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Abstract
The goal of this thesis is to present an overview of the current state of research in the
non-supervised sentiment analysis and identify potential research paths. Besides, the thesis
introduces a novel self-supervised pre-training objective. Extending the model trained with
the introduced objective with one extra layer of neural network and training it alone shows
promising results. The extended model indicates an ability to encode the abstract repre-
sentation of overall sentiment, emotions and sarcasm. A custom dataset was specifically
collected for the pre-training objective introduced in this thesis. Future improvements and
possible research paths are proposed based on the experiments performed with the extended
model.

Abstrakt
Cieľom tejto práce je odprezentovať prehľad aktuálneho výskumu v oblasti analýzy sen-
timentu bez priameho učenia a identifikovať potenciálne smery výskumu. Okrem toho
práca predstavuje novú účelovú funkciu na predtrénovanie, ktorá nevyžaduje priamy su-
pervíziu. Rozšírenie modelu predstavenou účelovou funkciou, pridanie vrstvy neurónovej
siete a následné samotné natrénovanie ukazujú sľubné výsledky. Rozšírený model naznačil
schopnosť zakódovať abstraktné reprezentácie celkového sentimentu, emócií a sarkazmu.
Pre účely použitia predstavenej účelovej funkcie bol nazbieraný vlastný dataset. Na základe
experimentov vykonaných s rozšíreným modelom sú odprezentované možné smery výskumu
a budúce vylepšenia.
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Rozšířený abstrakt
Vzostup internetu umožnil vznik sociálnych sietí a rôznych verejne dostupných dátových
zdrojov. Dnešný svet ponúka množstvo dát a spoločnosti môžu mať veľa dát o zákazníkoch.
Avšak analyzovať tieto dáta ručne bez chýb a predsudkov je naozaj pomalé a náročné.
Spoločnosti vedia, že potrebujú získať pochopenie dát, ktoré by informovalo ich rozhodnu-
tia. No nemusia vedieť ako takéto pochopenie získať z aktuálne dostupných dát.

Analýza sentimentu poskytuje určitý náhľad do toho, čo je najdôležitejšie zo zákazníckej
perspektívy. Okrem toho služby pre zákazníkov nie sú jedinou oblasťou, kde môže byť
analýza sentimentu aplikovaná. Ďalšie oblasti sú napríklad obchodovanie na burzách alebo
politika.

Keďže analýza sentimentu môže byť prevažne automatizovaná, tak toto znižuje vstup od
človeka potrebný počas procesu rozhodovania. Nevýhoda zasahovania človeka do procesu
je v tom, že môže zaniesť zaujatosť do procesu. Okrem toho väčšina dnešných najlepších
algoritmov vyžaduje veľa označených dát, čo môže byť v niektorých prípadoch problém nie
len kvôli zaujatosti, ale aj nedostatku dát.

Pokroky v architektúrach hlbokého učenia v súčasnosti umožnili veľkým architektúram
dosiahnuť najlepšie výsledky napriek viacerým NLP úlohám vrátane analýzy sentimentu.
Architektúry ako GPT, BERT, XLNet, ELMo, alebo ULMFIT boli predtrénované na
obrovských neoznačených datasetoch bez supervízie, vyžadujú menej označených dát na
dotrénovanie a objavujú sa na vrcholoch väčšiny porovní v analýze sentimentu.

Analýzou sentimentu bez priameho učenia sa myslia všetky metódy, ktoré nevyžadujú
priamu supervíziu. Cieľom analýzy sentimentu bez priameho učenia je dosiahnuť dobré
výsledky použitím znalostí zo súvisiacich úloh, iných techník alebo súvisiacich dát.

Práca si dáva za cieľ preskúmať súčasné metódy analýzy sentimentu bez priameho
učiteľa, preskúmať potenciálne zlepšenie a navrhnúť smer ďalšieho výskumu. Táto práca
popisuje fenomén sentimentu v prirodzenom jazyku a dostupné metódy analýzy senti-
mentu bez priameho učenia ako napríklad Sentiment Neuron alebo DeepMoji. Vlastná
predtrénovacia dátová sada bola zozbieraná z príspevkov na Twitteri a práca predstavuje
rôzne porovnávacie dátové sady na klasifikáciu sentimentu, emócií a sarkazmu. Na základe
postrehov zo súčasných metód analýzy sentimentu bez priameho učiteľa bola vytvorená nová
predtrénovacia účelová funkcia. Prvý postreh je, že úloha na modelovanie jazyka je schopná
zachytiť sentiment z textu. Druhý postreh je, že emotikony môžu byť použité ako forma vz-
dialenej supervízie s výsledkami porovnateľnými s najmodernejšími metódami. Nakoniec sú
predstavené rôzne experimenty založené na novej predtrénovacej účelovej funkcii a výsledky
sú porovnané voči základnej architektúre.

Základnou architektúrou je DeepMoji, ktorý má zmrazené všetky vrstvy okrem posled-
nej a tá je dotrénovaná na cieľovej dátovej sade. Celá architektúra bola predtrénovaná na
dátach z Twitteru s emotikonmi ako anotáciami. DeepMoji architektúra je diskriminatívna
a obojsmerná. Na základe vstupného textu architektúra diskriminuje konktény emotikon.
Duplicitné emotikony boli odstránené. Na rozdiel od DeepMoji, Emoji GPT-2 (jedna z ar-
chitektúr predstavených v experimentoch) je jednosmerná generatívna architektúra, ktorá
modeluje pravdepodobnosť celej sekvencie emotikonov.

Na základe výsledkov experimentov je jasné, že celkový sentiment, emócie a sarkaz-
mus môžu byť získané pomocou novej predtrénovacej účelovej funkcie. Jednoduchá LSTM
architektúra nebola schopná zachytiť emočný obsah textu ani po predstavený váh pre jed-
notlivé triedy.

Avšak rozšírená GPT-2 architektúra vyprodukovala porovnateľné výsledky s zakladnou
architektúrou ako aj zlepšenie oproti pôvodnej GPT-2 architektúre. Emoji GPT-2 architek-



túra prekonala základnú DeepMoji architektúru iba v jednom porovnaní úlohy klasifiká-
cie emocií. Napriek tomu výsledky porovnaní z úlohy klasifikácie sentimentu a sarkazmu
boli porovnateľné. A čo viac Emoij GPT-2 je založená na predtrénovanom GPT-2, takže
vyžaduje menej trénovacieho času a dát na dosiahnutie podobných výsledkov.

Použitie architektúry založenej na Transformer architektúre otvorilo možnosti k analýze
pozornosti. Zaujímavá skupina pozorností bola objavená počas analýzy pozornosti v Emoji
GPT-2. Bolo by zaujímavé vidieť možnosť klasifikácie sentimentu iba na základe pozornosti.

Záverom tejto práce na základe experimentov je potvrdené, že modelovanie jazyka
je schopné extrahovať sentiment z textu. Taktiž predstavená účelová funkcia je schopná
zachytiť lepšie reprezentácie emócií než skryté reprezentácie z Transformer architektúry
skoro o 5 percent na niektorých úlohách. Taktiež emotikony ako foma vzdialenej super-
vízie sú výborné v zachytávaní sentiment, rôznych emócií ako aj sarkazmu. Potenciálne
vylepšenia tejto práce do budúcna sú prieskum LSTM architektúry, výskum klasifikácie za-
loženej na pozornosti a porovnanie výsledkov s architektúrou dotrénovanou na špecifických
dátových sadách.
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Chapter 1

Introduction

The rise of the Internet caused the creation of social media and many different publicly
available data sources. Today’s world offers a lot of data, and companies might have a lot
of customer data. However, it is really slow and hard to analyze the data manually by
a person without any errors or bias. Companies know insight is needed to inform their
decisions. However, they might not know how to get insight from the available data.

Sentiment analysis provides some insight into what is most important from the customer
perspective. Furthermore, customer service is not the only area where sentiment analysis
can be applied. Others are, for example, stock market trading or politics. Leading up to
the Great Britain/European Union Membership Referendum (Brexit), a sentiment analysis
tool was able to predict around six hours before the announcement that polls favouring
the ’remain’ camp were incorrect. Figure 1.1 shows sentiment analysis tool monitoring and
measuring sentiment from social media posts during the Brexit. The polling stations closed
at 22:00 and the tool predicted the result around 16:00 (see Figure 1.1).

Figure 1.1: The example of sentiment analysis tool.[7] The figure shows levels of sentiment
for both camps in the Brexit polls. The polling stations closed at 22:00 and the tool started
to predict the correct outcome already around 16:00 as indicated in the last time point in
figure.

Since the sentiment analysis can be mostly automated, it alleviates most of the human
intervention during the decision making process. There is a downside to human intervention
due to bias and subjective judgement. Nevertheless, most of the current best-performing
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algorithms require a lot of labelled data which can be in some cases a problem not only due
to bias but also due to data scarcity.

The advancements in deep learning architectures in recent years enabled large architec-
tures to achieve the state of the art results across many NLP tasks, including sentiment
analysis. Architectures like GPT [30], BERT [12], XLNet [45], ELMo [28] or ULMFIT [17],
pre-trained on large unlabelled datasets without supervision, require less labelled data for
fine-tuning and appear on the top of most sentiment analysis benchmarks.

