requisite - the action must be successful for the evaluation process of the stack to
continue. If not, no more actions of the stack or superior substack are processed.

required - the action must be successful. If not, the rest of the actions are processed,
but the stack ultimately fails.

sufficient - if the action succeeds and no earlier required actions have failed, the stack
or superior substack results in success, and no further actions are processed.

optional - result of this action is only important if it is the only action in the stack
associated with the module type

include - include all lines of given type from the configuration file specified as an ar-
gument to this control.

substack - like include, but does not skip the rest of the PAM stack, but only of
the substack if an action forces the evaluation process of the stack to end.

module path provides PAM with either the name of the module or a relative path

from the default module location (pam_unix, pam_sss, pam_deny, ... ).



Module arguments are used to pass information to a module that can modify the mod-
ule’s behavior.

This thesis only focuses on the auth module type. This section was written according to
The Linux-PAM System Administrators’ Guide [1].

1.2 Configuring Multi-factor Authentication for SSHD

Configuring multi-factor authentication using PAM means including two or more auth type
modules in the PAM stack in the configuration file for the service. For the demonstration,
we have chosen the SSHD service, which supports the keyboard-interactive authentication
that allows us to configure multi-factor authentication using PAM:

“Keyboard-interactive user authentication is intended primarily to accomodate
PAM authentication on the server side. It provides for a multiple challenge-
response dialog with the user in which the server sends a text query to the user,
the user types in a response, and this process can repeat any number of times. So
for example, you might configure PAM for SSHD with a module which performs
authentication using an RSA security token, or a one-time password scheme.”
6]

Firstly, we need to configure SSHD (/etc/ssh/sshd_config) to use only the keyboard-
interactive authentication. Find and comment out all lines with the ChallangeRespon-
seAuthentication keyword and add a new line with the AuthenticationMethods key-
word followed by the keyboard-interactive value (by doing this, we prevented that only
the keyboard-interactive authentication will perform). Also, make sure that UsePAM is
enabled. The configuration file should look like this:

#ChallangeResponseAuthentication yes
#ChallangeResponseAuthentication no
AuthenticationMethods keyboard-interactive
UsePAM yes

Now, we need to edit the PAM stack for SSHD at /etc/pam.d/sshd (backup the original
file). We use pam_sss, pam_reversed_login and pam_google_authenticator modules
in our example. The pam_sss module authenticates users against the System Security
Services Daemon (SSSD). The advantage of using SSSD is that it has access to root privi-
leges, which comes useful later in the chapter 4. The configuration file sssd.conf is attached
in appendix A. It authenticates local users against /etc/shadow, but can be configured for
other authentication providers, e.g. Active Directory or LDAP. The pam_reversed_login
is an example module described in section 1.5. It requires the user to enter their re-
versed username (login). The pam_google_authenticator module supports HOTP! and
TOTP? algorithms and can be easily used with the Google Authenticator mobile applica-
tion. The installation and configuration guide is attached in appendix B.

Hearn more at RFC 4226 — HOTP: An HMAC-Based One-Time Password Algorithm
%learn more at RFC 6238 — TOTP: Time-Based One-Time Password Algorithm


https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc6238

Example configuration:

auth required pam_sss.so

auth required pam_reversed_login.so

auth required pam_google_authenticator.so
account required pam_sss.so

session include postlogin

The last line of the configuration file has to be included for SSHD to work correctly. After we
restart the SSH service (systemctl restart sshd) and run the ssh command to connect
to a local user account with the first verbosity level (ssh -v bob@localhost), we can see
how the authentication process proceeds:

debugl: Authentications that can continue: keyboard-interactive
debugl: Next authentication method: keyboard-interactive
Password:

Reversed login:

Verification code:

debugl: Authentication succeeded (keyboard-interactive).

The first thing we can see is that only keyboard-interactive authentication is enabled and
can be performed, which is because we removed any other. Then, we can see that it
asks us step by step for a password, our reversed login and an OTP token. This order
depends on the order the auth type modules are in the configuration file. If we swapped
the pam_reversed_login module and the pam_google_authenticator module, we would
be asked for the OTP token before the reversed login.

1.3 PAM-API — Essential Structures and Functions

For application and module development, the pam-devel package must be installed.
$ dnf install pam-devel -y

It contains all necessary header files (mainly, <security/pam_appl.h> for the application®
development and <security/pam_modules.h> for the module’ development), from which
these structures and functions are essential for further reading:

e Structures

— struct pam_message { int msg_style; const char *msg; }

— struct pam_response { char *resp; int resp_retcode; }

3learn more in The Linux-PAM Application Developers’ Guide
4learn more in The Linux-PAM Module Writers’ Guide


http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_ADG.html
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_MWG.html

— struct pam_conv { int (*conv) ( int num_msg,
const struct pam_message **msg,
struct pam_response **resp,
void *appdata_ptr );
void *appdata_ptr; }

e Functions

— int pam_get_item( pamh, item_type, item)

— int pam_get_user( pamh, user, prompt)
e Application Development Functions

— int pam_start( service_name, user, pam_conversation, pamh )
— int pam_authenticate( pamh, flags )

— int pam_end( pamh, pam_status )
e Module Development Functions

— PAM_EXTERN int pam_sm_authenticate( pamh, flags, argc, argv )
— PAM_EXTERN int pam_sm_setcred( pamh, flags, argc, argv )

1.4 Authentication in PAM-Aware Applications

A PAM-Aware application is required to implement a conversation function, which is a call-
back that allows direct communication between a module and the application. This function
is passed to a module in the pam_conv structure along with void *appdata_ptr that can
pass any data defined by the application between the application and a module. The appli-
cation creates the structure and passes it to the PAM framework as the pam_conversation
argument of the pam_start () function [2].

The pam_start() function is called when the application requires user authentication.
It initiates the PAM transaction with passed service name, username (if defined) and
the pam_conv structure, loads the PAM configuration file for the service line by line in the or-
der, they are specified and returns the PAM handle (pam_handle_t *pamh), which contains
the loaded information (PAM context). If the first step succeeds, the calling application calls
the pam_authenticate () function, which serves as an interface to the authentication mech-
anisms defined in the loaded modules. It calls every mechanism (pam_sm_authenticate()
function) from each module in the order they were loaded from the configuration file.
These modules pass their prompt(s) to the application and obtain user’s response(s) using
the passed conversation function. Each module either succeeds or fails, and the final result
of the authentication process depends on the set control flags. The only exception, where
not every module is called, is when a module with the requisite flag fails, then the authen-
tication fails immediately. Lastly, when the authentication process finishes, the application
calls the pam_end () function to terminate the transaction, and the handle and the context
are no longer valid. The return value of the pam_authenticate () function call (or generally,
the return value of the last PAM API call) is passed as the pam_status function argument



of the pam_end () function, which in case of error informs PAM to perform an appropriate
cleanup. The whole process is depicted in Figure 1.2 [3]. An example application can be
found in The Linux-PAM Application Developers’ Guide [2].

Also, an important thing to mention explicitly is that with the start of a new transaction,
a new process in the OS process table is created. While the transaction lives, the PAM
handle structure is contained within this process. According to [2], it is also possible for
an application to have multiple transactions in parallel.

1.5 Example Authentication Module

The example authentication module described in this section is a module used for testing
and demonstration purposes in this thesis. It prompts the user for their reversed username,
so it is called pam__reversed__login.

Firstly, to be correctly initialized, PAM_SM AUTH must be #define’d before including
the <security/pam_modules.h> header file, which contains pam_sm_authenticate() and
pam_sm_setcred() function prototypes that must be defined in the module’s source code.

#define PAM_SM_AUTH
#include <security/pam_modules.h>

Listing 1.1: Necessary Includes and Defines

Next, there are three helper functions: setMessages (), doPamConv () and authenticate().
The first function sets all four styles of messages in a given array of pam_message structures.
The second function validates a received response from the user against their reversed user-
name and returns either AUTH SUCCESS or AUTH FAIL on error. The third function
uses the conversation function conv() from the pam_conv structure to send pre-configured
messages in the pam_message structure to the PAM-Aware application and returns the re-
ceived response through the pam_response structure double pointer. To obtain the con-
versation function, it calls the pam_get_item() function.

int doPamConv( pam_handle_t *pamh, int num_msg,
const struct pam_message **msg,
struct pam_response **resp ) {

struct pam_conv *conv;
int retval = pam_get_item(pamh, PAM_CONV, (void *)&conv);
if (retval != PAM_SUCCESS) {

return retval;

3

return conv->conv(num_msg, msg, resp, conv->appdata_ptr);

Listing 1.2: Function for Conversation with the PAM-Aware Application




Finally, there are the essential functions of the module. The pam_sm_authenticate () func-
tion is the module’s implementation of the pam_authenticate () interface, which performs
the authentication of the user. First, it gets their username using the pam_get_user ()
function (also defined in the PAM API). If the username was specified at the beginning
of the transaction (pam_start()), it reads it from the PAM handle (pamh->user), oth-
erwise it prompts the user using the conversation function. Next, it creates array of four
pam_message structures and calls the setMessages () function to prepare the messages and
assigns them to the pam_message structure double pointer. The four message styles are:

PAM_PROMPT_ECHO_OFF - do not print text while obtaining the user’s response

PAM_PROMPT_ECHO_ON - print text while obtaining the user’s response

PAM_ERROR_MSG - display error message, no response is obtained

PAM_TEXT_INFO - display some text, no response is obtained

It also prepares a pointer to the pam_response structure, where user’s responses will be
stored. Next, it obtains the responses by calling the do_pam_conv () and validates them with
the authenticate() function. If any step of the validation fails the PAM_AUTH FERR is
returned, otherwise the module finishes with the PAM_SUCCESS return value.