Non-supervised sentiment analysis refers to methods that do not need direct supervision
and the goal of the non-supervised sentiment analysis is to achieve good results using
knowledge from related tasks, other techniques or related data.

The goal of the thesis is to explore the current state of non-supervised sentiment analysis
methods, explore potential improvements and to give suggestions for the future research.
The thesis is structured in the following manner. Chapter 2 describes the different types
of sentiment analysis and used methods. The key concepts needed to understand methods
that are described in later chapters are in Chapter 3. Chapter 4 contains some of the current
non-supervised sentiment analysis methods. There are various architectures to create an
overview of different approaches from the field. The dataset specifically collected for the
thesis and different benchmark datasets are described in Chapter 5. Chapter 6 details
models created and used in the thesis and the experiments performed with them. The
experiments and the model results are evaluated in Chapter 8.
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Chapter 2

Sentiment Analysis

The sentiment [35] is a thought, opinion, or idea based on a feeling about a situation, or
a way of thinking about something. However, it is also defined as gentle feelings such as
sympathy, love, etc.
Due to its ambiguity, the task of analyzing the sentiment is further divided into multiple
areas such as emotion detection or polarity classification.

Sentiment analysis refers to a problem of systematically extracting subjective informa-
tion from a text and classifying that information into multiple categories.

Moreover, sentiment analysis can be performed at various levels of textual granularity:

∙ Document-level where the task is to detect the overall sentiment of a whole document
or a paragraph.

∙ Sentence-level where the task is to detect the sentiment of the given sentence.

∙ Subsentence-level where the task is to detect the sentiment of sub-structures within
the sentence, eg. words.

2.1 Different types of sentiment analysis
There are various types of sentiment analysis ranging from basic polarity classification
(positive, neutral) to detection of feelings and emotions (anger, fear, sadness) or subjectiv-
ity/objectivity classification.

Polarity Sentence Sample
positive Béart and Berling are both superb, while Huppert ... is magnificent.
positive Not only does Spider-Man deliver, but I suspect it might deliver again.
negative Without Shakespeare’s eloquent language, the update is dreary and sluggish.
negative Final verdict: You’ve seen it all before.

Table 2.1: Example of polarity classification on IMDB reviews.
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2.1.1 Fine-grained sentiment analysis

Sentiment analysis can be as simple as binary positive/negative opinion polarity classifica-
tion. However, there can be a need for more opinion categories to consider: Very positive,
Positive, Neutral, Negative, Very negative.

This type is generally called fine-grained sentiment analysis and might be, for example,
used to classify 5-star rating reviews.

For more information about this task, refer to [11].

Polarity Sentence
very positive Still, this flick is fun, and host to some truly excellent sequences.

positive Yet the act is still charming here.
neutral Some movies blend together as they become distant memories.
negative This isn’t a new idea.

very negative It’s not a motion picture; it’s an utterly static picture.

Table 2.2: Example of fine-grained sentiment analysis from Stanford Sentiment Treebank
[38].

2.1.2 Emotion detection

Emotion detection is the process of classifying emotions expressed in the text. Most common
theories of emotions used are Ekman’s six basic emotions [13] along with Plutchik’s wheel
of emotions [29], which describes eight basic emotions. However, some words that would
normally express anger might express joy too. For example, the word kill can be used as
an expression of anger, e.g. you are killing me, but also a joy, e.g. you killed it.

For additional information about this task see [36].

Emotion Topic sentences
Neutral Warlords of Draenor Launch Update: 1:40 p.m.

Joy Thanks, Blizzard!
Trust Female Gamers Group want a Safe Space.
Fear What’s going on with the WoW Armory?

Surprise Why no-flying in Draenor is a good thing!
Sadness Server Maintenance soo...rate that xmog!
Anger Curse client not connecting to the internet?

Anticipation The new models aren’t final, right?

Table 2.3: Example of emotion detection from MMORPG game.

2.1.3 Subjectivity classification

The task of subjectivity classification is to determine whether a text expresses an opinion
or not, in other words, classify if a given text is objective or subjective. Afterwards, in the
case of subjective information, the goal is to classify polarity of the given opinion. However,
the problem is that many words have both subjective and objective meaning. For example,
the word positive is objective when its meaning is electropositive (e.g. protons are positive),
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but it is subjective when used to express advantage (e.g. a positive factor). Furthermore,
the objective text might contain subjective sentences (e.g. quotes in news articles).

More on this task in [40].

Polarity Subjectivity Sample Sentence
Negative Subjective Literally ur facebook message app is useless
Positive Subjective The battery life of this camera is very good

- Objective Camera is a good device for capturing photographs

Table 2.4: Example of subjectivity classification on tweets.

2.1.4 Aspect-based sentiment analysis

Traditionally, sentiment analysis classifies the overall sentiment of a document. Aspect-
based sentiment analysis task is defined as classifying polarity of the opinions on different
aspects expressed in a text. The aspects are attributes or components of a subject of
interest. The advantage is that aspect-based analysis might capture more information
about a subject of interest. Different aspects can have different sentiment, for example, an
airline can provide great comfort, but bad food.

Table 2.5: Example of aspect-based sentiment analysis on airlines review
Aspect Sentiment Sample Sentence
food negative What I will complain about is the food on offer....

punctuality positive My flight arrived on time which was great....
comfort negative Also, the seats are a uncomfortable for people lik...
value neutral The price I paid was really cheap in comparison to...
staff positive It’s a cheap A-B service that saves you a tonne of...

2.2 Sentiment analysis methods
The approaches to sentiment analysis that can be grouped into these three categories:
knowledge-based, statistical or hybrid methods.

2.2.1 Knowledge-based methods

These methods classify text into affect categories (e.g. anger, joy, fear) based on the presence
of unambiguous affect words (e.g. happy, sad, afraid, and bored), phrases and phrase
patterns [5]. However, knowledge-based techniques are problematic in the following two
areas:

∙ Cannot reliably recognize affect-negated words. For example, sentence ’that meal was
excellent’ might be correctly classified as positive, however, it is also likely to assign
the same class to the sentence ’that meal wasn’t excellent’.

∙ Reliance on surface features, in other words, a sentence sometimes expresses affect by
meaning, rather than affect adjectives.

7



2.2.2 Statistical methods

These methods use elements from statistics or machine learning to build a model. By
training a model on a large training corpus of documents with affect annotations, the
model might not learn just affect of the keywords, but also, for instance, take into consid-
eration contextual features like arbitrary keywords, punctuation, and word co-occurrence
frequencies.

Generally used are neural networks based loosely on functions of the human brain. The
neural network approximates a function which maps inputs 𝑥 to outputs 𝑦. For natural
language processing tasks, generally, the input is a vector representing a text or a word,
and the output are probabilities from a probability distribution of classes 𝐶 𝑃 (𝐶 = 𝑐|𝑥).
Specific methods used in sentiment analysis are described later in Chapter 4.

The input text is generally transformed by different approaches into numerical repre-
sentation, usually vector. Sometimes, this vector represents word or expression frequencies
in a predefined dictionary, and the common method has been the bag of words with their
frequencies [15]. This approach looks at the histogram of the words within the text, i.e.
considers each word count as a feature.

However, newly used feature extraction techniques utilize word embeddings, also called
word vectors. The feature vector represents different aspects of the word: each word is as-
sociated with a point in a vector space. The number of features is significantly smaller than
the size of the vocabulary and the words with similar meaning have similar representations
which might improve the performance of the classifier [2]. The frequently used method used
is word2vec [23].

2.2.3 Hybrid methods

Hybrid methods utilise both machine learning and knowledge-based methods like ontologies
and semantic networks. These allow extracting conceptual and affective information related
to natural language opinions. These methods no longer rely on blindly using keywords,
however, on large semantic knowledge bases. The advantage is that they can recognise the
sentiment that is expressed subtly. On the other hand, the disadvantage is their reliance
on the depth and breadth of the used knowledge bases [5].

Hybrid methods showed promise at fine-grained feature-based sentiment analysis [6].

2.3 Evaluation
Various performance metrics are used to evaluate a classifier and to understand a sentiment
analysis system. Traditional evaluation metrics of a classifier performance are precision,
recall, F1 and accuracy explained later in this section.

2.3.1 Confusion matrix

Predicted
Positive Negative

A
ct

ua
l Positive TP FN

Negative FP TN

Table 2.6: Confusion matrix
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A confusion matrix outlines the performance of a classifier over a set of data samples. It is
a two-dimensional matrix, indexed in one dimension by the true class of an object and in
the second by the class assigned by the classifier. A confusion matrix has two classes, one
labelled as the positive class and the other the negative class. In this regard, the four cells
of the matrix are labelled: true positives (TP), false positives (FP), true negatives (TN),
false negatives (FN), as illustrated in Table 2.6.

2.3.2 Accuracy

The accuracy of a model is usually evaluated by applying it to test data for which the labels
are known. The accuracy of a classifier on test data might be calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
the number of correctly classified objects

total number of objects (2.1)

Using accuracy as the main performance metric with a serious class imbalance can be a
problem. For instance, consider a problem where only 1% of the examples belong to the
positive class, high accuracy of 99% is achievable by predicting the negative class for all
examples. However, all positive class examples, the rare and more interesting cases, are
misclassified.

To give a better insight into the performance of a model, precision, recall and F1 score
should be considered too.

2.3.3 Precision

Precision is defined as the ratio of true positive (TP) and the total number of positive
predictions by a model. This is defined regarding confusion matrix with two classes as
mentioned above. Precision can then be defined in terms of true positives and false posi-
tives (FP) as follows.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.2)

Precision is useful when the penalty for false positives is too high, for example, in models
for cancer detection.

2.3.4 Recall

The recall is a measure of information extraction performance. It is also defined regarding
confusion matrix, similarly as precision, and it is related to precision. Recall can be defined
in terms of true positives and false negatives (FN) as follows.

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.3)

The recall is useful when the penalty for false negative is too high, for example, in models
for nuclear missile retaliation.

The tradeoff is that increasing recall decreases precision, and vice versa while keeping
the model same. For example, this might be done by changing the threshold (see Figure
2.1). There is a whole scientific field behind finding an optimal threshold called ”Decision
Theory“.
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Figure 2.1: Threshold example [9].

2.3.5 F1 score

F1-score is a measure of the accuracy of predictions in binary classification problems. It is
defined as the harmonic mean of precision and recall (see Equation 2.2 and Equation 2.3).
F1-score is defined as follows.

𝐹1 = 2 * (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

(2.4)

Therefore, a system with high F1-score has both good precision and good recall. The F1-
score is also used to evaluate multiclass classification problems. In this case, the final score
is calculated by micro-averaging or macro-averaging (see Equation 2.7 and Equation 2.10
respectively). Micro-average sums the contributions (𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 𝐹𝑁) for all classes 𝐶 to
calculate the average score. Macro-average calculates the F1-score independently for each
class and then computes the average, which means it treats all classes equally and does not
take label imbalance into account.

𝑃𝑚𝑖𝑐𝑟𝑜 =

∑︀𝐶
𝑖=1 𝑇𝑃𝑖∑︀𝐶

𝑖=1 𝑇𝑃𝑖 + 𝐹𝑃𝑖

(2.5)

𝑅𝑚𝑖𝑐𝑟𝑜 =

∑︀𝐶
𝑖=1 𝑇𝑃𝑖∑︀𝐶

𝑖=1 𝑇𝑃𝑖 + 𝐹𝑁𝑖

(2.6)

𝐹1𝑚𝑖𝑐𝑟𝑜 = 2 * 𝑃𝑚𝑖𝑐𝑟𝑜 *𝑅𝑚𝑖𝑐𝑟𝑜

𝑃𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑚𝑖𝑐𝑟𝑜
(2.7)

The micro-averaged precision 𝑃𝑚𝑖𝑐𝑟𝑜 and 𝑅𝑚𝑖𝑐𝑟𝑜 are calculated, and then used to calcu-
late micro-averaged 𝐹1𝑚𝑖𝑐𝑟𝑜.

𝑃𝑚𝑎𝑐𝑟𝑜 =

∑︀𝐶
𝑖=1 𝑃𝑖

𝐶
(2.8)

𝑅𝑚𝑎𝑐𝑟𝑜 =

∑︀𝐶
𝑖=1𝑅𝑖

𝐶
(2.9)

𝐹1𝑚𝑎𝑐𝑟𝑜 = 2 * 𝑃𝑚𝑎𝑐𝑟𝑜 *𝑅𝑚𝑎𝑐𝑟𝑜

𝑃𝑚𝑎𝑐𝑟𝑜 + 𝑅𝑚𝑎𝑐𝑟𝑜
(2.10)
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2.4 Inter-annotator reliability
Inter-annotator reliability is the degree to which are two or more annotators in agreement. It
solves the problem of consistency in rating systems implementation. High inter-annotator
reliability values reflect a high degree of agreement between two annotators. Low inter-
annotator reliability values reflect a low degree of agreement between two annotators.[21]
One of the most frequently used for inter-reliability is Krippendorff’s alpha (𝛼).

𝛼’s general form is:
𝛼 = 1 − 𝐷𝑜

𝐷𝑒
(2.11)

where 𝐷𝑜 is the observed disagreement among values assigned to units of analysis and 𝐷𝑒

is the disagreement one would expect when the codingof units is attributable to chance.
For example, the best inter-rater agreement for Twitter sentiment analysis hits 0.655

with Krippendorff’s alpha [33]. This means there is a good degree of agreement, however,
it is still far from ideal 0.8 which is what social scientists commonly rely on.[20]
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Chapter 3

Key Concepts

3.1 KL divergence
Kullback-Leibler Divergence is an asymmetric measure of the difference between two dis-
tributions [4]. Original probability distribution 𝑃 and approximate distribution 𝑄.

𝐷𝐾𝐿(𝑃 ||𝑄) =

𝑁∑︁
𝑖=1

𝑃 (𝑥𝑖)(log𝑃 (𝑥𝑖) − log𝑄(𝑥𝑖))

𝐷𝐾𝐿(𝑃 ||𝑄) = E[log𝑃 (𝑥) − log𝑄(𝑥)] = E𝑃 (𝑥)[𝑃 (𝑥)] − E𝑃 (𝑥)[𝑄(𝑥)]

KL divergence calculates how much information is lost when one distribution is approxi-
mated with another.

3.2 Likelihood function
The likelihood function measures how well the data describes the unknown parameters of
the model. The unknown parameters of a distribution are denoted as 𝜃 and the data as 𝑋.
The probability density function can be denoted as 𝑓(𝑥|𝜃) since the probability distribution
depends on the parameters. Furthermore, when 𝑋 = 𝑥 is the observed sample data point,
then the function of 𝜃 defined as:

𝐿(𝜃|𝑥) = 𝑓(𝑥|𝜃)

is the likelihood function. The difference between the likelihood function and the PDF
is which variable is considered fixed and which is changing. In the case of the PDF, the 𝑥
is the variable, and 𝜃 is fixed. However, the 𝑥 is observed sample point in the likelihood
function, and the 𝜃 varies over all possible parameter values. Furthermore, although 𝑓(𝑥|𝜃),
as a function of 𝑥, is a PDF, there is no guarantee that 𝐿(𝜃|𝑥), as a function of 𝜃, is a PDF.

3.3 LSTM
Long Short Term Memory [16] networks are a special kind of RNN, capable of remembering
longer contexts than basic RNN. The key to the LSTMs is the cell state represented by the
top horizontal line in Figure 3.1. The addition and removal of the information in the cell
state are controlled by gates. Gates let the information through and consist of a sigmoid
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function and a pointwise multiplication operation.

Figure 3.1: LSTM cell [8].

There are three types of these gates, forget gate 𝑓𝑡, input gate 𝑖𝑡 and output gate 𝑜𝑡.
The forget gate ’decides’ what information is going to be thrown away from the cell state
by looking at ℎ𝑡−1, information from the previous step, as shown in Equation 3.1.
The input gate determines what new information is going to be stored in the cell state, as
shown in Equation 3.2. In vector 𝐶𝑡 is the new information that could be added to the
state 𝐶𝑡.
Lastly, the output gate filters the information, as shown in Equation 3.3, that is going to
be the final output ℎ𝑡.

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ) (3.1)
𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (3.2)
𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3.3)
𝐶𝑡 = tanh(𝑊𝐶𝑥𝑡 + 𝑈𝐶ℎ𝑡−1 + 𝑏𝐶) (3.4)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡 (3.5)
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) (3.6)

The ⊙ denotes the Hadamard product (element-wise product), which takes two matrices
𝐴 and 𝐵 with the same dimensions and produces a matrix 𝐶 with the same dimensions
where the elements are calculated as shown in Equation 3.7.

(𝐶)𝑖𝑗 = (𝐴⊙𝐵)𝑖𝑗 = (𝐴)𝑖𝑗(𝐵)𝑖𝑗 (3.7)

On the other hand, the matrix product (dot product) takes two matrices 𝐴 and 𝐵 such
that 𝐴 is an 𝑚× 𝑛 matrix and 𝐵 is an 𝑛× 𝑝 matrix and produces 𝑚× 𝑝 matrix 𝐶 where
the elements are calculated as shown in Equation 3.8.

(𝐶)𝑖𝑗 =
𝑛∑︁

𝑘=1

(𝐴)𝑖𝑘(𝐵)𝑘𝑗 (3.8)
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3.4 mLSTM
mLSTM [19] combines the long short-term memory (LSTM), see Section 3.3, and multi-
plicative recurrent neural network architecture. These architectures are combined by adding
connections from mRNN’s intermediate state 𝑚𝑡 to each gating unit in the LSTM as follows:

𝑚𝑡 = (𝑊𝑚𝑥𝑥𝑡) · (𝑊𝑚ℎℎ𝑡−1) (3.9)

ℎ̂𝑡 = 𝑊ℎ𝑥𝑥𝑡 + 𝑊ℎ𝑚𝑚𝑡 (3.10)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖𝑚𝑚𝑡) (3.11)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜𝑚𝑚𝑡) (3.12)

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓𝑚𝑚𝑡) (3.13)

The dimensionalities of 𝑚𝑡 and ℎ𝑡 are equal and 𝑚𝑡 is shared across all LSTM unit types,
meaning that 𝑚𝑡 interacts additively across all the units. This architecture combines the
flexible input-dependent transitions of mRNN and the long memory and information control
of LSTM. The extra sigmoid input and forget gate featured in LSTM enable better input-
dependent transition functions than in regular mRNN. Also, it is faster than LSTM.