PAM_EXTERN int pam_sm_authenticate( pam_handle_t *pamh,
int flags,
int argc,
const char **argv ) {

const char *login = NULL;
char *reversed_login = NULL;

if ( ( pam_get_user(pamh, &login, "Login: ") ) != PAM_SUCCESS )
fprintf(stderr, "Can’t get login\n");

struct pam_message msgl[4];
const struct pam_message **msgp = NULL;
struct pam_response *resp = NULL;

setMessages (msg) ;

msgp = malloc(4 * sizeof (struct pam_message));

msgp[0] = &msgl[0];
msgp[1] = &msgl[1];
msgp[2] = &msg[2];
msgp[3] = &msgl3];

int retval = doPamConv(pamh, 4, msgp, &resp);

10




int status;
for (int i = 0; i < 2; i++ ) {
if ( retval != PAM_SUCCESS || resp == NULL || resp->resp == NULL ) {
fprintf(stderr, "Didn’t get reversed login\n");
return PAM_SYSTEM_ERR;
} else {
reversed_login = resp->resp;

status = authenticate(login, reversed_login);
if (status == AUTH_FAIL)
return PAM_AUTH_ERR;

resp++;
}
free(msgp);
return PAM_SUCCESS;

Listing 1.3: The Module’s Authentication Function

The pam_sm_setcred() function is used to alter the credentials of a user. This function is
not important for this thesis and always returns PAM _SUCCESS.

Installation of the module is done by execution of the following commands (root privileges
are required):

$ gcc -fPIC -c pam_reversed_login.c
$ gcc -shared -o pam_reversed_login.so pam_reversed_login.o -lpam
$ cp pam_reversed_login.so /lib64/security/

The module was written according to the The Linux-PAM: Module Writers’ Guide [5].
The entire source code with the installation script is attached in the appendix C.

1.6 Advantages of Using PAM

PAM allows application developers to implement PAM authentication to many different
applications without creating or modifying PAM stacks. They can use the same stack for
wide variety of applications if it suites their security needs. If not, PAM allows for high
flexibility and control over the authentication. It is very easy to modify a PAM stack by
adding, removing or editing one or several lines in the configuration file. They can either
use already existing modules or develop a new one to suites their needs [7].

11




Linux-PAM Interface
Application Library Module

pam_start ()

; > E
E E Create the E
| | PAM context H
PAM SUCCESS + pamh
€ ] '
i i H
h . '
i pam_authenticate () : H
; > H
| | pam_sm_authenticate () \:
1 . >
E E{ pam_get_user () E
H pam->pam_conv->conv () . H
< d H
User \ ' \
fills in his ! ! '
username , H H
{ . '
! PAM SUCCESS + pam_response N H
> H
H pam_set item(pamh->user) | H
| | PAM SUCCESS + pamh->user ‘:
1 . >
1 , ' Create pam message,
E E E pam_response and
! ! ! pam_conv structures
| :‘ pam_get item(pam_conv) .
1 '~ 1
| | PAM_SUCCESS + pam_conv H
: ; >
E E pam_conv->conv () E
< : :
User ! E E
fills in his H H H
response | E E
' H PAM SUCCESS + pam_response ‘:
1 1 k)
1 H H Validate
H ' H the
H : ' response
1 ' PAM SUCCESS i
: < = :
' ' or PAM AUTH ERR '
H PAM SUCCESS H H
{ — '
: or PAM AUTH_ERR : H
E pam_end () ;E E
i PAM SUCCESS : H
< — d H
\4 \4 \4

Figure 1.2: PAM Authentication Process

12



Chapter 2

Authentication in Web
Applications

This chapter describes authentication in web applications and authentication factors in sec-
tion 2.1, authentication issues with the third-party applications in section 2.2, and recom-
mendations for password strength, or what should web applications require from users when
creating a password in section 2.3.

2.1 Authentication

Authentication is the process of verifying a user’s identity using the required authenti-
cation factors. In order for a user to be authenticated, they must provide all required
factors. (challenge-response dialog). A factor is validated by the authentication mecha-
nism that required it. On success, the user is authenticated and can use all the features
of the application that they have access to. On failure, an error message or a page is
displayed. The most common mechanisms are the password-based mechanisms (username
and password). These mechanisms were initially used alone for single-factor authentication.
However, now with the increasing number of threats on the Internet and with the degra-
dation of the security of the single-factor authentication, it was necessary to develop new
authentication mechanisms, namely multi-factor authentication mechanisms [8].

These mechanisms mostly appear in the form of two-factor authentication, where the second
factor is required after standard password authentication. The most common mechanisms
used as the second (or further) factor are one-time passwords (OTPs, also called OTP tokens
or just tokens) that are either HMAC-based (HOTPs) or time-based (TOTPs). The pass-
word is generated by one of the algorithms and then delivered to a user via one of several
technologies, such as quick response (QR) codes, short message service (SMS), trusted plat-
form (TPM) or near field communication (NFC), [8]. The most common technologies are
mobile applications (FreeOTP'!, Google Authenticator?) or hardware devices (YubiKey?)
that generate OTPs locally.

ldownload at FreeOTP’s GitHub
2download at Google Authenticator’s Play store page
3see the Yubico store page

13


https://freeotp.github.io/
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://www.yubico.com/store/

Authentication Factors

As already mentioned, the most common combination of factors for two-factor authentica-
tion is a password and an OTP. That is a combination of something we know and something
we have. There are four different types of factors - Something You Know (passwords, PINs
or security questions), Something You Have (OTPs, certificates, SMS, ...), Something You
Are (face recognition, fingerprints, ...) and Location (source IP ranges, geolocation). It
is possible to make various combinations of the factors, but using only one type is not
considered as multi-factor authentication [9].

2.2 Third-Party Applications

A problem with authentication comes with third-party applications, where an application
(on desktop/mobile, other web application, ...) wants to connect to a web application.
If we allowed the application to store our username and password, we would also pro-
vide it with more attack possibilities. For this reason, some new authentication protocols
were developed, namely Open Authorization (OAuth), OpenID or the Universal Authen-
tication Framework (UAF) protocol and the Universal Second Factor (U2F) protocol by
The Fast Identity Online (FIDO) Alliance, [10]. The single sign-on (SSO) is also a trend
in authentication in web applications, which allows users to use their identity in multiple
web applications without the need for providing any authentication information (password,
OTP, ...). The identity is validated and provided to applications by an Identity provider,
e.g. Auth0, Google or OpenAthens [11].

2.3 Password Strength

Password strength also must be mentioned in connection with authentication. Passwords
should be at least 8 to 64 characters in length. All printable ASCII and Unicode characters
including the space character should by acceptable by the applications. Dictionary words,
repetitive or sequential characters (e.g. “password”, “aaaaa”, “1234abcd”), and context-
specific words, such as the name of the service or the username should not be allowed.
Randomly chosen secrets (e.g. PINs or OTPs) should by at least 6 characters long [12].
Many applications also require the use of mix of upper-case and lower-case letters, numbers
and symbols, see Figures 2.1 and 2.2 for examples.

Many modern browsers, e.g., Google Chrome [13], Firefox [14], have the option to fill
in a randomly generated password when a user is choosing one. They also offer the advan-
tage of storing it to the user account if the user is logged into the browser or locally, so
they does not need to remember it, see Figure 2.3 for an example

14



Your password:
must be at least & characters
cannot contain some special characters

cannot start or end with a space

*

*

» cannot contain part of your username

»

» cannot use the same character 4 times in
a

row

Figure 2.1: Password Requirements of Alberta Student Aid

Google

Create your Google Account

to continue to Gmail
First name Last name

Username @gmail.com

You can use letters, numbers & periods

Password Confirm @

Use & or more characters with @ mix of letters, numbers &
symbols

Sign in instead Next

Figure 2.2: Password Requirements of Google

Use suggested password B-Zznbrjz7Z7#wp

Chrome will save this password in your Google Account. You won't
have to remempber it.

Figure 2.3: Google Chrome’s Password Suggestion

15


https://account.alberta.ca/signup
https://accounts.google.com/signup/v2

Chapter 3

Authentication Using Only HTTP

This chapter describes the relevant basics of the Hypertext Transfer Protocol in section 3.1,
basic authentication and its disadvantages in section 3.2, and provides an example setup
using the Apache web server in section 3.2.2, and finally the form-based authentication 3.3.
For further study of the Hypertext Transfer Protocol, see the RFC 2616 standard.

3.1 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) [15] is a generic stateless application-level re-
quest /response protocol, which allows transfer of resources accessible by an URL (Uniform
Resource Locator!) over the Internet, such as HTML documents. It is mainly used for
web pages and applications, e.g. e-shops and internet banking. HTTP communication is
client-server based and is mostly initiated by a client. Client sends a HT'TP Request mes-
sage to the HT'TP server, which parses the message, performs requested action, and sends
an HTTP Response back to the client. The communication presumes a reliable connection,
so it usually takes place over TCP/IP connections. The default port for HT TP communi-
cation is TCP 80. Alternatively, the TCP 8080 port is also frequently used, but other ports
can be used too.

3.1.1 HTTP Messages

As already mentioned, HTTP is a request /response protocol and it uses two types of HT TP
messages — requests and responses. Both message types use the format of ARPA Internet
Text Messages for transferring entities’. Each message consists of a start-line, zero or more
header fields (headers), an empty line (blank line terminated with a CRLF) indicating
the end of the header fields and a message body (if any). Each line is terminated with
a CRLF.

Hearn more at RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax
2learn more at RFC 822 — Standard for ARPA Internet Text Messages

16


https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc822

Message Headers

The message header fields contain its name, followed by a colon (“:”) and its value. There
are four types of header fields:

e General - Connection, Date, Transfer-Encoding, etc.
e Request - Accept, Authorization, Host, User-Agent, etc.
e Response - Accept-Ranges, Server, WWW-Authenticate, etc.

e Entity - Allow, Content-Length, Content-Type, etc.
The focus of this thesis is authentication, so the only relevant headers are Request - Au-

thorization and Response - WWW-Authentication headers, because they carry the authen-
tication information.

Message Body
The message body contains the entity-body of a request or response. Not every message

does include a message body. For authentication purposes, it serves no use, since all au-
thentication information is transmitted in the headers.

HTTP Request
HTTP Request is a message sent from client to server. The first line of the message specifies
the method to be performed on the target (GET, POST, etc.), the target (absolute path

of an URL) and protocol version separated with spaces. The network location of the URL
is transmitted in a Host header.