3.5 Language modelling
Language Modelling (LM) is one of the numerous essential parts of modern Natural Lan-
guage Processing (NLP). Language modelling is the task of assigning a probability to se-
quences in a language. Apart from assigning a probability to each sequence of words, the
language model assigns a probability for a given word or a sequence of words to follow a
sequence of words.[15] Formally, the task of language modelling is to estimate the proba-
bility of a sequence of words 𝑃 (𝑤1, .., 𝑤𝑛), which in practice is usually rewritten using the
chain rule of probability as:

𝑃 (𝑤1, .., 𝑤𝑛) = 𝑃 (𝑤1)𝑃 (𝑤2|𝑤1)...𝑃 (𝑤𝑛|𝑤1, ..., 𝑤𝑛−1) (3.14)

3.6 Byte Pair Encoding
Most common word representations cannot handle unseen or rare words well. Character-
level embeddings are one of the solutions to out-of-vocabulary words. However, character-
level language units might be too fine-grained to capture some important information.
Subword level is between character and word, which means it is not as fine-grained as
character level. Furthermore, it handles unseen and rare words.

Byte Pair Encoding (BPE) [34] is a simple data compression technique that iteratively
replaces the most frequent pair of bytes in a sequence with a single, unused byte. This
technique is used for word segmentation. However, instead of merging frequent pairs of
bytes, it merges characters or character sequences.

The algorithm, shown in Figure 3.2, is as follows:

1. Initialize symbol vocabulary, where each word is represented as a sequence of charac-
ters plus a special end-of-word symbol, <\w> in Figure 3.2.

2. Generate a new subword based on the high occurrence frequency.
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3. Repeat 2. until the final symbol vocabulary size is equal to the size of the initial
vocabulary plus the number of merge operations, which is the only hyperparameter
of the algorithm.

Figure 3.2: The minimal Python implementation of BPE. [34]

3.7 Transformer architecture
When a sequence is processed by LSTM, as described in 3.3, each hidden state depends on
the previous hidden states. This makes LSTM, and recurrent models as a whole, inefficient
and slow even on GPUs, as the temporal dependencies are unlikely to be parallelized.

Another problem of LSTMs is learning long-range dependencies by a network. Theoret-
ically, LSTMs can have long-term memory, however, remembering long-range dependencies
is still a challenge due to gradient vanishing/explosion [26]. Furthermore, some words have
different meanings based on the context.

The traditional attention mechanism improved the solution to the problem of long tem-
poral dependencies between the input and output tokens. The idea behind the Transformer
is to extend this mechanism to the input and output sentence processing, which means the
sequence encoder and decoder can see the entire input sequence and generated output
sequence all at once.

The Transformer [42] follows encoder-decoder architecture using stacked self-attention
and point-wise, fully connected layers for both the encoder and decoder, shown in the left
and right halves of Figure 3.3.
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Figure 3.3: The Transformer - model architecture. [42]

Each encoder layer 𝑙 has two sub-layers. The first is a multi-head self-attention mech-
anism ℎ̃𝑖, and the second is a simple position-wise fully connected feed-forward network
𝑥𝑖. Between each sub-layer is a residual connection followed by layer normalization [1]
𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚.

˜ℎ𝑙+1
𝑖 =

𝑀∑︁
𝑚=1

𝑊 𝑙+1
𝑚 [

𝑁∑︁
𝑗=1

𝐴𝑚
𝑖,𝑗 · 𝑉 𝑙+1

𝑚 𝑥𝑙𝑗 ] (3.15)

ℎ𝑙+1
𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥𝑙𝑖 + ˜ℎ𝑙+1

𝑖 ) (3.16)
˜𝑥𝑙+1
𝑖 = 𝑊 𝑙+1

2 ·𝑅𝐸𝐿𝑈(𝑊 𝑙+1
1 ℎ𝑙+1

𝑖 + 𝑏𝑙+1
1 ) + 𝑏𝑙+1

2 (3.17)

𝑥𝑙+1
𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(ℎ𝑙+1

𝑖 + ˜𝑥𝑙+1
𝑖 ) (3.18)

The 𝑚 is the attention head index and 𝐴𝑚
𝑖,𝑗 represents attention weights between ele-

ments 𝑖 and 𝑗. The Equation 3.17 uses 𝑅𝐸𝐿𝑈 activation function [24].
The decoder is similar to the encoder. In addition to the two sub-layers in each layer,

there is a third sub-layer performing multi-head attention over the output of the encoder
stack. Furthermore, the self-attention sub-layer is modified to mask inputs to the decoder
from the future timesteps.

16



3.8 GPT-2
GPT-2 [32] is a large transformer-based language model (architecture described in Section
3.7) trained on a dataset of 8 million web pages. The GPT-2 is built using transformer
decoder blocks as opposed to BERT, which uses transformer encoder blocks, architecture
shown in Figure 3.4.

However, the key difference from BERT is that GPT-2 was trained with a causal (uni-
directional) language modelling objective. Therefore, it is powerful at predicting the next
token in a sequence and utilizing this feature allows GPT-2 to generate syntactically coher-
ent text. The input sequences are encoded by byte-level Byte Pair Encoder, the algorithm
described in Section 3.6, into tokens and then transformed to vector embeddings.

The last decoder layer outputs are used for classification. The pre-training process is
expensive, however, done only once, and then fine-tuned for specific tasks.

Figure 3.4: Transformer architecture and training objectives used in GPT. [30]

3.9 Measures of association
The Cramér’s V [10] is a measure of association between two nominal variables where the
output of the method is a value between 0 and 1 inclusive, and it is based on Pearson’s chi-
squared test. It is a symmetrical method meaning the order of the input variables does not
matter. The original Cramér’s V suffers from bias, so the formula with the bias correction
[3] was used, shown in Equation 3.19.
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𝑘 = 𝑘 − (𝑘 − 1)2

𝑛− 1
(3.19)

𝑟 = 𝑟 − (𝑟 − 1)2

𝑛− 1
(3.20)

𝜙 = 𝑚𝑎𝑥(0, 𝜙2 − (𝑘 − 1)(𝑟 − 1)

𝑛− 1
) (3.21)

𝑉 =

√︃
𝜙2

𝑚𝑖𝑛(𝑘 − 1, 𝑟 − 1)
(3.22)

It is calculated by taking the square root of the corrected phi coefficient 𝜙 divided by
the corrected minimum dimension minus 1. The 𝑛 is the total number of observations, and
𝑘 and 𝑟 are the numbers of unique values from each input variable.

The Theil’s U also referred to as uncertainty coefficient is also a measure of association,
and it is based on the concept of information entropy. This measure lies between 0 and 1
similarly to the Cramér’s V. However, it is not symmetric concerning the two input variables,
and this prevents information loss. The formula for Theil’s U is shown in Equation 3.23.

𝑈(𝑋|𝑌 ) =
𝐻(𝑋) −𝐻(𝑋|𝑌 )

𝐻(𝑋)
(3.23)

It is calculated as the entropy of variable 𝑋 minus conditional entropy of 𝑋 given 𝑌 divided
by the entropy of 𝑋. The conditional entropy is calcualted as:

𝐻(𝑋|𝑌 ) = −
∑︁
𝑥,𝑦

𝑃𝑋,𝑌 (𝑥, 𝑦) log𝑃𝑋|𝑌 (𝑥|𝑦) (3.24)

where the 𝑃𝑋,𝑌 (𝑥, 𝑦) is joint distribution and 𝑃𝑋|𝑌 (𝑥|𝑦) conditional distribution.
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Chapter 4

Non-supervised sentiment analysis
methods

This chapter describes a different state of the art methods used for non-supervised sentiment
analysis.

4.1 Variational approach with target-opinion word pairs
Document-level multi-aspect sentiment analysis aims to predict the sentiment polarity of
each aspect given a text which comprises several sentences containing one or more aspects.
This method [46] uses target-opinion word pairs as a self-supervision. For example, in a doc-
ument “The bedroom is very spacious,” extracted target-opinion pair “bedroom-spacious”
might indicate that the sentiment polarity of the aspect room is positive.

These word pairs can be extracted using rule-based methods and used in the model which
consists of a sentiment polarity classifier and an opinion word classifier. Both classifiers are
trained for each aspect separately. The input of the sentiment classifier of each aspect,
i.e., a representation of a document, is the same. The target-opinion word pairs passed to
opinion word classifiers are different for various aspects. The connection between these two
classifiers is shown in Figure 4.1.

The input x is a representation of a document and is passed into the sentiment polarity
classifier which produces a distribution of the sentiment polarity 𝑅𝑎 for an aspect 𝑎, denoted
as 𝑞(𝑅𝑎|𝑥). When 𝑅𝑎 has only two values, positive and negative, then the sentiment
classifier outputs are 𝑞(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|𝑥) and 𝑞(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒|𝑥). The opinion word classifier takes
a target word and a possible value of the sentiment polarity 𝑟𝑎 as input and estimates
𝑝(𝑤𝑜|𝑟𝑎, 𝑤𝑡) where 𝑤𝑜 is opinion word representation and 𝑤𝑡 is target word representation.

The objective function is to maximize a log-likelihood of an opinion word 𝑤𝑜, described
in 3.2, given a target word 𝑤𝑡. Also as mentioned earlier, the objective function can be
rearranged into two sub-tasks. The first corresponds to sentiment polarity classifier and
the second to the opinion classifier. A variational lower bound of the log-likelihood, which
includes both classifiers, can be derived after addition of a latent variable - the sentiment
polarity, as follows:
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Figure 4.1: A sentiment polarity classifier and an opinion word classifier associated with
the aspect price.[46]

ℒ = log 𝑝(𝑤𝑜|𝑤𝑡)

= log
∑︁
𝑟𝑎

𝑝(𝑤𝑜|𝑟𝑎, 𝑤𝑡)

= log
∑︁
𝑟𝑎

𝑞(𝑟𝑎|𝑥)[
𝑝(𝑤𝑜, 𝑟𝑎|𝑤𝑡)

𝑞(𝑟𝑎|𝑥)
]

≥
∑︁
𝑟𝑎

𝑞(𝑟𝑎|𝑥)[log
𝑝(𝑤𝑜, 𝑟𝑎|𝑤𝑡)

𝑞(𝑟𝑎|𝑥)
]

= E𝑞(𝑅𝑎|𝑥)[log 𝑝(𝑤𝑜|𝑟𝑎, 𝑤𝑡)𝑝(𝑟𝑎|𝑤𝑡)] + 𝐻(𝑞(𝑅𝑎|𝑥))

= E𝑞(𝑅𝑎|𝑥)[log 𝑝(𝑤𝑜|𝑟𝑎, 𝑤𝑡)𝑝(𝑟𝑎)] + 𝐻(𝑞(𝑅𝑎|𝑥)),

(4.1)

where 𝐻(∆) refers to the Shannon entropy and after application of Jensen’s inequality, the
log-likelihood is lower-bounded. The equality is true if and only if the KL-divergence, de-
scribed in 3.1, of two distributions, 𝑞(𝑅𝑎|𝑥) and 𝑝(𝑅𝑎|𝑤𝑡, 𝑤𝑜), equals to zero. Maximisation
of the lower bound is equivalent to the minimisation of the KL-divergence. Therefore, a
sentiment polarity classifier can be trained to produce a similar distribution to the true
posterior 𝑝(𝑅𝑎|𝑤𝑡, 𝑤𝑜). 𝑞(𝑅𝑎|𝑥) is more flexible, compared with 𝑝(𝑅𝑎|𝑤𝑡, 𝑤𝑜), because it
takes any kind of document representation as input. There are two assumptions made.
Firstly, a target word 𝑤𝑡 is independent of a sentiment polarity and vice versa since the
polarity assignment is not affected by the target word. Secondly, the sentiment polarity 𝑅𝑎

follows a uniform distribution, which means 𝑝(𝑟𝑎) is a constant and it can be removed from
the objective function as follows.

E𝑞(𝑅𝑎|𝑥)[log 𝑝(𝑤𝑜|𝑟𝑎, 𝑤𝑡)] + 𝐻(𝑞(𝑅𝑎|𝑥)) (4.2)

This approach can achieve similar results to the supervised method with hundreds of labels
per aspect, which can reduce a lot of labour work in practice.
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4.2 Emoticons as distant supervision
A range of NLP tasks is limited by an insufficient amount of manually annotated data.
In consequence, co-occurring emotional expressions were used for distant supervision in
social media sentiment analysis and associated tasks to cause the models to learn good text
representations before modelling these tasks. Distant supervision on noisy labels allows a
model to achieve better performance on the target task. Emoticons do not always represent
a direct label of emotional content. Nonetheless, emojis can be utilised to classify emotional
content of text accurately in several cases [14].

The model uses an embedding layer of 256 dimensions, which projects each word
into vector space and a hyperbolic tangent activation function (see Equation 4.3). It
is continuous on its domain 𝐷(𝑡𝑎𝑛ℎ) = R, and limits at endpoints of the domain are
lim𝑥→−∞ 𝑡𝑎𝑛ℎ(𝑥) = −1 and lim𝑥→∞ 𝑡𝑎𝑛ℎ(𝑥) = 1.

𝑡𝑎𝑛ℎ(𝑥) =
exp𝑥− exp−𝑥

exp𝑥 + exp−𝑥
(4.3)

There are two bidirectional LSTM layers, the architecture described in Section 3.3, with
1024 hidden units in each (512 in each direction) to capture the context. Lastly, all layers
are passed into the attention layer using skip-connections, as illustrated in Figure 4.2.

Figure 4.2: Illustration of the model where 𝑇 is text length and 𝐶 the number of classes.[14]

The attention mechanism enables the model to decide the weight of each input token for
the prediction task when creating the representation. The model uses a simple approach
with a single parameter per input channel:
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𝑒𝑡 = ℎ⊤𝑡 𝑤𝑎

𝑎𝑡 =
exp(𝑒𝑡)∑︀𝑇
𝑖=1 exp(𝑒𝑖)

𝑣 =
𝑇∑︁
𝑖=1

𝑎𝑖ℎ𝑖

(4.4)

where ℎ𝑡 is the representation of the word at time step 𝑡 and 𝑤𝑎 is the weight vector for
the attention layer. The attention importance scores 𝑎𝑡 for each time step are the result of
multiplication of the representations with the weight vector and then normalized to create
a probability distribution over the tokens. Finally, the representation vector 𝑣 of the text is
calculated by a weighted summation over all the time steps using the attention importance
scores as weights. This representation vector is a high-level encoding of the entire text,
which is used as the input for the final layer for classification.

Many of the emoji have similar emotional content, however, they have slight differences
in usage that the model captures. The agglomerative hierarchical clustering on the corre-
lation matrix of the predictions shows similarities captured by the model. As illustrated in
Figure 4.3, the model groups emojis into overall categories associated with e.g. negativity,
positivity or love.

Figure 4.3: Hierarchical clustering of the DeepMoji model’s predictions across categories
on the test set. The dendrogram shows how the model learns to group emojis into overall
categories and subcategories based on emotional content. The y-axis is the distance on the
correlation matrix of the model’s predictions measured using average linkage, the distance
between two clusters is defined as the average distance between each point in one cluster
to every point in the other cluster.[14]

This approach yields state-of-the-art performance on benchmark datasets within sentiment,
emotion and sarcasm detection using a single pre-trained model. The model is used as a
baseline for the proposed method.

4.3 Sentiment neuron in the recurrent language model
This method [31] utilizes the properties of recurrent language models. It considers byte-
level language modelling due to its simplicity and generality. Due to a small vocabulary, the
model is compact. Furthermore, since it operates on a byte level rather than on language-
specific words or characters, it can analyze a text in different languages. The language
model is trained on a very large corpus and a single layer multiplicative LSTM with 4096
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units. It has been chosen because multiplicative LSTMs converge faster than normal LSTMs
for the chosen hyperparameters. The model processes input text as a sequence of UTF-8
encoded bytes. It updates its hidden state and predicts a probability distribution over the
next possible byte for each byte. The hidden state of the model represents the context
of the sequence which contains all information the model learnt is relevant to predict the
future bytes of the sequence.

Figure 4.4: Histogram of cell activation values for the sentiment unit on IMDB reviews.[31]

After inspecting the contributions of features on different datasets, there is a single unit
within the mLSTM that directly corresponds to sentiment. The histogram of activations of
this unit from the final hidden state, as illustrated in Figure 4.4, shows a clear separation
between positive and negative reviews on IMDB dataset. The visualization of the activa-
tions of this unit on 6 randomly selected reviews from a set of 100 high contrast reviews
shows an on-line estimate of the local sentiment, shown in Figure 4.5.
It is an open question of why this model recovers the concept of sentiment in such a pre-

cise, disentangled, interpretable, and manipulable way. Maybe sentiment as a conditioning
feature has a strong predictive capability for language modelling. However, the model is
sensitive to the data it was trained on. It is unrealistic to expect a model trained on a
corpus of books to learn an encoding which preserves the exact sentiment of a review.
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Figure 4.5: Visualizing the value of the sentiment cell as it processes six randomly se-
lected high contrast IMDB reviews. Red indicates negative sentiment while green indicates
positive sentiment. Best seen in color.[31]
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Chapter 5

Datasets used in sentiment analysis

Sentiment analysis models require large labelled datasets to be highly effective. Since
there are many different types of sentiment analysis, there is a need for a plethora of
datasets. There are many datasets for a simple polarity classification, usually comprised
of Twitter posts or reviews from platforms such as Amazon. However, it is a lot harder
to obtain datasets for aspect-based sentiment analysis, even though, the platforms provide
the functionality to rate different aspects, users are less likely to submit all of them.
Furthermore, nearly all datasets are in English, which may create unintentional bias and
cultural imbalance.

5.1 Pre-training dataset
This dataset was specifically collected for this thesis and contains posts from Twitter1.
These posts were collected using Twitter streaming API during the three weeks and with
the restriction that each text has to contain at least one Unicode emoji. Only the English
tweets were collected.

All Twitter mentions, URLs and hashtags were removed during the cleaning process.
Finally, all the leading and trailing whitespace characters were removed as well as all newline
characters. The dataset contains 500 000 tweets split into training and validation sets with
75% for training and 25% for validation. An example from the dataset can be seen in Table
5.1.