GET /example HTTP/1.1\r\n

HTTP Response
HTTP Response is a reaction to a HI'TP Request. It informs the client about the result

of its request. The first line of the message consists of the protocol version, a status code
and its textural phrase (200 OK, 401 Unauthorized, etc.) separated with spaces.

HTTP/1.1 200 OK\r\n

This section was written according to the RFC 2616 standard [15].

3.1.2 Session Management and Cookies
Stateless behavior of HT'TP means that every request is treated as a new one, independent

of any previous requests from the communication partner. Neither the server nor the client
retain any information about each other.

17



To make HTTP behave as a stateful protocol, a state management mechanism had to
be developed. The RFC 6265 standard [16] implements Set-Cookie and Cookie headers.
The server creates cookies and sends them in the Set-Cookie header to the client in a HTTP
Response, the client stores them and sends them back to the server in the Cookie header
in its further HT'TP Requests.

Cookies must be stored locally on the server so they are accessible for all server pro-
cesses, and not only for the process, that created it. If there were more servers on which
the application runs, the server which created the cookies must share them with other
servers. Otherwise, each server would create its cookies for the same user, and that is
inefficient. All cookies are valid until they are deleted or until they expire (defined with
the Expires=<date> field).

For example, for authentication purposes, after the user is authenticated, the server sends
the cookie named SID (session identifier) with the value 31d4d96e407aad42 to the client,
that uses it in its further requests, so the user does not need to authenticate every time.

Set-Cookie (server to client):
Set-Cookie: SID=31d4d96e407aad42
Cookie (client to server):
Cookie: SID=31d4d96e407aad42
Set-Cookie with an expiration date (server to client):
Set-Cookie: SID=31d4d96e407aad42; Expires=Mon, 01 Feb 2021 12:34:58 GMT

To remove the cookie, the server can send a Set-Cookie header with the expiration date
in the past:

Set-Cookie: SID=31d4d96e407aad42; Expires=Mon, 01 Feb 2020 12:34:58 GMT

The server can also instruct the client to return the cookie to every path and subdomain:

Set-Cookie (server to client):

Set-Cookie: SID=31d4d96e407aad42; Path=/; Domain=myexampleapp.com

3.2 Basic Authentication

When a user accesses a web page or application that requires authentication, the browser
creates a pop-up window (Figure 3.1). User fills in their username and password and hits
the login button. The browser sends the credentials to the server, where they are validated.
On success, the server responds with the page the user wanted to see and the client stores
the credentials for future requests until the user closes the browser. Otherwise, the server
responds with an error status code and an error page. What happens on the HT'TP level
is described in the following example (depicted in Figure 3.2):

18



Authentication Required *

http://localhost is requesting your username and password. The site says: “private area”

User Name:

Password:

Cancel OK

Figure 3.1: Pop-Up Window Displayed by a Browser

1. Client sends an HTTP Request for the specified location:

GET /basic-auth HTTP/1.1\r\n
Host: localhost\r\n
\r\n

2. Server responds with “401 Unauthorized” status code, what means authentication
in required:

HTTP/1.1 401 Unauthorized\r\n
WWW-Authenticate: Basic realm="private area"\r\n

\r\n

3. Client asks the user for a username and a password and sends the credentials in the Au-
thorization header back to the server in another HT'TP Request for verification:

GET /basic-auth HTTP/1.1\r\n

Host: localhost\r\n

Authorization: Basic bWFyaWFuOnBhc3N3ZA==\r\n
\r\n

Credentials is base6/ encoded username:password, e.g. “marian:passwd” is encoded
as bWFyaWFuOnBhc3N3ZA==.

4. Server validates the credentials and responds with either success or failure:

HTTP/1.1 200 OK\r\n
\r\n

or

HTTP/1.1 403 Forbidden\r\n
\r\n

19



Client Server

o
\GET /basic-auth HTTP/1.1\r\n ”
'Host: localhost\r\n

A\ r\n

€ :
:‘ HTTP/1.1 401 Unauthorized\r\ns
Ask the user \ WWW-Authenticate: Basic realm="private area"\r\ni
for his username E \r\ni

and password E 1

'
’ o)

'GET /basic-auth HTTP/1.1\r\n

\Host: localhost\r\n : Validate
‘Authorization: Basic bWFyaWFuOnBhc3N3ZA==\r\n ' the

E\r\n credentials

P '
'HTTP/1.1 200 OK\r\n or HTTP/1.1 403 Forbidden\r\n!
. \r\n:

v v
Figure 3.2: HTTP-Level Communication of the Basic Authentication

3.2.1 Disadvantages

Firstly, if a user requested the same page over and over, their credentials in the Autho-
rization header would be validated with every request, which is inefficient. This problem is
solved by implementing session management 3.1.2.

Secondly, it does not support account creation, so a user can not create a new account and
it needs to be created on the server by its administrator. All usernames and passwords are
stored locally on the server in a text file. It also does not support the logout option.

The next disadvantage is that basic authentication is only a single-factor. Additionally
to that, credentials are only base64 encoded and not encrypted. It is also possible to use
digest authentication instead. It uses hashes, which are stronger, but still vulnerable. Using
HTTPS (HTTP over TLS/SSL) provides for the best security, as the credentials are being
sent over an encrypted connection, but that’s not the subject of this thesis.

Furthermore, using basic authentication is not visually modern. Because the pop-up window
and native error page are not customizable, they are no longer used. The pop-up window
was replaced by a login page with a form, that in case of error shows a custom-made error
message with more user friendly information than the basic authentication’s error pages
contains.

3.2.2 Example Configuration in Apache

Firstly, we need to create a file, that stores usernames and passwords. That can be done
by using the htpasswd utility. To create the file, specify its location and a username, for
example:

$ htpasswd -c /usr/local/apache/passwd/passwords marian

20



It will ask us for a password. To add another user user the same command just without
the -c option:

$ htpasswd /usr/local/apache/passwd/passwords anotheruser

Then, we need to configure, which Location or Directory we wish to protect in Apache’s
configuration file. We can either edit the /etc/httpd/httpd.conf file or create a separate
file in /etc/httpd/conf.d/filename.conf. Example configuration [17]:

<Location /basic-auth>
AuthType basic
AuthName "private area"
AuthBasicProvider file
AuthUserFile "/usr/local/apache/passwd/passwords"
Require valid-user
</Location>

Now, we have to restart Apache (systemctl restart httpd) and we can access the loca-
tion via your preferred browser at localhost/private/. We can try to log in with correct and
incorrect username or password and for more information we can look at httpd access and
error logs. The access log (/var/log/httpd/access_log): contains information about all
requests done to the server, for example:

::1 - marian [30/May/2019:00:22:33 +0200]
"GET /basic-auth HTTP/1.1" 200 36 "-" "Mozilla/5.0
(X11; Fedora; Linux x86\_64; rv:66.0) Gecko/20100101 Firefox/66.0"

The error log (/var/log/httpd/error_log): contains information about all errors, that
occured on the server, for example:

[Thu May 30 00:40:44.041772 2019] [auth_basic:error]

[pid 5356:tid 140020740441856] [client ::1:52312]

AHO1617: user marian: authentication failure for "/basic-auth":
Password Mismatch

3.3 Form-based Authentication

As already indicated in subsection 3.2.1, basic authentication is usually no longer used
in modern web applications. It was replaced by the form-based authentication. Typi-
cally [18], when a user accesses an application’s URL, the browser sends a GET request
to the server, that hands the request to the application. If the application does not find
a valid session cookie, the application redirects the browser to a login page with a login form
created by the application. The user fills in their username and password and hits the sub-
mit button. The browser submits the form (sends a POST request with user’s credentials),

21



the server hands the credentials to the application, which typically calls an external appli-
cation for their validation. On success, the application creates a session and return session
cookies. The browser requests the desired URL again, but now the application sees a valid
session cookie and returns the desired page. On failure, the application returns the login
form and an error message.

POST request example with user’s username and password:

POST /example/login HTTP/1.1
Host: localhost
login=marian&password=passwd

Unlike the basic authentication, the form-based authentication can support account cre-
ation, does not have to store usernames and passwords in local text files, and supports
the logout options and custom-made page design. Everything depends on the application
developer and can be configured to needs. However, in terms of security, it also does not

use encryption, and it is the developer’s responsibility to implement a safe solution, e.g.
HTTPS.

<form method="POST">
<d1>
<dt><label for="login">Login:</label></dt>
<dd><input type="text" name="login" />
<dt><label for="password">Password:</label></dt>
<dd><input type="password" name="password" />
<dt><input type="submit" name="submit" value="Log in" /></dt>
</d1>
</form>

Listing 3.1: Example HTML Code for a Login Form

Login:
Password:

Log in

Figure 3.3: Login Form Displayed in a Browser

22




Client Server Application

3.
>

GET /example

Y.

Hand the request
Application
finds no valid
session cookie

<
<
Login page redirection

A

302 Location /login?back=/example

Y

GET /login?back=/example

Y.

Hand the request

No POST method

with username
and login

&
<

Return the login form

A

A

<€
200 OK + login form: Return the login form + error message
User fills in
his username

and password

On failure

Y

POST /login

o N .0

Application
validates the
username &
password and
creation a

Hand the request

< session
Return the session cookie
< : :
302 Location /example;
Set-Cookie: SID=31d4d96e407aad42: H
> ;
GET /example ! !
: ; >
! ‘Hand the request !
1 H H Application
H ! ! finds valid
H H . session cookie
: < :
H H Return the page
€ 1 1
€ i H
! 200 OK + the page! H
v v v

Figure 3.4: HTTP-Level Communication of the Form-Based Authentication [18]

23



Chapter 4

Current State of Authentication in
Web Applications Using PAM

This chapter describes several already existing solutions for authentication in web appli-
cations using PAM in section 4.1, the example configuration using mod__authnz pam and
mod__intercept_ form_ submit Apache modules in section 4.2. Next, it provides the intro-
duction to the WebSocket protocol and Node.js, and an example setup using the Node.js
WebSocket library and node-linux-pam addon in section 4.3. Finally, it describes the in-
compatibility issue of the existing solutions and multi-factor authentication in section 4.4.