Tweet
are you awake pal

i’m crying katy!
Mood All my local stores are like this

Sure is, we have cake twice in 5 days

Table 5.1: Example of tweets from the dataset.

An exploratory data analysis was performed to understand the structure of the tweets
and usage of specific emojis. The tweet text length distribution is shown in Figure 5.1 where
the box plot shows that median lenght is 40 characters, while 25% of tweets are under 25
characters and 75% of tweets are under 62 characters. The counts of the emojis indicate

1http://twitter.com/
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Figure 5.1: Tweet length distribution.

heavy use of two emojis where the first emoji is present in 36% of the tweets and the second
in 21% of the tweets followed by the third with only 6% of the share. The top 10 emojis
with their counts can be seen in Table 5.2.

Emoji Occurrences
179730
106618
33913
23284
22920
19556
16700
15439
14563
14222

Table 5.2: Top 10 emojis by occurrences in the dataset.

5.2 Benchmark datasets
The first dataset with identifier SE0714 [39] consists of news headlines drawn from major
newspapers such as the New York Times, CNN, and BBC News, as well as from the Google
News search engine. Headlines are often used because of two main reasons. First, the
news have typically a high load of emotional content, as they describe major national or
worldwide events, and are written in a style meant to attract the attention of the readers.
Second, the structure of headlines is suitable for the goal of conducting a sentence-level
classification of emotions.
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The class distribution is shown in Figure 5.2, where the fear represents almost 80% of
the data samples. Examples from the dataset can be seen in Table 5.3.

fear

79%

joy

12%
sadness

9%

Figure 5.2: Class distribution from SE0714 dataset.

Class Text
Fear Mortar assault leaves at least 18 dead
Fear Nasdaq fails in bid for LSE
Joy Kate is marrying Doherty
Joy World tourism sets record in 2006

Sadness ’House of Cards’ actor Ian Richardson dead
Sadness Parachutist dies at bridge-jump festival

Table 5.3: Examples from SE0714 dataset.

The inter-annotator agreement, described in Section 2.4, studies were conducted for
each of the six emotions. The agreement evaluations were carried out using the Pearson
correlation measure and are shown in Table 5.4

Emotion Correlation
Fear 63.81
Joy 59.91

Sadness 68.19

Table 5.4: Inter-annotator agreement for each emotion in SE0714.[39]

The second dataset with identifier Olympic [37] contains tweets about London 2012
summer Olympics games. Social media platforms such as Twitter.com have become a com-
mon way for people to share opinions and emotions. Sports events are traditionally accom-
panied by strong emotions. Table 5.5 contains the statistics on inter-annotator agreement
and the emotion agreement.
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Emotion Agreement
Polarity agreement 75.7
Emotion agreement 29.3

Table 5.5: Inter-annotator agreement in Olympic dataset.[37]

Dataset class distribution is shown in Figure 5.3, where the high control emotions rep-
resents 88% of the data samples. Control represents intensity. Examples from the dataset
are shown in Table 5.6.

negative & high control

61%

positive & high control

27% negative & low control

7%
positive & low control5%

Figure 5.3: Class distribution from Olympic dataset.

Class Text
Negative & high control pierre yves beny is gonna be pissed about that stumble
Positive & high control i want to do #dance and so bad laugh out loud #wish
Negative & low control oh no the little ukrainian’s face.. :(
Positive & low control these white boy’s so fucking fine, but they so short!

Table 5.6: Examples from Olympic dataset.

The third dataset identified as PsychExp [44] consists of self-reported emotional ex-
periences created by a large group of psychologists. This dataset was constructed by a
questionnaire given to each subject, where the objective was to recall occasions on which
the subject experienced one of the following emotions: joy, fear, anger, sadness, disgust,
shame or guilt.

Dataset class distribution is shown in Figure 5.4, where all classes are evenly distributed.
Examples from the dataset are shown in Table 5.7.
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14%
guilt

14%

Figure 5.4: Class distribution from PsychExp dataset.

Class Text
Joy When I pass an examination which I did not think I did well.
Fear At primary school the teacher caught me cheating during a dictation.

Anger When a car is overtaking another and I am forced to drive off the road.
Sadness When I lost the person who meant the most to me.
Disgust When I found a bristle in the liver paste tube.
Shame When one has been unjust, stupid towards someone else.
Guilt When my uncle and my neighbour came home under police escort.

Table 5.7: Examples from PsychExp dataset.

There are two sentiment classification datasets from SentiStrength [41], SS-Twitter
and SS-Youtube.

The SS-Twitter dataset contains tweets from public microblog broadcasts. The nega-
tive tweets are more prevalent in this dataset than positive tweets. Unusually for sentiment
analysis, all the corpora are unbalanced, with highly unequal numbers of members of the
different available categories.

Class distribution from the dataset is shown in Figure 5.5. There are almost 10% more
negative classes than positive. Examples from the dataset are shown in Table 5.8.

Class Text
Negative Never by tea at Schiphol airport, it’s expensive and you get a lousy tea!
Positive I like my babe’s tat there....

Table 5.8: Examples from SS-Twitter dataset.

The SS-Youtube dataset consists of text comments posted to videos on the Youtube
website. This represents comments on resources and any associated discussions. There are
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negative

59%

positive

41%

Figure 5.5: Class distribution from SS-Twitter dataset.

more negative data samples than positive, similarly to SS-Twitter dataset.

Class distribution from the dataset is shown in Figure 5.6, where almost 70% of data
samples are negative. Examples from the dataset are shown in Table 5.9.

negative

69%

positive

31%

Figure 5.6: Class distribution from SS-Youtube dataset.

Class Text
Negative when the time comes for all to know it will be to late
Positive Great video I love this song I heard it on OTH in an LP scene 3

Table 5.9: Examples from SS-Youtube dataset.
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Finally, there are two datasets for sarcasm detection, SCv1 and SCv2-GEN.
The SCv1 dataset [43] contains posts extracted from the online debate site for political

debate and discourse. The annotators were not given additional definitions of what it
means for a post to be sarcastic. The inter-annotator agreement was 0.22 computed with
Krippendorff’s alpha as described in Section 2.4. The low agreement accords with native
intuition – it is the class with the least dependence on lexicalization and the most subject
to inter-speaker stylistic variation.

The classes are distributed evenly, as shown in Figure 5.7. Dataset examples can be
seen in Table 5.10.

not sarcastic

50%

sarcastic

50%

Figure 5.7: Class distribution from SCv1 dataset.

Class Text
Not sarcastic Please define ”climb upward“ and ”downhill slide“ in

biologically meaningful terms. Please define ”degeneration.“
Sarcastic Old habits die hard and dogs don’t pay attention to clocks!

Table 5.10: Examples from SCv1 dataset.

The SCv2-GEN dataset [25] is the second version of the previous dataset which aims to
create more diverse and generic sarcasm dataset. In the task instructions, annotators were
presented with a definition of sarcasm, followed by one example of a quote-response pair
that contains sarcasm, and one pair that does not. This is a difference from the previous
dataset, where the annotators were not given any additional information. The average per
cent agreement with the majority vote was 89% for the three annotators of this dataset.

The classes are distributed evenly, as shown in Figure 5.8. Dataset examples can be
seen in Table 5.11.
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not sarcastic

50%

sarcastic

50%

Figure 5.8: Class distribution from SCv2-GEN dataset.

Class Text
Not sarcastic If you feed me a lot of caffinated coffee i start to wiggle and squirm too.

I’m not really in any pain.
Sarcastic Yep, suppressing natural behavior is always the way to go.

We should also get them to stop pooping.

Table 5.11: Examples from SCv2-GEN dataset.

Identifier Task Domain Classes Size
SE0714 [39] Emotion Headlines 3 1250
Olympic [37] Emotion Tweets 4 959

PsychExp [44] Emotion Experiences 7 7480
SS-Twitter [41] Sentiment Tweets 2 2113
SS-Youtube [41] Sentiment Video Comments 2 2142

SCv1 [43] Sarcasm Debate Forums 2 1995
SCv2-GEN [25] Sarcasm Debate Forums 2 3260

Table 5.12: Description of benchmark datasets.
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Chapter 6

Proposed experiments

This chapter describes the proposed experiments of this thesis to explore and improve the
non-supervised sentiment analysis methods described in Chapter 4. Firstly, the perfor-
mance of the model mentioned in Section 4.3 indicates that language modelling task might
lead to better representations across multiple tasks. Secondly, the distant supervision using
emoticons causes models to learn good text representations indicated in Section 4.2. Fur-
thermore, emoticons could be used to classify the emotional content of a text accurately.
Finally, a few architectures are proposed based on these insights.

6.1 Emoji language modelling task
The proposed task is similar to the language modelling task, described in Section 3.5, where
the probability is assigned to each sequence of words. Instead, it assigns a probability to
the likelihood of a given emoticon, instead of a word, to follow the sequence which might
contain both words and emoticons. Formally, the task is to estimate the probability of
emoticon 𝑒 following the given context 𝑐, which could be written as in Equation 6.1.