4.1 Existing Solutions

There are already several solutions that bring PAM authentication to web applications.
The first one to look at is the mod__authnz pam Apache module that makes HTTP basic
authentication work with PAM by obtaining username and password from the Authorization
header of an HTTP request and running them through a PAM stack. The password is
passed to a module in the *appdata_ptr member of the pam_conv structure. The module
sets either the REMOTE _USER environment variable on successful authentication, or
the EXTERNAL AUTH FERROR variable in case of an error. So basically, this module
serves as an interface between the Apache web server and the PAM library. It can also
supplement authentication done by other modules. For PAM, the mod_authnz pam is
a PAM-aware application [19].

The next solution to look at is the mod__intercept_form__submit Apache module that inter-
cepts submission of the application’s login form, retrieves the username and password from
the POST HTTP request, and calls the mod__authnz_pam module with those credentials.
The application is expected to trust the REMOTE__USER value if it is set and skip its own
authentication [20].

The final solution to look at is the node-linuxz-pam addon for Node.js. With the use of
the WebSocket protocol, it is possible to send collected username and password from the ap-
plication’s login form to a Node.js WebSocket server, run them through a PAM stack using
the addon and send back the appropriate response using the opened WebSocket connection.

24



Since all three mentioned solutions pass the handling of authentication to another indepen-
dent service (PAM), we refer to it as the external authentication.

4.2 Example Configuration in Apache

This section provides guides for configuring authentication using mod__authnz pam and
mod__intercept_form__submit. Seeing these configurations work and understanding princi-
ples of related modules, described in the previous section, is the first step to understanding
the incompatibility of HT'TP and PAM technologies. Just to remind, the Apache web server
calls the PAM authentication directly using the mod_authnz_pam module.

mod_ authnz_ pam — example configuration

1. Install the module:
$ dnf install mod_authnz_pam -y

2. Enable SELinux boolean httpd_mod__auth__pam:
$ setsebool -P httpd_mod_auth_pam 1

3. Configure Apache in /etc/httpd/conf.d/mod_authnz.conf:
LoadModule authnz_pam_module modules/mod_authnz_pam.so

<Location /private>
AuthType Basic
AuthName "private area"
AuthBasicProvider PAM
AuthPAMService webapp
Require valid-user
</Location>

4. Create PAM stack for the webapp service in /etc/pam.d/webapp:

auth required pam_sss.so
account required pam_sss.so

Now, the advantage of the SSSD service mentioned in the section 1.2 comes useful,
because Apache does not run with the root privileges, so it could not access the /etc/
shadow file if the pam_unix' module was used instead.

5. Restart Apache, access the http://localhost/private location from a browser, and
try to login with a local user account

earn more in the pam_ unix module guide

25


http://linux-pam.org/Linux-PAM-html/sag-pam_unix.html

mod__intercept_ form__submit — example configuration

1. Install the module and perl-CGI:
$ dnf install mod_intercept_form_submit perl-CGI -y
2. Set up the example app:

$ curl -Lo /var/www/app.cgi ’http://fedorapeople.org/cgit/\
adelton/public_git/CGI-sessions.git/plain/app.cgi\
?id=intercept-form-submit’

$ chmod a+x /var/www/app.cgi

dnf install /usr/sbin/semanage -y

$ semanage fcontext -a -t httpd_sys_script_exec_t \
> /var/www/app\.cgi’

$ restorecon -rvv /var/www/app.cgi

&+

3. Configure Apache in /etc/httpd/conf.d/webapp_intercept.conf:

LoadModule intercept_form_submit_module modules/\
mod_intercept_form_submit.so

ScriptAlias /app /var/www/app.cgi

<Location /app/login>
InterceptFormPAMService webapp
InterceptFormLogin login
InterceptFormPassword password
</Location>

4. Restart Apache, access the app from a browser at http://localhost/app, and try
to login with a local user account

4.3 PAM Authentication Using WebSockets

With the development of new web technologies, there is also a lot more new possibilities
for the web application development. The WebSocket protocol [21] provides for bidirec-
tional, full-duplex communication between client and server. That means the client and
the server have an open connection and can send messages back and forth. So, it is possible
to collect username and password from a login form on a login page using the client-
side JavaScript, send them to the server via the opened connection, validate them using
PAM and send back the appropriate response. For better security, using WebSockets over
TLS/SSL (WSS) is recommended. The example in subsection 4.3.2 uses the WebSocket
library” and the node-linux-pam?® addon for Node.js.

2learn more in the Node.js WebSocket library repository
3learn more in the node-linux-pam addon repository

26


https://github.com/websockets/ws
https://github.com/aironavt/node-linux-pam

4.3.1 Node.js

Node.js is a free open source server-side JavaScript development and runtime environment
that uses asynchronous, event-driven, single-threaded, and non-blocking programming de-
signed for highly scalable network applications. While it supports the development of any
server executing any application-level protocol running over TCP/UDP, it found its biggest
use case in the web application development. It is used by many modern web applications,
such as PayPal, LinkedIn, or eBay [22].

According to [23], Node.js is highly advisable for building modern web applications that use
dynamic page content. It can handle a much larger number of concurrent connections than
the Apache web server and is more memory efficient and better in utilizing all available
processing power than PHP. However, it lacks in serving static files using its built-in HT'TP
server.

Install the latest version at the time and all needed dependencies by executing the following
commands:

$ dnf install gcc-c++ make
$ curl -sL https://rpm.nodesource.com/setup\_14.x | sudo -E bash -
$ dnf install nodejs

Node.js Addons

Addons for Node.js are dynamically-linked shared objects written in C/C++. There are
three options for implementing addons:

e N-API (or node-addon-api, which is a C++ wrapper for N-API),
e nan - Native Abstractions for Node.js,

e direct use of the internal V8 JavaScript engine, libuv, and Node.js libraries.

The recommended option is using N-API as it newer, easier to use, and maintained by
the Node.js developers themselves. Other options should be used only in need for function-
ality that is not provided by N-API [24].

4.3.2 Example with node-linux-pam

Firstly, we need to create the WebSocket server using the Node.js WebSocket library.
The server listens on a specified port and waits for a client to connect. When a client con-
nects and sends a message, the server parses it to obtain username and password and hands
them to the node-linux-pam addon in the pamAuthenticate() function argument (an ob-
ject containing all necessary data). The addon runs them through the specified PAM stack.
The password is passed to a module in the *appdata_ptr member of the pam_conv struc-
ture. We use the webapp PAM stack from the previous section. When the authentication
process finishes, the callback function of the pamAuthenticate() function is called. Using
the WebSocket library, the appropriate response is sent back to the client via the opened
connection. The message is expected to be in the “username:password” format.

27



// Load the WebSocket library and the node-linux-pam addon
const WebSocketServer = require(’ws’).Server;
const { pamAuthenticate, pamErrors } = require(’node-linux-pam’);

// Prepare the object for the authentication data
var options = { username: ’’, password: ’’, serviceName: ’webapp’};

// Create the WebSocket server
const wss = new WebSocketServer({ port: ’1234’ });

// Callback function for "on connection" event
wss.on(’connection’, function(ws) {

// Callback function for "on message" event
ws.on(’message’, function(message) {

//Parse the data from the client’s message
var cred = message.split(’:’);
options.username = cred[0];

cred[1];

options.password

// Call the addon and send the appropriate response
pamAuthenticate(options, function(err, code) {

if(err) {
ws.send (JSON.stringify({"message": err}));
} else {
ws.send (JSON.stringify({"message": "0K"1}));
}
3
3
s

Listing 4.1: Simple WebSocket Authentication Server Using node-linux-pam in Node.js

Next, we need to create the WebSocket client using the client-side JavaScript. It initiates
a connection with the server, collects username and password from a login form, puts
them to the required format and sends them to the server. When the response is received,
the client parses it and displays it to the user.

// Connect to the WebSocket server
var ws = new WebSocket(’ws://localhost:1234°);

// Callback function that parses the server’s response,

// displays it to the user and closes the connection
ws.onmessage = function(e) {

28




var status = JSON.parse(e.data);
$("#status") .text(status.message);
ws.close();

// Collect username and password, and send them to the server
function sendUserInput() {
var cred = $(’#login’).val() + ’:° + $(’#passwd’).val();
ws.send(cred) ;

Listing 4.2: Simple WebSocket Client in JavaScript

Finally, for the demonstration, we need to create a simple HTML login page with a form.

<!DOCTYPE html>
<html>
<head>
<title>PAM Authentication</title>
<script src="https://code.jquery.com/jquery-3.5.1.min. js"></script>
<script src="login.js"></script>
</head>
<body>
<hi>Log In</h1>
<form onsubmit="sendUserInput(); return false;">
<input id="login" type="text" />
<input id="passwd" type="text" />
<button type="button" onclick="sendUserInput();">Send</button>
</form>
<h2 id="status"></h2>
</body>
</html>

Listing 4.3: Simple HTML Page with a Login Form and the WebSocket Client Script

1. Run the server script using the node command:
$ node main.js

2. Put the login script and the web page inside /var/www/html/ directory to make it
accessible from a browser using Apache and restart it

3. Access the page from a browser, try to login with a local user account, and a response
message from the server should appear bellow the form

29




4.4 Adding More Factors

So far, each one of the solutions used the PAM stack configured only for single-factor
authentication using the pam_sss module. What all these solutions have in common, is that
they pass the password to a module in the *appdata_ptr member of the pam_conv structure.
Therefore, they do not support multi-factor authentication, because only the first module
in a multi-factor stack would get the password, and other modules would return an error.
The reason is that the conversation functions of both mod_authnz_ pam and node-linux-
pam cannot send any message to the user nor receive any response. For example, adding
the pam_reversed_login module to the stack and trying to login again would, in case of
the mod_authnz_pam or mod_ intercept_ form_ submit configuration, cause the “Didn’t
get reversed login” error message to appear in the Apache error log. For the WebSocket
solution, the “Authentication failure” error message would appear below the form.

For a better understanding of how the password is passed to a module, Listings 4.4 and
4.5 show the relevant part of the mod_authnz pam source code’, and Listings 4.6 and 4.7
show the relevant part of the node-linux-pam source code’. It is the same in principle; only
node-linux-pam uses its auth_context data type, which carries the authentication data
of the PamWorker class instance.

struct pam_conv pam_conversation = { &pam_authenticate_conv,
(void *) password };

Listing 4.4: pam__authenticate_ with_login_ password()

response[i] .resp = strdup(appdata_ptr);

Listing 4.5: pam_ authenticate conv/()

const struct pam_conv local_conversation = {function_conversation,
reinterpret_cast<void *>(authContext)};

Listing 4.6: PamWorker::Execute()

auth_context *data = static_cast<auth_context *>(appdata_ptr);
reply->resp = strdup(data->password.c_str());

Listing 4.7: PamWorker::function_ conversation()

Due to the inherent incompatibility of HTTP and PAM, it is not possible to extend
the Apache modules to support multi-factor authentication. That is why the WebSocket
protocol was introduced in this chapter. The explanation of the incompatibility problem is
provided at the start of the next chapter.

4the mod__authnz_ pam source code
5 .
°the node-lixus-pam source code

30



https://github.com/adelton/mod_authnz_pam/blob/master/mod_authnz_pam.c
https://github.com/aironavt/node-linux-pam/blob/master/src/pam_worker.cc

Chapter 5

Multi-Factor Authentication in
Web Applications Using PAM

This chapter describes the HTTP and PAM incompatibility in section 5.1, the basis of
the solution in section 5.2, the node-auth-pam addon in section 5.3, the server-side of the
solution in section 5.4, the client-side of the solution in section 5.5, and the integration to
a web application and an example application in section 5.6.

5.1 HTTP and PAM Incompatibility

In section 1.2, the SSHD service was used as an example for multi-factor authentication us-
ing PAM. It is an SSH server running as a background process. Unlike HTTP, SSH protocol
supports bidirectional full-duplex connection, so the client and the server have an opened
connection through which they can send data back and forth. When the connection is
established, the client has to authenticate itself to the server [25]. Assuming the SSHD con-
figuration from section 1.2, the server starts a new thread for authentication against PAM.
When a PAM module requires communication with the client for obtaining necessary in-
formation from the user, the conversation function uses the opened connection for both
sending messages and obtaining responses (if any is expected). When the communication
is done, the conversation function returns all responses (if any) to the calling module [26].
Another difference between SSHD and HTTP is that both client and server randomly gen-
erate a session ID, which they keep for themselves and use it to identify a session uniquely.
In HTTP, the session ID is sent in each request [25].

So, both SSHD and a PAM transaction are running processes, and SSHD uses an open con-
nection for transmitting all necessary data. However, in HT'TP, there is no open connection
between a client and a server because the protocol is request/response-based. So, it would
be necessary to send the current message to the client, store the transaction state, load it
back when the client sends a response to the message (in an HTTP request), and proceed
with authentication. According to [2], the PAM handle contains the state entirely, however
it is not absolutely true, because the pam_conv structure contains void *appdata_ptr,
which is a pointer to any application-defined data. Therefore, it is not possible to serialize
the PAM handle structure, store it, and load it back.

31



However, it is possible to implement a PAM authentication addon for Node.js using N-API
and with the use of the WebSocket protocol to synchronize the state of a PAM transac-
tion with the content of a login page by transmitting all necessary data using the opened
WebSocket connection between the client and the server and dynamically adjust the page
content using JavaScript.

There are also other environments that support the WebSocket protocol, but after the agree-
ment with the consultant, Node.js will be used for the implementation of the solution due
to its advantages, popularity, and high accessibility.

5.2 The Basis of the Solution

The basis of the solution is to create an authentication thread for each client connected
to the WebSocket server. The thread starts the PAM transaction, calls for authentication,
and finally ends the transaction. When a module calls the conversation function:

1. The conversation function passes the current message to the WebSocket client and
waits for a response (if any is expected),

2. the client displays the message on the login page to the user, collects and sends their
response back to the conversation function (if any is expected),

3. (a) if the module has more than one message defined, the conversation function sets
the next message as the current message and repeats the process from 1.,

(b) otherwise it returns all responses (if any) to the calling module.

After the authentication is done, the server sends a message with the return value to
the client. The client displays status information based on the return value. If the authen-
tication was successful, a session cookie is also sent along with the return value. The client
sets the cookie and issues a redirect to the configured page. The cookie contains a session
ID (SID) and Expires date (the current date + one day). The session ID is a randomly
generated base64 encoded 16-byte string. The session ID is also stored in a file along with
the corresponding username in the “SID::username” format. Each session (a file line) has
a timeout set to one day. After the timeout, the session is deleted. The web application is
expected to trust this file and validate session IDs against it. If the authentication failed,
the client allows the user to try to authenticate again.

The solution consists of three parts, namely the PAM authentication addon — node-auth-
pam, the WebSocket server, and the WebSocket client. The Figure 5.1 describes the solution
using a finite-state machine.

32



T
=R}
o <
B0
2 A
U
o Q
S
[Sapns
[SIR7)
(SRt
[}

client connects

server

client

A

Y

Y
Session ID

Y

Y

Y

falied
stored
closed

Reset
A
Error message

displayed

A
Cookie set
Connection
Redirected

failure
success

s
IS
9}

-

a
0
o

s

Response
obtained
to server
Response
passed back
from Node.js

Response sent

+
=i
[0
0
]
o
©
w
n
Q
=

Y
Conversation

ol
[}
|
Q
©
2
%)

Transaction
started
started
started

Y
to Node.js
finished

Conversation

Authentication
Message passed
Authentication

Y
Waiting for
response

module has

another message

another module
is in the stack

node-auth-pam

ibed by a Finite-State Machine

Figure 5.1: The Solution Descr

33



5.3 PAM Authentication Addon for Node.js

The node-auth-pam addon accommodates PAM authentication in Node.js. It is written
in C using the N-API library for the Node.js addon creation. It provides the nodepamCtx
structure (referred to as “context” for the rest of this chapter) wrapped to a JavaScript
object and necessary getters for its members that need to be accessible from Node.js, and
several functions (also called bindings) that can be called from Node.js. It can be used by
any Node.js application that desires authentication against PAM.

The context is a structure that contains all the necessary data to authenticate a user
correctly:

e service - name of the service as defined in /etc/pam.d/

e username - name of the user

e message - the current message

e msgStyle - the style of the message

e response - the user’s response

e respFlag - the control flag — true, if the user’s response is set

e retval - the return value of PAM authentication, also used for addon constants —
NODE_PAM JS CONV and NODE_PAM ERR

e thread - the authentication thread
e mutex - the mutex protecting response and respFlag

e tsfn - the N-API thread-safe function
The bindings provided by node-auth-pam:

e authenticate(service, username, callback(nodepamCtx))
e setResponse(nodepamCtx, response)
e kill(nodepamCtx)

e cleanUp()

The callback argument of the authenticate() binding is a callback function that pro-
vides a way for the addon’s conversation function to pass the handling of authentication
and the context to Node.js using the N-API thread-safe function. The thread-safe func-
tion [27] is an asynchronous call of a given JavaScript function from additional threads
of an addon. The call_js_cb argument of napi_create_threadsafe_function() allows
for more control over the actual call of the JavaScript function. It is a callback function
invoked on the addon’s main thread every time the thread-safe function is called from
a thread. This callback function allows for wrapping the context structure to a JavaScript
object and passing it to Node.js. All necessary members of the context can be then accessed
by using getter functions defined by the addon:

34



e user - returns the username
e msg - returns the current message
e msgStyle - returns the style of the message

e retval - returns the return value or NODE PAM _JS CONV (there is no use case
for NODE_PAM_FERR as it is only used internally)

The callback function of the authenticate () binding must be defined and can implement
arbitrarily complex logic depending on the state of the context. It is invoked one or multiple
times during the execution of the conversation function (depends on the number of modules
in the PAM stack and the number of module’s messages), and lastly, after the transaction
is finished.

When a Node.js application requires authentication using the node-auth-pam addon, it calls
the authenticate () binding. It creates a new context with the service name and the user-
name, creates a thread-safe function of the binding’s callback, and starts the authentication
thread with the context set as its attribute. Both thread-safe function and the thread are
also stored in the context. The thread creates the pam_conv structure with the addon’s
conversation function and passes the context using *appdata_ptr, starts the transaction
and calls pam_authenticate().

When a module calls the conversation function (nodepamConv () ), it sets message to the cur-
rent message of the module, msgStyle to its style, and retval to NODE_PAM _JS_CONV
in the context and uses the thread-safe function from the context to invoke the callback,
passing the context to Node.js and waits for a response (the waiting mechanism is shown
in the Listing 5.1). The retval indicates that the conversation function is waiting for
a response to be set to the context. The callback function of the authenticate() binding
can either display the message to the user, obtain a response (if any is expected) and call
setResponse (), or it can forward the message to a connected client, store the context to
a variable and call the setResponse () binding outside the callback, when the client sends
the user’s response. The first case is useful only for the test application (Listing 5.3).

while(true) {

pthread_mutex_lock(&(ctx—>mutex)) ;

if (!ctx->respFlag) {
pthread_mutex_unlock(&(ctx->mutex));
continue;

} else {
response[i] .resp = strdup(ctx->response);
response[i] .resp_retcode = 0;
pthread_mutex_unlock(&(ctx->mutex)) ;
break;

Listing 5.1: Waiting Mechanism of nodepamConv()

35




The waiting mechanism of the conversation function is not very effective due to the while ()
cycle as it unnecessarily consumes the CPU. It continuously checks respFlag until it is set
to true, and sets the obtained response to the pam_response structure. It would be much
more effective if the thread would go to sleep and then be awakened by a SIGCONT signal.
However, after many attempts it did not work due to undiscovered reason.