𝑃 (𝑒1, 𝑒2, ..., 𝑒𝑛|𝑐) = 𝑃 (𝑒1|𝑐)𝑃 (𝑒2|𝑒1, 𝑐)...𝑃 (𝑒𝑛|𝑒1, 𝑒2, ..., 𝑒𝑛−1, 𝑐) (6.1)
where 𝑒 ∈ 𝐸;𝐸 ⊂ 𝑉 (6.2)

The 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is the sequence of words and emoticons from the vocabulary 𝑉 , and the
given emoticons 𝐸 are a subset of the vocabulary.

6.2 Emoji model from scratch
This model has been inspired by sentiment neuron language model introduced in Section
4.3. However, instead of the mLSTM architecture mentioned in Section 3.4 uses the LSTM
architecture described in Section 3.3. Similarly, the model processes input text as a sequence
of characters including emoticons, meaning it is a character-level language model.

It is trained on the dataset created for purposes of this thesis by the author, described in
Section 5.1. The input sequence characters and emoticons 𝑥 are transformed into character-
level embedding vectors 𝑥𝑐, described in Section 2.2.2. The embeddings are then passed
into the LSTM unit. Afterwards, the encoded sequence represented by the output of the
LSTM unit ℎ is decoded by a linear layer defined in Equation 6.3.
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𝑦 = 𝐴ℎ (6.3)

Lastly, the decoded outputs 𝑦 are masked and the loss is calculated only on outputs followed
by emoticon, which is possible because the position of each emoticon in the input document
is already known. The illustration of the architecture is shown in Figure 6.1. Each step
shows most probable emoticon based on probability distribution from Softmax.

Figure 6.1: Emoji LSTM language model architecture.

6.3 Pre-trained Emoji model
Language model, as described in Section 3.5, training is expensive and requires large
amounts of data. Expensive means that language model training is time-consuming and
requires a lot of computing power.

The model builds upon the pre-trained GPT-2 architecture. It is trained on the dataset
created for purposes of this thesis by the author, described in Section 5.1. The input
sequence words and emoticons are encoded using Byte Pair Encoding, described in Section
3.6. The identifiers are transformed into embedding vectors and passed to the model, shown
in Section 3.8. Afterwards, the encoded sequence represented by the output of the last layer
of GPT-2 is decoded by linear layer, defined in Equation 6.3, which behaves as a language
modelling layer. Lastly, the decoded outputs are masked and the loss is calculated only on
outputs followed by an emoticon. The illustration of the architecture is shown in Figure
6.2.

6.4 Language model as a feature extractor
The experiment uses the language model after training as a feature extractor to explore
sentiment captured in the text representations.

However, the representation vectors 𝑋 passed into a model have to be pooled, consid-
ering the text representation always consists of a variable number of vectors 𝑁 depending
on the length of each text. Three different pooling strategies are used in this experiment.
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Figure 6.2: Emoji GPT-2 language model architecture.

∙ ’reduce mean’ strategy takes the average of the prediction vectors on the time axis:
�̄� = 1

𝑁

∑︀𝑁
𝑛=1 𝑥𝑛.

∙ ’reduce max’ strategy takes the maximum of the prediction vectors on the time axis:
�̄� = 𝑚𝑎𝑥(𝑋)

∙ ’last token’ strategy, which uses the prediction vector corresponding to the last token.
�̄� = 𝑥𝑛

Finally, the pooled text representation vectors are used in the following experiments.
The first experiment is to calculate the correlation between the predicted emoticons

and the target sentiment classes. Two different methods could be used to measure the
association between two nominal variables: Cramér’s V and Theil’s U. The first variable
is predicted emoticon classes, and the second is the target classes. These methods might
indicate that there is a specific emoticon class with a high association. That would mean
it could be used to predict a specific target class with high accuracy without any further
supervision.

The second is to use predicted emoticons 𝐸 to train the logistic regression model to
predict the target sentiment classes 𝑌 . This method might find a combination of the
emoticon predictions that predicts the target class 𝑦 with high accuracy. That would mean
high accuracy with small supervision.

And the last experiment is to compare Emoji GPT-2 model to original GPT-2 to see if
there is any performance gain. Last hidden states 𝐻 from both models are compared and
the final emoticon predictions vector 𝑒 with the hidden states ℎ𝑚 from both models. The
goal of this experiment is to see if the outcome of the experiment from Section 6.3 provided
more emotional content information to the GPT-2 model.
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Chapter 7

Implementation and setup

This chapter presents the implementation and experimental setup used to train and evaluate
experiments from Chapter 6. For the implementation of the models and experiments,
Python 3.7 was used with PyTorch 1.4 framework. NVIDIA GeForce RTX 2080 Ti was
used for training of the simple model from Section 6.2 and NVIDIA Tesla T4 was used for
the larger GPT-2 model from Section 6.3.

7.1 Implementation
Specific architectures are in model.py file in each repository for that architecture. All exper-
iments are in notebooks directory, and datasets used for those experiments are contained
in the data directory.

Architecture from Section 6.2 was implemented only with PyTorch [27] framework, and
for representations of emoticons is used library emoji. Dataset is loaded using DataLoader
and as a sampler is used RandomSampler. Adam [18] is used as the optimizer, and the learn-
ing rate is adjusted during training using linear_scheduler_with_warmup. CrossEntropyLoss
is utilised for calculating the loss during training. All metrics calculated during training
such as training loss, evaluation loss and perplexity are logged using Tensorboard.

Architecture from Section 6.3 was implemented using PyTorch as well as transformer
library. Also, for the representations of emoticons is used emoji library. Dataset is loaded
the same way as described for previous architecture. Learning rate is adjusted using the
same function as previous architecture. However, the optimizer used is AdamW [22], Adam
algorithm with decoupled weight decay. CrossEntropyLoss is used in this case as well.
Similarly, all metrics calculated during training are logged using Tensorboard.

7.2 Setup
Traning of architecture from Section 6.2 was done with learning rate 0.05 and clipping
gradient norms at 1.5. The total number of epochs was 10, with warm-up steps set to 0.
LSTM had 1 layer with 4096 unit hidden state and batch size was 256 during training.
Dropout was set to 0.5.

Architecture from Section 6.3 was trained with the total number of epochs equal to 100,
and warm-up steps set to 0 as well. Learning rate during training was 0.005, and weight
decay for AdamW was set to 0. Maximum gradient normalization was set to 1.
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Chapter 8

Results and Evaluation

The results of the experiments from the previous chapter are shown and discussed in this
chapter. The models are evaluated on the test set of each benchmark dataset. The met-
rics used to evaluate the datasets are accuracy, for binary classification, and F1-score, for
multiclass classification.

The results of the experiments are very surprising for many reasons. For example, the
simple LSTM model was not able to learn any useful emoticon representations. However,
Emoji GPT-2 model can achieve high results in sentiment, emotion and sarcasm classifica-
tion.

8.1 Language model from scratch
The model in this experiment was not very successful. During pre-training, it started to
diverge quickly on the validation set of the custom dataset described in Section. Further-
more, after inspecting the predictions on the validation set, it seemed to predict mostly two
emoticons: and . The example is shown in Figure 8.1.

Figure 8.1: Emoji LSTM language model output example.

Predictions like these were not expected since occurrence counts of these emoticons
are only 421 and 8186 respectively. Moreover, inspection by training a logistic regression
on binary sentiment classification shown poor accuracy as well. Since the model did not
perform well, it is not used in the following experiments.

Potential future work would be to find out the cause of the behaviour and improve the
model architecture.

8.2 Pre-trained language model
The results of the model from this experiment are very interesting. The model with the
best perplexity on the validation set is used in this experiment. The model exploration
revealed that mostly the most common emoticons are predicted. A few random tweets
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from the validation set were selected and used for the exploration. For each token, the top
5 most probable predictions were displayed. The example is shown in Figure 8.2.

Figure 8.2: Emoji GPT-2 language model example.

The predictions in these results indicate that overall sentiment is encoded. For example,
as shown in Figure 8.2, when the overall sentiment of the tweet is positive, mostly positive
emoticons are predicted in the top 5. Also, the different emoticon predictions might indicate
that different emotions might be encoded as well.

Figure 8.3: Emoji GPT-2 language model sarcasm example.

Furthermore, the example in Figure 8.3 might indicate that the emoticon predictions
also encode sarcasm. Considering the word ”mean“ in the context of the example is negative
as suggested by 4 of the top 5 emoticons. However, the most probable prediction is still
the positive emoticon, the face with tears of joy .

Because the GPT-2 model is based on Transformer architecture, described in Section
3.7, it utilizes attention. The attention could be another way to gain more insights into the
decision making of the model. Similarly to the previous case, a few random tweets were
picked from the validation set and used to explore the attention heads of each layer.

Interestingly, the model seems to always assign high attention weights between the
emoticon present in the tweet and the word it relates to emotionally. The examples are
shown in Figure 8.4. Furthermore, this association seems to be always present in one of the
first three heads of the seventh layer.

This insight could be further explored as a potential future work to see if it could be
used for the non-supervised sentiment analysis.
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Figure 8.4: Emoji GPT-2 language model sarcasm example.