The setResponse() binding protects the setting of the response (shown in the Listing
5.2) with a mutex, so response and respFlag cannot be accessed by the conversation
function until they are both set. In case of PAM ERROR_MSG or PAM_TEXT INFO
message styles, the setResponse() binding must be called with an empty string due to
synchronization issues. Otherwise, it sets the obtained response to response and respFlag

to true.

pthread_mutex_lock(&(ctx—>mutex)) ;

if (ctx->msgStyle == PAM_PROMPT_ECHO_OFF ||
ctx->msgStyle == PAM_PROMPT_ECHO_ON )
ctx->response = strdup(response);

ctx->respFlag = true;
pthread_mutex_unlock(&(ctx->mutex)) ;

Listing 5.2: Setting of the Response to the Context

When retval in the context is set to PAM SUCCESS, the authentication was successful
and the application can implement a post authentication mechanism, e.g. session man-
agement, or pass the handling to another service. Any other return value is an error that
the application can handle according to its needs.

When the authentication finishes, the authentication thread ends the PAM transaction,
sets the return value of pam_authenticate() to retval in the context, calls the thread-
safe function for the last time to invoke the callback and pass the final return value to
Node.js, and releases the thread-safe function (napi_release_threadsafe_function()).
The release invokes a finalize callback, which can provided upon the creation of the thread-
safe function. It is invoked on the addon’s main thread after the thread-safe function
is released and provides an opportunity for cleaning up after the thread(s). The addon
implements the ThreadFinished finalize callback, which terminates (pthread_join()) or
kills the thread, and frees the context.

The addon also provides kill() and cleanUp() bindings. The kill() binding can be called
from Node.js to kill the authentication thread, if an error occurs during the authentication
process (connection error between the server and the client). The cleanUp () binding should
be called when the Node.js application is about to finish to prevent some memory leaks.

The addon was written according to the thread-safe function round-trip example provided
by one of the Node.js developers Gabriel Schulhof [28].The entire source code is attached
in the appendix C.

36




5.3.1 Test Application

This section provides a test application of the node-auth-pam addon. The example appli-
cation prompts the user for their username and runs the authentication. When the call-
back function of the authenticate() binding is invoked, it firstly checks if retval is
NODE_PAM _JS _CONYV. If it is, it checks if the msgStyle is set to PAM_ERROR_MSG
or PAM_TEXT INFO, prints the message and calls setResponse () with an empty string.
Otherwise,

it prompts the user for a response according to message and sets the response.
If retval is set to PAM_SUCCESS, it gets the username from the context and prints that

the user was authenticated. Otherwise, it prints an error message.

const
const

const
const
const
const

pam = require(’bindings’) (auth_pam’); // load the addon
readline = require(’readline-sync’);

PAM_SUCCESS = 0;
PAM_ERROR_MSG = 3;
PAM_TEXT_INFO = 4;

NODE_PAM_JS_CONV = 50;

var username = readline.question(’Username: ’);

pam.authenticate(’nodeapp’, username, (nodepamCtx) => {

if (nodepamCtx.retval === NODE_PAM_JS_CONV) {
if (nodepamCtx.msgStyle === PAM_ERROR_MSG ||
nodepamCtx.msgStyle === PAM_TEXT_INFO) {
console.log(nodepamCtx.msg) ;
pam.setResponse (nodepamCtx, ’’);
} else {

var response = readline.question(nodepamCtx.msg) ;
pam.setResponse (nodepamCtx, response);

}

} else if (nodepamCtx.retval === PAM_SUCCESS) {

// Authentication succeeded, do something
console.log(’User ’ + nodepamCtx.user + ’ authenticated’);

} else {

I3

// Authentication failed, do something
console.log(’Authentication failed’);

Listing 5.3: Example of node-auth-pam Usage

The test PAM stack “nodeapp” uses pam_sss and pam_reversed_login modules.

37




5.4 The WebSocket Server

The WebSocket server serves as an authentication daemon and uses the node-auth-pam
addon to authenticate users against PAM. It listens on a given port and waits for clients
to connect. When a client connects, the server declares a variable for storing the context
(ctx). When the client sends its first message, the server expects it to be a username. Since
it is the client’s first message, no context yet exists, so the server calls the authenticate ()
binding that starts the authentication thread. When the callback of the authenticate()
binding is invoked, the server sends the current message from the context to the client using
the opened connection and stores the to declared ctx variable. If the style of the message
is either PAM_FERROR_MSG or PAM _TEXT INFO it calls the setResponse() bind-
ing with an empty string. Now, the server waits for another message from the client.
Since the client now has its context, all other messages received from now on are expected
to be responses. So every time the server receives a message from this client, it calls
the setResponse() binding to set the response to the context, so the waiting conversa-
tion function access it. While retval in the context is set to NODE PAM JS CONV
the process of sending messages and setting responses to them continues until all modules
satisfy their needs.

When retval changes, the authentication finished, the server sends the actual return value
to the client, and the ctx variable is cleared. If the authentication succeeded, the server
generates a session cookie and sends it to the client along with the return value. It
also appends the generated session ID to a file (a sessions file) named after the service
in the “SID::username” format and sets a one-day timeout, after which the session is deleted
from the file. The file contains session IDs and corresponding usernames of all authenticated
users. It is located in the sessions/ directory, which is located in the root of the package.
If the authentication failed, no session ID and cookie are generated, and another message
from the client is assumed as the first message, so the user can try again to authenticate.
Example session cookie:

SID=WS7ec7twsOptUbaQ6zVEc(==; Expires=Fri, 29 May 2020 19:20:01 GMT

If the connection between the client and the server closes due to any reason, the server
calls the ki11 () binding to kill the running authentication thread. Finally, when the server
is about to shutdown (due to an interrupt signal), it calls the cleanUp() binding and
clears the sessions file. If the file had not been cleared, some invalid sessions could remain
in the file, because all timeouts would be canceled. It would not cause any security issues
as all session cookies will expire anyway. It is just a matter of avoiding the preservation of
invalid sessions.

Since the Node.js WebSocket library allows for multiple concurrent connections, and it is
also possible to have multiple PAM transactions in parallel, the server provides authentica-
tion for multiple clients simultaneously. Each connected client has exactly one thread and
exactly one context.

The server supports two command line arguments:

e port — the port to run the server on (default: 1234)

e service — the service name as defined in /etc/pam.d/ (default: login)

38



wss.on(’connection’, (ws) => {
var ctx;

ws.on(’message’, (message) => {

if (letx) {
pam.authenticate(service, message, (nodepamCtx) => {
if (nodepamCtx.retval === NODE_PAM_JS_CONV) {

ws.send (JSON.stringify({’msg’: nodepamCtx.msg,
'msgStyle’: nodepamCtx.msgStyle}));
ctx = nodepamCtx;

if (nodepamCtx.msgStyle === msgStyle.PAM_ERROR_MSG ||
nodepamCtx .msgStyle === msgStyle.PAM_TEXT_INFO)
pam.setResponse (nodepamCtx, ’’);
} else if (nodepamCtx.retval === PAM_SUCCESS) {

var cookie = generateCookie(cookieName, nodepamCtx.user);
ws.send(JSON.stringify({’msg’: nodepamCtx.retval,
’cookie’: cookiel}));
ctx = undefined;
} else {
ws.send (JSON.stringify({’msg’: nodepamCtx.retvall}));
ctx = undefined;

}
3
} else {
pam.setResponse(ctx, message);
}
s

B

Listing 5.4: The WebSocket Server Core Functionality Code

The Figure 5.2 shows the sequence diagram of the server-side of the solution. The entire
source code of the WebSocket server is attached in the appendix C.

5.5 The WebSocket Client

The WebSocket client is a client-side JavaScript that runs in the browser when a user
accesses the login page of the web application. It handles the client-side of the solution,
which means it collects the user’s input and modifies the login page according to messages
received from the server. If no session cookie for the application is set in the browser,
it contacts the server to establish a connection. When the connection is open, it sets
the first /initial prompt to “Username:” and displays the form. If a session cookie already
exists, the client only displays the “Already authenticated” status in the #status element,
and issues a redirect to the specified location.

39




When the user fills in their username, the client sends it to the server, which starts the au-
thentication. Now, there are three types of messages (not PAM messages, but JSON strings)
expected from the server distinguished by the message content:

e msg (string), msgStyle (integer)
e msg is PAM SUCCESS (integer), cookie (string)

e msg (integer)

In the first case, the message contains msg and msgStyle fields. It means this message con-
tains a message from a PAM module and its style. The client uses a switch-case statement
to decide how to display the message, and if it is a “prompt” how to set up the input field.
If the style is PAM__PROMPT _FECHO__OFF, the client sets the type property of the in-
put field to password, so the field’s content (user’s response) is hidden. If the style is
PAM _PROMPT ECHO__ON, the client sets the type property of the input field to text,
so the field’s content is visible. In case of PAM FERROR_MSG or PAM_TEXT INFO,
the client appends the message to a div HTML element with the #messages ID. After
each received message of the first two types, a one-minute timeout is set. When the user
takes longer than a minute to provide a response, the connection between the client and
the server closes, and the “Connection timeout” status is displayed. It prevents infinitely
running authentication threads on the server.

switch (message.msgStyle) {

case msgStyle.PAM_PROMPT_ECHO_OFF:
$ ("#promptLabel") .text (message.msg) ;
$ (’#prompt’) .prop(’type’, ’password’);
startTimer();
break;

case msgStyle.PAM_PROMPT_ECHO_ON:
$("#promptLabel") .text (message.msg) ;
$ (C#prompt’) .prop(’type’, ’text’);
startTimer();
break;

case msgStyle.PAM_ERROR_MSG:

case msgStyle.PAM_TEXT_INFO:
if (message.msgStyle === msgStyle.PAM_ERROR_MSG) {

$("#messages") .append(’<p style="color:red">’ +
message.msg + ’</p>’);
} else {
$ ("#messages") .append(’<p>’ + message.msg + ’</p>’);

}
break;

default:
break;

Listing 5.5: Client-side Handling of the Conversation

40




In the second case, the msg field contains PAM_SUCCESS and cookie fields. It means
that authentication finished successfully, and the server has created a session and stored it
to the sessions file. The client closes the connection with the server, hides the form, display
the “Authenticated” status, sets the cookie (session cookie) using the cookie property of
document and issues a redirect to the configured page.

ws.close();

$("#promptForm") .hide () ;

$("#status") .text (’Authenticated’);

document.cookie = message.cookie;

setTimeout( () => {
window.location.href = ’/?;

}, 3000);

Listing 5.6: Clients Behavior on Successful Authentication

In the final case, the msg field contains an error return value, so it is possible to display
the corresponding error message in the #status element. However, it is only useful for
debugging of the PAM stack, because it is meaningless to display every error to the user.
The administrator/developer of the web application should verify that the configured PAM
stack is functional. For that reason, the client displays only the “Wrong username or
password, please try again” message, as that is the only error that PAM returns when
everything is configured correctly. It also deletes the stored username and sets the prompt
to the initial prompt, so the user can try to authenticate again.

user = undefined;

$("#status") .text (’Wrong username or password, please try again’);
$ (C#prompt’) .prop(’type’, ’text’);

$ ("#promptLabel") .text (’Username:’) ;

Listing 5.7: Clients Behavior on Authentication Error

The Listing 5.8 shows the necessary HTML code for a login page. The Figure 5.3 shows
the sequence diagram of the client-side of the solution. The entire source code of the Web-
Socket client is attached in the appendix C.

<script type="text/javascript" src="login.js"></script>
<form hidden id="promptForm" onsubmit="sendUserInput(); return false;">
<label id="promptLabel" for="prompt"></label>
<input id="prompt" type="text" />
<button type="button" onclick="sendUserInput();">Next</button>
</form>
<h2 id="status"></h2>
<div id="messages">
</div

Listing 5.8: Necessary HTML Code For a Login Page

41




5.6 Integration to a Web Application

The integration of multi-factor authentication to a web application using the solution pro-
vided in this chapter is fairly easy. It requires the content of Appendix C. It can also be
downloaded from the node-auth-pam' repository. The integration/ directory contains all
necessary files whose content must be included in the web application. The login.html
file contains the necessary HTML code for a login page. It can be edited to needs and taste
but included scripts, the form, and #status and #messages elements are mandatory, and
should not be deleted. If the application uses a templating language, it can also be slip
into several parts. The login. js file contains the client-side JavaScript code for the login
page. Only the window.location.href path and the WebSocket server address should be
edited. It is expected from the application to trust the sessions file created by the Web-
Socket server and validate session cookies received in a request against it. When a user logs
out, it should delete the appropriate session from the file.

5.6.1 Example Web Application

The example application is written in Node.js using the Express web framework” and EJS
templating language®. There are two essential function that implement the integration with
the provided solution — getUser () and removeSID(). The entire source code of the appli-
cation is attached in the appendix C.

The getUser () function validates the session ID received in a session cookie and returns
the corresponding username. Basically, it searches the sessions file for the given session
ID and returns the username associated with this session ID. Listing 5.9 shows the use
of the getUser () function. If the received request contains the session cookie, the appli-
cation calls the getUser(). Depending on its return value, the application then decides
further actions.

var user;
if (req.cookies[’SID’]) {
const sid = req.cookies[’SID’];
user = getUser(sid);

Listing 5.9: Validation of a Session Cookie

The removeSID() function searches the sessions file for the given session ID and deletes
the corresponding session (line) from the file. Listing 5.10 shows the use of the removeSID()
function for a logout page. If a user is logged in (has a session stored in the sessions file),
the application calls the removeSID() function and deletes the session cookie.

Ldownload here: node-auth-pam
2learn more at the Express web page
3learn more at the EJS web page

42



https://github.com/mariankapisinsky/node-auth-pam
https://expressjs.com/
https://ejs.co/

if (tuser) {
res.locals.content = ’No user is logged in’;

} else {
removeSID(sid) ;
res.clearCookie(’SID’);
res.locals.content = ’User logged out’;
3

Listing 5.10: Log out
Use the following commands to run the application:

$ npm install
$ node server.js

Run the server on desired port using the desired PAM stack. For example:
$ node main.js -s webapp

The webapp stack:

auth required pam_sss.so

auth required pam_reversed_login.so

auth required pam_google_authenticator.so
account required pam_sss.so

Access the example application at localhost:8080 and try to login with a local user
account. In a real use case, the pam_reversed_login module would be removed from
the PAM stack as it only serves the testing purposes.

The third point of the assignment also required a demonstration using FreeOTP. FreeOTP
requires either configuration of the OATH toolkit and the pam_oath module®, or a running
FreelPA server. Setting up a FreeIPA server requires a lot of unnecessary effort just for
test and demonstration purposes. Therefore, the first option has been selected for these
purposes. However, it did not work due to an undiscovered reason. So, after the agreement
with both supervisor and consultant, the Google Authenticator was used instead. It pro-
vides the google-authenticator application and the pam_google_authenticator module
that authenticates local users, and it is easy to configure and use. Running a Node.js ap-
plication that uses the node-auth-pam as root allows access to all user’s configuration files
so that it can validate OTP tokens.

4learn more in the pam_ oath guide

43



https://wiki.archlinux.org/index.php/Pam_oath

Linux-PAM Interface

Library Module

node-auth-pam

Server

WebSocket

authenticate (

<z
3 o
© °
S =
0 @
ol &
L1 e
S 0]
5 o)
© h
! o
£
o
S_ g_
AN
& e
...................................... N
A A
ER ] =
L o © [0)
vE o] & 4
SRR + ]
+ .
meﬂsm
og o 1% =
0P B = o)
o o m_ o 3
555l B 2
Ly & | —
i M ©
fro| Bl G
O

PAM_SUCCESS + pam_conv

>
=}
o
9]
A
|
>
=}
o
o
£
©
Q,

4]
0
0 g
FERNG]
[Vpen
T 0
A O
— 4
o
> 0
<
i)

~
<
|
0 |
S s
ole
sHR=]
D |
%] |
I =
= | <
<A
[a7)
o
o
................................. Y
A
[0}
=
s
E 2
LN ] w
o) 0 |~ 0
nl | m = ]
cf % ole © [8)
olw ol & O
of o Sl o )
ul g 15} Il ©
olo = £ |
41 N¢] S|l o =
[ BTN <&
o Al Al
< 5
] o
s
15}
0
A x
~ I
3} Q
© =
Q Z )
=
— g 0
9 =t Z
= 9 [
Z W ]
o ©
s 2 0
© 5 -
Ce m
-
S I &
gl g g
B R ©
=3 .
. :
v oy

10n

Server-side of the Soluti

Figure 5.2

44



Server

WebSocket

Client

WebSocket

Login Page

ws.connect ()

[
. Q
o
s
oo

[0}
)
[}

>3
O
oA
2]

<
)

Username

ws.send ()
ws.send ()

(prompt)

message

o
o)
]
c
“ o
- a
n
o
oG
5w
-
0
e
)

Response

ws.send ()
ws.send ()

A
- —_ +
e 29
- [0)
~ @ o
]
— e}
© o o
2 a
[ ©
m =
)
3 3
W %)
%)
i) e

success

Delete the previous

fail

Figure 5.3: Client-side of The Solution

45



Chapter 6

Conclusion

This thesis introduced the Pluggable Authentication Modules framework for those who
were not familiar with this technology. Application developers should be encouraged to
use PAM for its ease of use and high flexibility. It further described authentication in web
applications and its modern trends. Then, it introduced standard methods of authentication
using HTTP and described the current state of integration of PAM and HTTP. After some
demonstration, examples that every interested person should try themselves to see them
work and break into the PAM and HT'TP inherent incompatibility. Finally, the contribution
of this thesis is a functional implementation of multi-factor authentication for Node.js using
the node-auth-pam addon. It can be used by any Node.js application, but this thesis
implemented an authentication server (daemon) with the use of the WebSocket protocol.
It also provided a client-side JavaScript, the necessary HTML code, and the description
of what is expected from the web application for simple integration of the solution to
the application.

For example, a potentially interested user could be a company or a university that runs
its company /university information system on their server, and each person has their user
account with which they can log in. Another possibility is to use the SSSD service configured
to authenticate against an Active Directory or a FreeIPA server that is configured for multi-
factor authentication.

6.1 Future Work

The aim of this thesis was to implement multi-factor authentication in web applications us-
ing PAM. However, there are three other module types whose support is not yet supported
by the node-auth-pam addon. It should be possible to provide support for account and
password modules. A session module would serve no use because web applications use
session management as defined in RFC 6265. Another possible improvement is the imple-
mentation of a better waiting mechanism of the conversation function of the node-auth-pam
addon. For the WebSocket server, the support for other cookie attributes could be added
(with its command-line options), mainly Path.

46



Bibliography

1]

2]

3]

MORGAN, A. G. and KUKUK, T. The Linux-PAM System Administrators’ Guide
[online]. www.linux-pam.org, 2010 [cit. May 26, 2020]. Available at:
http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html.

MORGAN, A. G. and KUKUK, T. The Linuz-PAM Application Developers’ Guide
[online]. www .linux-pam.org, 2010 [cit. May 26, 2020]. Available at:
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_ADG.html.

LiNnux-PAM. Linuz PAM (Pluggable Authentication Modules for Linux) project
[online]. www.linux-pam.org, 2016 [cit. May 26, 2020]. Available at:
https://github.com/linux-pam/linux-pam.

GEISSHIRT, K. Pluggable Authentication Modules: The Definitive Guide to PAM for
Linuz SysAdmins and C Developers. 1st ed. Packt Publishing Ltd., 2007. ISBN
978-1-904811-32-9.

MORGAN, A. G. and KUkuk, T. The Linuz-PAM Module Writers’ Guide [online].
www.linux-pam.org, 2010 [cit. May 26, 2020]. Available at:
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_MWG.html.

BARRETT, D. J., SILVERMAN, R. E. and BYRNES, R. G. What the heck is ,keyboard
interactive* authentication [online]. www.snailbook.com, 2017 [cit. May 26, 2020].
Available at: http://www.snailbook.com/faq/keyboard-interactive.auto.html.