8.3 Measures of association
The measure of association between two variables refers to a method that measures the
strength and direction of the relationship between those two variables. The Emoji GPT-2
model from the previous experiment is used in this experiment. Each text representation
from this model was pooled using one of the strategies in Section 6.4. The final prediction
was extracted from the pooled vector using 𝑎𝑟𝑔𝑚𝑎𝑥 function and used as an input to one of
the methods used to calculate the measure of association. The second input variable is the
target class. Both input text for the Emoji GPT-2 model and the target classes are from
one of the benchmark datasets since this experiment was performed on all of them. Two
methods were used to measure the similarity between these two discrete variables described
in Section 3.9.

The results of the experiment, shown in Table 8.1, showed that the most predictive
pooled vector was ’last token’ on all benchmark datasets. It repeatedly showed significantly
higher association values compared to the other two. Interestingly, the datasets for the
sentiment classification task showed the highest degree of association, which might suggest
that the overall sentiment of the text might be encoded better than for the other tasks.
Moreover, the sarcasm datasets indicated the lowest degree of association confirming the
difficulty of sarcasm classification.

Furthermore, the top 2 predictions were extracted from the pooled vector and used to
calculate association. The results suggest the knowledge of all probable predictions increases
the association, which means there is captured more information about the emotional con-
tent.

Finally, the difference between the results of both measures indicates that the Cramér’s
V might not be suitable for this experiment.
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Identifier Pooling strategy Cramér’s V Theil’s U
SE0714 [39] reduce max .0 .1424

reduce mean .1291 .0595
last token .0854 .0989

Olympic [37] reduce max .0 .1718
reduce mean .1166 .1196

last token .2016 .2179
PsychExp [44] reduce max .1981 .0635

reduce mean .1620 .0371
last token .2782 .1013

SS-Twitter [41] reduce max .3184 .1549
reduce mean .3266 .1287

last token .4028 .2016
SS-Youtube [41] reduce max .3936 .2009

reduce mean .4187 .2122
last token .4668 .2442

SCv1 [43] reduce max .0762 .0464
reduce mean .0519 .0211

last token .0657 .0281
SCv2-GEN [25] reduce max .1619 .0387

reduce mean .1374 .0206
last token .2048 .04581

Table 8.1: Measures of association on benchmark datasets.

8.4 Benchmark datasets
The experiment also uses the Emoji GPT-2 model from the experiment in Section 6.3. Also,
the text representations from this model were pooled using each of the strategies in Section
6.4. These pooled text representations were used as features for the logistic regression
model. The text inputs for the Emoji GPT-2 model and target classes used in the logistic
regression model were from each of the benchmarks datasets.

The experiment benchmarks the model on three different tasks. There are three datasets
for emotion classification, and two datasets for sentiment and sarcasm classification each.
Each dataset was split into a training set and test set, the numbers of observations for each
set are in Table 8.2. The logistic regression was trained using cross-validation with both
L1 and L2 regularization. However, L2 regularized models always performed better.

Similarly to the previous experiment, the strategy which generated ’most predictive’
pooled vectors was ’last token’ on all the benchmark datasets. The best model with the high-
est accuracy of 89% on sentiment classification task was achieved on SS-Youtube dataset.
This model was only 3% worse than the baseline model. Also, the model performed great
on the sarcasm classification task where it achieved a comparable result with the baseline
model on SCv2-GEN dataset. The biggest differences in performance compared to the base-
line model were on the emotion classification datasets. Here, the model performed better
on SE0714, where it scored 49% compared, which is 13% better than the baseline model.
However, performed worse on the other two emotion classification datasets.

All results are shown in Table 8.2.
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Identifier Measure 𝑁𝑡𝑟𝑎𝑖𝑛 𝑁𝑡𝑒𝑠𝑡 Emoji GPT-2(last tok.) DeepMoji(last)
SE0714 [39] F1 250 1000 .49 .36
Olympic [37] F1 250 709 .43 .61

PsychExp [44] F1 1000 6480 .51 .56
SS-Twitter [41] Accuracy 1000 1113 .83 .87
SS-Youtube [41] Accuracy 1000 1142 .89 .92

SCv1 [43] F1 1000 995 .64 .68
SCv2-GEN [25] F1 1000 2260 .73 .74

Table 8.2: Comparison across benchmark datasets.

The last experiment with Emoji GPT-2 showed different all three classification task
datasets. It performed better on Olympic dataset than the original GPT-2, however, a
little worse on the other two emotion task datasets. Overall, the last emoticon predictions
seem to be a better representation than the hidden state of the Emoji GPT-2.

Furthermore, the Emoji GPT-2 performed better on the sentiment task datasets where
it achieved better results compared to both hidden state representations of Emoji GPT-2 as
well as hidden representations of the original GPT-2. Again, the last emoticon predictions
seem to be in this case better representation, than both Emoji GPT-2 and GPT-2 hidden
states.

Lastly, Emoji GPT-2 indicated worse performance compared to original GPT-2. The
reason why there is a difference in the performance on sarcasm task could be a part of
future research.

It should be noted that all bechmarks with better Emoji GPT-2 are from social media
domain as well as the pre-training dataset and might be reason for better performance. For
results see Table 8.3.

Identifier Emoji GPT-2 Emoji GPT-2 GPT-2
Pooling last token probabilities last hidden last hidden

SE0714 [39] .49 .49 .53
Olympic [37] .43 .42 .32

PsychExp [44] .51 .51 .53
SS-Twitter [41] .83 .82 .77
SS-Youtube [41] .89 .87 .84

SCv1 [43] .64 .65 .67
SCv2-GEN [25] .73 .73 .78

Table 8.3: Comparison with original GPT-2 across benchmark datasets.

8.5 Summary
The experiments described in previous sections rendered the following conclusions:

∙ The simple LSTM architecture does not seem to be able to learn any useful text
representations during pre-training on introduced emoticon language modelling task.
However, the results from the Emoji GPT-2 show that the model can learn emotional
content, so further exploration of the capabilities of the LSTM architecture is left as
a potential future work.
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∙ Pre-training on the emoticon language modelling task seems ’to teach the emotional
content knowledge to the model’ suggested by context-dependent emoticon predic-
tions. Also, the emotional content knowledge was present during the analysis of
attention heads of the model and the further inspection of this phenomenon is left as
future work.

∙ The model emoticon predictions seem to encode emotional content information based
on the results of the model compared to the baseline model and the original GPT-2
model. The results suggest that the overall sentiment of the text is the most captured
phenomena out of all three benchmark tasks. Furthermore, the results show that the
emoticon language modelling task is successful in encoding more emotional content
in the model predictions compared to original GPT-2 model.
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Chapter 9

Conclusion

This thesis discussed the phenomenon of sentiment in natural language and currently avail-
able methods for non-supervised sentiment analysis. Custom pre-training dataset was col-
lected from Twitter, and various benchmark datasets for sentiment classification, emotion
detection and sarcasm classification were introduced. Experimental training task was cre-
ated based on the observations from two current methods. The first observation is that
language modelling task can capture sentiment from the text. The second observation is
that emoticons can be used as a form of distant supervision with state-of-the-art results
as shown in [14], and described in Section 4.2. And finally, different experiments with
the experimental training task were introduced, and the results were compared against the
baseline architecture. Ablation study was not done because no suitable ablation was found.

The baseline architecture was DeepMoji architecture (see Section 4.2), where all layers
were frozen, and only the last layer was fine-tuned on the downstream dataset. The whole
architecture was pre-trained on Twitter data with emoticons as supervision. Emoticons
present in the data sample were used as the annotation separately for the whole sample.
Meaning that if there were three different emoticons, the data sample would be present in
the training dataset three times with different annotation emoticon. Duplicate emoticons
were thrown away. DeepMoji is bidirectional discriminative architecture. Contrary to
DeepMoji, Emoji GPT-2 did not remove duplicate emoticons, it is generative architecture
which models sequences of emoticons and it is single directional.

It is clear from the results of the experiments that overall sentiment, emotions and even
sarcasm can be extracted from the text using the experimental task. The simple LSTM
architecture was not able to learn meaningful representations. Further exploration of the
cause was left as a potential future work.

However, extended GPT-2 architecture showed comparable results with the baseline
architecture as well as performance improvements over the original GPT-2 architecture.
The Emoji GPT-2 architecture outperformed the baseline DeepMoji architecture only in
one of the emotion classification benchmarks. Nevertheless, the results on the sentiment
classification and sarcasm classification tasks were comparable. Furthermore, since the
Emoji GPT-2 uses pre-trained GPT-2, it required less training time and data to achieve
similar results.

The use of Transformer based architecture (GPT-2) opens a possibility to perform
analysis on the attention heads. Interesting attention groups were discovered during the
attention analysis in the Emoji GPT-2. It would be interesting to see if it would be possible
to classify sentiment only based on the attention heads. However, further research in this
area was left as a potential future work.
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Conclusion based on the results of the experiments done in this thesis confirms that
language modelling task is capable of extracting sentiment from the text. Also, the pro-
posed experiment emoji modelling task can capture better emotional representations than
the hidden Transformer representation by almost 5 per cent in some benchmark tasks.
Moreover, emoticons as a form of supervision are great at capturing overall sentiment, dif-
ferent emotions as well as sarcasm. Potential future improvements in this area would be
to explore LSTM architecture more in-depth. Moreover, explore the potential of attention
based classification. Other future path of research could be fine-tuning the whole model on
the downstream datasets.
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