RED HaAT, INC.. Chapter 10. Using Pluggable Authentication Modules [online]. Red
Hat, Inc., 2014 [cit. May 26, 2020]. Available at:
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
system-level_authentication_guide/pluggable_authentication_modules.

SOARES, L. F. B., FERNANDES, D. A. B., FREIRE, M. M. and INAcIo., P. R. M.
Secure user authentication in cloud computing management interfaces [online]. 2013
IEEE 32nd International Performance Computing and Communications Conference
(IPCCC), San Diego, CA, 2013 [cit. May 26, 2020]. Available at:
https://ieeexplore.ieee.org/document/6742763.

OWASP FOUNDATION. Multifactor Authentication Cheat Sheet [online]. OWASP
Foundation, 2019 [cit. May 26, 2020]. Available at:
https://cheatsheetseries.owasp.org/cheatsheets/
Multifactor_Authentication_Cheat_Sheet.html.

47


http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_ADG.html
https://github.com/linux-pam/linux-pam
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_MWG.html
http://www.snailbook.com/faq/keyboard-interactive.auto.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/pluggable_authentication_modules
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/pluggable_authentication_modules
https://ieeexplore.ieee.org/document/6742763
https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html

[10] OWASP FOUNDATION. Authentication Cheat Sheet [online]. OWASP Foundation,
2019 [cit. May 26, 2020]. Available at:
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html.

[11] AuTHO, INC.. Single Sign-On [online]. AuthO, Inc., 2018 [cit. May 26, 2020]. Available
at: https://authO.com/docs/sso/current.

[12] Grasst, P. A., NEwTON, E. M., PERLNER, R. A., REGENSCHEID, A. R., BUFF,
W. E. et al. Digital identity guidelines: Authentication and lifecycle management
[online]. NIST Special Publication 800-63B, june 2017 [cit. May 26, 2020]. Available at:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf.

[13] GAVIN, B. How to Use Google Chrome to Generate Secure Passwords [online].
www.howtogeek.com, 2019 [cit. May 26, 2020]. Available at:
https://www.howtogeek.com/427007 /how-to-use-google-chrome-to-generate-secure-
passwords/.

[14] MoziLLA CORPORATION. New password security features come to Firefox with
Lockwise [online]. Mozilla Corporation, 2019 [cit. May 26, 2020]. Available at:
https://blog.mozilla.org/firefox/password-security-features/.

[15] FIELDING, R., GETTYS, J., MoGuL, J., FRYSTYK, H., MASINTER, L. et al. Hypertext
Transfer Protocol — HTTP/1.1 [online]. Internet Engineering Task Force (IETF),
june 1999 [cit. May 26, 2020]. Available at: https://tools.ietf.org/html/rfc2616.

[16] BARTH, A. and BERKELEY, U. HTTP State Management Mechanism [online].
Internet Engineering Task Force (IETF), april 2011 [cit. May 26, 2020]. Available at:
https://tools.ietf.org/html/rfc6265.

[17) THE APACHE SOFTWARE FOUNDATION. Authentication and Authorization [online].
The Apache Software Foundation, 2018 [cit. May 26, 2020]. Available at:
https://httpd.apache.org/docs/2.4/howto/auth.html.

[18] PAZDZIORA, J. Typical Form-based Authentication [online]. Adelton, 2013 [cit. May
26, 2020]. Available at: https://github.com/adelton/mod_intercept_form_submit/
blob/master/docs/typical_form_based_authentication.txt.

[19] PAZDZIORA, J. Apache module mod__authnz__pam [online]. Adelton, 2013 [cit. May 26,
2020]. Available at: https://www.adelton.com/apache/mod_authnz_pam/.

[20] PAzZDZIORA, J. Mod__intercept form__submit [online]. Adelton, 2013 [cit. May 26,
2020]. Available at: https://www.adelton.com/apache/mod_intercept_form_submit/.

[21] FETTE, I. and MELNIKOV, A. The WebSocket Protocol [online]. Internet Engineering
Task Force (IETF), december 2011 [cit. May 26, 2020]. Available at:
https://tools.ietf.org/html/rfc6455.

[22] BoJiNov, V., HERRON, D. and RESENDE, D. Node.js Complete Reference Guide. 1st
ed. Packt Publishing Limited, 2018. ISBN 9781789952117.

[23] CHaNIOTIS, I. K., KYRIAKOU, K.-I. D. and TSELIKAS, N. D. Is Node.js a viable

option for building modern web applications? A performance evaluation study.

Computing. october 2015, vol. 97, no. 10, p. 1023-1044. Available at:
https://doi.org/10.1007/s00607-014-0394-9.

48


https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://auth0.com/docs/sso/current
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://www.howtogeek.com/427007/how-to-use-google-chrome-to-generate-secure-passwords/
https://www.howtogeek.com/427007/how-to-use-google-chrome-to-generate-secure-passwords/
https://blog.mozilla.org/firefox/password-security-features/
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6265
https://httpd.apache.org/docs/2.4/howto/auth.html
https://github.com/adelton/mod_intercept_form_submit/blob/master/docs/typical_form_based_authentication.txt
https://github.com/adelton/mod_intercept_form_submit/blob/master/docs/typical_form_based_authentication.txt
https://www.adelton.com/apache/mod_authnz_pam/
https://www.adelton.com/apache/mod_intercept_form_submit/
https://tools.ietf.org/html/rfc6455
https://doi.org/10.1007/s00607-014-0394-9

[24] OPENJS FOUNDATION. Node.js v14.2.0 Documentation [online]. OpenJS Foundation,
2020 [cit. May 26, 2020]. Available at:
https://nodejs.org/dist/latest-v14.x/docs/api/addons.html.

[25] BARRETT, D. J. and SILVERMAN, R. E. SSH, The Secure Shell: The Definitive
Guide. 1st ed. O’Reilly, 2001. ISBN 0-596-00011-1.

[26] MILLER, D. and TUCKER, D. auth-pam.c [online]. OpenSSH, 2003 [cit. May 26, 2020].
Available at:
https://github.com/openssh/openssh-portable/blob/master/auth-pam.c.

[27] OPENJS FOUNDATION. Asynchronous Thread-safe Function Calls [online]. OpenJS
Foundation, 2020 [cit. May 26, 2020]. Available at: https:
//nodejs.org/api/n-api.html#n_api_asynchronous_thread_safe_function_calls.

[28] SCHULHOF, G. and MISSINE, A. round__trip.c [online]. gabrielschulhof, 2018 [cit. May
26, 2020]. Available at:
https://github.com/gabrielschulhof/abi-stable-node-addon-examples/blob/
tsfn_round_trip/thread_safe_function_round_trip/node-api/round_trip.c.

49


https://nodejs.org/dist/latest-v14.x/docs/api/addons.html
https://github.com/openssh/openssh-portable/blob/master/auth-pam.c
https://nodejs.org/api/n-api.html#n_api_asynchronous_thread_safe_function_calls
https://nodejs.org/api/n-api.html#n_api_asynchronous_thread_safe_function_calls
https://github.com/gabrielschulhof/abi-stable-node-addon-examples/blob/tsfn_round_trip/thread_safe_function_round_trip/node-api/round_trip.c
https://github.com/gabrielschulhof/abi-stable-node-addon-examples/blob/tsfn_round_trip/thread_safe_function_round_trip/node-api/round_trip.c

Appendix A

How to setup SSSD

1. Install the sssd service:
$ dnf install sssd -y

2. Create the sssd.conf config file in the /etc/sssd directory with following contents:

[sssd]
domains = PROXY_PROXY
services = nss,pam

[domain/PROXY_PROXY]

id_provider = proxy

proxy_lib_name = files

proxy_pam_target = sssd-shadowutils

pwfield = x
The pwfield = x is a bug in the sssd-2.2.3-13.fc31.x86_ 64 package.

3. Restart the sssd service:

$ systemctl restart sssd

50



Appendix B

How to set up Google
Authenticator

1. Install the pam_ google_authenticator module:
$ dnf install pam_google_authenticator -y

2. Run the google-authenticator command and follow the configuration guide:

$ google-authenticator
Do you want authentication tokens to be time-based (y/n) y

— Scan the generated QR code with the Google Authenticator mobile application
and enter the code it generates

Do you want me to update your
"/home/mariankapisinsky/.google\_authenticator" file? (y/mn) y

— Other configuration settings are optional

3. Use OTP tokens generated by the mobile application for future authentication

51



Appendix C

CD Content

e integration/ - contains necessary files for a simple integration to a web application

— login.html — contains the necessary HTML code for a login page

— login.js — contains the client-side JavaScript code for the login page
e node-auth-example/ — contains an example web application for node-auth-pam

e pam_reversed_login/ — contains an example PAM module for demonstration/test
purposes

e src/ — contains node-auth-pam addon source files

e binding.gyp — the binding file that describes the configuration to build the node-auth-
pam addon

e main.js — the WebSocket server for PAM authentication using node-auth-pam
e package.json

e LICENSE

¢ README.md

52



	Introduction
	Pluggable Authentication Modules
	PAM Framework
	Configuring Multi-factor Authentication for SSHD
	PAM-API – Essential Structures and Functions
	Authentication in PAM-Aware Applications
	Example Authentication Module
	Advantages of Using PAM

	Authentication in Web Applications
	Authentication
	Third-Party Applications
	Password Strength

	Authentication Using Only HTTP
	Hypertext Transfer Protocol
	HTTP Messages
	Session Management and Cookies

	Basic Authentication
	Disadvantages
	Example Configuration in Apache

	Form-based Authentication

	Current State of Authentication in Web Applications Using PAM
	Existing Solutions
	Example Configuration in Apache
	PAM Authentication Using WebSockets
	Node.js
	Example with node-linux-pam

	Adding More Factors

	Multi-Factor Authentication in Web Applications Using PAM
	HTTP and PAM Incompatibility
	The Basis of the Solution
	PAM Authentication Addon for Node.js
	Test Application

	The WebSocket Server
	The WebSocket Client
	Integration to a Web Application
	Example Web Application


	Conclusion
	Future Work

	Bibliography
	How to setup SSSD
	How to set up Google Authenticator
	CD Content

